0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ERTJ1VA220J

ERTJ1VA220J

  • 厂商:

    NAIS(松下)

  • 封装:

    0603

  • 描述:

    阻值(25℃):22Ω;电阻精度:±5%;B值精度:±3%;B值(25℃/50℃):2750K;功率:100mW;最大稳态电流(25℃):-;B值(25℃/75℃):-;B值(25℃/85℃):270...

  • 数据手册
  • 价格&库存
ERTJ1VA220J 数据手册
Multilayer NTC Thermistors Multilayer NTC Thermistors Series: ERTJ Features ● Surface Mount Device (0201, 0402, 0603) ● Highly reliable multilayer / monolithic structure ● Wide temperature operating range (–40 to 125 ● Environmentally-friendly lead-free ● RoHS compliant °C) Recommended Applications ● Mobile Phone · Temperature compensation for crystal oscillator · Temperature compensation for semiconductor devices ● Personal Computer and Peripheral Device · Temperature detection for CPU and memory device · Temperature compensation for ink-viscosity (Inkjet Printer) ● Battery Pack (secondary battery) · Temperature detection of battery cells ● Liquid Crystal Display · Temperature compensation of display contrast · Temperature compensation of display backlighting (CCFL) Explanation of Part Numbers 1 2 3 4 5 6 7 8 9 10 11 12 E R T J 0 E G 1 0 3 J A Common Code Product Code Type Code ERT NTC J Chip Type (SMD) Thermistors Multilayer Type Size Code Z “0201” 0 “0402” 1 “0603” Packaging Style Code E V “0201”, “0402” Pressed Carrier Taping Punched Carrier Taping (Pitch : 2 mm) “0603” Punched Carrier Taping (Pitch : 4 mm) B Value Class Code 2701 to 2800 A 3301 to 3400 G 3801 to 3900 M 4001 to 4100 P 4201 to 4300 R 4301 to 4400 S 4401 to 4500 T 4601 to 4700 V Nominal Resistance R25 (Ω) The first two digits are significant figures of resistance and the third one denotes the number of zeros following them. (Example) Resistance Tolerance Code G ±1% Narrow Tolerance ±2% Type H J ±3% Standard ±5% Type F Special Specification Construction 3 4 5 1 2 No. Name A Semiconductive Ceramics B Internal electrode C D E Terminal electrode Substrate electrode Intermediate electrode External electrode Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. 05 Dec. 2017 Multilayer NTC Thermistors Ratings Size code (EIA) Operating Temperature Range Rated Maximum Power Dissipation✽1 ✽2 Dissipation Factor Z(0201) 0(0402) –40 to 125 °C 66 mW Approximately 2 mW/°C 33 mW Approximately 1 mW/°C 1(0603) 100 mW Approximately 3 mW/°C ✽1 Rated Maximum Power Dissipation : The maximum power that can be continuously applied at the rated ambient temperature. · The maximum value of power, and rated power is same under the condition of ambient temperature 25 °C or less. If the temperature exceeds 25 °C, rated power depends on the decreased power dissipation curve. · Please see “Operating Power” for details. ✽2 Dissipation factor : The constant amount power required to raise the temperature of the Thermistor 1 °C through self heat generation under stable temperatures. · Dissipation factor is the reference value when mounted on a glass epoxy board (1.6 mmT). Part Number List of Narrow Tolerance Type (Resistance Tolerance : ±2 %, ±1 %) ● 0201(EIA) Part Number ERTJZEG103□A ERTJZEP473□ ERTJZEP683□ ERTJZER683□ ERTJZER104□ ERTJZET104□ ERTJZEV104□ □ : Resistance Tolerance Code Nominal Resistance at 25 °C 10 kΩ 47 kΩ 68 kΩ 68 kΩ 100 kΩ 100 kΩ 100 kΩ Resistance Tolerance Nominal Resistance at 25 °C 10 kΩ 33 kΩ 47 kΩ 68 kΩ 100 kΩ 100 kΩ 100 kΩ 220 kΩ Resistance Tolerance Nominal Resistance at 25 °C 10 kΩ 100 kΩ Resistance Tolerance ±1 %(F) or ±2 %(G) ±1 %(F) or ±2 %(G) B Value at 25/50(K) (3380 K) 4050 K±1 % 4050 K±1 % 4250 K±1 % 4250 K±1 % 4500 K±1 % 4700 K±1 % B Value at 25/85(K) 3435 K±1% (4100 K) (4100 K) (4300 K) (4300 K) (4550 K) (4750 K) B Value at 25/50(K) (3380 K) 4050 K±1 % 4050 K±1 % 4050 K±1 % 4250 K±1 % 4330 K±1 % 4700 K±1 % 4700 K±1 % B Value at 25/85(K) 3435 K±1 % (4100 K) (4100 K) (4100 K) (4300 K) (4390 K) (4750 K) (4750 K) B Value at 25/50(K) (3380 K) (4330 K) B Value at 25/85(K) 3435 K±1 % 4390 K±1 % ● 0402(EIA) Part Number ERTJ0EG103□A ERTJ0EP333□ ERTJ0EP473□ ERTJ0EP683□ ERTJ0ER104□ ERTJ0ES104□ ERTJ0EV104□ ERTJ0EV224□ □ : Resistance Tolerance Code ±1 %(F) or ±2 %(G) ● 0603(EIA) Part Number ERTJ1VG103□A ERTJ1VS104□A □ : Resistance Tolerance Code Part Number List of Standard Type (Resistance Tolerance : ±5 %, ±3 %) ● 0201(EIA) Part Number ERTJZET202□ ERTJZET302□ ERTJZET472□ ERTJZEG103□A ERTJZEP473□ ERTJZEP683□ ERTJZER683□ ERTJZER104□ ERTJZET104□ ERTJZEV104□ ERTJZET154□ ERTJZET224□ Nominal Resistance at 25 °C 2.0 kΩ 3.0 kΩ 4.7 kΩ 10 kΩ 47 kΩ 68 kΩ 68 kΩ 100 kΩ 100 kΩ 100 kΩ 150 kΩ 220 kΩ Resistance Tolerance ±3 %(H) or ±5 %(J) B Value at 25/50(K) 4500 K±2 % 4500 K±2 % 4500 K±2 % (3380 K) 4050 K±2 % 4050 K±2 % 4250 K±2 % 4250 K±2 % 4500 K±2 % 4700 K±2 % 4500 K±2 % 4500 K±2 % B Value at 25/85(K) (4450 K) (4450 K) (4450 K) 3435 K±1 % (4100 K) (4100 K) (4300 K) (4300 K) (4550 K) (4750 K) (4750 K) (4750 K) □ : Resistance Tolerance Code Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. 