LM4040 Precision Micropower Shunt Voltage Reference
April 2005
LM4040 Precision Micropower Shunt Voltage Reference
General Description
Ideal for space critical applications, the LM4040 precision voltage reference is available in the sub-miniature SC70 and SOT-23 surface-mount package. The LM4040’s advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4040 easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048V, 2.500V, 3.000V, 4.096V, 5.000V, 8.192V, and 10.000V. The minimum operating current increases from 60 µA for the LM4040-2.5 to 100 µA for the LM4040-10.0. All versions have a maximum operating current of 15 mA. The LM4040 utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than ± 0.1% (A grade) at 25˚C. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents. Also available is the LM4041 with two reverse breakdown voltage versions: adjustable and 1.2V. Please see the LM4041 data sheet. n Tolerates capacitive loads n Fixed reverse breakdown voltages of 2.048V, 2.500V,3.000V, 4.096V, 5.000V, 8.192V, and 10.000V
Key Specifications (LM4040-2.5)
j Output voltage tolerance
(A grade, 25˚C)
j Low output noise
± 0.1% (max)
35 µVrms(typ) 60 µA to 15 mA −40˚C to +85˚C −40˚C to +125˚C 100 ppm/˚C (max)
(10 Hz to 10 kHz)
j Wide operating current range j Industrial temperature range j Extended temperature range j Low temperature coefficient
Applications
n n n n n n n n Portable, Battery-Powered Equipment Data Acquisition Systems Instrumentation Process Control Energy Management Product Testing Automotive Precision Audio Components
Features
n Small packages: SOT-23, TO-92 and SC70 n No output capacitor required
Connection Diagrams
SOT-23 TO-92 SC70
01132301
*This pin must be left floating or connected to pin 2.
01132303
01132330
Top View See NS Package Number MF03A (JEDEC Registration TO-236AB)
Bottom View See NS Package Number Z03A
*This pin must be left floating or connected to pin
1.
Top View See NS Package Number MAA05A
© 2005 National Semiconductor Corporation
DS011323
www.national.com
LM4040
Ordering Information Industrial Temperature Range (−40˚C to +85˚C)
Reverse Breakdown Voltage Tolerance at 25˚C and Average Reverse Breakdown Voltage Temperature Coefficient Package
M3 (SOT-23) Supplied as 1000 Units Tape and Reel Supplied as 3000 Units tape and Reel
M7 (SC70) Supplied as 1000 Units Tape and Reel Supplied as 3000 Units Tape and Reel
Z (TO-92)
NS Package Number
± 0.1%, 100 ppm/˚C max (A grade)
LM4040AIM3-2.0 LM4040AIM3-2.5 LM4040AIM3-3.0 LM4040AIM3-4.1 LM4040AIM3-5.0 LM4040AIM3-8.2 LM4040AIM3-10.0 LM4040BIM3-2.0 LM4040BIM3-2.5 LM4040BIM3-3.0 LM4040BIM3-4.1 LM4040BIM3-5.0 LM4040BIM3-8.2 LM4040BIM3-10.0 LM4040CIM3-2.0 LM4040CIM3-2.5 LM4040CIM3-3.0 LM4040CIM3-4.1 LM4040CIM3-5.0 LM4040CIM3-8.2 LM4040CIM3-10.0 LM4040DIM3-2.0 LM4040DIM3-2.5 LM4040DIM3-3.0 LM4040DIM3-4.1 LM4040DIM3-5.0 LM4040DIM3-8.2 LM4040DIM3-10.0 LM4040EIM3-2.0 LM4040EIM3-2.5 LM4040EIM3-3.0
LM4040AIM3X-2.0 LM4040AIM3X-2.5 LM4040AIM3X-3.0 LM4040AIM3X-4.1 LM4040AIM3X-5.0 LM4040AIM3X-8.2 LM4040AIM3X-10.0 LM4040BIM3X-2.0 LM4040BIM3X-2.5 LM4040BIM3X-3.0 LM4040BIM3X-4.1 LM4040BIM3X-5.0 LM4040BIM3X-8.2 LM4040BIM3X-10.0 LM4040CIM3X-2.0 LM4040CIM3X-2.5 LM4040CIM3X-3.0 LM4040CIM3X-4.1 LM4040CIM3X-5.0 LM4040CIM3X-8.2 LM4040CIM3X-10.0 LM4040DIM3X-2.0 LM4040DIM3X-2.5 LM4040DIM3X-3.0 LM4040DIM3X-4.1 LM4040DIM3X-5.0 LM4040DIM3X-8.2 LM4040DIM3X-10.0 LM4040BIM7-2.0 LM4040BIM7-2.5 LM4040BIM7-3.0 LM4040BIM7-4.1 LM4040BIM7-5.0 LM4040BIM7X-2.0 LM4040BIM7X-2.5 LM4040BIM7X-3.0 LM4040BIM7X-4.1 LM4040BIM7X-5.0
