0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OKDH-T/20-W12-001-C

OKDH-T/20-W12-001-C

  • 厂商:

    MURATA-PS(村田)

  • 封装:

    DIP15

  • 描述:

    DC/DC CONVERTER TH 0.6-3.3V 20A

  • 数据手册
  • 价格&库存
OKDH-T/20-W12-001-C 数据手册
OKDx-T/20-W12-xxx-C www.murata-ps.com 20A Digital PoL DC-DC Converter Series Typical units FEATURES PRODUCT OVERVIEW  Small package: 25.65 x 13.8 x 8.2 mm (1.01 x 0.543 x 0.323 in) SIP: 26.3 x 7.6 x 15.6 mm (1.035 x 0.30 x 0.614 in) The OKDx-T/20-W12 series are high efficiency, digital point-of-Load (PoL) DC-DC power converters capable of delivering 20A/66W. Available in three different package formats, through-hole, single-inline, and surface mount, these converters have a typical efficiency of 97.1%. PMBus™ compatibility allows monitoring and configuration of critical system-level performance requirements. Apart from  0.6 V - 3.3 V output voltage range  High efficiency, typ. 97.1% at 5Vin, 3.3Vout half load  Configuration and Monitoring via PMBus™  Synchonization & phase spreading  Current sharing, Voltage Tracking & Voltage margining  MTBF 20.2 Mh  Non-Linear Response for reduction of decoupling capacitor  Remote control & power good  Output short-circuit, output over voltage, & over temperature protection  Certified to UL/IEC 60950-1 standard PoL performance and safety features like OVP, OCP, OTP, and UVLO, these digital converters have advanced features: digital current sharing (full power, no derating), non-linear transient response, optimized dead time control, synchronization, and phase spreading. These converters are ideal for use in telecommunications, networking, and distributed power applications. Power Management via PMBus™ Applications  Configurable soft-start/stop  Distributed power architectures  Configurable output voltage (Vout) and voltage margins (Margin low and Margin high)  Intermediate bus voltage applications  Configurable protection limits for OVP, input over voltage, input under voltage, over current, on/off, and temperature  Network equipment  Servers and storage applications  Status monitor Vout, Iout, Vin, Temp, Power good, and On/Off PART NUMBER STRUCTURE OKD x - T / 20 - W12 - xxx - C Digital Non-isolated PoL Y = Surface Mount H = Horizontal Mount Through-Hole X = SIP Trimmable Output Voltage Range 0.6 - 3.3Vdc Maximum Rated Output Current in Amps RoHS Hazardous Substance Compliance C = RoHS-6 (does not claim EU RoHS exemption 7b – lead in solder) Software Configuration Digits (001 is positive turn-on logic) (002 is negative turn-on logic)* Input Voltage Range 4.5-14Vdc *Special quantity order is required; contact Murata Power Solutions for MOQ and lead times. PM www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 1 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series ORDERING GUIDE Model Number OKDY-T/20-W12-001-C OKDH-T/20-W12-001-C OKDX-T/20-W12-001-C Output 0.6-3.3 V, 20 A/ 66 W Absolute Maximum Ratings Characteristics TP1, TP2 Operating temperature (see Thermal Consideration section) TS Storage temperature VI Input voltage (See Operating Information Section for input and output voltage relations) Logic I/O voltage CTRL, SA0, SA1, SALERT, SCL, SDA, VSET, SYNC, GCB, PG Ground voltage differential -S, PREF, GND Analog pin voltage VO, +S, VTRK General and Safety Safety Calculated MTBF Min -40 -40 -0.3 -0.3 -0.3 -0.3 Conditions Designed for UL/IEC/EN 60950 1 Telcordia SR-332, Issue 2 Method 1 Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits in the Electrical Specification. If exposed to stress above these limits, function and performance may degrade in an unspecified manner. Configuration File This product is designed with a digital control circuit. The control circuit uses a configuration file which determines the functionality and performance of the product. The Electrical Specification table shows parameter values of func- Min Typ Typ 20.2 Max 125 125 16 6.5 0.3 6.5 Max Unit °C °C V V V V Unit Mhrs tionality and performance with the default configuration file, unless otherwise specified. The default configuration file is designed to fit most application needs with focus on high efficiency. If different characteristics are required it is possible to change the configuration file to optimize certain performance characteristics. Note that current sharing operation requires changed configuration file. In this Technical specification examples are included to show the possibilities with digital control. See Operating Information section for information about trade offs when optimizing certain key performance characteristics. VIN VOUT CI CO GND +Sense -Sense (PGOOD) (SA1) SALERT CTRL VSET Controller and digital interface SYNC SCL SDA SA0 GCB VTRK PREF Fundamental Circuit Diagram www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 2 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Electrical Specifications, OKDY-T/20-W12-xxx-C and OKDH-T/20-W12-xxx-C TP1 = -30 to +95°C, VIN = 4.5 to 14 V, VIN > VOUT + 1.0 V Typical values given at: TP1 = +25 °C, VIN = 12.0 V, max IOUT, unless otherwise specified under Conditions. Default configuration file, 190 10-CDA 102 0206/001. External CIN = 470 μF/10 mΩ, COUT = 470 μF/10 mΩ. See Operating Information section for selection of capacitor types. Sense pins are connected to the output pins. Characteristics VI Input voltage rise time Conditions monotonic Output voltage without pin strap Output voltage adjustment range Output voltage adjustment including margining Output voltage set-point resolution VO Load regulation; IO = 0 - 100% VOac Output ripple & noise CO = 470 μF (minimum external capacitance). See Note 11 IO Output current IS Static input current at max IO Ilim Current limit threshold Isc Unit V/ms 3.3 3.63 V V V % Vo See Note 17 -1 1 % -2 2 % 0.60 0.54 ±0.025 Short circuit current 4.7 2 2 2 3 3 2 2 2 20 30 40 60 VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V See Note 18 VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V 0.001 RMS, hiccup mode, See Note 3 Efficiency max IO Pd Power dissipation at max IO Pli Input idling power (no load) Default configuration: Continues Conduction Mode, CCM PCTRL Input standby power Turned off with CTRL-pin Ci Internal input capacitance Ω mV mV mVp-p 20 1.26 1.94 3.31 5.89 22 50% of max IO  Max 2.4 Internal resistance +S/-S to VOUT/GND Line regulation Typ 1.2 Including line, load, temp. See Note 14 Current sharing operation See Note 15 Output voltage accuracy Min