DATA SHEET
MOS INTEGRATED CIRCUIT
µPD22100, 22148
CROSSPOINT SWITCH WITH CONTROL MEMORY CMOS IC
The µPD22100 consists of 16 crosspoint switches organized in 4 rows and 4 columns, and the µPD22148 consists of 32 crosspoint switches organized in 4 row and 8 columns. Any of the 16 or 32 switches can be selected by applying appropriate address. The selected crosspoint turns on if during strobe and data In are high and turns off if during strobe and data In are low.
FEATURES
µPD22100 µPD22148
• 4 × 4 CROSSPOINT SWITCHES • INTERNAL POWER ON RESET FUNCTION • Low ON-RESISTANCE
60 Ω Typ. (VDD = 15 V)
• 4 × 8 CROSSPOINT SWITCHES • Including the Level Shifter Circuit • Low ON-RESISTANCE
60 Ω Typ. (VDD = 15 V)
• Wide operating temperature Range
−40 °C to +85 °C
• Wide operating temperature Range
−40 °C to +85 °C
ORDERING INFORMATION
Part Number Package 16 pin plastic DIP (300 mil) 16 pin plastic SOP (300 mil) 22 pin plastic shrink DIP (300 mil)
µPD22100C µPD22100GS µPD22148CA
TRUTH TABLE
µPD22100
INPUT S D C B A DATA Y0 Y0 Y0 Y0 X0 X1 X2 X3 L H H H H H H H H X L L L L L L L L X L L L L L L L L X L L L L H H H H X L L H H L L H H X L H L H L H L H NC OFF ON NC NC NC NC NC NC NC NC OFF NC ON NC OFF NC ON NC OFF ON SELECTED CHANNELS Y1 Y1 Y1 Y1 X0 X1 X2 X3 Y2 Y2 Y2 Y2 Y3 Y3 Y3 Y3 X0 X1 X2 X3 X0 X1 X2 X3
NC NC
HHHHH HHHHH
L H
NC NC
OFF ON
Document No. IC-2128 (1st edition) Date Published March 1997 P Printed in Japan
©
1987
µPD22100, 22148
µPD22148
INPUTS
S E D C B A DATA LXXXXX HLLLLL HLLLLL HLLLLH HLLLLH HLLLHL HLLLHL HLLLHH HLLLHH HLLHLL HLLHLL HLLHLH HLLHLH HLLHHL HLLHHL X L H L H L H L H L H L H L H
SELECTED CHANNELS
Y 0 Y0 Y0 Y 0 Y1 Y1 Y 1 Y1 Y2 Y2 Y2 Y2 Y3 Y3 Y3 Y3 Y4 Y4 Y4 Y4 Y5 Y5 Y 5 Y5 Y6 Y 6 Y6 Y6 Y 7 Y7 Y7 Y 7 X0 X1 X2 X3 X0 X1 X 2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 X0 X1 X2 X3 NC OFF NC ON NC NC OFF NC NC ON NC OFF NC ON NC NC NC NC NC NC NC NC NC NC OFF NC ON NC OFF NC ON NC OFF NC ON NC OFF NC ON NC
HHHHHH HHHHHH
L H
NC NC
OFF ON
TIMING DIAGRAM
STROBE
DATA IN
ADDRESS
DON'T CARE
ADDRESS 1
DON'T CARE
ADDRESS 2
DON'T CARE
ON SWITCH 1 OFF
ON SWITCH 2 OFF
2
µPD22100, 22148
BLOCK DIAGRAM
µPD22100
STROBE DATA IN Y0 0 A 4 To 16 LINE DECODER 4 16 bit LATCH 5 6 7 1 2 3
Y1
A D D R E S S
B
Y2 8 9 10 11
C
Y3 12 13 14 15 NOTE) n : Analog switch
D
X0
X1
X2
X3
µPD22148
STROBE DATA IN
Y0
0 1 2 3
A
Y1
4 5 6 7
Y2
8 9 10 11
5 To 32 LINE DECODER
5 To 15 V LEVEL SHIFT
