0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
UPC8130TA-E3

UPC8130TA-E3

  • 厂商:

    NEC(日电电子)

  • 封装:

  • 描述:

    UPC8130TA-E3 - -15 dBm INPUT, VARIABLE GAIN AMPLIFIER SILICON MMIC FOR TRANSMITTER AGC OF DIGITAL CE...

  • 数据手册
  • 价格&库存
UPC8130TA-E3 数据手册
DATA SHEET µPC8130TA, µPC8131TA –15 dBm INPUT, VARIABLE GAIN AMPLIFIER SILICON MMIC FOR TRANSMITTER AGC OF DIGITAL CELLULAR TELEPHONE BIPOLAR ANALOG INTEGRATED CIRCUITS DESCRIPTION The µPC8130TA and µPC8131TA are silicon monolithic integrated circuits designed as variable gain amplifier. Due to 800 MHz to 1.5 GHz operation, these ICs are suitable for RF transmitter AGC stage of digital cellular telephone. These ICs are lower distortion than conventional µPC8119T and µPC8120T so that –15 dBm input level can be applied. These ICs also available in two types of gain control so you can choose either IC in accordance with your system design. 3 V supply voltage and minimold package contribute to make your system lower voltage, decreased space and fewer components. The µPC8130TA and µPC8131TA are manufactured using NEC’s 20 GHz fT NESAT™III silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability. FEATURES • Recommended operating frequency: f = 800 MHz to 1.5 GHz • Low distortion : Padj ≤ –60 dBc MAX. @Pin = –15 dBm, ∆f = ±50 kHz, VCC = 3.0 V, TA = +25 °C • Supply voltage : VCC = 2.7 to 3.3 V • Low current consumption : ICC = 11 mA TYP. @VCC = 3.0 V • Gain control voltage : VAGC = 0 to 2.4 V (recommended) • Two types of gain control : µPC8130TA = VAGC up vs. Gain up (Reverse control) µPC8131TA = VAGC up vs. Gain down (Forward control) • AGC control can be constructed by external control circuit. • High-density surface mounting : 6 pin minimold package APPLICATION • 800 MHz to 900 MHz or 1.5 GHz Digital cellular telephone (PDC800M, PDC1.5G and so on) ORDERING INFORMATION Part Number Package 6-pin minimold C2R Marking C2Q Supplying Form Embossed tape 8 mm wide. 1, 2, 3 pins face to perforation side of the tape. Qty 3 kp/reel. Gain Control Type Reverse control Forward control µPC8130TA-E3 µPC8131TA-E3 Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: µPC8130TA, µPC8131TA) Caution Electro-static sensitive devices. T he information in this document is subject to change without notice. Document No. P11721EJ2V0DS00 (2nd edition) Date Published October 1998 N CP(K) Printed in Japan The mark shows major revised points. © 1997 µPC8130TA, µPC8131TA PIN CONNECTIONS (Top View) (Bottom View) 4 4 3 Pin No. 1 2 Pin Name INPUT GND GND OUTPUT VCC VAGC 3 C2Q 2 5 5 2 3 4 1 6 6 1 5 6 Marking is an example of µPC8130TA GAIN CONTROL AMPLIFIER PRODUCT LINE-UP Part No. VCC (V) 4.5 to 5.5 2.7 to 3.3 2.7 to 3.3 2.7 to 3.3 2.7 to 3.3 ICC (mA) 15 11 11 11 11 VAGC (V) 3.3 to 5.0 0.6 to 2.4 0.6 to 2.4 0.6 to 2.4 0 to 2.4 VAGC up vs. Gain down down up up down f (GHz) up to 1.1 0.1 to 1.92 0.1 to 1.92 0.8 to 1.5 0.8 to 1.5 PO (1 dB) –4 +3 +3 +5 +5 Pin (dBm) – ≤ –18 ≤ –18 ≤ –15 ≤ –15 PHS, PDC PHS, PDC PDC 800 M, PDC 1.5 G PDC 800 M, PDC 1.5 G Features µPC2723T µPC8119T µPC8120T µPC8130TA µPC8131TA Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail. To know the associated product, please refer to each latest data sheet. SYSTEM APPLICATION EXAMPLE This block diagram is an example of IF modulation digital cellular system. The µPC8130TA and µPC8131TA are applicable for not only IF modulation system but also RF modulation system. This diagram is intended to show the µPC8130TA and µPC8131TA location in the systems. RX I Q DEMO SW ÷N PLL PLL µ PC8130TA or µ PC8131TA TX PA I 0° φ 90 ° Q This document is to be specified for µPC8130TA and µPC8131TA only. For the other part number mentioned in this document, please refer to the latest data sheet of each part number. 2 µPC8130TA, µPC8131TA PIN EXPLANATION Applied Voltage V – Pin Voltage Note V 1.4 Pin No. 1 Pin Name IN Function and Applications Internal Equivalent Circuit RF input pin. This pin should be coupled with capacitor (eg 1000 pF) for DC cut. Input return loss can be improved with external impedance matching circuit. Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. Ground pins must be connected together with wide ground pattern to decrease impedance difference. RF output pin. This pin is designed as open collector of high impedance. This pin must be externally equipped with matching circuits. Control circuit 5 4 2 3 GND 0 − 1 Bias circuit 2 3 GND 4 OUT voltage as same as VCC through external inductor 2.7 to 3.3 − 5 VCC – Supply voltage pin. This pin must be equipped with bypass capacitor (eg 1000 pF) to minimize its RF impedance. Gain control pin. The relation between product number and control performance is shown below; Part No. VAGC up vs. Gain up down 2 6 5 6 VAGC 0 to 3.3 − Control circuit µPC8130TA µPC8131TA Note Pin voltage is measured at VCC = 3.0 V. 3 µPC8130TA, µPC8131TA ABSOLUTE