A 30 VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V 8 6 5 4 VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V 84.0 89.3 92.8 94.8 79.3 86.0 90.7 93.6 3.12 3.25 3.68 4.52 0.56 0.57 0.68 0.99 Default configuration: Monitoring enabled, Precise timing enabled 180 70 A A A % % W W mW μF www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 3 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Characteristics Co Internal output capacitance Total external output capacitance COUT ESR range of capacitors (per single capacitor) Vtr1 ttr1 fs Load transient peak voltage deviation (H to L) Load step 25-75-25% of max IO Default configuration di/dt = 2 A/μs CO = 470 μF (minimum external capacitance) see Note 12 Load transient recovery time, Note 5 (H to L) Load step 25-75-25% of max IO Default configuration di/dt = 2 A/μs CO = 470 μF (minimum external capacitance) see Note 12 Switching frequency Switching frequency range Switching frequency set-point accuracy Control Circuit PWM Duty Cycle Minimum Sync Pulse Width Input Clock Frequency Drift Tolerance Input Under Voltage Lockout, UVLO Input Over Voltage Protection, IOVP Power Good, PG, See Note 2 Output voltage Over/Under Voltage Protection, OVP/UVP Over Current Protection, OCP Over Temperature Protection, OTP at P1 See Note 8 UVLO threshold UVLO threshold range Set point accuracy UVLO hysteresis UVLO hysteresis range Delay Fault response IOVP threshold IOVP threshold range Set point accuracy IOVP hysteresis IOVP hysteresis range Delay Fault response PG threshold PG hysteresis PG delay PG delay range UVP threshold UVP threshold range UVP hysteresis OVP threshold OVP threshold range UVP/OVP response time UVP/OVP response time range Fault response OCP threshold OCP threshold range Protection delay, Protection delay range Fault response OTP threshold OTP threshold range OTP hysteresis OTP hysteresis range Fault response Conditions Min Typ 200 See Note 9 300 15 000 Unit μF μF See Note 9 5 30 mΩ VO = 0.6 V 85 VO = 1.0 V 85 VO = 1.8 V 90 VO = 3.3 V 135 VO = 0.6 V 80 VO = 1.0 V 90 VO = 1.8 V 100 VO = 3.3 V 100 mV μs 320 200-640 PMBus™ configurable External clock source Max -5 5 150 -13 5 95 13 3.85 3.85-14 PMBus™ configurable -150 150 0.35 0-10.15 PMBus™ configurable 2.5 See Note 3 Automatic restart, 70 ms 16 4.2-16 PMBus™ configurable -150 PMBus™ configurable 150 1 0-11.8 2.5 See Note 3 PMBus™ configurable PMBus™ configurable PMBus™ configurable PMBus™ configurable See Note 3 PMBus™ configurable See Note 4 PMBus™ configurable See Note 3 PMBus™ configurable PMBus™ configurable See Note 3 kHz kHz % % ns % V V mV V V μs V V mV V V μs Automatic restart, 70 ms 90 5 10 0-500 85 0-100 5 115 100-115 25 % VO % VO ms s % VO % VO % VO % VO % VO μs 5-60 μs Automatic restart, 70 ms 26 0-26 32 1-32 Automatic restart, 70 ms 120 -40…+120 15 0-160 Automatic restart, 240 ms A A Tsw Tsw C C C C www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 4 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Characteristics VIL Logic input low threshold VIH Logic input high threshold IIL Logic input low sink current VOL Logic output low signal level VOH Logic output high signal level Logic output low sink current IOL Logic output high source current IOH Setup time, SMBus tset thold Hold time, SMBus tfree Bus free time, SMBus Cp Internal capacitance on logic pins Conditions SYNC, SA0, SA1, SCL, SDA, GCB, CTRL, VSET CTRL Initialization time See Note 10 See Note 16 PMBus™ configurable Default configuration: CTRL controlled Precise timing enabled PMBus™ controlled Precise timing disabled Current sharing operation Delay duration Delay duration range Output Voltage Delay Time See Note 6 Output Voltage Ramp Time See Note 13 Delay accuracy turn-on Delay accuracy turn-off Ramp duration Ramp duration range Ramp time accuracy VTRK Input Bias Current VTRK Tracking Ramp Accuracy (VO - VVTRK) VTRK Regulation Accuracy (VO - VVTRK) Current difference between products in a current sharing group SYNC, SCL, SDA, SALERT, GCB, PG See Note 1 See Note 1 See Note 1 READ_IOUT vs IO Max 0.8 2 0.6 0.4 2.25 4 2 10 Current sharing operation VVTRK = 5.5 V 100% tracking, see Note 7 Current sharing operation 2 phases, 100% tracking VO = 1.0 V, 10 ms ramp 100% Tracking Current sharing operation 100% Tracking Steady state operation Ramp-up IO =0-20 A, TP1 = 0 to +95 °C VI = 4.5-14 V, VO = 1.0 V IO =0-20 A, TP1 = 0 to +95 °C VI = 4.5-14 V, VO = 0.6-3.3 V Note 1: See section I2C/SMBus Setup and Hold Times – Definitions. Note 2: Monitorable over PMBus™ Interface. Note 3: Automatic restart ~70 or 240 ms after fault if the fault is no longer present. Continuous restart attempts if the fault reappear after restart. See Operating Information and AN302 for other fault response options. Note 4: Tsw is the switching period. Note 5: Within ±3% of VO Note 6: See section Soft-start Power Up. Note 7: Tracking functionality is designed to follow a VTRK signal with slew rate < 2.4 V/ms. For faster VTRK signals accuracy will depend on the regulator bandwidth. Note 8: See section Over Temperature Protection (OTP). Note 9: See section External Capacitors. Unit V V mA V V mA mA ns ns ms pF 35 10 2-500000 ms ±0.25 ms -0.25/+4 ms -0.25/+4 ms ms 10 0-200 100 20 PMBus™ configurable READ_VIN vs VI READ_VOUT vs VO READ_IOUT vs IO Typ 300 250 2 Number of products in a current sharing group Monitoring accuracy Min 110 -100 ms μs % 200 100 ±100 μA mV mV -1 1 % -2 2 % Max 2 x READ_IOUT monitoring accuracy 2 7 A 3 1 % % ±1.4 A ±2.6 A Note 10: See section Initialization Procedure. Note 11: See graph Output Ripple vs External Capacitance and Operating information section Output Ripple and Noise. Note 12: See graph Load Transient vs. External Capacitance and Operating information section External Capacitors. Note 13: Time for reaching 100% of nominal Vout. Note 14: For Vout < 1.0 V accuracy is ±10 mV. For further deviations see section Output Voltage Adjust using PMBus™. Note 15: Accuracy here means deviation from ideal output voltage level given by configured droop and actual load. Includes line, load and temperature variations. Note 16: For current sharing the Output Voltage Delay Time must be reconfigured to minimum 15 ms. Note 17: For steady state operation above 1.05 x 3.3 V, please contact your local Murata sales representative. Note 18: A minimum load current is not required if Low Power mode is used (monitoring disabled). www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 