05 Dec. 2017 Multilayer NTC Thermistors ● 0402(EIA) Part Number ERTJ0EA220□ Nominal Resistance at 25 °C 22 Ω Resistance Tolerance B Value at 25/50(K) 2750 K±3 % B Value at 25/85(K) (2700 K) ERTJ0EA330□ 33 Ω 2750 K±3 % (2700 K) ERTJ0EA400□ 40 Ω 2750 K±3 % (2700 K) ERTJ0EA470□ 47 Ω 2750 K±3 % (2700 K) ERTJ0EA680□ 68 Ω 2800 K±3 % (2750 K) ERTJ0EA101□ 100 Ω 2800 K±3 % (2750 K) ERTJ0EA151□ 150 Ω 2800 K±3 % (2750 K) ERTJ0ET102□ 1.0 kΩ 4500 K±2 % (4450 K) ERTJ0ET152□ 1.5 kΩ 4500 K±2 % (4450 K) ERTJ0ET202□ 2.0 kΩ 4500 K±2 % (4450 K) ERTJ0ET222□ 2.2 kΩ 4500 K±2 % (4450 K) ERTJ0ET302□ 3.0 kΩ 4500 K±2 % (4450 K) ERTJ0ER332□ 3.3 kΩ 4250 K±2 % (4300 K) ERTJ0ET332□ 3.3 kΩ 4500 K±2 % (4450 K) ERTJ0ET472□ 4.7 kΩ 4500 K±2 % (4450 K) ERTJ0ER472□ 4.7 kΩ 4250 K±2 % (4300 K) ERTJ0ER682□ 6.8 kΩ 4250 K±2 % (4300 K) ERTJ0EG103□A 10 kΩ (3380 K) 3435 K±1 % ERTJ0EM103□ 10 kΩ 3900 K±2 % (3970 K) ERTJ0ER103□ 10 kΩ 4250 K±2 % (4300 K) ERTJ0ER153□ 15 kΩ 4250 K±2 % (4300 K) ERTJ0ER223□ 22 kΩ 4250 K±2 % (4300 K) ERTJ0EP333□ 33 kΩ 4050 K±2 % (4100 K) ERTJ0ER333□ 33 kΩ 4250 K±2 % (4300 K) ERTJ0ET333□ 33 kΩ 4500 K±2 % (4580 K) ERTJ0EP473□ 47 kΩ 4050 K±2 % (4100 K) ERTJ0ET473□ 47 kΩ 4500 K±2 % (4550 K) ERTJ0EV473□ 47 kΩ 4700 K±2 % (4750 K) ERTJ0EP683□ 68 kΩ 4050 K±2 % (4100 K) ERTJ0ER683□ 68 kΩ 4250 K±2 % (4300 K) ERTJ0EV683□ 68 kΩ 4700 K±2 % (4750 K) ERTJ0EP104□ 100 kΩ 4050 K±2 % (4100 K) ERTJ0ER104□ 100 kΩ 4250 K±2 % (4300 K) ERTJ0ES104□ 100 kΩ 4330 K±2 % (4390 K) ERTJ0ET104□ 100 kΩ 4500 K±2 % (4580 K) ERTJ0EV104□ 100 kΩ 4700 K±2 % (4750 K) ERTJ0ET154□ 150 kΩ 4500 K±2 % (4580 K) ERTJ0EV154□ 150 kΩ 4700 K±2 % (4750 K) ERTJ0EV224□ 220 kΩ 4700 K±2 % (4750 K) ERTJ0EV334□ 330 kΩ 4700 K±2 % (4750 K) ERTJ0EV474□ 470 kΩ 4700 K±2 % (4750 K) ±3 %(H) or ±5 %(J) □ : Resistance Tolerance Code Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. 05 Dec. 2017 Multilayer NTC Thermistors ● 0603(EIA) Part Number ERTJ1VA220□ Nominal Resistance at 25 °C 22 Ω Resistance Tolerance B Value at 25/50(K) 2750 K±3 % B Value at 25/85(K) (2700 K) ERTJ1VA330□ 33 Ω 2750 K±3 % (2700 K) ERTJ1VA400□ 40 Ω 2800 K±3 % (2750 K) ERTJ1VA470□ 47 Ω 2800 K±3 % (2750 K) ERTJ1VA680□ 68 Ω 2800 K±3 % (2750 K) ERTJ1VA101□ 100 Ω 2800 K±3 % (2750 K) ERTJ1VT102□ 1.0 kΩ 4500 K±2 % (4450 K) ERTJ1VT152□ 1.5 kΩ 4500 K±2 % (4450 K) ERTJ1VT202□ 2.0 kΩ 4500 K±2 % (4450 K) ERTJ1VT222□ 2.2 kΩ 4500 K±2 % (4450 K) ERTJ1VT302□ 3.0 kΩ 4500 K±2 % (4450 K) ERTJ1VT332□ 3.3 kΩ 4500 K±2 % (4450 K) ERTJ1VR332□ 3.3 kΩ 4250 K±2 % (4300 K) ERTJ1VR472□ 4.7 kΩ 4250 K±2 % (4300 K) 4500 K±2 % (4450 K) 4250 K±2 % (4300 K) (3380 K) 3435 K±1% ±3 %(H) or ±5 %(J) ERTJ1VT472□ 4.7 kΩ ERTJ1VR682□ 6.8 kΩ ERTJ1VG103□A 10 kΩ ERTJ1VR103□ 10 kΩ 4250 K±2 % (4300 K) ERTJ1VR153□ 15 kΩ 4250 K±2 % (4300 K) ERTJ1VR223□ 22 kΩ 4250 K±2 % (4300 K) ERTJ1VR333□ 33 kΩ 4250 K±2 % (4300 K) ERTJ1VP473□ 47 kΩ 4100 K±2 % (4150 K) ERTJ1VR473□ 47 kΩ 4250 K±2 % (4300 K) ERTJ1VV473□ 47 kΩ 4700 K±2 % (4750 K) ERTJ1VR683□ 68 kΩ 4250 K±2 % (4300 K) ERTJ1VV683□ 68 kΩ 4700 K±2 % (4750 K) ERTJ1VS104□A 100 kΩ (4330 K) 4390 K±1% ERTJ1VV104□ 100 kΩ 4700 K±2 % (4750 K) ERTJ1VV154□ 150 kΩ 4700 K±2 % (4750 K) ERTJ1VT224□ 220 kΩ 4500 K±2 % (4580 K) □ : Resistance Tolerance Code Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. 05 Dec. 2017 Multilayer NTC Thermistors ● Temperature and Resistance value (the resistance value at 25 °C is set to 1)/ Reference values ERTJ□□A~ B25/50 2750 K 2800 K B25/85 (2700 K) (2750 K) ERTJ□□G~ ERTJ□□M~ ERTJ□□P~ ERTJ□□R~ ERTJ0ES~ ERTJ1VS~ ERTJ□□T~ ERTJ□□T~ ERTJ□□V~ (3375 K) 3435 K 3900 K 4050 K 4250 K 4330 K (3970 K) (4100 K) (4300 K) (4390 K) (4330 K) 4390 K 4500 K 4500 K 4700 K (4450 K) (4580 K) (4750 K) ✽1 T(°C) ✽2 -40 13.05 13.28 20.52 32.11 33.10 43.10 45.67 45.53 63.30 47.07 59.76 -35 10.21 10.40 15.48 23.29 24.03 30.45 32.08 31.99 42.92 33.31 41.10 11.79 17.08 17.63 21.76 22.80 22.74 29.50 23.80 28.61 12.65 13.06 15.73 16.39 16.35 20.53 17.16 20.14 11.48 11.91 11.89 14.46 12.49 14.33 -30 8.061 8.214 -25 6.427 6.547 9.069 -20 5.168 5.261 7.037 9.465 9.761 -15 4.191 4.261 5.507 7.147 7.362 8.466 8.743 8.727 -10 3.424 3.476 4.344 5.444 5.599 6.300 6.479 6.469 7.407 6.772 7.482 -5 2.819 2.856 3.453 4.181 4.291 4.730 4.845 4.839 5.388 5.046 5.481 0 2.336 2.362 2.764 3.237 3.312 3.582 3.654 3.650 3.966 3.789 4.050 5 1.948 1.966 2.227 2.524 2.574 2.734 2.778 2.776 2.953 2.864 3.015 10 1.635 1.646 1.806 1.981 2.013 2.102 2.128 2.126 2.221 2.179 2.262 15 1.380 1.386 1.474 1.567 1.584 1.629 1.642 1.641 1.687 1.669 1.710 20 1.171 1.174 1.211 1.247 1.255 1.272 1.277 1.276 1.293 1.287 1.303 25 1 1 1 1 1 1 1 1 1 1 1 30 0.8585 0.8565 0.8309 0.8072 0.8016 0.7921 0.7888 0.7890 0.7799 0.7823 0.7734 35 0.7407 0.7372 0.6941 0.6556 0.6461 0.6315 0.6263 0.6266 0.6131 0.6158 0.6023 40 0.6422 0.6376 0.5828 0.5356 0.5235 0.5067 0.5004 0.5007 0.4856 0.4876 0.4721 45 0.5595 0.5541 0.4916 0.4401 0.4266 0.4090 0.4022 0.4025 0.3874 0.3884 0.3723 50 0.4899 0.4836 0.4165 0.3635 0.3496 0.3319 0.3251 0.3254 0.3111 0.3111 0.2954 55 0.4309 0.4238 0.3543 0.3018 0.2881 0.2709 0.2642 0.2645 0.2513 0.2504 0.2356 60 0.3806 0.3730 0.3027 0.2518 0.2386 0.2222 0.2158 0.2161 0.2042 0.2026 0.1889 65 0.3376 0.3295 0.2595 0.2111 0.1985 0.1832 0.1772 0.1774 0.1670 0.1648 0.1523 70 0.3008 0.2922 0.2233 0.1777 0.1659 0.1518 0.1463 0.1465 0.1377 0.1348 0.1236 75 0.2691 0.2600 0.1929 0.1504 0.1393 0.1264 0.1213 0.1215 0.1144 0.1108 0.1009 80 0.2417 0.2322 0.1672 0.1278 0.1174 0.1057 0.1011 0.1013 0.09560 0.09162 0.08284 85 0.2180 0.2081 0.1451 0.1090 0.09937 0.08873 0.08469 0.08486 0.08033 0.07609 0.06834 90 0.1974 0.1871 0.1261 0.09310 0.08442 0.07468 0.07122 0.07138 0.06782 0.06345 0.05662 10.30 9.159 10.31 95 0.1793 0.1688 0.1097 0.07980 0.07200 0.06307 0.06014 0.06028 0.05753 0.05314 0.04712 100 0.1636 0.1528 0.09563 0.06871 0.06166 0.05353 0.05099 0.05112 0.04903 0.04472 0.03939 105 0.1498 0.1387 0.08357 0.05947 0.05306 0.04568 0.04340 0.04351 0.04198 0.03784 0.03308 110 0.1377 0.1263 0.07317 0.05170 0.04587 0.03918 0.03708 0.03718 0.03609 0.03218 0.02791 115 0.1270 0.1153 0.06421 0.04512 0.03979 0.03374 0.03179 0.03188 0.03117 0.02748 0.02364 120 0.1175 0.1056 0.05650 0.03951 0.03460 0.02916 0.02734 0.02742 0.02702 0.02352 0.02009 125 0.1091 0.09695 0.04986 0.03470 0.03013 0.02527 0.02359 0.02367 0.02351 0.02017 0.01712 ✽1 Apply to products with a B25/50 constant of 4500 K and a resistance value of 25 °C less than 10 kΩ. ✽2 Applied only to ERTJ0ET104□. ✽2 Apply to products with a B25/50 constant of 4500 K and a resistance value of 25 °C of 10 kΩ or more. ✽2 Applied only to ERTJ0ET104□. B25/50= kn (R25/R50) 1/298.15–1/323.15 B25/85= kn (R25/R85) 1/298.15–1/358.15 R25=Resistance at 25.0±0.1 °C R50=Resistance at 50.0±0.1 °C R85=Resistance at 85.0±0.1 °C Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. 