NXP Semiconductors
Technical Data
Document Number: A2I09VD015N
Rev. 0, 06/2018
RF LDMOS Wideband Integrated
Power Amplifiers
The A2I09VD015N wideband integrated circuit is designed with on--chip
matching that makes it usable from 575 to 960 MHz. This multi -- stage
structure is rated for 48 to 55 V operation and covers all typical cellular base
station modulation formats.
900 MHz
Typical Single--Carrier W--CDMA Characterization Performance:
VDD = 48 Vdc, IDQ1(A+B) = 16 mA, IDQ2(A+B) = 84 mA, Pout = 2 W Avg., Input
Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.(1)
Frequency
Gps
(dB)
PAE
(%)
ACPR
(dBc)
920 MHz
32.9
19.3
–45.9
940 MHz
33.0
19.7
–45.5
960 MHz
32.8
19.6
–44.9
A2I09VD015NR1
A2I09VD015GNR1
575–960 MHz, 2 W AVG., 48 V
AIRFAST RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
TO--270WB--15
PLASTIC
A2I09VD015NR1
Features
On--chip matching (50 ohm input, DC blocked)
Integrated quiescent current temperature compensation with
enable/disable function (2)
TO--270WBG--15
PLASTIC
A2I09VD015GNR1
Designed for digital predistortion error correction systems
Optimized for Doherty applications
VDS1A
RFinA
VGS1A
VGS2A
VGS1B
VGS2B
RFout1/VDS2A
Quiescent Current
Temperature Compensation (2)
Quiescent Current
Temperature Compensation (2)
RFinB
RFout2/VDS2B
VDS1B
Figure 1. Functional Block Diagram
VDS1A
VGS2A
VGS1A
RFinA
N.C.
N.C.
N.C.
N.C.
RFinB
VGS1B
VGS2B
VDS1B
1
2
3
4
5
6
7
8
9
10
11
12
15
RFout1/VDS2A
14
13
N.C.
RFout2/VDS2B
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistor.
Figure 2. Pin Connections
1. All data measured in fixture with device soldered to heatsink.
2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current
Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.
2018 NXP B.V.
RF Device Data
NXP Semiconductors
A2I09VD015NR1 A2I09VD015GNR1
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain--Source Voltage
Rating
VDSS
–0.5, +105
Vdc
Gate--Source Voltage
VGS
–0.5, +10
Vdc
Operating Voltage
VDD
55, +0
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
TC
–40 to +150
C
Case Operating Temperature Range
Operating Junction Temperature Range
(1,2)
Input Power
TJ
–40 to +225
C
Pin
20
dBm
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 74C, 2 W, 940 MHz
Stage 1, 48 Vdc, IDQ1(A+B) 16 mA
Stage 2, 48 Vdc, IDQ2(A+B) 78 mA
RJC
C/W
7.2
3.1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JS--001--2017)
1B
Charge Device Model (per JS--002--2014)
C0B
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.nxp.com/RF/calculators.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
A2I09VD015NR1 A2I09VD015GNR1
2
RF Device Data
NXP Semiconductors
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 105 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 55 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.2 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage (1)
(VDS = 10 Vdc, ID = 1 Adc)
VGS(th)
1.3
1.8
2.3
Vdc
Gate Quiescent Voltage
(VDS = 48 Vdc, IDQ1(A+B) = 16 mAdc)
VGS(Q)
2.2
2.4
2.6
Vdc
Fixture Gate Quiescent Voltage
(VDD = 48 Vdc, IDQ1(A+B) = 16 mAdc, Measured in Functional Test)
VGG(Q)
4.4
4.8
5.2
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 105 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 55 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.2 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage (1)
(VDS = 10 Vdc, ID = 6 Adc)
VGS(th)
1.3
1.8
2.3
Vdc
Gate Quiescent Voltage
(VDS = 48 Vdc, IDQ2(A+B) = 78 mAdc)
VGS(Q)
2.0
2.2
2.4
Vdc
Fixture Gate Quiescent Voltage
(VDD = 48 Vdc, IDQ2(A+B) = 78 mAdc, Measured in Functional Test)
VGG(Q)
4.0
4.4
4.8
Vdc
Drain--Source On--Voltage (1)
(VGS = 10 Vdc, ID = 60 mAdc)
VDS(on)
0.1
0.3
0.5
Vdc
Characteristic
Stage 1 -- Off Characteristics (1)
Stage 1 -- On Characteristics
Stage 2 -- Off Characteristics (1)
Stage 2 -- On Characteristics
1. Each side of device measured separately.
(continued)
A2I09VD015NR1 A2I09VD015GNR1
RF Device Data
NXP Semiconductors
3
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
(1,2)
Functional Tests
(In NXP Production Test Fixture, 50 ohm system) VDD = 48 Vdc, IDQ1(A+B) = 16 mA, IDQ2(A+B) = 78 mA,
Pout = 2 W Avg., f = 920 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.
ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset.
Power Gain
Gps
31.0
32.8
34.0
dB
Power Added Efficiency
PAE
18.0
18.8
—
%
Adjacent Channel Power Ratio
ACPR
—
–43.9
–41.0
dBc
Pout @ 3 dB Compression Point, CW
P3dB
16.6
18.5
—
W
Load Mismatch (In NXP Production Test Fixture, 50 ohm system) IDQ1(A+B) = 16 mA, IDQ2(A+B) = 78 mA, f = 940 MHz
VSWR 10:1 at 55 Vdc, 24 W CW Output Power
(3 dB Input Overdrive from 19 W CW Rated Power)
No Device Degradation
Typical Performance (3) (In NXP Characterization Test Fixture, 50 ohm system) VDD = 48 Vdc, IDQ1(A+B) = 16 mA, IDQ2(A+B) = 78 mA,
920–960 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
17.7
—
W
Pout @ 3 dB Compression Point (4)
P3dB
—
18.5
—
W
—
–9
—
VBWres
—
270
—
MHz
—
—
2.9
3.2
—
—
AM/PM
(Maximum value measured at the P3dB compression point across
the 920–960 MHz frequency range.)
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
Quiescent Current Accuracy over Temperature (5)
with 2 k Gate Feed Resistors (--30 to 85C) Stage 1
with 2 k Gate Feed Resistors (--30 to 85C) Stage 2
IQT
%
Gain Flatness in 40 MHz Bandwidth @ Pout = 2 W Avg.
GF
—
0.2
—
dB
Gain Variation over Temperature
(–30C to +85C)
G
—
0.036
—
dB/C
P1dB
—
0.007
—
dB/C
Output Power Variation over Temperature
(–30C to +85C)
Table 6. Ordering Information
Device
A2I09VD015NR1
A2I09VD015GNR1
Tape and Reel Information
R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel
Package
TO--270WB--15
TO--270WBG--15
1. Part internally input and output matched.
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull
wing (GN) parts.
3. All data measured in fixture with device soldered to heatsink.
4. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.
5. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current
Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.
A2I09VD015NR1 A2I09VD015GNR1
4
RF Device Data
NXP Semiconductors
VGS2
VGS1
VDS2
A2I09VD015N
VDS1
R1
C7
R2
C8
C1
C2
R5
C12
C17
C25
R8
Z1
R9 R10
C28
C18
C14
C15
C24
C23
R7
C19
C3
Rev. 2
C21
CUT OUT AREA
C11
C26
C27
C16
C13
Z2
C22
C20
R6
C4
C5
C6
R4
C9
C10
VGS3
R3
VGS4
VDS1
VDS2
Figure 3. A2I09VD015NR1 Production Test Circuit Component Layout
Table 7. A2I09VD015NR1 Production Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10
10 F Chip Capacitor
C5750X7SA106M230KB
TDK
C11, C12, C13, C14
10 F Chip Capacitor
C3225X7S1H106M250AB
TDK
C15, C16, C17, C18
10 nF Chip Capacitor
C0805C103K5RAC
Kemet
C19, C20, C21, C22, C23, C24, C25, C26, C27, C28
47 pF Chip Capacitor
ATC600S470JT250XT
ATC
R1, R2, R3, R4
2.2 k, 1/8 W Chip Resistor
CRCW08052K20JNEA
Vishay
R5
50 , 8 W Termination Chip Resistor
C8A50Z4A
Anaren
R6
50 , 20 W Termination Chip Resistor
C20A50Z4
Anaren
R7, R8, R9, R10
10 , 1/8 W Chip Resistor
CRCW080510R0FKEA
Vishay
Z1, Z2
800--1000 MHz, 90, 3 dB Hybrid Coupler
X3C09P1-03
Anaren
PCB
Rogers RO4350B, 0.020, r = 3.66
—
MTL
A2I09VD015NR1 A2I09VD015GNR1
RF Device Data
NXP Semiconductors
5
VGS2
VGS1
D99736
VDS2
A2I09VD015N
VDS1
R1
C7
R2
C8
C1
C2
C11
R5
C12
C17
C25
R8
C15
C24
C23
C19
C3
Rev. 2
R7
C21
Q1
Z1
R9 R10
C28
C18
C14
Z2
C22
C26
C27
C16
C13
C20
R6
C4
C5
C6
R4
C9
C10
VGS3
R3
VGS4
VDS1
VDS2
Note: All data measured in fixture with device soldered to heatsink. Production fixture does not include device
soldered to heatsink.