A D D R E S S
B
Y3 32 bit LATCH
12 13 14 15
C
Y4
16 17 18 19
Y5
20 21 22 23
D
Y6
24 25 26 27
Y7 E
28 29 30 31
NOTE) X0 X1 X2 X3
n
: Analog switch
3
µPD22100, 22148
CONNECTION DIAGRAM (TOP VIEW)
µPD22100 µPD22148
X1 DATA IN C D B A STROBE VSS
1 2 3 4 5 6 7 8
16 15 14 13 12 11 10 9
VDD Y0 Y1 X3 X2 Y3 Y2 X0
Y3 X1 VCC DATA IN C D E B A STROBE VSS
1 2 3 4 5 6 7 8 9 10 11
22 21 20 19 18 17 16 15 14 13 12
VDD Y0 Y1 Y2 X3 X2 Y5 Y7 Y6 Y4 X0
4
µPD22100, 22148
µPD22100
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C, VSS = 0 V)
DC Supply Voltage Input Voltage Input Current Power Dissipation Operating Temperature Storage Temperature VDD VI II PD Topt Tstg −0.5 to +20 −0.5 to VDD + 0.5 10 200 −40 to +85 −65 to +125 V V mA mW °C °C
RECOMMENDED OPERATING CONDITIONS (Ta = −40 to +85 °C)
CHARACTERISTIC Operating Voltage Input Voltage (Control) Input Voltage (Control) Analog Input Voltage SYMBOL VDD VIH VIL VIA MIN. 3 0.7 VDD 0 VSS TYP. MAX. 18 VDD 0.3 VDD VDD UNIT V V V V Vxn − Vyn ≤ 0.5 V CONDITIONS
ELECTRICAL CHARACTERISTICS
Ta = −40 °C CHARACTERISTIC SYMBOL MIN. On-State Resistance RON 75 70 On-State Resistance Difference Between Any Two Switches Input Leakage IL Current Input Voltage VIH 3.5 7 11 Input Voltage VIL 1.5 3 4 Input Current Quiescent Current IDD 20 100 0.04 0.08 20 100 600 3000 II ±0.3 5 10 ±10−5 0.04 0.04 ±300 3.5 7 11 1.5 3 4 ±0.3 5 10 ∆RON 70 60 35 20 18 15 ±1 ±300 3.5 7 11 1.5 3 4 ±1 150 300 V V ±10000 nA Ω 90 85 120 110 MAX. 530 100 MIN. TYP. 160 80 MAX. 650 120 MIN. MAX. 820 150 Ω T a = 25 ° C Ta = +85 °C UNIT VDD (V) 5 10 VIS = 12 15 5 10 VIS = 12 15 18 5 Switch ON 10 RON < RON MAX. 15 5 Switch OFF 10 15 IL < 0.2 µA VI = VSS, VDD All Switches OFF VDD − VSS 2 VDD − VSS 2 CONDITIONS
µA
18 5
µA
10 VI = VSS, VDD 15 20
5
µPD22100, 22148
SWITCHING TIME CHARACTERISTICS (Ta = 25 ° C)
CHARACTERISTIC SYMBOL tPLH tPHL MIN. TYP. 30 15 10 300 tPZH 125 80 210 tPZH 110 100 350 Propagation Delay Time tPHZ tPZL 135 90 165 85 70 210 tPZL 110 100 435 tPHZ Set Up Time tset up Hold Time thold Frequency fφmax. Strobe Pulse Width Crosstalk Voltage INPUT Capacitance CIN Feedthrough Capacitance Frequency Response (Switch ON) Feedthrough Attenuation (Switch Off) Sine Wave Distortion Crosstalk Between Any Two Switches − 1.5 MHz 10 − 0.5 % 10 RL = 1 kΩ, VIS = 5 V(p-p) f = 1 kHz RL = 1 kΩ SW(A) = ON SW(B) = OFF 20 log VO (B) = −40 dB VI (A) − −80 dB 10 − 40 MHz 10 