MAXIMUM RATINGS Parameter Supply Voltage Total Circuit Current Input Power Gain Control Voltage Operating Ambient Temperature Storage Temperature Symbol VCC ICC Pin VAGC TA Tstg Conditions TA = +25 °C, Pin 4 and 5 TA = +25 °C, Pin 4 and 5 TA = +25 °C TA = +25 °C Ratings 3.6 30 +10 3.6 –25 to +85 –55 to +150 Unit V mA dBm V °C °C RECOMMENDED OPERATING CONDITIONS Parameter Supply Voltage Symbol VCC MIN. 2.7 TYP. 3.0 MAX. 3.3 Unit V Remarks Same voltage should be applied to 4 and 5 pins. –0.5 ≤ IAGC ≤ 0.1 mA Padj ≤ –60 dBc @∆f = ±50 kHz Note Gain Control Voltage Input Level Operating Ambient Temperature Operating Frequency AGC Pin Drive Current VAGC Pin TA f IAGC 0 – –25 800 0.5 – – +25 – – 2.4 –15 +85 1500 – V dBm °C MHz mA With external output-matching VAGC ≤ 3.3 V Note Adjacent Channel Interference (Padj) wave form condition: π/4DQPSK modulation signal, data rate = 42 kbps, rolloff ratio = 0.5, PN9 bits (pseudorandom pattern) 4 µPC8130TA, µPC8131TA ELECTRICAL CHARACTERISTICS (Unless otherwise specified, TA = +25 °C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω, External matched output port) µPC8130TA MIN. Circuit Current Maximum Power Gain Gain Control Note1 Range Minimum Power Gain Adjacent Channel Interference Note 2 ) (@∆f = ±50 kHz Isolation ICC GPMAX No signal, ICC = IVcc + Iout f = 950 MHz, Pin = –20 dBm f = 1440 MHz, Pin = –20 dBm f = 950 MHz, Pin = –20 dBm f = 1440 MHz, Pin = –20 dBm f = 950 MHz, Pin = –20 dBm f = 1440 MHz, Pin = –20 dBm f = 950 MHz, Pin = –15 dBm f = 1440 MHz, Pin = –15 dBm 8.5 10 8 40 35 – – – – TYP. 11 12.5 11 50 41 –37 –30 –65 –65 MAX. 15 15 14 – – – – –60 –60 MIN. 8.5 9.5 8 40 35 – – – – Parameter Symbol Test Conditions µPC8131TA TYP. 11 12 11 45 39 –33 –28 –65 –65 MAX. 15 14.5 14 – – – – –60 –60 Unit mA dB GCR dB GPMIN dB Padj dB ISL f = 950 MHz, GPMAX f = 1440 MHz, GPMAX f = 950 MHz, GPMAX f = 1440 MHz, GPMAX f = 950 MHz, GPMAX f = 1440 MHz, GPMAX f = 950 MHz, GPMAX f = 1440 MHz, GPMAX 17 20 +2 +2 3.5 6.5 – – 20 25 +5 +5 6.5 10 11 8.5 – – – – – – 14 11.5 20 25 +2 +1 6 7 – – 25 30 +5 +4 9 10.5 11 8 – – – – – – 14 11 dB 1 dB Compression Output Power Input Return Loss Noise Figure PO (1 dB) dBm RLin dB NF dB Notes 1. Gain Control Range (GCR) specification: GCR = GPMAX – GPMIN (dB) Conditions µPC8130TA: GPMAX@ VAGC = VCC, GPMIN@ VAGC = 0 V µPC8131TA: GPMAX@ VAGC = 0 V, GPMIN@ VAGC = VCC 2. Adjacent Channel Interference (Padj) wave form condition: π/4DQPSK modulation signal, data rate = 42 kbps, rolloff ratio = 0.5, PN9 bits (pseudorandom pattern) Remark Measured on TEST CIRCUIT 1 and 2 5 µPC8130TA, µPC8131TA TEST CIRCUIT1 (f = 950 MHz, both products in common) 1000 pF VAGC C4 6 5 IN C1 1 2, 3 4 C3 L1 C5 C6 C2 L2 VCC OUT Output matching circuit ILLUSTRATION OF TEST CIRCUIT1 ASSEMBLED ON EVALUATION BOARD C2 OUT L1 L2 C3 C4 C1 IN IN AGC C6 C5 VCC VAGC COMPONENT LIST Form Chip capacitor Symbol C1, C3 to C6 C2 Chip inductor L1 L2 Value 1000 pF 1.5 pF 4.5 nH (10 nH, 8.2 nH, parallel) 270 nH Makers Murata Mfg. Co., Ltd. Murata Mfg. Co., Ltd. Toko Co., Ltd. Toko Co., Ltd. Product Name GRM39 series GRM39 series LL1608-F LL2012-F Caution Test circuit or print pattern in this sheet is for testing IC characteristics. In the case of actual system application, external circuits including print pattern and matching circuit constant of output port should be designed in accordance with IC’s S parameters and environmental components. 6 OUT µ PC8130/31TA µPC8130TA, µPC8131TA TEST CIRCUIT2 (f = 1440 MHz, both products in common) 1000 pF VAGC C4 6 5 IN C1 1 2, 3 Output matching circuit 4 C3 L1 C5 C6 C2 OUT L2 VCC ILLUSTRATION OF TEST CIRCUIT2 ASSEMBLED ON EVALUATION BOARD C2 OUT L1 L2 C3 C4 C1 IN IN AGC C6 C5 VCC VAGC COMPONENT LIST Form Chip capacitor Symbol C1, C3 to C6 C2 Chip inductor L1 L2 Value 1000 pF 1.5 pF 1.2 nH 270 nH Makers Murata Mfg. Co., Ltd. Murata Mfg. Co., Ltd. Toko Co., Ltd. Toko Co., Ltd. Product Name GRM39 series GRM39 series LL1608-F LL2012-F Caution Test circuit or print pattern in this sheet is for testing IC characteristics. In the case of actual system application, external circuits including print pattern and matching circuit constant of output port should be designed in accordance with IC’s S parameters and environmental components. OUT µ PC8130/31TA 7 µPC8130TA, µPC8131TA APPLICATION EXPLANATION The µPC8130TA and µPC8131TA has difference in internal circuit in order to reduce the number of external component with µPC8119T and µPC8120T. For this reason, they have difference in mechanism for determing minimum gain and external suitable constant. External Feedback Capacitor of VCC to VAGC Pin Necessary Optimize Choke Inductance of π Type Circuit on VCC Line The impedance of inductance should be very low at high frequency region. Determing Minimum Gain µPC8119T µPC8120T High frequency negative feed back between OUT, VCC and VAGC pin optimized by external choke inductance. Isolation of VCC to OUT pin optimized by external choke inductance. µPC8130TA µPC8131TA Unnecessary The impedance of inductance should be very high at high frequency region. 