0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM8322JGR8

LM8322JGR8

  • 厂商:

    NSC

  • 封装:

  • 描述:

    LM8322JGR8 - Mobile I/O Companion Supporting Key-Scan, I/O Expansion, PWM, and ACCESS.bus Host Inter...

  • 数据手册
  • 价格&库存
LM8322JGR8 数据手册
LM8322 Mobile I/O Companion Supporting Key-Scan, I/O Expansion, PWM, and ACCESS.bus Host Interface May 2007 LM8322 Mobile I/O Companion Supporting Key-Scan, I/O Expansion, PWM, and ACCESS.bus Host Interface 1.0 General Description The LM8322 Mobile I/O Companion is a dedicated device to unburden a host processor from scanning a matrix-addressed keypad. In addition, the LM8322 provides general-purpose I/O expansion, and PWM outputs useful for dynamic LED brightness modulation. It communicates with the host through an I2C-compatible ACCESS.bus interface. An interrupt output is available for signaling key-press and key-release events. Communication frequencies up to 400 kHz (Fast-mode) bus speed are supported. The LM8322 supports a predefined set of commands. These commands enable a host device to keep control over all functions. ■ Three host-programmable PWM outputs useful for smooth ■ ■ ■ ■ ■ LED brightness modulation. Supports general-purpose I/O expansion on pins not otherwise used for keypad interface. Key-scan event storage in a FIFO buffer for up to 15 events. Key events, errors, and dedicated hardware interrupts request host service by asserting the IRQ output. The correct reception of a command may be assumed, if no error is reported from the LM8322 after receiving a command. Wake-up from Halt mode on any matrix key-scan event, any use of the SF keys, or any activity on the ACCESS.bus interface. 2.0 Features Key Features ■ Supports keypad matrices of up to 8 × 12 keys plus 8 special-function (SF) keys for a total of 104 keys. SF keys pull keypad scan inputs directly to ground, rather than connecting to a keypad scan output. ■ Supports I2C-compatible ACCESS.bus interface in slave mode up to 400 kHz (Fast-mode). 3.0 Applications ■ ■ ■ ■ Mobile phones Personal Digital Assistants (PDAs) Smart handheld devices Personal media players 4.0 Block Diagram 30013620 © 2007 National Semiconductor Corporation 300136 www.national.com LM8322 5.0 Ordering Information NSID LM8322JGR8 LM8322JGR8X NOPB = No PB (No Lead) Spec. NOPB NOPB No. of Pins 36 36 Package Type Micro-Array Micro-Array Temperature −40 to + 85°C −40 to + 85°C Package Method 1000 pcs Tape & Reel 3500 pcs Tape & Reel 6.0 Pin Assignments 30013621 Top View 36–Pin MICRO-ARRAY Package See NS Package Number GRA36A www.national.com 2 LM8322 Table of Contents 1.0 General Description ......................................................................................................................... 1 2.0 Features ........................................................................................................................................ 1 3.0 Applications .................................................................................................................................... 1 4.0 Block Diagram ................................................................................................................................ 1 5.0 Ordering Information ........................................................................................................................ 2 6.0 Pin Assignments ............................................................................................................................. 2 7.0 Signal Descriptions .......................................................................................................................... 5 7.1 TERMINATION OF UNUSED SIGNALS ........................................................................................... 6 8.0 Application Example ........................................................................................................................ 7 8.1 FEATURES .................................................................................................................................. 7 9.0 Clocks ........................................................................................................................................... 8 9.1 INTERNAL EXECUTION CYCLE ..................................................................................................... 8 9.2 BUFFERED CLOCK ...................................................................................................................... 8 9.3 CLOCK CONFIGURATION ............................................................................................................. 