0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A2T23H160-24SR3

A2T23H160-24SR3

  • 厂商:

    NXP(恩智浦)

  • 封装:

    NI-780S-4L2L

  • 描述:

    ICTRANSRFLDMOS

  • 数据手册
  • 价格&库存
A2T23H160-24SR3 数据手册
Freescale Semiconductor Technical Data Document Number: A2T23H160--24S Rev. 0, 11/2015 RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 28 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 2300 to 2400 MHz. A2T23H160--24SR3 2300 MHz  Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Vdc, IDQA = 350 mA, VGSB = 0.7 Vdc, Pout = 28 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) D (%) Output PAR (dB) ACPR (dBc) 2300 MHz 17.7 48.8 7.9 –33.5 2350 MHz 17.7 48.4 8.0 –37.2 2400 MHz 17.8 48.2 7.9 –37.0 2300–2400 MHz, 28 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTOR Features  Advanced High Performance In--Package Doherty  Greater Negative Gate--Source Voltage Range for Improved Class C Operation  Designed for Digital Predistortion Error Correction Systems NI--780S--4L2L 6 VBWA(1) Carrier RFinA/VGSA 1 5 RFoutA/VDSA RFinB/VGSB 2 4 RFoutB/VDSB Peaking 3 VBWB(1) (Top View) Figure 1. Pin Connections 1. Device cannot operate with VDD current supplied through pin 3 and pin 6.  Freescale Semiconductor, Inc., 2015. All rights reserved. RF Device Data Freescale Semiconductor, Inc. A2T23H160--24SR3 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS –0.5, +65 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg –65 to +150 C Case Operating Temperature Range TC –40 to +150 C (1,2) TJ –40 to +225 C Characteristic Symbol Value (2,3) Unit RJC 0.49 C/W Operating Junction Temperature Range Table 2. Thermal Characteristics Thermal Resistance, Junction to Case Case Temperature 73C, 28 W Avg., W--CDMA, 28 Vdc, IDQA = 350 mA, VGSB = 0.7 Vdc, 2350 MHz Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 Machine Model (per EIA/JESD22--A115) B Charge Device Model (per JESD22--C101) IV Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Zero Gate Voltage Drain Leakage Current (VDS = 32 Vdc, VGS = 0 Vdc) IDSS — — 1 Adc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 Adc Gate Threshold Voltage (VDS = 10 Vdc, ID = 60 Adc) VGS(th) 0.8 1.2 1.6 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, ID = 350 mAdc, Measured in Functional Test) VGSA(Q) 1.4 1.8 2.2 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 0.6 Adc) VDS(on) 0.1 0.15 0.3 Vdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 100 Adc) VGS(th) 0.8 1.2 1.6 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.0 Adc) VDS(on) 0.1 0.15 0.3 Vdc Characteristic Off Characteristics (4) On Characteristics -- Side A, Carrier On Characteristics -- Side B, Peaking 1. 2. 3. 4. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.freescale.com/rf/calculators. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955. Each side of device measured separately. (continued) A2T23H160--24SR3 2 RF Device Data Freescale Semiconductor, Inc. Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Functional Tests (1,2) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 350 mA, VGSB = 0.7 Vdc, Pout = 28 W Avg., f = 2300 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. Power Gain Gps 17.1 17.7 20.1 dB Drain Efficiency D 46.5 48.8 — % PAR 7.4 7.9 — dB ACPR — –33.5 –30.0 dBc Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Load Mismatch (2) (In Freescale Doherty Test Fixture, 50 ohm system) IDQA = 350 mA, VGSB = 0.7 Vdc, f = 2350 MHz No Device Degradation VSWR 10:1 at 32 Vdc, 151 W CW Output Power (3 dB Input Overdrive from 120 W CW Rated Power) Typical Performance (2) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 350 mA, VGSB = 0.7 Vdc, 2300–2400 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 120 — W Pout @ 3 dB Compression Point (3) P3dB — 178 — W  — –18 —  VBWres — 150 — MHz Gain Flatness in 100 MHz Bandwidth @ Pout = 28 W Avg. GF — 0.5 — dB Gain Variation over Temperature (–30C to +85C) G — 0.009 — dB/C P1dB — 0.006 — dB/C AM/PM (Maximum value measured at the P3dB compression point across the 2300–2400 MHz frequency range) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Output Power Variation over Temperature (–30C to +85C) Table 5. Ordering Information Device A2T23H160--24SR3 Tape and Reel Information R3 Suffix = 250 Units, 44 mm Tape Width, 13--inch Reel Package NI--780S--4L2L 1. Part internally matched both on input and output. 2. Measurements made with device in an asymmetrical Doherty configuration. 3. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF. A2T23H160--24SR3 RF Device Data Freescale Semiconductor, Inc. 3 VDDA VGGA C20 R4 C18 C22 C14 R2 Z1 C6 C2 C11 C10 R3 C15 CUT OUT AREA C5 C1 R1 C24 C16 C C4 C13 C8 P C3 C7 C12 C17 C9 C19 D63616 C23 A2T23H160--24S Rev. 1 VGGB VDDB R5 C21 Figure 2. A2T23H160--24SR3 Test Circuit Component Layout Table 6. A2T23H160--24SR3 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C2, C3, C9, C22, C23, C24 9.1 pF Chip Capacitors ATC600F9R1JT250XT ATC C4 6.8 pF Chip Capacitor ATC600F6R8JT250XT ATC C5, C6 0.4 pF Chip Capacitors ATC600F0R4BT250XT ATC C7, C8 0.2 pF Chip Capacitors ATC600F0R2BT250XT ATC C10 0.3 pF Chip Capacitor ATC600F0R3BT250XT ATC C11 1.0 pF Chip Capacitor ATC600F1R0BT250XT ATC C12 0.9 pF Chip Capacitor ATC600F0R9BT250XT ATC C13 0.6 pF Chip Capacitor ATC600F0R6BT250XT ATC C14, C15, C16, C17, C18, C19 10 F Chip Capacitors C5750X7S2A106M230KB TDK C20, C21 470 F, 50 V Electrolytic Capacitors 477CKS050M Illinois R1 50 , 20 W Chip Resistor C20N50Z4 Anaren R2, R3 2.2 , 1/4 W Chip Resistors CRCW12062R20JNEA Vishay R4, R5 10 K, 1/4 W Chip Resistors CRCW120610K0JNEA Vishay Z1 2300–2700 MHz Band, 90, 2 dB Directional Coupler X3C25P1-02S Anaren PCB Rogers RO4350B, 0.020, r = 3.66 D63616 MTL A2T23H160--24SR3 4 RF Device Data Freescale Semiconductor, Inc. 17.95 Gps, POWER GAIN (dB) 48.8 D 48.6 VDD = 28 Vdc, Pout = 28 W (Avg.), IDQA = 350 mA VGSB = 0.7 Vdc, Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 17.9 17.85 17.8 48.4 48.2 Gps 17.75 17.7 PARC 17.65 17.6 2305 2320 2335 2350 2365 f, FREQUENCY (MHz) 2380 –1.6 –34 –1.8 –35 –36 –37 ACPR 17.55 2290 –33 ACPR (dBc) 18 2395 –2 –2.2 –2.4 PARC (dB) 49 18.05 D, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS –2.6 –38 2410 IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 28 Watts Avg. –10 VDD = 28 Vdc, Pout = 56 W (PEP), IDQA = 350 mA VGSB = 0.7 Vdc, Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 2350 MHz –20 IM3--U –30 IM3--L –40 IM5--L IM5--U –50 –60 IM7--U IM7--L 1 300 100 10 TWO--TONE SPACING (MHz) 19 0 18.5 18 17.5 17 16.5 VDD = 28 Vdc, IDQA = 350 mA, VGSB = 0.7 Vdc, f = 2350 MHz Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF ACPR 90 –25 80 –30 70 –1 –2 –1 dB = 20.9 W –2 dB = 29.6 W D –3 dB = 39.7 W –3 60 50 Gps –4 –5 10 PARC 20 30 40 50 Pout, OUTPUT POWER (WATTS) 60 –35 –40 ACPR (dBc) 1 D DRAIN EFFICIENCY (%) 19.5 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) Figure 4. Intermodulation Distortion Products versus Two--Tone Spacing –45 40 –50 30 70 –55 Figure 5. Output Peak--to--Average Ratio Compression (PARC) versus Output Power A2T23H160--24SR3 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS Gps, POWER GAIN (dB) 20 18 16 Gps 2300 MHz D 14 ACPR 12 10 1 2400 MHz 60 2300 MHz 50 2350 MHz 40 2400 MHz 2350 MHz 30 2300 MHz 2400 MHz 2350 MHz 20 10 0 100 10 Pout, OUTPUT POWER (WATTS) AVG. 0 –10 –20 –30 –40 ACPR (dBc) VDD = 28 Vdc, IDQA = 350 mA, VGSB = 0.7 Vdc Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF D, DRAIN EFFICIENCY (%) 22 –50 –60 Figure 6. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 22 20 Gain GAIN (dB) 18 16 VDD = 28 Vdc Pin = 0 dBm IDQA = 350 mA VGSB = 0.7 Vdc 14 12 10 1900 2000 2100 2200 2300 2400 f, FREQUENCY (MHz) 2500 2600 2700 Figure 7. Broadband Frequency Response A2T23H160--24SR3 6 RF Device Data Freescale Semiconductor, Inc. Table 7. Carrier Side Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, IDQA = 348 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 11.3 – j16.2 18.4 48.2 66 55.7 –13 10.6 – j15.1 18.6 48.2 66 55.4 –14 18.8 48.2 66 56.2 –14 f (MHz) Zsource () Zin () 2300 8.42 – j15.0 10.6 + j13.0 2350 10.8 – j13.6 11.8 + j11.0 2400 11.0 – j11.3 11.5 + j8.59 9.72 – j14.0 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 2300 8.42 – j15.0 12.1 + j13.1 11.3 – j17.2 16.3 49.0 80 57.0 –17 2350 10.8 – j13.6 13.1 + j10.2 10.8 – j16.9 16.3 49.0 79 56.0 –18 2400 11.0 – j11.3 12.3 + j7.27 10.3 – j15.7 16.6 49.0 79 57.2 –18 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 8. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning VDD = 28 Vdc, IDQA = 348 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 2300 8.42 – j15.0 10.6 + j13.6 15.7 – j1.67 21.8 46.0 40 66.3 –23 2350 10.8 – j13.6 11.6 + j11.4 14.0 – j3.17 21.7 46.2 42 65.8 –22 2400 11.0 – j11.3 11.4 + j8.97 11.5 – j4.73 21.6 46.5 44 65.8 –22 Max Drain Efficiency P3dB Gain (dB) (dBm) (W) D (%) AM/PM () 15.6 – j4.42 19.3 47.2 52 67.0 –29 12.9 + j10.6 13.5 – j4.16 19.5 47.1 51 66.4 –31 12.1 + j7.68 11.3 – j5.87 19.3 47.4 55 66.6 –30 f (MHz) Zsource () Zin () 2300 8.42 – j15.0 11.9 + j13.5 2350 10.8 – j13.6 2400 11.0 – j11.3 Zload () (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload A2T23H160--24SR3 RF Device Data Freescale Semiconductor, Inc. 7 Table 9. Peaking Side Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, VGSB = 0.7 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () 2300 17.3 – j13.1 17.6 + j14.6 2350 18.5 – j7.85 18.1 + j8.23 2400 13.5 – j2.90 14.2 + j4.26 Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 7.80 – j12.4 13.8 50.3 108 54.2 –29 7.39 – j12.6 14.0 50.5 111 55.4 –31 7.22 – j12.8 14.1 50.5 112 56.0 –31 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 2300 17.3 – j13.1 19.5 + j12.5 8.19 – j13.6 11.6 51.2 132 56.5 –35 2350 18.5 – j7.85 17.9 + j5.56 7.94 – j13.6 11.8 51.2 132 57.1 –38 2400 13.5 – j2.90 12.7 + j2.79 7.79 – j14.0 11.9 51.2 132 56.6 –38 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 10. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning VDD = 28 Vdc, VGSB = 0.7 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 2300 17.3 – j13.1 17.3 + j16.6 15.9 – j5.99 14.8 49.0 79 66.1 –33 2350 18.5 – j7.85 19.2 + j10.7 13.2 – j4.39 15.1 48.7 75 67.8 –36 2400 13.5 – j2.90 16.0 + j5.29 10.3 – j4.95 15.1 48.7 75 68.5 –38 Max Drain Efficiency P3dB Gain (dB) (dBm) (W) D (%) AM/PM () 15.1 – j10.9 12.5 50.3 108 65.9 –38 18.9 + j6.52 14.0 – j8.10 12.9 50.0 100 67.4 –42 14.0 + j3.01 11.5 – j6.61 13.0 49.7 94 68.0 –45 f (MHz) Zsource () Zin () 2300 17.3 – j13.1 19.7 + j13.6 2350 18.5 – j7.85 2400 13.5 – j2.90 Zload () (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload A2T23H160--24SR3 8 RF Device Data Freescale Semiconductor, Inc. P1dB – TYPICAL CARRIER LOAD PULL CONTOURS — 2350 MHz 44 44.5 IMAGINARY () 0 5 45 0 E –5 46 –10 46.5 –15 P 46 –25 5 10 60 –15 15 20 25 –25 58 30 56 P 54 52 5 10 15 50 20 25 30 REAL () REAL () Figure 8. P1dB Load Pull Output Power Contours (dBm) Figure 9. P1dB Load Pull Efficiency Contours (%) 5 5 22.5 22 0 21.5 E –5 21 20.5 –10 20 –15 P 19.5 –20 –25 5 10 15 20 –28 –20 E –5 –18 –16 –10 –14 –15 P –20 19 18.5 –26 –24 –22 0 IMAGINARY () IMAGINARY () 62 64 –10 –20 47.5 46.5 54 E –5 47 48 47 –20 56 45.5 IMAGINARY () 5 –12 25 30 –25 5 10 15 20 25 REAL () REAL () Figure 10. P1dB Load Pull Gain Contours (dB) Figure 11. P1dB Load Pull AM/PM Contours () NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 30 Gain Drain Efficiency Linearity Output Power A2T23H160--24SR3 RF Device Data Freescale Semiconductor, Inc. 9 P3dB – TYPICAL CARRIER LOAD PULL CONTOURS — 2350 MHz 5 5 45 46 IMAGINARY () IMAGINARY () 0 46.5 E –5 47 –10 48 47.5 –15 P E –5 64 66 62 60 –15 58 56 P –20 47 5 47.5 10 15 20 25 –25 30 56 –10 48.5 –20 –25 58 45.5 0 52 50 5 10 54 15 20 25 30 REAL () REAL () Figure 12. P3dB Load Pull Output Power Contours (dBm) Figure 13. P3dB Load Pull Efficiency Contours (%) 5 5 20 19 18.5 –10 18 –15 P –20 –25 5 10 15 20 –24 –22 E –5 –20 –10 –18 –15 –16 –20 17 16.5 –26 P 17.5 16 –30 –28 19.5 E –5 –32 0 IMAGINARY () IMAGINARY () 0 25 30 –25 5 10 15 20 25 REAL () REAL () Figure 14. P3dB Load Pull Gain Contours (dB) Figure 15. P3dB Load Pull AM/PM Contours () NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 30 Gain Drain Efficiency Linearity Output Power A2T23H160--24SR3 10 RF Device Data Freescale Semiconductor, Inc. P1dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2350 MHz 5 5 47.5 0 48 E –5 IMAGINARY () IMAGINARY () 47 46.5 0 48.5 –10 P –15 49.5 50 –20 –25 10 5 15 66 64 62 –10 60 58 P 56 –15 54 52 –20 49 48.5 E –5 20 25 –25 30 10 5 15 20 25 30 REAL () Figure 16. P1dB Load Pull Output Power Contours (dBm) Figure 17. P1dB Load Pull Efficiency Contours (%) 5 5 0 0 E –5 IMAGINARY () IMAGINARY () REAL () 15 –10 14.5 P 14 –15 –25 12 11 11.5 5 12.5 –40 –36 –38 –34 E –5 –32 –10 P –15 –30 13.5 –20 –44 –42 –20 13 10 15 20 25 30 –25 5 10 15 20 25 REAL () REAL () Figure 18. P1dB Load Pull Gain Contours (dB) Figure 19. P1dB Load Pull AM/PM Contours () NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 30 Gain Drain Efficiency Linearity Output Power A2T23H160--24SR3 RF Device Data Freescale Semiconductor, Inc. 11 P3dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2350 MHz 5 5 47 47.5 48 0 0 –5 50.5 –20 49.5 50 P –15 –25 49 E –10 IMAGINARY () IMAGINARY () 48.5 51 –5 62 66 E –10 64 60 P –15 56 58 54 52 –20 10 5 15 20 25 –25 30 10 5 15 20 25 30 REAL () REAL () Figure 20. P3dB Load Pull Output Power Contours (dBm) Figure 21. P3dB Load Pull Efficiency Contours (%) 5 5 0 0 –46 –48 –5 E –10 12.5 P –15 12 11.5 –20 –25 IMAGINARY () IMAGINARY () 13 9 9.5 10 5 10.5 –42 –40 E –10 –38 P –15 –36 –20 11 10 –44 –5 –34 15 20 25 30 –25 5 10 15 20 25 REAL () REAL () Figure 22. P3dB Load Pull Gain Contours (dB) Figure 23. P3dB Load Pull AM/PM Contours () NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 30 Gain Drain Efficiency Linearity Output Power A2T23H160--24SR3 12 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS A2T23H160--24SR3 RF Device Data Freescale Semiconductor, Inc. 13 A2T23H160--24SR3 14 RF Device Data Freescale Semiconductor, Inc. PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes  AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins  EB212: Using Data Sheet Impedances for RF LDMOS Devices Software  Electromigration MTTF Calculator  RF High Power Model  s2p File Development Tools  Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.freescale.com/rf 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Nov. 2015 Description  Initial Release of Data Sheet A2T23H160--24SR3 RF Device Data Freescale Semiconductor, Inc. 15 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2015 Freescale Semiconductor, Inc. A2T23H160--24SR3 Document Number: A2T23H160--24S Rev. 0, 11/2015 16 RF Device Data Freescale Semiconductor, Inc.
A2T23H160-24SR3 价格&库存

很抱歉,暂时无法提供与“A2T23H160-24SR3”相匹配的价格&库存,您可以联系我们找货

免费人工找货