0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LV8572AM

LV8572AM

  • 厂商:

    NSC

  • 封装:

  • 描述:

    LV8572AM - LV8572A Low Voltage Real Time Clock (RTC) - National Semiconductor

  • 数据手册
  • 价格&库存
LV8572AM 数据手册
LV8572A Real Time Clock (RTC) PRELIMINARY December 1993 LV8572A Low Voltage Real Time Clock (RTC) General Description The LV8572A is intended for use in microprocessor based systems where information is required for multi-tasking data logging or general time of day date information This device is implemented in low voltage silicon gate microCMOS technology to provide low standby power in battery back-up environments The circuit’s architecture is such that it looks like a contiguous block of memory or I O ports The address space is organized as 2 software selectable pages of 32 bytes This includes the Control Registers the Clock Counters the Alarm Compare RAM and the Time Save RAM Any of the RAM locations that are not being used for their intended purpose may be used as general purpose CMOS RAM Time and date are maintained from 1 100 of a second to year and leap year in a BCD format 12 or 24 hour modes Day of week day of month and day of year counters are provided Time is controlled by an on-chip crystal oscillator requiring only the addition of the crystal and two capacitors The choice of crystal frequency is program selectable Power failure logic and control functions have been integrated on chip This logic is used by the RTC to issue a power fail interrupt and lock out the mp interface The time power fails may be logged into RAM automatically when VBB l VCC Additionally two supply pins are provided When VBB l VCC internal circuitry will automatically switch from the main supply to the battery supply Status bits are provided to indicate initial application of battery power system power and low battery detect (Continued) Features Y Y Y Y Y 3 3V g 10% supply Full function real time clock calendar 12 24 hour mode timekeeping Day of week and day of years counters Four selectable oscillator frequencies Parallel resonant oscillator Power fail features Internal power supply switch to external battery Power Supply Bus glitch protection Automatic log of time into RAM at power failure On-chip interrupt structure Periodic alarm and power fail interrupts Up to 44 bytes of CMOS RAM Block Diagram TL F 11417 – 1 FIGURE 1 TRI-STATE is a registered trademark of National Semiconductor Corporation C1995 National Semiconductor Corporation TL F 11417 RRD-B30M105 Printed in U S A Absolute Maximum Ratings (Notes 1 2) Operation Conditions Supply Voltage (VCC) (Note 3) Supply Voltage (VBB) (Note 3) DC Input or Output Voltage (VIN VOUT) Operation Temperature (TA) Electr-Static Discharge Rating Typical Values iJA DIP Board Socket iJA PLCC Board Socket Min Max Unit 30 36 V 2 2 VCCb0 4 V 00 b 40 Specifications for the 883 version of this product are listed separately b 0 5V to a 7 0V Supply Voltage (VCC) b 0 5V to VCC a 0 5V DC Input Voltage (VIN) b 0 5V to VCC a 0 5V DC Output Voltage (VOUT) b 65 C to a 150 C Storage Temperature Range Power Dissipation (PD) 500 mW Lead Temperature (Soldering 10 sec ) 260 C VCC a 85 V C kV C C C C W W W W 1 61 67 80 88 DC Electrical Characteristics VCC e 3 3V g 10% VBB e 2 5V VPFAIL l VIH CL e 100 pF (unless otherwise specified) Symbol VIH VIL VOH VOL IIN IOZ ILKG ICC Parameter High Level Input Voltage (Note 4) Low Level Input Voltage High Level Output Voltage (Excluding OSC OUT INTR) Low Level Output Voltage (Excluding OSC OUT) Input Current (Except OSC IN) Output TRI-STATE Current Output High Leakage Current MFO INTR Pins Quiescent Supply Current (Note 7) Conditions Any Inputs Except OSC IN OSC IN with External Clock All Inputs Except OSC IN OSC IN with External Clock IOUT e b20 mA IOUT e b2 0 mA IOUT e 20 mA IOUT e 2 0 mA VIN e VCC or GND VOUT e VCC or GND VOUT e VCC or GND Outputs Open Drain FOSC e 32 768 kHz VIN e VCC or GND (Note 5) VIN e VCC or GND (Note 6) VIN e VIH or VIL (Note 6) FOSC e 4 194304 MHz or 4 9152 MHz VIN e VCC or GND (Note 6) VIN e VIH or VIL (Note 6) ICC Quiescent Supply Current (Single Supply Mode) (Note 7) VBB e GND VIN e VCC or GND FOSC e 32 768 kHz FOSC e 4 9152 MHz or 4 194304 MHz VCC e GND OSC OUT e open circuit other pins e GND FOSC e 32 768 kHzmA FOSC e 4 9152 MHz or 4 194304 MHz 2 2V s VBB s 2 6V other pins at GND VCC e GND VBB e 2 6V VCC e 3 6V VBB e 2 2V Min 20 VBB b0 2 b0 3 b0 3 Max VCC a 0 3 08 02 Units V V V V V V VCC b0 2 24 02 03 g0 7 g1 g1 V V mA mA mA mA mA mA 220 700 5 4 6 mA mA 30 3 mA mA IBB Standby Mode Battery Supply Current (Note 7) 8 400 mA mA IBLK Battery Leakage 08 b0 8 mA mA Note 1 Absolute Maximum Ratings are those values beyond which damage to the device may occur Note 2 Unless otherwise specified all voltages are referenced to ground Note 3 For FOSC e 4 194304 or 4 9152 MHz VBB minimum e 2 8V In battery backed mode VBB s VCC b 0 4V Single Supply Mode Data retention voltage is 2 2V min In single Supply Mode (Power connected to VCC pin) 3 0V s VCC s 3 6 Note 4 This parameter (VIH) is not tested on all pins at the same time Note 5 This specification tests ICC with all power fail circuitry disabled by setting D7 of Interrupt Control Register 1 to 0 Note 6 This specification tests ICC with all power fail circuitry enabled by setting D7 of Interrupt Control Register 1 to 1 Note 7 OSC IN is driven by a signal generator Contents of the Test Register e 00(H) and the MFO pin is not configured as buffered oscillator out 2 AC Electrical Characteristics VCC e 3 3V g 10% VBB e 2 5V VPFAIL l VIH CL e 100 pF (unless otherwise specified) Symbol READ TIMING tAR tRW tCD tRAH tRD tDZ tRCH tDS WRITE TIMING tAW tWAH tCW tWW tDW tWDH tWCH INTERRUPT TIMING tROLL Clock Rollover to INTR Out is Typically 20 ms Address Valid before Write Strobe Address Hold after Write Strobe (Note 9) Chip Select to End of Write Strobe Write Strobe Width (Note 10) Data Valid to End of Write Strobe Data Hold after Write Strobe (Note 9) Chip Select Hold after Write Strobe (Note 9) 10 2 110 100 70 2 0 ns ns ns ns ns ns ns Address Valid Prior to Read Strobe Read Strobe Width (Note 8) Chip Select to Data Valid Time