0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AFD4400NXN763VB

AFD4400NXN763VB

  • 厂商:

    NXP(恩智浦)

  • 封装:

    1152-BBGA,FCBGA

  • 描述:

    AFD4400 HDR 614/307

  • 数据手册
  • 价格&库存
AFD4400NXN763VB 数据手册
Freescale Semiconductor Data Sheet: Technical Data Document Number: AFD4400 Rev. 0, 10/2015 AFD4400 AFD4400 Digital Front End Processor Data Sheet The following list provides an overview of the feature set: • Flexible radio configurations – Up to eight carriers in single or multi-mode combinations – LTE(FDD and TDD), WCDMA, N-CDMA, and GSM supported – Supported at least 80 MHz total carrier bandwidth – Supported at least 100 MHz of instantaneous bandwidth with non-contiguous carriers. – Up to eight transmitters, eight receivers, and four observability/sampling receivers – Ability to cascade to support multi-sector or distributed antenna systems • Fully programmable signal processing paths – Transmit path: eight vector signal processors – Receive path: two vector signal processors – Observability Path: one vector signal processor – Processor elements sized to support common RF subsystem processing requirements—crest factor reduction, digital pre-distortion (DPD), channel filters, up and down conversion, carrier combining and separation, IQ compensation equalization, interpolation and decimation, and beam forming – Transmit/receive processing, busing, and memory system sized for—closed-loop DPD operation up to 491.52 Msps, maximum transmit sample rate of 491.52 Msps, maximum receive sample rate of 245.76 Msps, and maximum observability/sampling rate of 491.52 Msps • Industry standard interfaces to external components – CPRI v4.2 modem interface – JESD204B transceiver interface © 2015 Freescale Semiconductor, Inc. All rights reserved. FC PBGA 1152 35 mm x 35 mm – Ethernet OA&M interface – AISG antenna accessory interface • ARM® Cortex®-A9 processor – 32 KB L1 instruction cache – 32 KB L1 data cache – 256 KB L2 cache – Neon extension for SIMD and floating point instructions • Hierarchical memory architecture – Local memories within each vector signal processor domain – System level shared memory – 32-bit DDR3 interface with 500 MHz memory bus speed. – External NOR and SPI flash • Debug – Built around ARM® CoreSight™ architecture – JTAG run control interface – 32-bit instruction trace port – Dedicated JESD204B interface for debug IQ streaming • Low-power design techniques – Clock gating and isolation of clocks – Power gating (PG) – Power islands Table of Contents 1 2 3 4 Pinout list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 AFD4400 ball map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 3.1 Overall DC electrical characteristics . . . . . . . . . . . . . . .34 3.2 Power sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 3.3 RESET initialization . . . . . . . . . . . . . . . . . . . . . . . . . . .45 3.4 Power characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .46 3.5 Input clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 3.6 Module electrical characteristics . . . . . . . . . . . . . . . . . .51 Hardware design considerations . . . . . . . . . . . . . . . . . . . . . .90 4.1 System clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 4.2 4.3 4.4 Power supply design . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Decoupling recommendations . . . . . . . . . . . . . . . . . . . 95 SerDes block power supply decoupling recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.5 Guidelines for high-speed interface termination . . . . . 95 4.6 Temperature diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 97 5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.1 Package parameters for the FC-PBGA . . . . . . . . . . . . 97 5.2 Mechanical dimensions of AFD4400FC-PBGA . . . . . . 99 5.3 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 2 Freescale Semiconductor This figure shows the major functional units. AFD4400 ARM® Cortex® -A9 32-Kbyte I-Cache 256-Kbyte L2 Cache OA&M To/From Modem CPRI CPRI JESD204B Flash Controller DDR Controller 32-Kbyte D-Cache DMA Ethernet Interconnect Fabric Timebase Generator Transmit Processing Sample Processing Receive Processing Peripherals JESD204BRX JESD204BTX To/From Transceivers Figure 1. Block diagram AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 3 Pinout list 1 Pinout list This table shows the AFD4400 pin multiplexing. Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply DDR Memory interface DDR_DQ0 DDR3 Data AP29 I/O MVDD DDR_DQ1 DDR3 Data AN29 I/O MVDD DDR_DQ2 DDR3 Data AM26 I/O MVDD DDR_DQ3 DDR3 Data AP30 I/O MVDD DDR_DQ4 DDR3 Data AN28 I/O MVDD DDR_DQ5 DDR3 Data AN26 I/O MVDD DDR_DQ6 DDR3 Data AP25 I/O MVDD DDR_DQ7 DDR3 Data AP26 I/O MVDD DDR_DQ8 DDR3 Data AJ26 I/O MVDD DDR_DQ9 DDR3 Data AG25 I/O MVDD DDR_DQ10 DDR3 Data AH26 I/O MVDD DDR_DQ11 DDR3 Data AG24 I/O MVDD DDR_DQ12 DDR3 Data AK26 I/O MVDD DDR_DQ13 DDR3 Data AF24 I/O MVDD DDR_DQ14 DDR3 Data AL25 I/O MVDD DDR_DQ15 DDR3 Data AH24 I/O MVDD DDR_DQ16 DDR3 Data AP17 I/O MVDD DDR_DQ17 DDR3 Data AP16 I/O MVDD DDR_DQ18 DDR3 Data AN15 I/O MVDD DDR_DQ19 DDR3 Data AM17 I/O MVDD DDR_DQ20 DDR3 Data AL16 I/O MVDD DDR_DQ21 DDR3 Data AM15 I/O MVDD DDR_DQ22 DDR3 Data AK15 I/O MVDD DDR_DQ23 DDR3 Data AL15 I/O MVDD DDR_DQ24 DDR3 Data AK17 I/O MVDD DDR_DQ25 DDR3 Data AH17 I/O MVDD DDR_DQ26 DDR3 Data AF18 I/O MVDD DDR_DQ27 DDR3 Data AJ17 I/O MVDD DDR_DQ28 DDR3 Data AF17 I/O MVDD DDR_DQ29 DDR3 Data AG15 I/O MVDD DDR_DQ30 DDR3 Data AH15 I/O MVDD DDR_DQ31 DDR3 Data AG16 I/O MVDD DDR_DM0 DDR3 Data Mask Strobe 0 AM27 Out MVDD DDR_DM1 DDR3 Data Mask Strobe 1 AH25 Out MVDD DDR_DM2 DDR3 Data Mask Strobe 2 AP15 Out MVDD DDR_DM3 DDR3 Data Mask Strobe 3 AG17 Out MVDD DDR_DQS0 DDR3 Data Sample Strobe 0 AP27 I/O MVDD AFD4400 Digital Front End Processor Data Sheet, Rev. 0 4 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply DDR_DQS0_B DDR3 Data Sample Strobe Complement 0 AP28 I/O MVDD DDR_DQS1 DDR3 Data Sample Strobe 1 AJ25 I/O MVDD DDR_DQS1_B DDR3 Data Sample Strobe Complement 1 AK25 I/O MVDD DDR_DQS2 DDR3 Data Sample Strobe 2 AM16 I/O MVDD DDR_DQS2_B DDR3 Data Sample Strobe Complement 2 AN16 I/O MVDD DDR_DQS3 DDR3 Data Sample Strobe 3 AH16 I/O MVDD DDR_DQS3_B DDR3 Data Sample Strobe Complement 3 AJ16 I/O MVDD DDR_BA0 DDR3 Bank Select 0 AN18 Out MVDD DDR_BA1 DDR3 Bank Select 1 AM19 Out MVDD DDR_BA2 DDR3 Bank Select 2 AP19 Out MVDD DDR_A0 DDR3 Address AJ23 Out MVDD DDR_A1 DDR3 Address AN24 Out MVDD DDR_A2 DDR3 Address AH22 Out MVDD DDR_A3 DDR3 Address AJ22 Out MVDD DDR_A4 DDR3 Address AK23 Out MVDD DDR_A5 DDR3 Address AL23 Out MVDD DDR_A6 DDR3 Address AM24 Out MVDD DDR_A7 DDR3 Address AL22 Out MVDD DDR_A8 DDR3 Address AN23 Out MVDD DDR_A9 DDR3 Address AP23 Out MVDD DDR_A10 DDR3 Address AM23 Out MVDD DDR_A11 DDR3 Address AH21 Out MVDD DDR_A12 DDR3 Address AL21 Out MVDD DDR_A13 DDR3 Address AP22 Out MVDD DDR_A14 DDR3 Address AK21 Out MVDD DDR_A15 DDR3 Address AL20 Out MVDD DDR_WE_B DDR3 Write Enable AH20 Out MVDD DDR_RAS_B DDR3 Row Address Strobe AJ20 Out MVDD DDR_CAS_B DDR3 Column Address Strobe AJ21 Out MVDD DDR_CS0_B DDR3 Chip Select 0 AM20 Out MVDD DDR_CS1_B DDR3 Chip Select 1 AL19 Out MVDD DDR_CKE0 DDR3 Clock Enable 0 AK19 Out MVDD DDR_CKE1 DDR3 Clock Enable 1 AJ19 Out MVDD DDR_CK0 DDR3 Clock 0 AN21 Out MVDD DDR_CK0_B DDR3 Clock 0 Complement AP21 Out MVDD DDR_CK1 DDR3 Clock 1 AN20 Out MVDD DDR_CK1_B DDR3 Clock 1 Complement AP20 Out MVDD DDR_ODT0 DDR3 On Die Termination AJ18 Out MVDD DDR_ODT1 DDR3 On Die Termination AL18 Out MVDD AFD4400 Digital Front End Processor Data Sheet, Rev. 0 5 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply DDR_RESET DDR3 Reset AH19 Out MVDD DDR_ZQ DDR3 Driver Impedance Calibration AG19 Out MVDD DDR_VREF DDR3 Reference Voltage AD24 In MVDD FLASH_DAT0 GPIOE0 Flash Data AD29 I/O FVDD FLASH_DAT1 GPIOE1 Flash Data AD34 I/O FVDD FLASH_DAT2 GPIOE2 Flash Data AC33 I/O FVDD FLASH_DAT3 GPIOE3 Flash Data AE29 I/O FVDD FLASH_DAT4 GPIOE4 Flash Data AB27 I/O FVDD FLASH_DAT5 GPIOE5 Flash Data AD31 I/O FVDD FLASH_DAT6 GPIOE6 Flash Data AE30 I/O FVDD FLASH_DAT7 GPIOE7 Flash Data AD32 I/O FVDD FLASH_DAT8 GPIOE8 Flash Data AE31 I/O FVDD FLASH_DAT9 GPIOE9 Flash Data AG32 I/O FVDD FLASH_DAT10 GPIOE10 Flash Data AE34 I/O FVDD FLASH_DAT11 GPIOE11 Flash Data AF33 I/O FVDD FLASH_DAT12 GPIOE12 Flash Data AF30 I/O FVDD FLASH_DAT13 