0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NJU72040

NJU72040

  • 厂商:

    NJRC

  • 封装:

  • 描述:

    NJU72040 - Ground Referenced Stereo Headphone Amplifier - New Japan Radio

  • 数据手册
  • 价格&库存
NJU72040 数据手册
NJU72040 Ground Referenced Stereo Headphone Amplifier GENERAL DESCRIPTION The NJU72040 is an audio headphone amplifier . Ground-referenced outputs eliminate output coupling capacitor. The pop noise suppression circuit removes a pop noise at the power-on and power-off. It is suitable for audio headphone amplifer application APPLICATIONS q Audio applications which have audio headphone interface FEATURES q Operating Voltage q Operating Current q q q q q Output Coupling Capacitor-less Pop Noise Suppression Circuit Gain Select C-MOS Technology Package Outline s PACKAGE OUTLINE NJU72040V +2.7 to +3.6V IDD=10.5mA typ. + at V =3.3V, No load, No Signal SSOP14 BLOCK DIAGRAM V+ inverted phase Reg INRV+ V+ inverted phase INL- INL+ INR+ OUTL 32Ω Headphone Pop Noise Suppression Pop Noise Suppression OUTR 32Ω Headphone V+ V+ GND CP Bias CN Regulator MUTE 3M Ω V- GAIN 100k Ω REF Gain Select Ver. 1.2E –1– NJU72040 PIN CONFIGURATION 1 INLINL+ OUTL V+ CP CN GAIN 7 14 INRINR+ NJU72040 OUTR GND MUTE VREF 8 No. 1 2 3 4 5 6 7 Symbol Function INLLch Inverted Input INL+ Lch Noninverted Input OUTL Lch Output V+ V+ Power Supply CP Flying Capacitor Positive Terminal CN Flying Capacitor Negative Terminal GAIN Gain Select No. 8 9 10 11 12 13 14 Symbol REF VMUTE GND OUTR INR+ INR- Function Reference Voltage Input V- Power Supply MUTE / Pop Noise Suppression Ground Rch Output Rch Inverted Input Rch Noninverted Input –2– NJU72040 ABSOLUTE MAXIMUM RATING (Ta=25°C) PARAMETER Supply Voltage Power Dissipation Maximum Input Voltage O perating Temperature Range Storage Temperature Range SYMBOL V + RATING +4 SSOP14 : 550 V +0.3 -40 ~ +85 -40 ~ +125 + (Note1) UNIT V mW V °C °C PD VIM Topr Tstg (Note1) EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layer, FR-4) mounting s RECOMMENDED OPERATING CONDITIONS (Ta=25°C unless otherwise specified) PARAMETER Operating Voltage SYMBOL V + TEST CONDITION MIN. 2.7 TYP. 3.3 MAX. 3.6 UNIT V ELECTRICAL CHARACTERISTICS (Ta=25°C, V =3.3V, f=1kHz, Vin=0.1Vrms[differential input], Gv=6.4dB, MUTE=OFF, RL=32Ω unless otherwise specified) + PARAMETER Operating Current Input Resistance1 Input Resistance2 Voltage Gain1 Voltage Gain2 Voltage Gain3 Voltage Gain4 Maximum Output Power1 Maximum Output Power2 Maximum Output Voltage Level Mute Level Equivalent Input Noise Voltage Total Harmonic Distortion1 Total Harmonic Distortion2 Channel Separation1 Channel Separation2 Output Offset Voltage SYMBOL IDD Rin1 Rin2 GV1 GV2 GV3 GV4 POMAX1 POMAX2 VOMAX VMUTE VNI