05 Dec. 2017 Multilayer NTC Thermistors Specification and Test Method Item Specification Rated Zero-power Within the specified tolerance. Resistance (R25) Test Method The value is measured at a power that the influence of self-heat generation can be negligible (0.1mW or less), at the rated ambient temperature of 25.0±0.1°C. B Value The Zero-power resistances; R1 and R2, shall be measured respectively at T1 (deg.C) and T2 (deg.C). The B value is calculated by the following equation. Shown in each Individual Specification. ✽ Individual Specification shall specify B25/50 or B25/85. BT1/T2= T1 25.0 ±0.1 °C 25.0 ±0.1 °C B25/50 B25/85 Adhesion kn (R1)–kn (R2) 1/(T1+273.15)–1/(T2+273.15) T2 50.0 ±0.1 °C 85.0 ±0.1 °C The terminal electrode shall be free from peeling Applied force : or signs of peeling. Size 0201 :2N Size 0402, 0603 : 5 N Duration : 10 s Size : 0201, 0402 1.0 0.3/Size:0201 0.5/Size:0402 0.5R Test Sample Board 1.0 Size : 0603 Test Sample Bending distance : 1 mm Bending speed : 1 mm/s 20 Bending distance Bending Strength There shall be no cracks and other mechanical damage. R25 change : within ±5 % Unit : mm R340 45±2 45±2 Unit : mm Resistance to Soldering Heat Solderability There shall be no cracks and other mechanical damage. Nallow Tol. type Standard type R25 change : within ±2 % within ±3 % B Value change : within ±1 % within ±2 % Soldering bath method Solder temperature : 270 ±5 °C Dipping period : 4.0 ±1 s Preheat condition : More than 95 % of the soldered area of both terminal electrodes shall be covered with fresh solder. Soldering bath method Solder temperature : 230 ±5 °C Dipping period : 4 ±1 s Solder : Sn-3.0Ag-0.5Cu Step 1 2 Temp (°C) 80 to 100 150 to 200 Period (s) 120 to 180 120 to 180 Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. 05 Dec. 2017 Multilayer NTC Thermistors Specification and Test Method Item Temperature Cycling Specification Test Method Nallow Tol. type Standard type Conditions of one cycle : within ±2 % within ±3 % Step 1 : –40 °C, 30±3 min R25 change B Value change : within ±1 % within ±2 % Step 2 : Room temp., 3 min max. Step 3 : 125 °C, 30±3 min. Step 4 : Room temp., 3 min max. Number of cycles: 100 cycles Humidity R25 change : B Value change : Biased Humidity Low Temperature Exposure Nallow Tol. type Standard type Temperature : 85 ±2 °C within ±2 % within ±3 % Relative humidity : 85 ±5 % within ±1 % within ±2 % Test period : 1000 +48/0 h R25 change : B Value change : Nallow Tol. type Standard type Temperature : 85 ±2 °C within ±2 % within ±3 % Relative humidity : 85 ±5 % within ±1 % within ±2 % Applied power : 10 mW(D.C.) Test period : 500 +48/0 h R25 change : B Value change : Nallow Tol. type Standard type Specimens are soldered on the testing board within ±2 % within ±3 % shown in Fig.2. within ±1 % within ±2 % Temperature : –40 ±3 °C Test period : 1000 +48/0 h High Temperature Nallow Tol. type Standard type Specimens are soldered on the testing board Exposure R25 change : within ±2 % within ±3 % shown in Fig.2. B Value change : within ±1 % within ±2 % Temperature : 125 ±3 °C Test period : 1000 +48/0 h Typical Application ● Temperature Detection Writing current control of HDD Vcc GMR Head R R L Rth NTC AD converter CPU ● Temperature Compensation (Pseudo-linearization) Contrast level control of LCD Interface ● Temperature Compensation (RF circuit) Temperature compensation of TCXO Vcc PMIC ADC R Rth NTC R LCD NTC R Rth Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. 05 Dec. 2017 Multilayer NTC Thermistors Dimensions in mm (not to scale) L (Unit : mm) W Size Code (EIA) L W T L1, L2 Z(0201) 0.60±0.03 0.30±0.03 0.30±0.03 0.15±0.05 0(0402) 1.0±0.1 0.50±0.05 0.50±0.05 0.25±0.15 1(0603) 1.60±0.15 0.8±0.1 0.8±0.1 0.3±0.2 T L2 L1 Packaging Methods Size Code Thickness (mm) Z(0201) 0(0402) 1(0603) ● Pitch ● Reel Packing Quantities 0.3 0.5 0.8 Kind of Taping Pressed Carrier Taping 2 2 4 Punched Carrier Taping Feeding hole fD0 15,000 10,000 4,000 D E A B W P 1 P2 F E Dim. (mm) 180 P2 P0 fD 0 t K0 Dim. 0.36 0.66 8.0 3.50 1.75 2.00 2.00 4.0 1.5+0.1 0.55 0.36 ±0.03 ±0.03 ±0.2 ±0.05 ±0.10 ±0.05 ±0.05 ±0.1 Feeding hole fD0 60.0 +1.0 0 C D E 13.0±0.5 21.0±0.8 2.0±0.5 W1 9.0 W2 +1.0 0 11.4±1.0 0 ● Leader Part and Taped End Leader part max. ±0.03 Top cover tape 2 mm (Punched Carrier Taping) : Size 0402 100 min. Vacant position 400 min. Chip pocket E t1 fB 0 –3 Tape running direction P0 P1 fA Symbol F W Chip component W2 A B K0 ● Pitch C Chip pocket A (mm) W1 E 2 mm (Pressed Carrier Taping) : Size 0201 t Symbol for Taping Pitch Quantity (mm) (pcs./reel) B ● Standard Taped end B F W A t2 Chip component A Symbol B W P1 P2 F E P0 P1 P2 Tape running direction P0 fD 0 t1 Dim. 0.62 1.12 8.0 3.50 1.75 2.00 2.00 4.0 1.5+0.1 0.7 ±0.05 ±0.05 ±0.2 ±0.05 ±0.10 ±0.05 ±0.05 ±0.1 ● Pitch 0 t2 1.0 max. max. 4 mm (Punched Carrier Taping) : Size 0603 Feeding hole fD0 300,000 250×200×200 ERTJ0 (0402) 10,000 200,000 250×200×200 4,000 80,000 250×200×200 Tape running direction ERTJ1 (0603) B Symbol A Dim. 1.0 (mm) P1 Chip component ±0.1 B W F E P2 P1 P0 P2 P0 fD 0 t1 1.8 8.0 3.50 1.75 4.0 2.00 4.0 1.5+0.1 1.1 ±0.1 Part Number Minimum Quantity Packing Quantity Carton (Size) / Packing Unit in Carton L×W×H (mm) 15,000 A t2 Minimum Quantity / Packing Unit ERTJZ (0201) Chip pocket E t1 (Unit : mm) F W (mm) 160 min. Vacant position ±0.2 ±0.05 ±0.10 ±0.1 ±0.05 ±0.1 0 t2 Part No., quantity and country of origin are designated on outer packages in English. 