ADC1610S series
Single 16-bit ADC; 65 Msps, 80 Msps, 105 Msps or 125 Msps;
CMOS or LVDS DDR digital outputs
Rev. 3 — 25 January 2011
Product data sheet
1. General description
The ADC1610S is a single-channel 16-bit Analog-to-Digital Converter (ADC) optimized for
high dynamic performance and low power consumption at sample rates up to 125 Msps.
Pipelined architecture and output error correction ensure the ADC1610S is accurate
enough to guarantee zero missing codes over the entire operating range. Supplied from a
single 3 V source, it can handle output logic levels from 1.8 V to 3.3 V in CMOS mode,
because of a separate digital output supply. It supports the Low Voltage Differential
Signaling (LVDS) Double Data Rate (DDR) output standard. An integrated Serial
Peripheral Interface (SPI) allows the user to easily configure the ADC. The device also
includes a programmable full-scale SPI to allow a flexible input voltage range from
1 V to 2 V (peak-to-peak). With excellent dynamic performance from the baseband to
input frequencies of 170 MHz or more, the ADC1610S is ideal for use in communications,
imaging and medical applications.
2. Features and benefits
SNR, 72.5 dBFS; SFDR, 88 dBc
Sample rate up to 125 Msps
16-bit pipelined ADC core
Clock input divided by 2 for less jitter
Single 3 V supply
Flexible input voltage range: 1 V (p-p) to
2 V (p-p)
CMOS or LVDS DDR digital outputs
HVQFN40 package
Input bandwidth, 600 MHz
Power dissipation, 430 mW at 80 Msps
Serial Peripheral Interface (SPI)
Duty cycle stabilizer
Fast OuT-of-Range (OTR) detection
Offset binary, two’s complement, gray
code
Power-down and Sleep modes
3. Applications
Wireless and wired broadband
communications
Spectral analysis
Ultrasound equipment
Portable instrumentation
Imaging systems
Software defined radio
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
4. Ordering information
Table 1.
Ordering information
Type number
fs (Msps) Package
Name
Description
Version
ADC1610S125HN/C1 125
HVQFN40 plastic thermal enhanced very thin quad flat package; no
leads; 40 terminals; body 6 × 6 × 0.85 mm
SOT618-1
ADC1610S105HN/C1 105
HVQFN40 plastic thermal enhanced very thin quad flat package; no
leads; 40 terminals; body 6 × 6 × 0.85 mm
SOT618-1
ADC1610S080HN/C1 80
HVQFN40 plastic thermal enhanced very thin quad flat package; no
leads; 40 terminals; body 6 × 6 × 0.85 mm
SOT618-1
ADC1610S065HN/C1 65
HVQFN40 plastic thermal enhanced very thin quad flat package; no
leads; 40 terminals; body 6 × 6 × 0.85 mm
SOT618-1
5. Block diagram
SDIO/ODS
SCLK/DFS
CS
ADC1610S
ERROR
CORRECTION AND
DIGITAL
PROCESSING
SPI INTERFACE
OTR
OUTPUT
DRIVERS
CMOS:
D15 to D0
or
LVDS DDR:
D14_D15_M to D0_D1_M
D14_D15_P to D0_D1_P
OUTPUT
DRIVERS
CMOS:
DAV
or
LVDS DDR:
DAVP
DAVM
INP
T/H
INPUT
STAGE
ADC CORE
16-BIT
PIPELINED
INM
CLOCK INPUT
STAGE AND DUTY
CYCLE CONTROL
CLKP
CLKM
SYSTEM
REFERENCE AND
POWER
MANAGEMENT
VCM
SENSE
REFT
VREF
REFB
PWD
OE
005aaa156
Fig 1. Block diagram
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
2 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
6. Pinning information
31 D0_D1_M
32 D0_D1_P
33 VDDO
34 DAVM
35 DAVP
36 SCLK/DFS
37 SDIO/DCS
38 CS
39 SENSE
40 VREF
terminal 1
index area
31 D1
32 D0
33 VDDO
34 DAV
35 n.c.
36 SCLK/DFS
37 SDIO/DCS
38 CS
terminal 1
index area
39 SENSE
40 VREF
6.1 Pinning
REFB
1
30 D2_D3_P
REFB
1
30 D2
REFT
2
29 D2_D3_M
REFT
2
29 D3
AGND
3
28 D4_D5_P
AGND
3
28 D4
VCM
4
27 D4_D5_M
VCM
4
27 D5
VDDA
5
VDDA
5
26 D6
AGND
6
AGND
6
25 D7
INM
7
24 D8_D9_P
INM
7
24 D8
INP
8
23 D8_D9_M
INP
8
23 D9
AGND
9
22 D10_D11_P
AGND
9
22 D10
VDDA 10
21 D10_D11_M
VDDA 10
21 D11
Transparent top view
Fig 2.
D12_D13_P 20
D12_D13_M 19
25 D6_D7_M
D14_D15_P 18
D14_D15_M 17
OTR 16
PWD/OE 15
DEC 14
CLKM 13
005aaa105
CLKP 12
VDDA 11
D12 20
D13 19
D14 18
D15 17
OTR 16
PWD/OE 15
DEC 14
CLKM 13
CLKP 12
VDDA 11
ADC1610S
HVQFN40
26 D6_D7_P
ADC1610S
HVQFN40
005aaa106
Transparent top view
Pin configuration with CMOS digital outputs
selected
Fig 3.
Pin configuration with LVDS DDR digital
outputs selected
6.2 Pin description
Table 2.
ADC1610S_SER
Product data sheet
Pin description (CMOS digital outputs)
Symbol
Pin
Type [1]
Description
REFB
1
O
bottom reference
REFT
2
O
top reference
AGND
3
G
analog ground
VCM
4
O
common-mode output voltage
VDDA
5
P
analog power supply
AGND
6
G
analog ground
INM
7
I
complementary analog input
INP
8
I
analog input
AGND
9
G
analog ground
VDDA
10
P
analog power supply
VDDA
11
P
analog power supply
CLKP
12
I
clock input
CLKM
13
I
complementary clock input
DEC
14
O
regulator decoupling node
PWD/OE
15
I
power down, active HIGH; output enable, active LOW
OTR
16
O
out of range
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
3 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Table 2.
Symbol
Pin
Type [1]
Description
D15
17
O
data output bit 15 (Most Significant Bit (MSB))
D14
18
O
data output bit 14
D13
19
O
data output bit 13
D12
20
O
data output bit 12
D11
21
O
data output bit 11
D10
22
O
data output bit 10
D9
23
O
data output bit 9
D8
24
O
data output bit 8
D7
25
O
data output bit 7
D6
26
O
data output bit 6
D5
27
O
data output bit 5
D4
28
O
data output bit 4
D3
29
O
data output bit 3
D2
30
O
data output bit 2
D1
31
O
data output bit 1
D0
32
O
data output bit 0 (Least Significant Bit (LSB))
VDDO
33
P
output power supply
DAV
34
O
data valid output clock
n.c.
35
-
not connected
SCLK/DFS
36
I
SPI clock; data format select
SDIO/ODS
37
I/O
SPI data IO; output data standard
CS
38
I
SPI chip select
SENSE
39
I
reference programming pin
VREF
40
I/O
voltage reference input/output
[1]
ADC1610S_SER
Product data sheet
Pin description (CMOS digital outputs) …continued
P: power supply; G: ground; I: input; O: output; I/O: input/output.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
4 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Table 3.
