0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LLM215R71C473MA11K

LLM215R71C473MA11K

  • 厂商:

    MURATA-PS(村田)

  • 封装:

    0805

  • 描述:

    贴片电容(MLCC) 0805 47nF ±20% 16V X7R

  • 数据手册
  • 价格&库存
LLM215R71C473MA11K 数据手册
Only Reflow Soldering LOW ESL CHIP MONOLITHIC CERAMIC CAPACITOR FOR GENERAL LLM215R71C473MA11_ (0805, X7R, 47000pF, 16Vdc) _: packaging code Reference Sheet 1.Scope This product specification is applied to Low ESL Chip Monolithic Ceramic Capacitor used for General Electronic equipment. This product is applied for Only Reflow Soldering.    2.MURATA Part NO. System (Ex.) LLM 21 5 (1)L/W Dimensions R7 (2)T Dimensions 1C (3)Temperature Characteristics 473 (4)DC Rated Voltage M (5)Nominal (6)Capacitance Tolerance Capacitance A11 3. Type & Dimensions P T W L (1)-1 L (1)-2 W (2) T 2.0±0.1 1.25±0.1 0.5+0.05/-0.1 (Unit:mm) p 0.5±0.05 4.Rated value (3) Temperature Characteristics (Public STD Code):X7R(EIA) Temp. coeff Temp. Range or Cap. Change (Ref.Temp.) -15 to 15 % -55 to 125 °C (25 °C) (4) DC Rated Voltage 16 Vdc (6) (5) Nominal Capacitance Capacitance Tolerance 47000 pF ±20 % Specifications and Test Methods (Operationg Temp. Range) -55 to 125 °C 5.Package mark L K (8) Packaging f180mm Reel EMBOSSED W8P4 f330mm Reel EMBOSSED W8P4 Packaging Unit 4000 pcs./Reel 10000 pcs./Reel Product specifications in this catalog are as of Jan.30,2013,and are subject to change or obsolescence without notice. Please consult the approval sheet before ordering. Please read rating and !Cautions first. LLM215R71C473MA11-01 1 L (7)Murata’s (8)Packaging Code Control Code ■SPECIFICATIONS AND TEST METHODS No Specification Item 1 Operating Temperature Range R7 / C7:-55℃ to +125℃ 2 Rated Voltage See the previous pages. Test Method The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, VP-P or VO-P, whichever is larger, should be maintained within the rated voltage range. 3 Appearance No defects or abnormalities. Visual inspection. 4 Dimension Within the specified dimensions. Using calipers. 5 Dielectric Strength No defects or abnormalities. No failure shall be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. 6 Insulation Resistance More than 10,000MΩ or 500Ω・F. The insulation resistance shall be measured with a DC voltage (whichever is smaller) not exceeding the rated voltage at 25℃ and 75%RH max. and within 2 minutes of charging. 7 Capacitance Within the specified tolerance. 8 Dissipation Factor W.V.:25Vmin. ;0.025 max. The capacitance/D.F. shall be measured at 25℃ at the frequency and voltage shown in the table. (D.F.) Capacitance *1 C≦10μF W.V.:16V/10V;0.035 max. W.V.:6.3V/4V;0.05 max. Frequency 1±0.1kHz Voltage 1.0±0.2Vrms *1 For LLA185 C7 0G 334/474, the capacitance should be measured using a voltage of 0.5+/-0.1Vrms instead of 1.0+/-0.2Vrms. 9 Capacitance The capacitance change shall be measured after 5 min. at Temperature each specified temperature stage. Characteristics R7 Temp.Range (℃) -55 to +125 C7 -55 to +125 Char. Reference Cap.Change Temp. 25℃ Within ±15% 25℃ Step 1 Within ±22% Temperature(C) 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 The ranges of capacitance change compared with the 25℃ value over the temperature ranges shown in the table shall be within the specified ranges. 10 Adhesive Strength of Termination No removal of the terminations or other defect should occur. Solder the capacitor to the test jig (glass epoxy board) using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. 11 Vibration Appearance No defects or abnormalities. Solder the capacitor to the test jig (glass epoxy board) in the same Resistance manner and under the same conditions as (10). The capacitor shall Capacitance Within the specified tolerance. be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate D.F. W.V.:25Vmin. ;0.025 max. limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return W.V.:16V/10V;0.035 max. to 10Hz, shall be traversed in approximately 1 minute. W.V.:6.3V/4V;0.05 max. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). 