THD1 THD2 CS1 CS2 VOS TEST CONDITION No signal, No load INL-, INRINL+, INR+ Gain Terminal=Low Gain Terminal=High Gain Terminal=Low, RL=10kΩ Gain Terminal=High, RL=10kΩ THD=3%, RL=32Ω Input=Lch or Rch THD=3%, RL =32Ω Input=Lch and Rch THD=1%, RL=10kΩ Rg=0Ω , Mute=ON Rg=0Ω , BW:400Hz-22kHz BW:400Hz-22kHz, RL=32Ω BW:400Hz-22kHz, RL=10kΩ Rg=600Ω , (*1) Rg=600Ω , f=10kHz, (*1) Rg=0Ω , Gv=12.4Db, No load MIN. 49 103 5.4 11.4 6.6 12.6 65 55 - TYP. 10.5 61 129 6.4 12.4 7.1 13.1 80 55 2.2 -90 -100 0.08 0.007 75 65 1 MAX. 15.5 73 155 7.4 13.4 7.6 13.6 -80 -95 0.3 0.05 5 UNIT mA kΩ kΩ dB dB dB dB mW mW Vrms dB dBV % % dB dB mV (*1)OUTL(measured terminal): 20log(OUTR/OUTL) , OUTR(measured terminal): 20log(OUTL/OUTR) CONTROL CHARACTERISTICS (Ta=25°C, V =3.3V, Gv=6.4dB, MUTE=OFF, RL=32Ω unless otherwise specified) + PARAMETER Mute terminal High Mute terminal Low Gain terminal High Gain terminal Low SYMBOL MuteH MuteL GainH GainL TEST CONDITION Mute=OFF Mute=ON Gv=12.4dB Gv=6.4dB MIN. 0.8 V 0 0.8 V 0 + + TYP. - MAX. V + + UNIT V V V 0.2 V V + 0.2 V + V –3– NJU72040 TEST CIRCUIT (IDD) V+ INLC1=1uF Regulator INRC10=1uF INL+ C2=1uF INR+ C8=1uF OUTL V+ Pop Noise Suppression Pop Noise Suppression OUTR A V+ GND (*2) C4=1uF CP Negative Voltage Regulator Bias 3M Ω MUTE CN V- (*2) C6=10uF GAIN 100k Ω REF Gain Select (*2): Monolithic Ceramic Capacitors TEST CIRCUIT (GV1, GV2, GV3, GV4, POMAX1, VOMAX) V+ inverted phase Regulator INRC10=1uF INL- C1=1uF INL+ C2=1uF Gv1,2,POMAX1 RL=32Ω Gv3,4,VOMAX R L=10kΩ INR+ C8=1uF OUTL V V+ Pop Noise Suppression Pop Noise Suppression OUTR GND Gv1,2,POMAX1 RL=32Ω Gv3,4,VOMAX R L=10kΩ V+ (*2) C4=1uF CP Negative Voltage Regulator Bias 3M Ω MUTE CN V- (*2) C6=10uF GAIN 100k Ω REF Gain Select (*2): Monolithic Ceramic Capacitors –4– NJU72040 TEST CIRCUIT (POMAX2) V+ inverted phase Regulator INRinverted phase INL- C1=1uF C10=1uF INL+ C2=1uF INR+ C8=1uF OUTL RL=32Ω OUTR Pop Noise Suppression Pop Noise Suppression V V+ RL=32Ω GND V+ (*2) CP Negative Voltage Regulator Bias MUTE 3M Ω C4=1uF CN V- (*2) C6=10uF GAIN 100k Ω REF Gain Select (*2): Monolithic Ceramic Capacitors TEST CIRCUIT (VMUTE) V+ inverted phase Regulator INRC10=1uF INL- C1=1uF INL+ C2=1uF INR+ C8=1uF OUTL RL=32Ω OUTR Pop Noise Suppression Pop Noise Suppression V V+ RL=32Ω GND (*2) C4=1uF CP Negative Voltage Regulator Bias 3M Ω MUTE CN V- (*2) C6=10uF GAIN 100k Ω REF Gain Select (*2): Monolithic Ceramic Capacitors –5– NJU72040 TEST CIRCUIT (VNI) VNI=(measurement)-Gv1 INLC1=1uF V+ Regulator INRC10=1uF INL+ C2=1uF INR+ C8=1uF OUTL RL=32Ω OUTR Pop Noise Suppression Pop Noise Suppression V V+ V GND RL=32Ω (*2) C4=1uF CP Negative Voltage Regulator Bias 3M Ω MUTE V+ CN V- (*2) C6=10uF GAIN 100k Ω REF Gain