Pin description (LVDS DDR) digital outputs)
Symbol
Pin [1]
Type [2]
Description
D14_D15_M
17
O
differential output data D14 and D15 multiplexed, complement
D14_D15_P
18
O
differential output data D14 and D15 multiplexed, true
D12_D13_M
19
O
differential output data D12 and D13 multiplexed, complement
D12_D13_P
20
O
differential output data D12 and D13 multiplexed, true
D10_D11_M
21
O
differential output data D10 and D11multiplexed, complement
D10_D11_P
22
O
differential output data D10 and D11 multiplexed, true
D8_D9_M
23
O
differential output data D8 and D9 multiplexed, complement
D8_D9_P
24
O
differential output data D8 and D9 multiplexed, true
D6_D7_M
25
O
differential output data D6 and D7 multiplexed, complement
D6_D7_P
26
O
differential output data D6 and D7 multiplexed, true
D4_D5_M
27
O
differential output data D4 and D5 multiplexed, complement
D4_D5_P
28
O
differential output data D4 and D5 multiplexed, true
D2_D3_M
29
O
differential output data D2 and D3 multiplexed, complement
D2_D3_P
30
O
differential output data D2 and D3 multiplexed, true
D0_D1_M
31
O
differential output data D0 and D1 multiplexed, complement
D0_D1_P
32
O
differential output data D0 and D1 multiplexed, true
DAVM
34
O
data valid output clock, complement
DAVP
35
O
data valid output clock, true
[1]
Pins 1 to 16 and pins 36 to 40 are the same for both CMOS and LVDS DDR outputs (see Table 2).
[2]
P: power supply; G: ground; I: input; O: output; I/O: input/output.
7. Limiting values
Table 4.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter
Conditions
Min
Max
Unit
pins D15 to D0;
pins D14_D15_P to D0_D1_P;
pins D14_D15_M to D0_D1_M
−0.4
+3.9
V
analog supply voltage
−0.4
+3.9
V
output supply voltage
−0.4
+3.9
V
Tstg
storage temperature
−55
+125
°C
Tamb
ambient temperature
−40
+85
°C
Tj
junction temperature
-
125
°C
VO
output voltage
VDDA
VDDO
8. Thermal characteristics
Table 5.
Symbol
Rth(j-a)
Rth(j-c)
[1]
ADC1610S_SER
Product data sheet
Thermal characteristics
Parameter
Conditions
Typ
Unit
thermal resistance from junction to ambient
[1]
22.5
K/W
thermal resistance from junction to case
[1]
11.7
K/W
Value for six layers board in still air with a minimum of 25 thermal vias.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
5 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
9. Static characteristics
Table 6.
Symbol
Static characteristics[1]
Parameter
Conditions
Min
Typ
Max
Unit
2.85
3.0
3.4
V
Supplies
VDDA
analog supply voltage
VDDO
output supply voltage
CMOS mode
1.65
1.8
3.6
V
LVDS DDR mode
2.85
3.0
3.6
V
IDDA
analog supply current
fclk = 125 Msps; fi = 70 MHz
-
210
-
mA
IDDO
output supply current
CMOS mode;
fclk = 125 Msps; fi = 70 MHz
-
14
-
mA
LVDS DDR mode:
fclk = 125 Msps; fi = 70 MHz
-
43
-
mA
ADC1610S125;
analog supply only
-
630
-
mW
ADC1610S105;
analog supply only
-
550
-
mW
ADC1610S080;
analog supply only
-
430
-
mW
ADC1610S065;
analog supply only
-
380
-
mW
Power-down mode
-
2
-
mW
Sleep mode
-
40
-
mW
P
power dissipation
Clock inputs: pins CLKP and CLKM
Low-Voltage Positive Emitter-Coupled Logic (LVPECL)
Vi(clk)dif
differential clock input voltage
peak-to-peak
-
1.6
-
V
differential clock input voltage
peak
-
±3.0
-
V
SINE
Vi(clk)dif
Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS)
VIL
LOW-level input voltage
-
-
0.3VDDA V
VIH
HIGH-level input voltage
0.7VDDA
-
-
V
-
0
-
V
-
0.3VDDA
-
V
Logic inputs, Power-down: pin PWD/OE
VIL
LOW-level input voltage
LOW-medium level
-
0.6VDDA
-
V
VIH
HIGH-level input voltage
-
VDDA
-
V
IIL
LOW-level input current
-
55
-
μA
IIH
HIGH-level input current
-
65
-
μA
Medium-HIGH level
Serial peripheral interface: pins CS, SDIO/ODS, SCLK/DFS
VIL
LOW-level input voltage
0
-
0.3VDDA V
VIH
HIGH-level input voltage
0.7VDDA
-
VDDA
V
IIL
LOW-level input current
−10
-
+10
μA
IIH
HIGH-level input current
−50
-
+50
μA
CI
input capacitance
-
4
-
pF
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
6 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Table 6.
Symbol
Static characteristics[1] …continued
Parameter
Conditions
Min
Typ
Max
Unit
OGND
-
0.2VDDO V
0.8VDDO
-
VDDO
V
-
3
-
pF
Digital outputs, CMOS mode: pins D15 to D0, OTR, DAV
Output levels, VDDO = 3 V
VOL
LOW-level output voltage
VOH
HIGH-level output voltage
CO
output capacitance
high impedance; OE = HIGH
Output levels, VDDO = 1.8 V
VOL
LOW-level output voltage
OGND
-
0.2VDDO V
VOH
HIGH-level output voltage
0.8VDDO
-
VDDO
V
Digital outputs, LVDS mode: pins D14_D15_P to D0_D1_P, D14_D15_M to D0_D1_M, DAVP and DAVM
Output levels, VDDO = 3 V only, RL = 100 Ω
VO(offset)
output offset voltage
output buffer current set to
3.5 mA
-
1.2
-
V
VO(dif)
differential output voltage
output buffer current set to
3.5 mA
-
350
-
mV
CO
output capacitance
-
3
-
pF
Analog inputs: pins INP and INM
II
input current
−5
-
+5
μA
Ri(dif)
differential input resistance
-
19.8
-
kΩ
Ci(dif)
differential input capacitance
-
2.8
-
pF
VI(cm)
common-mode input voltage
Bi
input bandwidth
VI(dif)
differential input voltage
VINP = VINM
peak-to-peak
1.1
1.5
2.5
V
-
650
-
MHz
1
-
2
V
Common-mode output voltage: pin VCM
VO(cm)
common-mode output voltage
-
VDDA / 2 -
V
IO(cm)
common-mode output current
-
4
-
mA
output
0.5
-
1
V
input
0.5
-
1
V
-
±4
-
LSB
guaranteed no missing codes
−0.95
±0.5
+0.95
LSB
-
±2
-
mV
full-scale
-
±0.5
-
%
I/O reference voltage: pin VREF
VVREF
voltage on pin VREF
Accuracy
INL
integral non-linearity
DNL
differential non-linearity
Eoffset
offset error
EG
gain error
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
7 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Table 6.
Symbol
Static characteristics[1] …continued
Parameter
Conditions
Min
Typ
Max
Unit
power supply rejection ratio
200 mV (p-p) on VDDA; fi = DC
-
−54
-
dB
Supply
PSRR
[1]
Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; minimum and maximum values are across the full
temperature range Tamb = −40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V; VINP − VINM = −1 dBFS; internal reference mode; applied to
CMOS and LVDS interface; unless otherwise specified.
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
8 of 40
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
NXP Semiconductors
ADC1610S_SER
Product data sheet
10. Dynamic characteristics
10.1 Dynamic characteristics
Table 7.