LM4040AIZ-2.0 LM4040AIZ-2.5 LM4040AIZ-3.0 LM4040AIZ-4.1 LM4040AIZ-5.0 LM4040AIZ-8.2 LM4040AIZ-10.0
MF03A, Z03A
± 0.2%, 100 ppm/˚C max (B grade)
LM4040BIZ-2.0 MF03A, LM4040BIZ-2.5 Z03A, LM4040BIZ-3.0 MAA05A LM4040BIZ-4.1 LM4040BIZ-5.0 LM4040BIZ-8.2 LM4040BIZ-10.0 LM4040CIZ-2.0 MF03A, LM4040CIZ-2.5 Z03A, LM4040CIZ-3.0 MAA05A LM4040CIZ-4.1 LM4040CIZ-5.0 LM4040CIZ-8.2 LM4040CIZ-10.0 LM4040DIZ-2.0 MF03A, LM4040DIZ-2.5 Z03A, LM4040DIZ-3.0 MAA05A LM4040DIZ-4.1 LM4040DIZ-5.0 LM4040DIZ-8.2 LM4040DIZ-10.0 MF03A, Z03A, MAA05A
± 0.5%, 100 ppm/˚C max (C grade)
LM4040CIM7-2.0 LM4040CIM7-2.5 LM4040CIM7-3.0 LM4040CIM7-4.1 LM4040CIM7-5.0
LM4040CIM7X-2.0 LM4040CIM7X-2.5 LM4040CIM7X-3.0 LM4040CIM7X-4.1 LM4040CIM7X-5.0
± 1.0%, 150 ppm/˚C max (D grade)
LM4040DIM7-2.0 LM4040DIM7-2.5 LM4040DIM7-3.0 LM4040DIM7-4.1 LM4040DIM7-5.0
LM4040DIM7X-2.0 LM4040DIM7X-2.5 LM4040DIM7X-3.0 LM4040DIM7X-4.1 LM4040DIM7X-5.0
± 2.0%, 150 ppm/˚C max (E grade)
LM4040EIM3X-2.0 LM4040EIM7-2.0 LM4040EIM3X-2.5 LM4040EIM7-2.5 LM4040EIM3X-3.0 LM4040EIM7-3.0
LM4040EIM7X-2.0 LM4040EIZ-2.0 LM4040EIM7X-2.5 LM4040EIZ-2.5 LM4040EIM7X-3.0 LM4040EIZ-3.0
www.national.com
2
LM4040
Extended Temperature Range (−40 ˚C to +125˚C)
Reverse Breakdown Voltage Tolerance at 25 ˚C and Average Reverse Breakdown Voltage Temperature Coefficient Package M3 (SOT-23) See NS Package Number MF03A LM4040CEM3-2.0, LM4040CEM3-2.5, LM4040CEM3-3.0, LM4040CEM3-5.0 LM4040DEM3-2.0, LM4040DEM3-2.5, LM4040DEM3-3.0, LM4040DEM3-5.0 LM4040EEM3-2.0, LM4040EEM3-2.5, LM4040EEM3-3.0
± 0.5%, 100 ppm/˚C max (C grade) ± 1.0%, 150 ppm/˚C max (D grade) ± 2.0%, 150 ppm/˚C max (E grade)
3
www.national.com
LM4040
SOT-23 AND SC70 Package Marking Information
Only three fields of marking are possible on the SOT-23’s and SC70’s small surface. This table gives the meaning of the three fields. Part Marking RJA SOT-23 only R2A SOT-23 only RKA SOT-23 only R4A SOT-23 only R5A SOT-23 only R = Reference Second Field: J = 2.048V Voltage Option 2 = 2.500V Voltage Option R8A SOT-23 only R0A SOT-23 only RJB R2B RKB R4B R5B R8B SOT-23 only R0B SOT-23 only RJC R2C RKC R4C R5C R8C SOT-23 only R0C SOT-23 only RJD R2D RKD R4D R5D R8D SOT-23 only R0D SOT-23 only RJE R2E RKE A = ± 0.1%, B = ± 0.2%, C = +0.5%, D = ± 1.0%, E = ± 2.0% A–E = Initial Reverse Breakdown Voltage or Reference Voltage Tolerance Third Field: 8= 8.192V Voltage Option 0 = 10.000V Voltage Option 5 = 5.000V Voltage Option K = 3.000V Voltage Option 4 = 4.096V Voltage Option First Field: Field Definition
www.national.com
4
LM4040
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Reverse Current Forward Current Power Dissipation (TA = 25˚C) (Note 2) M3 Package Z Package M7 Package Storage Temperature Lead Temperature M3 Package Vapor phase (60 seconds) Infrared (15 seconds) Z Package Soldering (10 seconds) ESD Susceptibility Human Body Model (Note 3) 2 kV +260˚C +215˚C +220˚C 306 mW 550 mW 241 mW −65˚C to +150˚C 20 mA 10 mA
Machine Model (Note 3)
200V
See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.
