0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A2V09H400-04NR3

A2V09H400-04NR3

  • 厂商:

    NXP(恩智浦)

  • 封装:

    OM-780-4L

  • 描述:

    AIRFAST RF POWER LDMOS TRANSISTO

  • 数据手册
  • 价格&库存
A2V09H400-04NR3 数据手册
NXP Semiconductors Technical Data Document Number: A2V09H400--04N Rev. 1, 03/2017 RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 107 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 720 to 960 MHz. 780 MHz  Typical Doherty Single--Carrier W--CDMA Performance: VDD = 48 Vdc, IDQA = 688 mA, VGSB = 0.6 Vdc, Pout = 107 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) D (%) Output PAR (dB) ACPR (dBc) 733 MHz 17.5 56.3 7.2 –31.3 780 MHz 18.0 55.8 7.2 –36.4 821 MHz 17.4 55.6 6.9 –35.0 A2V09H400--04NR3 720–960 MHz, 107 W AVG., 48 V AIRFAST RF POWER LDMOS TRANSISTOR OM--780--4L PLASTIC Features  Advanced high performance in--package Doherty  Greater negative gate--source voltage range for improved Class C operation  Designed for digital predistortion error correction systems Carrier RFinA/VGSA 3 1 RFoutA/VDSA RFinB/VGSB 4 2 RFoutB/VDSB Peaking (Top View) Note: Exposed backside of the package is the source terminal for the transistor. Figure 1. Pin Connections  2016–2017 NXP B.V. RF Device Data NXP Semiconductors A2V09H400--04NR3 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS –0.5, +105 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Operating Voltage VDD 55, +0 Vdc Storage Temperature Range Tstg –65 to +150 C Case Operating Temperature Range TC –40 to +150 C (1,2) TJ –40 to +225 C Characteristic Symbol Value (2,3) Unit RJC 0.50 C/W Operating Junction Temperature Range Table 2. Thermal Characteristics Thermal Resistance, Junction to Case Case Temperature 76C, 107 W Avg., W--CDMA, 48 Vdc, IDQA = 688 mA, VGSB = 0.6 Vdc, 780 MHz Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 Charge Device Model (per JESD22--C101) C3 Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 105 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Zero Gate Voltage Drain Leakage Current (VDS = 55 Vdc, VGS = 0 Vdc) IDSS — — 1 Adc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 Adc Gate Threshold Voltage (VDS = 10 Vdc, ID = 137 Adc) VGS(th) 1.3 1.7 2.3 Vdc Gate Quiescent Voltage (VDD = 48 Vdc, ID = 688 mAdc, Measured in Functional Test) VGSA(Q) 2.0 2.5 3.3 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.4 Adc) VDS(on) 0.1 0.2 0.4 Vdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 211 Adc) VGS(th) 1.3 1.8 2.3 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 2.1 Adc) VDS(on) 0.1 0.2 0.5 Vdc Characteristic Off Characteristics (4) On Characteristics -- Side A, Carrier On Characteristics -- Side B, Peaking 1. 2. 3. 4. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.nxp.com/RF/calculators. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955. Each side of device measured separately. (continued) A2V09H400--04NR3 2 RF Device Data NXP Semiconductors Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Tests (1,2) Functional (In NXP Doherty Test Fixture, 50 ohm system) VDD = 48 Vdc, IDQA = 688 mA, VGSB = 0.6 Vdc, Pout = 107 W Avg., f = 780 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. Power Gain Gps 17.1 17.9 20.0 dB Drain Efficiency D 51.0 55.8 — % PAR 6.8 7.2 — dB ACPR — –36.4 –31.0 dBc Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Load Mismatch (2) (In NXP Doherty Test Fixture, 50 ohm system) IDQA = 688 mA, VGSB = 0.6 Vdc, f = 780 MHz, 12 sec(on), 10% Duty Cycle VSWR 10:1 at 52 Vdc, 437 W Pulsed CW Output Power (3 dB Input Overdrive from 200 W Pulsed CW Rated Power) No Device Degradation Typical Performance (2) (In NXP Doherty Test Fixture, 50 ohm system) VDD = 48 Vdc, IDQA = 688 mA, VGSB = 0.6 Vdc, 733–821 MHz Bandwidth Pout @ 3 dB Compression Point (3) P3dB — 562 — W  — –14 —  VBWres — 60 — MHz Gain Flatness in 88 MHz Bandwidth @ Pout = 107 W Avg. GF — 0.6 — dB Gain Variation over Temperature (–30C to +85C) G — 0.007 — dB/C P1dB — 0.003 — dB/C AM/PM (Maximum value measured at the P3dB compression point across the 733--821 MHz frequency range) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Output Power Variation over Temperature (–30C to +85C) Table 6. Ordering Information Device A2V09H400--04NR3 Tape and Reel Information R3 Suffix = 250 Units, 32 mm Tape Width, 13--inch Reel Package OM--780--4L 1. Part internally input matched. 2. Measurement made with device in an asymmetrical Doherty configuration. 3. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF. A2V09H400--04NR3 RF Device Data NXP Semiconductors 3 C25 C28 C17 VGGA C21 C13 C20 C19 R1 C11 C32 Z1 C6 C7 P C5 C12* A2V09H400--4N Rev. 2 C30 C3* C4 C C1 C2 R2 C10* C31 C8 CUT OUT AREA R3 VDDA C15 C9 C22 C18 C16 C26 C23 C27 VGGB C14 C24 VDDB C29 D86951 *C3, C10 and C12 are mounted vertically. Figure 2. A2V09H400--04NR3 Test Circuit Component Layout Table 7. A2V09H400--04NR3 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C4, C31 0.5 pF Chip Capacitor ATC600F0R5BT250XT ATC C2, C10, C11, C13, C14, C16, C32 82 pF Chip Capacitor ATC600F820JT250XT ATC C3 12 pF Chip Capacitor ATC600F120JT250XT ATC C5 15 pF Chip Capacitor ATC600F150JT250XT ATC C6, C8 8.2 pF Chip Capacitor ATC100B8R2JT500XT ATC C7 5.6 pF Chip Capacitor ATC100B5R6BP500XT ATC C9 9.1 pF Chip Capacitor ATC100B9R1CT500XT ATC C12 1 pF Chip Capacitor ATC100B1R0BT500XT ATC C15 18 pF Chip Capacitor ATC100B180JT500XT ATC C17, C18 1000 pF Chip Capacitor ATC800B102JW50XT ATC C19, C22 15 F Chip Capacitor C5750X7S2A156M230KB TDK C20, C21, C23, C24, C25, C26, C27 10 F Chip Capacitor GRM32ER61H106KA12L Murata C28, C29 470 F, 63 V Electrolytic Capacitor MCGPR63V477M13X26-RH Multicomp C30 0.7 pF Chip Capacitor ATC600F0R7BT250XT ATC R1, R2 3 , 1/4 W Chip Resistor CRCW12063R00JNEA Vishay R3 51 , 1/2 W Chip Resistor CRCW201051R0JNEF Vishay Z1 800–1000 MHz Band, 90 2 dB Asymmetric Coupler CMX09Q02 Cemax PCB Rogers RO3006, 0.025, r = 6.5 D86951 MTL A2V09H400--04NR3 4 RF Device Data NXP Semiconductors 17.4 56 54 52 D 17.1 50 Gps 16.8 PARC 16.5 –26 –2.6 –29 –2.9 –32 16.2 ACPR 15.9 15.6 15.3 690 –35 –38 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 710 730 750 770 790 810 ACPR (dBc) Gps, POWER GAIN (dB) VDD = 48 Vdc, Pout = 107 W (Avg.), IDQA = 688 mA, VGSB = 0.6 Vdc 18.0 