GPIOE13 Flash Data AE33 I/O FVDD FLASH_DAT14 GPIOE14 Flash Data AF32 I/O FVDD FLASH_DAT15 GPIOE15 Flash Data AF29 I/O FVDD FLASH_A0 GPIOE16 Flash Address V32 I/O FVDD FLASH_A1 GPIOE17 Flash Address V25 I/O FVDD FLASH_A2 GPIOE18 Flash Address V29 I/O FVDD FLASH_A3 GPIOE19 Flash Address W26 I/O FVDD FLASH interface AFD4400 Digital Front End Processor Data Sheet, Rev. 0 6 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply FLASH_A4 GPIOE20 Flash Address V28 I/O FVDD FLASH_A5 GPIOE21 Flash Address W27 I/O FVDD FLASH_A6 GPIOE22 Flash Address W31 I/O FVDD FLASH_A7 GPIOE23 Flash Address W32 I/O FVDD FLASH_A8 GPIOE24 Flash Address W30 I/O FVDD FLASH_A9 GPIOE25 Flash Address W33 I/O FVDD FLASH_A10 GPIOE26 Flash Address W34 I/O FVDD FLASH_A11 GPIOE27 Flash Address Y34 I/O FVDD FLASH_A12 GPIOE28 Flash Address Y33 I/O FVDD FLASH_A13 GPIOE29 Flash Address Y32 I/O FVDD FLASH_A14 GPIOE30 Flash Address Y30 I/O FVDD FLASH_A15 GPIOE31 Flash Address Y29 I/O FVDD FLASH_A16 GPIOD9 Flash Address AA34 I/O FVDD FLASH_A17 GPIOD10 Flash Address AA29 I/O FVDD FLASH_A18 GPIOD11 Flash Address AA28 I/O FVDD FLASH_A19 GPIOD12 Flash Address AA32 I/O FVDD FLASH_A20 GPIOD13 Flash Address AA30 I/O FVDD FLASH_A21 QSPI_CK Flash Address AB33 I/O FVDD FLASH_A22 QSPI_IO0 Flash Address AA31 I/O FVDD FLASH_A23 QSPI_IO1 Flash Address AB31 I/O FVDD FLASH_A24 QSPI_IO2 Flash Address AC30 I/O FVDD FLASH_A25 QSPI_IO3 Flash Address AB34 I/O FVDD FLASH_CS0_B GPIOD14 Flash Chip Select 0 AC28 I/O FVDD AFD4400 Digital Front End Processor Data Sheet, Rev. 0 7 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply FLASH_CS1_B GPIOD15 Flash Chip Select 1 AB26 I/O FVDD FLASH_CS2_B QSPI_CS_B Flash Chip Select 2 AB30 Out FVDD FLASH_BE0_B GPIOD16 Flash Byte Enable AA27 I/O FVDD FLASH_BE1_B GPIOD17 Flash Byte Enable AC26 I/O FVDD FLASH_OE_B GPIOD18 Flash Output Enable AC29 I/O FVDD FLASH_WE_B GPIOD19 Flash Write Enable AD28 I/O FVDD FLASH_WAIT_B GPIOD20 Flash Busy/Ready/Wait AC32 I/O FVDD FLASH_BCLK GPIOD21 Flash Burst Clock AC34 I/O FVDD FLASH_ADV_B GPIOD22 Flash Address Valid AB28 I/O FVDD SPI1_MOSI GPIOE0 SPI1_MISO SPI1 Master Out Slave In G16 I/O GVDD3 SPI1_MISO GPIOE1 SPI1 Master In Slave Out B16 I/O GVDD3 SPI1_CLK GPIOD22 SPI1 Serial Clock A15 I/O GVDD3 SPI1_SS0 GPIOD23 SPI1 Slave Select 0 E16 I/O GVDD3 SPI1_SS1 GPIOE23 SPI1 Slave Select 1 D16 I/O GVDD3 SPI-1 interface SPI-2 interface SPI2_MOSI GPIOE2 SPI2_MISO SPI2 Master Out Slave In Data A16 I/O GVDD3 SPI2_MISO GPIOE3 SPI2 Master In Slave Out Data D17 I/O GVDD3 SPI2_CLK GPIOD24 SPI2 Serial Clock H17 I/O GVDD3 SPI2_SS0 GPIOD25 SPI2 Slave Select 0 G17 I/O GVDD3 SPI2_SS1 GPIOE24 SPI2 Slave Select 1 F17 I/O GVDD3 SPI3_MOSI GPIOE4 SPI3_MISO SPI3 Master Out Slave In Data C17 I/O GVDD3 SPI-3 interface AFD4400 Digital Front End Processor Data Sheet, Rev. 0 8 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply SPI3_MISO GPIOE5 SPI3 Master In Slave Out Data A17 I/O GVDD3 SPI3_CLK GPIOD26 SPI3 Serial Clock E18 I/O GVDD3 SPI3_SS0 GPIOD27 SPI3 Slave Select 0 G18 I/O GVDD3 SPI3_SS1 GPIOE25 SPI3 Slave Select 1 F18 I/O GVDD3 SPI4_MOSI GPIOE6 SPI4_MISO SPI4 Master Out Slave In Data C18 I/O GVDD3 SPI4_MISO GPIOE7 SPI4 Master In Slave Out Data B18 I/O GVDD3 SPI4_CLK GPIOD28 SPI4 Serial Clock D18 I/O GVDD3 SPI4_SS0 GPIOD29 SPI4 Slave Select 0 A19 I/O GVDD3 SPI4_SS1 GPIOE26 SPI4 Slave Select 1 A18 I/O GVDD3 SPI-4 interface SPI-5 interface SPI5_MOSI GPIOE8 SPI5_MISO SPI5 Master Out Slave In Data D20 I/O GVDD4 SPI5_MISO GPIOE9 SPI5 Master In Slave Out Data F19 I/O GVDD4 SPI5_CLK GPIOD29 SPI5 Serial Clock F20 I/O GVDD4 SPI5_SS0 GPIOD30 SPI5 Slave Select 0 C21 I/O GVDD4 SPI5_SS1 GPIOD31 SPI5 Slave Select 1 G20 I/O GVDD4 SPI6_MOSI GPIOE10 SPI6_MISO TBGEN_AGC_EN0 SPI6 Master Out Slave In Data D21 I/O GVDD4 SPI6_MISO GPIOE11 TBGEN_AGC_EN1 SPI6 Master In Slave Out Data A21 I/O GVDD4 SPI6_CLK GPIOE12 TBGEN_AGC_EN2 SPI6 Serial Clock B21 I/O GVDD4 SPI6_SS0 GPIOE13 TBGEN_AGC_EN3 SPI6 Slave Select 0 G21 I/O GVDD4 SPI-6 interface AFD4400 Digital Front End Processor Data Sheet, Rev. 0 9 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description SPI6_SS1 GPIOE27 SPI6 Slave Select 1 SPI7_MOSI GPIOE14 SPI7_MISO TBGEN_AGC_EN4 Package Pin Pin Type Power Supply E21 I/O GVDD4 SPI7 Master Out Slave In Data H21 I/O GVDD4 SPI7_MISO GPIOE15 TBGEN_AGC_EN5 SPI7 Master In Slave Out Data A22 I/O GVDD4 SPI7_CLK GPIOE16 TBGEN_AGC_EN6 SPI7 Serial Clock F21 I/O GVDD4 SPI7_SS0 GPIOE17 TBGEN_AGC_EN7 SPI7 Slave Select 0 G22 I/O GVDD4 SPI7_SS1 GPIOE28 SPI7 Slave Select 1 D22 I/O GVDD4 SPI-7 interface SPI-8 interface SPI8_MOSI GPIOE18 SPI8_MISO SPI8 Master Out Slave In Data D23 I/O GVDD4 SPI8_MISO GPIOE19 SPI8 Master In Slave Out Data B22 I/O GVDD4 SPI8_CLK GPIOE20 SPI8 Serial Clock E22 I/O GVDD4 SPI8_SS0 GPIOE21 SPI8 Slave Select 0 C23 I/O GVDD4 SPI8_SS1 GPIOE22 SPI8 Slave Select 1 A23 I/O GVDD4 UART1_TXD GPIOE23 UART1 Receive Data C8 I/O GVDD7 UART1_RXD GPIOE24 UART1 Transmit Data F11 I/O GVDD7 UART2_TXD GPIOE25 UART2 Receive Data E10 I/O GVDD7 UART2_RXD GPIOE26 UART2 Transmit Data B9 I/O GVDD7 UART3_TXD GPIOE27 UART3 Receive Data A10 I/O GVDD7 UART3_RXD GPIOE28 UART3 Transmit Data G12 I/O GVDD7 UART1 interface UART2 interface UART3 interface UART4 interface AFD4400 Digital Front End Processor Data Sheet, Rev. 0 10 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply UART4_TXD GPIOE29 I2C4_SDA UART4 Receive Data C10 I/O GVDD7 UART4_RXD GPIOE30 I2C4_SCL UART4 Transmit Data D11 I/O GVDD7 I2C1_SDA GPIOE0 I2C1 Serial Clock B3 I/O GVDD7 I2C1_SCL GPIOE1 I2C1 Serial Data A6 I/O GVDD7 I2C2_SDA GPIOE2 I2C2 Serial Clock C4 I/O GVDD7 I2C2_SCL GPIOE3 I2C2 Serial Data H11 I/O GVDD7 I2C3_SDA GPIOE4 I2C3 Serial Clock G10 I/O GVDD7 I2C3_SCL GPIOE5 I2C3 Serial Data D6 I/O GVDD7 I2C5_SDA GPIOE31 I2C5 Serial Clock A7 I/O GVDD7 I2C5_SCL GPIOD9 I2C5 Serial Data F9 I/O GVDD7 I2C6_SDA GPIOD10 I2C6 Serial Clock G11 I/O GVDD7 I2C6_SCL GPIOD11 I2C6 Serial Data C5 I/O GVDD7 I2C7_SDA GPIOD12 I2C7 Serial Clock B4 I/O GVDD7 I2C7_SCL GPIOD13 I2C7 Serial Data A8 I/O GVDD7 I2C8_SDA GPIOD14 TBGEN_GP_EVENT0 UART1_RTS_B SPI1_SS3 I2C8 Serial Clock E8 I/O GVDD7 I2C8_SCL GPIOD15 TBGEN_GP_EVENT1 UART1_CTS_B SPI2_SS3 I2C8 Serial Data A3 I/O GVDD7 I2C1 interface I2C2 interface I2C3 interface I2C5 interface I2C6 interface I2C7 interface I2C8 interface AFD4400 Digital Front End Processor Data Sheet, Rev. 0 11 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply I2C9 interface I2C9_SDA GPIOD16 TBGEN_GP_EVENT2 UART2_RTS_B SPI3_SS3 I2C9 Serial Clock A4 I/O GVDD7 I2C9_SCL GPIOD17 TBGEN_GP_EVENT3 UART2_CTS_B SPI4_SS3 I2C9 Serial Data E9 I/O GVDD7 I2C10 interface I2C10_SDA GPIOD18 TBGEN_GP_EVENT4 UART3_RTS_B SPI5_SS3 I2C10 Serial Clock C9 I/O GVDD7 I2C10_SCL GPIOD19 TBGEN_GP_EVENT5 UART3_CTS_B SPI6_SS3 I2C10 Serial Data F10 I/O GVDD7 I2C11_SDA GPIOD20 TBGEN_GP_EVENT6 UART4_RTS_B SPI7_SS3 I2C11 Serial Clock D8 I/O GVDD7 I2C11_SCL GPIOD21 TBGEN_GP_EVENT7 UART4_CTS_B SPI8_SS3 I2C11 Serial Data C7 I/O GVDD7 I2C11 interface General purpose IO module A (GPIOA) interface GPIOA0 UART4_RTS_B SOC_OBS0 General Purpose IO GPIOA pin 0 H13 I/O GVDD7 GPIOA1 UART4_CTS_B SOC_OBS1 General Purpose IO GPIOA pin 1 D10 I/O GVDD7 GPIOA2 SPI8_SS2 EIM_CS4_B SOC_OBS2 General Purpose IO GPIOA pin 2 A20 I/O GVDD4 GPIOA3 SPI7_SS2 SOC_OBS3 General Purpose IO GPIOA pin 3 B19 I/O GVDD4 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 12 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply GPIOA4 SPI6_RDY TBGEN_GP_TIMESTAMP0 SOC_OBS4 General Purpose IO GPIOA pin 4 C19 I/O GVDD4 GPIOA5 SPI7_RDY TBGEN_GP_TIMESTAMP1 SOC_OBS5 General Purpose IO GPIOA pin 5 C20 I/O GVDD4 GPIOA6 SPI8_RDY TBGEN_GP_TIMESTAMP2 SOC_OBS6 General Purpose IO GPIOA pin 6 J9 I/O GVDD2 GPIOA7 TBGEN_GP_TIMESTAMP3 SOC_OBS7 General Purpose IO GPIOA pin 7 A2 I/O GVDD2 GPIOA8 SOC_OBS8 General Purpose IO GPIOA pin 8 J10 I/O GVDD2 GPIOA9 SOC_OBS9 General Purpose IO GPIOA pin 9 J11 I/O GVDD2 GPIOA10 General Purpose IO GPIOA pin 10 H8 I/O GVDD2 GPIOA11 General Purpose IO GPIOA pin 11 F4 I/O GVDD2 GPIOA12 TBGEN_GP_TIMESTAMP0 General Purpose IO GPIOA pin 12 H10 I/O GVDD2 GPIOA13 TBGEN_GP_TIMESTAMP1 General Purpose IO GPIOA pin 13 E4 I/O GVDD2 GPIOA14 TBGEN_GP_TIMESTAMP2 General Purpose IO GPIOA pin 14 A5 I/O GVDD2 GPIOA15 TBGEN_GP_TIMESTAMP3 General Purpose IO GPIOA pin 15 E13 I/O GVDD3 GPIOA16 TBGEN_GP_TIMESTAMP0 