12 Solderability of Termination 75% of the terminations is to be soldered evenly Immerse the capacitor in a solution of ethanol (JIS-K-8101) and and continuously. rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120℃ for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5℃,or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5℃. JEMCAS-00670A 2 ■SPECIFICATIONS AND TEST METHODS No Specification Item 13 Temperature Appearance No marking defects. Capacitance Within ±7.5% Test Method Fix the capacitor to the supporting jig in the same manner and under Cycle the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 Change D.F. hours at room temperature, then measure. W.V.:25Vmin. ;0.025 max. W.V.:16V/10V;0.035 max. Step 1 2 3 4 Temp.(℃) Min. Operating Temp.+0/-3 Room Temp. Max. Operating Temp.+3/-0 Room Temp. Time(min.) 30±3 2 to 3 30±3 2 to 3 W.V.:6.3V/4V;0.05 max. I.R. Dielectric More than 10,000MΩ or 500Ω・F. (whichever is smaller) ・Initial measurement No failure Perform a heat treatment at 150+0/-10°C for one houg and then let sit Strength for 24±2 hours at room temperature. Perform the initial measurement. 14 Humidity Appearance No marking defects. Capacitance Within ±12.5% Sit the capacitor at 40±2℃ and 90 to 95% humidity for 500±12 (Steady State) hours. Remove and let sit for 24±2 hours at room temperature, then measure. Change D.F. W.V.:10Vmin. ;0.05 max. W.V.:6.3V/4V;0.075 max. I.R. More than 1,000MΩ or 50Ω・F. (whichever is smaller) 15 Humidity Load Appearance No marking defects. Capacitance Within ±12.5% Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current Change is less than 50mA.   D.F. W.V.:10Vmin. ;0.05 max.   W.V.:6.3V/4V;0.075 max.     I.R. More than 500MΩ or 25Ω・F.   (whichever is smaller)     16 High Appearance No marking defects. Capacitance Within ±12.5% Apply 200% of the rated voltage for 1000±12 hours at the Temperature Load maximum operating temperature ±3℃. Let sit for 24±2 hours at room temperature,then measure. Change The charge/discharge current is less than 50mA. ・Initial measurement D.F. W.V.:10Vmin. ;0.05 max. Apply 200% of the rated DC voltage for one hour at the W.V.:6.3V/4V;0.075 max. maximum operating temperature ±3℃. Remove and let sit for 24±2 hours at room temperature. Perform initial I.R. More than 1,000MΩ or 50Ω・F. measurement. (whichever is smaller) JEMCAS-00670A 3 Package LLM Type 1.Tape Carrier Packaging(Packaging Code:L/K) 1.1 Minimum Quantity(pcs./reel) 1.2 Dimensions of Tape (in mm) 4.0±0.1 0.2±0.1 4.0±0.1 2.0±0.1 +0.1 φ1.5-0 B A 2.5max Code A B JEMCAP-01913 LLM21 1.45±0.2 2.25±0.2 LLM31 1.9±0.2 3.5±0.2 4 8.0±0.3 5 5 f 330mm reel Plastic Tape Code : K 10000 10000 1.75±0.1 LLM21 LLM31 f180mm reel Plastic Tape Code : L 4000 4000 3.5±0.05 Type Package LLM Type Fig 1 Package Chip (in mm) Chip Fig2 Dimension of Reel φ13±0.5 φ180+0/-3.0 φ330±2.0 φ21±0.8 f 50 min 2.0±0.5 10±1.5 16.5 max Fig3 Taping Diagram Top Tape : Thickness 0.05 Feeding Hole : As specified in 1.2 Hole for Chip : As specified in 1.2 Base Tape : As specified in 1.2 JEMCAP-01913 5 チップ詰め状態 Package LLM Type (単位:mm) 1.3 Tapes for capacitors are wound clockwise shown in Fig.3. (The sprocket holes are to the right as the tape is pulled toward the user.) 1.4 Part of the leader and part of the vacant section are attached as follows. (in mm) Tail vacant Section Chip-mounting Unit Leader vacant Section Leader Unit (Top Tape only) Direction of Feed 160 min. 190 min. 210 min. 1.5 Accumulate pitch : 10 of sprocket holes pitch = 40±0.3mm 1.6 Chip in the tape is enclosed by top tape and bottom tape as shown in Fig.1. 1.7 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches. 1.8 There are no jointing for top tape and bottom tape. 1.9 There are no fuzz in the cavity. 1.10 Break down force of top tape : 5N min. 1.11 Reel is made by resin and appeaser and dimension is shown in Fig 3. There are possibly to change the material and dimension due to some impairment. 1.12 Peeling off force : 0.1N to 0.6N in the direction as shown below. 165 to 180° Top Tape 1.13 Label that show the customer parts number, our parts number, our company name, inspection number and quantity, will be put in outside of reel. JEMCAP-01913 6 ! Caution ■ Limitation of use Please contact our sales representatives or product engineers before using our products for the applications listed below which require of our products for other applications than specified in this product.    ①Aircraft equipment ②Aerospace equipment ③Undersea equipment ④Power plant control equipment    ⑤Medical equipment ⑥Transportation equipment(vehicles,trains,ships,etc.) ⑦Traffic signal equipment    ⑧Disaster prevention / crime prevention equipment ⑨Data-processing equipment    ⑩Application of similar complexity and/or requirements to the applications listed in the above ■ Storage and Operation condition 1. The performance of chip monolithic ceramic capacitors may be affected by the storage conditions. 1-1. Store capacitors in the following conditions: Temperature of +5℃ to +40℃ and a Relative Humidity of 20% to 70%. (1) Sunlight, dust, rapid temperature changes, corrosive gas atmosphere or high temperature and humidity conditions during storage may affect the solderability and the packaging performance Please use product within six months of receipt. (2) Please confirm solderability before using after six months. Store the capacitors without opening the original bag. Even if the storage period is short, do not exceed the specified atmospheric conditions. 1-2. Corrosive gas can react with the termination (external) electrodes or lead wires of capacitors, and result in poor solderability. Do not store the capacitors in an atmosphere consisting of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.). 1-3. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused by direct sunlight on the terminal electrodes and/or the resin/epoxy coatings, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high huimidity conditions JEMCAC-00641A 7 ! Caution ■Rating 1.Temperature Dependent Characteristics 1. The electrical characteristics of the capacitor can change with temperature. 1-1. For capacitors having larger temperature dependency, the capacitance may change with temperature changes. The following actions are recommended in order to insure suitable capacitance values. (1) Select a suitable capacitance for the operating temperature range. (2) The capacitance may change within the rated temperature. When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actual appliances at the intended environment and operating conditions. □ Typical temperature characteristics Char.R6 (X5R) □ Typical temperature characteristics Char.R7 (X7R) 20 Capacitance Change (%) 15 10 5 0 -5 -10 -15 -20 -75 -50 -25 0 25 Temperature (℃) 50 75 100 □ Typical temperature characteristics Char.F5 (Y5V) 40 Capacitance Change (%) 20 0 -20 -40 -60 -80 -100 -50 -25 0 25 50 Temperature (℃) 75 100 2.Measurement of Capacitance 1. Measure capacitance with the voltage and the frequency specified in the product specifications. 1-1. The output voltage of the measuring equipment may decrease when capacitance is high occasionally. Please confirm whether a prescribed measured voltage is impressed to the capacitor. 1-2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied. Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit. JEMCAC-00641A 8 ! Caution 3.Applied Voltage 1. Do not apply a voltage to the capacitor that exceeds the rated voltage as called-out in the specifications. 1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage. (1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage. (2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage. Typical voltage applied to the DC capacitor DC voltage DC voltage+AC E E AC voltage E Pulse voltage 0 E 0 0 0 (E:Maximum possible applied voltage.) 1-2. Influence of overvoltage Overvoltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers . The time duration until breakdown depends on the applied voltage and the ambient temperature. 4. Applied Voltage and Self-heating Temperature 1. When the capacitor is used in a high-frequency voltage, pulse voltage, application, be sure to take into account self-heating may be caused by resistant factors of the capacitor. 1-1. The load should be contained to the level such that when measuring at atomospheric temperature of 25℃,the product's self-heating remains below 20℃ and surface temperature of the capacitor in the actual circuit remains wiyhin the maximum operating temperature. JEMCAC-00641A 9 ! Caution 5. DC Voltage and AC Voltage Characteristic 1. The capacitance value of a high dielectric constant type capacitor changes depending on the DC voltage applied. Please consider the DC voltage characteristics when a capacitor is selected for use in a DC circuit. 