Operating Ratings(Notes 1, 2)
Temperature Range Industrial Temperature Range Extended Temperature Range Reverse Current LM4040-2.0 LM4040-2.5 LM4040-3.0 LM4040-4.1 LM4040-5.0 LM4040-8.2 LM4040-10.0 60 µA to 15 mA 60 µA to 15 mA 62 µA to 15 mA 68 µA to 15 mA 74 µA to 15 mA 91 µA to 15 mA 100 µA to 15 mA (Tmin ≤ TA ≤ Tmax) −40˚C ≤ TA ≤ +85˚C −40˚C ≤ TA ≤ +125˚C
LM4040-2.0 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ± 0.1% and ± 0.2%, respectively. LM4040AIM3 LM4040AIZ (Limit) (Note 5) LM4040BIM3 LM4040BIZ LM4040BIM7 (Limit) (Note 5)
Symbol
Parameter
Conditions
Typical (Note 4)
Units (Limit)
VR
Reverse Breakdown Voltage IR = 100 µA Reverse Breakdown Voltage IR = 100 µA Tolerance (Note 6)
2.048
V
± 2.0 ± 15
45 60 65
± 4.1 ± 17
mV (max) mV (max) µA
IRMIN
Minimum Operating Current
60 65
µA (max) µA (max) ppm/˚C
∆VR/∆T
Average Reverse Breakdown IR = 10 mA Voltage Temperature IR = 1 mA Coefficient IR = 100 µA (Note 6)
± 20 ± 15 ± 15
0.3 0.8 1.0 2.5 6.0 8.0 6.0 8.0 0.8 0.8 1.0
± 100
± 100
ppm/˚C (max) ppm/˚C mV mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note *NO TARGET FOR *) 1 mA ≤ IR ≤ 15 mA
ZR eN
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
0.3 0.8 35
5
www.national.com
LM4040
LM4040-2.0 Electrical Characteristics (Industrial Temperature Range)
(Continued) Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ± 0.1% and ± 0.2%, respectively. LM4040AIM3 LM4040AIZ (Limit) (Note 5) LM4040BIM3 LM4040BIZ LM4040BIM7 (Limit) (Note 5)
Symbol
Parameter
Conditions
Typical (Note 4)
Units (Limit)
∆V R
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 100 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
LM4040-2.0 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ± 0.5%, ± 1.0% and ± 2.0%, respectively. Symbol Parameter Conditions Typical (Note 4) LM4040CIM3 LM4040DIM3 LM4040EIM7 LM4040CIZ LM4040DIZ LM4040EIZ LM4040CIM7 LM4040DIM7 (Limit) (Limit) (Limit) (Note 5) (Note 5) (Note 5) Units (Limit)
VR
Reverse Breakdown IR = 100 µA Voltage Reverse Breakdown IR = 100 µA Voltage Tolerance (Note 6)
2.048
V
± 10 ± 23
45 60 65
± 20 ± 40
± 41 ± 60
mV (max) mV (max) µA
IRMIN
Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (Note 6) IR = 10 mA IR = 1 mA IR = 100 µA
65 70
65 70
µA (max) µA (max) ppm/˚C
∆VR/∆T
± 20 ± 15 ± 15
0.3 0.8 1.0 2.5 6.0 8.0 0.3 0.9 35 1.1 1.1 8.0 10.0 8.0 10.0 1.0 1.2 1.0 1.2
± 100
± 150
± 150
ppm/˚C (max) ppm/˚C mV mV (max) mV (max) mV mV (max) mV (max) Ω Ω(max) µVrms
∆VR/∆IR
Reverse Breakdown IRMIN ≤ IR ≤ 1 mA Voltage Change with Operating Current Change 1 mA ≤ IR ≤ 15 mA (Note *NO TARGET FOR *) Reverse Dynamic Impedance Wideband Noise IR = 1 mA, f = 120 Hz IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
ZR eN ∆VR
Reverse Breakdown t = 1000 hrs Voltage Long Term T = 25˚C ± 0.1˚C Stability IR = 100 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
www.national.com
6
LM4040
LM4040-2.0 Electrical Characteristics (Extended Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ± 0.5%, ± 1.0% and ± 2.0%, respectively. Symbol Parameter Conditions Typical (Note 4) 2.048 LM4040CEM3 LM4040DEM3 LM4040EEM3 (Limit) (Limit) (Limit) (Note 5) (Note 5) (Note 5) Units (Limit) V
VR
Reverse Breakdown IR = 100 µA Voltage Reverse Breakdown IR = 100 µA Voltage Tolerance (Note 6)
± 10 ± 30
45 60 68
± 20 ± 50
± 41 ± 70
mV (max) mV (max) µA
IRMIN
Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (Note 6) IR = 10 mA IR = 1 mA IR = 100 µA
65 73
65 73
µA (max) µA (max) ppm/˚C
∆VR/∆T
± 20 ± 15 ± 15
0.3 0.8 1.0 2.5 6.0 8.0 8.0 10.0 1.1 8.0 10.0 1.1 1.0 1.2 1.0 1.2
± 100
± 150
± 150
ppm/˚C (max) ppm/˚C mV mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
∆VR/∆IR Reverse Breakdown IRMIN ≤ IR ≤ 1 mA Voltage Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
ZR eN ∆V R
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
0.3 0.9 35
Reverse Breakdown t = 1000 hrs Voltage Long Term T = 25˚C ± 0.1˚C IR = 100 µA Stability Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
LM4040-2.5 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ± 0.1% and ± 0.2%, respectively. LM4040AIM3 LM4040AIZ (Limit) (Note 5) LM4040BIM3 LM4040BIZ LM4040BIM7 Limits (Note 5)
Symbol
Parameter
Conditions
Typical (Note 4)
Units (Limit)
VR
Reverse Breakdown Voltage IR = 100 µA Reverse Breakdown Voltage IR = 100 µA Tolerance (Note 6)
2.500
V
± 2.5 ± 19
45 60 65
± 5.0 ± 21
60 65
mV (max) mV (max) µA µA (max) µA (max)
IRMIN
Minimum Operating Current
7
www.national.com
LM4040
LM4040-2.5 Electrical Characteristics (Industrial Temperature Range)