Figure 4. A2I09VD015NR1 Characterization Test Circuit Component Layout — 920–960 MHz
Table 8. A2I09VD015NR1 Characterization Test Circuit Component Designations and Values — 920–960 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10
10 F Chip Capacitor
C5750X7SA106M230KB
TDK
C11, C12, C13, C14
10 F Chip Capacitor
C3225X7S1H106M250AB
TDK
C15, C16, C17, C18
10 nF Chip Capacitor
C0805C103K5RAC
Kemet
C19, C20, C21, C22, C23, C24, C25, C26, C27, C28
47 pF Chip Capacitor
ATC600S470JT250XT
ATC
Q1
RF Power LDMOS Amplifier
A2I09VD015N
NXP
R1, R2, R3, R4
2.2 k, 1/8 W Chip Resistor
CRCW08052K20JNEA
Vishay
R5
50 , 8 W Termination Chip Resistor
C8A50Z4A
Anaren
R6
50 , 20 W Termination Chip Resistor
C20A50Z4
Anaren
R7, R8, R9, R10
10 , 1/8 W Chip Resistor
CRCW080510R0FKEA
Vishay
Z1, Z2
800--1000 MHz, 90, 3 dB Hybrid Coupler
X3C09P1-03
Anaren
PCB
Rogers RO4350B, 0.020, r = 3.66
D99736
MTL
A2I09VD015NR1 A2I09VD015GNR1
6
RF Device Data
NXP Semiconductors
18
16
14
31.5
12
PARC
31
30.5
ACPR
30
–43
–.3
–44
–.6
–45
–46
29.5
29
28.5
820
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF
840
860
880
900
920
940
–47
–1.2
–1.5
–1.8
–48
980
960
–.9
PARC (dB)
20
D
VDD = 48 Vdc, Pout = 2 W (Avg.)
33 IDQ1(A+B) = 16 mA
32.5 IDQ2(A+B) = 84 mA
Gps
32
ACPR (dBc)
Gps, POWER GAIN (dB)
33.5
D, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS — 920–960 MHz
f, FREQUENCY (MHz)
IMD, INTERMODULATION DISTORTION (dBc)
Figure 5. Single--Carrier Output Peak--to--Average Ratio Compression
(PARC) Broadband Performance @ Pout = 2 Watts Avg.
–15
VDD = 48 Vdc, Pout = 8 W (PEP), IDQ1(A+B) = 16 mA
IDQ2(A+B) = 84 mA
IM3--U
–30
IM3--L
IM5--L
IM5--U
–45
IM7--L
–60
IM7--U
–75
–90
Two--Tone Measurements, (f1 + f2)/2 = Center Frequency of 940 MHz
10
1
400
100
TWO--TONE SPACING (MHz)
32.8
0
32.7
32.6
32.5
32.4
32.3
VDD = 48 Vdc, IDQ1(A+B) = 16 mA, IDQ2(A+B) = 84 mA
f = 940 MHz, Single--Carrier W--CDMA
ACPR
–1
–30
35
–33
30
–1 dB = 2.3 W
–2
25
–2 dB = 3.1 W
Gps
PARC
–3
D
–4
–5
40
20
–3 dB = 4.1 W
15
3.84 MHz Channel Bandwidth
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF
1
2
3
4
5
6
10
–36
–39
ACPR (dBc)
1
D DRAIN EFFICIENCY (%)
32.9
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 6. Intermodulation Distortion Products
versus Two--Tone Spacing
–42
–45
–48
Pout, OUTPUT POWER (WATTS)
Figure 7. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
A2I09VD015NR1 A2I09VD015GNR1
RF Device Data
NXP Semiconductors
7
TYPICAL CHARACTERISTICS — 920–960 MHz
920 MHz
32
29
920 MHz
50
–25
20
ACPR
30
–20
960 MHz
40
940 MHz
920 MHz
30
940 MHz 960 MHz
31
D
60
10
960 MHz
940 MHz
0
20
10
1
–30
–35
–40
ACPR (dBc)
VDD = 48 Vdc, IDQ1(A+B) = 16 mA, IDQ2(A+B) = 84 mA
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth
34 Input Signal PAR = 9.9 dB @ 0.01%
Probability on CCDF
33
Gps
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
35
–45
–50
Pout, OUTPUT POWER (WATTS) AVG.
Figure 8. Single--Carrier W--CDMA Power Gain, Drain
Efficiency and ACPR versus Output Power
36
GAIN (dB)
VDD = 48 Vdc
Pin = 0 dBm
34 I
DQ1(A+B) = 16 mA
IDQ2(A+B) = 84 mA
32
Gain
30
28
26
24
750
800
850
900
950
1000
1050
1100
1150
f, FREQUENCY (MHz)
Figure 9. Broadband Frequency Response
A2I09VD015NR1 A2I09VD015GNR1
8
RF Device Data
NXP Semiconductors
Table 9. Load Pull Performance — Maximum Power Tuning
VDD = 48 Vdc, IDQ1 = 8 mA, IDQ2 = 39 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Output Power
P1dB
Zload
()
Zsource
()
Zin
()
920
51.0 – j3.11
65.8 + j7.62
940
49.2 + j1.23
60.4 + j2.53
960
50.9 + j2.55
54.2 + j0.33
f
(MHz)
(1)
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
35.3 + j33.2
31.6
40.2
10
59.5
–2
32.5 + j32.9
31.5
40.2
11
59.6
–3
29.7 + j32.1
31.3
40.2
10
58.7
–4
Max Output Power
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
920
51.0 – j3.11
66.2 + j7.48
33.7 + j31.8
29.6
41.1
13
62.1
–3
940
49.2 + j1.23
60.0 + j2.49
31.3 + j31.1
29.5
41.1
13
61.5
–4
960
50.9 + j2.55
52.8 + j1.10
28.8 + j30.7
29.3
41.0
13
61.1
–5
(1) Load impedance for optimum P1dB power.
(2) Load impedance for optimum P3dB power.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Note: Measurement made on a per side basis.
Table 10. Load Pull Performance — Maximum Efficiency Tuning
VDD = 48 Vdc, IDQ1 = 8 mA, IDQ2 = 39 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle
Max Drain Efficiency
P1dB
f
(MHz)
Zsource
()
Zin
()
Zload (1)
()
920
51.0 – j3.11
67.5 + j6.05
18.5 + j45.3
33.7
38.5
7
70.0
–4
940
49.2 + j1.23
60.9 + j1.05
14.3 + j44.7
33.8
37.5
6
68.8
–5
960
50.9 + j2.55
54.3 + j0.28
18.0 + j40.8
32.9
38.8
8
67.5
–4
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
Max Drain Efficiency
P3dB
f
(MHz)
Zsource
()
Zin
()
Zload (2)
()
Gain (dB)
(dBm)
(W)
D
(%)
AM/PM
()
920
51.0 – j3.11
67.3 + j4.87
18.5 + j45.7
31.7
39.4
9
71.1
–3
940
49.2 + j1.23
59.2 – j0.18
13.0 + j46.5
32.0
38.1
6
69.9
–4
960
50.9 + j2.55
53.5 – j0.45
18.3 + j40.8
30.9
39.8
10
69.4
–2
(1) Load impedance for optimum P1dB efficiency.
(2) Load impedance for optimum P3dB efficiency.
Zsource = Measured impedance presented to the input of the device at the package reference plane.
Zin
= Impedance as measured from gate contact to ground.
Zload = Measured impedance presented to the output of the device at the package reference plane.
Note: Measurement made on a per side basis.