VSP7_GPO0_4 General Purpose IO GPIOA pin 16 A13 I/O GVDD3 GPIOA17 TBGEN_GP_TIMESTAMP1 VSP7_GPO0_5 General Purpose IO GPIOA pin 17 G14 I/O GVDD3 GPIOA18 TBGEN_GP_TIMESTAMP2 VSP7_GPO0_6 General Purpose IO GPIOA pin 18 F14 I/O GVDD3 GPIOA19 SPI5_RDY TBGEN_GP_TIMESTAMP3 VSP7_GPO0_7 General Purpose IO GPIOA pin 19 C13 I/O GVDD3 GPIOA20 SPI1_RDY TBGEN_GP_EVENT0 VSP7_GPO0_0 General Purpose IO GPIOA pin 20 G15 I/O GVDD3 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 13 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply GPIOA21 SPI2_RDY TBGEN_GP_EVENT1 VSP7_GPO0_1 General Purpose IO GPIOA pin 21 A14 I/O GVDD3 GPIOA22 SPI3_RDY TBGEN_GP_EVENT2 MC_SYNC_OUT VSP7_GPO0_2 General Purpose IO GPIOA pin 22 B13 I/O GVDD3 GPIOA23 SPI4_RDY TBGEN_GP_EVENT3 VSP7_GPO0_3 General Purpose IO GPIOA pin 23 F15 I/O GVDD3 GPIOA24 SPI8_SS3 MC_SYNC_OUT VSP5_GPO0_0 General Purpose IO GPIOA pin 24 F5 I/O GVDD2 GPIOA25 SPI7_SS3 VSP5_GPO0_1 General Purpose IO GPIOA pin 25 G9 I/O GVDD2 GPIOA26 SPI6_SS2 VSP5_GPO0_2 General Purpose IO GPIOA pin 26 D3 I/O GVDD2 GPIOA27 SPI6_SS3 VSP_EXT_GO16 VSP5_GPO0_3 General Purpose IO GPIOA pin 27 F8 I/O GVDD2 GPIOA28 SPI5_SS2 TBGEN_GP_EVENT4 VSP_EXT_GO17 VSP6_GPO0_0 General Purpose IO GPIOA pin 28 H15 I/O GVDD2 GPIOA29 SPI5_SS3 TBGEN_GP_EVENT5 VSP_EXT_GO18 VSP6_GPO0_1 General Purpose IO GPIOA pin 29 E6 I/O GVDD2 GPIOA30 TBGEN_GP_EVENT6 VSP_EXT_GO19 VSP6_GPO0_2 General Purpose IO GPIOA pin 30 D5 I/O GVDD2 GPIOA31 TBGEN_GP_EVENT7 VSP_EXT_GO20 VSP6_GPO0_3 General Purpose IO GPIOA pin 31 E7 I/O GVDD2 General purpose IO module B (GPIOB) interface AFD4400 Digital Front End Processor Data Sheet, Rev. 0 14 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply GPIOB0 TIMED_GPIOB0 VSP_EXT_GO21 VSP1_GPO0_0 VSP2_GPO0_0 General Purpose IO GPIOB pin 0 AP13 I/O GVDD8 GPIOB1 TIMED_GPIOB1 ARM_EVENTI VSP_EXT_GO22 VSP1_GPO0_1 VSP2_GPO0_1 General Purpose IO GPIOB pin 1 AL13 I/O GVDD8 GPIOB2 TIMED_GPIOB2 VSP_EXT_GO23 VSP1_GPO0_2 VSP2_GPO0_2 General Purpose IO GPIOB pin 2 AK13 I/O GVDD8 GPIOB3 TIMED_GPIOB3 VSP1_GPO0_3 VSP2_GPO0_3 General Purpose IO GPIOB pin 3 AJ14 I/O GVDD8 GPIOB4 TIMED_GPIOB4 VSP3_GPO0_0 VSP4_GPO0_0 General Purpose IO GPIOB pin 4 AP11 I/O GVDD8 GPIOB5 TIMED_GPIOB5 VSP3_GPO0_1 VSP4_GPO0_1 General Purpose IO GPIOB pin 5 AN10 I/O GVDD8 GPIOB6 TIMED_GPIOB6 VSP3_GPO0_2 VSP4_GPO0_2 General Purpose IO GPIOB pin 6 AM13 I/O GVDD8 GPIOB7 TIMED_GPIOB7 VSP3_GPO0_3 VSP4_GPO0_3 General Purpose IO GPIOB pin 7 AM12 I/O GVDD8 GPIOB8 TIMED_GPIOB8 VSP8_GPO0_0 VSP9_GPO0_0 General Purpose IO GPIOB pin 8 AN11 I/O GVDD1 GPIOB9 TIMED_GPIOB9 VSP8_GPO0_1 VSP9_GPO0_1 General Purpose IO GPIOB pin 9 AN13 I/O GVDD1 GPIOB10 TIMED_GPIOB10 VSP8_GPO0_2 VSP9_GPO0_2 General Purpose IO GPIOB pin 10 AL12 I/O GVDD1 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 15 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply GPIOB11 TIMED_GPIOB11 VSP8_GPO0_3 VSP9_GPO0_3 General Purpose IO GPIOB pin 11 AM10 I/O GVDD1 GPIOB12 TIMED_GPIOB12 VSP10_GPO0_0 VSP11_GPO0_0 General Purpose IO GPIOB pin 12 AM11 I/O GVDD1 GPIOB13 TIMED_GPIOB13 VSP10_GPO0_1 VSP11_GPO0_1 General Purpose IO GPIOB pin 13 AH13 I/O GVDD1 GPIOB14 TIMED_GPIOB14 VSP10_GPO0_2 VSP11_GPO0_2 General Purpose IO GPIOB pin 14 AP12 I/O GVDD1 GPIOB15 TIMED_GPIOB15 VSP10_GPO0_3 VSP11_GPO0_3 General Purpose IO GPIOB pin 15 AL11 I/O GVDD1 GPIOB16 TIMED_GPIOB16 VSP1_GPO0_4 VSP2_GPO0_4 General Purpose IO GPIOB pin 16 AN9 I/O GVDD1 GPIOB17 TIMED_GPIOB17 VSP1_GPO0_5 VSP2_GPO0_5 General Purpose IO GPIOB pin 17 AJ12 I/O GVDD1 GPIOB18 TIMED_GPIOB18 VSP1_GPO0_6 VSP2_GPO0_6 General Purpose IO GPIOB pin 18 AK11 I/O GVDD1 GPIOB19 TIMED_GPIOB19 VSP1_GPO0_7 VSP2_GPO0_7 General Purpose IO GPIOB pin 19 AN8 I/O GVDD1 GPIOB20 TIMED_GPIOB20 VSP3_GPO0_4 VSP4_GPO0_4 General Purpose IO GPIOB pin 20 AP10 I/O GVDD1 GPIOB21 TIMED_GPIOB21 VSP3_GPO0_5 VSP4_GPO0_5 General Purpose IO GPIOB pin 21 AP8 I/O GVDD1 GPIOB22 TIMED_GPIOB22 VSP_GPI3_15 VSP3_GPO0_6 VSP4_GPO0_6 General Purpose IO GPIOB pin 22 AP7 I/O GVDD1 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 16 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply GPIOB23 TIMED_GPIOB23 VSP_GPI3_16 VSP3_GPO0_7 VSP4_GPO0_7 General Purpose IO GPIOB pin 23 AN7 I/O GVDD1 GPIOB24 TIMED_GPIOB24 VSP_GPI3_17 VSP8_GPO0_4 VSP9_GPO0_4 General Purpose IO GPIOB pin 24 AM7 I/O GVDD9 GPIOB25 TIMED_GPIOB25 VSP_GPI3_18 VSP8_GPO0_5 VSP9_GPO0_5 General Purpose IO GPIOB pin 25 AJ11 I/O GVDD9 GPIOB26 TIMED_GPIOB26 VSP_GPI3_19 VSP8_GPO0_6 VSP9_GPO0_6 General Purpose IO GPIOB pin 26 AH12 I/O GVDD9 GPIOB27 TIMED_GPIOB27 VSP_GPI3_20 VSP8_GPO0_7 VSP9_GPO0_7 General Purpose IO GPIOB pin 27 AG12 I/O GVDD9 GPIOB28 TIMED_GPIOB28 VSP_GPI3_21 VSP10_GPO0_4 VSP11_GPO0_4 General Purpose IO GPIOB pin 28 AP9 I/O GVDD9 GPIOB29 TIMED_GPIOB29 VSP_GPI3_22 VSP10_GPO0_5 VSP11_GPO0_5 General Purpose IO GPIOB pin 29 AG13 I/O GVDD9 GPIOB30 TIMED_GPIOB30 VSP_GPI3_23 VSP10_GPO0_6 VSP11_GPO0_6 General Purpose IO GPIOB pin 30 AF12 I/O GVDD9 GPIOB31 TIMED_GPIOB31 VSP_GPI3_24 VSP10_GPO0_7 VSP11_GPO0_7 General Purpose IO GPIOB pin 31 AF13 I/O GVDD9 General purpose IO module C (GPIOC) interface AFD4400 Digital Front End Processor Data Sheet, Rev. 0 17 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply GPIOC0 SPI8_SS2 SPI1_SS2 VSP_GPI3_25 TIMED_GPIOC0 TBGEN_T0_CTRL1 VSP2_GPO0_8 General Purpose IO GPIOC pin 0 D26 I/O GVDD6 GPIOC1 TSEC_1588_CLKIN SPI1_SS3 VSP_GPI3_26 TIMED_GPIOC1 TBGEN_T1_CTRL1 VSP2_GPO0_9 General Purpose IO GPIOC pin 1 A29 I/O GVDD6 GPIOC2 TSEC_1588_TRIG1 SPI2_SS2 VSP_GPI3_27 TIMED_GPIOC2 TBGEN_T2_CTRL1 VSP4_GPO0_8 General Purpose IO GPIOC pin 2 G25 I/O GVDD6 GPIOC3 TSEC_1588_TRIG2 SPI2_SS3 TBGEN_GP_TIMESTAMP0 TIMED_GPIOC3 TBGEN_T3_CTRL1 VSP4_GPO0_9 General Purpose IO GPIOC pin 3 A28 I/O GVDD6 GPIOC4 TSEC_1588_ALARM1 SPI3_SS2 TIMED_GPIOC4 TBGEN_T4_CTRL1 VSP9_GPO0_8 General Purpose IO GPIOC pin 4 E26 I/O GVDD6 GPIOC5 TSEC_1588_ALARM2 SPI3_SS3 TBGEN_GP_TIMESTAMP1 TIMED_GPIOC5 TBGEN_T5_CTRL1 VSP9_GPO0_9 General Purpose IO GPIOC pin 5 B28 I/O GVDD6 GPIOC6 TSEC_1588_FIPER1 SPI4_SS2 TBGEN_GP_TIMESTAMP2 TIMED_GPIOC6 TBGEN_T6_CTRL1 VSP11_GPO0_8 General Purpose IO GPIOC pin 6 C29 I/O GVDD6 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 18 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply GPIOC7 TSEC_1588_FIPER2 SPI4_SS3 TBGEN_GP_TIMESTAMP3 TIMED_GPIOC7 TBGEN_T7_CTRL1 VSP11_GPO0_9 General Purpose IO GPIOC pin 7 C28 I/O GVDD6 GPIOC8 TSEC_1588_FIPER3 SPI5_SS2 TBGEN_AGC_EN0 TIMED_GPIOC8 TBGEN_T0_CTRL2 VSP5_GPO0_8 General Purpose IO GPIOC pin 8 A30 I/O GVDD6 GPIOC9 TSEC_1588_CLKOUT SPI5_SS3 TBGEN_AGC_EN1 TIMED_GPIOC9 TBGEN_T1_CTRL2 VSP5_GPO0_9 General Purpose IO GPIOC pin 9 B29 I/O GVDD6 GPIOC10 UART1_RTS_B SPI6_SS2 TBGEN_AGC_EN2 TIMED_GPIOC10 TBGEN_T2_CTRL2 VSP5_GPO0_10 General Purpose IO GPIOC pin 10 D28 I/O GVDD6 GPIOC11 UART1_CTS_B SPI6_SS3 TBGEN_AGC_EN3 TIMED_GPIOC11 TBGEN_T3_CTRL2 VSP5_GPO0_11 General Purpose IO GPIOC pin 11 A31 I/O GVDD6 GPIOC12 UART2_RTS_B SPI7_SS3 TBGEN_AGC_EN4 TIMED_GPIOC12 TBGEN_T4_CTRL2 VSP6_GPO0_8 General Purpose IO GPIOC pin 12 A33 I/O GVDD6 GPIOC13 UART2_CTS_B SPI8_SS3 TBGEN_AGC_EN5 TIMED_GPIOC13 TBGEN_T5_CTRL2 VSP6_GPO0_9 General Purpose IO GPIOC pin 13 C30 I/O GVDD6 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 19 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply GPIOC14 UART3_RTS_B EXT_DMA_REQ1 TBGEN_AGC_EN6 TIMED_GPIOC14 TBGEN_T6_CTRL2 VSP6_GPO0_10 General Purpose IO GPIOC pin 14 D29 I/O GVDD6 GPIOC15 UART3_CTS_B VSP_GPI3_0 TBGEN_AGC_EN7 TIMED_GPIOC15 TBGEN_T7_CTRL2 VSP6_GPO0_11 General Purpose IO GPIOC pin 15 B32 I/O GVDD6 GPIOC16 UART4_RTS_B VSP_GPI3_1 TBGEN_T0_CTRL2_B TIMED_GPIOC16 VSP5_GPO0_4 VSP7_GPO0_8 General Purpose IO GPIOC pin 16 B31 I/O GVDD6 GPIOC17 UART4_CTS_B VSP_GPI3_2 TBGEN_T1_CTRL2_B TIMED_GPIOC17 VSP5_GPO0_5 VSP7_GPO0_9 General Purpose IO GPIOC pin 17 C31 I/O GVDD6 GPIOC18 VSP_GPI3_3 TBGEN_T2_CTRL2_B TIMED_GPIOC18 VSP6_GPO0_4 VSP7_GPO0_10 General Purpose IO GPIOC pin 18 C32 I/O GVDD6 GPIOC19 SPI1_RDY VSP_GPI3_4 TBGEN_T3_CTRL2_B TIMED_GPIOC19 VSP6_GPO0_5 VSP7_GPO0_11 General Purpose IO GPIOC pin 19 C33 I/O GVDD6 GPIOC20 SPI2_RDY VSP_GPI3_5 TBGEN_T4_CTRL2_B TIMED_GPIOC20 VSP5_GPO0_6 VSP7_GPO0_12 General Purpose IO GPIOC pin 20 C34 I/O GVDD6 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 20 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply GPIOC21 SPI3_RDY VSP_GPI3_6 