0.6 1.6 2.5 PW (STROBE) 210 160 95 25 15 180 110 60 1.2 3.2 5 300 120 90 75 5 30 30 CIN/OUT 0.4 pF RL = 1 kΩ, VIS = 5 V(p-p) 20 log VOS = −3 dB VIS 7.5 600 240 190 mV (peak) pF pF ns MHz MAX. 60 30 20 600 250 160 420 220 150 700 270 180 330 170 140 420 220 150 870 420 320 190 50 30 360 220 120 ns ns ns ns ns ns ns ns ns UNIT VDD(V) 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 10 RL = 10 kΩ tr = tf = 20 ns Rectronglar Data, Strobe, Address INPUT Signal INPUT Xn Yn Data INPUT → Strobe Address Strobe INPUT Address INPUT Address INPUT → OUTPUT Data INPUT → OUTPUT Strobe INPUT → OUTPUT Address INPUT → OUTPUT Data INPUT → OUTPUT Strobe INPUT → OUTPUT RL = 1 kΩ CL = 50 pF tr, tf = 20 ns CONDITIONS Signal INPUT → Signal OUTPUT RL = 10 kΩ, CL = 50 pF. tr = tf = 20 ns
Data INPUT →
R L = 1 kΩ, C L = 50 pF tr, tf = 20 ns
RL = 1 kΩ, f = 1.6 kHz, VIS = 5 V(p-p) Sine Wave Input
6
µPD22100, 22148
µPD22148
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C, VSS = 0 V)
DC Supply Voltage 1 DC Supply Voltage 2 Input Voltage Input Voltage (Analog) Input Current Power Dissipation Operating Temperature Storage Temperature VDD VCC VI VIA II PD Topt Tstg VCC to +20 −0.5 to +6 −0.5 to VCC + 0.5 −0.5 to VDD + 0.5 ±10 200 −40 to +85 −65 to +125 V V V V mA mW °C °C
RECOMMENDED OPERATING CONDITIONS (Ta = −40 to +85 °C)
CHARACTERISTIC Operating Voltage 1 Operating Voltage 2 Input Voltage (Control) Input Voltage (Control) Analog Input Voltage SYMBOL VDD VCC VIH VIL VIA MIN. VCC 4.5 0.7 VCC 0 VSS 5 TYP. MAX. 18 5.5 VCC 0.3 VCC VDD UNIT V V V V V Vxn − Vyn ≤ 0.5 V CONDITIONS
ELECTRICAL CHARACTERISTICS
Ta = −40 °C MIN. On-State Resistance RON 75 70 On-State Resistance Difference Between Any Two Switches Input Leakage IL Current Input Voltage VIH Input Voltage VIL Input Current II Quiescent Current IDD 1.5 ±0.3 10 20 40 ±10−5 0.08 0.08 0.16 1.5 ±0.3 10 20 40 1.5 ±1 300 600 1200 V 3.5 3.5 3.5 V ±300 ∆RON 70 60 35 20 18 15 ±1 ±300 ±10000 nA Ω 90 85 120 110 MAX. 530 100 MIN. T a = 25 ° C TYP. 160 80 MAX. 650 120 Ta = +85 °C MIN. MAX. 820 150 Ω
CHARACTERISTIC SYMBOL
UNIT VDD (V) 5 10
CONDITIONS
VIS = 12 15 5 10 VIS = 12 15 18
VDD − VSS 2
VDD − VSS 2
All Switches OFF VCC = 5 V VDD > 10 V VCC = 5 V VDD > 10 V VCC = 6 V VI = VSS, VCC
− − − 5
µA
µA
10 15
VI = VSS, VDD
7
µPD22100, 22148
SWITCHING TIME CHARACTERISTICS (Ta = 25 ° C)