Select (*2): Monolithic Ceramic Capacitors TEST CIRCUIT (THD1, THD2) V+ inverted phase Regulator INRC10=1uF INL- C1=1uF Ex) A udioPrecision aux-0025 Filter V THD1 RL=32Ω THD2 RL=10kΩ INL+ C2=1uF INR+ C8=1uF OUTL Pop Noise Suppression Pop Noise Suppression OUTR V+ GND V+ (*2) C4=1uF CP Negative Voltage Regulator Bias 3M Ω MUTE THD1 RL=32Ω THD2 RL=10kΩ CN V- (*2) C6=10uF GAIN 100k Ω REF Gain Select (*2): Monolithic Ceramic Capacitors (*3): Connect a low-pass filter circuit with the corner frequency of more than 20kHz in front of an analyzer for rejecting the switching noise generated from NJU72040. Otherwise, the characteristic result may change because of the switching noise. –6– NJU72040 TEST CIRCUIT (CS1, CS2) OUTL (measured terminal) : CS1=CS2=20log(OUTR/OUTL) OUTR (measured terminal) : CS1=CS2=20log(OUTL/OUTR) V+ inverted phase Regulator INRC10=1uF Rg=600Ω INL- C1=1uF INL+ C2=1uF INR+ C8=1uF Rg=600Ω OUTL RL=32Ω Pop Noise Suppression Pop Noise Suppression OUTR V GND RL=32Ω V+ CP C4=1uF CN Negative Voltage Regulator Bias 3M Ω MUTE V+ VC6=10uF GAIN 100k Ω REF Gain Select (*2): Monolithic Ceramic Capacitors TEST CIRCUIT (VOS) V+ INLC1=1uF Regulator INRC10=1uF INL+ C2=1uF INR+ C8=1uF OUTL V V+ Pop Noise Suppression Pop Noise Suppression OUTR V GND CP C4=1uF CN Negative Voltage Regulator Bias 3M Ω MUTE V+ VC6=10uF GAIN 100k Ω REF Gain Select (*2): Monolithic Ceramic Capacitors –7– NJU72040 APPLICATION CIRCUIT (Single-end input) V+ INLC1=1uF Regulator INRC10=1uF INL+ C2=1uF INR+ C8=1uF OUTL 32Ω Headphone V+ Pop Noise Suppression Pop Noise Suppression OUTR 32Ω Headphone V+ V+ GND CP C4=1uF CN V+ Negative Voltage Regulator Bias 3M Ω MUTE R2=100kΩ C7=1uF VC6=10uF GAIN 100k Ω REF Gain Select (Differential input) V+ inverted phase Regulator INRinverted phase INL- C1=1uF C10=1uF INL+ C2=1uF INR+ C8=1uF OUTL 32Ω Headphone Pop Noise Suppression Pop Noise Suppression OUTR 32Ω Headphone V+ V+ GND CP C4=1uF CN V+ Negative Voltage Regulator Bias 3M Ω MUTE R2=100kΩ C7=1uF V+ VC6=10uF GAIN 100k Ω REF Gain Select (*2): Monolithic Ceramic Capacitors (*3): V- terminal (8pin) shouldn’t be tied to V+ terminal (4pin) –8– NJU72040 APPLICATION NOTE The NJU72040 is an audio headphone amplifier that eliminates the need for external dc-blocking output capacitors. The NJU72040 has built-in pop suppression circuitry to eliminate disturbing pop noise during power-on, power-off and mute-control. 