(Continued) Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ± 0.1% and ± 0.2%, respectively. LM4040AIM3 LM4040AIZ (Limit) (Note 5) LM4040BIM3 LM4040BIZ LM4040BIM7 Limits (Note 5)
Symbol
Parameter
Conditions
Typical (Note 4)
Units (Limit)
∆VR/∆T
Average Reverse Breakdown IR = 10 mA Voltage Temperature IR = 1 mA Coefficient (Note 6) IR = 100 µA
± 20 ± 15 ± 15
0.3
ppm/˚C
± 100
± 100
ppm/˚C (max) ppm/˚C mV
∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
0.8 1.0 2.5 6.0 8.0
0.8 1.0 6.0 8.0 0.8
mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
0.3 0.8 35
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 100 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
LM4040-2.5 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ± 0.5%, ± 1.0% and ± 2.0%, respectively. Symbol Parameter Conditions Typical (Note 4) LM4040CIM3 LM4040DIM3 LM4040EIM7 LM4040DIZ LM4040DIZ LM4040EIZ LM4040CIM7 LM4040DIM7 Limits Limits Limits (Note 5) (Note 5) (Note 5) Units (Limit)
VR
Reverse Breakdown IR = 100 µA Voltage Reverse Breakdown IR = 100 µA Voltage Tolerance (Note 6)
2.500
V
± 12 ± 29
45 60 65
± 25 ± 49
± 50 ± 74
mV (max) mV (max) µA
IRMIN
Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient(Note 6) IR = 10 mA IR = 1 mA IR = 100 µA
65 70
65 70
µA (max) µA (max) ppm/˚C
∆VR/∆T
± 20 ± 15 ± 15 ± 100 ± 150 ± 150
ppm/˚C (max) ppm/˚C
www.national.com
8
LM4040
LM4040-2.5 Electrical Characteristics (Industrial Temperature Range)
Symbol Parameter Conditions Typical (Note 4)
(Continued) Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ± 0.5%, ± 1.0% and ± 2.0%, respectively. LM4040CIM3 LM4040DIM3 LM4040EIM7 LM4040DIZ LM4040DIZ LM4040EIZ LM4040CIM7 LM4040DIM7 Limits Limits Limits (Note 5) (Note 5) (Note 5) 0.8 1.0 2.5 6.0 8.0 0.3 0.9 35 1.1 1.1 8.0 10.0 8.0 10.0 1.0 1.2 1.0 1.2 Units (Limit)
∆VR/∆IR
Reverse Breakdown IRMIN ≤ IR ≤ 1 mA Voltage Change with Operating Current Change 1 mA ≤ IR ≤ 15 mA (Note 7)
0.3
mV mV (max) mV (max) mV mV (max) mV (max) Ω Ω(max) µVrms
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
Reverse Breakdown t = 1000 hrs Voltage Long Term T = 25˚C ± 0.1˚C Stability IR = 100 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
LM4040-2.5 Electrical Characteristics (Extended Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ± 0.5%, ± 1.0% and ± 2.0%, respectively. Symbol Parameter Conditions Typical (Note 4) 2.500 LM4040CEM3 LM4040DEM3 LM4040EEM3 Limits Limits Limits (Note 5) (Note 5) (Note 5) Units (Limit) V
VR
Reverse Breakdown IR = 100 µA Voltage Reverse Breakdown IR = 100 µA Voltage Tolerance(Note 6)
± 12 ± 38
45 60 68
± 25 ± 63
± 50 ± 88
mV (max) mV (max) µA
IRMIN
Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient (Note 6) IR = 10 mA IR = 1 mA IR = 100 µA
65 73
65 73
µA (max) µA (max) ppm/˚C
∆VR/∆T
± 20 ± 15 ± 15
0.3 0.8 1.0 2.5 6.0 8.0 8.0 10.0 8.0 10.0 1.0 1.2 1.0 1.2
± 100
± 150
± 150
ppm/˚C (max) ppm/˚C mV mV (max) mV (max) mV mV (max) mV (max)
∆VR/∆IR Reverse Breakdown IRMIN ≤ IR ≤ 1 mA Voltage Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
9
www.national.com
LM4040
LM4040-2.5 Electrical Characteristics (Extended Temperature Range)
Symbol Parameter Conditions Typical (Note 4) 0.3 0.9 35 1.1
(Continued) Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ± 0.5%, ± 1.0% and ± 2.0%, respectively. LM4040CEM3 LM4040DEM3 LM4040EEM3 Limits Limits Limits (Note 5) (Note 5) (Note 5) 1.1 Units (Limit) Ω Ω (max) µVrms
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
Reverse Breakdown t = 1000 hrs Voltage Long Term T = 25˚C ± 0.1˚C IR = 100 µA Stability Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
LM4040-3.0 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ± 0.1% and ± 0.2%, respectively. LM4040AIM3 LM4040AIZ (Limit) (Note 5) LM4040BIM3 LM4040BIZ LM4040BIM7 Limits (Note 5)
Symbol
Parameter
Conditions
Typical (Note 4)
Units (Limit)
VR
Reverse Breakdown Voltage IR = 100 µA Reverse Breakdown Voltage IR = 100 µA Tolerance (Note 6)
3.000
V
± 3.0 ± 22
47 62 67
± 6.0 ± 26
62 67
mV (max) mV (max) µA µA (max) µA (max) ppm/˚C ppm/˚C (max) ppm/˚C mV
IRMIN
Minimum Operating Current
∆VR/∆T
Average Reverse Breakdown IR = 10 mA Voltage Temperature IR = 1 mA Coefficient (Note 6) IR = 100 µA
± 20 ± 15 ± 15
0.6
± 100
± 100
∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
0.8 1.1 2.7 6.0 9.0
0.8 1.1 6.0 9.0 0.9
mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
0.4 0.9 35
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 100 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
www.national.com
10
LM4040