Address Hold after Read (Note 9) Read Strobe to Valid Data Read or Chip Select to TRI-STATE Chip Select Hold after Read Strobe (Note 9) Minimum Inactive Time between Read or Write Accesses 0 70 2 90 80 10 100 100 ns ns ns ns ns ns ns ns Parameter Min Max Units Note 8 Read Strobe width as used in the read timing table is defined as the period when both chip select and read inputs are low Hence read commences when both signals are low and terminates when either signal returns high Note 9 Hold time is guaranteed by design but not production tested This limit is not used to calculate outgoing quality levels Note 10 Write Strobe width as used in the write timing table is defined as the period when both chip select and write inputs are low Hence write commences when both signals are low and terminates when either signal returns high AC Test Conditions Input Pulse Levels Input Rise and Fall Times Input and Output Reference Levels TRI-STATE Reference Levels (Note 12) GND to 3 0V 6 ns (10%–90%) 1 3V Active High a 0 5V Active Low b0 5V Note 11 CL e 100 pF includes jig and scope capacitance Note 12 S1 e VCC for active low to high impedance measurements S1 e GND for active high to high impedance measurements S1 e open for all other timing measurements Capacitance (TA e 25 C Symbol CIN COUT Parameter (Note 13) Input Capacitance f e 1 MHz) TL F 11417 – 2 Typ 5 7 Units pF pF Output Capacitance Note 13 This parameter is not 100% tested Note 14 Output rise and fall times 25 ns max (10%–90%) with 100 pF load 3 Timing Waveforms Read Timing Diagram TL F 11417 – 3 Write Timing Diagram TL F 11417 – 4 4 General Description (Continued) The LV8572A’s interrupt structure provides three basic types of interrupts Periodic Alarm Compare and Power Fail Interrupt mask and status registers enable the masking and easy determination of each interrupt VCC This is the main system power pin GND This is the common ground power pin for both VBB and VCC Connection Diagrams In-Line Packages Pin Description CS RD WR (Inputs) These pins interface to mP control lines The CS pin is an active low enable for the read and write operations Read and Write pins are also active low and enable reading or writing to the RTC All three pins are disabled when power failure is detected However if a read or write is in progress at this time it will be allowed to complete its cycle A0 – A4 (Inputs) These 5 pins are for register selection They individually control which location is to be accessed These inputs are disabled when power failure is detected OSC IN (Input) OSC OUT (Output) These two pins are used to connect the crystal to the internal parallel resonant oscillator The oscillator is always running when power is applied to VBB and VCC and the correct crystal select bits in the Real Time Mode Register have been set MFO (Output) The multi-function output can be used as a second interrupt output for interrupting the mP This pin can also provide an output for the oscillator The MFO output is configured as push-pull active high for normal or single power supply operation and as an open drain during standby mode (VBB l VCC) If in battery backed mode and a pullup resistor is attached it should be connected to a voltage no greater than VBB INTR (Output) The interrupt output is used to interrupt the processor when a timing event or power fail has occurred and the respective interrupt has been enabled The INTR output is permanently configured active low open drain If in battery backed mode and a pull-up resistor is attached it should be connected to a voltage no greater than VBB D0 – D7 (Input Output) These 8 bidirectional pins connect to the host mP’s data bus and are used to read from and write to the RTC When the PFAIL pin goes low and a write is not in progress these pins are at TRI-STATE PFAIL (Input) In battery backed mode this pin can have a digital signal applied to it via some external power detection logic When PFAIL e logic 0 the RTC goes into a lockout mode in a minimum of 30 ms or a maximum of 63 ms unless lockout delay is programmed In the single power supply mode this pin is not useable as an input and should be tied to VCC Refer to section on Power Fail Functional Description VBB (Battery Power Pin) This pin is connected to a backup power supply This power supply is switched to the internal circuitry when the VCC becomes lower than VBB Utilizing this pin eliminates the need for external logic to switch in and out the back-up power supply If this feature is not to be used then this pin must be tied to ground the RTC programmed for single power supply only and power applied to the VCC pin TL F 11417 – 5 Top View DIP Order Number LV8572AN See NS Package Number N24C SOIC Order Number LV8572AM See NS Package Number M24B Plastic Chip Carrier TL F 11417 – 6 Top View Order Number LV8572AV See NS Package Number V28A 5 Functional Description The LV8572A contains a fast access real time clock interrupt control logic power fail detect logic and CMOS RAM All functions of the RTC are controlled by a set of seven registers A simplified block diagram that shows the major functional blocks is given in Figure 1 The blocks are described in the following sections 1 Real Time Clock 2 Oscillator Prescaler 3 Interrupt Logic 4 Power Failure Logic 5 Additional Supply Management The memory map of the RTC is shown in the memory addressing table The memory map consists of two 31 byte pages with a main status register that is common to both pages A control bit in the Main Status Register is used to select either page Figure 2 shows the basic concept Page 0 contains all the clock timer functions while page 1 has scratch pad RAM The control registers are split into two separate blocks to allow page 1 to be used entirely as scratch pad RAM Again a control bit in the Main Status Register is used to select either control register block TL F 11417 – 7 FIGURE 2 LV8572A Internal Memory Map 6 Functional Description (Continued) INITIAL POWER-ON of BOTH VBB and VCC VBB and VCC may be applied in any sequence In order for the power fail circuitry to function correctly whenever power is off the VCC pin must see a path to ground through a