1. Operating Principle The NJU72040 has the built-in differential input operational amplifiers, voltage inverter, pop noise suppression circuitry, gain selectable circuitry and thermal-overload protection circuitry (Fig.1). For single-ended input signals, connect inverted terminal (INL-, INR-) or non-inverted terminal (INL+, INR+) to ground through the capacitor. The voltage gain is selectable. In the differential circuitry, the setting gain is +6.4dB or +12.4dB for the RL=32Ω. In the single-end input circuitry, the setting gain is +0.4dB or +6.4dB for the RL=32Ω. The voltage inverter for NJU72040 eliminates the need for external dc-blocking output capacitors. The pop suppression circuitry for NJU72040 eliminates the pop noise during power-on, power-off and mute-control. V+ inverted phase Regulator INRC10 inverted phase INL- C1 INL+ C2 INR+ C8 OUTL 32Ω Headphone V+ Pop Noise Suppression Pop Noise Suppression OUTR 32Ω Headphone V+ V+ GND CP C4 CN V+ Negative Voltage Regulator Bias MUTE 3M Ω R2 C7 VC6 GAIN 100k Ω REF Gain Select Fig.1 The NJU72040 functional block diagram 1.1 External parts 1.1.1 Input coupling capacitors Ci (C1, C2, C8, C10) The input coupling capacitor (Ci) and the input resistance (Rin=61kΩ typ.) for the inverted terminal form a high-pass filter with the corner frequency determined in [fc=1/(2π x 61kΩ x Ci)]. It is necessary to adjust 1uF or more. –9– NJU72040 1.1.2 Flying capacitor (C4) Use capacitors with a low-ESR (ex. ceramic capacitors) for optimum performance. Design to provide low impedance for the wiring between CP terminal (5pin), CN terminal (6pin), and the flying capacitor (C4). CP(5pin) C4=1uF CN(6pin) Fig.2 The NJU72040 block diagram (5pin, 6pin) 1.1.3 Hold capacitor (C6) Use capacitors with a low-ESR (ex. ceramic capacitors) for optimum performance. Design to provide low impedance for the wiring between the hold capacitor (C6), V- terminal (9pin) and the GND on the PCB. Separate the GND pattern connecting to the hold capacitor (C6) from that connecting to the REF terminal (8pin), thus suppressing the influence of switching noise by removing the common impedance of the GND wiring. Design no short-circuits of V- terminal (9pin) and V+ terminal (4pin) on the PCB pattern. V-(9pin) C6 REF(8pin) Fig.3 The NJU72040 block diagram (8pin, 9pin) 1.1.4 Mute terminal pop noise countermeasures (C7, R2) Mute terminal needs time constant more than R2 x C7=0.1. It is necessary to adjust 100kΩ or less. MUTE(10pin) R2=100kΩ Vcnt C7=1uF 3M Ω Fig.4 The NJU72040 block diagram (10pin) – 10 – NJU72040 1.2 Control of V+ terminal and Mute terminal 1.2.2 Power-on procedure 1. Turn on the V+. 2. After 5msec from power on, change the control voltage of MUTE terminal (Vcnt) from "Low" to "High". * It is necessary to stabilize an IC for 5msec. By releasing the MUTE function, the output terminal output the signal. 1.2.3 Power-off procedure 1. Change the control voltage of MUTE terminal (Vcnt) from "High" to "Low". By the MUTE function, the output signals are stopped from output terminal. 