0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM5109B

LM5109B

  • 厂商:

    NSC

  • 封装:

  • 描述:

    LM5109B - High Voltage 1A Peak Half Bridge Gate Driver - National Semiconductor

  • 详情介绍
  • 数据手册
  • 价格&库存
LM5109B 数据手册
LM5109B High Voltage 1A Peak Half Bridge Gate Driver February 2007 LM5109B High Voltage 1A Peak Half Bridge Gate Driver General Description The LM5109B is a cost effective, high voltage gate driver designed to drive both the high-side and the low-side N-Channel MOSFETs in a synchronous buck or a half bridge configuration. The floating high-side driver is capable of working with rail voltages up to 90V. The outputs are independently controlled with TTL compatible input thresholds. The robust level shift technology operates at high speed while consuming low power and providing clean level transitions from the control input logic to the high-side gate driver. Under-voltage lockout is provided on both the low-side and the high-side power rails. The device is available in the SOIC-8 and the thermally enhanced LLP-8 packages. ■ ■ ■ ■ ■ ■ Fast propagation times (30 ns typical) Drives 1000 pF load with 15ns rise and fall times Excellent propagation delay matching (2 ns typical) Supply rail under-voltage lockout Low power consumption Pin compatible with ISL6700 Typical Applications ■ ■ ■ ■ Current Fed push-pull converters Half and Full Bridge power converters Solid state motor drives Two switch forward power converters Features ■ ■ ■ ■ Drives both a high-side and low-side N-Channel MOSFET 1A peak output current (1.0A sink / 1.0A source) Independent TTL compatible inputs Bootstrap supply voltage to 108V DC Package ■ SOIC-8 ■ LLP-8 (4 mm x 4 mm) Simplified Block Diagram 20211901 FIGURE 1. © 2007 National Semiconductor Corporation 202119 www.national.com LM5109B Connection Diagrams 20211902 20211903 FIGURE 2. Ordering Information Ordering Number LM5109BMA LM5109BMAX LM5109BSD LM5109BSDX Package Type SOIC-8 SOIC-8 LLP-8 LLP-8 M08A M08A SDC08A SDC08A NSC Package Drawing Supplied As 95 Units in anti static rails 2500 Units on Tape & Reel 1000 Units on Tape & Reel 4500 Units on Tape & Reel Pin Descriptions Pin # SO-8 1 2 3 4 5 6 7 8 LLP-8 1 2 3 4 5 6 7 8 Name VDD HI LI VSS LO HS HO HB Description Positive gate drive supply High side control input Low side control input Ground reference Low side gate driver output High side source connection High side gate driver output High side gate driver positive supply rail Application Information Locally decouple to VSS using low ESR/ESL capacitor located as close to IC as possible. The HI input is compatible with TTL input thresholds. Unused HI input should be tied to ground and not left open. The LI input is compatible with TTL input thresholds. Unused LI input should be tied to ground and not left open. All signals are referenced to this ground. Connect to the gate of the low-side N-MOS device. Connect to the negative terminal of the bootstrap capacitor and to the source of the high-side N-MOS device. Connect to the gate of the high-side N-MOS device. Connect the positive terminal of the bootstrap capacitor to HB and the negative terminal of the bootstrap capacitor to HS. The bootstrap capacitor should be placed as close to IC as possible. Note: For LLP-8 package it is recommended that the exposed pad on the bottom of the package be soldered to ground plane on the PCB and the ground plane should extend out from underneath the package to improve heat dissipation. www.national.com 2 LM5109B Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. VDD to VSS HB to HS LI or HI to VSS LO to VSS HO to VSS HS to VSS (Note 6) HB to VSS -0.3V to 18V −0.3V to 18V −0.3V to VDD +0.3V −0.3V to VDD +0.3V VHS −0.3V to VHB +0.3V −5V to 90V 108V Junction Temperature Storage Temperature Range ESD Rating HBM (Note 2) -40°C to +150°C −55°C to +150°C 1.5 kV Recommended Operating Conditions VDD HS (Note 6) HB HS Slew Rate Junction Temperature 8V to 14V −1V to 90V VHS +8V to VHS +14V < 50 V/ns −40°C to +125°C Electrical Characteristics Specifications in standard typeface are for TJ = +25°C, and those in boldface type apply over the full operating junction temperature range. Unless otherwise specified, VDD = VHB = 12V, VSS = VHS = 0V, No Load on LO or HO (Note 4). Symbol SUPPLY CURRENTS IDD IDDO IHB IHBO IHBS IHBSO VIL VIH RI VDDR VDDH VHBR VHBH VOLL VOHL IOHL IOLL VOLH VOHH IOHH IOLH θJA VDD Quiescent Current VDD Operating Current Total HB Quiescent Current Total HB Operating Current HB to VSS Current, Quiescent HB to VSS Current, Operating Low Level Input Voltage Threshold High Level Input Voltage Threshold Input Pulldown Resistance VDD Rising Threshold VDD Threshold Hysteresis HB Rising Threshold HB Threshold Hysteresis Low-Level Output Voltage High-Level Output Voltage Peak Pullup Current Peak Pulldown Current Low-Level Output Voltage High-Level Output Voltage Peak Pullup Current Peak Pulldown Current Junction to Ambient ILO = 100 mA VOHL = VLO – VSS ILO = −100 mA, VOHL = VDD– VLO VLO = 0V VLO = 12V IHO = 100 mA VOLH = VHO– VHS IHO = −100 mA VOHH = VHB– VHO VHO = 0V VHO = 12V SOIC-8 (Note 3), (Note 5) LLP-8 (Note 3), (Note 5) VHBR = VHB - VHS 5.7 VDDR = VDD - VSS 100 6.0 LI = HI = 0V f = 500 kHz LI = HI = 0V f = 500 kHz VHS = VHB = 90V f = 500 kHz 0.8 0.3 1.8 0.06 1.4 0.1 0.5 1.8 1.8 200 6.7 0.5 6.6 0.4 7.1 2.2 500 7.4 0.6 2.9 0.2 2.8 10 mA mA mA mA µA mA V V kΩ V V V V Parameter Conditions Min Typ Max Units INPUT PINS LI and HI UNDER VOLTAGE PROTECTION LO GATE DRIVER 0.38 0.72 1.0 1.0 0.65 1.20 V V A A HO GATE DRIVER 0.38 0.72 1.0 1.0 160 40 0.65 1.20 V V A A THERMAL RESISTANCE °C/W 3 www.national.com LM5109B Switching Characteristics Specifications in standard typeface are for TJ = +25°C, and those in boldface type apply over the full operating junction temperature range. Unless otherwise specified, VDD = VHB = 12V, VSS = VHS = 0V, No Load on LO or HO. Symbol tLPHL tHPHL tLPLH tHPLH tMON tMOFF tRC, tFC tPW Parameter Lower Turn-Off Propagation Delay (LI Falling to LO Falling) Upper Turn-Off Propagation Delay (HI Falling to HO Falling) Lower Turn-On Propagation Delay (LI Rising to LO Rising) Upper Turn-On Propagation Delay (HI Rising to HO Rising) Delay Matching: Lower Turn-On and Upper Turn-Off Delay Matching: Lower Turn-Off and Upper Turn-On Either Output Rise/Fall Time Minimum Input Pulse