CHARACTERISTIC SYMBOL tPLH tPHL MIN. TYP. 30 15 10 400 tPZH 225 180 310 tPZH 220 200 450 Propagation Delay Time tPHZ tPZH 235 190 265 185 170 310 tP 210 200 535 tPHZ Set Up Time tset up Hold Time thold Frequency fφmax. Strobe Pulse Width Crosstalk Voltage INPUT Capacitance CIN Feedthrough Capacitance Frequency Response (Switch ON) Feedthrough Attenuation (Switch Off) Sine Wave Distortion Crosstalk Between Any Two Switches − 1.5 MHz 10 − 0.5 % 10 RL = 1 kΩ, VIS = 5 V(p-p) f = 1 kHz RL = 1 kΩ SW(A) = ON SW(B) = OFF 20 log VO (B) = −40 dB VI (A) − −60 dB 10 − 15 MHz 10 0.6 1.6 2.5 PW (STROBE) 310 260 140 70 60 270 180 110 1.2 3.2 5 300 120 90 75 5 105 75 CIN/OUT 1.1 pF RL = 1 kΩ, VIS = 5 V(p-p) 20 log VOS = −3 dB VIS 7.5 600 240 190 mV (peak) pF pF ns MHz MAX. 60 30 20 800 450 360 620 440 400 900 470 380 530 370 340 620 420 400 1070 720 520 280 140 120 540 360 220 ns ns ns ns ns ns ns ns ns UNIT VDD(V) 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 10 RL = 10 kΩ tr = tf = 20 ns Rectronglar Data, Strobe, Address INPUT Signal INPUT Xn Yn Data INPUT → Strobe Address Strobe INPUT Address INPUT Address INPUT → OUTPUT Data INPUT → OUTPUT Strobe INPUT → OUTPUT Address INPUT → OUTPUT Data INPUT → OUTPUT Strobe INPUT → OUTPUT RL = 1 kΩ CL = 50 pF tr, tf = 20 ns CONDITIONS Signal INPUT → Signal OUTPUT RL = 10 kΩ, CL = 50 pF. tr = tf = 20 ns
Data INPUT →
R L = 1 kΩ, C L = 50 pF tr, tf = 20 ns
RL = 1 kΩ, f = 1.6 kHz, VIS = 5 V(p-p) Sine Wave Input
VCC = 5 V
8
µPD22100, 22148
TEST CIRCUITS
PROPAGATION DELAY TIMES (1) SIGNAL INPUT → SIGNAL OUTPUT
ON VIS SW RL CL VOS 50 % VIS tPLH tPHL VOH 50 % VOS VOL VSS
VDD
(2) STROBE INPUT → OUTPUT
VDD DATA IN STROBE VDD VIS SW RL VOS CL VOS 90 % 10 % VOH DATA IN 50 % tPHZ tPZH VSS STROBE 50 % tsetup thold VDD 50 % VSS
VOL
(3) DATA INPUT → OUTPUT (STROBE = VDD)
VDD DATA IN VDD VDD VIS SW RL CL VOH VOS 10 % VOL VOL VOS tPZH CL VOS 90 % VOH DATA IN RL 50 % VSS VIS SW VOS tPZL DATA IN 50 % VSS VDD
9
µPD22100, 22148
(4) ADDRESS INPUT → OUTPUT (STROBE = VDD)
ADDRESS = L VDD VDD tsetup SW RL CL VOS1 SW RL CL VOS2 DATA IN 50 % VSS tPZH 90 % VOH VOL tPHZ VOH VOS2 10 % VOL thold VDD ADDRESS = H VDD ADDRESS 50 % 50 % VSS
VOS1
CROSSTALK VOLTAGE
CONTROL INPUT (DATA IN, ADDRESS, STROBE) VDD CONTROL VIS 1 kΩ SW RL 0V CROSSTALK VOLTAGE VOS VSS
CROSSTALK FREQUENCY
ON VIS 1 kΩ SW (A) 1 kΩ 1 kΩ OFF SW (B) 1 kΩ VOS 20 log VOS VIS = −40 dB
10
µPD22100, 22148
TYPICAL CHARACTERISTICS (Ta = 25 °C)
(A) RON − VIS Characteristics