2. Turn off the V+ after “2RC” sec from MUTE. * It is necessary to stabilize a MUTE condition for “2RC” sec. Ex.) R2=100kΩ, C7=1uF -> 2R2 x C7=200msec V+ (4pin) t 5msec Vcnt 2RC=200msec MUTE ON MUTE OFF MUTE ON t MUTE (10pin) t Fig.5 Turn-on / Turn-off timing chart – 11 – NJU72040 TERMINAL DESCRIPTION Terminal SYMBOL FUNCTION V+ EQUIVALENT CIRCUIT V+ V+ VOLTAGE 1 2 13 14 INLINL+ INRINR+ AC Input 40k 0V V- V- V+ 3 12 OUTL OUTR FB AC Output 10 5.5k 20k 0V VREF V- V+ V+ V+ 7 GAIN Gain Select 2k 20k 0V 100k VV+ V+ 10 MUTE MUTE/Pop Noise Suppression 1k 20k 0V 3M V- – 12 – NJU72040 TERMINAL DESCRIPTION Terminal SYMBOL FUNCTION EQUIVALENT CIRCUIT V+ VOLTAGE 5 CP Flying Capacitor Positive Terminal - V- 6 CN Flying Capacitor Positive Terminal - V40k 69k 5.5k 10 V- INL+ INR+ V+ OUTL OUTR 8 REF Reference Voltage Input VV- - – 13 – NJU72040 TYPICAL CHARACTERISTICS Supply Current vs Tem perature V+=3.3V, RL=NoLoad, MUTE=L 25 25 Supply Current vs Tem perature V+=3.3V, RL=NoLoad, MUTE=H 20 Supply Current[mA] Supply Current[mA] 20 15 GAIN=L,H 15 GAIN=L,H 10 10 5 5 0 -50 -25 0 25 50 o 0 75 100 125 -50 -25 0 25 50 o 75 100 125 Temperature[ C] Supply Current vs Supply Voltage RL=NoLoad, MUTE=L, GAIN=L 25 25 Temperature[ C] Supply Current vs Supply Voltage RL=NoLoad, MUTE=H, GAIN=L 20 Supply Current[mA] Supply Current[mA] 20 15 15 10 Ta=85oC 5 Ta=25oC Ta=-40oC 0 0 0.5 1 1.5 2 2.5 3 3.5 4 10 Ta=85oC 5 Ta=25oC Ta=-40oC 0 0.5 1 1.5 2 2.5 3 3.5 4 0 Supply Voltage[V] Supply Current vs Supply Voltage RL=NoLoad, MUTE=L, GAIN=H 25 25 Supply Voltage[V] Supply Current vs Supply Voltage RL=NoLoad, MUTE=H, GAIN=H 20 Supply Current[mA] 20 Supply Current[mA] 15 15 10 Ta=85oC 5 Ta=25oC Ta=-40oC 0 0 0.5 1 1.5 2 2.5 3 3.5 4 10 Ta=85oC 5 Ta=25oC Ta=-40oC 0 0.5 1 1.5 2 2.5 3 3.5 4 0 Supply Voltage[V] Supply Voltage[V] – 14 – NJU72040 Equivalent Input Noise vs Tem perature V+=3.3V, RL=32Ω, Rg=0Ω, MUTE=H, GAIN=L, INL+=0Vrms , INL-=0Vrms, Measure:OUTL, BW=400Hz - 22kHz 0 Equivalent Input Noise vs Tem perature V+=3.3V, RL=10kΩ, Rg=0Ω, MUTE=H, GAIN=L, INL+=0Vrms INL-=0Vrms, Measure:OUTL, BW=400Hz - 22kHz 0 -20 Equivalent Input Noise[dBV] Equivalent Input Noise[dBV] -50 -25 0 25 50 o -20 -40 -40 -60 -60 -80 -80 -100 -100 -120 75 100 125 -120 -50 -25 0 25 50 o 75 100 125 Temperature[ C] VoltageGain vs Frequency V+=3.3V, RL=32Ω, MUTE=H, INL+=0.1Vrms INL-=0.1Vrms(inverted), Measure=OUTL Temperature[ C] VoltageGain vs Frequency V+=3.3V, RL=10kΩ, MUTE=H, INL+=0.1Vrms INL-=0.1Vrms(inverted), Measure=OUTL 20 20 15 VoltageGain[dB] GAIN=H Ta=-40,25,85oC VoltageGain[dB] 15 GAIN=H Ta=-40,25,85oC 10 GAIN=L Ta=-40,25,85oC 10 GAIN=L Ta=-40,25,85oC 5 5 0 10 100 1000 Frequency[Hz] MuteLevel