8 µPC8130TA, µPC8131TA TYPICAL CHARACTERISTICS µPC8130TA CIRCUIT CURRENT vs. SUPPLY VOLTAGE 20 no signals GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE 0.2 no signals Circuit Current ICC (mA) 16 14 12 10 8 6 4 2 0 0 0.5 2.5 3 1 1.5 2 Supply Voltage VCC (V) 3.5 4 Gain Control Current IAGC (mA) 18 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0 VCC = 2.7 V VCC = 3.0 V VCC = 3.3 V 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE 14 CURRENT INTO OUTPUT PIN AND CURRENT INTO VCC PIN vs. GAIN CONTROL VOLTAGE 16 Current into Output pin IOUT (mA) Current into VCC pin IVCC (mA) 12 14 12 10 8 IVCC Circuit Current ICC (mA) VCC = 3.3 V VCC = 3.0 V VCC = .3.3 V Iout 10 8 6 4 2 no signals 0 -40 -20 0 20 40 60 80 100 Operating Ambient Temperature TA (°C) VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V VCC = 2.7 V 6 4 2 VCC = 3.0 V VCC = 2.7 V no signals 0 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 S11 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S11 1 : 950 MHz 69.594 Ω −8.9766 Ω : 1.44 GHz 2 58.973 Ω −22.688 Ω : 1.9 GHz 3 48.133 Ω −23.941 Ω 1 S22 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S22 1 : 950 MHz 15.859 Ω −208.8 Ω : 1.44 GHz 2 32.234 Ω −150.07 Ω : 1.9 GHz 24.711 Ω −131.8 Ω 32 2 1 3 START 100.000 000 MHz STOP 3 100.000 000 MHz START 800.000 000 MHz STOP 2 700.000 000 MHz 9 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz VCC = VAGC = 3.0 V(GPMAX), Pin = −20 dBm S11 vs. FREQUENCY 1: 65.098 Ω −56.266 Ω 2.9775 pF 950.000 000 MHz VCC = VAGC = 3.0 V(GPMAX), Pin = −20 dBm S22 vs. FREQUENCY 1: 69.219 Ω 13.313 Ω 2.2303 nH 950.000 000 MHz MARKER 1 950 MHz MARKER 1 950 MHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −6.8118 dB 10 VCC = 3.0 V 950.000 000 MHz VCC = 3.3 V 0 −10 VCC = 2.7 V −20 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz 10 S11 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −5.9537 dB 950.000 000 MHz TA = −25 °C 1 0 −10 −20 −30 TA = +25 °C TA = +85 °C START 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −13.235 dB 10 950.000 000 MHz 10 S22 vs. FREQUENCY VCC = VAGC = 3.0 V(GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −12.477 dB 950.000 000 MHz 0 −10 −20 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 0 −10 TA = −25 °C −20 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz TA = +85 °C TA = +25 °C 10 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz S21 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 7 dB 1: 12.811 dB 16 950.000 000 MHz VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 16 S21 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 7 dB 1: 12.714 dB 950.000 000 MHz 14 1 14 1 12 12 TA = +25 °C TA = −25 °C TA = +85 °C 10 10 8 START 100.000 000 MHz STOP 3 100.000 000 MHz 8 START 100.000 000 MHz STOP 3 100.000 000 MHz S12 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −20.189 dB 10 950.000 000 MHz 10 S12 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −20.255 dB 950.000 000 MHz 0 −10 1 −20 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz 0 −10 −20 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V TA = +85 °C 1 TA = +25 °C TA = −25 °C 11 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 POWER GAIN vs. GAIN CONTROL VOLTAGE 20 15 10 5 0 −5 TA = −25 °C −10 TA = +85 °C −15 TA = +25 °C −20 −25 −30 −35 −40 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) VCC = 2.7 V Power Gain GP (dB) Power Gain GP (dB) VCC = 3.0 V VCC = 3.3 V 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 4 S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S21 log MAG 10 dB/REF 0 dB 1: −36.686 dB VAGC = 1.5 V 950.000 000 MHz 40 VAGC = 1.4 V VAGC = 3.0 V VAGC = 1.3 V VAGC = 2.2 V VAGC = 1.2 V VAGC = 2.0 V VAGC = 1.1 V 20 VAGC = 1.9 V VAGC = 1.0 V VAGC = 1.6 V 0 −20 1 −40 START 100.000 000 MHz VAGC = 0.9 V VAGC = 0.2 V VAGC = 0 V STOP 3 100.000 000 MHz S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S12 log MAG 10 dB/REF 0 dB 1: −20.344 dB 40 950.000 000 MHz 20 0 VAGC = 3.0 V 1 −20 −40 VAGC = 0 V VAGC = 1.55 V START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = -20 dBm S11 log MAG 10 dB/REF 0 dB 1: −6.9044 dB 40 VAGC = 3.0 V VAGC = 2.0 V 0 −20 −40 1 0 −20 −40 950.000 000 MHz 40 S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = -20 dBm S22 log MAG 10 dB/REF 0 dB 1: −12.969 dB 950.000 000 MHz 20 20 1 VAGC = 1.7 V VAGC = 0 V VAGC = 2.05 V VAGC = 1.6 V VAGC = 0 to 1.0 V VAGC = 3.0 V START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 12 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz OUTPUT POWER vs. INPUT POWER 10 5 0 −5 −10 −15 −20 −20 −15 −10 −5 Input Power Pin (dBm) VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V