1.4 max. max. Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately. 05 Dec. 2017 *XLGHOLQHVDQGSUHFDXWLRQVUHJDUGLQJWKH WHFKQLFDOLQIRUPDWLRQDQGXVHRIRXUSURGXFWV GHVFULEHGLQWKLVRQOLQHFDWDORJ ‫ٹ‬,I\RXZDQWWRXVHRXUSURGXFWVGHVFULEHGLQWKLVRQOLQHFDWDORJIRUDSSOLFDWLRQVUHTXLULQJ VSHFLDOTXDOLWLHVRUUHOLDELOLW\RUIRUDSSOLFDWLRQVZKHUHWKHIDLOXUHRUPDOIXQFWLRQRIWKH SURGXFWVPD\GLUHFWO\MHRSDUGL]HKXPDQOLIHRUSRWHQWLDOO\FDXVHSHUVRQDOLQMXU\  HJDLUFUDIWDQGDHURVSDFHHTXLSPHQWWUDIILFDQGWUDQVSRUWDWLRQHTXLSPHQWFRPEXVWLRQ HTXLSPHQWPHGLFDOHTXLSPHQWDFFLGHQWSUHYHQWLRQDQWLFULPHHTXLSPHQWDQGRUVDIHW\ HTXLSPHQW LWLVQHFHVVDU\WRYHULI\ZKHWKHUWKHVSHFLILFDWLRQVRIRXUSURGXFWVILWWRVXFK DSSOLFDWLRQV3OHDVHHQVXUHWKDW\RXZLOODVNDQGFKHFNZLWKRXULQTXLU\GHVNDVWRZKHWKHU WKHVSHFLILFDWLRQVRIRXUSURGXFWVILWWRVXFKDSSOLFDWLRQVXVHEHIRUH\RXXVHRXUSURGXFWV ‫ٹ‬7KHTXDOLW\DQGSHUIRUPDQFHRIRXUSURGXFWVDVGHVFULEHGLQWKLVRQOLQHFDWDORJRQO\DSSO\ WRRXUSURGXFWVZKHQXVHGLQLVRODWLRQ7KHUHIRUHSOHDVHHQVXUH\RXHYDOXDWHDQGYHULI\ RXUSURGXFWVXQGHUWKHVSHFLILFFLUFXPVWDQFHVLQZKLFKRXUSURGXFWVDUHDVVHPEOHGLQ\RXU RZQSURGXFWVDQGLQZKLFKRXUSURGXFWVZLOODFWXDOO\EHXVHG ‫ٹ‬,I\RXXVHRXUSURGXFWVLQHTXLSPHQWWKDWUHTXLUHVDKLJKGHJUHHRIUHOLDELOLW\UHJDUGOHVV RIWKHDSSOLFDWLRQLWLVUHFRPPHQGHGWKDW\RXVHWXSSURWHFWLRQFLUFXLWVDQGUHGXQGDQF\ FLUFXLWVLQRUGHUWRHQVXUHVDIHW\RI\RXUHTXLSPHQW ‫ٹ‬7KHSURGXFWVDQGSURGXFWVSHFLILFDWLRQVGHVFULEHGLQWKLVRQOLQHFDWDORJDUHVXEMHFWWR FKDQJHIRULPSURYHPHQWZLWKRXWSULRUQRWLFH7KHUHIRUHSOHDVHEHVXUHWRUHTXHVWDQG FRQILUPWKHODWHVWSURGXFWVSHFLILFDWLRQVZKLFKH[SODLQWKHVSHFLILFDWLRQVRIRXUSURGXFWVLQ GHWDLOEHIRUH\RXILQDOL]HWKHGHVLJQRI\RXUDSSOLFDWLRQVSXUFKDVHRUXVHRXUSURGXFWV ‫ٹ‬7KHWHFKQLFDOLQIRUPDWLRQLQWKLVRQOLQHFDWDORJSURYLGHVH[DPSOHVRIRXUSURGXFWV  W\SLFDORSHUDWLRQVDQGDSSOLFDWLRQFLUFXLWV:HGRQRWJXDUDQWHHWKHQRQLQIULQJHPHQWRI WKLUGSDUW\ VLQWHOOHFWXDOSURSHUW\ULJKWVDQGZHGRQRWJUDQWDQ\OLFHQVHULJKWRULQWHUHVW LQRXULQWHOOHFWXDOSURSHUW\ ‫ٹ‬,IDQ\RIRXUSURGXFWVSURGXFWVSHFLILFDWLRQVDQGRUWHFKQLFDOLQIRUPDWLRQLQWKLVRQOLQH FDWDORJLVWREHH[SRUWHGRUSURYLGHGWRQRQUHVLGHQWVWKHODZVDQGUHJXODWLRQVRIWKH H[SRUWLQJFRXQWU\HVSHFLDOO\ZLWKUHJDUGWRVHFXULW\DQGH[SRUWFRQWUROVKDOOEHREVHUYHG 5HJDUGLQJWKH&HUWLILFDWHRI&RPSOLDQFHZLWK WKH(85R+6'LUHFWLYH5($&+5HJXODWLRQV! ‫ٹ‬7KHVZLWFKRYHUGDWHIRUFRPSOLDQFHZLWKWKH5R+6'LUHFWLYH5($&+5HJXODWLRQVYDULHV GHSHQGLQJRQWKHSDUWQXPEHURUVHULHVRIRXUSURGXFWV ‫ٹ‬:KHQ\RXXVHWKHLQYHQWRU\RIRXUSURGXFWVIRUZKLFKLWLVXQFOHDUZKHWKHUWKRVHSURGXFWV DUHFRPSOLDQWZLWKWKH5R+6'LUHFWLYH5($&+5HJXODWLRQSOHDVHVHOHFW6DOHV,QTXLU\LQWKH ZHEVLWHLQTXLU\IRUPDQGFRQWDFWXV :HGRQRWWDNHDQ\UHVSRQVLELOLW\IRUWKHXVHRIRXUSURGXFWVRXWVLGHWKHVFRSHRIWKH VSHFLILFDWLRQVGHVFULSWLRQVJXLGHOLQHVDQGSUHFDXWLRQVGHVFULEHGLQWKLVRQOLQHFDWDORJ $SU Multilayer NTC Thermistors Multilayer NTC Thermistors Series: ERTJ Handling Precautions [Precautions] ・ Do not use the products beyond the descriptions in this product catalog. ・ This product catalog guarantees the quality of the products as individual components. Before you use the products, please make sure to check and evaluate the products in the circumstance where they are installed in your product. Safety Precautions Multilayer NTC Thermistors for General Applications (hereafter referred to as “Thermistors”) are intended to be used in general-purpose applications as measures against Temperature detection and Temperature compensation in consumer electronics (audio/visual, home, office, information & communication) equipment. When subjected to severe electrical, environmental, and/or mechanical stress beyond the specifications, as noted in the Ratings and Specified Conditions section, the Thermistors’ performance may be degraded, or become failure mode, such as short circuit mode and open-circuit mode. If you use under the condition of short-circuit, heat generation of Thermistors will occur by running large current due to application of voltage. There are possibilities of smoke emission, substrate burn-out, and, in the worst case, fire. For products which require high safety levels, please carefully consider how a single malfunction can affect your product. In order to ensure the safety in the case of a single malfunction, please design products with fail-safe, such as setting up protecting circuits, etc. We are trying to improve the quality and the reliability, but the durability differs depending on the use environment and the use conditions. On use, be sure to confirm the actual product under the actual use conditions. ● For the following applications and conditions, please be sure to consult with our sales representative in advance and to exchange product specifications which conform to such applications. ・ When your application may have difficulty complying with the safety or handling precautions specified below. ・ High-quality and high-reliability required devices that have possibility of causing hazardous conditions, such as death or injury (regardless of directly or indirectly), due to failure or malfunction of the product. ① Aircraft and