MMBT5087L
Low Noise Transistor
PNP Silicon
Features
• NSV Prefix for Automotive and Other Applications Requiring
•
www.onsemi.com
Unique Site and Control Change Requirements; AEC−Q101
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
COLLECTOR
3
1
BASE
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector −Emitter Voltage
VCEO
−50
Vdc
Collector −Base Voltage
VCBO
−50
Vdc
Emitter −Base Voltage
VEBO
−3.0
Vdc
IC
−50
mAdc
Collector Current − Continuous
Total Device Dissipation FR−5 Board,
(Note 1) TA = 25°C
Derate above 25°C
Thermal Resistance, Junction−to−Ambient
Total Device Dissipation Alumina
Substrate, (Note 2) TA = 25°C
Derate above 25°C
Thermal Resistance, Junction−to−Ambient
Junction and Storage Temperature
3
1
2
THERMAL CHARACTERISTICS
Characteristic
2
EMITTER
Symbol
Max
Unit
225
1.8
mW
mW/°C
556
°C/W
300
2.4
mW
mW/°C
RqJA
417
°C/W
TJ, Tstg
−55 to +150
°C
SOT−23 (TO−236)
CASE 318
STYLE 6
PD
RqJA
MARKING DIAGRAM
2Q M G
G
PD
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. FR−5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
1
2Q = Device Code
M = Date Code*
G
= Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may
vary depending upon manufacturing location.
ORDERING INFORMATION
Device
Package
MMBT5087LT1G,
SOT−23
NSVMMBT5087LT1G (Pb−Free)
Shipping†
3,000 / Tape &
Reel
MMBT5087LT3G,
SOT−23 10,000 / Tape &
NSVMMBT5087LT3G (Pb−Free)
Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
© Semiconductor Components Industries, LLC, 1994
October, 2016 − Rev. 6
1
Publication Order Number:
MMBT5087LT1/D
MMBT5087L
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
Unit
Collector−Emitter Breakdown Voltage
(IC = −1.0 mAdc, IB = 0)
V(BR)CEO
−50
−
Vdc
Collector−Base Breakdown Voltage
(IC = −100 mAdc, IE = 0)
V(BR)CBO
−50
−
Vdc
−
−
−10
−50
250
250
250
800
−
−
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = −10 Vdc, IE = 0)
(VCB = −35 Vdc, IE = 0)
ICBO
nAdc
ON CHARACTERISTICS
DC Current Gain
(IC = −100 mAdc, VCE = −5.0 Vdc)
(IC = −1.0 mAdc, VCE = −5.0 Vdc)
(IC = −10 mAdc, VCE = −5.0 Vdc)
hFE
−
Collector−Emitter Saturation Voltage
(IC = −10 mAdc, IB = −1.0 mAdc)
VCE(sat)
−
−0.3
Vdc
Base−Emitter Saturation Voltage
(IC = −10 mAdc, IB = −1.0 mAdc)
VBE(sat)
−
0.85
Vdc
fT
40
−
MHz
Cobo
−
4.0
pF
Small−Signal Current Gain
(IC = −1.0 mAdc, VCE = −5.0 Vdc, f = 1.0 kHz)
hfe
250
900
−
Noise Figure
(IC = −20 mAdc, VCE = −5.0 Vdc, RS = 10 kW, f = 1.0 kHz)
(IC = −100 mAdc, VCE = −5.0 Vdc, RS = 3.0 kW, f = 1.0 kHz)
NF
−
−
2.0
2.0
SMALL−SIGNAL CHARACTERISTICS
Current−Gain — Bandwidth Product
(IC = −500 mAdc, VCE = −5.0 Vdc, f = 20 MHz)
Output Capacitance
(VCB = −5.0 Vdc, IE = 0, f = 1.0 MHz)
dB
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
TYPICAL NOISE CHARACTERISTICS
(VCE = − 5.0 Vdc, TA = 25°C)
10
7.0
IC = 10 mA
5.0
In, NOISE CURRENT (pA)
en, NOISE VOLTAGE (nV)
1.0
7.0
5.0
BANDWIDTH = 1.0 Hz
RS ≈ 0
30 mA
3.0
100 mA
300 mA
1.0 mA
2.0
BANDWIDTH = 1.0 Hz
RS ≈ ∞
IC = 1.0 mA
3.0
2.0
300 mA
1.0
0.7
0.5
100 mA
30 mA
0.3
0.2
1.0
10 mA
0.1
10
20
50
100 200
500 1.0k
f, FREQUENCY (Hz)
2.0k
5.0k
10k
10
Figure 1. Noise Voltage
20
50
100 200
500 1.0k 2.0k
f, FREQUENCY (Hz)
Figure 2. Noise Current
www.onsemi.com
2
5.0k
10k
MMBT5087L
NOISE FIGURE CONTOURS
1.0M
500k
BANDWIDTH = 1.0 Hz
200k
100k
50k
20k
10k
0.5 dB
5.0k
1.0 dB
2.0k
1.0k
500
2.0 dB
3.0 dB
200
100
RS , SOURCE RESISTANCE (OHMS)
RS , SOURCE RESISTANCE (OHMS)
(VCE = − 5.0 Vdc, TA = 25°C)
20
30
50 70 100
200 300
IC, COLLECTOR CURRENT (mA)
BANDWIDTH = 1.0 Hz
200k
100k
50k
20k
10k
0.5 dB