maximum of 1 MX The user should be aware that the control registers will contain random data The first task to be carried out in an initialization routine is to start the oscillator by writing to the crystal select bits in the Real Time Mode Register If the LV8572A is configured for single supply mode an extra 50 mA may be consumed until the crystal select bits are programmed The user should also ensure that the RTC is not in test mode (see register descriptions) REAL TIME CLOCK FUNCTIONAL DESCRIPTION As shown in Figure 2 the clock has 10 bytes of counters which count from 1 100 of a second to years Each counter counts in BCD and is synchronously clocked The count sequence of the individual byte counters within the clock is shown later in Table VII Note that the day of week day of month day of year and month counters all roll over to 1 The hours counter in 12 hour mode rolls over to 1 and the AM PM bit toggles when the hours rolls over to 12 (AM e 0 PM e 1) The AM PM bit is bit D7 in the hours counter All other counters roll over to 0 Also note that the day of year counter is 12 bits long and occupies two addresses Upon initial application of power the counters will contain random information READING THE CLOCK VALIDATED READ Since clocking of the counter occurs asynchronously to reading of the counter it is possible to read the counter while it is being incremented (rollover) This may result in an incorrect time reading Thus to ensure a correct reading of the entire contents of the clock (or that part of interest) it must be read without a clock rollover occurring In general this can be done by checking a rollover bit On this chip the periodic interrupt status bits can serve this function The following program steps can be used to accomplish this 1 Initialize program for reading clock 2 Dummy read of periodic status bit to clear it 3 Read counter bytes and store 4 Read rollover bit and test it 5 If rollover occured go to 3 6 If no rollover done To detect the rollover individual periodic status bits can be polled The periodic bit chosen should be equal to the highest frequency counter register to be read That is if only SECONDS through HOURS counters are read then the SECONDS periodic bit should be used READING THE CLOCK INTERRUPT DRIVEN Enabling the periodic interrupt mask bits cause interrupts just as the clock rolls over Enabling the desired update rate and providing an interrupt service routine that executes in less than 10 ms enables clock reading without checking for a rollover READING THE CLOCK LATCHED READ Another method to read the clock that does not require checking the rollover bit is to write a one into the Time Save Enable bit (D7) of the Time Save Control Register and then to write a zero Writing a one into this bit will enable the clock contents to be duplicated in the Time Save RAM Changing the bit from a one to a zero will freeze and store the contents of the clock in Time Save RAM The time then can be read without concern for clock rollover since internal logic takes care of synchronization of the clock Because only the bits used by the clock counters will be latched the Time Save RAM should be cleared prior to use to ensure that random data stored in the unused bits do not confuse the host microprocessor This bit can also provide time save at power failure see the Additional Supply Management Functions section With the Time Save Enable bit at a logical 0 the Time Save RAM may be used as RAM if the latched read function is not necessary INITIALIZING AND WRITING TO THE CALENDAR-CLOCK Upon initial application of power to the RTC or when making time corrections the time must be written into the clock To correctly write the time to the counters the clock would normally be stopped by writing the Start Stop bit in the Real Time Mode Register to a zero This stops the clock from counting and disables the carry circuitry When initializing the clock’s Real Time Mode Register it is recommended that first the various mode bits be written while maintaining the Start Stop bit reset and then writing to the register a second time with the Start Stop bit set The above method is useful when the entire clock is being corrected If one location is being updated the clock need not be stopped since this will reset the prescaler and time will be lost An ideal example of this is correcting the hours for daylight savings time To write to the clock ‘‘on the fly’’ the best method is to wait for the 1 100 of a second periodic interrupt Then wait an additional 16 ms and then write the data to the clock PRESCALER OSCILLATOR FUNCTIONAL DESCRIPTION Feeding the counter chain is a programmable prescaler which divides the crystal oscillator frequency to 32 kHz and further to 100 Hz for the counter chain (see Figure 3 ) The crystal frequency that can be selected are 32 kHz 32 768 kHz 4 9152 MHz and 4 194304 MHz TL F 11417 – 8 FIGURE 3 Programmable Clock Prescaler Block 7 Functional Description (Continued) The oscillator is programmed via the Real Time Mode Register to operate at various frequencies The crystal oscillator is designed to offer optimum performance at each frequency Thus at 32 768 kHz the oscillator is configured as a low frequency and low power oscillator At the higher frequencies the oscillator inverter is reconfigured In addition to the inverter the oscillator feedback bias resistor is included on chip as shown in Figure 4 The oscillator input may be driven from an external source if desired Refer to test mode application note for details The oscillator stability is enhanced through the use of an on chip regulated power supply The typical range of trimmer capacitor (as shown in Oscillator Circuit Diagram Figure 4 and in the typical application) at the oscillator input pin is suggested only to allow accurate tuning of the oscillator This range is based on a typical printed circuit board layout and may have to be changed depending on the parasitic capacitance of the printed circuit board or fixture being used In all cases the load capacitance specified by the crystal manufacturer (nominal value 11 pF for the 32 768 crystal) is what determines proper oscillation