9 10.0 Reset ......................................................................................................................................... 10 10.1 EXTERNAL RESET ................................................................................................................... 10 10.2 POWER-ON RESET (POR) ........................................................................................................ 10 10.3 PIN CONFIGURATION AFTER RESET ........................................................................................ 10 10.4 DEVICE CONFIGURATION AFTER RESET ................................................................................. 11 10.5 CONFIGURATION INPUTS ........................................................................................................ 11 10.6 INITIALIZATION ........................................................................................................................ 11 10.7 INITIALIZATION EXAMPLE ........................................................................................................ 13 11.0 Halt Mode ................................................................................................................................... 13 11.1 ACCESS.bus ACTIVITY ............................................................................................................. 13 12.0 Keypad Interface ......................................................................................................................... 14 12.1 EVENT CODE ASSIGNMENT ..................................................................................................... 14 12.2 KEYPAD SCAN CYCLES ........................................................................................................... 14 12.2.1 Timing Parameters ................................................................................................................ 15 12.2.2 Multiple Key Pressings ........................................................................................................... 15 12.3 EXAMPLE KEYPAD CONFIGURATION ....................................................................................... 15 13.0 General-Purpose I/O Ports ............................................................................................................ 16 13.1 USING THE CONFIG_X PINS FOR GPIO .................................................................................... 17 13.2 GPIO TIMING ........................................................................................................................... 17 14.0 PWM Output Generation ............................................................................................................... 18 14.1 COMMAND QUEUE .................................................................................................................. 18 14.2 PWM TIMER OPERATION ......................................................................................................... 18 14.3 PWM SCRIPT COMMANDS ....................................................................................................... 19 14.4 RAMP COMMAND .................................................................................................................... 20 14.5 SET_PWM COMMAND .............................................................................................................. 20 14.6 GO_TO_START COMMAND ...................................................................................................... 20 14.7 BRANCH COMMAND ................................................................................................................ 20 14.8 END COMMAND ....................................................................................................................... 21 14.9 TRIGGER COMMAND ............................................................................................................... 21 14.10 PWM SCRIPT EXAMPLE ......................................................................................................... 21 14.10.1 PWM Channel 0 Script ......................................................................................................... 22 14.10.2 PWM Channel 1 Script ......................................................................................................... 22 14.10.3 PWM Channel 2 Script ......................................................................................................... 22 14.11 SELECTABLE SCRIPT EXAMPLE ............................................................................................. 