5 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Typical Characteristics Efficiency and Power Dissipation Efficiency vs. Output Current, VI = 5 V Power Dissipation vs. Output Current, VI = 5 V [%] 100 [W] 5 4 95 3 90 85 0,6 V 1,0 V 2 80 1,8 V 3,3 V 1 0,6 V 1,0 V 1,8 V 3,3 V 75 0 0 4 8 12 16 20 [A] 0 4 8 12 16 20 [A] Efficiency vs. load current and output voltage: TP1 = +25 °C, VI = 5 V, fsw = 320 kHz, CO = 470 μF/10 mŸ. Dissipated power vs. load current and output voltage: TP1 = +25 °C, VI = 5 V, fsw = 320 kHz, CO = 470 μF/10 mŸ. Efficiency vs. Output Current, VI = 12 V Power Dissipation vs. Output Current, VI = 12 V [W] 5 [%] 100 4 95 90 3 0,6 V 85 1,0 V 1,8 V 80 3,3 V 75 0,6 V 2 1,0 V 1,8 V 1 3,3 V 0 0 4 8 12 16 20 [A] 0 4 8 12 16 20 [A] Efficiency vs. load current and output voltage at TP1 = +25 °C, VI = 12 V, fsw = 320 kHz, CO = 470 μF/10 mŸ. Dissipated power vs. load current and output voltage: TP1 = +25 °C, VI = 12 V, fsw = 320 kHz, CO = 470 μF/10 mŸ. Efficiency vs. Output Current and Switching Frequency Power Dissipation vs. Output Current and Switching frequency [%] 95 [W] 5 90 200 kHz 4 200 kHz 85 320 kHz 3 320 kHz 80 480 kHz 2 480 kHz 75 640 kHz 1 640 kHz 0 70 0 4 8 12 16 Efficiency vs. load current and switch frequency at TP1 = +25 °C, VI = 12 V, VO = 1.0 V, CO = 470 μF/10 mŸ Default configuration except changed frequency 20 [A] 0 4 8 12 16 20 [A] Dissipated power vs. load current and switch frequency at TP1 = +25 °C, VI = 12 V, VO = 1.0 V, CO = 470 μF/10 mŸ Default configuration except changed frequency www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 6 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Typical Characteristics Load Transient Load Transient vs. External Capacitance, VO = 1.0 V Load Transient vs. External Capacitance, VO = 3.3 V [mV] 200 [mV] 200 160 Default PID/NLR 120 Opt. PID, No NLR 80 Default PID, Opt. NLR 40 Opt. PID/NLR Default PID/NLR 150 Opt. PID, No NLR 100 Default PID, Opt. NLR 50 Opt. PID/NLR 0 0 0 1 2 3 4 0 5 [mF] 1 2 3 4 5 [mF] Load transient peak voltage deviation vs. external capacitance. Step-change (5-15-5 A). Parallel coupling of capacitors with 470 μF/10 Pȍ, TP1 = +25 °C, VI = 12 V, VO = 1.0 V, fsw = 320 kHz, di/dt = 2 A/μs Load transient peak voltage deviation vs. external capacitance. Step-change (5-15-5 A). Parallel coupling of capacitors with 470 μF/10 Pȍ, TP1 = +25 °C, VI = 12 V, VO = 3.3 V, fsw = 320 kHz, di/dt = 2 A/μs Load transient vs. Switch Frequency Output Load Transient Response, Default PID/NLR [mV] 240 200 Default PID/NLR 160 Opt. PID, No NLR 120 Default PID, Opt. NLR 80 Opt. PID/NLR 40 0 200 300 400 500 600 [kHz] Load transient peak voltage deviation vs. frequency. Step-change (5-15-5 A). TP1 = +25 °C, VI = 12 V, VO = 1.0 V, CO = 470 μF/10 mŸ Output voltage response to load current step-change (5-15-5 A) at: TP1 = +25 °C, VI = 12 V, VO = 1.0 V di/dt = 2 A/μs, fsw = 320 kHz, CO = 470 μF/10 mŸ Top trace: output voltage (200 mV/div.). Bottom trace: load current (5 A/div.). Time scale: (0.1 ms/div.). www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 7 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Typical Characteristics Output Current Characteristic Output Current Derating, VO = 0.6 V Output Current Derating, VO = 1.0 V [A] 25 [A] 25 3.0 m/s 3.0 m/s 20 2.0 m/s 20 2.0 m/s 15 1.0 m/s 15 1.0 m/s 10 0.5 m/s 10 0.5 m/s Nat. Conv. 5 0 Nat. C onv. 5 0 60 70 80 90 100 110 60 120 [°C] 70 80 90 100 110 120 [°C] Available load current vs. ambient air temperature and airflow at VO = 0.6 V, VI = 12 V. See Thermal Consideration section. Available load current vs. ambient air temperature and airflow at VO = 1.0 V, VI = 12 V. See Thermal Consideration section. Output Current Derating, VO = 1.8 V Output Current Derating, VO = 3.3 V [A] 25 [A] 25 3.0 m/s 3.0 m/s 20 2.0 m/s 20 2.0 m/s 15 1.0 m/s 15 1.0 m/s 10 0.5 m/s 10 0.5 m/s Nat. C onv. 5 Nat. Conv. 5 0 0 60 70 80 90 100 110 60 120 [°C] Available load current vs. ambient air temperature and airflow at VO = 1.8 V, VI = 12 V. See Thermal Consideration section. 70 80 90 100 110 120 [°C] Available load current vs. ambient air temperature and airflow at VO = 3.3 V, VI = 12 V. See Thermal Consideration section. Current Limit Characteristics, VO = 1.0 V Current Limit Characteristics, VO = 3.3 V [V] [V] 1,2 4,0 1,0 3,0 0,8 4.5 V 5.0 V 0,6 12 V 0,4 4.5 V 5.0 V 2,0 12 V 14 V 14 V 1,0 0,2 0,0 0,0 20 22 24 26 28 30 [A] 20 22 24 26 28 30 [A] Output voltage vs. load current at TP1 = +25 °C, VO = 1.0 V. Output voltage vs. load current at TP1 = +25 °C, VO = 3.3 V. Note: Output enters hiccup mode at current limit. Output enters hiccup mode at current limit. www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 8 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Typical Characteristics Output Voltage Output Ripple & Noise, VO = 1.0 V Output Ripple & Noise, VO = 3.3 V Output voltage ripple at: TP1 = +25 °C, Trace: output voltage (20 mV/div.). VI = 12 V, CO =4 70 μF/10 mŸ Time scale: (2 μs/div.). IO = 20 A Output voltage ripple at: TP1 = +25 °C, Trace: output voltage (20 mV/div.). VI = 12 V, CO = 470 μF/10 mŸ Time scale: (2 μs/div.). IO = 20 A Output Ripple vs. Input Voltage Output Ripple vs. Frequency [mVpk-pk] 70 [mVpk-pk] 80 60 70 60 50 0.6 V 40 1.0 V 30 1.8 V 20 3.3 V 10 0.6 V 50 1.0 V 40 1.8 V 30 3.3 V 20 10 0 5 7 9 11 0 200 [V] 13 300 400 500 600 [kHz] Output voltage ripple Vpk-pk at: TP1 = +25 °C, CO = 470 μF/10 mŸ, IO = 20 A Output voltage ripple Vpk-pk at: TP1 = +25 °C, VI = 12 V, CO = 470 μF/10 mŸ, IO = 20 A. Default configuration except changed frequency. Output Ripple vs. External Capacitance Load regulation, VO = 1.0 V [mV] 60 [V] 1,010 50 0.6V 40 1.0 V 30 1.8 V 20 3.3 V 10 0 1,005 4.5 V 5.0 V 1,000 12 V 14 V 0,995 0,990 0 1 2 3 4 5 [mF] Output voltage ripple Vpk-pk at: TP1 = +25 °C, VI = 12 V, IO = 20 A. Parallel coupling of capacitors with 470 μF/10 mȍ, 0 4 8 12 16 20 [A] Load regulation at Vo = 1.0 V, TP1 = +25 °C, CO = 470 μF/10 mŸ www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 9 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Typical Characteristics Start-up and shut-down Start-up by input source Start-up enabled by connecting VI at: TP1 = +25 °C, VI = 12 V, VO = 1.0 V CO = 470 μF/10 mŸ, IO = 20 A Shut-down by input source Top trace: output voltage (0.5 V/div.). Bottom trace: input voltage (5 V/div.). Time scale: (20 ms/div.). Start-up by CTRL signal Start-up by enabling CTRL signal