0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMZ22005TZ

LMZ22005TZ

  • 厂商:

    NSC

  • 封装:

  • 描述:

    LMZ22005TZ - 5A SIMPLE SWITCHER Power Module with 20V Maximum Input Voltage - National Semiconductor

  • 数据手册
  • 价格&库存
LMZ22005TZ 数据手册
LMZ22005 5A SIMPLE SWITCHER® Power Module with 20V Maximum Input Voltage April 5, 2011 LMZ22005 5A SIMPLE SWITCHER® Power Module with 20V Maximum Input Voltage Easy to use 7 pin package Performance Benefits ■ ■ ■ ■ ■ High efficiency reduces system heat generation Complies with EN55022 Class B(Note 5) Low component count, only 5 external components Low output voltage ripple Uses PCB as heat sink, no airflow required System Performance 30132986 TO-PMOD 7 Pin Package 10.16 x 13.77 x 4.57 mm (0.4 x 0.542 x 0.18 in) θJA = 12°C/W, θJC = 1.9°C/W RoHS Compliant Efficiency VIN = 12V VOUT = 5.0V 100 90 80 EFFICIENCY (%) 70 60 50 40 30 20 10 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 0 1 2 3 4 DISSIPATION (W) 5 Electrical Specifications ■ ■ ■ ■ ■ 30W maximum total output power Up to 5A output current Input voltage range 6V to 20V Output voltage range 0.8V to 6V Efficiency up to 92% Key Features ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Integrated shielded inductor Simple PCB layout Frequency synchronization input (650 kHz to 950 kHz) Flexible startup sequencing using external soft-start, tracking and precision enable Protection against inrush currents and faults such as input UVLO and output short circuit – 40°C to 125°C junction temperature range Single exposed pad for easy mounting and manufacturing Fast transient response for powering FPGAs and ASICs Fully enabled for Webench® Power Designer Pin compatible with LMZ23605/LMZ23603/LMZ22003 Thermal derating curve VIN = 12V VOUT = 5.0V 6 MAXIMUM OUTPUT CURRENT (A) 5 4 3 2 1 0 θJA=12°C/W 30132903 30 40 50 60 70 80 90 100 110 120 130 AMBIENT TEMPERATURE (°C) 30132989 Applications ■ ■ ■ ■ Point of load conversions from 12V input rail Time critical projects Space constrained / high thermal requirement applications Negative output voltage applications (see AN-2027) Radiated EMI (EN 55022) of Demo Board (See AN-2125) 50 40 30 20 10 0 0 Class A Limit Class B Limit Horiz Peak Horiz Quasi-Peak 200 400 600 800 FREQUENCY (MHz) 1000 AMPLITUDE (dBμV/m) 30132950 © 2011 National Semiconductor Corporation 301329 www.national.com LMZ22005 Simplified Application Schematic 30132901 Connection Diagram 30132902 Top View 7-Lead TO-PMOD Ordering Information Order Number LMZ22005TZ LMZ22005TZE LMZ22005TZX Package Type TO-PMOD-7 TO-PMOD-7 TO-PMOD-7 NSC Package Drawing TZA07A TZA07A TZA07A Supplied As 45 Units in a Rail 250 Units on Tape and Reel 500 Units on Tape and Reel Pin Descriptions Pin 1 2 Name Description VIN Supply input — Nominal operating range is 6V to 20V . A small amount of internal capacitance is contained within the package assembly. Additional external input capacitance is required between this pin and exposed pad (PGND). SYNC Sync Input — Apply a CMOS logic level square wave whose frequency is between 650 kHz and 950 kHz to synchronize the PWM operating frequency to an external frequency source. When not using synchronization connect to ground. The module free running PWM frequency is 812 kHz (Typ) EN Enable — Input to the precision enable comparator. Rising threshold is 1.279V typical. Once the module is enabled, a 20 uA source current is internally activated to accommodate programmable hysteresis. Feedback — Internally connected to the regulation, over-voltage, and short-circuit comparators. The regulation reference point is 0.796V at this input pin. Connect the feedback resistor divider between the output and AGND to set the output voltage. Soft-Start/Track — To extend the 1.6 mSec internal soft-start connect an external soft start capacitor. For tracking connect to an external resistive divider connected to a higher priority supply rail. See applications section. 