TBGEN_T5_CTRL2_B TIMED_GPIOC21 VSP5_GPO0_7 VSP7_GPO0_13 General Purpose IO GPIOC pin 21 F26 I/O GVDD6 GPIOC22 SPI4_RDY VSP_GPI3_7 TBGEN_T6_CTRL2_B TIMED_GPIOC22 VSP6_GPO0_6 VSP7_GPO0_14 General Purpose IO GPIOC pin 22 D30 I/O GVDD6 GPIOC23 SPI5_RDY VSP_GPI3_8 TBGEN_T7_CTRL2_B TIMED_GPIOC23 VSP6_GPO0_7 VSP7_GPO0_15 General Purpose IO GPIOC pin 23 E31 I/O GVDD6 GPIOC24 TSEC1_RXD1 VSP_GPI3_9 TIMED_GPIOC24 TBGEN_T0_CTRL2_B VSP2_GPO0_10 TBGEN_T0_CTRL1 General Purpose IO GPIOC pin 24 C24 I/O GVDD5 GPIOC25 TSEC1_RXD2 VSP_GPI3_10 SPI6_RDY TIMED_GPIOC25 TBGEN_T1_CTRL2_B VSP2_GPO0_11 TBGEN_T1_CTRL1 General Purpose IO GPIOC pin 25 H22 I/O GVDD5 GPIOC26 TSEC1_RXD3 VSP_GPI3_11 SPI7_RDY TIMED_GPIOC26 TBGEN_T2_CTRL2_B VSP4_GPO0_10 TBGEN_T2_CTRL1 General Purpose IO GPIOC pin 26 G23 I/O GVDD5 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 21 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply GPIOC27 TSEC1_RX_ER VSP_GPI3_12 SPI8_RDY TIMED_GPIOC27 TBGEN_T3_CTRL2_B VSP4_GPO0_11 TBGEN_T3_CTRL1 General Purpose IO GPIOC pin 27 D24 I/O GVDD5 GPIOC28 TSEC1_GTX_CLK VSP_GPI3_13 EIM_CS5_B TIMED_GPIOC28 TBGEN_T4_CTRL2_B VSP9_GPO0_10 TBGEN_T4_CTRL1 General Purpose IO GPIOC pin 28 A25 I/O GVDD5 GPIOC29 TSEC1_TX_CLK VSP_GPI3_14 EIM_CS3_B TIMED_GPIOC29 TBGEN_T5_CTRL2_B VSP9_GPO0_11 TBGEN_T5_CTRL1 General Purpose IO GPIOC pin 29 E23 I/O GVDD5 GPIOC30 TSEC1_TXD0 VSP_GPI3_28 EXT_DMA_REQ1 TIMED_GPIOC30 TBGEN_T6_CTRL2_B VSP11_GPO0_10 TBGEN_T6_CTRL1 General Purpose IO GPIOC pin 30 F23 I/O GVDD5 GPIOC31 TSEC1_TXD1 VSP_GPI3_29 EXT_DMA_REQ2 TIMED_GPIOC31 TBGEN_T7_CTRL2_B VSP11_GPO0_11 TBGEN_T7_CTRL1 General Purpose IO GPIOC pin 31 C25 I/O GVDD5 General purpose IO module D (GPIOD) interface GPIOD0 TSEC1_TXD2 VSP_GPI3_30 SOC_OBS0 General Purpose IO GPIOD pin 0 B25 I/O GVDD5 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 22 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description GPIOD1 TSEC1_TXD3 EXT_DMA_REQ2 VSP_EXT_GO16 SOC_OBS1 TBGEN_T0_CTRL2 TBGEN_GP_EVENT0 Package Pin Pin Type Power Supply General Purpose IO GPIOD pin 1 A26 I/O GVDD5 GPIOD2 General Purpose IO GPIOD pin 2 TSEC1_TX_ERVSP_EXT_G O17 SOC_OBS2 TBGEN_T1_CTRL2 TBGEN_GP_EVENT1 D25 I/O GVDD5 GPIOD3 General Purpose IO GPIOD pin 3 TSEC1_TX_ENVSP_EXT_G O18 SOC_OBS3 TBGEN_T2_CTRL2 TBGEN_GP_EVENT2 F24 I/O GVDD5 GPIOD4 TSEC1_COLVSP_EXT_GO 19 SOC_OBS4 TBGEN_T3_CTRL2 TBGEN_GP_EVENT3 General Purpose IO GPIOD pin 4 G24 I/O GVDD5 GPIOD5 TSEC1_CRS VSP_GPI3_31 VSP_EXT_GO20 SOC_OBS5 TBGEN_T4_CTRL2 TBGEN_GP_EVENT4 General Purpose IO GPIOD pin 5 B26 I/O GVDD5 GPIOD6 TSEC1_RX_CLK SPI7_SS2 VSP_EXT_GO21 SOC_OBS6 TBGEN_T5_CTRL2 TBGEN_GP_EVENT5 General Purpose IO GPIOD pin 6 C26 I/O GVDD5 GPIOD7 TSEC1_RX_DV SPI8_SS2 VSP_EXT_GO22 SOC_OBS7 TBGEN_T6_CTRL2 TBGEN_GP_EVENT6 General Purpose IO GPIOD pin 7 F25 I/O GVDD5 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 23 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description GPIOD8 TSEC1_RXD0 MC_SYNC_OUT VSP_EXT_GO23 SOC_OBS8 TBGEN_T7_CTRL2 TBGEN_GP_EVENT7 General Purpose IO GPIOD pin 8 TSEC_MDC GPIOD9 SOC_OBS9 Ethernet MDC TSEC_MDIO GPIOD10 Ethernet MDIO Package Pin E25 Pin Type Power Supply I/O GVDD5 C27 Out GVDD5 A27 I/O GVDD5 Ethernet management channel interface Reset, Clocks and misc. signals RSTIN_B Hard Reset In E12 In JVDD URST_B User Reset In (Warm Reset) D12 In JVDD RSTOUT_B Hard Reset Out B6 Out GVDD7 RSTOUT1_B GPIOD22 Hard & Soft Reset Out 1 H19 Out GVDD4 RSTOUT2_B GPIOD23 Hard & Soft Reset Out 2 G19 Out GVDD4 RSTOUT3_B GPIOD24 Hard & Soft Reset Out 3 D14 Out GVDD3 RSTOUT4_B GPIOD25 Hard & Soft Reset Out 4 E15 Out GVDD3 RSTOUT5_B GPIOD26 Hard & Soft Reset Out 5 B15 Out GVDD3 RSTOUT6_B GPIOD27 Hard & Soft Reset Out 6 C14 Out GVDD3 RSTOUT7_B GPIOD28 Hard & Soft Reset Out 7 D15 Out GVDD3 WDOG_B WDOG out B7 Out GVDD7 DEVCLK1_P Device Clock used as the main reference to the IC R25 In SD3_XCOREVDD DEVCLK1_N Device Clock used as the main reference to the IC R24 In SD3_XCOREVDD DEVCLK2_P Device Clock used as the reference to JESDTX1-8 and JESDRX1-12 SerDes Y11 In SD1_XCOREVDD DEVCLK2_N Device Clock used as the reference to JESDTX1-8 and JESDRX1-12 SerDes Y12 In SD1_XCOREVDD SYSREF_OUT_N Sys reference out N34 Out LVDD3 SYSREF_OUT_P Sys reference out N33 Out LVDD3 SYSREF_IN_N Sys reference in T28 In LVDD3 SYSREF_IN_P Sys reference in T29 In LVDD3 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 24 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply FRMCLK_N Frame Clock (JESD204A only) R31 Out LVDD3 FRMCLK_P Frame Clock (JESD204A only) R30 Out LVDD3 CPRI_REVCLK_P Differential CPRI Recovered Clock P33 Out LVDD3 CPRI_REVCLK_N Differential CPRI Recovered Clock, LVDS signaling P34 Out LVDD3 CPRI_REVCLK Single ended CPRI Recovered Clock A32 Out GVDD6 RGMII_REFCLK_P Ethernet Reference Clock U27 In LVDD3 RGMII_REFCLK_N Ethernet Reference Clock U26 In LVDD3 SGMII_PHY_REFCLK 25 MHz Reference Clock to Ethernet PHYs A24 Out GVDD5 MC_SYNC_IN System Synchronization C15 In GVDD3 TG_RF_SYNC_P 10ms Tone Generator Synchronization T33 Out LVDD3 TG_RF_SYNC_N 10ms Tone Generator Synchronization T34 Out LVDD3 TG_RF_SYNC 10ms Tone Generator Synchronization B34 Out GVDD6 BMOD0 Boot Mode 0 F13 In JVDD BMOD1 Boot Mode 1 A12 In JVDD CKO Clock Out E19 Out GVDD4 TEST Factory test mode enable C12 In JVDD ANL_TEST Analog Test Y27 Out FVDD ANL_REFCLK_P_TEST Analog Test for DEVCLK1 pads W29 Out FVDD ANL_REFCLK_N_TEST Analog Test for DEVCLK1 pads W28 Out FVDD JTAG_TRST_B JTAG Test Reset A9 In JVDD JTAG_TDO JTAG Test Data Out C11 Out JVDD JTAG_TDI JTAG Test Data In B10 In JVDD JTAG_TCK JTAG Test Clock B12 In JVDD JTAG_TMS JTAG Test Mode Select A11 I/O JVDD JTAG_VSP_SEL Select the secondary JTAG multiplexed on HW MUX1 of GPIOD4-8 G13 In JVDD SJC_MOD_B JTAG controller mode AG30 In FVDD JTAG interface TRACE interface TRACE_CLK Trace Clock AK32 Out TVDD TRACE_IN_CLK Trace Input Clock AF34 In FVDD TRACE_CTL Trace Control AL32 Out TVDD TRACE_DATA0 Trace Data AH34 Out TVDD TRACE_DATA1 Trace Data AG34 Out TVDD TRACE_DATA2 Trace Data AH33 Out TVDD TRACE_DATA3 Trace Data AJ34 Out TVDD AFD4400 Digital Front End Processor Data Sheet, Rev. 0 25 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply TRACE_DATA4 Trace Data AJ33 Out TVDD TRACE_DATA5 Trace Data AH30 Out TVDD TRACE_DATA6 Trace Data AK34 Out TVDD TRACE_DATA7 Trace Data AJ32 Out TVDD TRACE_DATA8 Trace Data AH29 Out TVDD TRACE_DATA9 Trace Data AL34 Out TVDD TRACE_DATA10 Trace Data AM34 Out TVDD TRACE_DATA11 Trace Data AH31 Out TVDD TRACE_DATA12 Trace Data AG28 Out TVDD TRACE_DATA13 Trace Data AJ30 Out TVDD TRACE_DATA14 Trace Data AL33 Out TVDD TRACE_DATA15 Trace Data AK30 Out TVDD TRACE_DATA16 Trace Data AM30 Out TVDD TRACE_DATA17 Trace Data AN34 Out TVDD TRACE_DATA18 Trace Data AN32 Out TVDD TRACE_DATA19 Trace Data AK31 Out TVDD TRACE_DATA20 Trace Data AJ28 Out TVDD TRACE_DATA21 Trace Data AN31 Out TVDD TRACE_DATA22 Trace Data AM31 Out TVDD TRACE_DATA23 Trace Data AL29 Out TVDD TRACE_DATA24 Trace Data AL30 Out TVDD TRACE_DATA25 Trace Data AK28 Out TVDD TRACE_DATA26 Trace Data AP33 Out TVDD TRACE_DATA27 Trace Data AK29 Out TVDD TRACE_DATA28 Trace Data AH28 Out TVDD TRACE_DATA29 Trace Data AP32 Out TVDD TRACE_DATA30 Trace Data AL28 Out TVDD TRACE_DATA31 Trace Data AG27 Out TVDD TX1_DAT_P TX Data Out 1 AA4 Out SD1_XPADVDD TX1_DAT_N TX Data Out 1 AA5 Out SD1_XPADVDD RX1_DAT_P Rx/SRX Data In 1 W1 In SD1_XCOREVDD RX1_DAT_N Rx/SRX Data In 1 W2 In SD1_XCOREVDD TX2_DAT_P TX Data Out 2 AB6 Out SD1_XPADVDD TX2_DAT_N TX Data Out 2 AB7 Out SD1_XPADVDD RX2_DAT_P Rx/SRX Data In 2 AA1 In SD1_XCOREVDD RX2_DAT_N Rx/SRX Data In 2 AA2 In SD1_XCOREVDD TX3_DAT_P TX Data Out 3 AC4 Out SD1_XPADVDD TX3_DAT_N TX Data Out 3 AC5 Out SD1_XPADVDD RX3_DAT_P Rx/SRX Data In 3 AC1 In SD1_XCOREVDD RX3_DAT_N Rx/SRX Data In 3 AC2 In SD1_XCOREVDD TX4_DAT_P TX Data Out 4 AD6 Out SD1_XPADVDD JESD interface data signals AFD4400 Digital Front End Processor Data Sheet, Rev. 0 26 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply TX4_DAT_N TX Data Out 4 AD7 Out SD1_XPADVDD RX4_DAT_P Rx/SRX Data In 4 AE1 In SD1_XCOREVDD RX4_DAT_N Rx/SRX Data In 4 AE2 In SD1_XCOREVDD TX5_DAT_P TX Data Out 5 AE4 Out SD1_XPADVDD TX5_DAT_N TX Data Out 5 AE5 Out SD1_XPADVDD RX5_DAT_P Rx/SRX Data In 5 AG1 In SD1_XCOREVDD RX5_DAT_N Rx/SRX Data In 5 AG2 In SD1_XCOREVDD TX6_DAT_P TX Data Out 6 AF6 Out SD1_XPADVDD TX6_DAT_N TX Data