at: TP1 = +25 °C, VI = 12 V, VO = 1.0 V CO = 470 μF/10 mŸ, IO = 20 A Shut-down enabled by disconnecting VI at: TP1 = +25 °C, VI = 12 V, VO = 1.0 V CO = 470 μF/10 mŸ, IO = 20 A Top trace: output voltage (0.5 V/div.). Bottom trace: input voltage (5 V/div.). Time scale: (2 ms/div.). Shut-down by CTRL signal Top trace: output voltage (0.5 V/div.). Bottom trace: CTRL signal (5 V/div.). Time scale: (20 ms/div.). Shut-down enabled by disconnecting VI at: TP1 = +25 °C, VI = 12 V, VO = 1.0 V CO = 470 μF/10 mŸ, IO = 20 A Top trace: output voltage (0.5 V/div). Bottom trace: CTRL signal (5 V/div.). Time scale: (2 ms/div.). www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 10 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Electrical Specifications, OKDX-T/20-W12-xxx-C TP1 = -30 to +95 °C, VI = 4.5 to 14 V, VI > VO + 1.0 V Typical values given at: TP1 = +25 °C, VI = 12.0 V, max IO, unless otherwise specified under Conditions. Default configuration file, 190 10-CDA 102 0259/001. External CIN = 470 μF/10 mΩ, COUT = 470 μF/10 mΩ. See Operating Information section for selection of capacitor types. Sense pins are connected to the output pins. Characteristics VI Input voltage rise time Conditions monotonic Output voltage without pin strap Output voltage adjustment range Output voltage adjustment including margining Output voltage set-point resolution VO Load regulation; IO = 0 - 100% VOac Output ripple & noise CO = 470 μF (minimum external capacitance). See Note 11 IO Output current IS Static input current at max IO Ilim Current limit threshold Isc Short circuit current RMS, hiccup mode, See Note 3 Efficiency max IO Pd Power dissipation at max IO Pli Input idling power (no load) Default configuration: Continues Conduction Mode, CCM PCTRL Input standby power Turned off with CTRL-pin Ci Co Internal input capacitance Internal output capacitance Max 2.4 Unit V/ms 3.3 3.63 V V V % Vo 1 % 2 % ±0.025 -1 -2 4.7 2 2 3 3 3 2 2 2 20 30 40 60 VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V See Note 18 VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V 0.001 Ω mV mV mVp-p 20 1.29 1.97 3.34 5.92 22 50% of max IO  See Note 17 0.60 0.54 Internal resistance +S/-S to VOUT/GND Line regulation Typ 1.2 Including line, load, temp. See Note 14 Current sharing operation See Note 15 Output voltage accuracy Min A 30 VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V 8 6 5 4 VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V VO = 0.6 V VO = 1.0 V VO = 1.8 V VO = 3.3 V 83.5 89.0 92.7 94.8 78.0 85.3 90.4 93.5 3.40 3.45 3.86 4.62 0.56 0.57 0.69 1.00 Default configuration: Monitoring enabled, Precise timing enabled 180 70 200 A A A % % W W mW μF μF www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 11 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Characteristics Total external output capacitance COUT ESR range of capacitors (per single capacitor) Vtr1 ttr1 fs Load transient peak voltage deviation (H to L) Load step 25-75-25% of max IO Default configuration di/dt = 2 A/μs CO = 470 μF (minimum external capacitance) see Note 12 Load transient recovery time, Note 5 (H to L) Load step 25-75-25% of max IO Default configuration di/dt = 2 A/μs CO = 470 μF (minimum external capacitance) see Note 12 Switching frequency Switching frequency range Switching frequency set-point accuracy Control Circuit PWM Duty Cycle Minimum Sync Pulse Width Input Clock Frequency Drift Tolerance Input Under Voltage Lockout, UVLO Input Over Voltage Protection, IOVP Power Good, PG, See Note 2 Output voltage Over/Under Voltage Protection, OVP/UVP Over Current Protection, OCP Over Temperature Protection, OTP at P1 See Note 8 UVLO threshold UVLO threshold range Set point accuracy UVLO hysteresis UVLO hysteresis range Delay Fault response IOVP threshold IOVP threshold range Set point accuracy IOVP hysteresis IOVP hysteresis range Delay Fault response PG threshold PG hysteresis PG delay PG delay range UVP threshold UVP threshold range UVP hysteresis OVP threshold OVP threshold range UVP/OVP response time UVP/OVP response time range Fault response OCP threshold OCP threshold range Protection delay, Protection delay range Fault response OTP threshold OTP threshold range OTP hysteresis OTP hysteresis range Fault response Conditions See Note 9 Min 300 See Note 9 5 Typ VO = 0.6 V 75 VO = 1.0 V 80 VO = 1.8 V 105 VO = 3.3 V 120 VO = 0.6 V 40 VO = 1.0 V 50 VO = 1.8 V 100 VO = 3.3 V 100 Unit μF 30 mΩ mV μs 320 200-640 PMBus™ configurable External clock source Max 15 000 -5 5 150 -13 5 95 13 3.85 3.85-14 PMBus™ configurable -150 150 0.35 0-10.15 PMBus™ configurable 2.5 See Note 3 Automatic restart, 70 ms 16 4.2-16 PMBus™ configurable -150 PMBus™ configurable 150 1 0-11.8 2.5 See Note 3 PMBus™ configurable PMBus™ configurable PMBus™ configurable PMBus™ configurable See Note 3 PMBus™ configurable See Note 4 PMBus™ configurable See Note 3 PMBus™ configurable PMBus™ configurable See Note 3 kHz kHz % % ns % V V mV V V μs V V mV V V μs Automatic restart, 70 ms 90 5 10 0-500 85 0-100 5 115 100-115 25 % VO % VO ms s % VO % VO % VO % VO % VO μs 5-60 μs Automatic restart, 70 ms 26 0-26 5 1-32 Automatic restart, 70 ms 120 -40…+120 15 0-160 Automatic restart, 240 ms A A Tsw Tsw C C C C www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 12 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Characteristics VIL Logic input low threshold VIH Logic input high threshold IIL Logic input low sink current VOL Logic output low signal level VOH Logic output high signal level Logic output low sink current IOL Logic output high source current IOH tset Setup time, SMBus Hold time, SMBus thold tfree Bus free time, SMBus Internal capacitance on logic pins Cp Conditions SYNC, SA0, SA1, SCL, SDA, GCB, CTRL, VSET CTRL Initialization time See Note 10 See Note 16 PMBus™ configurable Default configuration: CTRL controlled Precise timing enabled PMBus™ controlled Precise timing disabled Current sharing operation Delay duration Delay duration range Output Voltage Delay Time See Note 6 Output Voltage Ramp Time See Note 13 Delay accuracy turn-on Delay accuracy turn-off Ramp duration Ramp duration range Ramp time accuracy VTRK Input Bias Current VTRK Tracking Ramp Accuracy (VO - VVTRK) VTRK Regulation Accuracy (VO - VVTRK) Current difference between products in a current sharing group SYNC, SCL, SDA, SALERT, GCB, PG See Note 1 See Note 1 See Note 1 READ_IOUT vs IO Max 0.8 2 0.6 0.4 2.25 4 2 10 Current sharing