Single--Carrier W--CDMA, 3.84 MHz 17.7 Channel Bandwidth –41 850 830 –3.2 –3.5 –3.8 PARC (dB) 58 18.3 D, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS –4.1 f, FREQUENCY (MHz) IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 107 Watts Avg. 0 VDD = 48 Vdc, Pout = 45 W (PEP), IDQA = 688 mA, VGSB = 0.6 Vdc Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 780 MHz –15 IM3--U –30 IM5--L –45 IM5--U –60 –75 1 IM3--L IM7--L IM7--U 10 100 200 TWO--TONE SPACING (MHz) 18.8 0 18.5 18.2 17.9 17.6 17.3 VDD = 48 Vdc, IDQA = 688 mA, VGSB = 0.6 Vdc, f = 780 MHz Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth –1 dB = 51 W PARC –1 70 –20 60 –25 D –2 dB = 76 W ACPR –2 50 40 –3 dB = 104 W 30 –3 Gps –4 –5 40 70 100 130 –35 –40 20 –45 10 –50 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 10 –30 160 ACPR (dBc) 1 D DRAIN EFFICIENCY (%) 19.1 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) Figure 4. Intermodulation Distortion Products versus Two--Tone Spacing Pout, OUTPUT POWER (WATTS) Figure 5. Output Peak--to--Average Ratio Compression (PARC) versus Output Power A2V09H400--04NR3 RF Device Data NXP Semiconductors 5 TYPICAL CHARACTERISTICS Gps, POWER GAIN (dB) 20 18 733 MHz 50 780 MHz 40 Gps 733 MHz 780 MHz 16 30 821 MHz 14 ACPR 12 10 20 733 MHz 780 MHz 821 MHz 10 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 1 10 0 60 0 500 100 –10 D, DRAIN EFFICIENCY (%) VDD = 48 Vdc, IDQA = 688 mA, VGSB = 0.6 Vdc Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth 821 MHz D –20 –30 –40 ACPR (dBc) 22 –50 –60 Pout, OUTPUT POWER (WATTS) AVG. Figure 6. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 24 21 GAIN (dB) 18 VDD = 48 Vdc Pin = 0 dBm IDQA = 688 mA VGSB = 0.6 Vdc Gain 15 12 9 6 550 600 650 700 750 800 850 900 950 f, FREQUENCY (MHz) Figure 7. Broadband Frequency Response A2V09H400--04NR3 6 RF Device Data NXP Semiconductors Table 8. Carrier Side Load Pull Performance — Maximum Power Tuning VDD = 48 Vdc, IDQA = 671 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () 733 4.47 – j2.44 4.03 + j2.52 780 3.47 – j2.93 3.34 + j2.89 822 3.43 – j3.86 3.29 + j3.69 Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 2.75 – j0.69 19.4 54.2 265 57.5 –10 2.13 – j0.09 20.4 54.4 275 61.9 –10 2.20 – j0.30 20.7 54.3 269 61.9 –12 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 733 4.47 – j2.44 3.75 + j2.70 2.85 – j0.74 17.3 54.9 307 59.5 –11 780 3.47 – j2.93 3.16 + j3.19 2.40 – j0.28 18.3 55.0 319 63.7 –14 822 3.43 – j3.86 3.13 + j4.04 2.40 – j0.48 18.6 54.9 311 63.1 –17 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 9. Carrier Side Load Pull Performance — Maximum Efficiency Tuning VDD = 48 Vdc, IDQA = 671 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 733 4.47 – j2.44 3.66 + j2.54 2.99 + j1.14 21.1 53.1 203 64.8 –12 780 3.47 – j2.93 2.88 + j3.27 2.32 + j2.37 23.1 51.8 150 72.3 –16 822 3.43 – j3.86 2.85 + j4.05 2.10 + j1.87 23.3 51.9 155 71.9 –20 Max Drain Efficiency P3dB Gain (dB) (dBm) (W) D (%) AM/PM () 2.99 + j0.86 18.9 54.0 252 65.9 –14 3.04 + j3.30 2.92 + j0.91 19.7 54.4 276 72.5 –16 2.91 + j4.24 2.55 + j1.44 20.7 53.4 217 72.0 –22 f (MHz) Zsource () Zin () 733 4.47 – j2.44 3.54 + j2.68 780 3.47 – j2.93 822 3.43 – j3.86 Zload () (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload A2V09H400--04NR3 RF Device Data NXP Semiconductors 7 P1dB – TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 780 MHz 3 3 50.5 E 52.5 51 1 53 53.5 51.5 54 0 P 53.5 52 –1 53.5 52.5 1.0 1.5 2.0 2.5 3.0 REAL () 3.5 4.0 0.5 1.0 1.5 2.0 2.5 3.0 REAL () 3.5 4.0 4.5 –16 22.5 1 22 21.5 21 0 P 20.5 20 –1 1.5 E 2 IMAGINARY () IMAGINARY () 60 58 56 E 23 1.0 P 3 23.5 –2 0.5 62 Figure 9. P1dB Load Pull Efficiency Contours (%) 24 2 66 68 0 –2 4.5 64 70 1 Figure 8. P1dB Load Pull Output Power Contours (dBm) 3 E –1 53 –2 0.5 60 2 IMAGINARY () IMAGINARY () 2 72 52 2.0 2.5 3.0 REAL () 3.5 4.0 1 –12 –14 –12 0 P –1 4.5 Figure 10. P1dB Load Pull Gain Contours (dB) NOTE: –14 –16 –2 –10 –10 0.5 1.0 1.5 2.0 2.5 3.0 REAL () 3.5 4.0 4.5 Figure 11. P1dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2V09H400--04NR3 8 RF Device Data NXP Semiconductors P3dB – TYPICAL CARRIER SIDE LOAD PULL CONTOURS — 780 MHz 3 3 51.5 51 52.5 52 2 53.5 1 54 E 0 54.5 –1 –2 53 55 P IMAGINARY () IMAGINARY () 2 53.5 1.0 1.5 2.0 2.5 3.0 REAL () 4.0 3.5 0 56 0.5 1.0 1 E 19.5 19 0 P 18.5 18 –1 1.5 2.5 3.0 REAL () 3.5 4.0 4.5 –26 –24 2.0 2.5 3.0 REAL () –20 1 E –18 0 –16 P –14 –1 17.5 17 1.0 2.0 60 58 –22 20.5 20 0.5 1.5 2 IMAGINARY () 21 62 P 3 2 66 68 Figure 13. P3dB Load Pull Efficiency Contours (%) 3 IMAGINARY () E 70 –2 4.5 Figure 12. P3dB Load Pull Output Power Contours (dBm) –2 72 1 –1 54 0.5 64 3.5 4.0 4.5 Figure 14. P3dB Load Pull Gain Contours (dB) NOTE: –2 –12 0.5 1.0 1.5 2.0 2.5 3.0 REAL () 3.5 4.0 4.5 Figure 15. P3dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2V09H400--04NR3 RF Device Data NXP Semiconductors 9 Table 10. Peaking Side Load Pull Performance — Maximum Power Tuning VDD = 48 Vdc, VGSB = 1.4 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () 733 2.73 – j3.69 2.47 + j3.65 780 2.44 – j4.29 2.28 + j4.37 822 2.79 – j4.96 2.32 + j5.16 Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 1.34 – j0.74 16.6 56.3 424 62.8 –21 1.34 – j0.92 16.9 56.4 434 62.7 –20 1.34 – j1.07 17.2 56.2 418 62.5 –20 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 733 2.73 – j3.69 2.21 + j3.92 1.51 – j1.12 14.2 56.9 490 60.9 –23 780 2.44 – j4.29 2.02 + j4.66 1.50 – j1.02 14.9 57.1 507 65.1 –25 822 2.79 – j4.96 2.08 + j5.50 1.45 – j1.16 15.2 56.9 485 63.8 –26 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 11. Peaking Side Load Pull Performance — Maximum Efficiency Tuning VDD = 48 Vdc, VGSB = 1.4 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 733 2.73 – j3.69 2.18 + j3.50 1.66 + j0.50 17.7 54.5 285 74.2 –25 780 2.44 – j4.29 1.97 + j4.28 1.83 + j0.34 18.4 54.9 311 77.2 –23 822 2.79 – j4.96 1.75 + j4.95 1.36 + j0.77 18.8 53.0 200 76.0 –27 Max Drain Efficiency P3dB Gain (dB) (dBm) (W) D (%) AM/PM () 1.87 + j0.45 15.7 55.2 333 73.8 –28 1.85 + j4.60 2.05 – j0.01 16.1 56.0 399 76.3 –27 1.80 + j5.39 1.84 + j0.26 16.7 55.0 314 74.4 –29 f (MHz) Zsource () Zin () 733 2.73 – j3.69 2.00 + j3.77 780 2.44 – j4.29 822 2.79 – j4.96 Zload () (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload A2V09H400--04NR3 10 RF Device Data NXP Semiconductors P1dB – TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 780 MHz 1.5 1.0 55 –0.5 P –1.0 56 –1.5 54 –2.0 IMAGINARY () 0 70 E 68 0 66 –0.5 64 P –1.0 62 –1.5 55.5 54.5 –2.0 55 53.5 –2.5 0.5 66 72 76 0.5 54.5 E 74 1.0 1.0 55 1.5 2.5 2.0 –2.5 0.5 3.0 1.0 1.5 2.0 2.5 3.0 REAL () REAL () Figure 16. P1dB Load Pull Output Power Contours (dBm) Figure 17. P1dB Load Pull Efficiency Contours (%) 1.5 1.5 18.5 1.0 18 0.5 –0.5 17 P –1.0 16.5 –1.5 14.5 –2.5 0.5 1.0 –22 E –32 0 –20 –24 –0.5 –22 –1.0 P –1.5 16 –2.0 –24 0.5 E 17.5 0 –28 –26 1.0 IMAGINARY () IMAGINARY () 53.5 54 0.5 IMAGINARY () 1.5 53 52.5 15.5 15 1.5 –18 –2.0 2.0 2.5 3.0 –2.5 0.5 –16 1.0 1.5 2.0 2.5 3.0 REAL () REAL () Figure 18. P1dB Load Pull Gain Contours (dB) Figure 19. P1dB Load Pull AM/PM Contours () NOTE: P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2V09H400--04NR3 RF Device Data NXP Semiconductors 11 P3dB – TYPICAL PEAKING SIDE LOAD PULL CONTOURS — 780 MHz 1.5 55 0.5 IMAGINARY () 1.0 54.5 53 0 55.5 E –0.5 56 –1.0 P 57 –1.5 –2.0 74 0 E 56.5 55.5 –2.5 0.5 56 1.5 66 –1.0 P 60 2.0 2.5 –2.5 0.5 3.0 1.0 1.5 REAL () 1.5 1.0 1.0 16.5 E 15.5 –1.0 P 15 –1.5 12.5 –2.5 0.5 1.0 13 1.5 2.5 3.0 –32 13.5 2.0 –30 0 E –28 –0.5 –26 –1.0 P –24 –22 –1.5 14.5 –2.0 2.0 –34 0.5 IMAGINARY () IMAGINARY () 0.5 –0.5 64 Figure 21. P3dB Load Pull Efficiency Contours (%) 1.5 16 62 REAL () Figure 20. P3dB Load Pull Output Power Contours (dBm) 0 68 –2.0 56 1.0 70 76 –0.5 –1.5 55 72 0.5 IMAGINARY () 1.0 1.5 54 53.5 –20 –2.0 14 2.5 3.0 –2.5 0.5 1.0 REAL () 1.5 2.0 2.5 3.0 REAL () Figure 22. P3dB Load Pull Gain Contours (dB) NOTE: Figure 23. P3dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power A2V09H400--04NR3 12 RF Device Data NXP Semiconductors PACKAGE DIMENSIONS A2V09H400--04NR3 RF Device Data NXP Semiconductors 13 A2V09H400--04NR3 14 RF Device Data NXP Semiconductors A2V09H400--04NR3 RF Device Data NXP Semiconductors 15 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes  AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages  AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins  EB212: Using Data Sheet Impedances for RF LDMOS Devices Software  Electromigration MTTF Calculator  .s2p File Development Tools  Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/RF 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Nov. 2016  Initial release of data sheet 1 Mar. 2017  On Characteristics table: Side A Carrier, Side B Peaking: updated VGS(th) Typ values and VDS(on) Min, Typ and Max values to reflect the actual performance of the device, p. 2  Typical Performance table: added Gain Variation and Output Power Variation over Temperature typical values, p. 3  780 MHz: added load pull performance tables and contour graphs, pp. 7--12 A2V09H400--04NR3 16 RF Device Data NXP Semiconductors How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 2016–2017 NXP B.V. A2V09H400--04NR3 Document Number: Data A2V09H400--04N RF Device Rev. 1, 03/2017 NXP Semiconductors 17
A2V09H400-04NR3 价格&库存

很抱歉,暂时无法提供与“A2V09H400-04NR3”相匹配的价格&库存,您可以联系我们找货

免费人工找货