23 15.0 Digital Multiplexers ....................................................................................................................... 24 16.0 Host Interface ............................................................................................................................. 25 16.1 START AND STOP CONDITIONS ............................................................................................... 25 16.2 CONTINUOUS COMMAND STRINGS ......................................................................................... 25 16.3 DEVICE ADDRESS ................................................................................................................... 25 16.4 HOST WRITE COMMANDS ....................................................................................................... 25 16.5 HOST READ COMMANDS ......................................................................................................... 26 16.6 INTERRUPTS ........................................................................................................................... 26 16.7 INTERRUPT CODE ................................................................................................................... 27 16.8 ERROR CODE .......................................................................................................................... 27 16.9 WAKE-UP FROM HALT MODE ................................................................................................... 27 17.0 Host Commands .......................................................................................................................... 28 17.1 READ_ID COMMAND ................................................................................................................ 29 17.2 WRITE_CFG COMMAND ........................................................................................................... 29 17.3 READ_INT COMMAND .............................................................................................................. 30 17.4 RESET COMMAND ................................................................................................................... 30 3 www.national.com LM8322 17.5 WRITE_PULL_DOWN COMMAND .............................................................................................. 17.6 WRITE_PORT_SEL COMMAND ................................................................................................. 17.7 WRITE_PORT_STATE COMMAND ............................................................................................. 17.8 READ_PORT_SEL COMMAND ................................................................................................... 17.9 READ_PORT_STATE COMMAND .............................................................................................. 17.10 READ_FIFO COMMAND .......................................................................................................... 17.11 RPT_READ_FIFO COMMAND .................................................................................................. 17.12 SET_ACTIVE COMMAND ......................................................................................................... 17.13 READ_ERROR COMMAND ...................................................................................................... 17.14 SET_DEBOUNCE COMMAND .................................................................................................. 17.15 SET_KEY_SIZE COMMAND ..................................................................................................... 17.16 READ_KEY_SIZE COMMAND .................................................................................................. 17.17 READ_CFG COMMAND ........................................................................................................... 17.18 WRITE_CLOCK COMMAND ..................................................................................................... 17.19 READ_CLOCK COMMAND ...................................................................................................... 17.20 PWM_WRITE COMMAND ........................................................................................................ 17.21 PWM_START COMMAND ........................................................................................................ 17.22 PWM_STOP COMMAND .......................................................................................................... 18.0 Absolute Maximum Ratings ........................................................................................................... 