This load capcitance is the series combination of capacitance on each side of the crystal (with respect to ground) INTERRUPT LOGIC FUNCTIONAL DESCRIPTION The RTC has the ability to coordinate processor timing activities To enhance this an interrupt structure has been implemented which enables several types of events to cause interrupts Interrupts are controlled via two Control Registers in block 1 and two Status Registers in block 0 (See Register Description for notes on paging and also Figure 5 and Table I ) The interrupts are enabled by writing a one to the appropriate bits in Interrupt Control Register 0 and or 1 TABLE I Registers that are Applicable to Interrupt Control Register Name Main Status Register Periodic Flag Register Interrupt Control Register 0 Interrupt Control Register 1 Output Mode Register Register Select X 0 1 1 1 Page Select X 0 0 0 0 Address 00H 03H 03H 04H 02H TL F 11417–9 FIGURE 4 Oscillator Circuit Diagram ROUT (Switched Internally) XTAL Co Ct 32 32 768 kHz 47 pF 2 pF–22 pF 150 kX to 350 kX 4 194304 MHz 68 pF 0 pF–80 pF 500X to 900X 4 9152 MHz 68 pF 29 pF–49 pF 500X to 900X The Interrupt Status Flag D0 in the Main Status Register indicates the state of INTR and MFO outputs It is set when either output becomes active and is cleared when all RTC interrupts have been cleared and no further interrupts are pending (i e both INTR and MFO are returned to their inactive state) This flag enables the RTC to be rapidly polled by the mP to determine the source of an interrupt in a wired OR interrupt system (The Interrupt Status Flag provides a true reflection of all conditions routed to the external pins ) Status for the interrupts are provided by the Main Status Register and the Periodic Flag Register Bits D1 – D5 of the Main Status Register are the main interrupt bits These register bits will be set when their associated timing events occur Enabled Alarm comparisons that occur will set its Main Status Register bit to a one However an external interrupt will only be generated if the Alarm interrupt enable bit is set (see Figure 5 ) Disabling the periodic interrupts will mask the Main Status Register periodic bit but not the Periodic Flag Register bits The Power Fail Interrupt bit is set when the interrupt is enabled and a power fail event has occurred and is not reset until the power is restored If all interrupt enable bits are 0 no interrupt will be asserted However status still can be read from the Main Status Register in a polled fashion (see Figure 5 ) To clear a flag in bits D2 and D3 of the Main Status Register a 1 must be written back into the bit location that is to be cleared For the Periodic Flag Register reading the status will reset all the periodic flags 8 Functional Description (Continued) Interrupts Fall Into Three Categories 1 The Alarm Compare Interrupt Issued when the value in the time compared RAM equals the counter 2 The Periodic Interrupts These are issued at every increment of the specific clock counter signal Thus an interrupt is issued every minute second etc Each of these interrupts occurs at the roll-over of the specific counter 3 The Power Fail Interrupt Issued upon recognition of a power fail condition by the internal sensing logic The power failed condition is determined by the signal on the PFAIL pin The internal power fail signal is gated with the chip select signal to ensure that the power fail interrupt does not lock the chip out during a read or write ALARM COMPARE INTERRUPT DESCRIPTON The alarm time comparison interrupt is a special interrupt similar to an alarm clock wake up buzzer This interrupt is generated when the clock time is equal to a value programmed into the alarm compare registers Up to six bytes can be enabled to perform alarm time comparisons on the counter chain These six bytes or some subset thereof would be loaded with the future time at which the interrupt will occur Next the appropriate bits in the Interrupt Control Register 1 are enabled or disabled (refer to detailed description of Interrupt Control Register 1) The RTC then compares these bytes with the clock time When all the enabled compare registers equal the clock time an alarm interrupt is issued but only if the alarm compare interrupt is enabled can the interrupt be generated externally Each alarm compare bit in the Control Register will enable a specific byte for comparison to the clock Disabling a compare byte is the same as setting its associated counter comparator to an ‘‘always equal’’ state For example to generate an interrupt at 3 15 AM of every day load the hours compare with 0 3 (BCD) the minutes compare with 1 5 (BCD) and the faster counters with 0 0 (BCD) and then disable all other compare registers So every day when the time rolls over from 3 14 59 99 an interrupt is issued This bit may be reset by writing a one to bit D3 in the Main Status Register at any time after the alarm has been generated If time comparison for an individual byte counter is disabled that corresponding RAM location can then be used as general purpose storage PERIODIC INTERRUPTS DESCRIPTION The Periodic Flag Register contains six flags which are set by real-time generated ‘‘ticks’’ at various time intervals see Figure 5 These flags constantly sense the periodic signals and may be used whether or not interrupts are enabled These flags are cleared by any read or write operation performed on this register To generate periodic interrupts at the desired rate the associated Periodic Interrupt Enable bit in Interrupt Control Register 0 must be set Any combination of periodic interrupts may be enabled to operate simultaneously Enabled periodic interrupts will now affect the Periodic Interrupt Flag in the Main Status Register When a periodic event occurs the Periodic Interrupt Flag in the Main Status Register is set causing an interrupt to be generated The mP clears both flag and interrupt by writing a ‘‘1’’ to the Periodic Interrupt Flag The individual flags in the periodic Interrupt Flag Register do not require clearing to cancel the interrupt If all periodic interrupts are disabled and a periodic interrupt is left pending (i e the Periodic Interrupt Flag is still set) the Periodic Interrupt Flag will still be required to be cleared to cancel the pending interrupt POWER FAIL INTERRUPTS DESCRIPTION The Power Fail Status Flag in the Main Status Register monitors the state of the internal power fail signal This flag may be interrogated by the mP but it cannot be cleared it is cleared automatically by the RTC when system power is restored To generate an interrupt when the power fails the Power Fail Interrupt Enable bit in Interrupt Control Register 1 is set Although this interrupt may not be cleared it may be masked by clearing the Power Fail Interrupt Enable bit POWER FAILURE CIRCUITRY FUNCTIONAL DESCRIPTION Since the clock must be operated from a battery when the main system supply has been turned off the LV8572A provides circuitry to simplify design in battery backed systems This switches over to the back up supply and isolates itself from the host system Figure 6 shows a simplified block diagram of this circuitry which consists of three major sections 1) power loss logic 2) battery switch over logic and 3) isolation logic Detection of power loss occurs when PFAIL is low Debounce logic provides a 30 ms–63 ms debounce time which will prevent noise on the PFAIL pin from being interpreted as a system failure After 30 ms–63 ms the debounce logic times out and a signal is generated indicating that system power is marginal and is failing The Power Fail Interrupt will then be generated 9 Functional Description (Continued) 10 TL F 11417 – 10 FIGURE 5 Interrupt Control Logic Overview Functional Description (Continued) TL F 11417 – 11 FIGURE 6 System-Battery Switchover (Upper Left) Power Fail and Lock-Out Circuits (Lower Right) If chip select is low when a power failure is detected a safety circuit will ensure that if a read or write is held active continuously for greater than 30 ms after the power fail signal is asserted the lock-out will be forced If a lock-out delay is enabled the LV8572A will remain active for 480 ms after power fail is detected This will enable the mP to perform last minute bookkeeping before total system collapse When the host CPU is finished accessing the RTC it may force the bus lock-out before 480 ms has elapsed by resetting the delay enable bit The battery switch over circuitry is completely independent of the PFAIL pin A separate circuit compares VCC to the VBB voltage As the main supply fails the RTC will continue to operate from the VCC pin until VCC falls below the VBB voltage At this time the battery supply is switched in VCC is disconnected and the device is now in the standby mode If indeterminate operation of the battery switch over circuit is to be avoided then the voltage at the VCC pin must not be allowed to equal the voltage at the VBB pin After the generation of a lock-out signal and eventual switch in of the battery supply the pins of the RTC will be configured as shown in Table II Outputs that have a pull-up resistor should be connected to a voltage no greater than VBB TABLE II Pin Isolation during a Power Failure Pin CS RD WR A0 – A4 D0 – D7 Oscillator PFAIL INTR MFO PFAIL e Logic 0 Locked Out Locked Out Locked Out Not Isolated Not Isolated Not Isolated Standby Mode VBB l VCC Locked Out Locked Out Locked Out Not Isolated Not Isolated Open Drain The Interrupt Power Fail Operation bit in the Real-Time Mode Register determine whether or not the interrupts will continue to function after a power fail event As power returns to the system the battery switch over circuit will switch back to VCC power as soon as it becomes greater than the battery voltage The chip will remain in the locked out state as long as PFAIL e 0 When PFAIL e 1 11 Functional Description (Continued) the chip is unlocked but only after another 30 ms min x 63 ms max debounce time The system designer must ensure that his system is stable when power has returned The power fail circuitry contains active linear circuitry that draws supply current from VCC In some cases this may be undesirable so this circuit can be disabled by masking the power fail interrupt The power fail input can perform all lock-out functions previously mentioned except that no external interrupt will be issued Note that the linear power fail circuitry is switched off automatically when using VBB in standby mode LOW BATTERY INITIAL POWER ON DETECT AND POWER FAIL TIME SAVE There are three other functions provided on the LV8572A to ease power supply control These are an initial Power On detect circuit which also can be used as a time keeping failure detect a low battery detect circuit and a time save on power failure On initial power up the Oscillator Fail Flag will be set to a one and the real time clock start bit reset to a zero This indicates that an oscillator fail event has occurred and time keeping has failed The Oscillator Fail flag will not be reset until the real-time clock is started This allows the system to discriminate between an initial power-up and recovery from a power failure If the battery backed mode is selected then bit D6 of the Periodic Flag Register must be written low This will not affect the contents of the Oscillator Fail Flag Another status bit is the low battery detect This bit is set only when the clock is operating under the VCC pin and when the battery voltage is determined to be less than 2 1V (typical) When the power fail interrupt enable bit is low it disables the power fail circuit and will also shut off the low battery voltage detection circuit as well To relieve CPU overhead for saving time upon power failure the Time Save Enable bit is provided to do this automatically (See also Reading the Clock Latched Read ) The Time Save Enable bit when set causes the Time Save RAM to follow the contents of the clock This bit can be reset by software but if set before a power failure occurs it will automatically be reset when the clock switches to the battery supply (not when a power failure is detected by the PFAIL pin) Thus writing a one to the Time Save bit enables both a software write or power fail write SINGLE POWER SUPPLY APPLICATIONS The LV8572A can be used in a single power supply application To achieve this the VBB pin must be connected to ground and the power connected to VCC and PFAIL pins The Oscillator Failed Single Supply bit in the Periodic Flag Register should be set to a logic 1 which will disable the oscillator battery reference circuit The power fail interrupt should also be disabled This will turn off the linear power fail detection circuits and will eliminate any quiescent power drawn through these circuits Until the crystal select bits are initialized the LV8572A may consume about 50 mA due to arbitrary oscillator selection at power on (This extra 50 mA is not consumed if the battery backed mode is selected) DETAILED REGISTER DESCRIPTION There are 5 external address bits Thus the host microprocessor has access to 28 locations at one time An internal switching scheme provides a total of 61 locations 12 This complete address space is organized into two pages Page 0 contains two blocks of control registers timers real time clock counters and special purpose RAM while page 1 contains general purpose RAM Using two blocks enables the 9 control registers to be mapped into 5 locations The only register that does not get switched is the Main Status Register It contains the page select bit and the register select bit as well as status information A memory map is shown in Figure 2 and register addressing in Table III They show the name address and page locations for the LV8572A TABLE III Register Counter RAM Addressing for LV8572A A0-4 PS RS (Note 1) (Note 2) Description CONTROL REGISTERS 00 03 04 01 02 03 04 X 0 0 0 0 0 0 X 0 0 1 1 1 1 Main Status Register Periodic Flag Register Time Save Control Register Real Time Mode Register Output Mode Register Interrupt Control Register 0 Interrupt Control Register 1 COUNTERS (CLOCK CALENDAR) 05 06 07 08 09 0A 0B 0C 0D 0E 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X X 1 100 1 10 Seconds (0 – 99) Seconds (0 – 59) Minutes (0 – 59) Hours (1 – 12 0 – 23) Days of Month (1 – 28 29 30 31) Months (1 – 12) Years (0 – 99) Julian Date (LSB) (1 – 99) Julian Date (0 – 3) Day of Week (1 – 7) TIME COMPARE RAM 13 14 15 16 17 18 0 0 0 0 0 0 X X X X X X Sec Compare RAM Min Compare RAM Hours Compare RAM DOM Compare RAM Months Compare RAM DOW Compare RAM (0 – 59) (0 – 59) (1 – 12 0 – 23) (1 – 28 29 30 31) (1 – 12) (1 – 7) TIME SAVE RAM 19 1A 1B 1C 1D 1E 1F 01 – 1F 0 0 0 0 0 0 0 1 X X X X X 1 X X Seconds Time Save RAM Minutes Time Save RAM Hours Time Save RAM Day of Month Time Save RAM Months Time Save RAM RAM RAM Test Mode Register 2nd Page General Purpose RAM 1 PS Page Select (Bit D7 of Main Status Register) 2 RS Register Select (Bit D6 of Main Status Register) Functional Description (Continued) MAIN STATUS REGISTER The Periodic Flag Register has the same bit for bit correspondence as Interrupt Control Register 0 except for D6 and D7 For normal operation (i e not a single supply application) this register must be written to on initial power up or after an oscillator fail event D0 – D5 are read only bits D6 and D7 are read write D0 – D5 These bits are set by the real time rollover events (Time Change e 1) The bits are reset when the register is read and can be used as selective data change flags D6 This bit performs a dual function When this bit is read a one indicates that an oscillator failure has occurred and the time information may have been lost Some of the ways an oscillator failure might be caused are failure of the crystal shorting OSC IN or OSC OUT to GND or VCC removal of crystal removal of battery when in the battery backed mode (when a ‘‘0’’ is written to D6) lowering the voltage at the VBB pin to a value less than 2 2V when in the battery backed mode Bit D6 is automatically set to 1 on initial power-up or an oscillator fail event The oscillator fail flag is reset by writing a one to the clock start stop bit in the Real Time Mode Register with the crystal oscillating When D6 is written to it defines whether the TCP is being used in battery backed (normal) or in a single supply mode application When set to a one this bit configures the TCP for single power supply applications This bit is automatically set on initial power-up or an oscillator fail event When set D6 disables the oscillator reference circuit The result is that the oscillator is referenced to VCC When a zero is written to D6 the oscillator reference is enabled thus the oscillator is referenced to VBB This allows operation in standard battery standby applications At initial power on if the LV8572A is going to be programmed for battery backed mode the VBB pin should be connected to a potential in the range of 2 2V to VCC b 0 4V For single supply mode operation the VBB pin should be connected to GND and the PFAIL pin connected to VCC D7 Writing a one to this bit enables the test mode register at location 1F (see Table III) This bit should be forced to zero during initialization for normal operation If the test mode has been entered clear the test mode register before leaving test mode (See separate test mode application note for further details ) TIME SAVE CONTROL REGISTER TL F 11417 – 12 The Main Status Register is always located at address 0 regardless of the register block or the page selected D0 This read only bit is a general interrupt status bit that is taken directly from the interrupt pins The bit is a one when an interrupt is pending on either the INTR pin or the MFO pin (when configured as an interrupt) This is unlike D3 which can be set by an internal event but may not cause an interrupt This bit is reset when the interrupt status bits in the Main Status Register are cleared D1 – D3 These three bits of the Main Status Register are the main interrupt status bits Any bit may be a one when any of the interrupts are pending Once an interrupt is asserted the mP will read this register to determine the cause These interrupt status bits are not reset when read Except for D1 to reset an interrupt a one is written back to the corresponding bit that is being tested D1 is reset whenever the PFAIL pin e logic 1 This prevents loss of interrupt status when reading the register in a polled mode D1 and D3 are set regardless of whether these