Out 6 AF7 Out SD1_XPADVDD RX6_DAT_P Rx/SRX Data In 6 AJ1 In SD1_XCOREVDD RX6_DAT_N Rx/SRX Data In 6 AJ2 In SD1_XCOREVDD TX7_DAT_P TX Data Out 7 AG4 Out SD1_XPADVDD TX7_DAT_N TX Data Out 7 AG5 Out SD1_XPADVDD RX7_DAT_P Rx/SRX Data In 7 AL1 In SD1_XCOREVDD RX7_DAT_N Rx/SRX Data In 7 AL2 In SD1_XCOREVDD TX8_DAT_P TX Data Out 8 AH6 Out SD1_XPADVDD TX8_DAT_N TX Data Out 8 AH7 Out SD1_XPADVDD RX8_DAT_P Rx/SRX Data In 8 AN1 In SD1_XCOREVDD RX8_DAT_N Rx/SRX Data In 8 AN2 In SD1_XCOREVDD RX9_DAT_P SRx. Data In 9 V3 In SD2_XCOREVDD RX9_DAT_N SRx. Data In 9 V4 In SD2_XCOREVDD RX10_DAT_P SRx. Data In 10 U1 In SD2_XCOREVDD RX10_DAT_N SRx. Data In 10 U2 In SD2_XCOREVDD RX11_DAT_P SRx. Data In 11 R1 In SD2_XCOREVDD RX11_DAT_N SRx. Data In 11 R2 In SD2_XCOREVDD RX12_DAT_P SRx. Data In 12 N1 In SD2_XCOREVDD RX12_DAT_N SRx. Data In 12 N2 In SD2_XCOREVDD SerDes1 misc ports SD1_IC_TX TX Impedance Calibration AE11 In SD1_XPADVDD SD1_IC_RX RX Impedance Calibration W6 In SD1_XPADVDD SD1_PLL1_TPA PLL1 Analog Test Point Y7 Out SD1_XPADVDD SD1_PLL1_TPD PLL1 Digital Test Point Y9 Out SD1_XPADVDD SD1_PLL2_TPA PLL2 Analog Test Point AE9 Out SD1_XPADVDD SD1_PLL2_TPD PLL2 Digital Test Point AD10 Out SD1_XPADVDD TX1_SYNC_N Synchronization for TX1 AK9 In LVDD1 TX1_SYNC_P Synchronization for TX1 AL9 In LVDD1 TX2_SYNC_N Synchronization for TX2 AL8 In LVDD1 TX2_SYNC_P Synchronization for TX2 AK8 In LVDD1 TX3_SYNC_N Synchronization for TX3 AP4 In LVDD1 TX3_SYNC_P Synchronization for TX3 AN4 In LVDD1 TX4_SYNC_N Synchronization for TX4 AN5 In LVDD1 JESD204B interface SYNC~ signals AFD4400 Digital Front End Processor Data Sheet, Rev. 0 27 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply TX4_SYNC_P Synchronization for TX4 AP5 In LVDD1 TX5_SYNC_N Synchronization for TX5 AK6 In LVDD1 TX5_SYNC_P Synchronization for TX5 AL6 In LVDD1 TX6_SYNC_N Synchronization for TX6 AL5 In LVDD1 TX6_SYNC_P Synchronization for TX6 AK5 In LVDD1 TX7_SYNC_N Synchronization for TX7 AH9 In LVDD1 TX7_SYNC_P Synchronization for TX7 AG9 In LVDD1 TX8_SYNC_N Synchronization for TX8 AG10 In LVDD1 TX8_SYNC_P Synchronization for TX8 AH10 In LVDD1 RX1_SYNC_N Synchronization for RX1 P10 Out LVDD2 RX1_SYNC_P Synchronization for RX1 P9 Out LVDD2 RX2_SYNC_N Synchronization for RX2 M7 Out LVDD2 RX2_SYNC_P Synchronization for RX2 M6 Out LVDD2 RX3_SYNC_N Synchronization for RX3 N9 Out LVDD2 RX3_SYNC_P Synchronization for RX3 N10 Out LVDD2 RX4_SYNC_N Synchronization for RX4 L7 Out LVDD2 RX4_SYNC_P Synchronization for RX4 L6 Out LVDD2 RX5_SYNC_N Synchronization for RX5 H5 Out LVDD2 RX5_SYNC_P Synchronization for RX5 H4 Out LVDD2 RX6_SYNC_N Synchronization for RX6 K5 Out LVDD2 RX6_SYNC_P Synchronization for RX6 K4 Out LVDD2 RX7_SYNC_N Synchronization for RX7 G3 Out LVDD2 RX7_SYNC_P Synchronization for RX7 G2 Out LVDD2 RX8_SYNC_N Synchronization for RX8 L10 Out LVDD2 RX8_SYNC_P Synchronization for RX8 L9 Out LVDD2 RX9_SYNC_N Synchronization for RX9 C2 Out LVDD2 RX9_SYNC_P Synchronization for RX9 C1 Out LVDD2 RX10_SYNC_N Synchronization for RX10 J7 Out LVDD2 RX10_SYNC_P Synchronization for RX10 J6 Out LVDD2 RX11_SYNC_N Synchronization for RX11 E2 Out LVDD2 RX11_SYNC_P Synchronization for RX11 E1 Out LVDD2 RX12_SYNC_N Synchronization for RX12 G7 Out LVDD2 RX12_SYNC_P Synchronization for RX12 G6 Out LVDD2 Ethernet interface SGMII1_TXDAT_P Ethernet Data Out U6 Out SD2_XPADVDD SGMII1_TXDAT_N Ethernet Data Out U7 Out SD2_XPADVDD SGMII1_RXDAT_P Ethernet Data In L1 In SD2_XCOREVDD SGMII1_RXDAT_N Ethernet Data In L2 In SD2_XCOREVDD SGMII2_TXDAT_P Ethernet Data Out T4 Out SD2_XPADVDD SGMII2_TXDAT_N Ethernet Data Out T5 Out SD2_XPADVDD SGMII2_RXDAT_P Ethernet Data In J1 In SD2_XCOREVDD SGMII2_RXDAT_N Ethernet Data In J2 In SD2_XCOREVDD AFD4400 Digital Front End Processor Data Sheet, Rev. 0 28 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Package Pin Description Pin Type Power Supply SGMII_REFCLK_P SerDes Reference Clock for SGMII V11 In SD2_XCOREVDD SGMII_REFCLK_N SerDes Reference Clock for SGMII V12 In SD2_XCOREVDD SD2_IC_TX TX Impedance Calibration M4 In SD2_XPADVDD SD2_IC_RX RX Impedance Calibration W10 In SD2_XPADVDD SD2_PLL1_TPA PLL1 Analog Test Point U10 Out SD2_XPADVDD SD2_PLL1_TPD PLL1 Digital Test Point W8 Out SD2_XPADVDD SD2_PLL2_TPA PLL2 Analog Test Point P7 Out SD2_XPADVDD SD2_PLL2_TPD PLL2 Digital Test Point P5 Out SD2_XPADVDD SerDes2 misc signals CPRI interface CPRI1_TXDAT1_P CPRI Data Out L31 Out SD3_XPADVDD CPRI1_TXDAT1_N CPRI Data Out L30 Out SD3_XPADVDD CPRI1_RXDAT1_P CPRI Data In L34 In SD3_XCOREVDD CPRI1_RXDAT1_N CPRI Data In L33 In SD3_XCOREVDD CPRI1_TXDAT2_P CPRI Data Out K29 Out SD3_XPADVDD CPRI1_TXDAT2_N CPRI Data Out K28 Out SD3_XPADVDD CPRI1_RXDAT2_P CPRI Data In J34 In SD3_XCOREVDD CPRI1_RXDAT2_N CPRI Data In J33 In SD3_XCOREVDD CPRI2_TXDAT1_P BBI_JESD_TXDAT1_P CPRI or Modem Interface JESD Data Out J31 Out SD3_XPADVDD CPRI2_TXDAT1_N BBI_JESD_TXDAT1_N CPRI or Modem Interface JESD Data Out J30 Out SD3_XPADVDD CPRI2_RXDAT1_P BBI_JESD_RXDAT1_P CPRI or Modem Interface JESD Data In G34 In SD3_XCOREVDD CPRI2_RXDAT1_N BBI_JESD_RXDAT1_N CPRI or Modem Interface JESD Data In G33 In SD3_XCOREVDD CPRI2_TXDAT2_P BBI_JESD_TXDAT2_P CPRI or Modem Interface JESD Data Out H29 Out SD3_XPADVDD CPRI2_TXDAT2_N BBI_JESD_TXDAT2_N CPRI or Modem Interface JESD Data Out H28 Out SD3_XPADVDD CPRI2_RXDAT2_P BBI_JESD_RXDAT2_P CPRI or Modem Interface JESD Data In E34 In SD3_XCOREVDD CPRI2_RXDAT2_N BBI_JESD_RXDAT2_N CPRI or Modem Interface JESD Data In E33 In SD3_XCOREVDD SD3_IC_TX TX Impedance Calibration J24 In SD3_XPADVDD SD3_IC_RX RX Impedance Calibration N31 In SD3_XPADVDD SD3_PLL1_TPA PLL1 Analog Test Point N26 Out SD3_XPADVDD SD3_PLL1_TPD PLL1 Digital Test Point M28 Out SD3_XPADVDD SD3_PLL2_TPA PLL2 Analog Test Point J26 Out SD3_XPADVDD SD3_PLL2_TPD PLL2 Digital Test Point L26 Out SD3_XPADVDD In LVDD3 SerDes3 misc signals BBI JESD204B interface SYNC~ signals BBI_TXSYNC_P Modem Interface JESD Tx. Synchronization U31 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 29 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply BBI_TXSYNC_N Modem Interface JESD Tx. Synchronization U30 In LVDD3 BBI_RXSYNC_P Modem Interface JESD Rx. Synchronization U33 Out LVDD3 BBI_RXSYNC_N Modem Interface JESD Rx. Synchronization U34 Out LVDD3 Debug JESD204B interface TX10_DAT1_P Debug JESD Tx. Data Out G31 Out SD3_XPADVDD TX10_DAT1_N Debug JESD Tx. Data Out G30 Out SD3_XPADVDD TX10_DAT2_P Debug JESD Tx. Data Out F29 Out SD3_XPADVDD TX10_DAT2_N Debug JESD Tx. Data Out F28 Out SD3_XPADVDD TX10_SYNC_N Debug JESD Synchronization P29 In LVDD3 TX10_SYNC_P Debug JESD Synchronization P28 In LVDD3 ANODE Thermal Diode Anode — LVDD3 CATHODE Thermal Diode Cathode AH14 — LVDD3 FA_ANALOG_PIN Leakage Measurement AE28 Gnd TVDD1_8 FA_ANALOG_G_V Transistor Gate Voltage AE27 Gnd TVDD1_8 FAVDD FA supply AF26 Power — SENSE_DVDD1 Voltage sense K10 Power — SENSE_DVSS1 Voltage sense K9 Gnd — SENSE_DVDD2 Voltage sense AK27 Power — SENSE_DVSS2 Voltage sense AJ27 Gnd — DVDD Digital supply Thermal diode and FA AF14 Supply and Ground balls AA14,AA16,AA18,AA20,AA22,AA24,AB15,A B17,AB19,AB21,AB23,AC14,AC16,AC18,AC 20,AC22,AC24,L12,L14,L16,L22,M13,M15,M 17,M19,M21,N12,N14,N16,N18,N20,N22,P1 3,P15,P17,P19,P21,R14,R16,R18,R20,R22, T15,T17,T19,T21,U14,U16,U18,U20,U22,V1 5,V17,V19,V21,V23,W14,W16,W18,W20,W2 2,Y15,Y17,Y19,Y21,Y23 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 30 Freescale Semiconductor Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply DVSS Ground AA15,AA17,AA19,AA21,AA23,AA33,AB14,A B16,AB18,AB20,AB22,AB24,AB29,AB32,AC 15,AC17,AC19,AC21,AC23,AC27,AC31,AD1 9,AD21,AD23,AD30,AD33,AE20,AE22,AE24, AE26,AE32,AF15,AF16,AF19,AF21,AF23,AF 25,AF31,AG11,AG14,AG18,AG20,AG23,AG2 6,AG29,AG31,AG33,AH11,AH18,AH23,AH27 ,AH32,AJ10,AJ13,AJ15,AJ24,AJ29,AJ31,AJ9 ,AK10,AK12,AK14,AK16,AK24,AK33,AK4,AK 7,AL10,AL14,AL17,AL26,AL27,AL31,AL4,AL 7,AM14,AM18,AM25,AM28,AM29,AM32,AM 33,AM4,AM5,AM6,AM8,AM9,AN12,AN14,AN 17,AN25,AN27,AN30,AN33,AN6,AP14,AP18 ,AP31,AP6,B1,B11,B14,B17,B2,B20,B23,B2 4,B27,B30,B33,B5,B8,C16,C22,C3,C6,D1,D 13,D19,D2,D27,D31,D7,D9,E11,E14,E17,E2 0,E24,E3,E5,F1,F12,F16,F2,F22,F3,F6,F7,G 1,G26,G4,G5,G8,H12,H14,H16,H18,H20,H6, H7,H9,J22,J4,J5,J8,K11,K6,K7,K8,L13,L15,L 17,L18,L21,L8,M12,M14,M16,M18,M20,M22, M8,M9,N13,N15,N17,N19,N21,P12,P14,P16, P18,P20,P22,R15,R17,R19,R21,R28,R29,R3 