vs Frequency V+=3.3V, RL=32Ω, MUTE=H, GAIN=L, INL+=0.1Vrms INL-=0.1Vrms(inverted), Measure=OUTL, Filter=Bandpass 10000 100000 0 10 100 1000 Frequency[Hz] MuteLevel vs Frequency V+=3.3V, RL=10kΩ, MUTE=H, GAIN=L, INL+=0.1Vrms INL-=0.1Vrms(inverted), Measure=OUTL, Filter=Bandpass 10000 100000 0 0 -20 -20 -40 MuteLevel[dB] MuteLevel[dB] Ta=-40,25,85oC -40 -60 -60 -80 -80 Ta=-40,25,85oC -100 -100 -120 10 100 1000 Freauency[Hz] 10000 100000 -120 10 100 1000 Freauency[Hz] 10000 100000 – 15 – NJU72040 ChannelSeparation vs Frequency V+=3.3V, RL=32Ω, Rg=600Ω , MUTE=H, GAIN=L, INL+=0.1Vrms, INL-=0.1Vrms(inverted), Measure=OUTR Filter=Bandpass Ta=85oC 80 ChannelSeparation[dB] Ta=-40oC 60 ChannelSeparation[dB] Ta=25oC 80 Ta=85oC Ta=25oC Ta=-40oC ChannelSeparation vs Frequency V+=3.3V, RL=10kΩ, Rg=600Ω, MUTE=H, GAIN=L, INL+=0.1Vrms, INL-=0.1Vrms(inverted), Measure=OUTR Filter=Bandpass 100 100 60 40 40 20 20 0 10 100 1000 Freauency[Hz] ChannelSeparation vs Frequency V+=3.3V, RL=32Ω, Rg=600Ω, MUTE=H, GAIN=L INR+=0.1Vrms, INR-=0.1Vrms(inverted), Measure=OUTL Filter=Bandpass Ta=85oC 80 ChannelSeparation[dB] Ta=-40oC 60 ChannelSeparation[dB] Ta=25 C o 0 10000 100000 10 100 1000 Freauency[Hz] ChannelSeparation vs Frequency V+=3.3V, RL=10kΩ, Rg=600Ω, MUTE=H, GAIN=L INR+=0.1Vrms, INR-=0.1Vrms(inverted), Measure=OUTL Filter=Bandpass 100 10000 100000 100 80 Ta=85oC 60 Ta=25oC Ta=-40oC 40 40 20 20 0 10 100 1000 Freauency[Hz] PSRR vs Frequency V+=3.3V, RL=32Ω, MUTE=H, GAIN=L, Vripple=0.1Vrms INL+=INR+=0Vrms, INL-=INR-=0Vrms, Measure=OUTL,OUTR Filter=Bandpass 100 Ta=-40oC 80 10000 100000 0 10 100 1000 Freauency[Hz] PSRR vs Frequency V+=3.3V, RL=10kΩ, MUTE=H, GAIN=L, Vripple=0.1Vrms INL+=INR+=0Vrms, INL-=INR-=0Vrms, Measure=OUTL,OUTR Filter=Bandpass 100 10000 100000 80 Ta=-40oC PSRR[dB] PSRR[dB] 60 Ta=25oC Ta=85oC 60 Ta=25oC Ta=85oC 40 40 20 20 0 10 100 1000 Freauency[Hz] 10000 100000 0 10 100 1000 Freauency[Hz] 10000 100000 – 16 – NJU72040 CMRR vs Frequency V+=3.3V, RL=32Ω, MUTE=H, GAIN=L, INL+(INR+)=0.1Vrms INL-(INR-)=0.1Vrms, Measure=OUTL(OUTR), BW=Bandpass 100 CMRR vs Frequency V+=3.3V, RL=10kΩ , MUTE=H , GAIN=L,INL+(INR+)=0.1Vrms INL-(INR-)=0.1Vrms, Measure=OUTL(OUTR), BW=Bandpass 100 80 OUTR Ta=-40,25,85oC CMRR[dB] CMRR[dB] 60 80 OUTR Ta=-40,25,85oC 60 OUTL Ta=-40,25,85oC 40 OUTL Ta=-40,25,85oC 40 20 20 0 10 100 1000 Freauency[Hz] Pow er Dissipation vs Output Pow er V+=3.3V, RL=16Ω, MUTE=H, GAIN=L, Ta=25oC f=1kHz, Measure=OUTL, BW=400Hz to 22kHz THD+N=3% 250 Power Dissipation [mW] Power Dissipation [mW] Input=Lch,Rch 200 10000 100000 0 10 100 1000 Freauency[Hz] Pow er Dissipation vs Output Pow er V+=3.3V, RL=32Ω, MUTE=H, GAIN=L, Ta=25oC f=1kHz, Measure=OUTL, BW=400Hz to 22kHz 10000 