Dynamic characteristics
Symbol
Parameter
Conditions
ADC1610S065
ADC1610S080
ADC1610S105
ADC1610S125
Unit
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
fi = 3 MHz
-
89
-
-
89
-
-
88
-
-
90
-
dBc
fi = 30 MHz
-
88
-
-
88
-
-
88
-
-
89
-
dBc
fi = 70 MHz
-
87
-
-
87
-
-
86
-
-
87
-
dBc
fi = 170 MHz
-
84
-
-
84
-
-
83
-
-
85
-
dBc
fi = 3 MHz
-
88
-
-
88
-
-
87
-
-
89
-
dBc
fi = 30 MHz
-
87
-
-
87
-
-
87
-
-
88
-
dBc
fi = 70 MHz
-
86
-
-
86
-
-
85
-
-
86
-
dBc
fi = 170 MHz
-
83
-
-
83
-
-
82
-
-
84
-
dBc
fi = 3 MHz
-
85
-
-
85
-
-
84
-
-
86
-
dBc
fi = 30 MHz
-
84
-
-
84
-
-
84
-
-
85
-
dBc
fi = 70 MHz
-
83
-
-
83
-
-
82
-
-
83
-
dBc
fi = 170 MHz
-
80
-
-
80
-
-
79
-
-
81
-
dBc
fi = 3 MHz
-
11.7
-
-
11.7
-
-
11.7
-
-
11.6
-
bits
fi = 30 MHz
-
11.6
-
-
11.6
-
-
11.6
-
-
11.6
-
bits
Analog signal processing
α2H
THD
ENOB
9 of 40
© NXP B.V. 2011. All rights reserved.
SFDR
total harmonic
distortion
effective number of
bits
signal-to-noise ratio
spurious-free
dynamic range
fi = 70 MHz
-
11.5
-
-
11.5
-
-
11.5
-
-
11.5
-
bits
fi = 170 MHz
-
11.4
-
-
11.4
-
-
11.4
-
-
11.4
-
bits
fi = 3 MHz
-
72.3
-
-
72.2
-
-
72.0
-
-
71.6
-
dBFS
fi = 30 MHz
-
71.5
-
-
71.4
-
-
71.4
-
-
71.3
-
dBFS
fi = 70 MHz
-
70.9
-
-
70.9
-
-
70.8
-
-
70.7
-
dBFS
fi = 170 MHz
-
70.4
-
-
70.3
-
-
70.2
-
-
70.1
-
dBFS
fi = 3 MHz
-
88
-
-
88
-
-
87
-
-
89
-
dBc
fi = 30 MHz
-
87
-
-
87
-
-
87
-
-
88
-
dBc
fi = 70 MHz
-
86
-
-
86
-
-
85
-
-
86
-
dBc
fi = 170 MHz
-
83
-
-
83
-
-
82
-
-
84
-
dBc
ADC1610S series
SNR
third harmonic level
Single 16-bit ADC; CMOS or LVDS DDR digital output
Rev. 3 — 25 January 2011
All information provided in this document is subject to legal disclaimers.
α3H
second harmonic
level
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
Dynamic characteristics …continued
Symbol
Parameter
IMD
[1]
Conditions
intermodulation
distortion
ADC1610S065
ADC1610S080
ADC1610S105
ADC1610S125
NXP Semiconductors
ADC1610S_SER
Product data sheet
Table 7.
Unit
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
fi = 3 MHz
-
89
-
-
89
-
-
88
-
-
89
-
dBc
fi = 30 MHz
-
88
-
-
88
-
-
88
-
-
88
-
dBc
fi = 70 MHz
-
87
-
-
87
-
-
86
-
-
86
-
dBc
fi = 170 MHz
-
84
-
-
85
-
-
83
-
-
84
-
dBc
Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; minimum and maximum values are across the full temperature range Tamb = −40 °C to +85 °C
at VDDA = 3 V, VDDO = 1.8 V; VINP − VINM = −1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified.
10.2 Clock and digital output timing
Symbol
Clock and digital output timing characteristics[1]
Parameter
Conditions
ADC1610S065
Min
Typ
ADC1610S080
Max
Min
Typ
ADC1610S105
Max
Min
Typ
ADC1610S125
Max
Min
Typ
Unit
Max
Clock timing input: pins CLKP and CLKM
clock
frequency
40
-
65
60
-
80
75
-
105
100
-
125
MHz
tlat(data)
data latency
time
-
13.5
-
-
13.5
-
-
13.5
-
-
13.5
-
clock
cycles
δclk
clock duty
cycle
DCS_EN = logic 1
30
50
70
30
50
70
30
50
70
30
50
70
%
DCS_EN = logic 0
45
50
55
45
50
55
45
50
55
45
50
55
%
td(s)
sampling
delay time
-
0.8
-
-
0.8
-
-
0.8
-
-
0.8
-
ns
twake
wake-up time
-
76
-
-
76
-
-
76
-
-
76
-
μs
CMOS Mode timing output: pins D15 to D0 and DAV
tPD
propagation
delay
10 of 40
© NXP B.V. 2011. All rights reserved.
tsu
set-up time
th
hold time
tr
rise time
DATA
13.6
14.9
16.4
11.9
12.9
14.4
8.0
10.8
12.4
8.2
9.7
11.3
ns
DAV
-
4.2
-
-
3.6
-
-
3.3
-
-
3.4
-
ns
-
12.5
-
-
9.8
-
-
6.8
-
-
5.6
-
ns
DATA
[2]
DAV
tf
fall time
DATA
[2]
-
3.4
-
-
3.3
-
-
3.1
-
-
2.8
-
ns
0.39
-
2.4
0.39
-
2.4
0.39
-
2.4
0.39
-
2.4
ns
0.26
-
2.4
0.26
-
2.4
0.26
-
2.4
0.26
-
2.4
ns
0.19
-
2.4
0.19
-
2.4
0.19
-
2.4
0.19
-
2.4
ns
ADC1610S series
fclk
Single 16-bit ADC; CMOS or LVDS DDR digital output
Rev. 3 — 25 January 2011
All information provided in this document is subject to legal disclaimers.
Table 8.
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
Symbol
Clock and digital output timing characteristics[1] …continued
Parameter
Conditions
ADC1610S065
Min
Typ
ADC1610S080
Max
Min
Typ
ADC1610S105
Max
Min
Typ
ADC1610S125
Max
Min
Typ
NXP Semiconductors
ADC1610S_SER
Product data sheet
Table 8.
Unit
Max
LVDS DDR mode timing output: pins D14_D15_P to D0_D1_P, D14_D15_M to D0_D1_M, DAVP and DAVM
tPD
propagation
delay
tsu
set-up time
th
hold time
tr
rise time
DATA
3.3
5.1
7.6
2.9
4.6
7.1
2.5
4.2
6.8
2.2
4.0
6.6
ns
DAV
-
2.8
-
-
2.5
-
-
2.3
-
-
2.2
-
ns
-
5.4
-
-
4.1
-
-
2.6
-
-
1.9
-
ns
-
2.2
-
-
2.0
-
-
1.8
-
-
1.7
-
ns
0.5
-
5
0.5
-
5
0.5
-
5
0.5
-
5
ns
0.18
-
2.4
0.18
-
2.4
0.18
-
2.4
0.18
-
2.4
ns
0.15
-
1.6
0.15
-
1.6
0.15
-
1.6
0.15
-
1.6
ns
DATA
[3]
DAV
tf
fall time
DATA
[3]
Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; minimum and maximum values are across the full temperature range Tamb = −40 °C to +85 °C
at VDDA = 3 V, VDDO = 1.8 V; VINP − VINM = −1 dBFS; internal reference mode; applied to CMOS and LVDS interface; unless otherwise specified.
[2]
Measured between 20 % to 80 % of VDDO.
[3]
Rise time measured from −50 mV to +50 mV; fall time measured from +50 mV to −50 mV.
ADC1610S series
11 of 40
© NXP B.V. 2011. All rights reserved.
Single 16-bit ADC; CMOS or LVDS DDR digital output
Rev. 3 — 25 January 2011
All information provided in this document is subject to legal disclaimers.