LM4040-3.0 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ± 0.5%, ± 1.0% and ± 2.0%, respectively. Symbol Parameter Conditions Typical (Note 4) LM4040CIM3 LM4040DIM3 LM4040EIM7 LM4040DIZ LM4040DIZ LM4040EIZ LM4040CIM7 LM4040DIM7 Limits Limits Limits (Note 5) (Note 5) (Note 5) Units (Limit)
VR
Reverse Breakdown IR = 100 µA Voltage Reverse Breakdown IR = 100 µA Voltage Tolerance (Note 6)
3.000
V
± 15 ± 34
45 60 65
± 30 ± 59
± 60 ± 89
mV (max) mV (max) µA
IRMIN
Minimum Operating Current Average Reverse Breakdown Voltage Temperature Coefficient(Note 6) IR = 10 mA IR = 1 mA IR = 100 µA
65 70
65 70
µA (max) µA (max) ppm/˚C
∆VR/∆T
± 20 ± 15 ± 15
0.4 0.8 1.1 2.7 6.0 9.0 0.4 0.9 35 1.2 1.2 8.0 11.0 8.0 11.0 1.1 1.3 1.1 1.3
± 100
± 150
± 150
ppm/˚C (max) ppm/˚C mV mV (max) mV (max) mV mV (max) mV (max) Ω Ω(max) µVrms
∆VR/∆IR
Reverse Breakdown IRMIN ≤ IR ≤ 1 mA Voltage Change with Operating Current Change 1 mA ≤ IR ≤ 15 mA (Note 7)
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
Reverse Breakdown t = 1000 hrs Voltage Long Term T = 25˚C ± 0.1˚C Stability IR = 100 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
LM4040-3.0 Electrical Characteristics (Extended Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ± 0.5%, ± 1.0% and ± 2.0%, respectively. Symbol Parameter Conditions Typical (Note 4) 3.000 LM4040CEM3 LM4040DEM3 LM4040EEM3 Limits Limits Limits (Note 5) (Note 5) (Note 5) Units (Limit) V
VR
Reverse Breakdown IR = 100 µA Voltage Reverse Breakdown IR = 100 µA Voltage Tolerance(Note 6)
± 15 ± 45
47 62 70
± 30 ± 75
± 60 ± 105
mV (max) mV (max) µA
IRMIN
Minimum Operating Current
67 75
67 75
µA (max) µA (max)
11
www.national.com
LM4040
LM4040-3.0 Electrical Characteristics (Extended Temperature Range)
Symbol Parameter Conditions Typical (Note 4)
(Continued) Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of ± 0.5%, ± 1.0% and ± 2.0%, respectively. LM4040CEM3 LM4040DEM3 LM4040EEM3 Limits Limits Limits (Note 5) (Note 5) (Note 5) Units (Limit) ppm/˚C
∆VR/∆T
Average Reverse Breakdown Voltage Temperature Coefficient (Note 6)
IR = 10 mA IR = 1 mA IR = 100 µA
± 20 ± 15 ± 15
0.4 0.8 1.1 2.7 6.0 9.0 8.0 11.0 1.2 8.0 11.0 1.2 1.1 1.3 1.1 1.3
± 100
± 150
± 150
ppm/˚C (max) ppm/˚C mV mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
∆VR/∆IR Reverse Breakdown IRMIN ≤ IR ≤ 1 mA Voltage Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
0.4 0.9 35
Reverse Breakdown t = 1000 hrs Voltage Long Term T = 25˚C ± 0.1˚C IR = 100 µA Stability Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
LM4040-4.1 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ± 0.1% and ± 0.2%, respectively. Symbol Parameter Conditions Typical (Note 4) LM4040AIM3 LM4040AIZ Limits (Note 5) LM4040BIM3 LM4040BIZ LM4040BIM7 Limits (Note 5) Units (Limit)
VR
Reverse Breakdown Voltage IR = 100 µA Reverse Breakdown Voltage IR = 100 µA Tolerance (Note 6)
4.096
V
± 4.1 ± 31
50 68 73
± 8.2 ± 35
68 73
mV (max) mV (max) µA µA (max) µA (max) ppm/˚C ppm/˚C (max) ppm/˚C mV
IRMIN
Minimum Operating Current
∆VR/∆T
Average Reverse Breakdown IR = 10 mA Voltage Temperature IR = 1 mA Coefficient(Note 6) IR = 100 µA
± 30 ± 20 ± 20
0.5
± 100
± 100
∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
0.9 1.2 3.0 7.0 10.0
0.9 1.2 7.0 10.0
mV (max) mV (max) mV mV (max) mV (max)
www.national.com
12
LM4040
LM4040-4.1 Electrical Characteristics (Industrial Temperature Range)
Symbol Parameter Conditions Typical (Note 4) LM4040AIM3 LM4040AIZ Limits (Note 5)
(Continued) Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ± 0.1% and ± 0.2%, respectively. LM4040BIM3 LM4040BIZ LM4040BIM7 Limits (Note 5) 1.0 Units (Limit)
ZR eN ∆V R
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
0.5 1.0 80 120
Ω Ω (max) µVrms ppm
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 100 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
VHYST
0.08
%
13
www.national.com
LM4040
LM4040-4.1 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ± 0.5% and ± 1.0%, respectively. Symbol Parameter Conditions Typical (Note 4) LM4040CIM3 LM4040CIZ LM4040CIM7 Limits (Note 5) LM4040DIM3 LM4040BIZ LM4040DIM7 Limits (Note 5) Units (Limit)
VR
Reverse Breakdown Voltage IR = 100 µA Reverse Breakdown Voltage IR = 100 µA Tolerance (Note 6)
4.096
V
± 20 ± 47
50 68 73
± 41 ± 81
73 78
mV (max) mV (max) µA µA (max) µA (max) ppm/˚C ppm/˚C (max) ppm/˚C mV
IRMIN
Minimum Operating Current
∆VR/∆T Average Reverse Breakdown IR = 10 mA Voltage Temperature IR = 1 mA Coefficient (Note 6) IR = 100 µA ∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
± 30 ± 20 ± 20
0.5
± 100
± 150
0.9 1.2 3.0 7.0 10.0
1.2 1.5 9.0 13.0 1.3
mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms ppm
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
0.5 1.0 80 120
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 100 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
VHYST
0.08
%
www.national.com
14
LM4040
LM4040-5.0 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ± 0.1% and ± 0.2%, respectively. Symbol Parameter Conditions Typical (Note 4) LM4040AIM3 LM4040AIZ Limits (Note 5) LM4040BIM3 LM4040BIZ LM4040BIM7 Limits (Note 5) Units (Limit)
VR
Reverse Breakdown Voltage IR = 100 µA Reverse Breakdown Voltage IR = 100 µA Tolerance (Note 6)
5.000
V
± 5.0 ± 38
54 74 80
± 10 ± 43
74 80
mV (max) mV (max) µA µA (max) µA (max) ppm/˚C ppm/˚C (max) ppm/˚C mV
IRMIN
Minimum Operating Current
∆VR/∆T Average Reverse Breakdown IR = 10 mA Voltage Temperature IR = 1 mA Coefficient (Note 6) IR = 100 µA ∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
± 30 ± 20 ± 20
0.5
± 100
± 100
1.0 1.4 3.5 8.0 12.0
1.0 1.4 8.0 12.0 1.1
mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
0.5 1.1 80
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 100 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
15
www.national.com
LM4040
LM4040-5.0 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ± 0.5% and ± 1.0%, respectively. Symbol Parameter Conditions Typical (Note 4) LM4040CIM3 LM4040CIZ LM4040CIM7 Limits (Note 5) LM4040DIM3 LM4040BIZ LM4040DIM7 Limits (Note 5) Units (Limit)
VR
Reverse Breakdown Voltage IR = 100 µA Reverse Breakdown Voltage IR = 100 µA Tolerance (Note 6)
5.000
V
± 25 ± 58
54 74 80
± 50 ± 99
79 85
mV (max) mV (max) µA µA (max) µA (max) ppm/˚C ppm/˚C (max) ppm/˚C mV
IRMIN
Minimum Operating Current
∆VR/∆T Average Reverse Breakdown IR = 10 mA Voltage Temperature IR = 1 mA Coefficient (Note 6) IR = 100 µA ∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
± 30 ± 20 ± 20
0.5
± 100
± 150
1.0 1.4 3.5 8.0 12.0
1.3 1.8 10.0 15.0 1.5
mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
0.5 1.1 80
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 100 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
www.national.com
16
LM4040
LM4040-5.0 Electrical Characteristics (Extended Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ± 0.5% and ± 1.0%, respectively. Symbol Parameter Conditions Typical (Note 4) VR Reverse Breakdown Voltage IR = 100 µA Reverse Breakdown Voltage IR = 100 µA Tolerance(Note 6) IRMIN Minimum Operating Current 54 74 83 ∆VR/∆T Average Reverse Breakdown Voltage Temperature Coefficient (Note 6) IR = 10 mA IR = 1 mA IR = 100 µA 79 88 5.000 LM4040CEM3 LM4040DEM3 Limits (Note 5) Limits (Note 5) V Units (Limit)
± 25 ± 75
± 50 ± 125
mV (max) mV (max) µA µA (max) µA (max) ppm/˚C
± 30 ± 20 ± 20
0.5 1.0 1.4 3.5 8.0 12.0 8.0 15.0 1.1 1.0 1.8
± 100
± 150
ppm/˚C (max) ppm/˚C mV mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
ZR eN ∆V R
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 100 µA 10 Hz ≤ f ≤ 10 kHz
0.5 1.1 80
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 100 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
17
www.national.com
LM4040
LM4040-8.2 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ± 0.1% and ± 0.2%, respectively. LM4040AIM3 LM4040AIZ Limits (Note 5) VR Reverse Breakdown Voltage IR = 150 µA Reverse Breakdown Voltage IR = 150 µA Tolerance (Note 6) IRMIN Minimum Operating Current 67 91 95 ∆VR/∆T Average Reverse Breakdown IR = 10 mA Voltage Temperature IR = 1 mA Coefficient(Note 6) IR = 150 µA 91 95 8.192 LM4040BIM3 LM4040BIZ Limits (Note 5) V
Symbol
Parameter
Conditions
Typical (Note 4)
Units (Limit)
± 8.2 ± 61
± 16 ± 70
mV (max) mV (max) µA µA (max) µA (max) ppm/˚C ppm/˚C (max) ppm/˚C mV
± 40 ± 20 ± 20
0.6
± 100
± 100
∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
1.3 2.5 7.0 10.0 18.0
1.3 2.5 10.0 18.0 1.5
mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 150 µA 10 Hz ≤ f ≤ 10 kHz
0.6 1.5 130
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 150 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
www.national.com
18
LM4040
LM4040-8.2 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ± 0.5% and ± 1.0%, respectively. LM4040CIM3 LM4040CIZ Limits (Note 5) VR Reverse Breakdown Voltage IR = 150 µA Reverse Breakdown Voltage IR = 150 µA Tolerance (Note 6) IRMIN Minimum Operating Current 67 91 95 ∆VR/∆T Average Reverse Breakdown IR = 10 mA Voltage Temperature IR = 1 mA Coefficient (Note 6) IR = 150 µA 96 100 8.192 LM4040DIM3 LM4040DIZ Limits (Note 5) V
Symbol
Parameter
Conditions
Typical (Note 4)
Units (Limit)
± 41 ± 94
± 82 ± 162
mV (max) mV (max) µA µA (max) µA (max) ppm/˚C ppm/˚C (max) ppm/˚C mV
± 40 ± 20 ± 20
0.6
± 100
± 150
∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
1.3 2.5 7.0 10.0 18.0
1.7 3.0 15.0 24.0 1.9
mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
ZR eN ∆V R
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 150 µA 10 Hz ≤ f ≤ 10 kHz
0.6 1.5 130
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 150 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120
ppm
VHYST
0.08
%
19
www.national.com
LM4040
LM4040-10.0 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ± 0.1% and ± 0.2%, respectively. LM4040AIM3 LM4040AIZ Limits (Note 5) VR Reverse Breakdown Voltage IR = 150 µA Reverse Breakdown Voltage IR = 150 µA Tolerance (Note 6) IRMIN Minimum Operating Current 75 100 103 ∆VR/∆T Average Reverse Breakdown IR = 10 mA Voltage Temperature IR = 1 mA Coefficient (Note 6) IR = 150 µA 100 103 10.00 LM4040BIM3 LM4040BIZ Limits (Note 5) V
Symbol
Parameter
Conditions
Typical (Note 4)
Units (Limit)
± 10 ± 75
± 20 ± 85
mV (max) mV (max) µA µA (max) µA (max) ppm/˚C ppm/˚C (max) ppm/˚C mV
± 40 ± 20 ± 20
0.8
± 100
± 100
∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
1.5 3.5 8.0 12.0 23.0
1.5 3.5 12.0 23.0 1.7
mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 150 µA 10 Hz ≤ f ≤ 10 kHz
0.7 1.7 180
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 150 µA Thermal Hysteresis (Note 8) ∆T = −40˚C to +125˚C
120 0.08
ppm %
VHYST
www.national.com
20
LM4040
LM4040-10.0 Electrical Characteristics (Industrial Temperature Range)
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25˚C. The grades C and D designate initial Reverse Breakdown Voltage tolerances of ± 0.5% and ± 1.0%, respectively. LM4040CIM3 LM4040CIZ Limits (Note 5) VR Reverse Breakdown Voltage IR = 150 µA Reverse Breakdown Voltage IR = 150 µA Tolerance (Note 6) IRMIN Minimum Operating Current 75 100 103 ∆VR/∆T Average Reverse Breakdown IR = 10 mA Voltage Temperature IR = 1 mA Coefficient (Note 6) IR = 150 µA 110 113 10.00 LM4040DIM3 LM4040DIZ Limits (Note 5) V
Symbol
Parameter
Conditions
Typical (Note 4)
Units (Limit)
± 50 ± 115
± 100 ± 198
mV (max) mV (max) µA µA (max) µA (max) ppm/˚C ppm/˚C (max) ppm/˚C mV
± 40 ± 20 ± 20
0.8
± 100
± 150
∆VR/∆IR Reverse Breakdown Voltage IRMIN ≤ IR ≤ 1 mA Change with Operating Current Change (Note 7) 1 mA ≤ IR ≤ 15 mA
1.5 3.5 8.0 12.0 23.0
2.0 4.0 18.0 29.0 2.3
mV (max) mV (max) mV mV (max) mV (max) Ω Ω (max) µVrms
ZR eN ∆VR
Reverse Dynamic Impedance Wideband Noise
IR = 1 mA, f = 120 Hz, IAC = 0.1 IR IR = 150 µA 10 Hz ≤ f ≤ 10 kHz
0.7 1.7 180
Reverse Breakdown Voltage t = 1000 hrs Long Term Stability T = 25˚C ± 0.1˚C IR = 150 µA
120
ppm
VHYST
Thermal Hysteresis (Note 8)
∆T = −40˚C to +125˚C
0.08
%
21
www.national.com
LM4040
Electrical Characteristics(Notes)
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), θJA (junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is PDmax = (TJmax − TA)/θJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040, TJmax = 125˚C, and the typical thermal resistance (θJA), when board mounted, is 326˚C/W for the SOT-23 package, and 180˚C/W with 0.4" lead length and 170˚C/W with 0.125" lead length for the TO-92 package and 415˚C/W for the SC70 Package. Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin. Note 4: Typicals are at TJ = 25˚C and represent most likely parametric norm. Note 5: Limits are 100% production tested at 25˚C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National’s AOQL. Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ± [(∆VR/∆T)(max∆T)(VR)]. Where, ∆VR/∆T is the VR temperature coefficient, max∆T is the maximum difference in temperature from the reference point of 25˚C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total over-temperature tolerance for the different grades in the industrial temperature range where max∆T = 65˚C is shown below:
A-grade: ± 0.75% = ± 0.1% ± 100 ppm/˚C x 65˚C B-grade: ± 0.85% = ± 0.2% ± 100 ppm/˚C x 65˚C C-grade: ± 1.15% = ± 0.5% ± 100 ppm/˚C x 65˚C D-grade: ± 1.98% = ± 1.0% ± 150 ppm/˚C x 65˚C E-grade: ± 2.98% = ± 2.0% ± 150 ppm/˚C x 65˚C
The total over-temperature tolerance for the different grades in the exteded temperature range where max ∆T = 100 ˚C is shown below:
C-grade: ± 1.5% = ± 0.5% ± 100 ppm/˚C x 100˚C D-grade: ± 2.5% = ± 1.0% ± 150 ppm/˚C x 100˚C E-grade: ± 3.5% = ± 2.0% ± 150 ppm/˚C x 100˚C
Therefore, as an example, the A-grade LM4040-2.5 has an over-temperature Reverse Breakdown Voltage tolerance of ± 2.5V x 0.75% = ± 19 mV. Note 7: Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Note 8: Thermal hysteresis is defined as the difference in voltage measured at +25˚C after cycling to temperature -40˚C and the 25˚C measurement after cycling to temperature +125˚C.
www.national.com
22
LM4040
Typical Performance Characteristics
Temperature Drift for Different Average Temperature Coefficient Output Impedance vs Frequency
01132304
01132310
Output Impedance vs Frequency
Reverse Characteristics and Minimum Operating Current
01132311
01132312
Noise Voltage vs Frequency
01132313
23
www.national.com
LM4040
Start-Up Characteristics
LM4040-2.5 RS = 30k
01132305
01132307
LM4040-5.0
RS = 30k
LM4040-10.0
RS = 30k
01132308
01132309
Functional Block Diagram
01132314
www.national.com
24
LM4040
Applications Information
The LM4040 is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4040 is available in the sub-miniature SOT-23 and SC70 surface-mount package. The LM4040 has been designed for stable operation without the need of an external capacitor connected between the “+” pin and the “−” pin. If, however, a bypass capacitor is used, the LM4040 remains stable. Reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048V, 2.500V, 3.000V, 4.096V, 5.000V, 6.000, 8.192V, and 10.000V. The minimum operating current increases from 60 µA for the LM40402.048 and LM4040-2.5 to 100 µA for the LM4040-10.0. All versions have a maximum operating current of 15 mA. LM4040s in the SOT-23 packages have a parasitic Schottky diode between pin 2 (−) and pin 3 (Die attach interface contact). Therefore, pin 3 of the SOT-23 package must be left floating or connected to pin 2. LM4040s in the SC70 have a parasitic Schottky diode between pin 1 (−) and pin 2 (Die attach interface contact). Therefore, pin 2 must be left floating or connected to pin1. The 4.096V version allows single +5V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV. For 12-bit ADCs or DACs that operate on supplies of 10V or greater, the 8.192V version gives 2 mV per LSB. The typical thermal hysteresis specification is defined as the change in +25˚C voltage measured after thermal cycling.
The device is thermal cycled to temperature -40˚C and then measured at 25˚C. Next the device is thermal cycled to temperature +125˚C and again measured at 25˚C. The resulting VOUT delta shift between the 25˚C measurements is thermal hysteresis. Thermal hysteresis is common in precision references and is induced by thermal-mechanical package stress. Changes in environmental storage temperature, operating temperature and board mounting temperature are all factors that can contribute to thermal hysteresis. In a conventional shunt regulator application (Figure 1) , an external series resistor (RS) is connected between the supply voltage and the LM4040. RS determines the current that flows through the load (IL) and the LM4040 (IQ). Since load current and supply voltage may vary, RS should be small enough to supply at least the minimum acceptable IQ to the LM4040 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and IL is at its minimum, RS should be large enough so that the current flowing through the LM4040 is less than 15 mA. RS is determined by the supply voltage, (VS), the load and operating current, (IL and IQ), and the LM4040’s reverse breakdown voltage, VR.
Typical Applications
01132315
FIGURE 1. Shunt Regulator
25
www.national.com
LM4040
Typical Applications
(Continued)
01132316
**Ceramic monolithic *Tantalum
FIGURE 2. LM4040-4.1’s Nominal 4.096 breakdown voltage gives ADC12451 1 mV/LSB
www.national.com
26
LM4040
Typical Applications
(Continued)
01132317
FIGURE 3. Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage. Nominal clamping voltage is ± 11.5V (LM4040’s reverse breakdown voltage +2 diode VF).
01132318
FIGURE 4. Protecting Op Amp input. The bounding voltage is ± 4V with the LM4040-2.5 (LM4040’s reverse breakdown voltage + 3 diode VF).
27
www.national.com
LM4040
Typical Applications
(Continued)
01132319
FIGURE 5. Precision ± 4.096V Reference
01132321
01132322
FIGURE 6. Precision 1 µA to 1 mA Current Sources
www.national.com
28
LM4040
Physical Dimensions
unless otherwise noted
inches (millimeters)
Plastic Surface Mount Package (M3) NS Package Number MF03A (JEDEC Registration TO-236AB)
29
www.national.com
LM4040
Physical Dimensions
inches (millimeters) unless otherwise noted (Continued)
Plastic Package (Z) NS Package Number Z03A
Molded Package (SC70) NS Package Number MAA05A
www.national.com
30
LM4040 Precision Micropower Shunt Voltage Reference
Notes
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. For the most current product information visit us at www.national.com. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. BANNED SUBSTANCE COMPLIANCE National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2.
National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.