5.0k
1.0 dB
2.0k
1.0k
500
2.0 dB
3.0 dB
200
100
5.0 dB
10
1.0M
500k
500 700 1.0k
5.0 dB
10
20
RS , SOURCE RESISTANCE (OHMS)
Figure 3. Narrow Band, 100 Hz
1.0M
500k
30
50 70 100
200 300
IC, COLLECTOR CURRENT (mA)
500 700 1.0k
Figure 4. Narrow Band, 1.0 kHz
10 Hz to 15.7 kHz
200k
100k
50k
Noise Figure is Defined as:
NF + 20 log10
20k
10k
0.5 dB
1.0 dB
2.0 dB
3.0 dB
5.0 dB
200
100
10
20
30
50 70 100
200 300
ƫ
en2 ) 4KTRS ) In 2RS2 1ń2
4KTRS
en = Noise Voltage of the Transistor referred to the input. (Figure 3)
In = Noise Current of the Transistor referred to the input. (Figure 4)
K = Boltzman’s Constant (1.38 x 10−23 j/°K)
T = Temperature of the Source Resistance (°K)
RS = Source Resistance (Ohms)
5.0k
2.0k
1.0k
500
ƪ
500 700 1.0k
IC, COLLECTOR CURRENT (mA)
Figure 5. Wideband
www.onsemi.com
3
MMBT5087L
100
1.0
TA = 25°C
IC, COLLECTOR CURRENT (mA)
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
TYPICAL STATIC CHARACTERISTICS
0.8
IC = 1.0 mA
0.6
10 mA
50 mA
100 mA
0.4
0.2
0
0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0
IB, BASE CURRENT (mA)
TA = 25°C
PULSE WIDTH = 300 ms
80 DUTY CYCLE ≤ 2.0%
300 mA
150 mA
40
100 mA
20
50 mA
0
20
5.0
10
15
20
25
30
35
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
θV, TEMPERATURE COEFFICIENTS (mV/°C)
1.2
V, VOLTAGE (VOLTS)
40
Figure 7. Collector Characteristics
TJ = 25°C
1.0
0.8
VBE(sat) @ IC/IB = 10
0.6
VBE(on) @ VCE = 1.0 V
0.4
0.2
VCE(sat) @ IC/IB = 10
0
0.5 1.0
2.0
5.0
10
20
IC, COLLECTOR CURRENT (mA)
250 mA
200 mA
0
5.0 10
1.4
0.2
350 mA
60
Figure 6. Collector Saturation Region
0.1
IB = 400 mA
50
1.6
*APPLIES for IC/IB ≤ hFE/2
0.8
*qVC for VCE(sat)
- 55°C to 25°C
0.8
25°C to 125°C
1.6
2.4
0.1
100
25°C to 125°C
0
Figure 8. “On” Voltages
qVB for VBE
0.2
- 55°C to 25°C
0.5
1.0 2.0
5.0
10 20
IC, COLLECTOR CURRENT (mA)
Figure 9. Temperature Coefficients
www.onsemi.com
4
50
100
MMBT5087L
TYPICAL DYNAMIC CHARACTERISTICS
1000
700
500
500
VCC = 3.0 V
IC/IB = 10
TJ = 25°C
300
ts
300
200
100
70
50
t, TIME (ns)
t, TIME (ns)
200
30
tr
20
10
7.0
5.0
1.0
100
70
50
tf
30
td @ VBE(off) = 0.5 V
20
2.0
3.0
20 30
5.0 7.0 10
IC, COLLECTOR CURRENT (mA)
50 70
10
-1.0
100
- 2.0 - 3.0 - 5.0 - 7.0 -10
- 20 - 30
IC, COLLECTOR CURRENT (mA)
Figure 10. Turn−On Time
- 50 - 70 -100
Figure 11. Turn−Off Time
500
10
TJ = 25°C
TJ = 25°C
7.0
VCE = 20 V
300
Cib
C, CAPACITANCE (pF)
f,
T CURRENT-GAIN — BANDWIDTH PRODUCT (MHz)
VCC = - 3.0 V
IC/IB = 10
IB1 = IB2
TJ = 25°C
5.0 V
200
100
5.0
3.0
2.0
Cob
70
50
0.5 0.7 1.0
2.0
3.0
5.0 7.0
10
20
30
1.0
0.05
50
0.1
0.2
0.5
1.0
2.0
5.0
IC, COLLECTOR CURRENT (mA)
VR, REVERSE VOLTAGE (VOLTS)
Figure 12. Current−Gain — Bandwidth Product
Figure 13. Capacitance
www.onsemi.com
5
10
20
50
r(t) TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
MMBT5087L
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
0.1
0.07
0.05
FIGURE 16
0.05
P(pk)
0.02
0.03
0.02
t1
0.01
0.01
0.01 0.02
SINGLE PULSE
0.05
0.1
0.2
0.5
1.0
t2
2.0
5.0
10
20
50
t, TIME (ms)
100 200
DUTY CYCLE, D = t1/t2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1 (SEE AN569/D)
ZqJA(t) = r(t) • RqJA
TJ(pk) − TA = P(pk) ZqJA(t)
500 1.0k 2.0k
5.0k 10k 20k 50k 100k
Figure 14. Thermal Response
104
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
IC, COLLECTOR CURRENT (nA)
VCC = 30 V
A train of periodical power pulses can be represented by
the model as shown in Figure 16. Using the model and the
device thermal response the normalized effective transient
thermal resistance of Figure 14 was calculated for various
duty cycles.