f = 950 MHz VAGC = VCC Output Power Pout (dBm) 10 0 −10 −20 −30 −40 −50 −60 0 5 −70 −30 −25 VAGC = 1.5 V VAGC = 1.3 V VAGC = 1.1 V VAGC = 0.95 V VAGC = 0 V −20 −15 −10 −5 Input Power Pin (dBm) 0 5 f = 950 MHz VCC = 3.0 V VAGC = 3.0 V OUTPUT POWER vs. INPUT POWER Output Power Pout (dBm) OUTPUT POWER vs. INPUT POWER 10 0 Output Power Pout (dBm) −10 −20 −30 −40 −50 −60 −70 −30 −25 VAGC = 1.7 V VAGC = 1.45 V VAGC = 1.3 V VAGC = 1.15 V VAGC = 0 V −20 −15 −10 −5 Input Power Pin (dBm) 0 5 f = 950 MHz VCC = 3.3 V VAGC = 3.3 V Output Power Pout (dBm) 10 0 −10 −20 −30 −40 −50 −60 −70 −30 OUTPUT POWER vs. INPUT POWER f = 950 MHz VCC = 2.7 V VAGC = 2.7 V −25 VAGC = 1.3 V VAGC = 1.1 V VAGC = 0.95 V VAGC = 0.75 V VAGC = 0 V −20 −15 −10 −5 0 5 Input Power Pin (dBm) 13 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 10 0 −10 −20 −30 −40 −50 −60 −70 −30 −25 2f2-f1 (952 MHz) 2f1-f2 (949 MHz) VCC = 3.0 V VAGC = 3.0 V f1 = 950 MHz f2 = 951 MHz −5 0 Pout IM3 20 VCC = 3.0 V 10 VAGC = 1.55 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) −5 0 2f1-f2 (949 MHz) 2f2-f1 (952 MHz) OUTPUT POWER AND IM3 vs. INPUT POWER Pout IM3 −20 −15 −10 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) VCC = 3.0 V 10 VAGC = 1.3 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) −5 0 2f1-f2 (949 MHz) 2f2-f1 (952 MHz) Pout IM3 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 20 OUTPUT POWER AND IM3 vs. INPUT POWER VCC = 3.0 V 10 VAGC = 1.15 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) 2f2-f1 (952 MHz) Pout IM3 2f1-f2 (949 MHz) −5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 VCC = 3.0 V 10 VAGC = 0 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 Pout 2f1-f2 (949 MHz) 2f2-f1 (952 MHz) −20 −15 −10 Input Power Pin (dBm) IM3 −5 0 14 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 950 MHz ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) TA = +25 °C Pin = −13 dBm ±50 KHz −55 −60 VCC = 2.7 V −65 −70 −75 Adjacent Channel Interference Padj (dBc) −50 ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE −50 TA = −25 °C Pin = −13 dBm ±50 KHz −55 −60 −65 −70 −75 VCC = 3.0 V VCC = 3.0 V VCC = 3.3 V VCC = 3.3 V VCC = 2.7 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) TA = +85 °C Pin = −13 dBm ±50 KHz −55 −60 −65 −70 VCC = 2.7 V −75 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 VCC = 3.3 V VCC = 3.0 V Adjacent Channel Interference Padj (dBc) −50 −30 −35 −40 −45 −50 −55 −60 −65 ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER VAGC = VCC VCC = 3.3 V VCC = 2.7 V VCC = 3.0 V −15 −10 −5 Input Power Pin (dBm) 0 5 −70 −20 15 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S11 vs. FREQUENCY 1: 51.363 Ω −34.424 Ω 3.2107 pF 1 440.000 000 MHz VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S22 vs. FREQUENCY 1: 37.857 Ω −11.791 Ω 9.3736 pF 1 440.000 000 MHz MARKER 1 1.44 GHz MARKER 1 1.44 GHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −9.8796 dB 10 1 440.000 000 MHz 10 S11 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −9.5571 dB 1 440.000 000 MHz 0 VCC = 3.0 V −10 −20 −30 START 100.000 000 MHz VCC = 3.3 V 0 TA = −25 °C −10 1 VCC = 2.7 V −20 −30 TA = +25 °C TA = +85 °C START 100.000 000 MHz STOP 3 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −14.444 dB 10 1 440.000 000 MHz 10 S22 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −14.139 dB 1 440.000 000 MHz 0 −10 −20 −30 VCC = 3.0 V VCC = 3.3 V VCC = 2.7 V 0 −10 TA = +85 °C −20 −30 TA = +25 °C 1 1 TA = −25 °C START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 16 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz S21 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 5 dB 1: −11.31 dB 14 1 440.000 000 MHz 14 1 S21 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 5 dB 1: −11.291 dB 1 440.000 000 MHz TA = −25 °C 12 TA = +25 °C TA = +85 °C 10 12 1 VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V 10 8 8 6 START 100.000 000 MHz STOP 3 100.000 000 MHz 6 START 100.000 000 MHz STOP 3 100.000 000 MHz S12 vs. FREQUENCY VAGC = VCC (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −25.647 dB 10 1 440.000 000 MHz 10 S12 vs. FREQUENCY VCC = VAGC = 3.0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −25.515 dB 1 440.000 000 MHz 0 −10 −20 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz VCC = 3.3 V 1 VCC = 3.0 V VCC = 2.7 V 0 −10 −20 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz TA = +85 °C 1 TA = −25 °C TA = +25 °C 17 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 POWER GAIN vs. GAIN CONTROL VOLTAGE 20 15 10 5 0 TA = +25 °C −5 −10 −15 TA = +85 °C −20 −25 TA = −25 °C −30 −35 −40 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) Power Gain GP (dB) VCC = 3.0 V VCC = 3.3 V 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 Power Gain GP (dB) VCC = 2.7 V 4 S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S21 log MAG 10 dB/REF 0 dB 2: 10.863 