2,R33,R34,T14,T16,T18,T20,T22,T30,T31,T 32,U15,U17,U19,U21,U23,U25,U32,V14,V16 ,V18,V20,V22,V27,V30,V31,V33,V34,W15,W 17,W19,W21,W23,Y14,Y16,Y18,Y20,Y22,Y2 4,Y26,Y28,Y31 P1OVDD Fusebox supply AF27 P2OVDD Fusebox supply AF28 APVDD1 System PLL supply V26 APVDD2 DDR PLL supply U29 APVDD3 TbGen PLL supply U28 FVDD Flash supply AA25,AA26,W25,Y25 GVDD1 Supply group GVDD1 AD16,AE16 GVDD2 Supply group GVDD2 J12,J13,K12,K13 GVDD3 Supply group GVDD3 J17,J18,K17,K18 GVDD4 Supply group GVDD4 J19,K19,L19 GVDD5 Supply group GVDD5 J20,K20,L20 GVDD6 Supply group GVDD6 J21,K21,K22 GVDD7 Supply group GVDD7 J14,J15,K14,K15 GVDD8 Supply group GVDD8 AD17,AE17 GVDD9 Supply group GVDD9 AD15,AE15 JVDD Supply group JVDD J16,K16 LVDD1 Supply group LVDD1 AD14,AE13,AE14 LVDD2 Supply group LVDD2 L11,M10,M11,N11,P11 LVDD3 Supply group LVDD3 U24,V24,W24 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 31 Pinout list Table 1. AFD4400 Pinout Signal Description Package Pin Pin Type Power Supply MVDD Supply group MVDD AD18,AD20,AD22,AE19,AE21,AF20,AF22,A G21,AG22,AK18,AK20,AK22,AL24,AM21,A M22,AN19,AN22,AP24 MVDD1_8 Supply group MVDD1_8 AE18,AE23 SD1_XCOREVDD Supply group SD1_XCOREVDD AA13,AB13,AC13,AD13,Y13 SD1_XCOREVSS Supply group SD1_XCOREVSS AA10,AA3,AB1,AB10,AB11,AB12,AB2,AB3,A B9,AC10,AC3,AD1,AD11,AD12,AD2,AD3,AE 10,AE12,AE3,AF1,AF10,AF11,AF2,AF3,AF9, AG3,AH1,AH2,AH3,AJ3,AK1,AK2,AK3,AL3, AM1,AM2,AM3,AN3,AP2,AP3,W3,W4,W5,W 7,Y1,Y10,Y2,Y3 SD1_XPADVDD Supply group SD1_XPADVDD AA8,AB8,AC8,AD8,AE8,AF8,AG8,AH8,AJ8 SD1_XPADVSS Supply group SD1_XPADVSS AA6,AA7,AB4,AB5,AC6,AC7,AD4,AD5,AE6, AE7,AF4,AF5,AG6,AG7,AH4,AH5,AJ4,AJ5,A J6,AJ7,Y4,Y5,Y6 SD1_AVDD_PLL1 PLL1 Supply AA9 SD1_AVSS_PLL1 PLL1 Supply Y8 SD1_AVDD_PLL2 PLL2 supply AD9 SD1_AVSS_PLL2 PLL2 supply AC9 SD2_XCOREVDD Supply group SD2_XCOREVDD R13,T13,U13,V13,W13 SD2_XCOREVSS Supply group SD2_XCOREVSS H1,H2,H3,J3,K1,K2,K3,L3,L4,L5,M1,M2,M3, M5,N3,N4,N5,N6,N7,N8,P1,P2,P3,P4,P8,R1 0,R11,R12,R3,R9,T1,T10,T2,T3,T9,U11,U12, U3,U4,V1,V10,V2,V5,W11,W12,W9 SD2_XPADVDD Supply group SD2_XPADVDD R8,T8,U8,V8 SD2_XPADVSS Supply group SD2_XPADVSS R4,R5,R6,T6,T7,U5,V6,V7 SD2_AVDD_PLL1 PLL1 Supply U9 SD2_AVSS_PLL1 PLL1 Supply V9 SD2_AVDD_PLL2 PLL2 supply P6 SD2_AVSS_PLL2 PLL2 supply R7 SD3_XCOREVDD Supply group SD3_XCOREVDD K23,L23,M23,N23,P23,R23,T23 SD3_XCOREVSS Supply group SD3_XCOREVSS D32,D33,D34,E32,F32,F33,F34,G32,H23,H2 4,H25,H26,H32,H33,H34,J23,J25,J32,K24,K 32,K33,K34,L24,L25,L32,M26,M32,M33,M34 ,N24,N25,N28,N29,N30,N32,P26,P27,P30,P 31,P32,R26,R27,T24,T25,T26,T27 SD3_XPADVDD Supply group SD3_XPADVDD E27,F27,G27,H27,J27,K27,L27 SD3_XPADVSS Supply group SD3_XPADVSS E28,E29,E30,F30,F31,G28,G29,H30,H31,J2 8,J29,K30,K31,L28,L29,M29,M30,M31 SD3_AVDD_PLL1 PLL1 Supply M27 SD3_AVSS_PLL1 PLL1 Supply N27 SD3_AVDD_PLL2 PLL2 supply K25 SD3_AVSS_PLL2 PLL2 supply K26 TVDD Supply group TVDD AB25,AC25,AD25,AE25 TVDD1_8 Supply group TVDD1_8 AD26,AD27 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 32 Freescale Semiconductor AFD4400 ball map Table 1. AFD4400 Pinout Signal Package Pin Description NC Not connected 2 Pin Type Power Supply AA11,AA12,AC11,AC12,D4,M24,M25,P24,P2 5,T11,T12 AFD4400 ball map This figure shows the AFD4400 ball map. 1 A B C D E DVSS 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 I2C8_SCL I2C9_SDA GPIOA14 I2C1_SCL I2C5_SDA I2C7_SCL JTAG_TRST_ B UART3_TXD JTAG_TMS BMOD1 GPIOA16 GPIOA21 SPI1_CLK SPI2_MOSI SPI3_MISO SPI4_SS1 SPI4_SS0 GPIOA2 SPI6_MISO SPI7_MISO SPI8_SS1 SGMII_PHY_R EFCLK GPIOC28 GPIOD1 TSEC_MDIO GPIOC3 GPIOC1 GPIOC8 GPIOC11 CPRI_REVCL K GPIOC12 DVSS I2C1_SDA I2C7_SDA DVSS RSTOUT_B WDOG_B DVSS UART2_RXD JTAG_TDI DVSS JTAG_TCK GPIOA22 DVSS RSTOUT5_B SPI1_MISO DVSS SPI4_MISO GPIOA3 DVSS SPI6_CLK SPI8_MISO DVSS DVSS GPIOD0 GPIOD5 DVSS GPIOC5 GPIOC9 DVSS GPIOC16 GPIOC15 DVSS TG_RF_SYNC DVSS I2C2_SDA I2C6_SCL DVSS I2C11_SCL UART1_TXD I2C10_SDA UART4_TXD JTAG_TDO TEST GPIOA19 RSTOUT6_B MC_SYNC_IN DVSS SPI3_MOSI SPI4_MOSI GPIOA4 GPIOA5 SPI5_SS0 DVSS SPI8_SS0 GPIOC24 GPIOC31 GPIOD6 TSEC_MDC GPIOC7 GPIOC6 GPIOC13 GPIOC17 GPIOC18 GPIOC19 GPIOC20 GPIOA26 NC GPIOA30 I2C3_SCL DVSS I2C11_SDA DVSS GPIOA1 UART4_RXD URST_B DVSS RSTOUT3_B RSTOUT7_B SPI1_SS1 SPI2_MISO SPI4_CLK DVSS SPI5_MOSI SPI6_MOSI SPI7_SS1 SPI8_MOSI GPIOC27 GPIOD2 GPIOC0 DVSS GPIOC10 GPIOC14 GPIOC22 DVSS SD3_XCOREV SD3_XCOREV SD3_XCOREV SS SS SS DVSS GPIOA13 DVSS GPIOA29 GPIOA31 I2C8_SDA I2C9_SCL UART2_TXD DVSS RSTIN_B GPIOA15 DVSS RSTOUT4_B SPI1_SS0 DVSS SPI3_CLK CKO DVSS SPI6_SS1 SPI8_CLK GPIOC29 DVSS GPIOD8 GPIOC4 SD3_XPADVD SD3_XPADVS SD3_XPADVS SD3_XPADVS D S S S GPIOC23 SD3_XCOREV CPRI2_RXDA CPRI2_RXDA SS T2_N T2_P DVSS GPIOA11 GPIOA24 DVSS DVSS GPIOA27 I2C5_SCL I2C10_SCL UART1_RXD DVSS BMOD0 GPIOA18 GPIOA23 DVSS SPI2_SS1 SPI3_SS1 SPI5_MISO SPI5_CLK SPI7_CLK DVSS GPIOC30 GPIOD3 GPIOD7 GPIOC21 SD3_XPADVD SD3_XPADVS SD3_XPADVS SD3_XCOREV SD3_XCOREV SD3_XCOREV TX10_DAT2_N TX10_DAT2_P D S S SS SS SS DVSS DVSS DVSS GPIOA25 I2C3_SDA I2C6_SDA UART3_RXD JTAG_VSP_S EL GPIOA17 GPIOA20 SPI1_MOSI SPI2_SS0 SPI3_SS0 RSTOUT2_B SPI5_SS1 SPI6_SS0 SPI7_SS0 GPIOC26 GPIOD4 GPIOC2 DVSS SD3_XPADVD SD3_XPADVS SD3_XPADVS SD3_XCOREV CPRI2_RXDA CPRI2_RXDA TX10_DAT1_N TX10_DAT1_P D S S SS T1_N T1_P GPIOA10 DVSS GPIOA12 I2C2_SCL DVSS GPIOA0 DVSS GPIOA28 DVSS SPI2_CLK DVSS RSTOUT1_B DVSS SPI7_MOSI GPIOC25 GPIOA6 GPIOA8 GPIOA9 GVDD2 GVDD2 GVDD7 GVDD7 JVDD GVDD3 GVDD3 GVDD4 GVDD5 GVDD6 DVSS RX9_SYNC_P RX9_SYNC_N DVSS DVSS RX11_SYNC_ RX11_SYNC_ P N F DVSS G DVSS H 2 GPIOA7 DVSS RX7_SYNC_P RX7_SYNC_N SD2_XCOREV SD2_XCOREV SD2_XCOREV RX5_SYNC_P RX5_SYNC_N SS SS SS RX12_SYNC_ RX12_SYNC_ P N DVSS DVSS J SGMII2_RXDA SGMII2_RXDA SD2_XCOREV T_P T_N SS K SD2_XCOREV SD2_XCOREV SD2_XCOREV RX6_SYNC_P RX6_SYNC_N SS SS SS L SGMII1_RXDA SGMII1_RXDA SD2_XCOREV SD2_XCOREV SD2_XCOREV RX4_SYNC_P RX4_SYNC_N SS T_P T_N SS SS M SD2_XCOREV SD2_XCOREV SD2_XCOREV SS SS SS DVSS N RX12_DAT_P RX12_DAT_N DVSS SD2_IC_TX DVSS RX10_SYNC_ RX10_SYNC_ P N DVSS DVSS SD2_XCOREV RX2_SYNC_P RX2_SYNC_N SS DVSS DVSS GVDD2 GVDD2 GVDD7 GVDD7 JVDD GVDD3 GVDD3 GVDD4 GVDD5 GVDD6 GVDD6 RX8_SYNC_P RX8_SYNC_N LVDD2 DVDD DVSS DVDD DVSS DVDD DVSS DVSS GVDD4 GVDD5 DVSS DVDD SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_PLL2_TP SD3_XPADVD SD3_XPADVS SD3_XPADVS CPRI1_TXDAT CPRI1_TXDAT SD3_XCOREV CPRI1_RXDA CPRI1_RXDA DD SS SS D D S S 1_N 1_P SS T1_N T1_P LVDD2 DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS SD3_XCOREV DD LVDD2 DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_PLL1_TP SD3_AVSS_P SD3_XCOREV SD3_XCOREV SD3_XCOREV DD SS SS A LL1 SS SS SS DVSS LVDD2 RX11_DAT_P RX11_DAT_N T SD2_XCOREV SD2_XCOREV SD2_XCOREV SGMII2_TXDA SGMII2_TXDA SD2_XPADVS SD2_XPADVS SD2_XPADVD SD2_XCOREV SD2_XCOREV SS SS SS T_P T_N S S D SS SS DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD SD3_XCOREV DEVCLK1_N DD SD2_XCOREV DD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_XCOREV SYSREF_IN_N SYSREF_IN_P SS DD SS SS SS SD2_XCOREV SD2_XCOREV SD2_XPADVS SGMII1_TXDA SGMII1_TXDA SD2_XPADVD SD2_AVDD_P SD2_PLL1_TP SD2_XCOREV SD2_XCOREV SD2_XCOREV SS SS S T_P T_N D LL1 A SS SS DD DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS LVDD3 DVSS DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD LVDD3 FLASH_A1 AC AD AE AF AG AH AJ AK AL AM AN AP RX9_DAT_N NC SD1_IC_RX SD1_XCOREV SD2_PLL1_TP SD2_XCOREV SS D SS SD1_XCOREV SS TX1_DAT_P TX1_DAT_N SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XPADVS SD1_XPADVS SS SS SS S S RX3_DAT_N SD1_XCOREV SS TX3_DAT_P TX3_DAT_N SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XPADVS SD1_XPADVS SS SS SS S S RX4_DAT_P RX4_DAT_N SD1_XCOREV SS TX5_DAT_P TX5_DAT_N SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XPADVS SD1_XPADVS SS SS SS S S RX5_DAT_P RX5_DAT_N SD1_XCOREV SS TX7_DAT_P TX7_DAT_N SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XPADVS SD1_XPADVS SS SS SS S S RX6_DAT_P RX6_DAT_N DVDD NC SD2_IC_RX SD2_XCOREV SD2_XCOREV SD2_XCOREV SS SS DD TX2_DAT_N TX4_DAT_N TX6_DAT_N TX8_DAT_N APVDD1 DVSS DVSS BBI_RXSYNC_ BBI_RXSYNC_ P N BBI_TXSYNC_ BBI_TXSYNC_ N P FLASH_A0 DVSS DVSS DVSS DVSS DVSS DVSS FLASH_A8 FLASH_A6 FLASH_A7 FLASH_A9 FLASH_A10 FLASH_A14 DVSS FLASH_A13 FLASH_A12 FLASH_A11 DVDD DVSS DVDD DVSS DVDD DVSS LVDD3 FVDD FLASH_A3 FLASH_A5 DVSS DVDD DVSS DVDD DVSS DVDD DVSS FVDD DVSS ANL_TEST DVSS FLASH_A15 NC SD1_XCOREV DD DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD FVDD