operation VVTRK = 5.5 V 100% tracking, see Note 7 Current sharing operation 2 phases, 100% tracking VO = 1.0 V, 10 ms ramp 100% Tracking Current sharing operation 100% Tracking Steady state operation Ramp-up IO =0-20 A, TP1 = 0 to +95 °C VI = 4.5-14 V, VO = 1.0 V IO =0-20 A, TP1 = 0 to +95 °C VI = 4.5-14 V, VO = 0.6-3.3 V Note 1: See section I2C/SMBus Setup and Hold Times – Definitions. Note 2: Monitorable over PMBus™ Interface. Note 3: Automatic restart ~70 or 240 ms after fault if the fault is no longer present. Continuous restart attempts if the fault reappear after restart. See Operating Information and AN302 for other fault response options. Note 4: Tsw is the switching period. Note 5: Within ±3% of VO Note 6: See section Soft-start Power Up. Note 7: Tracking functionality is designed to follow a VTRK signal with slew rate < 2.4 V/ms. For faster VTRK signals accuracy will depend on the regulator bandwidth. Note 8: See section Over Temperature Protection (OTP). Note 9: See section External Capacitors. Unit V V mA V V mA mA ns ns ms pF 35 10 2-500000 ms ±0.25 ms -0.25/+4 ms -0.25/+4 ms ms 10 0-200 100 20 PMBus™ configurable READ_VIN vs VI READ_VOUT vs VO READ_IOUT vs IO Typ 300 250 2 Number of products in a current sharing group Monitoring accuracy Min 110 -100 ms μs % 200 100 ±100 μA mV mV -1 1 % -2 2 % Max 2 x READ_IOUT monitoring accuracy 2 7 A 3 1 % % ±1.4 A ±2.6 A Note 10: See section Initialization Procedure. Note 11: See graph Output Ripple vs External Capacitance and Operating information section Output Ripple and Noise. Note 12: See graph Load Transient vs. External Capacitance and Operating information section External Capacitors. Note 13: Time for reaching 100% of nominal Vout. Note 14: For Vout < 1.0 V accuracy is ±10 mV. For further deviations see section Output Voltage Adjust using PMBus™. Note 15: Accuracy here means deviation from ideal output voltage level given by configured droop and actual load. Includes line, load and temperature variations. Note 16: For current sharing the Output Voltage Delay Time must be reconfigured to minimum 15 ms. Note 17: For steady state operation above 1.05 x 3.3 V, please contact your local Murata sales representative. Note 18: A minimum load current is not required if Low Power mode is used (monitoring disabled). www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 13 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Typical Characteristics Efficiency and Power Dissipation Efficiency vs. Output Current, VI = 5 V Power Dissipation vs. Output Current, VI = 5 V [%] 100 [W] 5 95 4 90 3 0,6 V 85 1,0 V 1,8 V 3,3 V 80 75 0,6 V 2 1,0 V 1,8 V 1 3,3 V 0 0 4 8 12 16 20 [A] 0 4 8 12 16 20 [A] Efficiency vs. load current and output voltage: TP1 = +25 °C, VI = 5 V, fsw = 320 kHz, CO = 470 μF/10 mŸ. Dissipated power vs. load current and output voltage: TP1 = +25 °C, VI = 5 V, fsw = 320 kHz, CO = 470 μF/10 mŸ. Efficiency vs. Output Current, VI = 12 V Power Dissipation vs. Output Current, VI = 12 V [W] 5 [%] 100 4 95 3 90 0,6 V 1,0 V 85 1,8 V 80 3,3 V 75 0,6 V 2 1,0 V 1,8 V 1 3,3 V 0 0 4 8 12 16 0 20 [A] 4 8 12 16 20 [A] Efficiency vs. load current and output voltage at TP1 = +25 °C, VI = 12 V, fsw = 320 kHz, CO = 470 μF/10 mŸ. Dissipated power vs. load current and output voltage: TP1 = +25 °C, VI=12 V, fsw = 320 kHz, CO = 470 μF/10 mŸ. Efficiency vs. Output Current and Switching Frequency Power Dissipation vs. Output Current and Switching frequency [%] 95 [W] 5 90 200 kHz 4 200 kHz 85 320 kHz 3 320 kHz 80 480 kHz 2 480 kHz 75 640 kHz 1 640 kHz 70 0 0 4 8 12 16 Efficiency vs. load current and switch frequency at TP1 = +25 °C, VI = 12 V, VO = 1.0 V, CO = 470 μF/10 mŸ Default configuration except changed frequency 20 [A] 0 4 8 12 16 20 [A] Dissipated power vs. load current and switch frequency at TP1 = +25 °C, VI = 12 V, VO = 1.0 V, CO = 470 μF/10 mŸ Default configuration except changed frequency www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 14 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Typical Characteristics Load Transient Load Transient vs. External Capacitance, VO = 1.0 V Load Transient vs. External Capacitance, VO = 3.3 V [mV] 160 [mV] 160 Default PID/NLR 120 Opt. PID, No NLR 80 Default PID, Opt. NLR 40 Opt. PID/NLR Default PID/NLR 120 Opt. PID, No NLR 80 Default PID, Opt. NLR 40 Opt. PID/NLR 0 0 0 1 2 3 4 0 5 [mF] 1 2 3 4 5 [mF] Load transient peak voltage deviation vs. external capacitance. Step-change (5-15-5 A). Parallel coupling of capacitors with 470 μF/10 Pȍ, TP1 = +25 °C, VI = 12 V, VO = 1.0 V, fsw = 320 kHz, di/dt = 2 A/μs Load transient peak voltage deviation vs. external capacitance. Step-change (5-15-5 A). Parallel coupling of capacitors with 470 μF/10 Pȍ, TP1 = +25 °C, VI = 12 V, VO = 3.3 V, fsw = 320 kHz, di/dt = 2 A/μs Load transient vs. Switch Frequency Output Load Transient Response, Default PID/NLR [mV] 160 Default PID/NLR 120 Opt. PID, No NLR 80 Default PID, Opt. NLR 40 Opt. PID/NLR 0 200 300 400 500 600 [kHz] Load transient peak voltage deviation vs. frequency. Step-change (5-15-5 A). TP1 = +25 °C, VI = 12 V, VO = 1.0 V, CO = 470 μF/10 mŸ Output voltage response to load current step-change (5-15-5 A) at: TP1 = +25 °C, VI = 12 V, VO = 1.0 V di/dt = 2 A/μs, fsw = 320 kHz CO = 470 μF/10 mŸ Top trace: output voltage (200 mV/div.). Bottom trace: load current (5 A/div.). Time scale: (0.1 ms/div.). www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 15 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Typical Characteristics Output Current Characteristic Output Current Derating, VO = 0.6 V Output Current Derating, VO = 1.0 V [A] 25 [A] 25 3.0 m/s 3.0 m/s 20 2.0 m/s 20 2.0 m/s 15 1.0 m/s 15 1.0 m/s 10 0.5 m/s 10 0.5 m/s Nat. Conv. 5 0 Nat. Conv. 5 0 60 70 80 90 100 110 120 [°C] 60 70 80 90 100 110 120 [°C] Available load current vs. ambient air temperature and airflow at VO = 0.6 V, VI = 12 V. See Thermal Consideration section. Available load current vs. ambient air temperature and airflow at VO = 1.0 V, VI = 12 V. See Thermal Consideration section. Output Current Derating, VO = 1.8 V Output Current Derating, VO = 3.3 V [A] 25 [A] 25 3.0 m/s 3.0 m/s 20 2.0 m/s 20 2.0 m/s 15 1.0 m/s 15 1.0 m/s 10 0.5 m/s 10 0.5 m/s Nat. Conv. 5 0 Nat. Conv. 5 0 60 70 80 90 100 110 120 [°C] 60 Available load current vs. ambient air temperature and airflow at VO = 1.8 V, VI = 12 V. See Thermal Consideration section. 