3 4 5 AGND Analog Ground — Reference point for all stated voltages. Must be externally connected to EP/PGND. FB 6 SS/ TRK www.national.com 2 LMZ22005 Pin 7 EP Name Description VOUT Output Voltage — Output from the internal inductor. Connect the output capacitor between this pin and exposed pad. PGND Exposed Pad / Power Ground Electrical path for the power circuits within the module. — NOT Internally connected to AGND / pin 4. Used to dissipate heat from the package during operation. Must be electrically connected to pin 4 external to the package. 3 www.national.com LMZ22005 Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. VIN to PGND EN, SYNC to AGND SS/TRK, FB to AGND AGND to PGND Junction Temperature Storage Temperature Range -0.3V to 24V -0.3V to 5.5V -0.3V to 2.5V -0.3V to 0.3V 150°C -65°C to 150°C ESD Susceptibility(Note 2) For soldering specifications: see product folder at www.national.com and www.national.com/ms/MS/MS-SOLDERING.pdf ± 2 kV Operating Ratings (Note 1) 6V to 20V 0V to 5.0V −40°C to 125°C VIN EN, SYNC Operation Junction Temperature Electrical Characteristics Limits in standard type are for TJ = 25°C only; limits in boldface type apply over the junction temperature (TJ) range of -40°C to +125°C. Minimum and Maximum limits are guaranteed through test, design or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated the following conditions apply: VIN = 12V, Vout = 3.3V Symbol Parameter Conditions Min (Note 3) Typ (Note 4) Max (Note 3) Units SYSTEM PARAMETERS Enable Control VEN VEN-HYS Soft-Start ISS tSS Current Limit ICL fosc fsync VIL-sync VIH-sync Sync d.c. Dmax VFB VFB-OV IFB IQ ISD TSD TSD-HYST θJA Current limit threshold Free-running oscillator frequency Synchronization range Synchronization logic zero amplitude Synchronization logic one amplitude Synchronization duty cycle range Maximum Duty Factor In-regulation feedback voltage Feedback over-voltage protection threshold Feedback input bias current Non Switching Input Current Shut Down Quiescent Current Thermal Shutdown Thermal shutdown hysteresis Junction to Ambient(Note 6) VFB= 0.86V VEN= 0V Rising Falling 4 layer Evaluation Printed Circuit Board, 60 vias, No air flow 2 layer JEDEC Printed Circuit Board, No air flow θJC www.national.com EN threshold trip point EN hysteresis SS source current Internal soft-start interval VEN rising VEN > 1.279V VSS = 0V 1.10 1.279 21 1.458 V µA 40 50 1.6 60 µA msec A d.c. average Sync input connected to ground. 5.4 711 650 812 914 950 0.4 1.5 15 50 83 85 Internal Switching Oscillator kHz kHz V V % % 0.816 V V nA mA μA °C °C °C/W °C/W °C/W Relative to AGND Relative to AGND Regulation and Over-Voltage Comparator VSS >+ 0.8V IO = 5A 0.776 0.796 0.86 5 2.6 70 165 15 19.3 21.5 1.9 Thermal Characteristics Junction to Case No air flow 4 LMZ22005 Symbol Parameter Conditions Min (Note 3) Typ (Note 4) 9 ±0.02 1 86 81.5 Max (Note 3) Units PERFORMANCE PARAMETERS(Note 7) Δ VO ΔVO/ΔVIN ΔVO/ΔIOUT η η Output voltage ripple Line regulation Load regulation Peak efficiency Full load efficiency Cout = 220uF w/ 7 milliohm ESR + 100uF X5R + 2 x 0.047uF BW@ 20 MHz VIN = 12V to 20V, IO= 0.001A VIN = 12V, Io=0.001A to 5A VIN = 12V VO = 3.3V IO = 1A VIN = 12V VO = 3.3V IO = 5A mV PP % mV/A % % Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is intended to be functional. For guaranteed specifications and test conditions, see the Electrical Characteristics. Note 2: The human body model is a 100pF capacitor discharged through a 1.5 kΩ resistor into each pin. Test method is per JESD-22-114. Note 3: Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate National’s Average Outgoing Quality Level (AOQL). Note 4: Typical numbers are at 25°C and represent the most likely parametric norm. Note 5: EN 55022:2006, +A1:2007, FCC Part 15 Subpart B: 2007. See AN-2125 and layout for information on device under test. Vin = 12V, Vo = 3.3V, Io = 5A Note 6: Theta JA measured on a 3.5” x 3.5” four layer board, with three ounce copper on outer layers and two ounce copper on inner layers, sixty 10 mil thermal vias, no air flow, and 1W power dissipation. Refer to application note layout diagrams. Note 7: Refer to BOM in Table 1. 5 www.national.com LMZ22005 Typical Performance Characteristics Unless otherwise specified, the following conditions apply: VIN = 12V; Cin = 2 x 10μF + 1μF X7R Ceramic; CO = 220μF Specialty Polymer + 10 uF Ceramic; Tambient = 25° C for waveforms. Efficiency and dissipation plots marked with * have cycle skipping at light loads resulting is slightly higher output ripple – See applications section. Efficiency 6.0V output @ 25°C ambient 100 90 80 70 60 50 40 0 10 Vin 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132987 Dissipation 6.0V output @ 25°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132988 20 Vin 12 Vin 10 Vin EFFICIENCY (%) Efficiency 5.0V output @ 25°C ambient 100 90 80 70 60 50 40 0 9 VIn 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132952 Dissipation 5.0V output @ 25°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132953 20 Vin 12 Vin 9 Vin www.national.com EFFICIENCY (%) 6 LMZ22005 Efficiency 3.3V output @ 25°C ambient 100 90 80 70 60 50 40 0 9 Vin 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132954 Dissipation 3.3V output @ 25°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132955 20 Vin 12 Vin 9 Vin 6 Vin EFFICIENCY (%) Efficiency 2.5V output @ 25°C ambient 90 80 70 60 50 40 30 0 6 Vin 9 Vin 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132956 Dissipation 2.5V output @ 25°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132957 20 Vin 12 Vin 9 Vin 6 Vin EFFICIENCY (%) Efficiency 1.8V output @ 25°C ambient 90 80 70 60 50 40 30 0 6 Vin 9 Vin 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132958 Dissipation 1.8V output @ 25°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132959 20 Vin 12 Vin 9 Vin 6 Vin EFFICIENCY (%) 7 www.national.com LMZ22005 Efficiency 1.5V output @ 25°C ambient 85 75 EFFICIENCY (%) Dissipation 1.5V output @ 25°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 5 30132960 20 Vin 12 Vin 9 Vin 6 Vin 65 55 45 35 25 6 Vin 9 Vin 12 Vin 20 Vin 0 1 2 3 4 OUTPUT CURRENT (A) 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132961 Efficiency 1.2V output @ 25°C ambient 80 70 60 50 40 30 20 0 6 Vin 9 Vin 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132962 Dissipation 1.2V output @ 25°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132963 20 Vin 12 Vin 9 Vin 6 Vin EFFICIENCY (%) Efficiency 1.0V output @ 25°C ambient 80 70 60 50 40 30 20 0 6 Vin 9 Vin 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132964 Dissipation 1.0V output @ 25°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132965 20 Vin 12 Vin 9 VIn 6 Vin www.national.com EFFICIENCY (W) 8 LMZ22005 Efficiency 0.8V output @ 25°C ambient 70 60 50 40 30 20 10 0 6 Vin 9 Vin 12 Vin 20 Vin* 1 2 3 4 OUTPUT CURRENT (A) 5 30132990 Dissipation 0.8V output @ 25°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132991 20 Vin* 12 Vin 9 Vin 6 Vin EFFICIENCY (%) Efficiency 6.0V output @ 85°C ambient 100 90 80 70 60 50 40 0 1 2 3 4 OUTPUT CURRENT (A) 10 Vin 12 Vin 20 Vin 5 30132926 Dissipation 6.0V output @ 85°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132927 20 Vin 12 Vin 10 Vin EFFICIENCY (%) Efficiency 5.0V output @ 85°C ambient 100 90 80 70 60 50 40 0 1 2 3 4 OUTPUT CURRENT (A) 9 Vin 12 Vin 20 Vin 5 30132928 Dissipation 5.0V output @ 85°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132929 20 Vin 12 Vin 9 Vin EFFICIENCY (%) 9 www.national.com LMZ22005 Efficiency 3.3V output @ 85°C ambient 90 80 70 60 50 40 30 0 9 Vin 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132930 Dissipation 3.3V output @ 85°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132931 20 Vin 12 Vin 9 Vin EFFICIENCY (%) Efficiency 2.5V output @ 85°C ambient 90 80 70 60 50 40 30 0 6 Vin 9 Vin 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132932 Dissipation 2.5V output @ 85°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132933 20 Vin 12 Vin 9 Vin 6 Vin EFFICIENCY (%) Efficiency 1.8V output @ 85°C ambient 90 80 70 60 50 40 30 0 6 Vin 9 Vin 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132934 