19.0 DC Electrical Characteristics ......................................................................................................... 20.0 AC Electrical Characteristics ......................................................................................................... 21.0 Physical Dimensions .................................................................................................................... 31 31 32 32 33 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 39 41 www.national.com 4 LM8322 7.0 Signal Descriptions Pin A6 A5 F1 F2 A2 B3 A3 B4 C6 C5 B6 B5 B2 A1 B1 C2 Function KP-X0 KP-X1 KP-X2 KP-X3 GPIO_13 KP-X4 GPIO_12 KP-X5 GPIO_11 KP-X6 GPIO_10 KP-X7 GPIO_09 KP_Y0 KP-Y1 KP-Y2 KP-Y3 GPIO_08 KP-Y4 GPIO_07 KP-Y5 GPIO_06 KP-Y6 GPIO_05 KP-Y7 GPIO_04 KP-Y8 E3 SLOWCLKOUT GPIO_03 KP-Y9 D5 MUX2_IN1 GPIO_02 KP-Y10 E6 MUX2_IN2 GPIO_01 KP-Y11 F6 E2 E1 E4 F5 MUX2_OUT GPIO_00 ACB_SDA ACB_SCL PWM_0 MUX_IN1 PWM_1 MUX_IN2 PWM_2 E5 MUX1_OUT CONFIG_2 GPIO_15 I/O Input Input Input Input I/O Input I/O Input I/O Input I/O Input Input Output Output Output Output I/O Output I/O Output I/O Output I/O Output I/O Output Output I/O Output Input I/O Output Input I/O Output Output I/O I/O I/O Output Input Output Input Output Output Input I/O Description Wake-up input/Keyboard scanning input 0 Wake-up input/Keyboard scanning input 1 Wake-up input/Keyboard scanning input 2 Wake-up input/Keyboard scanning input 3 General-purpose I/O port 13 Wake-up input/Keyboard scanning input 4 General-purpose I/O port 12 Wake-up input/Keyboard scanning input 5 General-purpose I/O port 11 Wake-up input/Keyboard scanning input 6 General-purpose I/O port 10 Wake-up input/Keyboard scanning input 7 General-purpose I/O port 9 Keyboard scanning output 0 Keyboard scanning output 1 Keyboard scanning output 2 Keyboard scanning output 3 General-purpose I/O port 8 Keyboard scanning output 4 General-purpose I/O port 7 Keyboard scanning output 5 General-purpose I/O port 6 Keyboard scanning output 6 General-purpose I/O port 5 Keyboard scanning output 7 General-purpose I/O port 4 Keyboard scanning output 8 32.768 kHz clock output General-purpose I/O port 3 Keyboard scanning output 9 Multiplexer 2 input 1 General-purpose I/O port 2 Keyboard scanning output 10 Multiplexer 2 input 2 General-purpose I/O port 1 Keyboard scanning output 11 Multiplexer 2 output General-purpose I/O port 0 ACCESS.bus data signal ACCESS.bus clock signal Pulse-width modulated output 0 Multiplexer 1 input 1 Pulse-width modulated output 1 Multiplexer 1 input 2 Pulse-width modulated output 2 Multiplexer 1 output Slave address select input 2 General-purpose I/O port 15 5 www.national.com LM8322 Pin D6 D1 D2 F3 C1 A4, F4 C3, C4, D3, D4 Function CONFIG_1 GPIO_14 XTAL_OUT SLOWCLK XTAL_IN IRQ RESET VCC GND I/O Input I/O Input Input Input Output Input n.a. n.a. Slave address select input 1 General-purpose I/O port 14 32.768 kHz crystal output 32.768 kHz clock 32.768 kHz crystal input Interrupt request output Reset Input VCC Ground Description 7.1 TERMINATION OF UNUSED SIGNALS TABLE 1. Termination of Unused Signals Signal RESET CONFIG_1 XTAL_IN XTAL_OUT KP-X[2:0] Termination Connect to VCC if not driven from an external Supervisory circuit. Connect to VCC or GND through a pullup or pulldown resistor because the slave address is selected by the level on this pin. This pin cannot be left unconnected. This pin is a high-impedance input and must be connected to VCC or GND if it is unused. This pin has a weak pullup and can be left open-circuit if it is unused. These pins are dedicated keypad pins. In the minimum configuration, these pins are keypad inputs with weak pullups. These pins are in high-impedance mode after power-on initialization. There are two ways to handle these pins if unused: • Connect to VCC or GND. KP-X[7:3] • Program as inputs with weak pullups or outputs. Care must be taken when connecting to VCC or GND. Erroneous parameters sent with the WRITE_PORT_SEL or WRITE_PORT_STATE commands could cause excessive current consumption. A better approach is to leave unused keyboard inputs open-circuit and use the WRITE_PORT_SEL and WRITE_PORT_STATE commands to configure the pins as inputs with weak pullups or outputs. KP-X7 can only be an input. This pin should be programmed as an input with a weak pullup. These pins are dedicated keypad pins. In the minimum configuration, these pins are keypad outputs driven low. These pins are in high-impedance mode after power-on initialization. There are two ways to handle these pins if unused: • Connect to VCC or GND. KP-Y[11:3] • Program