To find ZqJA(t), multiply the value obtained from Figure
14 by the steady state value RqJA.
Example:
Dissipating 2.0 watts peak under the following conditions:
t1 = 1.0 ms, t2 = 5.0 ms (D = 0.2)
Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the
reading of r(t) is 0.22.
The peak rise in junction temperature is therefore
DT = r(t) x P(pk) x RqJA = 0.22 x 2.0 x 200 = 88°C.
For more information, see ON Semiconductor Application
Note AN569/D, available from the Literature Distribution
Center or on our website at www.onsemi.com.
103
ICEO
102
101
ICBO
AND
ICEX @ VBE(off) = 3.0 V
100
10-1
10-2
-4
0
-2
0
0
+ 20 + 40 + 60 + 80 + 100 + 120 + 140 + 160
TJ, JUNCTION TEMPERATURE (°C)
Figure 15. Typical Collector Leakage Current
www.onsemi.com
6
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOT−23 (TO−236)
CASE 318−08
ISSUE AS
DATE 30 JAN 2018
SCALE 4:1
D
0.25
3
E
1
2
T
HE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF
THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
PROTRUSIONS, OR GATE BURRS.
DIM
A
A1
b
c
D
E
e
L
L1
HE
T
L
3X b
L1
VIEW C
e
TOP VIEW
A
A1
SIDE VIEW
SEE VIEW C
c
MIN
0.89
0.01
0.37
0.08
2.80
1.20
1.78
0.30
0.35
2.10
0°
MILLIMETERS
NOM
MAX
1.00
1.11
0.06
0.10
0.44
0.50
0.14
0.20
2.90
3.04
1.30
1.40
1.90
2.04
0.43
0.55
0.54
0.69
2.40
2.64
−−−
10 °
MIN
0.035
0.000
0.015
0.003
0.110
0.047
0.070
0.012
0.014
0.083
0°
INCHES
NOM
0.039
0.002
0.017
0.006
0.114
0.051
0.075
0.017
0.021
0.094
−−−
MAX
0.044
0.004
0.020
0.008
0.120
0.055
0.080
0.022
0.027
0.104
10°
GENERIC
MARKING DIAGRAM*
END VIEW
RECOMMENDED
SOLDERING FOOTPRINT
XXXMG
G
1
3X
2.90
3X
XXX = Specific Device Code
M = Date Code
G
= Pb−Free Package
0.90
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
0.95
PITCH
0.80
DIMENSIONS: MILLIMETERS
STYLE 1 THRU 5:
CANCELLED
STYLE 6:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
STYLE 7:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
STYLE 9:
PIN 1. ANODE
2. ANODE
3. CATHODE
STYLE 10:
PIN 1. DRAIN
2. SOURCE
3. GATE
STYLE 11:
STYLE 12:
PIN 1. ANODE
PIN 1. CATHODE
2. CATHODE
2. CATHODE
3. CATHODE−ANODE
3. ANODE
STYLE 15:
PIN 1. GATE
2. CATHODE
3. ANODE
STYLE 16:
PIN 1. ANODE
2. CATHODE
3. CATHODE
STYLE 17:
PIN 1. NO CONNECTION
2. ANODE
3. CATHODE
STYLE 18:
STYLE 19:
STYLE 20:
PIN 1. NO CONNECTION PIN 1. CATHODE
PIN 1. CATHODE
2. CATHODE
2. ANODE
2. ANODE
3. GATE
3. ANODE
3. CATHODE−ANODE
STYLE 21:
PIN 1. GATE
2. SOURCE
3. DRAIN
STYLE 22:
PIN 1. RETURN
2. OUTPUT
3. INPUT
STYLE 23:
PIN 1. ANODE
2. ANODE
3. CATHODE
STYLE 24:
PIN 1. GATE
2. DRAIN
3. SOURCE
STYLE 27:
PIN 1. CATHODE
2. CATHODE
3. CATHODE
STYLE 28:
PIN 1. ANODE
2. ANODE
3. ANODE
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42226B
SOT−23 (TO−236)
STYLE 8:
PIN 1. ANODE
2. NO CONNECTION
3. CATHODE
STYLE 13:
PIN 1. SOURCE
2. DRAIN
3. GATE
STYLE 25:
PIN 1. ANODE
2. CATHODE
3. GATE
STYLE 14:
PIN 1. CATHODE
2. GATE
3. ANODE
STYLE 26:
PIN 1. CATHODE
2. ANODE
3. NO CONNECTION
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative