0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PS9634L

PS9634L

  • 厂商:

    NEC(日电电子)

  • 封装:

  • 描述:

    PS9634L - POWER TRANSISTOR DRIVING BASE AMPLIFIER BUILT-IN TYPE PHOTOCOUPLER - NEC

  • 详情介绍
  • 数据手册
  • 价格&库存
PS9634L 数据手册
DATA SHEET PHOTOCOUPLER PS9634,PS9634L POWER TRANSISTOR DRIVING BASE AMPLIFIER BUILT-IN TYPE PHOTOCOUPLER DESCRIPTION The PS9634 and PS9634L are optical linkage devices mounting a GaAs infrared ray LED on the light emitting side (input side) and a photo diode and a signal processing circuit on the light receiving side (output side) on one chip. They can directly drive a power transistor of 15 to 20 A class used for such as an inverter control air conditioner or general purpose inverter. The PS9634L has a surface mount type lead. FEATURES • High instantaneous common mode rejection voltage (CMH = –1 000 V/µs MIN., CML = 1 000 V/µs MIN.) • High supply voltage (VCC = 18 V) • High-speed response (tPHL, tPLH = 5 µs MAX.) • High output current (IO1 = 0.5 A (DC), IO1P = 1.0 A (pulse) ) • Taping product name (PS9634L-E3, E4) APPLICATIONS • Inverter control air conditioner • General purpose inverter The information in this document is subject to change without notice. Document No. P12686EJ4V0DS00 (4th edition) Date Published February 1998 NS CP(K) Printed in Japan The mark • shows major revised points. © 1992 PS9634,PS9634L PACKAGE DIMENSIONS (in millimeters) PS9634 10.16 MAX. 8 7 Tr.1 TOP VIEW Signal processing circuit 6 Tr.2 5 1. Anode 2. Cathode 3. NC 4. NC 5. Output (O1) 6. Output (O2) 7. GND 8. VCC 1 2 3 7.62 6.5±0.5 4 2.8 MIN. 4.55 MAX. 0.65 3.8 MAX. 1.27 MAX. 0.50±0.10 0.25 M 0 to 15˚ 2.54 1.34 PS9634L 10.16 MAX. 8 7 Tr.1 TOP VIEW Signal processing circuit 6 Tr.2 5 1. Anode 2. Cathode 3. NC 4. NC 5. Output (O1) 6. Output (O2) 7. GND 8. VCC 1 2 3 7.62 4 3.8 MAX. 1.27 MAX. 1.34±0.10 0.25 M 2.54 0.9±0.25 9.60±0.4 2 0.05 to 0.2 6.5±0.5 PS9634,PS9634L ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise specified) Parameter Diode Forward Current (DC) Reverse Voltage Peak Forward Current Detector Supply Voltage Output Current (O1) Peak Output Current (O1) Output Current (O2) Peak Output Current (O2) Output Voltage (O1) Power Dissipation Isolation Voltage *2 *1 Symbol IF VR IFM VCC IO1 IO1P IO2 IO2P VO1 PO BV PT TA Tstg Ratings 30 6.0 1 18 0.5 1.0 0.8 2.0 18 500 5 000 550 −20 to +80 −55 to +150 Unit mA V A V A V mW Vr.m.s. mW °C °C Total Power Dissipation Operating Ambient Temperature Storage Temperature *1 PW = 100 µs, Duty Cycle = 1 % *2 AC voltage for 1 minute at TA = 25 °C, RH = 60 % between input and output RECOMMENDED OPERATING CONDITIONS Parameter Input On Current Supply Voltage Output Current (O1) Output Current (O2) Operating Ambient Temperature Symbol IFLH VCC IO1 IO2 TA 0 25 50 °C MIN. 6 5.4 0.1 0.2 TYP. 8 MAX. 10 15 0.3 Unit mA V A TRUTH TABLE LED ON Tr. 1 Tr. 2 ON OFF OFF OFF ON 3 PS9634,PS9634L ELECTRICAL CHARACTERISTICS (TA = −20 to +80 °C, unless otherwise specified) Parameter Diode Forward Voltage Reverse Current Terminal Capacitance Detector Supply Voltage Low Level Output Voltage (O1) High Level Output Voltage (O2) Low Level Output Voltage (O2) Leakage Current (O1) Leakage Current (O2) High Level Supply Current Symbol VF IR Ct VCC VO1L VO2H VO2L IO1L IO2L ICCH VCC = 6 V, IO1 = 0.4 A, RL2 = 10 Ω, IF = 5 mA VCC = 6 V, IO2 = −0.4 A, IF = 5 mA VCC = 6 V, IO2 = 0.5 A, IF = 0 mA VCC = 13 V, IF = 0 mA VCC = 13 V, IF = 5 mA TA = 25 °C VCC = 6 V, IF = 5 mA Low Level Supply Current ICCL TA = 25 °C VCC = 6 V, IF = 0 mA Coupled Input On Current (L → H) IFLH TA = 25 °C VCC = 6 V, RL1 = 5 Ω, RL2 = 10 Ω Isolation Resistance Propagation Delay Time (L → H) Propagation Delay Time (H → L) Instantaneous Common Mode Rejection Voltage (Output: High) Instantaneous Common Mode Rejection Voltage (Output: Low) RI-O tPLH tPHL CMH TA = 25 °C, VCM = 600 V (peak), IF = 5 mA, RL1 = 470 Ω, RL2 = 1 kΩ, ∆V02H = 2 V TA = 25 °C, VCM = 600 V (peak), IF = 0 mA, RL1 = 470 Ω, RL2 = 1 kΩ, ∆V02L = 0.5 V −1 000 V/µs 7 RH = 40 to 60 %, TA = 25 °C VCC = 6 V, IF = 5 mA, TA = 25 °C RL1 = 5 Ω, RL2 = 10 Ω 0.3 0.2 10 11 Conditions IF = 5 mA, TA = 25 °C VR = 5 V, TA = 25 °C V = 0 V, f = 1.0 MHz, TA = 25 °C MIN. TYP. 1.1 MAX. 1.4 5 Unit V Fig. µA pF 30 5.4 0.25 4.5 5.0 0.25 0.40 100 100 8 12 16 15 18 22 1.5 3.0 5.0 15 0.40 V V V V 1 2 µA µA mA 3 4 mA mA 5 Ω 3 5 µs 6 CML 1 000 V/µs 4 PS9634,PS9634L MEASUREMENT CIRCUITS FOR ELECTRICAL CHARACTERISTICS Fig. 1 VO1L IF 1 2 3 4 8 VCC 7 RL2 = 10 Ω 6 5 – V VO1L + IO1 3 4 2 IF 1 Fig. 4 IO2L 8 VCC 7 6 5 A IO2L Fig. 2 VO2H IF 1 2 3 4 8 VCC 7 6 5 – V VO2H + IO2 3 4 2 IF variable 1 Fig. 5 IFLH 8 VCC 7 6 5 – V VO2 + RL2 = 10 Ω 6V RL1 =5Ω Fig. 3 IO1L IF 1 2 3 4 8 VCC 7 (tr, tf = 0.01 µs) VIN 1 2 Fig. 6 tPLH, tPHL 8 VCC 7 51 Ω 6 5 A IO1L RL2 = 10 Ω 3 4 6 5 VOUT RL1 = 5 Ω VIN VOUT tPLH 50 % 50 % tPHL Fig. 7 CMH, CML IF 1 SW 2 3 4 + VCM – 7 8 600 V VCM GND CMH (IF = 5 mA) 2V VO2 0.5 V CML (IF = 0 mA) VCC RL2 = 1 kΩ 6 5 VO2 RL1 = 470 Ω 5 PS9634,PS9634L TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise specified) MAXIMUM FORWARD CURRENT vs. AMBIENT TEMPERATURE 40 Maximum Forward Current IF (mA) Power