as inputs with weak pullups or outputs Care must be taken when connecting to VCC or GND. Erroneous parameters sent with the WRITE_PORT_SEL or WRITE_PORT_STATE commands could cause excessive current consumption. A better approach is to leave unused keyboard inputs open-circuit and use the WRITE_PORT_SEL and WRITE_PORT_STATE commands to configure the pins as inputs with weak pullups or outputs. These pins must be connected to VCC or GND if they are not used for any optional function described in the datasheet. Connect to VCC or GND through a pullup or pulldown resistor because the slave address is selected by the level on this pin. This pin cannot be left unconnected. This pin must be connected. KP-Y[2:0] PWM_0, PWM_1 PWM_2/ CONFIG_2 IRQ www.national.com 6 LM8322 8.0 Application Example 30013601 FIGURE 1. Typical Application 8.1 FEATURES The application example shown in Figure 1 supports the following features: • 8 x 9 standard keys. • 8 special function keys (SF keys) with wake-up capability by forcing a WAKE_INx pin to ground. Pressing a SF key overrides any other key in the same row. • ACCESS.bus (I2C-compatible) interface for communication with the host. • Hardware IRQ interrupt to host to signal keypad, error, and status events. By default, this is an open-drain output, so an external pullup resistor may be required to avoid false assertion. The host can program this output for push-pull mode, in which case the pullup might not be required, if the host can ignore a false assertion before the LM8322 has been programmed. • Two LEDs driven by PWM outputs with programmable ramp-up and ramp-down. PWM_2 (shared with GPIO_15 and CONFIG_2) could be used as an additional PWM driver port to control a third external LED. ACCESS.bus address is selected by the CONFIG_1 and CONFIG_2 inputs. These pins may also be used as GPIO pins after reset initialization has occurred. If extra GPIO pins are not needed, CONFIG_1 and CONFIG_2 may be tied directly to VCC and GND. Crystal pins XTAL_IN and XTAL_OUT may be used to connect to an external 32.768 kHz crystal or receive an external 32.768 kHz clock input for running the PWM peripheral. By default, the PWM is clocked by an on-chip clock source. • • 7 www.national.com LM8322 9.0 Clocks • System Clock (mclk) — The system clock is in the range of about 21 MHz (± 7%) typical. This clock is used to drive the I2C compatible serial ACCESS bus and is the input clock for other function blocks. Processing and Command Execution Clock (tC) — The internal processing is based on a 2 MHz clock. This clock is derived from the System Clock. Internal PWM Clock — The internal PWM clock is a fixed scaled down clock (÷ 64) of the Processing and Command • • • • Execution Clock. This clock is close to 32 kHz which is in a good range to source the PWM function block as an alternative to an external clock source. External 32.768 kHz Clock — driven into the SLOWCLK input. May be used internally as the timebase for the PWM and driven on the SLOWCLKOUT output. External 32.768 kHz Crystal — connected across the XTAL_IN and XTAL_OUT pins (XTAL_IN is an alternate function of the SLOWCLK pin). May be used internally as the timebase for the PWM and driven on the SLOWCLKOUT output. 30013602 FIGURE 2. Clock Architecture 9.1 INTERNAL EXECUTION CYCLE The Processing - and Command - execution clock is about 2 MHz. This clock is stopped in Halt mode, which only occurs under control of the LM8322. However, the host can set the period of inactivity which causes the device to enter Halt mode. Exit from Halt mode can be triggered by any of these events: • Occurrence of a key-press or key-release event. • A Start condition driven by the host on the ACCESS.bus interface. • Assertion of the RESET input. After reset, the default timebase for the PWM outputs is the internal execution clock divided by 64. 9.2 BUFFERED CLOCK The timebase for the PWM comes from any of three sources: • Prescaled internal Execution clock. • External 32.768 kHz clock received on the SLOWCLK input. • On-chip oscillator with an external crystal connected across XTAL_IN and XTAL_OUT. Any of these sources may be buffered and driven on the SLOWCLKOUT output. The clock buffer is enabled with the WRITE_CLOCK command. If XTAL_IN is not used it must be terminated to VCC or GND. www.national.com 8 LM8322 9.3 CLOCK CONFIGURATION Table 2 shows the clock configurations available by loading the clock configuration register with the WRITE_CLOCK com- mand. The WRITE_CLOCK command must be issued only once during system initialization. This command is used to override the default settings. TABLE 2. Clock Configuration Register 7 0 Bit SLOWCLKOUT 6 SLOWCLKOUT Value 0 1 0 SLOWCLKEN 1 00 RCPWM 01 10 11 Disable SLOWCLKOUT buffer. Enable SLOWCLKOUT buffer. External 32.768 kHz crystal is installed between the XTAL_IN and XTAL_OUT pins. External 32.768 kHz clock is received on the SLOWCLK pin, or no 32.768 kHz clock is required. On-chip RC clock divided by 64 drives the PWM and clock buffer. Reserved. Reserved. External 32.768 kHz clock or crystal drives the PWM and clock buffer. the SLOWCLKOUT function is enabled, these other functions of the pin are unavailable. 