100000 300 300 250 THD+N=3% 200 Input=Lch,Rch 150 150 Input=Lch 100 100 Input=Lch 50 50 0 0 20 40 60 80 100 0 0 20 40 60 80 100 Output Pow er [mW/ch] Therm al Shut Dow n(SupplyCurrent) V+=3.3V , RL=32Ω , MUTE=H , GAIN=L 14 12 10 SupplyCurrent [mA] 8 6 4 2 0 120 Output Pow er [mW/ch] 160oC ->120oC 120oC ->160oC 130 140 Temperature[ C] o 150 160 – 17 – NJU72040 THD+N vs Output Pow er V+=3.3V, RL=16Ω, MUTE=H , GAIN=L Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=400Hz to 22kHz THD+N vs Output Pow er V+=3.3V, RL=32Ω, MUTE=H, GAIN=L Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=400Hz to 22kHz 10 10 1 THD+N[%] Ta=-40 C o 1 THD+N[%] Ta=-40,25,85oC 0.1 Ta=25,85oC 0.1 0.01 0.001 0.01 0.1 1 10 100 1000 0.01 0.001 0.01 0.1 1 10 100 1000 Output Pow er[mW] THD+N vs Output Pow er V+=3.3V, RL=16Ω, MUTE=H, GAIN=L, Ta=25oC Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=22Hz to 22kHz Output Pow er[mW] THD+N vs Output Pow er V+=3.3V, RL=32Ω, MUTE=H, GAIN=L, Ta=25oC Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=22Hz to 22kHz 10 10 1 THD+N[%] f=100Hz,1kHz THD+N[%] 1 f=100Hz,1kHz 0.1 f=10kHz 0.1 f=10kHz 0.01 0.001 0.01 0.1 1 10 100 1000 0.01 0.001 0.01 0.1 1 10 100 1000 Output Pow er[mW] THD+N vs Output Pow er V+=3.3V, RL=16Ω, MUTE=H , GAIN=L Input=INL+/R+,INL-/R-(inverted), f=1kHz, Measure=OUTL, BW=400Hz to 22kHz Output Pow er[mW] THD+N vs Output Pow er V+=3.3V, RL=32Ω, MUTE=H, GAIN=L Input=INL+/R+,INL-/R-(inverted), f=1kHz, Measure=OUTL BW=400Hz to 22kHz 10 10 1 THD+N[%] Input=Lch , Rch THD+N[%] 1 Input=Lch , Rch 0.1 Input=Lch 0.1 Input=Lch 0.01 0.001 0.01 0.1 1 10 100 1000 0.01 0.001 0.01 0.1 1 10 100 1000 Output Pow er[mW] Output Pow er[mW] – 18 – NJU72040 THD+N vs Output Voltage V+=3.3V, RL=10kΩ, MUTE=H , GAIN=L Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=400Hz to 22kHz THD+N vs Output Voltage V+=3.3V, RL=10kΩ, MUTE=H, GAIN=L, Ta=25oC Input=INL+,INL-(inverted), AC_GND=INR+,INR-, f=1kHz Measure=OUTL, BW=22Hz to 22kHz 10 10 1 THD+N[%] 1 THD+N[%] 0.1 Ta=-40,25,85oC 0.1 f=100,1k,10kHz 0.01 0.01 0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10 Output Voltage[Vrms] THD+N vs Output Voltage V+=3.3V, RL=10kΩ, MUTE=H, GAIN=L Input=INL+/R+,INL-/R-(inverted), f=1kHz, Measure=OUTL BW=400Hz to 22kHz Output Voltage[Vrms] THD+N vs Output Voltage V+=3.3V, MUTE=H, GAIN=L, Ta=25oC Input=INL+,INL-(inverted), f=1kHz, Measure=OUTL , BW=400Hz to 22kHz 10 10 RL=16 1 1 RL=32 THD+N[%] THD+N[%] RL=64 0.1 0.1 Input=Lch , Rch Input=Lch 0.01 0.01 RL=1k RL=10k 0.001 0.01 0.001 0.01 0.1 1 10 0.1 1 Output Voltage[Vrms] 10 Output Voltage[Vrms] [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. – 19 –
NJU72040 价格&库存

很抱歉,暂时无法提供与“NJU72040”相匹配的价格&库存,您可以联系我们找货

免费人工找货