FVDD FLASH_BE0_ B FLASH_A18 FLASH_A17 FLASH_A20 FLASH_A22 FLASH_A19 DVSS FLASH_A16 SD1_XPADVD SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XCOREV D SS SS SS SS DD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS TVDD FLASH_CS1_ FLASH_ADV_ FLASH_DAT4 B B DVSS FLASH_CS2_ B FLASH_A23 DVSS FLASH_A21 FLASH_A25 DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD DVSS DVDD TVDD FLASH_BE1_ B DVSS NC NC SD1_XCOREV DD NC SD1_XPADVD SD1_AVDD_P SD1_PLL2_TP SD1_XCOREV SD1_XCOREV SD1_XCOREV D LL2 D SS SS DD SD1_IC_TX SD1_XPADVD SD1_XCOREV SD1_XCOREV SD1_XCOREV D SS SS SS SD1_XPADVD TX7_SYNC_N TX8_SYNC_P D DVSS DVSS DVSS LVDD1 GVDD9 GVDD1 GVDD8 MVDD DVSS MVDD DVSS MVDD DVSS DDR_VREF TVDD TVDD1_8 SD1_XCOREV SS LVDD1 LVDD1 GVDD9 GVDD1 GVDD8 MVDD1_8 MVDD DVSS MVDD DVSS MVDD1_8 DVSS TVDD DVSS GPIOB30 GPIOB31 ANODE DVSS DVSS DDR_DQ28 DDR_DQ26 DVSS MVDD DVSS MVDD DVSS DDR_DQ13 DVSS FAVDD GPIOB27 GPIOB29 DVSS DDR_DQ29 DDR_DQ31 DDR_DM3 DVSS DDR_ZQ DVSS MVDD MVDD DVSS DDR_DQ11 DDR_DQ9 DVSS DVSS FLASH_CS0_ FLASH_OE_B B FLASH_A24 TVDD1_8 FLASH_WE_B FLASH_DAT0 DVSS P1OVDD DVSS DVSS SJC_MOD_B FLASH_DAT1 FLASH_DAT1 TRACE_IN_CL 4 1 K FLASH_DAT9 GPIOB26 GPIOB13 CATHODE DDR_DQ30 DDR_DQS3 DDR_DQ25 DVSS DDR_RESET DDR_WE_B DDR_A11 DDR_A2 DVSS DDR_DQ15 DDR_DM1 DDR_DQ10 GPIOB17 DVSS GPIOB3 DVSS DDR_DQS3_B DDR_DQ27 DDR_ODT0 DDR_CKE1 DDR_RAS_B DDR_CAS_B DDR_A3 DDR_A0 DVSS DDR_DQS1 DDR_DQ8 SENSE_DVSS TRACE_DATA 2 20 SENSE_DVDD TRACE_DATA TRACE_DATA TRACE_DATA TRACE_DATA TRACE_CLK 2 25 27 15 19 DVSS TX2_SYNC_P TX1_SYNC_N DVSS GPIOB18 DVSS GPIOB2 DVSS DDR_DQ22 DVSS DDR_DQ24 MVDD DDR_CKE0 MVDD DDR_A14 MVDD DDR_A4 DVSS DDR_DQS1_B DDR_DQ12 TX2_SYNC_N TX1_SYNC_P DVSS GPIOB15 GPIOB10 GPIOB1 DVSS DDR_DQ23 DDR_DQ20 DVSS DDR_ODT1 DDR_CS1_B DDR_A15 DDR_A12 DDR_A7 DDR_A5 MVDD DDR_DQ14 DVSS DVSS SD1_XCOREV SD1_XCOREV SD1_XCOREV SS SS SS DVSS GPIOB11 GPIOB12 GPIOB7 GPIOB6 DVSS DDR_DQ21 DDR_DQS2 DDR_DQ19 DVSS DDR_BA1 DDR_CS0_B MVDD MVDD DDR_A10 DDR_A6 DVSS DDR_DQ2 DDR_DM0 TRACE_DATA 13 TRACE_DATA TRACE_DATA TRACE_DATA 24 30 23 DVSS DVSS DVSS DVSS TRACE_DATA TRACE_DATA 16 22 SD1_XCOREV RX8_DAT_N TX3_SYNC_P TX4_SYNC_N SS DVSS GPIOB23 GPIOB19 GPIOB16 GPIOB5 GPIOB8 DVSS GPIOB9 DVSS DDR_DQ18 DDR_DQS2_B DVSS DDR_BA0 MVDD DDR_CK1 DDR_CK0 MVDD DDR_A8 DDR_A1 DVSS DDR_DQ5 DVSS DDR_DQ4 DDR_DQ1 DVSS SD1_XCOREV SD1_XCOREV TX3_SYNC_N TX4_SYNC_P SS SS DVSS GPIOB22 GPIOB21 GPIOB28 GPIOB20 GPIOB4 GPIOB14 GPIOB0 DVSS DDR_DM2 DDR_DQ17 DDR_DQ16 DVSS DDR_BA2 DDR_CK1_B DDR_CK0_B DDR_A13 DDR_A9 MVDD DDR_DQ6 DDR_DQ7 DDR_DQS0 DDR_DQS0_B DDR_DQ0 DDR_DQ3 FLASH_DAT1 DVSS TRACE_DATA TRACE_DATA TRACE_DATA TRACE_DATA 28 8 5 11 DVSS DVSS FLASH_DAT1 FLASH_DAT1 3 0 DVSS DVSS DVSS DVSS FLASH_DAT1 FLASH_DAT1 5 2 DVSS GPIOB25 TX6_SYNC_P TX5_SYNC_N DVSS P2OVDD TRACE_DATA TRACE_DATA 31 12 FLASH_WAIT_ FLASH_DAT2 FLASH_BCLK B FLASH_DAT5 FLASH_DAT7 FA_ANALOG_ FA_ANALOG_ FLASH_DAT3 FLASH_DAT6 FLASH_DAT8 G_V PIN TX6_SYNC_N TX5_SYNC_P RX8_DAT_P TG_RF_SYNC TG_RF_SYNC _P _N DVSS DVSS GPIOB24 DVSS DVDD DVSS DVSS ANL_REFCLK ANL_REFCLK _N_TEST _P_TEST DVSS DVSS DVSS SD1_XCOREV SD1_XPADVS SD1_XPADVS SD1_XPADVS SD1_XPADVS SD1_XPADVD SS S S S S D DVSS APVDD2 FLASH_A2 FRMCLK_N DVSS DVDD SD1_XCOREV SS RX7_DAT_N APVDD3 FLASH_A4 FRMCLK_P DVSS SD1_XCOREV SD1_XCOREV SD1_XCOREV SS SS SS RX7_DAT_P DVSS DVDD SD1_XPADVS SD1_XPADVS SD1_XPADVD TX7_SYNC_P TX8_SYNC_N D S S TX8_DAT_P RGMII_REFCL RGMII_REFCL K_N K_P DVSS DVSS SD1_XPADVS SD1_XPADVS SD1_XPADVD SD1_PLL2_TP SD1_XCOREV S S D A SS TX6_DAT_P SD3_XCOREV SD3_XCOREV SS SS DVDD SD1_XPADVS SD1_XPADVS SD1_XPADVD SD1_AVSS_P SD1_XCOREV S S D LL2 SS TX4_DAT_P NC DEVCLK1_P SD3_XCOREV SYSREF_OUT SYSREF_OUT SS _P _N SD1_XCOREV DD SD1_XPADVS SD1_XPADVS SD1_XPADVD SD1_AVDD_P SD1_XCOREV S S D LL1 SS TX2_DAT_P NC SD3_IC_RX SD3_XCOREV SD3_XCOREV TX10_SYNC_ TX10_SYNC_ SD3_XCOREV SD3_XCOREV SD3_XCOREV CPRI_REVCL CPRI_REVCL SS SS P N SS SS SS K_P K_N DEVCLK2_N SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XPADVS SD1_XPADVS SD1_XPADVS SD1_PLL1_TP SD1_AVSS_P SD1_PLL1_TP SD1_XCOREV DEVCLK2_P SS SS SS S S S A LL1 D SS RX3_DAT_P DVSS SD2_XCOREV SD2_XPADVS SD2_XPADVS SD2_XPADVD SD2_AVSS_P SD2_XCOREV SGMII_REFCL SGMII_REFCL SD2_XCOREV SS S S D LL1 SS K_P K_N DD SD1_XCOREV SD1_XCOREV SD1_XCOREV RX1_DAT_N SS SS SS RX2_DAT_N SD3_XCOREV SD3_AVDD_P SD3_PLL1_TP SD3_XPADVS SD3_XPADVS SD3_XPADVS SD3_XCOREV SD3_XCOREV SD3_XCOREV SS LL1 D S S S SS SS SS DVSS RX10_DAT_P RX10_DAT_N RX2_DAT_P NC DVDD LVDD2 SD2_XCOREV SD2_XPADVS SD2_XPADVS SD2_XPADVS SD2_AVSS_P SD2_XPADVD SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV SS S S S LL2 D SS SS SS SS DD SD2_XCOREV SD2_XCOREV RX9_DAT_P SS SS AB NC SD3_XCOREV DD V AA SD3_XCOREV SD3_PLL2_TP SD3_XPADVD SD3_XPADVS SD3_XPADVS CPRI2_TXDAT CPRI2_TXDAT SD3_XCOREV CPRI1_RXDA CPRI1_RXDA SS A D S S 1_N 1_P SS T2_N T2_P DVSS P RX1_DAT_P SD3_IC_TX DVSS R Y SD3_XCOREV SS SD3_XCOREV SD3_XCOREV SD3_AVDD_P SD3_AVSS_P SD3_XPADVD CPRI1_TXDAT CPRI1_TXDAT SD3_XPADVS SD3_XPADVS SD3_XCOREV SD3_XCOREV SD3_XCOREV DD SS LL2 LL2 D 2_N 2_P S S SS SS SS SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_PLL2_TP SD2_AVDD_P SD2_PLL2_TP SD2_XCOREV RX1_SYNC_P RX1_SYNC_N SS SS SS D LL2 A SS SS W SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_XPADVD CPRI2_TXDAT CPRI2_TXDAT SD3_XPADVS SD3_XPADVS SD3_XCOREV SD3_XCOREV SD3_XCOREV SS SS D 2_N 2_P S S SS SS SS SS SS SENSE_DVSS SENSE_DVDD 1 1 SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV RX3_SYNC_N RX3_SYNC_P SS SS SS SS SS SS U 34 DVSS TRACE_DATA 1 TRACE_DATA TRACE_DATA TRACE_DATA 7 4 3 TRACE_CTL DVSS TRACE_DATA TRACE_DATA 21 18 DVSS DVSS TRACE_DATA TRACE_DATA 2 0 DVSS TRACE_DATA 6 TRACE_DATA TRACE_DATA 14 9 DVSS TRACE_DATA 10 DVSS TRACE_DATA 17 TRACE_DATA TRACE_DATA 29 26 Figure 2. AFD4400 ball map AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 33 Electrical characteristics 3 Electrical characteristics This section provides the AC and DC electrical specifications. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. 3.1 Overall DC electrical characteristics This section covers the ratings, conditions and other characteristics. 3.1.1 Absolute maximum ratings Table 2 shows the absolute maximum operating ratings. CAUTION Stress beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Table 2. Absolute maximum operating ratings Parameter Symbol Symbol Min Max Unit Note Core supply voltage DVDD VDD –0.3 1.1 V — PLL supply voltage APVDD1 APVDD2 APVDD3 VDPLL –0.3 1.98 V — SerDes PLL supply voltage SD1_AVDD_PLL1 SD1_AVDD_PLL2 SD2_AVDD_PLL1 SD2_AVDD_PLL2 SD3_AVDD_PLL1 SD3_AVDD_PLL2 VDDSDP –0.3 1.65 V 1 SerDes transceiver Core power supply for receivers SD1_XCOREVDD SD2_XCOREVDD SD3_XCOREVDD VDDSDX –0.3 1.1 V — SerDes transceiver pad power supply for transmitter SD1_XPADVDD SD2_XPADVDD SD3_XPADVDD VDDSDIO –0.3 1.65 V 1 JTAG supply voltage JVDD VDDGPIO –0.3 3.6 V — AFD4400 Digital Front End Processor Data Sheet, Rev. 0 34 Freescale Semiconductor Electrical characteristics Table 2. Absolute maximum operating ratings (continued) Parameter Symbol Symbol Min Max Unit Note LVCMOS Input/output supply voltage FVDD GVDD1 GVDD2 GVDD3 GVDD4 GVDD5 GVDD6 GVDD7 GVDD8 GVDD9 VDDGPIO –0.3 3.6 V 2 DDR pad supply voltage MVDD TVDD VDDDDR –0.3 1.65 V — DDR pad 1.8V supply voltage MVDD1_8 TVDD1_8 VDDDDR1p8 –0.3 1.98 V — LVDS Input/output supply voltage LVDD1 LVDD2 LVDD3 VDDLVDS –0.3 1.98 V — Fuse programming Supply P1OVDD P2OVDD VDDEFUSE_PGM –0.3 1.98 V — Input voltage range DDR input signal MVIN –0.3 0.3 + VDDDDR V — LVCMOS input VIN_GPIO –0.3 0.3 + VDDGPIO V — LVDS input VIN_LVDS –0.3 0.3 + VDDLVDS V — DDR reference DDRREF –0.3 0.3 + (0.5 x VDDDDR1p8) V — SerDes input VIN_SerDes –0.3 0.3 + VDDSDIO V — 125 oC — Storage temperature range Tstorage –40 Note: 1. Supply can be configured for two different nominal voltage settings. Refer AFD4400 Reference Manual for details. 2. The LVCMOS IO voltage is configured through VSEL bits. Refer AFD4400 Reference Manual for details. 