dB 40 VAGC = 3.0 V VAGC = 2.0 V VAGC = 1.9 V VAGC = 1.8 V VAGC = 1.7 V VAGC = 1.6 V 2 VAGC = 1.5 V VAGC = 1.4 V VAGC = 1.3 V VAGC = 1.2 V VAGC = 1.1 V VAGC = 1.0 V S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S12 log MAG 10 dB/REF 0 dB 1: −25.759 dB 40 1 440.000 000 MHz 1 440.000 000 MHz 1: −6.6158 dB 950 MHz 3: 5.9184 dB 1.9 GHz 20 20 0 VAGC = 3.0 V −20 −40 VAGC = 0 V 1 3 0 −20 −40 1 VAGC = 0.8 V VAGC = 0 V VAGC = 1.7 V START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = -20 dBm S11 log MAG 10 dB/REF 0 dB 1: −9.9621 dB 40 1 440.000 000 MHz 40 S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S22 log MAG 10 dB/REF 0 dB 1: −13.275 dB 1 440.000 000 MHz 20 VAGC = 3.0 V 1 20 0 −20 −40 0 −20 −40 VAGC = 3.0 V 1 VAGC = 1.65 V VAGC = 0 V VAGC = 1.7 V VAGC = 0 to 1.0 V START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 18 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz OUTPUT POWER vs. INPUT POWER 10 5 0 −5 −10 −15 −20 −20 −15 −10 −5 0 Input Power Pin (dBm) f = 1440 MHz VAGC = VCC Output Power Pout (dBm) VCC = 2.7 V VCC = 3.0 V VCC = 3.3 V 10 0 −10 −20 −30 −40 −50 −60 5 −70 −30 −25 VAGC = 1.15 V VAGC = 1.25 V VAGC = 0.95 V VAGC = 0 V −20 −15 −10 −5 0 5 Input Power Pin (dBm) f = 1440 MHz VCC = 3.0 V VAGC = 3.0 V OUTPUT POWER vs. INPUT POWER Output Power Pout (dBm) VAGC = 1.5 V OUTPUT POWER vs. INPUT POWER 10 0 Output Power Pout (dBm) −10 −20 −30 −40 −50 −60 −70 −30 −25 VAGC = 1.65 V VAGC = 1.45 V VAGC = 1.3 V VAGC = 1.15 V VAGC = 0 V −20 −15 −10 −5 Input Power Pin (dBm) 0 5 f = 1440 MHz VCC = 3.3 V VAGC = 3.3 V Output Power Pout (dBm) 10 0 −10 −20 −30 −40 −50 −60 −70 −30 OUTPUT POWER vs. INPUT POWER f = 1440 MHz VCC = 2.7 V VAGC = 2.7 V VAGC = 1.3 V VAGC = 1.1 V VAGC = 0.95 V VAGC = 0.75 V VAGC = 0 V −25 −20 −15 −10 −5 Input Power Pin (dBm) 0 5 19 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 10 0 −10 −20 −30 −40 −50 −60 −70 −30 −25 VCC = 3.0 V VAGC = 3.0 V f1 = 1440 MHz 2f2-f1 (1442 MHz) f2 = 1441 MHz −20 −15 −10 Input Power Pin (dBm) −5 0 2f1-f2 (1439 MHz) Pout IM3 20 10 0 −10 −20 −30 −40 −50 −60 −70 −30 −25 2f1-f2 (1439 MHz) IM3 Pout 2f2-f1 (1442 MHz) OUTPUT POWER AND IM3 vs. INPUT POWER VCC = 3.0 V VAGC = 1.5 V f1 = 1440 MHz f2 = 1441 MHz −5 0 −20 −15 −10 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) VCC = 3.0 V 10 VAGC = 1.25 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 2f1-f2 (1439 MHz) IM3 2f2-f1 (1442 MHz) −20 −15 −10 Input Power Pin (dBm) −5 0 Pout Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 20 OUTPUT POWER AND IM3 vs. INPUT POWER VCC = 3.0 V 10 VAGC = 1.1 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 2f1-f2 (1439 MHz) Pout IM3 2f2-f1 (1442 MHz) −20 −15 −10 Input Power Pin (dBm) −5 0 OUTPUT POWER AND IM3 vs. INPUT POWER 20 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) VCC = 3.0 V 10 VAGC = 0 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 2f2-f1 (1442 MHz) 2f1-f2 (1439 MHz) −20 −15 −10 Input Power Pin (dBm) Pout IM3 −5 0 20 µPC8130TA, µPC8131TA µPC8130TA Output port matching at f = 1440 MHz ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) TA = +25 °C Pin = −15 dBm ±50 KHz −55 −60 −65 −70 −75 Adjacent Channel Interference Padj (dBc) −50 ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE −50 TA = −25 °C Pin = −15 dBm ±50 KHz −55 −60 −65 −70 −75 VCC = 3.0 V VCC = 3.3 V VCC = 3.0 V VCC = 3.3 V VCC = 2.7 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 VCC = 2.7 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) TA = +85 °C Pin = −13 dBm ±50 KHz −55 −60 −65 −70 −75 VCC = 3.0 V VCC = 3.3 V Adjacent Channel Interference Padj (dBc) −50 −30 −35 −40 −45 −50 −55 −60 −65 ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER VAGC = VCC VCC = 2.7 V VCC = 2.7 V VCC = 3.0 V VCC = 3.3 V −15 −10 −5 0 Input Power Pin (dBm) 5 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 −70 −20 21 µPC8130TA, µPC8131TA TYPICAL CHARACTERISTICS µPC8131TA CIRCUIT CURRENT vs. SUPPLY VOLTAGE 20 no signals GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE 0.5 no signals VCC = 2.7 V VCC = 3.0 V VCC = 3.3 V Circuit Current ICC (mA) 16 14 12 10 8 6 4 2 0 0 0.5 2.5 3 1 1.5 2 Supply Voltage VCC (V) 3.5 4 Gain Control Current IAGC (mA) 18 0.4 0.3 0.2 0.1 0 −0.1 −0.2 −0.3 −0.4 −0.5 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE 14 16 CURRENT INTO OUTPUT PIN AND CURRENT INTO VCC PIN vs. GAIN CONTROL VOLTAGE Current into Output pin IOUT (mA) Current into VCC pin IVCC (mA) 12 14 12 10 8 6 4 2 Iout VCC = .3.3 V VCC = 3.0 V VCC = 3.3 V IVCC Circuit Current ICC (mA) 10 8 6 4 2 no signals 0 −40 −20 0 20 40 60 80 100 Operating Ambient Temperature TA (°C) VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V VCC = 3.0 V VCC = 2.7 V VCC = 2.7 V 0 0 0.5 no signals 4 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) S11 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = -20 dBm S11 1 : 949.4 MHz 72.504 Ω −14.266 Ω : 1.44 GHz 2 58.012 Ω −25.781 Ω 3 : 1.9 GHz 48.307 Ω −26.266 Ω 1 S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = -20 dBm S22 1 : 950 MHz 30.711 Ω −210.3 Ω : 1.44 GHz 2 35.516 Ω −158.06 Ω 3 : 1.9 GHz 19.758 Ω −131.8 Ω 3 2 2 3 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 800.000 000 MHz STOP 2 700.000 000 MHz 22 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S11 vs. FREQUENCY 1: 66.246 Ω −41.039 Ω 4.0822 pF 950.000 000 MHz VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S22 vs. FREQUENCY 1: 57.439 Ω 3.3594 Ω 562.8 pH 950.000 000 MHz MARKER 1 950 MHz MARKER 1 950 MHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −8.9634 dB 10 VCC = 3.3 V 1 −10 −20 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz VCC = 2.7 V VCC = 3.0 V −10 −20 −30 950.000 000 MHz 10 S11 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −2.0122 dB 950.000 000 MHz 0 0 1 TA = −25 °C TA = +25 °C TA = +85 °C START 100.000 000 MHz STOP 3 100.000 000 MHz S22 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −19.264 dB 10 950.000 000 MHz 10 S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −18.936 dB 950.000 000 MHz 0 −10 VCC = 3.3 V −20 −30 VCC = 2.7 V 0 −10 −20 −30 STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz TA = −25 °C TA = +85 °C TA = +25 °C VCC = 3.0 V START 100.000 000 MHz 23 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz S21 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 7 dB 1: 11.909 dB 16 950.000 000 MHz 16 S21 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 7 dB 1: 11.894 dB 950.000 000 MHz 14 1 12 VCC = 3.3 V VCC = 3.0 V 14 1 12 TA = −25 °C TA = +25 °C 10 TA = +85 °C VCC = 2.7 V 10 8 START 100.000 000 MHz STOP 3 100.000 000 MHz 8 START 100.000 000 MHz STOP 3 100.000 000 MHz S12 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −24.468 dB 10 950.000 000 MHz 10 S12 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −24.393 dB 950.000 000 MHz 0 −10 VCC = 3.3 V −20 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz 1 VCC = 3.0 V VCC = 2.7 V 0 −10 TA = −25 °C −20 −30 START 100.000 000 MHz STOP 3 100.000 000 MHz 1 TA = +85 °C, +25 °C 24 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 POWER GAIN vs. GAIN CONTROL VOLTAGE Power Gain GP (dB) Power Gain GP (dB) TA = −25 °C TA = +25 °C TA = +85 °C VCC = 3.3 V VCC = 2.7 V 0 0.5 VCC = 3.0 V 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S21 log MAG 10 dB/REF 0 dB 1: −34.406 dB VAGC = 1.3 V 950.000 000 MHz VAGC = 1.4 V 40 VAGC = 0 V VAGC = 1.5 V VAGC = 0.5 V VAGC = 1.6 V VAGC = 0.7 V VAGC = 1.7 V 20 VAGC = 0.9 V VAGC = 1.8 V VAGC = 1.1 V VAGC = 1.9 V 0 −20 1 −40 VAGC = 2.0 V VAGC = 2.1 V VAGC = 3.0 V START 100.000 000 MHz STOP 3 100.000 000 MHz S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S12 log MAG 10 dB/REF 0 dB 1: −24.537 dB 40 950.000 000 MHz 20 0 VAGC = 0 V −20 −40 VAGC = 1.1 V START 100.000 000 MHz STOP 3 100.000 000 MHz 1 VAGC = 3.0 V S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S11 log MAG 10 dB/REF 0 dB 1: −8.9126 dB 40 950.000 000 MHz 40 S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S22 log MAG 10 dB/REF 0 dB 1: −19.505 dB 950.000 000 MHz 20 VAGC = 1.5 V 0 −20 −40 1 VAGC = 0 V 20 0 1 VAGC = 2.0 to 3.0 V −20 −40 STOP 3 100.000 000 MHz VAGC = 1.1 V VAGC = 3.0 V VAGC = 1.8 V VAGC = 0 V VAGC = 0.45 V START 100.000 000 MHz STOP 3 100.000 000 MHz VAGC = 1.0 V START 100.000 000 MHz 25 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz OUTPUT POWER vs. INPUT POWER 10 5 0 -5 -10 -15 -20 -20 f = 950 MHz VAGC = 0 V Output Power Pout (dBm) 10 0 -10 -20 -30 -40 -50 -60 -15 -10 -5 Input Power Pin (dBm) 0 5 -70 -30 -25 VAGC = 1.5 V VAGC = 1.75 V VAGC = 1.95 V VAGC = 2.15 V VAGC = 3.0 V -20 -15 -10 -5 Input Power Pin (dBm) 0 5 f = 950 MHz VCC = 3.0 V OUTPUT POWER vs. INPUT POWER VAGC = 0 V Output Power Pout (dBm) VCC = 3.3 V VCC = 3.0 V VCC = 2.7 V OUTPUT POWER vs. INPUT POWER 10 0 Output Power Pout (dBm) -10 -20 -30 -40 -50 -60 -70 -30 -25 VAGC = 1.5 V VAGC = 1.8 V VAGC = 1.95 V VAGC = 2.15 V VAGC = 3.3 V -20 -15 -10 -5 Input Power Pin (dBm) 0 5 f = 950 MHz VCC = 3.3 V VAGC = 0 V Output Power Pout (dBm) 10 0 -10 -20 -30 -40 -50 -60 -70 -30 OUTPUT POWER vs. INPUT POWER f = 950 MHz VCC = 2.7 V VAGC = 0 V VAGC = 1.5 V VAGC = 1.75 V VAGC = 1.9 V VAGC = 2.1 V VAGC = 2.7 V -25 -20 -15 -10 -5 Input Power Pin (dBm) 0 5 26 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 10 0 −10 −20 −30 −40 −50 −60 −70 −30 −25 2f1-f2 (949 MHz) 2f2-f1 (952 MHz) VCC = 3.0 V VAGC = 0 V f1 = 950 MHz f2 = 951 MHz −5 0 IM3 Pout 20 VCC = 3.0 V 10 VAGC = 1.15 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 −30 −40 −50 −60 −70 −30 2f1-f2 (949 MHz) 2f2-f1 (952 MHz) −25 −20 −15 −10 Input Power Pin (dBm) −5 0 OUTPUT POWER AND IM3 vs. INPUT POWER Pout IM3 −20 −15 −10 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) VCC = 3.0 V 10 VAGC = 1.55 