Width that Changes the Output CL = 1000 pF Conditions Min Typ 30 30 32 32 2 2 15 50 Max 56 56 56 56 15 15 Units ns ns ns ns ns ns ns ns Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables. Note 2: The human body model is a 100 pF capacitor discharged through a 1.5kΩ resistor into each pin. Note 3: 4 layer board with Cu finished thickness 1.5/1/1/1.5 oz. Maximum die size used. 5x body length of Cu trace on PCB top. 50 x 50mm ground and power planes embedded in PCB. See Application Note AN-1187. Note 4: Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate National’s Average Outgoing Quality Level (AOQL). Note 5: The θJA is not a constant for the package and depends on the printed circuit board design and the operating conditions. Note 6: In the application the HS node is clamped by the body diode of the external lower N-MOSFET, therefore the HS voltage will generally not exceed -1V. However in some applications, board resistance and inductance may result in the HS node exceeding this stated voltage transiently. If negative transients occur on HS, the HS voltage must never be more negative than VDD - 15V. For example, if VDD = 10V, the negative transients at HS must not exceed -5V. www.national.com 4 LM5109B Typical Performance Characteristics VDD Operating Current vs Frequency HB Operating Current vs Frequency 20211904 20211905 Operating Current vs Temperature Quiescent Current vs Temperature 20211906 20211907 Quiescent Current vs Voltage Propagation Delay vs Temperature 20211908 20211909 5 www.national.com LM5109B LO and HO High Level Output Voltage vs Temperature LO and HO Low Level Output Voltage vs Temperature 20211910 20211911 Undervoltage Rising Thresholds vs Temperature Undervoltage Hysteresis vs Temperature 20211914 20211915 Input Thresholds vs Temperature Input Thresholds vs Supply Voltage 20211916 20211917 www.national.com 6 LM5109B Timing Diagram 20211918 FIGURE 3. Layout Considerations Optimum performance of high and low-side gate drivers cannot be achieved without taking due considerations during circuit board layout. The following points are emphasized: 1. Low ESR / ESL capacitors must be connected close to the IC between VDD and VSS pins and between HB and HS pins to support high peak currents being drawn from VDD and HB during the turn-on of the external MOSFETs. 2. To prevent large voltage transients at the drain of the top MOSFET, a low ESR electrolytic capacitor and a good quality ceramic capacitor must be connected between the MOSFET drain and ground (VSS). 3. In order to avoid large negative transients on the switch node (HS) pin, the parasitic inductances between the source of the top MOSFET and the drain of the bottom MOSFET (synchronous rectifier) must be minimized. 4. Grounding considerations: a) The first priority in designing grounding connections is to confine the high peak currents that charge and discharge the MOSFET gates to a minimal physical area. This will decrease the loop inductance and minimize noise issues on the gate terminals of the MOSFETs. The gate driver should be placed as close as possible to the MOSFETs. b) The second consideration is the high current path that includes the bootstrap capacitor, the bootstrap diode, the local ground referenced bypass capacitor, and the lowside MOSFET body diode. The bootstrap capacitor is recharged on a cycle-by-cycle basis through the bootstrap diode from the ground referenced VDD bypass capacitor. The recharging occurs in a short time interval and involves high peak current. Minimizing this loop length and area on the circuit board is important to ensure reliable operation. HS Transient Voltages Below Ground The HS node will always be clamped by the body diode of the lower external FET. In some situations, board resistances and inductances can cause the HS node to transiently swing several volts below ground. The HS node can swing below ground provided: 1. HS must always be at a lower potential than HO. Pulling HO more than -0.3V below HS can activate parasitic transistors resulting in excessive current flow from the HB supply, possibly resulting in damage to the IC. The same relationship is true with LO and VSS. If necessary, a Schottky diode can be placed externally between HO and HS or LO and GND to protect the IC from this type of transient. The diode must be placed as close to the IC pins as possible in order to be effective. 2. HB to HS operating voltage should be 15V or less. Hence, if the HS pin transient voltage is -5V, VDD should be ideally limited to 10V to keep HB to HS below 15V. 3. Low ESR bypass capacitors from HB to HS and from VDD to VSS are essential for proper operation. The capacitor should be located at the leads of the IC to minimize series inductance. The peak currents from LO and HO can be quite large. Any series inductances with the bypass capacitor will cause voltage ringing at the leads of the IC which must be avoided for reliable operation. 7 www.national.com LM5109B Physical Dimensions inches (millimeters) unless otherwise noted Controlling dimension is inch. Values in [ ] are millimeters. Notes: Unless otherwise specified. 1. Standard lead finish to be 200 microinches/5.08 micrometers minimum lead/tin (solder) on copper. 2. 3. Dimension does not include mold flash. Reference JEDEC registration MS-012, Variation AA, dated May 1990. SOIC-8 Outline Drawing NS Package Number M08A www.national.com 8 LM5109B Notes: Unless otherwise specified. 1. For solder thickness and composition, see “Solder Information” in the packaging section of the National Semiconductor web page (www.national.com). 2. 3. Maximum allowable metal burr on lead tips at the package edges is 76 microns. No JEDEC registration as of May 2003. LLP-8 Outline Drawing NS Package Number SDC08A 9 www.national.com LM5109B High Voltage 1A Peak Half Bridge Gate Driver Notes THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS. EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders. Copyright© 2007 National Semiconductor Corporation For the most current product information visit us at www.national.com National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560 www.national.com
LM5109B
物料型号: - LM5109BMA:SOIC-8封装,防静电盒装,包含95个单位。 - LM5109BMAX:SOIC-8封装,胶带和卷轴包装,包含2500个单位。 - LM5109BSD:LLP-8封装,胶带和卷轴包装,包含1000个单位。 - LM5109BSDX:LLP-8封装,胶带和卷轴包装,包含4500个单位。