Input Load Pull
Tuner and Test
Circuit
Output Load Pull
Tuner and Test
Circuit
Device
Under
Test
Zsource Zin
Zload
A2I09VD015NR1 A2I09VD015GNR1
RF Device Data
NXP Semiconductors
9
P1dB – TYPICAL LOAD PULL CONTOURS — 940 MHz
55
55
38.5
38
IMAGINARY ()
45
E
36
40
39.5
50
45
40
35
IMAGINARY ()
50
39
P
30
40
25
37
38
20
15
5
10
38.5
15
20
25
30 35
REAL ()
40
45
50
55
15
60
30.5
31
32.5
31.5
32
P
30
20
15
15
20
25
30 35
REAL ()
40
45
50
55
60
Figure 12. P1dB Load Pull Gain Contours (dB)
NOTE:
10
15
20
25
30 35
REAL ()
40
45
50
55
60
–2
–4
E
–10
–8
P
30
20
15
5
35
25
10
54
40
25
5
56
52
45
IMAGINARY ()
IMAGINARY ()
E
33
P
Figure 11. P1dB Load Pull Efficiency Contours (%)
50
33.5
58
30
50
35
60
35
55
34
62
40
55
40
64
20
39
Figure 10. P1dB Load Pull Output Power Contours (dBm)
45
66
68
25
39.5
39
E
–6
–4
–4
5
10
15
20
25
30 35
REAL ()
40
45
50
55
60
Figure 13. P1dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
A2I09VD015NR1 A2I09VD015GNR1
10
RF Device Data
NXP Semiconductors
P3dB – TYPICAL LOAD PULL CONTOURS — 940 MHz
55
38
50
39.5
55
40
E
45
50
40.5
37
40
35
41
P
30
25
38
5
39
10
39.5
15
40
20
40.5
25
30 35
REAL ()
40
45
50
55
62
60
40
58
35
56
P
30
15
60
54
5
10
15
20
25
30 35
REAL ()
40
45
50
55
60
Figure 15. P3dB Load Pull Efficiency Contours (%)
55
55
50
50
E
28.5
32
40
29
29.5
31.5
35
31
30.5
30
P
30
40 –14
35
30
–8
25
20
20
5
10
15
20
25
30 35
REAL ()
40
45
50
55
60
Figure 16. P3dB Load Pull Gain Contours (dB)
NOTE:
–2
–12
–10
25
15
0
E
45
IMAGINARY ()
45
IMAGINARY ()
64
20
40
Figure 14. P3dB Load Pull Output Power Contours (dBm)
15
66
25
20
15
68
E
45
IMAGINARY ()
IMAGINARY ()
39
38.5
5
10
–4
P
–6
15
20
25
30 35
REAL ()
40
45
50
55
60
Figure 17. P3dB Load Pull AM/PM Contours ()
P
= Maximum Output Power
E
= Maximum Drain Efficiency
Gain
Drain Efficiency
Linearity
Output Power
A2I09VD015NR1 A2I09VD015GNR1
RF Device Data
NXP Semiconductors
11
PACKAGE DIMENSIONS
A2I09VD015NR1 A2I09VD015GNR1
12
RF Device Data
NXP Semiconductors
A2I09VD015NR1 A2I09VD015GNR1
RF Device Data
NXP Semiconductors
13
A2I09VD015NR1 A2I09VD015GNR1
14
RF Device Data
NXP Semiconductors
A2I09VD015NR1 A2I09VD015GNR1
RF Device Data
NXP Semiconductors
15
A2I09VD015NR1 A2I09VD015GNR1
16
RF Device Data
NXP Semiconductors
A2I09VD015NR1 A2I09VD015GNR1
RF Device Data
NXP Semiconductors
17
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages
AN1955: Thermal Measurement Methodology of RF Power Amplifiers
AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
Engineering Bulletins
EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
Electromigration MTTF Calculator
RF High Power Model
.s2p File
Development Tools
Printed Circuit Boards
To Download Resources Specific to a Given Part Number:
1. Go to http://www.nxp.com/RF
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
June 2018
Description
Initial release of data sheet
A2I09VD015NR1 A2I09VD015GNR1
18
RF Device Data
NXP Semiconductors
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits based on the information
in this document. NXP reserves the right to make changes without further notice to any
products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.
NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service
names are the property of their respective owners.
E 2018 NXP B.V.
A2I09VD015NR1 A2I09VD015GNR1
Document
Number:
RF
Device
Data A2I09VD015N
Rev. 0,Semiconductors
06/2018
NXP
19