[1]
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
N+1
N
td(s)
N+2
tclk
CLKP
CLKM
tPD
(N − 14)
(N − 13)
(N − 12)
(N − 11)
DATA
tsu
tPD
th
DAV
tclk
005aaa060
1
t clk = ------f clk
Fig 4.
CMOS mode and clock timing
N+1
N
td(s)
N+2
tclk
CLKP
CLKM
tPD
(N − 14)
(N − 13)
(N − 12)
(N − 11)
Dx_Dx + 1_P
Dx
Dx + 1
Dx
Dx + 1
Dx
Dx + 1
Dx
Dx + 1
Dx
Dx + 1
Dx_Dx + 1_M
tsu th tsu th
tPD
DAVP
DAVM
tclk
005aaa061
1
t clk = ------f clk
Fig 5.
ADC1610S_SER
Product data sheet
LVDS DDR mode and clock timing
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
12 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
10.3 SPI timings
Table 9.
SPI timings characteristics[1]
Symbol
Parameter
tw(SCLK)
Conditions
Min
Typ
Max
Unit
SCLK pulse width
-
40
-
ns
tw(SCLKH)
SCLK HIGH pulse width
-
16
-
ns
tw(SCLKL)
SCLK LOW pulse width
tsu
set-up time
th
hold time
fclk(max)
maximum clock frequency
-
16
-
ns
data to SCLK HIGH
-
5
-
ns
CS to SCLK HIGH
-
5
-
ns
data to SCLK HIGH
-
2
-
ns
CS to SCLK HIGH
[1]
-
2
-
ns
-
25
-
MHz
Typical values measured at VDDA = 3 V, VDDO = 1.8 V, Tamb = 25 °C and CL = 5 pF; minimum and maximum
values are across the full temperature range Tamb = −40 °C to +85 °C at VDDA = 3 V, VDDO = 1.8 V.
tsu
tsu
th
CS
tw(SCLKL)
th
tw(SCLKH)
tw(SCLK)
SCLK
SDIO
R/W
W1
W0
A12
A11
D2
D1
D0
005aaa065
Fig 6.
SPI timing
10.4 Typical characteristics
001aam619
3.2
C
(pF)
R
(kΩ)
3.0
12
2.8
8
2.6
4
2.4
0
50
Fig 7.
001aam614
16
150
250
350
450
550
f (MHz)
Capacitance as a function of frequency
ADC1610S_SER
Product data sheet
50
Fig 8.
150
250
350
450
550
f (MHz)
Resistance as a function of frequency
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
13 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
001aam616
100
SFDR
(dBc)
001aam615
80
(1)
SNR
(dBFS)
(1)
80
60
60
(2)
(2)
40
40
20
20
0
0
10
30
50
70
δ (%)
90
10
T = 25 °C; VDD = 3 V; fi = 170 MHz; fs = 125 Msps.
(1) DCS on.
(2) DCS off.
(2) DCS off.
SFDR as a function of duty cycle (δ)
SFDR
(dBc)
88
70
δ (%)
90
Fig 10. SNR as a function of duty cycle (δ)
001aam617
92
50
T = 25 °C; VDD = 3 V; fi = 170 MHz; fs = 125 Msps.
(1) DCS on.
Fig 9.
30
001aam618
80
(1)
SNR
(dBFS)
(2)
60
(1)
(2)
(3)
(3)
84
40
80
20
10
30
50
70
δ (%)
(1) Tamb = −40 °C/typical supply voltages.
90
10
30
50
70
δ (%)
(1) Tamb = −40 °C/typical supply voltages.
(2) Tamb = +25 °C/typical supply voltages.
(2) Tamb = +25 °C/typical supply voltages.
(3) Tamb = +90 °C/typical supply voltages.
(3) Tamb = +90 °C/typical supply voltages.
Fig 11. SFDR as a function of duty cycle (δ)
ADC1610S_SER
Product data sheet
90
Fig 12. SNR as a function of duty cycle (δ)
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
14 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
001aam659
90
SFDR
(dBc)
001aam660
75
SNR
(dBFS)
86
73
82
71
78
69
74
67
70
65
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0
0.5
VI(cm) (V)
Fig 13. SFDR as a function of common-mode input
voltage (VI(cm))
ADC1610S_SER
Product data sheet
1.0
1.5
2.0
2.5
3.0
3.5
VI(cm) (V)
Fig 14. SNR as a function of common-mode input
voltage (VI(cm))
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
15 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
11. Application information
11.1 Device control
The ADC1610S can be controlled via SPI or directly via the I/O pins (Pin control mode).
11.1.1 SPI and Pin control modes
The device enters Pin control mode at power-up, and remains in this mode as long as pin
CS is held HIGH. In Pin control mode, the SPI pins SDIO, CS and SCLK are used as
static control pins.
SPI control mode is enabled by forcing pin CS LOW. Once SPI control mode has been
enabled, the device remains in this mode. The transition from Pin control mode to SPI
control mode is illustrated in Figure 15.
CS
SCLK/DFS
SDIO/ODS
Pin control mode
Data format
two's complement
SPI control mode
Data format
offset binary
LVDS DDR
CMOS
R/W
W1
W0
A12
005aaa039
Fig 15. Control mode selection
When the device enters SPI control mode, the output data standard and data format are
determined by the level on pin SDIO when a transition is triggered by a falling edge on pin
CS.
11.1.2 Operating mode selection
The active ADC1610S operating mode (Power-up, Power-down or Sleep) can be selected
using bits OP_MODE[1:0] of the Reset and operating mode register (see Table 20) or
using pins PWD and OE in Pin control mode, as described in Table 10.
Table 10.
Operating mode selection pin PWD/OE
Pin PWD/OE
Power mode
Output high-Z
GND
Power-down
yes
1/3 VDDA
Sleep
yes
2/3 VDDA
Power-up
yes
VDDA
Power-up
no
11.1.3 Selecting the output data standard
The output data standard (CMOS or LVDS DDR) can be selected via the SPI interface
(see Table 23) or using pin ODS in Pin control mode. LVDS DDR is selected when ODS is
HIGH, otherwise CMOS is selected.
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
16 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
11.1.4 Selecting the output data format
The output data format can be selected via the SPI interface (offset binary, two’s
complement or gray code; see Table 23) or using pin DFS in Pin control mode (offset
binary or two’s complement). Offset binary is selected when DFS is LOW. When DFS is
HIGH, two’s complement is selected.
11.2 Analog inputs
11.2.1 Input stage
The analog input of the ADC1610S supports a differential or a single-ended input drive.
Optimal performance is achieved using differential inputs with the common-mode input
voltage (VI(cm)) on pins INP and INM set to 0.5VDDA.
The full-scale analog input voltage range is configurable between 1 V (p-p) and 2 V (p-p)
via a programmable internal reference (see Section 11.3 and Table 22).
The equivalent circuit of the sample and hold input stage, including Electrostatic
Discharge (ESD) protection and circuit and package parasitics, is shown in Figure 16.
Package
ESD
Parasitics
Switch
INP
Ron = 15 Ω
8
Internal
clock
4 pF
Sampling
capacitor
Switch
INM
Ron = 15 Ω
7
Internal
clock
4 pF
Sampling
capacitor
005aaa043
Fig 16. Input sampling circuit
The sample phase occurs when the internal clock (derived from the clock signal on pin
CLKP/CLKM) is HIGH. The voltage is then held on the sampling capacitors. When the
clock signal goes LOW, the stage enters the hold phase and the voltage information is
transmitted to the ADC core.
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
17 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
11.2.2 Anti-kickback circuitry
Anti-kickback circuitry (R-C filter in Figure 17) is needed to counteract the effects of a
charge injection generated by the sampling capacitance.
The RC filter is also used to filter noise from the signal before it reaches the sampling
stage. The value of the capacitor should be chosen to maximize noise attenuation without
degrading the settling time excessively.
R
INP
C
R
INM
005aaa073
Fig 17. Anti-kickback circuit
The component values are determined by the input frequency and should be selected so
as not to affect the input bandwidth.
Table 11.
RC coupling versus input frequency, typical values
Input frequency (MHz)
Resistance (Ω)
Capacitance (pF)
3 MHz
25 Ω
12 pF
70 MHz
12 Ω
8 pF
170 MHz
12 Ω
8 pF
11.2.3 Transformer
The configuration of the transformer circuit is determined by the input frequency. The
configuration shown in Figure 18 would be suitable for a baseband application.
ADT1-1WT
100 nF
analog
input
25 Ω
100 nF
INP
25 Ω
12 pF
100 nF
100 nF
25 Ω
25 Ω
INM
VCM
100 nF
100 nF
005aaa044
Fig 18. Single transformer configuration suitable for baseband applications
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
18 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
The configuration shown in Figure 19 is recommended for high frequency applications. In
both cases, the choice of transformer is a compromise between cost and performance.
ADT1-1WT
analog
input
100 nF
ADT1-1WT
50 Ω
12 Ω
INP
50 Ω
8.2 pF
50 Ω
100 nF
50 Ω
12 Ω
INM
VCM
100 nF
100 nF
005aaa045
Fig 19. Dual transformer configuration suitable for a high intermediate frequency
application
11.3 System reference and power management
11.3.1 Internal/external references
The ADC1610S has a stable and accurate built-in internal reference voltage to adjust the
ADC full-scale. This reference voltage can be set internally via SPI or with pins VREF and
SENSE (programmable in 1 dB steps between 0 dB and −6 dB via control bits
INTREF[2:0] when bit INTREF_EN = logic 1; see Table 22). See Figure 21 to Figure 24.
The equivalent reference circuit is shown in Figure 20. An external reference is also
possible by providing a voltage on pin VREF as described in Figure 23.
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
19 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
REFT
REFERENCE
AMP
REFB
VREF
EXT_ref
EXT_ref
BUFFER
BANDGAP
REFERENCE
ADC CORE
SENSE
SELECTION
LOGIC
005aaa164
Fig 20. Reference equivalent schematic
If bit INTREF_EN is set to logic 0, the reference voltage is determined either internally or
externally as detailed in Table 12.
Table 12.
Selection
SPI bit
INTREF_EN
SENSE pin
VREF pin
Full-scale (p-p)
internal
(Figure 21)
0
AGND
330 pF capacitor to AGND
2V
internal
(Figure 22)
0
pin VREF connected to pin SENSE and via 1 V
a 330 pF capacitor to AGND
external
(Figure 23)
0
VDDA
internal via SPI
(Figure 24)
1
pin VREF connected to pin SENSE and via 1 V to 2 V
330 pF capacitor to AGND
[1]
ADC1610S_SER
Product data sheet
Reference selection
external voltage between
0.5 V and 1 V[1]
1 V to 2 V
The voltage on pin VREF is doubled internally to generate the internal reference voltage.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
20 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
VREF
VREF
330 pF
330
pF
REFERENCE
EQUIVALENT
SCHEMATIC
REFERENCE
EQUIVALENT
SCHEMATIC
SENSE
SENSE
005aaa117
005aaa116
Fig 21. Internal reference, 2 V (p-p) full scale
Fig 22. Internal reference, 1 V (p-p) full scale
VREF
VREF
V
0.1 μF
330 pF
REFERENCE
EQUIVALENT
SCHEMATIC
REFERENCE
EQUIVALENT
SCHEMATIC
SENSE
SENSE
VDDA
005aaa118
005aaa119
Fig 23. External reference, 1 V (p-p) to 2 V (p-p)
full-scale
Fig 24. Internal reference via SPI, 1 V (p-p) to 2 V (p-p)
full-scale
Figure 21 to Figure 24 illustrate how to connect the SENSE and VREF pins to select the
required reference voltage source.
11.3.2 Programmable full-scale
The full-scale is programmable between 1 V (p-p) to 2 V (p-p) (see Table 13).
Table 13.
ADC1610S_SER
Product data sheet
Reference SPI gain control
INTREF[2:0]
Gain (dB)
Full-scale (V (p-p))
000
0
2
001
−1
1.78
010
−2
1.59
011
−3
1.42
100
−4
1.26
101
−5
1.12
110
−6
1
111
reserved
x
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
21 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
11.3.3 Common-mode output voltage (VO(cm))
A 0.1 μF filter capacitor should be connected between pin VCM and ground to ensure a
low-noise common-mode output voltage. When AC-coupled, pin VCM can be used to set
the common-mode reference for the analog inputs, for instance via a transformer middle
point.
package
ESD
parasitics
COMMON-MODE
REFERENCE
1.5 V
VCM
0.1 μF
ADC core
005aaa051
Fig 25. Equivalent schematic of the common-mode reference circuit
11.3.4 Biasing
The common-mode input voltage (VI(cm)) on pins INP and INM should be set externally to
0.5VDDA for optimal performance and should always be between 0.9 V and 2 V.
11.4 Clock input
11.4.1 Drive modes
The ADC1610S can be driven differentially (LVPECL). It can also be driven by a
single-ended Low Voltage Complementary Metal Oxide Semiconductor (LVCMOS) signal
connected to pin CLKP (pin CLKM should be connected to ground via a capacitor) or pin
CLKM (pin CLKP should be connected to ground via a capacitor).
LVCMOS
clock input
CLKP
CLKP
CLKM
LVCMOS
clock input
005aaa053
005aaa174
a. Rising edge LVCMOS
CLKM
b. Falling edge LVCMOS
Fig 26. LVCMOS single-ended clock input
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
22 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Sine
clock input
CLKP
Sine
clock input
CLKP
CLKM
CLKM
005aaa173
005aaa054
a. Sine clock input
b. Sine clock input (with transformer)
CLKP
LVPECL
clock input
CLKM
005aaa172
c. LVPECL clock input
Fig 27. Differential clock input
11.4.2 Equivalent input circuit
The equivalent circuit of the input clock buffer is shown in Figure 29. The common-mode
voltage of the differential input stage is set via internal 5 kΩ resistors.
Package
ESD
Parasitics
CLKP
Vcm(clk)
SE_SEL
SE_SEL
5 kΩ
5 kΩ
CLKM
005aaa056
Vcm(clk) = common-mode voltage of the differential input stage.
Fig 28. Equivalent input circuit
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
23 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Single-ended or differential clock inputs can be selected via the SPI interface
(see Table 21). If single-ended is enabled, the input pin (CLKM or CLKP) is selected via
control bit SE_SEL.
If single-ended is implemented without setting bit SE_SEL to the appropriate value, the
unused pin should be connected to ground via a capacitor.
11.4.3 Duty cycle stabilizer
The duty cycle stabilizer can improve the overall performance of the ADC by
compensating the duty cycle of the input clock signal. When the duty cycle stabilizer is
active (bit DCS_EN = logic 1; see Table 21), the circuit can handle signals with duty cycles
of between 30 % and 70 % (typical). When the duty cycle stabilizer is disabled
(DCS_EN = logic 0), the input clock signal should have a duty cycle of between 45 % and
55 %.
11.4.4 Clock input divider
The ADC1610S contains an input clock divider that divides the incoming clock by a factor
of 2 (when bit CLKDIV = logic 1; see Table 21). This feature allows the user to deliver a
higher clock frequency with better jitter performance, leading to a better SNR result once
acquisition has been performed.