Aerospace Equipment (artificial satellite, rocket, etc.) ② Submarine Equipment (submarine repeating equipment, etc.) ③ Transportation Equipment (motor vehicles, airplanes, trains, ship, traffic signal controllers, etc.) ④ Power Generation Control Equipment (atomic power, hydroelectric power, thermal power plant control system, etc.) ⑤ Medical Equipment (life-support equipment, pacemakers, dialysis controllers, etc.) ⑥ Information Processing Equipment (large scale computer systems, etc.) ⑦ Electric Heating Appliances, Combustion devices (gas fan heaters, oil fan heaters, etc.) ⑧ Rotary Motion Equipment ⑨ Security Systems ⑩ And any similar types of equipment Strict Observance 1. Confirmation of Rated Performance The Thermistors shall be operated within the specified rating/performance. Applications exceeding the specifications may cause deteriorated performance and/or breakdown, resulting in degradation and/or smoking or ignition of products. The following are strictly observed. (1) The Thermistors shall not be operated beyond the specified operating temperature range. (2) The Thermistors shall not be operated in excess of the specified maximum power dissipation. 2. The Thermistors shall not be mounted near flammables. 01. Oct. 2019 Multilayer NTC Thermistors Operating Conditions and Circuit Design 1. Circuit Design 【Dissipation factor】 ・The constant amount power required to raise the  temperature of the Thermistor 1 °C through self  heat generation under stable temperatures.  Dissipation factor (mW/°C) = Power consumption  of Thermistor / Temperature rise of element. Maximum power dissipation 【Maximum power dissipation】 ・The Maximum power that can be continuously applied  under static air at a certain ambient temperature.  The Maximum power dissipation under an ambient  temperature of 25 ℃ or less is the same with the rated  maximum power dissipation, and Maximum power  dissipation beyond 25 ℃ depends on the Decreased  power dissipation curve below. / Rated maximum power dissipation (%) 1.1 Operating Temperature and Storage Temperature When operating a components-mounted circuit, please be sure to observe the “Operating Temperature Range”, written in delivery specifications. Storage temperature of PCB after mounting Thermistors, which is not operated, should be within the specified “Storage Temperature Range” in the delivery specifications. Please remember not to use the product under the condition that exceeds the specified maximum temperature. 1.2 Operating Power The electricity applied to between terminals of Thermistors should be under the specified maximum power dissipation. There are possibilities of breakage and burn-out due to excessive self-heating of Thermistors, if the power exceeds maximum power dissipation when operating. Please consider installing protection circuit for your circuit to improve the safety, in case of abnormal voltage application and so on. Thermistors’ performance of temperature detection would be deteriorated if self-heating occurs, even when you use it under the maximum power dissipation. Please consider the maximum power dissipation and dissipation factor.  Decreased power dissipation curve 100 50 25 75 125 Ambient temperature (°C) 1.3 Environmental Restrictions The Thermistors does not take the use under the following special environments into consideration. Accordingly, the use in the following special environments, and such environmental conditions may affect the performance of the product; prior to use, verify the performance, reliability, etc. thoroughly. ① Use in liquids such as water, oil, chemical, and organic solvent. ② Use under direct sunlight, in outdoor or in dusty atmospheres. ③ Use in places full of corrosive gases such as sea breeze, Cl2,H2S,NH3,SO2,and NOx. ④ Use in environment with large static electricity or strong electromagnetic waves or strong radial ray. ⑤ Where the product is close to a heating component, or where an inflammable such as a polyvinyl chloride wire is arranged close to the product. ⑥ Where this product is sealed or coated with resin etc. ⑦ Where solvent, water, or water-soluble detergent is used in flux cleaning after soldering. (Pay particular attention to water-soluble flux.) ⑧ Use in such a place where the product is wetted due to dew condensation. ⑨ Use the product in a contaminated state. Ex.) Do not handle the product such as sticking sebum directly by touching the product after mounting printed circuit board. ⑩ Under severe conditions of vibration or impact beyond the specified conditions found in the Specifications. 1.4 Measurement of Resistance The resistance of the Thermistors varies depending on ambient temperatures and self-heating. To measure the resistance value when examining circuit configuration and conducting receiving inspection and so on, the following points should be taken into consideration: ① Measurement temp : 25±0.1 °C Measurement in liquid (silicon oil, etc.) is recommended for a stable measurement temperature. ② Power : 0.10 mW max. 4 terminal measurement with a constant-current power supply is recommended. 01. Oct. 2019 Multilayer NTC Thermistors 2. Design of Printed Circuit Board 2.1 Selection of Printed Circuit Boards There is a possibility of performance deterioration by heat shock (temperature cycles), which causes cracks, from alumina substrate. Please confirm that the substrate you use does not deteriorate the Thermistors’ quality. 