1-1. The capacitance of ceramic capacitors may change sharply depending on the applied voltage. (See figure) Please confirm the following in order to secure the capacitance. (1) Whether the capacitance change caused by the applied voltage is within the range allowed or not. □ DC voltage characteristics 20 0 Capacitance Change(%) (2) In the DC voltage characteristics, the rate of capacitance change becomes larger as voltage increases. Even if the applied voltage is below the rated voltage. When a high dielectric constant type capacitor is in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actual appliances at the intended environment and operating conditions. -20 -40 -60 -80 -100 0 2 4 6 8 DC Voltage (VDC) 2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied. Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit. □ AC voltage characteristics 30 Capacitance Change (%) 20 10 0 -10 -20 -30 -40 -50 -60 0.0 0.5 1.0 1.5 2.0 2.5 AC Voltage (Vr.ms.) 6. Capacitance Aging 1. The high dielectric constant type capacitors have the characteristic in which the capacitance value decreases with passage of time. When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actual appliances at the intended environment and operating conditions. JEMCAC-00641A 10 ! Caution 7.Vibration and Shock 1. The capacitors mechanical actress (vibration and shock) shall be specified for the use environment. Please confirm the kind of vibration and/or shock, its condition, and any generation of resonance. Please mount the capacitor so as not to generate resonance, and do not allow any impact on the terminals. 2. Mechanical shock due to falling may cause damage or a crack in the dielectric material of the capacitor. Do not use a fallen capacitor because the quality and reliability may be deteriorated. Crack Floor 3. When printed circuit boards are piled up or handled, the corners of another printed circuit board should not be allowed to hit the capacitor in order to avoid a crack or other damage to the capacitor. Mounting printed circuit board Crack ■ Soldering and Mounting 1.Mounting Position 1. Confirm the best mounting position and direction that minimizes the stress imposed on the capacitor during flexing or bending the printed circuit board. 1-1.Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.  [Component Direction] Locate chip horizontal to the direction in which stress acts  [Chip Mounting Close to Board Separation Point] C Perforation B Chip arrangement Worst A-C-(B~D) Best D A Slit   JEMCAC-00641A 11 ! Caution 2.Information before mounting 1. Do Not re-use capacitors that were removed from the equipment. 2. Confirm capacitance characteristics under actual applied voltage. 3. Confirm the mechanical stress under actual process and equipment use. 4. Confirm the rated capacitance, rated voltage and other electrical characteristics before assembly. 5. Prior to use, confirm the Solderability for the capacitors that were in long-term storage. 6. Prior to measuring capacitance, carry out a heat treatment for capacitors that were in long-term storage. 7.The use of Sn-Zn based solder will deteriorate the reliability of the MLCC. Please contact our sales representative or product engineers on the use of Sn-Zn based solder in advance. 3.Maintenance of the Mounting (pick and place) Machine 1. Make sure that the following excessive forces are not applied to the capacitors. 1-1. In mounting the capacitors on the printed circuit board, any bending force against them shall be kept to a minimum to prevent them from any bending damage or cracking. Please take into account the following precautions and recommendations for use in your process. (1) Adjust the lowest position of the pickup nozzle so as not to bend the printed circuit board. (2) Adjust the nozzle pressure within a static load of 1N to 3N during mounting.  [Incorrect] Suction Nozzle Deflection Board Board Guide  [Correct] Support Pin 2. Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes greater force upon the chip during mounting, causing cracked chips. Also the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically. JEMCAC-00641A 12 ! Caution 4-1.Reflow Soldering 1. When sudden heat is applied to the components, the mechanical strength of the components will decrease because a sudden temperature change causes deformation inside the components. In order to prevent mechanical damage to the components, preheating is required for both the components and the PCB board. Preheating conditions are shown in table 1. It is required to keep the temperature differential between the solder and the components surface (ΔT) as small as possible. [Standard Conditions for Reflow Soldering] Infrared Reflow Temperature(℃) 200℃ 170℃ 150℃ 130℃ 2. Solderability of Tin plating termination chips might be deteriorated when a low temperature soldering profile where the peak solder temperature is below the melting point of Tin is used. Please confirm the Solderability of Tin plated termination chips before use. 3. When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and the solvent within the range shown in the table 1. Soldering Gradual Cooling Peak Temperature Preheating Time 60-120 seconds 30-60 seconds Vapor Reflow Temperature(℃) Soldering Peak Temperature 170℃ 150℃ 130℃ Preheating Table 1 Part Number Gradual Cooling Temperature Differential Time 60-120 seconds LLM21/LLM31 20 seconds ΔT≦130℃ Recommended Conditions Pb-Sn Solder Lead Free Solder Infrared Reflow Vapor Reflow Peak Temperature 230~250℃ 230~240℃ 240~260℃ Atmosphere Air Air Air or N2 Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu Soldering Temperature(℃) [Allowable Soldering Temperature and Time] 280 270 260 250 240 230 220 0 30 60 90 120 Soldering Time(sec.) 4. Optimum Solder Amount for Reflow Soldering 4-1. Overly thick application of solder paste results in a excessive solder fillet height. This makes the chip more susceptible to mechanical and thermal stress on the board and may cause the chips to crack. 4-2. Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB. 4-3. Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min. Inverting the PCB JEMCAC-00641A In case of repeated soldering, the accumulated soldering time must be within the range shown above. 0.2mm min. in section Make sure not to impose any abnormal mechanical shocks to the PCB. 13 ! Caution 4-4.Leaded Component Insertion 1. If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break. Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping. 5.Washing Excessive ultrasonic oscillation during cleaning can cause the PCBs to resonate, resulting in cracked chips or broken solder joints. Take note not to vibrate PCBs. 6.Electrical Test on Printed Circuit Board 1. Confirm position of the support pin or specific jig, when inspecting the electrical performance of a capacitor after mounting on the printed circuit board. 1-1. Avoid bending printed circuit board by the pressure of a test pin, etc. The thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing. 1-2. Avoid vibration of the board by shock when a test pin contacts a printed circuit board. □ Not recommended □ Recommended ← Peeling ← Support pin ← Test-pin JEMCAC-00641A ← Test-pin 14 ! Caution 7.Printed Circuit Board Cropping 1. After mounting a capacitor on a printed circuit board, do not apply any stress to the capacitor that is caused by bending or twisting the board. 1-1. In cropping the board, the stress as shown right may cause the capacitor to crack. Try not to apply this type of stress to a capacitor. Bending Twisting 2. Check of the cropping method for the printed circuit board in advance. 2-1. Printed circuit board cropping shall be carried out by using a jig or an apparatus to prevent the mechanical stress which can occur to the board. (1) Example of a suitable jig Recommended example: the board should be pushed as close to the near the cropping jig as possible and from the back side of board in order to minimize the compressive stress applied to capacitor. Not recommended example* when the board is pushed at a point far from the cropping jig and from the front side of board as below, the capacitor may form a crack caused by the tensile stress applied to capacitor. Recommended Outline of jig V-groove Printed circuit board Printed circuit board Components Not recommended Direction of load Printed circuit board Load point Direction of load Load point Components Board cropping jig (2) Example of a suitable machine An outline of a printed circuit board cropping machine is shown