70 80 90 100 110 120 [°C] Available load current vs. ambient air temperature and airflow at VO = 3.3 V, VI = 12 V. See Thermal Consideration section. Current Limit Characteristics, VO = 1.0 V Current Limit Characteristics, VO = 3.3 V [V] [V] 1,2 4,0 1,0 3,0 0,8 4.5 V 4.5 V 5.0 V 0,6 5.0 V 2,0 12 V 12 V 0,4 14 V 14 V 1,0 0,2 0,0 0,0 20 22 24 26 28 30 [A] 20 22 24 26 28 30 [A] Output voltage vs. load current at TP1 = +25 °C, VO = 1.0 V Output voltage vs. load current at TP1 = +25 °C, VO = 3.3 V. Note: Output enters hiccup mode at current limit. Note: Output enters hiccup mode at current limit. www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 16 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Typical Characteristics Output Voltage Output Ripple & Noise, VO = 1.0 V Output Ripple & Noise, VO = 3.3 V Output voltage ripple at: TP1 = +25 °C, Trace: output voltage (10 mV/div.). VI = 12 V, CO = 470 μF/10 mŸ Time scale: (2 μs/div.). IO = 20 A Output voltage ripple at: TP1 = +25 °C, Trace: output voltage (10 mV/div.). VI = 12 V, CO = 470 μF/10 mŸ Time scale: (2 μs/div.). IO = 20 A Output Ripple vs. Input Voltage Output Ripple vs. Frequency [mVpk-pk] 60 [mVpk-pk] 70 60 50 0.6 V 40 1.0 V 30 1.8 V 3.3 V 20 10 50 0.6 V 40 1.0 V 30 1.8 V 20 3.3 V 10 0 200 0 5 7 9 11 [V] 13 300 400 500 600 [kHz] Output voltage ripple Vpk-pk at: TP1 = +25 °C, CO = 470 μF/10 mŸ, IO = 20 A. Output voltage ripple Vpk-pk at: TP1 = +25 °C, VI = 12 V, CO = 470 μF/10 mŸ, IO = 20 A. Default configuration except changed frequency. Output Ripple vs. External Capacitance Load regulation, VO=1.0V [V] [mV] 60 1,010 50 0.6V 40 1,005 4.5 V 1.0 V 30 1.8 V 20 3.3 V 10 0 0 1 2 3 4 5 [mF] Output voltage ripple Vpk-pk at: TP1 = +25 °C, VI = 12 V, IO = 20 A. Parallel coupling of capacitors with 470 μF/10 mȍ, 5.0 V 1,000 12 V 14 V 0,995 0,990 0 4 8 12 16 20 [A] Load regulation at Vo=1.0 V, TP1 = +25 °C, CO = 470 μF/10 mŸ www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 17 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Typical Characteristics Start-up and shut-down Start-up by input source Start-up enabled by connecting VI at: TP1 = +25 °C, VI = 12 V, VO = 1.0 V CO = 470 μF/10 mŸ, IO = 20 A Shut-down by input source Top trace: output voltage (0.5 V/div.). Bottom trace: input voltage (5 V/div.). Time scale: (20 ms/div.). Start-up by CTRL signal Start-up by enabling CTRL signal at: TP1 = +25 °C, VI = 12 V, VO = 1.0 V CO = 470 μF/10 mŸ, IO = 20 A Shut-down enabled by disconnecting VI at: TP1 = +25 °C, VI = 12 V, VO = 1.0 V CO = 470 μF/10 mŸ, IO = 20 A Top trace: output voltage (0.5 V/div). Bottom trace: input voltage (5 V/div.). Time scale: (2 ms/div.). Shut-down by CTRL signal Top trace: output voltage (0.5 V/div.). Bottom trace: CTRL signal (5 V/div.). Time scale: (20 ms/div.). Shut-down enabled by disconnecting VI Top trace: output voltage (0.5 V/div). Bottom trace: CTRL signal (5 V/div.). at: Time scale: (2 ms/div.). TP1 = +25 °C, VI = 12 V, VO = 1.0 V CO = 470 μF/10 mŸ, IO = 20 A www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 18 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series EMC Specification Output Ripple and Noise Conducted EMI measured according to test set-up below. The fundamental switching frequency is 320 kHz at VI = 12 V, max IO. Output ripple and noise is measured according to figure below. 50 mm conductor Vout Tantalum Capacitor Output 10 μ F Capacitor 470 μ F/10 m Ω +S –S GND Ceramic Capacitor 0.1 μ F Load Conducted EMI Input terminal value (typical for default configuration) A 50 mm conductor works as a small inductor forming together with the two capacitors as a damped filter. 50 mm conductor BNC-contact to oscilloscope Output ripple and noise test set-up. Operating information Power Management Overview EMI without filter To spectrum analyzer RF Current probe 1kHz – 50MHz Battery supply Resistive load C1 POL 50mm C1 = 10uF / 600VDC Feed- Thru RF capacitor This product is equipped with a PMBus™ interface. The product incorporates a wide range of readable and configurable power management features that are simple to implement with a minimum of external components. Additionally, the product includes protection features that continuously safeguard the load from damage due to unexpected system faults. A fault is also shown as an alert on the SALERT pin. The following product parameters can continuously be monitored by a host: Input voltage, output voltage/current, and internal temperature. If the monitoring is not needed it can be disabled and the product enters a low power mode reducing the power consumption. The protection features are not affected. The product is delivered with a default configuration suitable for a wide range operation in terms of input voltage, output voltage, and load. The configuration is stored in an internal Non-Volatile Memory (NVM). All power management functions can be reconfigured using the PMBus™ interface. Please contact your local Murata Power Solutions representative for design support of custom configurations or appropriate SW tools for design and download of your own configurations. Input Voltage 200mm 800mm Conducted EMI test set-up The input voltage range, 4.5 - 14 V, makes the product easy to use in intermediate bus applications when powered by a non-regulated bus converter or a regulated bus converter. See Ordering Information for input voltage range. Layout Recommendations The radiated EMI performance of the product will depend on the PWB layout and ground layer design. It is also important to consider the stand-off of the product. If a ground layer is used, it should be connected to the output of the product and the equipment ground or chassis. A ground layer will increase the stray capacitance in the PWB and improve the high frequency EMC performance. www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 19 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Input Under Voltage Lockout, UVLO The product monitors the input voltage and will turn-on and turn-off at configured levels. The default turn-on input voltage level setting is 4.20 V, whereas the corresponding turn-off input voltage level is 3.85 V. Hence, the default hysteresis between turn-on and turn-off input voltage is 0.35 V. Once an input turn-off condition occurs, the device can respond in a number of ways as follows: 1. Continue operating without interruption. The unit will continue to operate as long as the input voltage can be supported. If the input voltage continues to fall, there will come a point where the unit will cease to operate. 