2.2 Design of Land Pattern (1) Recommended land dimensions are shown below. Use the proper amount of solder in order to prevent cracking. Using too much solder places excessive stress on the Thermistors.. Recommended Land Dimensions(Ex.) Land SMD Solder resist Size Code/EIA Unit (mm) Component dimensions a b c L W T Z(0201) 0.6 0.3 0.3 0.2 to 0.3 0.25 to 0.30 0.2 to 0.3 0(0402) 1.0 0.5 0.5 0.4 to 0.5 0.4 to 0.5 0.4 to 0.5 1(0603) 1.6 0.8 0.8 0.8 to 1.0 0.6 to 0.8 0.6 to 0.8 (2) The land size shall be designed to have equal space, on both right and left side. If the amount of solder on both sides is not equal, the component may be cracked by stress since the side with a larger amount of solder solidifies later during cooling. Recommended Amount of Solder (a) Excessive amount 2.3 Utilization of Solder Resist (1) Solder resist shall be utilized to equalize the amounts of solder on both sides. (2) Solder resist shall be used to divide the pattern for the following cases; ・ Components are arranged closely. ・ The Thermistor is mounted near a component with lead wires. ・ The Thermistor is placed near a chassis. Refer to the table below. (b) Proper amount (c) Insufficient amount Prohibited Applications and Recommended Applications Prohibited applications Item Mixed mounting with a component with lead wires The lead wire of a Component With lead wires Chassis Arrangement near chassis Solder(ground solder) Improved applications by pattern division Solder resist Solder resist Electrode pattern Retro-fitting of component with lead wires A lead wire of Retrofitted component Solderingiron iron Portion to be Lateral arrangement Solder resist Excessively soldered Solder resist Land 2.4 Component Layout To prevent the crack of Thermistors, try to place it place it on the position that could not easily be affected by the bending stress of substrate while mounting procedures or procedures afterwards. Placement of the Thermistors near heating elements also requires the great care to be taken in order to avoid stresses from rapid heating and cooling. 01. Oct. 2019 Multilayer NTC Thermistors (1) To minimize mechanical stress caused by the warp or bending of a PC board, please follow the recommended Thermistors’ layout below. Prohibited layout Recommended layout Layout the Varistors sideways against the stressing direction. (2) The following layout is for your reference since   mechanical stress near the dividing/breaking position of a PC board varies depending on the mounting position of the Thermistors. E Perforation D C Magnitude of stress A>B=C>D>E A Slit B (3) The magnitude of mechanical stress applied to the Thermistors when dividing the circuit board in descending order is as follows: push back < slit < V-groove < perforation. Also take into account the layout of the Thermistors and the dividing/breaking method. (4) When the Thermistors are placed near heating elements such as heater, etc., cracks from thermal stresses may occur under following situation: ・ Soldering the Thermistors directly to heating elements. ・ Sharing the land with heating elements. If planning to conduct above-mentioned mounting and/or placement, please contact us in advance. 2.5 Mounting Density and Spaces Intervals between components should not be too narrow to prevent the influence from solder bridges and solder balls. The space between components should be carefully determined. Precautions for Assembly 1. Storage (1) The Thermistors shall be stored between 5 to 40 °C and 20 to 70 % RH, not under severe conditions of high temperature and humidity. (2) If stored in a place where humidity, dust, or corrosive gasses (hydrogen sulfide, sulfurous acid, hydrogen chloride and ammonia, etc.) are contained, the solderability of terminals electrodes will be deteriorated. In addition, storage in a place where the heat or direct sunlight exposure occurs will causes or direct sunlight exposure occurs will causes mounting problems due to deformation of tapes and reels and components and taping/reels sticking together. (3) Do not store components longer than 6 months. Check the solderability of products that have been stored for more than 6 months before use. 2. Chip Mounting Consideration (1) When mounting the Thermistors/components on a PC board, the Thermistor bodies shall be free from excessive impact loads such as mechanical impact or stress due to the positioning, pushing force and displacement of vacuum nozzles during mounting. (2) Maintenance and inspection of the Chip Mounter must be performed regularly. (3) If the bottom dead center of the vacuum nozzle is too low, the Thermistor will crack from excessive force during mounting. The following precautions and recommendations are for your reference in use. (a) Set and adjust the bottom dead center of the vacuum nozzles to the upper surface of the PC board after correcting the warp of the PC board. (b) Set the pushing force of the vacuum nozzle during mounting to 1 to 3 N in static load. (c) For double surface mounting, apply a supporting pin on the rear surface of the PC board to suppress the bending of the PC board in order to minimize the impact of the vacuum nozzles. Typical examples are shown in the table below. (d) Adjust the vacuum nozzles so that their bottom dead center during mounting is not too low. 01. Oct. 2019 Multilayer NTC Thermistors Item Prohibited mounting Single surface mounting Double surface mounting Recommended mounting The supporting pin Crack does not necessarily have to be positioned Separation of Crack solder Supporting pin Supporting pin (4) The closing