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) 2f1-f2 (949 MHz) −5 0 Pout IM3 2f2-f1 (952 MHz) Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 20 OUTPUT POWER AND IM3 vs. INPUT POWER VCC = 3.0 V 10 VAGC = 1.75 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) 2f2-f1 (952 MHz) 2f1-f2 (949 MHz) −5 0 Pout IM3 OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 VCC = 3.0 V 10 VAGC = 3.0 V 0 f1 = 950 MHz f2 = 951 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 −20 −15 −10 Input Power Pin (dBm) 2f1-f2 (949 MHz) Pout 2f2-f1 (952 MHz) IM3 −5 0 27 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 950 MHz ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) TA = +25 °C Pin = −15 dBm ±50 KHz −55 −60 −65 −70 VCC = 3.0 V −75 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 VCC = 2.7 V VCC = 3.3 V Adjacent Channel Interference Padj (dBc) −50 ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE −50 TA = −25 °C Pin = −19 dBm ±50 KHz −55 −60 −65 −70 −75 VCC = 3.0 V VCC = 3.3 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 VCC = 2.7 V ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) TA = +85 °C Pin = −13 dBm ±50 KHz −55 −60 VCC = 3.3 V −65 −70 VCC = 3.0 V −75 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 VCC = 2.7 V Adjacent Channel Interference Padj (dBc) −50 −30 −35 −40 −45 −50 −55 −60 −65 ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER VAGC = 0 V VCC = 2.7 V VCC = 3.0 V VCC = 3.3 V −70 −20 −15 −10 −5 0 Input Power Pin (dBm) 5 28 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S11 vs. FREQUENCY 1: 57.025 Ω −32.578 Ω 3.3926 pF 1 440.000 000 MHz VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S22 vs. FREQUENCY 1: 40.016 Ω −8.582 Ω 12.879 pF 1 440.000 000 MHz MARKER 1 1.44 GHz MARKER 1 1.44 GHz 1 1 START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −10.576 dB 10 1 440.000 000 MHz 10 S22 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −15.766 dB 1 440.000 000 MHz 0 VCC = 3.0 V −10 −20 −30 START 100.000 000 MHz 1 VCC = 3.3 V 0 −10 −20 −30 VCC = 3.3 V 1 VCC = 2.7 V VCC = 2.7 V VCC = 3.0 V START 100.000 000 MHz STOP 3 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S11 log MAG 5 dB/REF 0 dB 1: −10.784 dB 10 1 440.000 000 MHz 10 S22 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S22 log MAG 5 dB/REF 0 dB 1: −15.915 dB 1 440.000 000 MHz 0 −10 −20 −30 TA = −25 °C 1 0 −10 −20 −30 TA = +85 °C TA = +25 °C 1 TA = −25 °C TA = +25 °C TA = +85 °C START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz 29 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz S21 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 5 dB 1: 10.951 dB 14 VCC = 3.0 V 1 1 440.000 000 MHz VCC = 3.3 V 12 1 TA = −25 °C TA = +25 °C 10 VCC = 2.7 V 10 TA = +85 °C 14 S21 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S21 log MAG 1 dB/REF 5 dB 1: 10.957 dB 1 440.000 000 MHz 12 8 8 6 START 100.000 000 MHz STOP 3 100.000 000 MHz 6 START 100.000 000 MHz STOP 3 100.000 000 MHz S12 vs. FREQUENCY VAGC = 0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −29.767 dB 10 1 440.000 000 MHz 10 S12 vs. FREQUENCY VCC = 3.0 V, VAGC = 0 V (GPMAX), Pin = −20 dBm S12 log MAG 5 dB/REF 0 dB 1: −30.004 dB 1 440.000 000 MHz 0 −10 −20 −30 START 100.000 000 MHz 0 −10 −20 VCC = 3.0 V 1 VCC = 2.7 V STOP 3 100.000 000 MHz −30 VCC = 3.3 V TA = +85 °C TA = +25 °C 1 TA = −25 °C START 100.000 000 MHz STOP 3 100.000 000 MHz 30 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz POWER GAIN vs. GAIN CONTROL VOLTAGE 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 VCC = 2.7 V VCC = 3.0 V Power Gain GP (dB) POWER GAIN vs. GAIN CONTROL VOLTAGE 20 15 10 5 0 −5 −10 −15 −20 −25 −30 −35 −40 TA = -25 °C TA = +25 °C TA = +85 °C Power Gain GP (dB) VCC = 3.3 V 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 0 0.5 1 1.5 2 2.5 3 3.5 Gain Control Voltage VAGC (V) 4 S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S21 log MAG 10 dB/REF 0 dB 1: 10.967 dB VAGC = 0 V VAGC = 0.5 V VAGC = 0.7 V VAGC = 0.8 V VAGC = 0.9 V VAGC = 1.0 V VAGC = 1.2 V 20 1 VAGC = 1.3 V VAGC = 1.4 V VAGC = 1.5 V VAGC = 1.6 V 0 VAGC = 1.7 V VAGC = 1.8 V S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S12 log MAG 10 dB/REF 0 dB 1: −29.705 dB 40 1 440.000 000 MHz 40 1 440.000 000 MHz 20 0 −20 −40 VAGC = 1.9 V VAGC = 2.0 V VAGC = 3.0 V −20 −40 VAGC = 0 V 1 VAGC = 3.0 V START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S11 log MAG 10 dB/REF 0 dB 1: −10.499 dB 40 1 440.000 000 MHz 40 S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE VCC = 3.0 V, Pin = −20 dBm S22 log MAG 10 dB/REF 0 dB 1: −14.578 dB 1 440.000 000 MHz 20 VAGC = 0 V 0 −20 −40 START 100.000 000 MHz VAGC = 2.0 to 3.0 V STOP 3 100.000 000 MHz VAGC = 1 V 1 VAGC = 1.5 V 20 0 1 −20 −40 START 100.000 000 MHz STOP 3 100.000 000 MHz VAGC = 0 V VAGC = 3.0 V VAGC = 1.15 V 31 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz OUTPUT