2. Continue operating for a given delay period, followed by shutdown if the fault still exists. The device will remain in shutdown until instructed to restart. 3. Initiate an immediate shutdown until the fault has been cleared. The user can select a specific number of retry attempts. The default response from a turn-off is an immediate shutdown of the device. The device will continuously check for the presence of the fault condition. If the fault condition is no longer present, the product will be re-enabled. The turn-on and turn-off levels and response can be reconfigured using the PMBus™ interface. Remote Control Vext CTRL GND The product is equipped with a remote control function, i.e., the CTRL pin. The remote control can be connected to either the primary negative input connection (GND) or an external voltage (Vext), which is a 3 - 5 V positive supply voltage in accordance to the SMBus Specification version 2.0. The CTRL function allows the product to be turned on/off by an external device like a semiconductor or mechanical switch. By default the product will turn on when the CTRL pin is left open and turn off when the CTRL pin is applied to GND. The CTRL pin has an internal pull-up resistor. When the CTRL pin is left open, the voltage generated on the CTRL pin is max 5.5 V. If the device is to be synchronized to an external clock source, the clock frequency must be stable prior to asserting the CTRL pin. The product can also be configured using the PMBus™ interface to be “Always on,” or turn on/off can be performed with PMBus™ commands. Input and Output Impedance The impedance of both the input source and the load will interact with the impedance of the product. It is important that the input source has low characteristic impedance. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors. If the input voltage source contains significant inductance, the addition a capacitor with low ESR at the input of the product will ensure stable operation. External Capacitors Input capacitors: The input ripple RMS current in a buck converter is equal to Eq. 1. I inputRMS I load D 1  D , where I load is the output load current and D is the duty cycle. The maximum load ripple current becomes I load 2 . The ripple current is divided into three parts, i.e., currents in the input source, external input capacitor, and internal input capacitor. How the current is divided depends on the impedance of the input source, ESR and capacitance values in the capacitors. A minimum capacitance of 300 μF with low ESR is recommended. The ripple current rating of the capacitors must follow Eq. 1. For high-performance/transient applications or wherever the input source performance is degraded, additional low ESR ceramic type capacitors at the input is recommended. The additional input low ESR capacitance above the minimum level insures an optimized performance. Output capacitors: When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors at the load. The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close to the load as possible, using several capacitors in parallel to lower the effective ESR. The ceramic capacitors will handle highfrequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. Ceramic capacitors will also reduce high frequency noise at the load. It is equally important to use low resistance and low inductance PWB layouts and cabling. External decoupling capacitors are a part of the control loop of the product and may affect the stability margins. Stable operation is guaranteed for the following total capacitance CO in the output decoupling capacitor bank where Eq. 2. >Cmin , Cmax @ >300, 15000@ μF. CO The decoupling capacitor bank should consist of capacitors which has a capacitance value larger than C t C min and has an ESR range of Eq. 3. ESR >ESRmin , ESRmax @ >5, 30@ mΩ The control loop stability margins are limited by the minimum time constant W min of the capacitors. Hence, the time constant of the capacitors should follow Eq. 4. Eq. 4. W t W min Cmin ESRmin 1.5 Ps This relation can be used if your preferred capacitors have parameters outside the above stated ranges in Eq. 2 and Eq.3. x If the capacitors capacitance value is C  C min one must use at least N capacitors where C ªC º N t « min » and ESR t ESRmin min . C C « » x If the ESR value is ESR ! ESR max one must use at least N capacitors of that type where ª ESR º C min N t« . » and C t ESR N max » « x If the ESR value is ESR  ESR min the capacitance value should be C t C min ESRmin . ESR www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 20 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series For a total capacitance outside the above stated range or capacitors that do not follow the stated above requirements above a re-design of the control loop parameters will be necessary for robust dynamic operation and stability. Control Loop The product uses a voltage-mode synchronous buck controller with a fixed frequency PWM scheme. Although the product uses a digital control loop, it operates much like a traditional analog PWM controller. As in the analog controller case, the control loop compares the output voltage to the desired voltage reference and compensation is added to keep the loop stable and fast. The resulting error signal is used to drive the PWM logic. Instead of using external resistors and capacitors required with traditional analog control loops, the product uses a digital Proportional-Integral-Derivative (PID) compensator in the control loop. The characteristics of the control loop is configured by setting PID compensation parameters. These PID settings can be reconfigured using the PMBus™ interface. Control Loop Compensation Setting The products without DLC are by default configured with a robust control loop compensation setting (PID setting) which allows for a wide range operation of input and output voltages and capacitive loads as defined in the section External Decoupling Capacitors. For an application with a specific input voltage, output voltage, and capacitive load, the control loop can be optimized for a robust and stable operation and with an improved load transient response. This optimization will minimize the amount of required output decoupling capacitors for a given load transient requirement yielding an optimized cost and minimized board space. The optimization together with