Dissipation 1.8V output @ 85°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132935 20 Vin 12 Vin 9 Vin 6 Vin www.national.com EFFICIENCY (%) 10 LMZ22005 Efficiency 1.5V output @ 85°C ambient 80 70 60 50 40 30 20 0 6 Vin 9 Vin 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132936 Dissipation 1.5V output @ 85°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132937 20 Vin 12 Vin 9 Vin 6 Vin EFFICIENCY (%) Efficiency 1.2V output @ 85°C ambient 80 70 60 50 40 30 20 0 6 Vin 9 Vin 12 Vin 20 Vin 1 2 3 4 OUTPUT CURRENT (A) 5 30132938 Dissipation 1.2V output @ 85°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132939 20 Vin 12 Vin 9 Vin 6 Vin EFFICIENCY (%) Efficiency 1.0V output @ 85°C ambient 75 65 EFFICIENCY (%) Dissipation 1.0V output @ 85°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 5 30132940 20 Vin 12 Vin 9 Vin 6 Vin 55 45 35 25 15 6 Vin 9 Vin 12 Vin 20 Vin 0 1 2 3 4 OUTPUT CURRENT (A) 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132941 11 www.national.com LMZ22005 Efficiency 0.8V @ 85°C ambient 70 60 Dissipation 0.8V output @ 85°C ambient 6 5 DISSIPATION (W) 4 3 2 1 0 5 30132992 20 Vin* 12 Vin 9 Vin 6 Vin EFFICIENCY (%) 50 40 30 20 0 6 Vin 9 Vin 12 Vin 20 Vin* 1 2 3 4 OUTPUT CURRENT (A) 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132993 Thermal Derating VIN = 12V, VOUT = 5.0V 6 MAXIMUM OUTPUT CURRENT (A) 5 4 3 2 1 0 θJA=12°C/W 30 40 50 60 70 80 90 100 110 120 130 AMBIENT TEMPERATURE (°C) 30132989 Thermal Derating VIN= 12V, VOUT = 3.3V 6 MAXIMUM OUTPUT CURRENT (A) 5 4 3 2 1 0 θJA = 12 °C/W 30 40 50 60 70 80 90 100 110 120 130 AMBIENT TEMPERATURE (°C) 30132994 Normalized — Line and load regulation VOUT = 3.3V NORMALLIZED OUTPUT VOLTAGE (V/V) 1.002 Output Ripple 12VIN 3.3VO @ 5A, BW = 20 MHz 1.001 1.000 0.999 9 Vin 12 Vin 20 Vin 0 1 2 3 4 OUTPUT CURRENT (A) 5 30132942 30132905 0.998 www.national.com 12 LMZ22005 Output Ripple 12VIN 3.3VO@ 5A BW = 250 MHz Transient response from evaluation board 12VIN 3.3VO0.5 to 5A Step 30132906 30132908 Short circuit current vs input voltage 9 8 7 CURRENT (A) 6 5 4 3 2 1 0 5 10 15 INPUT VOLTAGE (V) 20 30132918 Output Current Input Current 13 www.national.com LMZ22005 Block Diagram 30132910 General Description The LMZ22005 SIMPLE SWITCHER© power module is an easy-to-use step-down DC-DC solution capable of driving up to 5A load. The LMZ22005 is available in an innovative package that enhances thermal performance and allows for hand or machine soldering. The LMZ22005 can accept an input voltage rail between 6V and 20V and deliver an adjustable and highly accurate output voltage as low as 0.8V. The LMZ22005 only requires two external resistors and three external capacitors to complete the power solution. The LMZ22005 is a reliable and robust design with the following protection features: thermal shutdown, input under-voltage lockout, output over-voltage protection, short-circuit protection, output current limit, and allows startup into a pre-biased output. The sync input allows synchronization over the 650 to 950 kHz switching frequency range. Design Steps for the LMZ22005 Application The LMZ22005 is fully supported by Webench® which offers: component selection, electrical and thermal simulations. Additionally there is are evaluation and demonstration boards that may be used a starting point for design. The following list of steps can be used to quickly design the LMZ22005 application. • Select minimum operating VIN with enable divider resistors • Program VO with resistor divider selection • Select CO • Select CIN • Determine module power dissipation • Layout PCB for required thermal performance ENABLE DIVIDER, RENT, RENB AND RENHSELECTION Internal to the module is a 2 mega ohm pull-up resistor connected from VIN to Enable. For applications not requiring precision under voltage lock out (UVLO), the Enable input may be left open circuit and the internal resistor will always enable the module. In such case, the internal UVLO occurs typically at 4.3V (VIN rising). In applications with separate supervisory