5 0 4 0 3 SLOWCLKEN Description 2 0 1 RCPWM 0 The SLOWCLKOUT signal is an alternate function of the pin used for the KP-Y8 scanning output and the GPIO_03 port. If 9 www.national.com LM8322 10.0 Reset The LM8322 may be reset by either an external reset, RESET command, or an internally generated power-on reset (POR) signal. The RESET input must not be allowed to float. If the external RESET input is not used, it must be connected to VCC, either directly or through a pull-up resistor. 10.1 EXTERNAL RESET The device enters a reset state immediately when the RESET input is driven low. RESET must be held low for a minimum of 700 ns to guarantee a valid reset. If RESET is asserted at power-on, it must be held low until VCC rises above the minimum operating voltage (1.62V). If an RC circuit is used to drive RESET, it must have a time constant 5 times (5×) greater than the VCC rise time to this level. When RESET goes low, the I/O ports are initialized immediately, any observed delay being only propagation delay. When the RESET pin goes high, the LM8322 comes out of the reset state within about 1400 ns. 10.2 POWER-ON RESET (POR) The POR circuit is always enabled. When VCC rises above the POR threshold voltage VPOR (about 1.2–1.5V), an on-chip reset signal is asserted. The VCC rise time must be greater than 20 µs and less than 10 ms, otherwise the on-chip reset signal may deassert before VCC reaches the minimum operating voltage. While VCC is below VPOR, the LM8322 is held in reset and a timer clocked by the on-chip RC clock is preset with 0xFF (256 clock cycles). When VCC reaches a value greater than VPOR, the timer starts counting down. When it underflows, the on-chip reset signal is deasserted and the LM8322 begins operation. 10.3 PIN CONFIGURATION AFTER RESET Table 2 shows the pin configuration after reset. TABLE 3. Pin Configuration After Reset Pins KP-X00 KP-X01 KP-X02 KP-X03 KP-X04 KP-X05 KP-X06 KP-X07 KP-Y00 KP-Y01 KP-Y02 KP-Y03 KP-Y04 KP-Y05 KP-Y06 KP-Y07 KP-Y08 KP-Y09 KP-Y10 KP-Y11 CONFIG_1 CONFIG_2 IRQ PWM_0 PWM_1 PWM_2 ACB_SDA ACB_SCL XTAL_IN XTAL_OUT RESET After Reset High-impedance mode. After LM8322 Initialization Input mode with an on-chip pullup enabled. High-impedance mode. High-impedance mode, until host configures them as keypad inputs or GPIO. High-impedance mode. Active drive low. High-impedance mode. High-impedance mode, until host configures them as keypad outputs or GPIO. High-impedance mode. High-impedance mode. High-impedance mode. The ACCESS.bus slave address must be selected with external pullup or pulldown resistors or direct connections to VCC or GND. Active drive low. High-impedance mode. Open-drain mode. High-impedance mode. Weak pullup device. High-impedance mode. Open-drain mode. High-impedance mode. Terminate to VCC or GND if not used. Weak pullup device. High-impedance mode. www.national.com 10 LM8322 10.4 DEVICE CONFIGURATION AFTER RESET After the LM8322 has completed its reset initialization, it will have the following internal configuration: • PWM Clock — the PWM clock source is the on-chip clock divided by 64. This remains in effect until changed by a host command. • Keypad Size — 3 × 3. • Digital Multiplexers — disabled. • IRQ — enabled, active low. • NOINIT Bit — set. • Debounce Time — 3 scan cycles (about 12 milliseconds). • Active Time — 500 milliseconds. 10.5 CONFIGURATION INPUTS The states sampled from the CONFIG_1 and CONFIG_2 inputs during reset select the ACCESS.bus address used by the LM8322, as shown in Table 4. The address occupies the high seven bits of the first byte of a bus transaction, with the LSB (shown as X below) indicating the direction of transfer. TABLE 4. Bus Address Selection CONFIG_1 0 0 1 1 CONFIG_2 0 1 0 1 Bus Address 1000 010X 1000 011X 1000 100X 1000 101X 30013603 When these pins are used as GPIO ports, the design must ensure that they have the desired states during reset. For example, a 100-kohm resistor to ground can impose a logic 0 during reset without interfering with normal operation as a GPIO port. 10.6 INITIALIZATION The LM8322 waits for a WRITE_CFG command from the host. During this time, IRQ is asserted to request service from the host. Figure 3 describes the behavior of the LM8322 following reset. FIGURE 3. LM8322 Initialization Behavior Figure 4 shows the timing of IRQ relative to a RESET or POR event and the WRITE_CFG command. 