dimensions of the positioning chucks shall be controlled. Maintenance and replacement of positioning chucks shall be performed regularly to prevent chipping or cracking of the Thermistors caused by mechanical impact during positioning due to worn positioning chucks. (5) Maximum stroke of the nozzle shall be adjusted so that the maximum bending of PC board does not exceed 0.5 mm at 90 mm span. The PC board shall be supported by an adequate number of supporting pins. 3. Selection of Soldering Flux Soldering flux may seriously affect the performance of the Thermistors. The following shall be confirmed before use. (1) The soldering flux should have a halogen based content of 0.1 wt% (converted to chlorine) or below. Do not use soldering flux with strong acid. (2) When applying water-soluble soldering flux, wash the Thermistors sufficiently because the soldering flux residue on the surface of PC boards may deteriorate the insulation resistance on the Thermistors’ surface. 4. Soldering 4.1 Reflow Soldering The reflow soldering temperature conditions are composed of temperature curves of Preheating, Temp. rise, Heating, Peak and Gradual cooling. Large temperature difference inside the Thermistors caused by rapid heat application to the Thermistors may lead to excessive thermal stresses, contributing to the thermal cracks. The Preheating temperature requires controlling with great care so that tombstone phenomenon may be prevented. 260 220 ④Peak △T Temperature (˚C) Recommended profile of Reflow Soldering (Ex.) ②Temp. Item ③Gradual cooling 180 140 ①Preheating ③Heating Time 60 ot 120 s ① Preheating ② Temp. rise ③ Heating ④ Peak ⑤ Gradual cooling Temperature 140 to 180 ℃ Preheating temp to Peak temp. 220 ℃ min. 260 ℃ max. Peak temp. to 140 ℃ Period or Speed 60 to 120 s 2 to 5 ℃ / s 60 s max. 10 s max. 1 to 4 ℃ / s 60 s max. △T : Allowable temperature difference △T≦ 150 °C The rapid cooling (forced cooling) during Gradual cooling part should be avoided, because this may cause defects such as the thermal cracks, etc. When the Thermistors are immersed into a cleaning solvent, make sure that the surface temperatures of the devices do not exceed 100 °C. Performing reflow soldering twice under the conditions shown in the figure above [Recommended profile of Flow soldering (Ex.)] will not cause any problems. However, pay attention to the possible warp and bending of the PC board. Recommended soldering condition is for the guideline for ensuring the basic characteristics of the components, not for the stable soldering conditions. Conditions for proper soldering should be set up according to individual conditions. The temperature of this product at the time of mounting changes depending on mounting conditions, therefore, please confirm that Product surface becomes the specified temperature when mounting it on the end product. 01. Oct. 2019 Multilayer NTC Thermistors 4.2 Hand Soldering Hand soldering typically causes significant temperature change, which may induce excessive thermal stresses inside the Thermitors, resulting in the thermal cracks, etc. In order to prevent any defects, the following should be observed. · The temperature of the soldering tips should be controlled with special care. · The direct contact of soldering tips with the Thermistors and/or terminal electrodes should be avoided. · Dismounted Thermistors shall not be reused. (1) Condition 1 (with preheating) (a) Soldering : Use thread solder (φ 1.0 mm or below) which contains flux with low chlorine, developed for precision electronic equipment. (b) Preheating : Conduct sufficient pre-heating, and make sure that the temperature difference between solder and Thermitors’ surface is 150 °C or less. (c) Temperature of Iron tip: 300 °C max. (The required amount of solder shall be melted in advance on the soldering tip.) (d) Gradual cooling : After soldering, the Thermitors shall be cooled gradually at room temperature. Recommended profile of Hand soldering (Ex.) △T Gradual cooling Preheating 60 ot 120 s 3 s max. △T : Allowable temperature difference △T ≦ 150 °C (2) Condition 2 (without preheating) Hand soldering can be performed without preheating, by following the conditions below: (a) Soldering iron tip shall never directly touch the ceramic and terminal electrodes of the Thermitors. (b) The lands are sufficiently preheated with a soldering iron tip before sliding the soldering iron tip to the terminal electrodes of the Thermitors for soldering. Conditions of Hand soldering without preheating Item Temperature of Iron tip Wattage Shape of Iron tip Soldering time with a soldering iron Condition 270 ℃ max. 20 W max. φ 3 mm max. 3 s max. 5. Post Soldering Cleaning 5.1 Cleaning solvent Soldering flux residue may remain on the PC board if cleaned with an inappropriate solvent. This may deteriorate the electrical characteristics and reliability of the Thermistors. 