ON-RESISTANCE RON (Ω)
200
VDD = −VSS = 2.5 V
100
VDD = −VSS = 5 V VDD = −VSS = 6 V VDD = −VSS = 7.5 V
−7.5
−5
−2.5
0
2.5
5
7.5
INPUT VOLTAGE VIS (V)
(B) Crosstalk Frequency Characteristics
−40 −50 −60 −70 −80 −90 −100 1k
Crosstalk (dB)
10 k
100 k
1M
Crosstalk Frequency (Hz)
11
µPD22100, 22148
APPLICATION CIRCUITS
µPD22100
A B C D STROBE DATA IN VDD 1/4µ PD4081BC R
A B C D STROBE DATA IN
µ PD22100C
Yn Yn
τ = RC > 50 ms
C (For Power ON Reset Time)
Xn
µPD22100/22148 BIAS CIRCUIT
VDD
VDD
VCC* = 5 V
VDD
R Xn R Xn Yn
R Yn R
R = 10 kΩ to 100 kΩ
VSS
VSS * µ PD22148 only VSS
12
µPD22100, 22148
16PIN PLASTIC DIP (300 mil)
16 9
1 A
8
K I P L
J
H G F D N
M
C B M
R
NOTES
1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition. 2) Item "K" to center of leads when formed parallel.
ITEM A B
C
MILLIMETERS 20.32 MAX. 1.27 MAX.
2.54 (T.P.)
INCHES
0.800 MAX. 0.050 MAX. 0.100 (T.P.)
D F
G H I J K L
0.50±0.10 1.2 MIN.
3.5±0.3 0.51 MIN. 4.31 MAX. 5.08 MAX. 7.62 (T.P.) 6.4
0.020 +0.004 –0.005
0.047 MIN. 0.138±0.012 0.020 MIN. 0.170 MAX. 0.200 MAX. 0.300 (T.P.) 0.252
M
N P R
0.25 +0.10 –0.05
0.25 1.0 MIN. 0~15 °
0.010 +0.004 –0.003
0.01 0.039 MIN. 0~15 °
P16C-100-300A,C-1
13
µPD22100, 22148
16 PIN PLASTIC SOP (300 mil)
16 9 detail of lead end
1 A
G
8 H I J
F
K
E
C D M
N
M
B
L
NOTE
Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.
ITEM A B C D E F G H I J K L M N P
MILLIMETERS 10.46 MAX. 0.78 MAX. 1.27 (T.P.) 0.40 +0.10 –0.05 0.1±0.1 1.8 MAX. 1.55 7.7±0.3 5.6 1.1 0.20 +0.10 –0.05 0.6±0.2 0.12 0.10 ° 3 ° +7° –3
P
INCHES 0.412 MAX. 0.031 MAX. 0.050 (T.P.) 0.016 +0.004 –0.003 0.004±0.004 0.071 MAX. 0.061 0.303±0.012 0.220 0.043 0.008 +0.004 –0.002 0.024 +0.008 –0.009 0.005 0.004 ° 3 ° +7° –3 P16GM-50-300B-4
14
µPD22100, 22148
22 PIN PLASTIC SHRINK DIP (300 mil)
22 12
1 A
11 K L
G
J H
I
F D N C
M
B
M
R
NOTES
1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition. 2) Item "K" to center of leads when formed parallel.
ITEM A B C D F G H I J K L M N R
MILLIMETERS 23.12 MAX. 2.67 MAX. 1.778 (T.P.) 0.50±0.10 0.85 MIN. 3.2±0.3 0.51 MIN. 4.31 MAX. 5.08 MAX. 7.62 (T.P.) 6.5 0.25 +0.10 –0.05 0.17 0~15°
INCHES 0.911 MAX. 0.106 MAX. 0.070 (T.P.) 0.020 +0.004 –0.005 0.033 MIN. 0.126±0.012 0.020 MIN. 0.170 MAX. 0.200 MAX. 0.300 (T.P.) 0.256 0.010 +0.004 –0.003 0.007 0~15° S22C-70-300B-1
15
µPD22100, 22148
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product.
M4 96.5