100 µs after a RESET or POR event, IRQ is asserted and any READ_INT command will return an interrupt code with the NOINIT bit set. 90 µs after a WRITE_CFG command is received, IRQ is deasserted. 30013604 FIGURE 4. IRQ Reset Timing 11 www.national.com LM8322 After sending the WRITE_CFG command, the host must send a series of commands to configure the LM8322, as shown in Figure 5 (see left hand side). This Flow - diagram illustrates also the basic host communication steps which the host must execute upon an IRQ re- quest received from the LM8322 during operation. Such requests will be made from the LM8322 as a result of key pressed events, the detection of an error, the termination of a PWM cycle and others. 30013605 FIGURE 5. Host-Side LM8322 Initialization www.national.com 12 LM8322 10.7 INITIALIZATION EXAMPLE In the following example, the LM8322 is configured as: • Keypad matrix configuration is 8 × 4. • GPIO_03 through GPIO_07 are available to use as GPIO pins. • GPIO_03 is an output driven low. • GPIO_4 and GPIO_5 are outputs driven high. • GPIO_06 and GPIO_07 are inputs with weak pulldowns. • GPIO_14 and GPIO_15 are inputs with weak pullups. • The PWM clock source is the internal execution clock divided by 64 (about 32 kHz). Command WRITE_CFG WRITE_CLK SET_KEY_SIZE SET_ACTIVE Most of these settings can be verified by executing commands such as READ_CONF, READ_PORT_SEL, READ_CLOCK, etc. ALL GPIO pin states can be read using the READ_PORT_STATE command, without regard to whether the pin is an input or an output. An open-drain signal can be created by alternating between input mode and driving the output low. All GPIO s can sink and source 16 mA when configured as an output. Encoding Parameter 1 Parameter 2 0x81 0x93 0x90 0x8B 0x40 0x08 0x84 0x4B Description Selects 36-pin package and disables the two digital multiplexers. SLOWCLKOUT disabled, no external 32.768 kHz clock required, PWM clock source is internal. Selects a keypad matrix size of 8 × 4. Sets the active time to about 300 milliseconds (75 × 4 milliseconds). Sets the key debouncing time to about 12 milliseconds (3 × 4 ms). This is actually the default and would not have to be performed. SET_DEBOUNCE 0x8F 0x03 WRITE_PORT_SEL 0x85 0x00 0x38 Configure GPIO_03, GPIO_04, and GPIO_05 as outputs. Configure GPIO_06, GPIO_07, GPIO_14, and GPIO_15 as inputs. Set the direction for the pullup/pulldown devices on GPIO_06 and GPIO_07 to pulldown. Set the direction for the pullup/pulldown devices on GPIO_14 and GPIO_15 to pullup. Set GPIO_04 and GPIO_05 to drive high. Enable the pullups on GPIO_06, GPIO_07, GPIO_14, and GPIO_15. Halt mode is entered when no key-press event, key-release event, or ACCESS.bus activity is detected for a certain period of time (by default, 500 milliseconds). The mechanism for entering Halt mode is always enabled in hardware, but the host can program the period of inactivity which triggers entry into Halt mode. 11.1 ACCESS.bus ACTIVITY When the LM8322 is in Halt mode, any activity on the ACCESS.bus interface will cause the LM8322 to exit from Halt mode. However, the LM8322 will not be able to acknowledge the first bus cycle immediately following wake-up from Halt mode. It will respond with a negative acknowledgement, and the host should then repeat the cycle. The LM8322 will be prevented from entering Halt mode if it shares the bus with peripherals that are continuously active. For lowest power consumption, the LM8322 should only share the bus with peripherals that require little or no bus activity after system initialization. WRITE_PULL_DOWN 0x84 0x00 0x3F WRITE_PORT_STATE 0x86 0xC0 0xF0 11.0 Halt Mode The fully static architecture of the LM8322 allows stopping the internal RC clock in Halt mode, which reduces power consumption to the minimum level. Figure 6 shows the current in Halt mode at the maximum VCC (1.98V) from 25°C to +85°C. 30013606 FIGURE 6. Halt Current vs. Temperature at 1.98V 13 www.national.com LM8322 12.0 Keypad Interface 12.1 EVENT CODE ASSIGNMENT After power-on reset and host initialization, the LM8322 starts scanning the keypad. It stays active for a default time of about 500 ms after the last key is released, after which it enters Halt mode to minimize power consumption (typically
LM8322JGR8 价格&库存

很抱歉,暂时无法提供与“LM8322JGR8”相匹配的价格&库存,您可以联系我们找货

免费人工找货