load step simulations can be made using the Murata Power Designer software. RSET also sets the maximum output voltage, see section “Output Voltage Range Limitation.” The VSET resistor is sensed only during product R SET start-up. Changing the resistor value PREF during normal operation will not change the output voltage. The input voltage must be at least 1 V larger than the output voltage in order to deliver the correct output voltage. See Ordering Information for output voltage range. The following table shows recommended resistor values for RSET. Maximum 1% tolerance resistors are required. VO [V] 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 RSET[kΩ] 10 11 12.1 13.3 14.7 16.2 17.8 19.6 21.5 23.7 26.1 28.7 31.6 1.25 1.30 1.40 34.8 38.3 42.2 Load Transient Response Optimization The product incorporates a Non-Linear transient Response, NLR, loop that decreases the response time and the output voltage deviation during a load transient. The NLR results in a higher equivalent loop bandwidth than is possible using a traditional linear control loop. The product is pre-configured with appropriate NLR settings for robust and stable operation for a wide range of input voltage and a capacitive load range as defined in the section External Decoupling Capacitors. For an application with a specific input voltage, output voltage, and capacitive load, the NLR configuration can be optimized for a robust and stable operation and with an improved load transient response. This will also reduce the amount of output decoupling capacitors and yield a reduced cost. However, the NLR slightly reduces the efficiency. In order to obtain maximal energy efficiency the load transient requirement has to be met by the standard control loop compensation and the decoupling capacitors. The NLR settings can be reconfigured using the PMBus™ interface. Remote Sense The product has remote sense that can be used to compensate for voltage drops between the output and the point of load. The sense traces should be located close to the PWB ground layer to reduce noise susceptibility. Due to derating of internal output capacitance the voltage drop should be kept below VDROPMAX = (5.25 – VOUT) / 2. A large voltage drop will impact the electrical performance of the regulator. If the remote sense is not needed, +S should be connected to VOUT and −S should be connected to GND. Output Voltage Adjust using Pin-strap Resistor Using an external Pin-strap resistor, RSET, the output voltage can be set in the range 0.6 V to 3.3 V at 28 different levels shown in the table below. The resistor should be applied between the VSET pin and the PREF pin. VO [V] 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.50 3.00 3.30 RSET[kΩ] 46.4 51.1 56.2 61.9 68.1 75 82.5 90.9 100 110 121 133 The output voltage and the maximum output voltage can be pin strapped to three fixed values by connecting the VSET pin according to the table below. VSET VO [V] 0.60 1.2 2.5 Shorted to PREF Open “high impedance” Logic High, GND as reference Output Voltage Adjust using PMBus™ The output voltage set by pin-strap can be overridden by configuration file or by using a PMBus™ command. See Electrical Specification for adjustment range. When setting the output voltage by configuration file or by a PMBus™ command, the specified output voltage accuracy is valid only when the set output voltage level falls within the same bin range as the voltage level defined by the pin-strap resistor RSET. The applicable bin ranges are defined in the table below. Valid accuracy for voltage levels outside the applicable bin range is two times the specified. Example: Nominal VO is set to 1.10 V by RSET = 26.1 kΩ. 1.10 V falls within the bin range 0.988-1.383 V, thus specified accuracy is valid when adjusting VO within 0.988-1.383V. VO bin ranges [V] 0.600 – 0.988 0.988 – 1.383 1.383 – 1.975 1.975 – 2.398 2.398 – 2.963 2.963 – 3.753 www.murata-ps.com/support MDC_OKDx-T/20-W12-xxx-C.A05 Page 21 of 37 OKDx-T/20-W12-xxx-C 20A Digital PoL DC-DC Converter Series Output Voltage Range Limitation The output voltage range that is possible to set by configuration or by the PMBus™ interface is limited by the pin-strap resistor RSET. The maximum output voltage is set to 110% of the nominal output value defined by RSET, VO,MAX = 1.1 x VO,RSET. This protects the load from an over voltage due to an accidental wrong PMBus™ command. Output Voltage Adjust Limitation using PMBus™ In addition to the maximum output voltage limitation by the pin-strap resistor RSET, there is also a limitation in how much the output voltage can be increased while the output is enabled. If output is disabled then RSET resistor is the only limitation. Example: If the output is enabled with output voltage set to 1.0 V, then it is only possible to adjust/change the output voltage up to 1.7- V as long as the output is enabled. VO setting when enabled [V] 0.000 – 0.988 0.988 – 1.383 1.383 – 1.975 1.975 – 2.398 2.398 – 2.963 2.963 – 3.753 VO set range while enabled [V] ~0.2 to >1.2 ~0.2 to >1.7 ~0.2 to >2.5 ~0.2 to >2.97 ~0.2 to >3.68 ~0.2 to >4.65 interface. A PG delay period is defined as the time from when all conditions within the product for asserting PG are met to when the PG signal is actually asserted. The default PG delay is set to 10 ms. This value can be reconfigured using the PMBus™ interface. For products with DLC the PG signal is by default asserted directly after the DLC operation have been completed. If DLC is disabled the configured PG delay will be used. This can be reconfigured using the PMBus™ interface. Switching Frequency The fundamental switching frequency is 320 kHz, which yields optimal power efficiency. The switching frequency can be set to any value between 200 kHz and 640 kHz using the PMBus™ interface. The switching frequency will change the efficiency/power dissipation, load transient response and output ripple. For optimal control loop performance in a product without DLC, the control loop must be re-optimized when changing the switching frequency. Synchronization Synchronization is a feature that allows multiple products to be synchronized to a common frequency. Synchronized products powered from the same bus eliminate beat frequencies reflected back to the input supply, and also reduces EMI filtering requirements. Eliminating the slow beat frequencies (usually
OKDH-T/20-W12-001-C 价格&库存

很抱歉,暂时无法提供与“OKDH-T/20-W12-001-C”相匹配的价格&库存,您可以联系我们找货

免费人工找货