POWER vs. INPUT POWER 10 5 0 −5 −10 −15 −20 −20 −15 −10 −5 Input Power Pin (dBm) f = 1440 MHz VAGC = 0 V Output Power Pout (dBm) 10 0 VCC = 2.7 V VCC = 3.0 V VCC = 3.3 V −10 −20 −30 −40 −50 0 5 −60 −30 −25 VAGC = 1.8 V VAGC = 3.0 V −20 −15 −10 −5 Input Power Pin (dBm) 0 5 VAGC = 1.3 V VAGC = 1.6 V OUTPUT POWER vs. INPUT POWER f = 1440 MHz VCC = 3.0 V VAGC = 0 V Output Power Pout (dBm) OUTPUT POWER vs. INPUT POWER 10 0 Output Power Pout (dBm) −10 −20 −30 −40 −50 −60 −30 −25 VAGC = 1.3 V VAGC = 1.6 V VAGC = 1.8 V VAGC = 3.3 V −20 −15 −10 −5 Input Power Pin (dBm) 0 5 f = 1440 MHz VCC = 3.3 V Output Power Pout (dBm) VAGC = 0 V 10 0 −10 −20 −30 −40 −50 −60 −30 OUTPUT POWER vs. INPUT POWER f = 1440 MHz VCC = 2.7 V VAGC = 0 V VAGC = 1.3 V VAGC = 1.6 V VAGC = 1.8 V −25 VAGC = 2.7 V −20 −15 −10 −5 Input Power Pin (dBm) 0 5 32 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 10 0 −10 −20 −30 −40 −50 −60 −70 −30 −25 2f2-f1 (1442 MHz) 2f1-f2 (1439 MHz) VCC = 3.0 V VAGC = 0 V f1 = 1440 MHz f2 = 1441 MHz −20 −15 −10 Input Power Pin (dBm) −5 0 Pout IM3 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 10 0 −10 −20 −30 −40 −50 −60 −70 −30 −25 2f2-f1 (1442 MHz) 2f1-f2 (1439 MHz) Pout OUTPUT POWER AND IM3 vs. INPUT POWER IM3 VCC = 3.0 V VAGC = 1.3 V f1 = 1440 MHz f2 = 1441 MHz −5 0 −20 −15 −10 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 VCC = 3.0 V 10 VAGC = 1.6 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 −20 −15 Input Power Pin 2f1-f2 (1439 MHz) −10 −5 (dBm) Pout 2f2-f1 (1442 MHz) IM3 Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 OUTPUT POWER AND IM3 vs. INPUT POWER VCC = 3.0 V 10 VAGC = 1.8 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 −20 −30 −40 −50 −60 −70 −30 2f2-f1 (1442 MHz) 2f1-f2 (1439 MHz) −5 0 Pout IM3 0 −25 −20 −15 −10 Input Power Pin (dBm) OUTPUT POWER AND IM3 vs. INPUT POWER Output Power of each tone Pout (dBm) Third Order Intermodulation Distortion IM3 (dBm) 20 VCC = 3.0 V 10 VAGC = 3.0 V 0 f1 = 1440 MHz f2 = 1441 MHz −10 −20 −30 −40 −50 −60 −70 −30 −25 2f1-f2 (1439 MHz) 2f2-f1 (1442 MHz) −20 −15 −10 Input Power Pin (dBm) IM3 −5 0 Pout 33 µPC8130TA, µPC8131TA µPC8131TA Output port matching at f = 1440 MHz ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) TA = +25 °C Pin = −15 dBm ±50 KHz −55 −60 −65 −70 VCC = 2.7 V −75 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 Adjacent Channel Interference Padj (dBc) −50 ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE −50 TA = −25 °C Pin = −19 dBm ±50 KHz −55 −60 −65 −70 −75 VCC = 3.0 V VCC = 3.3 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 VCC = 3.3 V VCC = 2.7 V VCC = 3.0 V ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE Adjacent Channel Interference Padj (dBc) TA = +85 °C Pin = −13 dBm ±50 KHz −55 VCC = 3.3 V −60 −65 −70 −75 VCC = 2.7 V Adjacent Channel Interference Padj (dBc) −50 −30 −35 −40 −45 −50 −55 −60 −65 ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER VAGC = 0 V VCC = 2.7 V VCC = 3.3 V VCC = 3.0 V VCC = 3.0 V 0 0.5 2.5 3 3.5 1 1.5 2 Gain Control Voltage VAGC (V) 4 −70 −20 −15 −10 −5 Input Power Pin (dBm) 0 5 34 µPC8130TA, µPC8131TA PACKAGE DIMENSIONS 6 PIN MINI-MOLD PACKAGE (UNIT: mm) 0.3 –0.0 +0.1 0.13 ±0.1 1 2.8 –0.3 +0.2 2 3 1.5 –0.1 +0.2 0 to 0.1 6 5 0.95 4 0.95 0.8 1.1 –0.1 +0.2 1.9 2.9 ±0.2 35 µPC8130TA, µPC8131TA NOTES ON CORRECT USE (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference. (3) The bypass capacitor (eg. 1000 pF) should be attached to the VCC pin. (4) Impedance matching circuit must be each externally attached to input and output ports. (5) The bias must be applied to output pin through the matching inductor. (The bias must not be applied to input pin.) RECOMMENDED SOLDERING CONDITIONS This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative. Recommended Condition Symbol IR35-00-3 Soldering Method Infrared Reflow Soldering Conditions Package peak temperature: 235 °C or below Time: 30 seconds or less (at 210 °C) Note Count: 3, Exposure limit : None Package peak temperature: 215 °C or below Time: 40 seconds or less (at 200 °C) Note Count: 3, Exposure limit : None Soldering bath temperature: 260 °C or below Time: 10 seconds or less Note Count: 1, Exposure limit : None Pin temperature: 300 °C Time: 3 seconds or less (per side of device) Note Exposure limit : None VPS VP15-00-3 Wave Soldering WS60-00-1 Partial Heating – Note After opening the dry pack, keep it in a place below 25 °C and 65 % RH for the allowable storage period. Caution Do not use different soldering methods together (except for partial heating). For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). 36 µPC8130TA, µPC8131TA [MEMO] 37 µPC8130TA, µPC8131TA [MEMO] 38 µPC8130TA, µPC8131TA [MEMO] 39 µPC8130TA, µPC8131TA ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product. M4 96. 5
UPC8130TA-E3 价格&库存

很抱歉,暂时无法提供与“UPC8130TA-E3”相匹配的价格&库存,您可以联系我们找货

免费人工找货