11.5 Digital outputs
11.5.1 Digital output buffers: CMOS mode
The digital output buffers can be configured as CMOS by setting bit LVDS_CMOS to
logic 0 (see Table 23).
Each digital output has a dedicated output buffer. The equivalent circuit of the CMOS
digital output buffer is shown in Figure 30. The buffer is powered by a separate power
supply, pins OGND and VDDO, to ensure 1.8 V to 3.3 V compatibility and is isolated from
the ADC core. Each buffer can be loaded by a maximum of 10 pF.
VDDO
PARASITICS
LOGIC
DRIVER
ESD
PACKAGE
50 Ω
Dx
AGND
005aaa122
Fig 29. CMOS digital output buffer
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
24 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
The output resistance is 50 Ω and is the combination of an internal resistor and the
equivalent output resistance of the buffer. There is no need for an external damping
resistor. The drive strength of both data and DAV buffers can be programmed via the SPI
in order to adjust the rise and fall times of the output digital signals (see Table 30):
11.5.2 Digital output buffers: LVDS DDR mode
The digital output buffers can be configured as LVDS DDR by setting bit LVDS_CMOS to
logic 1 (see Table 23).
VDDO
3.5 mA
typ
−
+
DxP/Dx + 1P
100 Ω
RECEIVER
DxM/Dx + 1M
−
+
AGND
005aaa123
Fig 30. LVDS DDR digital output buffer - externally terminated
Each output should be terminated externally with a 100 Ω resistor (typical) at the receiver
side (Figure 31) or internally via SPI control bits LVDS_INT_TER[2:0] (see Figure 32 and
Table 32).
VDDO
3.5 mA
typ
−
+
DxP/Dx + 1P
100 Ω
RECEIVER
DxM/Dx + 1M
+
−
AGND
005aaa124
Fig 31. LVDS DDR digital output buffer - internally terminated
The default LVDS DDR output buffer current is set to 3.5 mA. It can be programmed via
the SPI (bits DAVI[1:0] and DATAI[1:0]; see Table 31) in order to adjust the output logic
voltage levels.
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
25 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Table 14.
LVDS DDR output register 2
LVDS_INT_TER[1:0]
Resistor value (Ω)
000
no internal termination
001
300
010
180
011
110
100
150
101
100
110
81
111
60
11.5.3 DAta Valid (DAV) output clock
A data valid output clock signal (DAV) can be used to capture the data delivered by the
ADC1610S. Detailed timing diagrams for CMOS and LVDS DDR modes are shown in
Figure 4 and Figure 5 respectively.
11.5.4 Out-of-Range (OTR)
An out-of-range signal is provided on pin OTR. The latency of OTR is fourteen clock
cycles. The OTR response can be speeded up by enabling Fast OTR (bit
FASTOTR = logic 1; see Table 29). In this mode, the latency of OTR is reduced to only
four clock cycles. The Fast OTR detection threshold (below full-scale) can be
programmed via bits FASTOTR_DET[2:0].
Table 15.
Fast OTR register
FASTOTR_DET[2:0]
Detection level (dB)
000
−20.56
001
−16.12
010
−11.02
011
−7.82
100
−5.49
101
−3.66
110
−2.14
111
−0.86
11.5.5 Digital offset
By default, the ADC1610S delivers output code that corresponds to the analog input.
However it is possible to add a digital offset to the output code via the SPI (bits
DIG_OFFSET[5:0]; see Table 25).
11.5.6 Test patterns
For test purposes, the ADC1610S can be configured to transmit one of a number of
predefined test patterns (via bits TESTPAT_SEL[2:0]; see Table 26). A custom test pattern
can be defined by the user (TESTPAT_USER[15:0]; see Table 27 and Table 28) and is
selected when TESTPAT_SEL[2:0] = 101. The selected test pattern is transmitted
regardless of the analog input.
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
26 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
11.5.7 Output codes versus input voltage
Table 16.
Output codes
VINP − VINM
Offset binary
Two’s complement
OTR pin
< −1
0000 0000 0000 0000
1000 0000 0000 0000
1
−1
0000 0000 0000 0000
1000 0000 0000 0000
0
−0.99996948
0000 0000 0000 0001
1000 0000 0000 0001
0
−0.99993896
0000 0000 0000 0010
1000 0000 0000 0010
0
−0.99990845
0000 0000 0000 0011
1000 0000 0000 0011
0
−0.99987793
0000 0000 0000 0100
1000 0000 0000 0100
0
....
....
....
0
−0.00006104
0111 1111 1111 1110
1111 1111 1111 1110
0
−0.00003052
0111 1111 1111 1111
1111 1111 1111 1111
0
0
1000 0000 0000 0000
0000 0000 0000 0000
0
+0.00003052
1000 0000 0000 0001
0000 0000 0000 0001
0
+0.00006104
1000 0000 0000 0010
0000 0000 0000 0010
0
....
....
....
0
+0.99987793
1111 1111 1111 1011
0111 1111 1111 1011
0
+0.99990845
1111 1111 1111 1100
0111 1111 1111 1100
0
+0.99993896
1111 1111 1111 1101
0111 1111 1111 1101
0
+0.99996948
1111 1111 1111 1110
0111 1111 1111 1110
0
+1
1111 1111 1111 1111
0111 1111 1111 1111
0
> +1
1111 1111 1111 1111
0111 1111 1111 1111
1
11.6 Serial peripheral interface
11.6.1 Register description
The ADC1610S serial interface is a synchronous serial communications port that allows
easy interfacing with many commonly-used microprocessors. It provides access to the
registers that control the operation of the chip.
This interface is configured as a 3-wire type (SDIO as bidirectional pin)
Pin SCLK is the serial clock input and pin CS is the chip select pin.
Each read/write operation is initiated by a LOW level on pin CS. A minimum of three bytes
is transmitted (two instruction bytes and at least one data byte). The number of data bytes
is determined by the value of bits W1 and W2 (see Table 18).
Table 17.
Instruction bytes for the SPI
MSB
ADC1610S_SER
Product data sheet
LSB
Bit
7
6
5
4
3
2
1
0
Description
R/W[1]
W1[2]
W0[2]
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
[1]
Bit R/W indicates whether it is a read (logic 1) or a write (logic 0) operation.
[2]
Bits W1 and W0 indicate the number of bytes to be transferred after the instruction byte (see Table 18).
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
27 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Table 18.
Number of data bytes to be transferred after the instruction bytes
W1
W0
Number of bytes transmitted
0
0
1 byte
0
1
2 bytes
1
0
3 bytes
1
1
4 bytes or more
Bits A12 to A0 indicate the address of the register being accessed. In the case of a
multiple byte transfer, this address is the first register to be accessed. An address counter
is increased to access subsequent addresses.
The steps involved in a data transfer are as follows:
1. A falling edge on CS in combination with a rising edge on SCLK determine the start of
communications.
2. The first phase is the transfer of the 2-byte instruction.
3. The second phase is the transfer of the data which can vary in length but is always a
multiple of 8 bits. The MSB is always sent first (for instruction and data bytes).
4. A rising edge on CS indicates the end of data transmission.
CS
SCLK
SDIO
R/W W1
W0
A12 A11 A10
A9
A8
A7
A6
A5
A4
A3
A2
Instruction bytes
A1
A0
D7
D6
D5
D4
D3
D2
Register N (data)
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
Register N + 1 (data)
005aaa062
Fig 32. SPI mode timing
11.6.2 Default modes at start-up
During circuit initialization it does not matter which output data standard has been
selected. At power-up, the device enters Pin control mode.
A falling edge on CS triggers a transition to SPI control mode. When the ADC1610S
enters SPI control mode, the output data standard (CMOS/LVDS DDR) is determined by
the level on pin SDIO (see Figure 33). Once in SPI control mode, the output data standard
can be changed via bit LVDS_CMOS in Table 23.