circuits Enable can be directly interfaced to a logic source. In the case of sequencing supplies, the divider is connected to a rail that becomes active earlier in the power-up cycle than the LMZ22005 output rail. Enable provides a precise 1.279V threshold to allow direct logic drive or connection to a voltage divider from a higher enable voltage such as VIN. Additionally there is 21 μA(typ) of switched offset current allowing programmable hysteresis. See Figure 1. The function of the enable divider is to allow the designer to choose an input voltage below which the circuit will be disabled. This implements the feature of programmable UVLO. The two resistors should be chosen based on the following ratio: RENT / RENB = (VIN UVLO / 179V) – 1 (1) The LMZ22005 typical application shows 12.7kΩ for RENB and 42.2kΩ for RENT resulting in a rising UVLO of 5.46V. Note that a midpoint 5.1V Zener clamp is present to allow setting UVLO to cover an extended range of operation. The zener clamp is not required if the target application prohibits the maximum Enable input voltage from being exceeded. Additional enable voltage hysteresis can be added with the inclusion of RENH. It may be possible to select values for RENT and RENB such that RENH is a value of zero allowing it to be omitted from the design. Rising threshold can be calculated as follows: VEN(rising) = 1.279 ( 1 + RENT|| 2 meg/ RENB) Whereas falling threshold level can be calculated using: VEN(falling) = VEN(rising) – 21 µA ( RENT|| 2 meg || RENTB + RENH ) www.national.com 14 LMZ22005 Enable input detail 30132909 FIGURE 1. OUTPUT VOLTAGE SELECTION Output voltage is determined by a divider of two resistors connected between VO and ground. The midpoint of the divider is connected to the FB input. The regulated output voltage determined by the external divider resistors RFBT and RFBB is: VO = 0.8V * (1 + RFBT / RFBB) (2) Rearranging terms; the ratio of the feedback resistors for a desired output voltage is: RFBT / RFBB = (VO / 0.796V) - 1 (3) These resistors should generally be chosen from values in the range of 1.0 kohm to 10.0 kohm. For VO = 0.8V the FB pin can be connected to the output directly and RFBB can be omitted. A table of values for RFBT , and RFBB, is included in the applications schematic. SOFT-START CAPACITOR SELECTION Programmable soft-start permits the regulator to slowly ramp to its steady state operating point after being enabled, thereby reducing current inrush from the input supply and slowing the output voltage rise-time. Upon turn-on, after all UVLO conditions have been passed, an internal 2 mSec circuit slowly ramps the SS/TRK input to implement internal soft start. If 1.6mSec is an adequate turn– on time then the Css capacitor can be left unpopulated. Longer soft-start periods are achieved by adding an external capacitor to this input. Soft start duration is given by the formula: tSS = VREF * CSS / Iss = 0.796V * CSS / 50uA (4) This equation can be rearranged as follows: CSS = tSS * 50μA / 0.796V (5) Using a 0.22μF capacitor results in 3.5 msec typical soft-start duration; and 0.47μF results in 7.5 msec typical. 0.47 μF is a recommended initial value. Once the soft-start input exceeds 0.796V the output of the power stage will be in regulation and the 50 μA current is deactivated. Note that the following conditions will reset the softstart capacitor by discharging the SS input to ground with an internal current sink. • The Enable input being pulled low • Thermal shutdown condition • Internal Vcc UVLO (Approx 4.3V input to VIN) TRACKING SUPPLY DIVIDER OPTION The tracking function allows the module to be connected as a slave supply to a primary voltage rail (often the 3.3V system rail) where the slave module output voltage is lower than that of the master. Proper configuration allows the slave rail to power up coincident with the master rail such that the voltage difference between the rails during ramp-up is small (i.e.
LMZ22005TZ 价格&库存

很抱歉,暂时无法提供与“LMZ22005TZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货