as follows. Along the lines with the V-grooves on printed circuit board, the top and bottom blades are aligned to one another when cropping the board. The misalignment of the position between top and bottom blades may cause the capacitor to crack. Outline of machine Principle of operation Top blade Top blade Cross-section diagram Printed circuit board Bottom blade Printed circuit board Recommended JEMCAC-00641A V-groove V-groove Not recommended Top-bottom misalignment Left-right misalignment Front-rear misalignment Top blade Top blade Top blade Top blade Bottom blade Bottom blade Bottom blade Bottom blade 15 ! Caution ■ Others 1. Under Operation of Equipment 1-1. Do not touch a capacitor directly with bare hands during operation in order to avoid the danger of a electric shock. 1-2. Do not allow the terminals of a capacitor to come in contact with any conductive objects (short-circuit). Do not expose a capacitor to a conductive liquid, inducing any acid or alkali solutions. 1-3. Confirm the environment in which the equipment will operation is under the specified conditions. Do not use the equipment under the following environment. (1) Being spattered with water or oil. (2) Being exposed to direct sunlight. (3) Being exposed to Ozone, ultraviolet rays or radiation. (4) Being exposed to toxic gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.) (5) Any vibrations or mechanical shocks exceeding the specified limits. (6) Moisture condensing environments. 1-4. Use damp proof countermeasures if using under any conditions that can cause condensation. 2. Others 2-1. In an Emergency (1) If the equipment should generate smoke, fire or smell, immediately turn off or unplug the equipment. If the equipment is not turned off or unplugged, the hazards may be worsened by supplying continuous power. (2) In this type of situation, do not allow face and hands to come in contact with the capacitor or burns may be caused by the capacitors high temperature. 2-2. Disposal of waste When capacitors are disposed, they must be burned or buried by the industrial waste vender with the appropriate licenses. 2-3. Circuit Design LLM Series capacitors in this specification are not safety recognized products. 2-4. Remarks Failure to follow the cautions may result, worst case, in a short circuit and smoking when the product is used. The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data herein are given in typical values, not guaranteed ratings. JEMCAC-00641A 16 Notice ■ Rating 1.Operating Temperature 1. The operating temperature limit depends on the capacitor. 1-1.Do not apply temperatures exceeding the upper operating temperature. It is necessary to select a capacitor with a suitable rated temperature which will cover the operating temperature range. Also it is necessary to consider the temperature distribution in equipment and the seasonal temperature variable factor. 1-2.Consider the self-heating of the capacitor The surface temperature of the capacitor shall be the upper operating temperature or less when including the self-heating factors. 2.Atmosphere surroundings (gaseous and liquid) 1. Restriction on the operating environment of capacitors. 1-1. The capacitor, when used in the above, unsuitable, operating environments may deteriorate  due to the corrosion of the terminations and the penetration of moisture into the capacitor. 1-2. The same phenomenon as the above may occur when the electrodes or terminals of the capacitor are subject to moisture condensation. 1-3. The deterioration of characteristics and insulation resistance due to the oxidization or corrosion of    terminal electrodes may result in breakdown when the capacitor is exposed to corrosive or volatile gases or solvents for long periods of time. 3.Piezo-electric Phenomenon 1. When using high dielectric constant type capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated. Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur. JEMCAC-00641A 17 Notice ■ Soldering and Mounting 1.PCB Design 1. Notice for Pattern Forms 1-1. Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate. They are also more sensitive to mechanical and thermal stresses than leaded components. Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height. 