When the ADC1610S enters SPI control mode, the output data format (two’s complement
or offset binary) is determined by the level on pin SCLK (gray code can only be selected
via the SPI). Once in SPI control mode, the output data format can be changed via bit
DATA_FORMAT[1:0] in Table 23.
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
28 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
CS
SCLK
(Data format)
SDIO
(CMOS LVDS DDR)
Offset binary, LVDS DDR
default mode at start-up
005aaa063
Fig 33. Default mode at start-up: SCLK LOW = offset binary; SDIO HIGH = LVDS DDR
CS
SCLK
(Data format)
SDIO
(CMOS LVDS DDR)
two's complement, CMOS
default mode at start-up
005aaa064
Fig 34. Default mode at start-up: SCLK HIGH = two’s complement; SDIO LOW = CMOS
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
29 of 40
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx
Table 19.
NXP Semiconductors
ADC1610S_SER
Product data sheet
11.6.3 Register allocation map
Register allocation map
Register name
R/W
Bit definition
0005
Reset and
operating mode
R/W
SW_RST
0006
Clock
R/W
-
-
-
0008
Internal reference
R/W
-
-
0011
Output data
standard
R/W
-
0012
Output clock
R/W
0013
Offset
0014
Bit 7
Bit 6
Bit 5
Bit 4
Default
Bit 3
Bit 2
-
-
SE_SEL
DIFF_SE
-
-
-
INTREF_EN
-
-
LVDS_CMOS
OUTBUF
-
-
-
-
DAVINV
R/W
-
-
Test pattern 1
R/W
-
-
0015
Test pattern 2
R/W
TESTPAT_USER[15:8]
0000
0000
0016
Test pattern 3
R/W
TESTPAT_USER[7:0]
0000
0000
0017
Fast OTR
R/W
-
-
-
-
0020
CMOS output
R/W
-
-
-
-
0021
LVDS DDR O/P 1
R/W
-
-
DAVI_x2_EN
0022
LVDS DDR O/P 2
R/W
-
-
-
RESERVED[2:0]
Bit 1
Bit 0
OP_MODE[1:0]
CLKDIV
DCS_EN
INTREF[2:0]
OUTBUS_SWAP
-
DAVPHASE[2:0]
-
BIT_BYTE_WISE
0000
1110
DATAI_x2_EN
0000
0000
0000
0000
DATA_DRV[1:0]
0000
1110
DATAI[1:0]
0000
0000
LVDS_INT_TER[2:0]
0000
0000
30 of 40
© NXP B.V. 2011. All rights reserved.
ADC1610S series
-
FASTOTR_DET[2:0]
DAV_DRV[1:0]
DAVI[1:0]
0000
0000
0000
0000
TESTPAT_SEL[2:0]
FASTOTR
0000
0001
DATA_FORMAT[1:0] 0000
0000
DIG_OFFSET[5:0]
-
Bin
0000
0000
Single 16-bit ADC; CMOS or LVDS DDR digital output
Rev. 3 — 25 January 2011
All information provided in this document is subject to legal disclaimers.
Addr
Hex
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Table 20. Reset and operating mode control register (address 0005h) bit description
Default values are highlighted.
Bit
Symbol
Access
7
SW_RST
R/W
6 to 4
RESERVED[2:0]
3 to 2
-
1 to 0
OP_MODE[1:0]
Value
Description
reset digital section
0
no reset
1
performs a reset of the SPI registers
000
00
R/W
reserved
not used
operating mode
00
normal (power-up)
01
power-down
10
sleep
11
normal (power-up)
Table 21. Clock control register (address 0006h) bit description
Default values are highlighted.
Bit
Symbol
7 to 5
-
4
SE_SEL
Access
Value
Description
000
not used
R/W
single-ended clock input pin select
0
1
3
DIFF_SE
2
-
1
CLKDIV
0
DCS_EN
ADC1610S_SER
Product data sheet
R/W
CLKM
CLKP
differential/single-ended clock input select
0
fully differential
1
single-ended
0
R/W
not used
clock input divide by 2
0
disabled
1
enabled
R/W
duty cycle stabilizer
0
disabled
1
enabled
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
31 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Table 22. Internal reference control register (address 0008h) bit description
Default values are highlighted.
Bit
Symbol
7 to 4
-
3
INTREF_EN
2 to 0
INTREF[2:0]
Access
Value
Description
0
not used
R/W
programmable internal reference enable
0
disable
1
active
R/W
programmable internal reference
000
FS = 2 V
001
FS = 1.78 V
010
FS = 1.59 V
011
FS = 1.42 V
100
FS = 1.26 V
101
FS = 1.12 V
110
FS = 1 V
111
reserved
Table 23. Output data standard control register (address 0011h) bit description
Default values are highlighted.
Bit
Symbol
7 to 5
-
4
LVDS_CMOS
3
2
1 to 0
OUTBUF
Access
000
R/W
ADC1610S_SER
Product data sheet
Description
not used
output data standard: LVDS DDR or CMOS
0
CMOS
1
LVDS DDR
R/W
OUTBUS_SWAP
DATA_FORMAT[1:0]
Value
output buffers enable
0
output enabled
1
output disabled (high-Z)
0
outbus swapping
0
no swapping
1
output bus is swapping (MSB becomes LSB and vice
versa)
R/W
output data format
00
offset binary
01
two’s complement
10
gray code
11
offset binary
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
32 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Table 24. Output clock register (address 0012h) bit description
Default values are highlighted.
Bit
Symbol
7 to 4
-
3
DAVINV
2 to 0
DAVPHASE[2:0]
Access
Value
0000
R/W
Description
not used
output clock data valid (DAV) polarity
0
normal
1
inverted
R/W
DAV phase select
000
output clock shifted (ahead) by 6/16 × tclk
001
output clock shifted (ahead) by 5/16 × tclk
010
output clock shifted (ahead) by 4/16 × tclk
011
output clock shifted (ahead) by 3/16 × tclk
100
output clock shifted (ahead) by 2/16 × tclk
101
output clock shifted (ahead) by 1/16 × tclk
110
default value as defined in timing section
111
output clock shifted (delayed) by 1/16 × tclk
Table 25. Offset register (address 0013h) bit description
Default values are highlighted.
Bit
Symbol
7 to 6
-
5 to 0
DIG_OFFSET[5:0]
Access
Value
00
R/W
Description
not used
digital offset adjustment
011111
+31 LSB
...
...
000000
0
...
...
100000
−32 LSB
Table 26. Test pattern register 1 (address 0014h) bit description
Default values are highlighted.
Bit
Symbol
7 to 3
-
2 to 0
TESTPAT_SEL[2:0]
ADC1610S_SER
Product data sheet
Access
Value
Description
00000
not used
R/W
digital test pattern select
000
off
001
mid scale
010
−FS
011
+FS
100
toggle ‘1111..1111’/’0000..0000’
101
custom test pattern
110
‘1010..1010.’
111
‘010..1010’
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
33 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Table 27. Test pattern register 2 (address 0015h) bit description
Default values are highlighted.
Bit
Symbol
Access
Value
Description
7 to 0
TESTPAT_USER[15:8]
R/W
00000000 custom digital test pattern (bits 13 to 6)
Table 28. Test pattern register 3 (address 0016h) bit description
Default values are highlighted.
Bit
Symbol
Access
Value
Description
7 to 0
TESTPAT_USER[7:0]
R/W
00000000
custom digital test pattern (bits 7 to 0)
Table 29. Fast OTR register (address 0017h) bit description
Default values are highlighted.