5.2 Cleaning conditions Inappropriate cleaning conditions such as insufficient cleaning or excessive cleaning may impair the electrical characteristics and reliability of the Thermitors. (1) Insufficient cleaning can lead to : (a) The halogen substance found in the residue of the soldering flux may cause the metal of terminal electrodes to corrode. (b) The halogen substance found in the residue of the soldering flux on the surface of the Thermitors may change resistance values. (c) Water-soluble soldering flux may have more remarkable tendencies of (a) and (b) above compared to those of rosin soldering flux. (2) Excessive cleaning can lead to : (a) When using ultrasonic cleaner, make sure that the output is not too large, so that the substrate will not resonate. The resonation causes the cracks in Thermitors and/or solders, and deteriorates the strength of the terminal electrodes. Please follow these conditions for Ultrasonic cleaning: Ultrasonic wave output : 20 W/L max. Ultrasonic wave frequency : 40 kHz max. Ultrasonic wave cleaning time : 5 min. max. 01. Oct. 2019 Multilayer NTC Thermistors 5.3 Contamination of Cleaning solvent Cleaning with contaminated cleaning solvent may cause the same results as that of insufficient cleaning due to the high density of liberated halogen. 6. Inspection Process The pressure from measuring terminal pins might bend the PCB when implementing circuit inspection after mounting Thermitors on PCB, and as a result, cracking may occur. (1) Mounted PC boards shall be supported by an adequate number of supporting pins on the back with bend settings of 90 mm span 0.5 mm max. (2) Confirm that the measuring pins have the right tip shape, are equal in height, have the right pressure and are set in the correct positions. The following figures are for your reference to avoid bending the PC board. Item Prohibited mounting Recommended mounting Check pin Check pin Bending of PC board Supporting pin Separated, Crack 7.Protective Coating Make sure characteristics and reliability when using the resin coating or resin embedding for the purpose of improvement of humidity resistance or gas resistance, or fixing of parts because failures of a thermistors such as 1) ,2) and 3) may be occurred. (1) The solvent which contained in the resin permeate into the Thermitors, and it may deteriorate the characteristic. (2) When hardening the resin, chemical reaction heat (curing heat generation) happen and it may occurs the infection to the Thermistors. (3) The lead wire might be cut down and the soldering crack might be happen by expansion or contraction of resin hardening. 8. Dividing/Breaking of PC Boards (1) Please be careful not to stress the substrate with bending/twisting when dividing, after mounting components including Thermistors. Abnormal and excessive mechanical stress such as bending or torsion shown below can cause cracking in the Thermistors. Bending Torsion (2) Dividing/Breaking of the PC boards shall be done carefully at moderate speed by using a jig or apparatus to prevent the Thermistors on the boards from mechanical damage. (3) Examples of PCB dividing/breaking jigs: The outline of PC board breaking jig is shown below. When PC board are broken or divided, loading points should be close to the jig to minimize the extent of the bending. Also, planes with no parts mounted on should be used as plane of loading, in order to prevent tensile stress induced by the bending, which may cause cracks of the Thermistors or other parts mounted on the PC boards.     Outline of Jig Prohibited mounting Recommended mounting PC board V-groove Loading Loading direction V-groove point PC board PC board splitting jig component V-groove PC board Loading direction component Loading point 01. Oct. 2019 Multilayer NTC Thermistors 10. Mechanical Impact (1) The Thermistors shall be free from any excessive mechanical impact. The Thermistor body is made of ceramics and may be damaged or cracked if dropped. Never use a Thermistor which has been dropped; their quality may already be impaired, and in that case, failure rate will increase. (2) When handling PC boards with Thermistors mounted on them, do not allow the Thermistors to collide with another PC board. When mounted PC boards are handled or stored in a stacked state, the corner of a PC board might strike Thermistors, and the impact of the strike may cause damage or cracking and can deteriorate the withstand voltage and insulation resistance of the Thermistors. Crack         Mounted PCB Crack Floor 11. Do not reuse this product after removal from the mounting board. Precautions for discarding As to the disposal of the Thermistors, check the method of disposal in each country or region where the modules are incorporated in your products to be used. Other The Thermistors precautions described above are typical. For special mounting conditions, please contact us. The technical information in this catalog provides example of our products’ typical operations and application circuit. Applicable laws and regulations , others 1. This product not been manufactured with any ozone depleting chemical controlled under the Montreal Protocol. 2. This product comply with RoHS(Restriction of the use of certain Hazardous Substance in electrical and electronic equipment) (DIRECTIVE 2011/65/EU and 2015/863/EU). 3. All the materials used in this part are registered material under the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substance. 4. If you need the notice by letter of “A preliminary judgement on the Laws of Japan foreign exchange and Foreign Trade Control”, be sure to let us know. 5. These products are not dangerous goods on the transportation as identified by UN (United nations) numbers or UN classification. 6. The technical information in this catalog provides example of our products’ typical operations and application circuit. We do not guarantee the non-infringement of third party’s intellectual property rights and we do not grant any license, Right or interest in our intellectual property. 01. Oct. 2019
ERTJ1VA220J 价格&库存

很抱歉,暂时无法提供与“ERTJ1VA220J”相匹配的价格&库存,您可以联系我们找货

免费人工找货