interrupts are masked or not by bits D6 and D7 of Interrupt Control Registers 0 and 1 D4 – D5 General purpose RAM bits D6 and D7 These bits are Read Write bits that control which register block or RAM page is to be selected Bit D6 controls the register block to be accessed (see memory map) The memory map of the clock is further divided into two memory pages One page is the registers clock and timers and the second page contains 31 bytes of general purpose RAM The page selection is determined by bit D7 PERIODIC FLAG REGISTER TL F 11417 – 13 TL F 11417 – 14 D0 – D4 General purpose RAM bits 13 Functional Description (Continued) D5 The Delay Enable bit is used when a power fail occurs If this bit is set a 480 ms delay is generated internally before the mP interface is locked out This will enable the mP to access the registers for up to 480 ms after it receives a power fail interrupt After a power failure is detected but prior to the 480 ms delay timing out the host mP may force immediate lock out by resetting the Delay Enable bit Note if this bit is a 0 when power fails then after a delay of 30 ms min 63 ms max the mP cannot read the chip D6 This read only bit is set and reset by the voltage at the VBB pin It can be used by the mP to determine whether the battery voltage at the VBB pin is getting too low A comparator monitors the battery and when the voltage is lower than 2 1V (typical) this bit is set The power fail interrupt must be enabled to check for a low battery voltage D7 Time Save Enable bit controls the loading of real-timeclock data into the Time Save RAM When a one is written to this bit the Time Save RAM will follow the corresponding clock registers and when a zero is written to this bit the time in the Time Save RAM is frozen This eliminates any synchronization problems when reading the clock thus negating the need to check for a counter rollover during a read cycle This bit must be set to a one prior to power failing to enable the Time Save feature When the power fails this bit is automatically reset and the time is saved in the Time Save RAM REAL TIME MODE REGISTER D2 The count mode for the hours counter can be set to either 24 hour mode or 12 hour mode with AM PM indicator A one will place the clock in 12 hour mode D3 This bit is the master Start Stop bit for the clock When a one is written to this bit the real time counter’s prescaler and counter chain are enabled When this bit is reset to zero the contents of the real time counter is stopped and the prescaler is cleared When the RTC is initially powered up this bit will be held at a logic 0 until the oscillator starts functioning correctly after which this bit may be modified If an oscillator fail event occurs this bit will be reset to logic 0 D4 This bit controls the operation of the interrupt output in standby mode If set to a one it allows Alarm Periodic and Power Fail interrupts to be functional in standby mode Note that the MFO pin is configured as open drain in standby mode If bit D4 is set to a zero then interrupt control register and the periodic interrupt flag will be reset when the RTC enters the standby mode (VBB l VCC) They will have to be reconfigured when system (VCC) power is restored D5 General purpose RAM D6 and D7 These two bits select the crystal clock frequency as per the following table XT1 0 0 1 1 XT0 0 1 0 1 Crystal Frequency 32 768 kHz 4 194304 MHz 4 9152 MHz 32 000 kHz All bits are Read Write and any mode written into this register can be determined by reading the register On initial power up these bits are random OUTPUT MODE REGISTER TL F 11417–15 D0 – D1 These are the leap year counter bits These bits are written to set the number of years from the previous leap year The leap year counter increments on December 31st and it internally enables the February 29th counter state This method of setting the leap year allows leap year to occur whenever the user wishes to thus providing flexibility in implementing Japanese leap year function LY1 0 0 1 1 LY0 0 1 0 1 Leap Year Counter Leap Year Current Year Leap Year Last Year Leap Year 2 Years Ago Leap Year 3 Years Ago TL F 11417 – 16 D0 – D6 General Purpose RAM 14 Functional Description (Continued) D7 This bit is used to program the signal appearing at the MFO output as follows D7 0 1 MFO Output Signal Power Fail Interrupt Buffered Crystal Oscillator INTERRUPT CONTROL REGISTER 1 INTERRUPT CONTROL REGISTER 0 TL F 11417 – 18 TL F 11417 – 17 D0 – D5 These bits are used to enable one of the selected periodic interrupts by writing a one into the appropriate bit These interrupts are issued at the rollover of the clock For example the minutes interrupt will be issued whenever the minutes counter increments In all likelihood the interrupt will be enabled asynchronously with the real time change Therefore the very first interrupt will occur in less than the periodic time chosen but after the first interrupt all subsequent interrupts will be spaced correctly These interrupts are useful when minute second real time reading or task switching is required When all six bits are written to a 0 this disables periodic interrupts from the Main Status Register and the interrupt pin D6 and D7 General Purpose RAM D0 – D5 Each of these bits are enable bits which will enable a comparison between an individual clock counter and its associated compare RAM If any bit is a zero then that clock-RAM comparator is set to the ‘‘always equal’’ state and the associated TIME COMPARE RAM byte can be used as general purpose RAM However to ensure that an alarm interrupt is not generated at bit D3 of the Main Status Register all bits must be written to a logic zero D6 In order to generate an external alarm compare interrupt to the mP from bit D3 of the Main Status Register this bit must be written to a logic 1 If battery backed mode is selected then this bit is controlled by D4 of the Real Time Mode Register D7 The MSB of this register is the enable bit for the Power Fail Interrupt When this bit is set to a one an interrupt will be generated to the mP when VBB l V CC If battery backed mode is selected then this bit is controlled by D4 of the Real Time Mode