Bit
Symbol
7 to 4
-
3
FASTOTR
2 to 0
Access
Value
Description
0000
not used
R/W
FASTOTR_DET[2:0]
fast OuT-of-Range (OTR) detection
0
disabled
1
enabled
R/W
set fast OTR detect level
000
−20.56 dB
001
−16.12 dB
010
−11.02 dB
011
−7.82 dB
100
−5.49 dB
101
−3.66 dB
110
−2.14 dB
111
−0.86 dB
Table 30. CMOS output register (address 0020h) bit description
Default values are highlighted.
Bit
Symbol
7 to 4
-
3 to 2
DAV_DRV[1:0]
1 to 0
DATA_DRV[1:0]
ADC1610S_SER
Product data sheet
Access
Value
0000
R/W
Description
not used
drive strength for DAV CMOS output buffer
00
low
01
medium
10
high
11
very high
R/W
drive strength for DATA CMOS output buffer
00
low
01
medium
10
high
11
very high
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
34 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Table 31. LVDS DDR output register 1 (address 0021h) bit description
Default values are highlighted.
Bit
Symbol
7 to 6
-
5
DAVI_x2_EN
4 to 3
DAVI[1:0]
Access
Value
00
Description
not used
R/W
double LVDS current for DAV LVDS buffer
0
disabled
1
enabled
R/W
LVDS current for DAV LVDS buffer
00
3.5 mA
01
4.5 mA
10
1.25 mA
11
2
1 to 0
DATAI_x2_EN
DATAI[1:0]
2.5 mA
R/W
double LVDS current for DATA LVDS buffer
0
disabled
1
enabled
R/W
LVDS current for DATA LVDS buffer
00
3.5 mA
01
4.5 mA
10
1.25 mA
11
2.5 mA
Table 32. LVDS DDR output register 2 (address 0022h) bit description
Default values are highlighted.
Bit
Symbol
7 to 4
-
3
BIT_BYTE_WISE
2 to 0
LVDS_INT_TER[2:0]
ADC1610S_SER
Product data sheet
Access
Value
0000
R/W
Description
not used
DDR mode for LVDS output
0
bit wise (even data bits output on DAV rising edge/odd
data bits output on DAV falling edge)
1
byte wise (MSB data bits output on DAV rising edge/LSB data
bits output on DAV falling edge)
R/W
internal termination for LVDS buffer (DAV and DATA)
000
no internal termination
001
300 Ω
010
180 Ω
011
110 Ω
100
150 Ω
101
100 Ω
110
81 Ω
111
60 Ω
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
35 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
12. Package outline
HVQFN40: plastic thermal enhanced very thin quad flat package; no leads;
40 terminals; body 6 x 6 x 0.85 mm
A
B
D
SOT618-1
terminal 1
index area
A
E
A1
c
detail X
C
e1
e
1/2
e
20
y
y1 C
v M C A B
w M C
b
11
L
21
10
e
e2
Eh
1/2
1
e
30
terminal 1
index area
40
31
Dh
X
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A(1)
max.
A1
b
c
D(1)
Dh
E(1)
Eh
e
e1
e2
L
v
w
y
y1
mm
1
0.05
0.00
0.30
0.18
0.2
6.1
5.9
4.25
3.95
6.1
5.9
4.25
3.95
0.5
4.5
4.5
0.5
0.3
0.1
0.05
0.05
0.1
Note
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
JEITA
SOT618-1
---
MO-220
---
EUROPEAN
PROJECTION
ISSUE DATE
01-08-08
02-10-22
Fig 35. Package outline SOT618-1 (HVQFN40)
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
36 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
13. Revision history
Table 33.
Revision history
Document ID
Release date
Data sheet status
Change
notice
Supersedes
ADC1610S_SER v.3
20110125
Product data sheet
-
ADC1610S_SER_2
Modifications:
•
•
•
Data sheet status changed from Objective to Product.
•
Section 10.4 “Typical characteristics” added to the data sheet.
Text and drawings updated throughout entire data sheet.
SOT618-6 changed to SOT618-1. See Table 1 “Ordering information” and Figure
35 “Package outline SOT618-1 (HVQFN40)”.
ADC1610S_SER_2
20100412
Objective data sheet
-
ADC1610S125_1
ADC1610S125_1
20090528
Objective data sheet
-
-
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
37 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
14. Legal information
14.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
14.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
14.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
38 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
14.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
15. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
ADC1610S_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 25 January 2011
© NXP B.V. 2011. All rights reserved.
39 of 40
ADC1610S series
NXP Semiconductors
Single 16-bit ADC; CMOS or LVDS DDR digital output
16. Contents
1
2
3
4
5
6
6.1
6.2
7
8
9
10
10.1
10.2
10.3
10.4
11
11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.2
11.2.1
11.2.2
11.2.3
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.4
11.4.1
11.4.2
11.4.3
11.4.4
11.5
11.5.1
11.5.2
11.5.3
11.5.4
11.5.5
11.5.6
11.5.7
11.6
11.6.1
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ordering information . . . . . . . . . . . . . . . . . . . . . 2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Pinning information . . . . . . . . . . . . . . . . . . . . . . 3
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5
Thermal characteristics . . . . . . . . . . . . . . . . . . 5
Static characteristics. . . . . . . . . . . . . . . . . . . . . 6
Dynamic characteristics . . . . . . . . . . . . . . . . . . 9
Dynamic characteristics . . . . . . . . . . . . . . . . . . 9
Clock and digital output timing . . . . . . . . . . . . 10
SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Typical characteristics . . . . . . . . . . . . . . . . . . 13
Application information. . . . . . . . . . . . . . . . . . 16
Device control . . . . . . . . . . . . . . . . . . . . . . . . . 16
SPI and Pin control modes . . . . . . . . . . . . . . . 16
Operating mode selection. . . . . . . . . . . . . . . . 16
Selecting the output data standard . . . . . . . . . 16
Selecting the output data format. . . . . . . . . . . 17
Analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . 17
Input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Anti-kickback circuitry . . . . . . . . . . . . . . . . . . . 18
Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . 18
System reference and power management . . 19
Internal/external references . . . . . . . . . . . . . . 19
Programmable full-scale . . . . . . . . . . . . . . . . . 21
Common-mode output voltage (VO(cm)) . . . . . 22
Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Drive modes . . . . . . . . . . . . . . . . . . . . . . . . . 22
Equivalent input circuit . . . . . . . . . . . . . . . . . . 23
Duty cycle stabilizer . . . . . . . . . . . . . . . . . . . . 24
Clock input divider . . . . . . . . . . . . . . . . . . . . . 24
Digital outputs . . . . . . . . . . . . . . . . . . . . . . . . . 24
Digital output buffers: CMOS mode . . . . . . . . 24
Digital output buffers: LVDS DDR mode . . . . . 25
DAta Valid (DAV) output clock . . . . . . . . . . . . 26
Out-of-Range (OTR) . . . . . . . . . . . . . . . . . . . . 26
Digital offset . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Test patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Output codes versus input voltage . . . . . . . . . 27
Serial peripheral interface. . . . . . . . . . . . . . . . 27
Register description . . . . . . . . . . . . . . . . . . . . 27
11.6.2
11.6.3
12
13
14
14.1
14.2
14.3
14.4
15
16
Default modes at start-up. . . . . . . . . . . . . . . .
Register allocation map . . . . . . . . . . . . . . . . .
Package outline. . . . . . . . . . . . . . . . . . . . . . . .
Revision history . . . . . . . . . . . . . . . . . . . . . . .
Legal information . . . . . . . . . . . . . . . . . . . . . .
Data sheet status . . . . . . . . . . . . . . . . . . . . . .
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . .
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . .
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . .
Contact information . . . . . . . . . . . . . . . . . . . .
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
30
36
37
38
38
38
38
39
39
40
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 2011.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 25 January 2011
Document identifier: ADC1610S_SER