1-2. It is possible for the chip to crack by the expansion and shrinkage of a metal board. Please contact us if you want to use our ceramic capacitors on a metal board such as Aluminum. Pattern Forms Prohibited Correct Chassis Solder (ground) Solder Resist Placing Close to Chassis Electrode Pattern Lead Wire Solder Resist Placing of Chip Components and Leaded Components Soldering Iron Lead Wire Solder Resist Placing of Leaded Components after Chip Component Solder Resist Lateral Mounting JEMCAC-00641A 18 Notice 2. Land Dimensions 2-1. Chip capacitor can be cracked due to the stress of PCB bending / etc if the land area is larger than needed and has an excess amount of solder. Please refer to the land dimensions in table 1 for reflow soldering. Chip Capacitor Please confirm the suitable land dimension by evaluating of the actual SET / PCB. Table 1 Reflow Soldering Method Dimensions a b, b' c, c' d e f p LLM21 0.6~0.8 (0.3~0.5) 0.3 2.0~2.6 1.3~1.8 1.4~1.6 0.5 LLM31 1.0 (0.3~0.5) 0.4 3.2~3.6 1.6~2.0 2.6 0.8 Part Number (in mm) b=(c-e)/2, b'=(d-f)/2 JEMCAC-00641A 19 Notice 2.Washing 1. Please evaluate a capacitor by actual cleaning equipment and condition surely for confirming the quality and select the applicable solvent. 2. Unsuitable cleaning solvent may leave residual flux, other foreign substances, causing deterioration of electrical characteristics and the reliability of the capacitors. 3. Select the proper cleaning conditions. 3-1. Improper cleaning conditions (excessive or insufficient) may result in the deterioration of the performance of the capacitors. 3.Coating 1. A crack may be caused in the capacitor due to the stress of the thermal contraction of the resin during  curing process. The stress is affected by the amount of resin and curing contraction. Select a resin with small curing contraction. The difference in the thermal expansion coefficient between a coating resin or a molding resin and capacitor may cause the destruction and deterioration of the capacitor such as a crack or peeling, and lead to the deterioration of insulation resistance or dielectric breakdown. Select a resin for which the thermal expansion coefficient is as close to that of capacitor as possible. A silicone resin can be used as an under-coating to buffer against the stress. 2. Select a resin that is less hygroscopic. Using hygroscopic resins under high humidity conditions may cause the deterioration of the insulation resistance of a capacitor. An epoxy resin can be used as a less hygroscopic resin. ■ Others 1.Transportation 1. The performance of a capacitor may be affected by the conditions during transportation. 1-1. The capacitors shall be protected against excessive temperature, humidity and mechanical force during transportation. (1) Climatic condition - low air temperature:-40℃ - change of temperature air/air:-25℃/+25℃ - low air pressure:30 kPa - change of air pressure:6 kPa/min (2) Mechanical condition Transportation shall be done in such a way that the boxes are not deformed and forces are not directly passed on to the inner packaging. 1-2. Do not apply excessive vibration, shock, and pressure to the capacitor. (1) When excessive mechanical shock or pressure is applied to a capacitor, chipping or cracking may occur in the ceramic body of the capacitor. (2) When a sharp edge of an air driver, a soldering iron, tweezers, a chassis, etc. impacts strongly on the surface of capacitor, the capacitor may crack and short-circuit. 1-3. Do not use a capacitor to which excessive shock was applied by dropping etc. The capacitor dropped accidentally during processing may be damaged. JEMCAC-00641A 20 ! NOTE 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product. 2.Your are requested not to use our product deviating from this product specification. 3.We consider it not appropriate to include any terms and conditions with regard to the business transaction in the product specifications, drawings or other technical documents. Therefore, if your technical documents as above include such terms and conditions such as warranty clause, product liability clause, or intellectual property infringement liability clause, they will be deemed to be invalid. JEMCAC-00641A 21
LLM215R71C473MA11K 价格&库存

很抱歉,暂时无法提供与“LLM215R71C473MA11K”相匹配的价格&库存,您可以联系我们找货

免费人工找货