Register This bit also enables the low battery detection analog circuitry 15 Control and Status Register Address Bit Map D7 D6 Main Status Register PS e X RW RW Page Select Register Select D5 RS e X RW RAM D4 D3 ADDRESS e 00H RW R W1 RAM Alarm Interrupt D2 R W1 Periodic Interrupt D1 R2 Power Fail Interrupt D0 R3 Interrupt Status 1 Reset by writing 1 to bit 2 Set reset by voltage at PFAIL pin 3 Reset when all pending interrupts are removed 4 Read Osc fail Write 0 BattBacked Mode Write 1 Single Supply Mode 5 Reset by positive edge of read Periodic Flag Register PS e 0 RW R W4 Test Mode Osc Fail Single Supply RS e 0 R5 1 ms Flag R5 Address e 03H R5 100 ms Flag R5 Seconds Flag R5 10 Second Flag R5 Minute Flag 10 ms Flag Time Save Control Register PS e 0 RW R6 RW Time Save Enable Low Battery Flag Power Fail Delay Enable RS e 0 RW RAM Address e 04H RW RW RAM RAM RW RAM RW RAM 6 Set and reset by VBB voltage Real Time Mode Register PS e 0 Crystal Freq XT1 Crystal Freq XT0 RAM RS e 1 Address e 01H Clock Start Stop 12 24 Hr Mode Leap Year MSB Leap Year LSB All Bits R W Interrupt EN on Back-Up Output Mode Register PS e 0 MFO as Crystal RAM RS e 1 RAM Address e 02H RAM RAM Address e 03H 100 ms Interrupt Enable Seconds Interrupt Enable 10 Second Interrupt Enable Minute Interrupt Enable All Bits R W RAM RAM RAM All Bits R W Interrupt Control Register 0 PS e 0 RAM RAM 1 ms Interrupt Enable RS e 1 10 ms Interrupt Enable RS e 1 Month Interrupt Enable Interrupt Control Register 1 PS e 0 Power Fail Interrupt Enable Alarm Interrupt Enable DOW Interrupt Enable Address e 04H DOM Interrupt Enable Hours Interrupt Enable Minute Interrupt Enable Second Interrupt Enable All Bits R W 16 Application Hints Suggested Initialization Procedure for LV8572A in Battery Backed Applications that use the VBB Pin 1 2 3 Enter the test mode by writing a 1 to bit D7 in the Periodic Flag Register Write zero to the RAM TEST mode Register located in page 0 address HEX 1F Leave the test mode by writing a 0 to bit D7 in the Periodic Flag Register Steps 1 2 3 guarantee that if the test mode had been entered during power on (due to random pulses from the system) all test mode conditions are cleared Most important is that the OSC Fail Disable bit is cleared Refer to AN-589 for more information on test mode operation After power on (VCC and VBB powered) select the correct crystal frequency bits (D7 D6 in the Real Time Mode Register) as shown in Table IV TABLE IV Frequency 32 768 kHz 4 194304 MHz 4 9152 MHz 32 0 kHz 5 D7 0 0 1 1 D6 0 1 0 1 main the same as in step 1 Under normal operation this bit can be set only if the oscillator is running During the software loop RAM real time counters output configuration interrupt control and timer functions may be initialized Test bit D6 in the Periodic Flag Register IF a 1 go to 5 1 If this bit remains a 1 after 3 seconds then abort and check hardware The crystal may be defective or not installed There may be a short at OSC IN or OSC OUT to VCC or GND or to some impedance that is less than 10 MX IF a 0 then the oscillator is running go to step 7 Write a 0 to bit D6 in the Periodic Flag Register This action puts the clock chip in the battery backed mode This mode can be entered only if the OSC fail flag (bit D6 of the Periodic Flag Register) is a 0 Reminder Bit D6 is a dual function bit When read D6 returns oscillator status When written D6 causes either the Battery Backed Mode or the Single Supply Mode of operation The only method to ensure the chip is in the battery backed mode is to measure the waveform at the OSC OUT pin If the battery backed mode was selected successfully then the peak to peak waveform at OSC OUT is referenced to the battery voltage If not in battery backed mode the waveform is referenced to VCC The measurement should be made with a high impedance low capacitance probe (10 MX 10 pF oscilloscope probe or better) Typical peak to peak swings are within 0 6V of VCC and ground respectively Write a 1 to bit D7 of Interrupt Control Register 1 This action enables the PFAIL pin and associated circuitry Initialize the rest of the chip as needed 6 7 4 Enter a software loop that does the following Set a 3 second(approx) software counter The crystal oscillator may take 1 second to start 5 1 Write a 1 to bit D3 in the Real Time Mode Register (try to start the clock) Make sure the crystal select bits re- 8 9 Typical Application TL F 11417 – 19 These components may be necessary to meet UL requirements for lithium batteries Consult battery manufacturer 17 Typical Performance Characteristics Operating Current vs Supply Voltage (Single Supply Mode FOSC e 32 768 kHz) Operating Current vs Supply Voltage (Battery Backed Mode FOSC e 32 768 kHz VBB e 2 5V) TL F 11417–20 TL F 11417 – 21 Standby Current vs Power Supply Voltage (FOSC e 32 768 kHz) Standby Current vs Power Supply Voltage FOSC e 4 194304 MHz TL F 11417–22 TL F 11417 – 23 18 Physical Dimensions inches (millimeters) Molded Small Outline Package (M) Order Number LV8572AM NS Package Number M24B Molded Dual-In-Line Package (N) Order Number LV8572AN NS Package Number N24C 19 LV8572A Real Time Clock (RTC) Physical Dimensions inches (millimeters) (Continued) Plastic Chip Carrier Package (V) Order Number LV8572AV NS Package Number V28A LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user National Semiconductor Corporation 1111 West Bardin Road Arlington TX 76017 Tel 1(800) 272-9959 Fax 1(800) 737-7018 2 A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness National Semiconductor Europe Fax (a49) 0-180-530 85 86 Email cnjwge tevm2 nsc com Deutsch Tel (a49) 0-180-530 85 85 English Tel (a49) 0-180-532 78 32 Fran ais Tel (a49) 0-180-532 93 58 Italiano Tel (a49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd 13th Floor Straight Block Ocean Centre 5 Canton Rd Tsimshatsui Kowloon Hong Kong Tel (852) 2737-1600 Fax (852) 2736-9960 National Semiconductor Japan Ltd Tel 81-043-299-2309 Fax 81-043-299-2408 National does not assume any responsibility for use of any circuitry described no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications
LV8572AM 价格&库存

很抱歉,暂时无法提供与“LV8572AM”相匹配的价格&库存,您可以联系我们找货

免费人工找货