Dissipation PO (mW) POWER DISSIPATION vs. AMBIENT TEMPERATURE 600 500 400 300 200 100 30 20 10 0 25 50 7580 100 0 25 50 7580 100 Ambient Temperature TA (˚C) Ambient Temperature TA (˚C) TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE Total Power Dissipation PT (mW) FORWARD CURRENT vs. FORWARD VOLTAGE 100 TA = +100 ˚C +75 ˚C +50 ˚C +25 ˚C 0 ˚C –25 ˚C –55 ˚C Forward Current IF (mA) 600 550 500 400 300 200 100 10 1 0.1 0 25 50 7580 100 0.01 0.6 0.8 1.0 1.2 1.4 1.6 Ambient Temperature TA (˚C) Forward Voltage VF (V) NORMALIZED INPUT ON CURRENT vs. SUPPLY VOLTAGE 1.5 Normalized Input On Current IFLH Normalized Input On Current IFLH NORMALIZED INPUT ON CURRENT vs. AMBIENT TEMPERATURE 1.3 Normalized to 1.0 at TA = 25 ˚C, VCC = 6 V VCC = 6 V 1.2 1.0 1.1 1.0 0.5 0.9 0.0 2 4 6 8 10 12 14 16 18 0.8 –20 0 20 40 60 80 Supply Voltage VCC (V) Ambient Temperature TA (˚C) 6 PS9634,PS9634L HIGH LEVEL SUPPLY CURRENT vs. SUPPLY VOLTAGE 15 High Level Supply Current ICCH (mA) Low Level Supply Current ICCL (mA) LOW LEVEL SUPPLY CURRENT vs. SUPPLY VOLTAGE 22.5 TA = –20 ˚ C TA = –20 ˚C 20.0 17.5 +25 ˚C +25 ˚C +80 ˚C 10 +80 ˚C 15.0 12.5 10.0 7.5 4 5 0 4 6 8 10 12 14 16 18 6 8 10 12 14 16 18 Supply Voltage VCC (V) Supply Voltege VCC (V) LOW LEVEL OUTPUT VOLTAGE (O1) vs. OUTPUT CURRENT (O1) Low Level Output Voltage (O1) VO1L (V) LOW LEVEL OUTPUT VOLTAGE (O1) vs. AMBIENT TEMPERATURE Low Level Output Voltage (O1) VO1L (V) 100 VCC = 6 V 0.35 VCC = 6 V 0.30 0.25 0.20 0.15 0.10 0.1 A 0.05 0.00 –20 0 20 40 60 80 0.3 A IO1 = 0.5 A 10–1 10–2 10–3 10–2 10–1 100 Output Current (O1) IO1 (A) Ambient Temperature TA (˚C) LOW LEVEL OUTPUT VOLTAGE (O2) vs. OUTPUT CURRENT (O2) Low Level Output Voltage (O2) VO2L (V) LOW LEVEL OUTPUT VOLTAGE (O2) vs. AMBIENT TEMPERATURE Low Level Output Voltage (O2) VO2L (V) 100 VCC = 6 V 0.5 VCC = 6 V 0.4 IO2 = 0.6 A 10–1 0.3 0.4 A 0.2 10–2 0.1 0.1 A 10–3 10–2 10–1 Output Current (O2) IO2 (A) 100 0.0 –20 0 20 40 60 80 Ambient Temperature TA (˚C) 7 PS9634,PS9634L HIGH LEVEL OUTPUT VOLTAGE (O2) vs. OUTPUT CURRENT (O2) High Level Output Voltage (O2) VO2H (V) HIGH LEVEL OUTPUT VOLTAGE (O2) vs. AMBIENT TEMPERATURE High Level Output Voltage (O2) VO2H (V) 5.5 VCC = 6 V 5.3 VCC = 6 V 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 –20 0 20 40 60 80 IO2 = – 0.1 A 5.0 –0.4 A –0.6A 4.5 4.0 0.0 –0.1 –0.2 –0.3 –0.4 –0.5 –0.6 Output Current (O2) IO2 (A) Ambient Temperature TA (˚C) PROPAGATION DELAY TIME vs. FORWARD CURRENT Propagation Delay Time tPLH/tPHL ( µ s) Propagation Delay Time tPLH/tPHL ( µ s) PROPAGATION DELAY TIME vs. AMBIENT TEMPERATURE 5.0 4.5 4.0 tPHL 3.5 3.0 2.5 2.0 –20 tPLH VCC = 6 V, IF = 5 mA, RL1 = 5 Ω, RL2 = 10 Ω 5 tPLH tPHL 4 TA = +80 ˚C VCC = 6 V, RL1 = 5 Ω, RL2 = 10 Ω 3 –20 ˚C 2 0 5 10 15 +25 ˚C 20 25 30 0 20 40 60 80 Forward Current IF (mA) Ambient Temperature TA (˚C) SAFE OPERATING AREA (Tr.1) 10 Output Current (O2) IO2 (A) 5 2 1 IO2 MAX. (DC) 0.5 DC 1 (T A IO2 MAX. (Pulse) 10 1 10 0 m m s *1 m s *1 VCC MAX. s *1 = DC s *1 *2 0.2 0.1 0.3 0.5 1 80 ˚C ) *2 2 3 5 10 20 30 Output Voltage (O2) VO2 (V) *1 One pulse *2 On the epoxy board Remark The measurement of TYPICAL CHARACTERISTICS are only for reference, not guaranteed. 8 PS9634,PS9634L TAPING SPECIFICATIONS (in millimeters) Outline and Dimensions (Tape) 2.0±0.1 4.0±0.1 1.75±0.1 1.55±0.1 4.3±0.2 16.0±0.3 10.3±0.1 7.5±0.1 1.55±0.1 12.0±0.1 10.4±0.1 0.3 Tape Direction PS9634L-E3 PS9634L-E4 Outline and Dimensions (Reel) 2.0±0.5 φ 13.0±0.5 R 1.0 φ 21.0±0.8 φ 80.0±5.0 φ 330 16.4 +2.0 –0.0 Packing: 1 000 pcs/reel 9 PS9634,PS9634L RECOMMENDED SOLDERING CONDITIONS (1) Infrared reflow soldering • Peak reflow temperature • Time of temperature higher than 210 °C • Number of reflows • Flux 235 °C (package surface temperature) 30 seconds or less Three Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.) Recommended Temperature Profile of Infrared Reflow Package Surface Temperature T (˚C) (heating) to 10 s 235 ˚C (peak temperature) 210 ˚C to 30 s 120 to 160 ˚C 60 to 90 s (preheating) Time (s) Caution Please avoid to removed the residual flux by water after the first reflow processes. Peak temperature 235 ˚C or below (2) Dip soldering • Temperature • Time • Number of times • Flux 260 °C or below (molten solder temperature) 10 seconds or less One Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.) 10 PS9634,PS9634L APPLICATION EXAMPLE OF PHOTOCOUPLER (TO POWER TRANSISTOR MODULE) VCC PS9634, PS9634L + VCC 1 8 2 TTL or the like Input VIN 3 7 6 IO 4 5 Power transistor module VIN 0 t IO 0 IO1 IO2P t Load 11 PS9634,PS9634L CAUTION Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96. 5
PS9634L
物料型号: - 型号为PS9634和PS9634L。

器件简介: - PS9634和PS9634L是光耦器件,集成了GaAs红外光LED(输入侧)和光敏二极管及信号处理电路(输出侧)。 - 可以直接驱动15至20A级的功率晶体管,适用于变频空调或通用变频器控制。

引脚分配: - PS9634L为表面贴装型引脚。

参数特性: - 具有高瞬态共模抑制电压(CMH = -1000 V/µs MIN., CML = 1000 V/µs MIN.)。 - 可承受高供电电压(Vcc = 18V)。 - 响应速度快(tPHL, tPLH = 5 µs MAX.)。 - 输出电流高(Io1 = 0.5 A(DC), Io1P = 1.0 A(脉冲))。

功能详解: - 光耦器件能够实现电气隔离,用于驱动功率晶体管并提供信号处理。

应用信息: - 应用于变频空调控制和通用变频器。

封装信息: - 提供了PS9634和PS9634L的封装尺寸图,包括胶带和卷轴封装的详细尺寸。
PS9634L 价格&库存

很抱歉,暂时无法提供与“PS9634L”相匹配的价格&库存,您可以联系我们找货

免费人工找货