器件简介: LM5109B是一款成本效益高的高压门驱动器,旨在驱动同步降压或半桥配置中的高侧和低侧N沟道MOSFET。浮动的高侧驱动器能够工作在高达90V的轨电压下。输出独立控制,与TTL兼容的输入阈值。强大的电平转换技术在高速运行时消耗低功率,并提供清晰的电平转换。

引脚分配: - 1号引脚(VDD):正门驱动电源。 - 2号引脚(HI):高侧控制输入。 - 3号引脚(LI):低侧控制输入。 - 4号引脚(Vss):地参考。 - 5号引脚(LO):低侧栅极驱动输出。 - 6号引脚(HS):高侧源连接。 - 7号引脚(HO):高侧栅极驱动输出。 - 8号引脚(HB):高侧栅极驱动正电源轨。

参数特性: - 工作电压范围:VDD -0.3V至18V,HB至HS -0.3V至18V,LI或HI至Vss -0.3V至VDD +0.3V,LO至Vss -0.3V至VDD +0.3V,HO至Vss VHs-0.3V至VHB+0.3V,HS至Vss(注6)-5V至90V,HB至Vss 108V。 - 封装:SOIC-8和LLP-8(4mm x 4mm)。 - 输出电流:1A峰值输出电流(1.0A拉电流/1.0A源电流)。 - 工作温度范围:结温-40°C至+150°C,存储温度范围-55°C至+150°C。 - ESD等级:HBM 1.5kV。

功能详解: LM5109B具有快速传播时间(典型值30ns),能够驱动1000pF负载,并且具有15ns的上升和下降时间。此外,它还具有优秀的传播延迟匹配(典型值2ns)和欠压锁定功能。

应用信息: 典型应用包括电流馈入推挽转换器、半桥和全桥功率转换器、固态电机驱动和两个开关的前向功率转换器。
LM5109B 价格&库存

很抱歉,暂时无法提供与“LM5109B”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LM5109BMAX/NOPB

库存:1792