3.1.2 Recommended operating conditions Table 3 provides the recommended operating conditions. Table 3. Recommended operating conditions Supply Digital logic voltage DVDD Symbol Min Typ Max Unit At initial startup VDD (VID or 1.025)-30mV (VID or 1.025) (VID or 1.025)+30m V V During normal operation VDD VID-30mV VID VID+30mV V Notes 2,3,4,5 ,8 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 35 Electrical characteristics Table 3. Recommended operating conditions (continued) Supply Symbol PLL voltage Analog supply • APVDD1 • APVDD2 • APVDD3 SerDes VDPLL Min Typ Max Unit Notes 1.71 1.8 1.89 V — SerDes transceiver VDDSDX core supply for receiver • SD1_XCOREVDD • SD2_XCOREVDD • SD3_XCOREVDD 0.95 1 1.05 V — SerDes PLL supply VDDSDP • SD1_AVDD_PLL1 • SD1_AVDD_PLL2 • SD2_AVDD_PLL1 • SD2_AVDD_PLL2 • SD3_AVDD_PLL1 • SD3_AVDD_PLL2 1.425 1.5 1.575 V — SerDes transceiver pad supply for transmitter • SD1_XPADVDD • SD2_XPADVDD • SD3_XPADVDD VDDSDIO 1.425 1.5 1.575 V — JTAG power supply • JVDD VDDGPIO 2.85 3.0 3.3 3.465 V 1 LVCMOS power supply • FVDD • GVDD1 • GVDD2 • GVDD3 • GVDD4 • GVDD5 • GVDD6 • GVDD7 • GVDD8 • GVDD9 VDDGPIO 1.71 1.8 1.89 V 1 2.85 3.0 3.3 3.465 DDR pad supply voltage range • MVDD • TVDD VDDDDR 1.425 1.5 1.575 V — DDR pad 1.8V supply • MVDD1_8 • TVDD1_8 VDDDDR1p8 1.71 1.8 1.89 V — DDR pad Reference Voltage • DDR_VREF DDRREF (0.5 x 0.5 x VDDDDR) − 2% VDDDDR (0.5 x VDDDDR) + 2% V — LVDS power supply • LVDD1 • LVDD2 • LVDD3 VDDLVDS 1.71 1.89 V 1 1.8 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 36 Freescale Semiconductor Electrical characteristics Table 3. Recommended operating conditions (continued) Supply Symbol Fuse program voltage • P1OVDD • P2OVDD VEFUSE_PG Operating temperature range (Junction) TJ Min Typ Max Unit Notes 1.71 1.8 1.89 V 6,7 –40 — 105 oC — M Note: 1. Overshoot and undershoot conditions (transitions above max IO supply and below ground) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. 2. Refer to Section 4.2.1, “Voltage ID (VID) controllable supply and Section 4.2.2, “Core supply voltage (VDD) filtering for additional information 3. Supply voltage specified at the voltage sense pin. Voltage input pins should be regulated to provide specified voltage at the sense pin. Refer to Section 4.2.6, “Remote power-supply sense recommendations” for more detail. 4. Operation at 1.1V is allowable for up to 25ms at initial power on. 5. Voltage ID (VID) operating range is between 0.975V to 1.025V. Regulator selection should be based on Vout range wider than VIDmin to VIDmax with resolution of 12.5mV or better. 6. P1OVDD should be tied to ground during functional applications.This supply is needed in the factory for programming of memory repair fuses. 7. P2OVDD should be tied to ground during functional applications. It can be driven to the specified supply during functional fuse programming. 8. If VID is known at initial start-up, set VDD=VID else if VID is not known at initial start-up, set VDD to 1.025V and change it immediately, to VDD=VID after reading the VID at the beginning of software. 3.1.3 LVCMOS DC parameters Table 4 provides the DC operating characteristics for LVCMOS pads. Table 4. LVCMOS DC electrical characteristics Symbol Parameter Test conditions Min Typ Max Unit Notes VOH High-level output voltage Ioh = –1mA VDDGPIO–0.15 — V — VOL Low-level output voltage Iol = 1mA — 0.15 V — VIH High-level DC input voltage — 0.7 × VDDGPIO VDDGPIO V VIL Low-level DC input voltage — 0 — 0.2 × VDDGP V 1 IO IIN Input current (no pull-up/down) Vin = VDDGPIO or 0 — — 1 μA 2 Iin_33pu Input current (33 KΩ PU) Vin = 0 Vin = VDDGPIO — — 220 1 μA 2,4 Iin_50pu Input current (50 KΩ PU) Vin = 0 Vin = VDDGPIO — — 100 1 μA 2,4 Iin_100pu Input current (100 KΩ PU) Vin = 0 Vin = VDDGPIO — — 50 1 μA 2,4 Iin_100pd Input current (100 KΩ PD) Vin = 0 Vin = VDDGPIO — — 1 50 μA 2,4 Rkeep Pad keeper resistance — 105 135 175 KΩ 3,4 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 37 Electrical characteristics Table 4. LVCMOS DC electrical characteristics (continued) Symbol Rod_keep Parameter Test conditions Maximum external resistor value that is guaranteed to overdrive the pad keeper — Min Typ — — Max Unit 47 KΩ Notes 4 Note: 1. To maintain a valid level, the transitioning edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, VIL or VIH. monotonic input transition time is from 0.1ns to 1s. 2. Max condition: with best case process corner, 3.6 V supply, and 105 °C temperature. 3. Typ condition: Typical conditions: typical process corner, 1.8 V supply, and 25 °C temperature, max condition: worst case process conditions, 1.71 V supply, and 105 °C temperature, min condition: best case process conditions, 3.6 V supply, and –40 °C temperature. These values are for I/O buffers. Pad keeper resistance is weak to save power in special cases when after reset pad keeper is enabled and external resistor is connected to pad to overwrite keeper value. 4. Values are based on simulated numbers and are not measured on silicon. Table 5. LVCMOS Schmitt trigger operation Symbol Parameter Test conditions VT+ Positive going threshold voltage VTVHYS Supply voltage VOUT >= (VOH)min 1.8V Min Typ Max Unit Notes 0.4 x VDDGPIO — — V 1 Negative going threshold VOUT =< (VOL)max 1.8V voltage — — 0.6 x VDDGPIO V 1 Hysteresis voltage 1.8V 0.17 — — V 1 3.3V 0.12 — — V 1 VT+ - VT- Note: 1. Values are based on simulated numbers and are not measured on silicon. 3.1.3.1 Output driver impedance The tables below shows the average impedance at different operating points. Table 6. Output driver average impedance (1.8 V voltage mode) Parameter Symbol Output driver impedance Rdrv Drive strength setting Min Typ Max Unit Note 001 170 220 300 Ω — 010 65 85 115 Ω — 011 45 60 80 Ω — 100 55 75 100 Ω — 101 40 55 75 Ω — 110 30 40 52 Ω — 111 25 33 44 Ω — Note: 1. Drive strength value 000 sets the pad at high Z. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 38 Freescale Semiconductor Electrical characteristics Table 8. Output driver average impedance (3.3 V voltage mode) Parameter Symbol Output driver impedance Rdrv Drive strength setting Min Typ Max Unit Note 001 180 250 400 Ω — 010 65 90 145 Ω — 011 45 65 90 Ω — 100 60 80 115 Ω — 101 45 55 80 Ω — 110 30 40 55 Ω — 111 25 34 45 Ω — Note: 1. Drive strength value 000 sets the pad at high Z. 3.1.4 LVDS DC parameters The DC operating characteristics are provided in the table below for LVDS pads. Table 9. LVDS DC electrical characteristics Symbol Parameter Test conditions Vod Output differential voltage Voh High-level output voltage Vol Low-level output voltage Vos Offset voltage Vid Input Differential Voltage Vicm Min Typ Max Unit 250 350 450 1.25 1.375 1.6 0.9 1.025 1.25 1.125 1.2 1.375 — 100 — 600 mV |Vpadp–Vpadn| Input common mode voltage — 50mV — 1.57 V — ICC Power supply current (VDDLVDS) Resistive — load = 100 Ω between padp and padn — 5 mA — RT RX Termination resistor — 100 — Ω 1 Resistive load = 100 Ω between padp and padn — mV Notes |Vpadp–Vpadn| — V — — Note: 1. Values are based on simulated numbers and are not measured on silicon. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 39 Electrical characteristics Vpadp Vos Vpadn Vpadp Vpadn Vod Vpadp—Vpadn 0V(Diff) Vod Figure 3. LVDS parameters 3.1.5 DDR DC parameters Table 10 provides DC electrical characteristics for DDR. Table 10. DDR DC electrical characteristics Symbol Parameter Test conditions Min Typ Max Unit Notes Vih Input high voltage — DDRREF + 0.100 — VDDDDR V — Vil Input low voltage — GND — DDRREF – 0.100 — — Voh High-level output voltage Ioh = –1 mA 0.8×VDDDDR — — Vol Low-level output voltage Iol = 1 mA — — 0.2×VDDDDR Vref Input reference voltage 0.49×VDDDDR 0.5×VDDDDR 0.51×VDDDDR Iin Input current for the IO Vi = 0 or cell (no internal VDDDDR pullup/pulldown resistor) MMpupd Pullup/pulldown driver impedance mismatch — — 34 Ω full –10 strength driver — — — V — 1 50 +10 μA 2 % 4 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 40 Freescale Semiconductor Electrical characteristics Table 10. DDR DC electrical characteristics (continued) Symbol Test conditions Parameter Min Typ Max Unit Notes Rres Driver 240 Ω unit calibration resolution — — — 10 Ω 4 Rkeep Pad keeper resistance — 105 135 175 kΩ 3,4 Rod_keep Maximum external resistor value that is guaranteed to overdrive the pad keeper — — — 47 kΩ 4 Note: 1. VTT is not applied directly to the device. It is the supply to which far end signal termination is made, and it is expected to be equal to Vref with a min value of Vref - 0.04 and a max value of Vref + 0.04. VTT should track variations in the DC level of Vref. 2. Typ condition: typ model, VDDDDR 1.5 V, and 25 °C. Max condition: bcs model, VDDDDR1.575 V, and –40 °C. Min condition: wcs model, VDDDDR 1.425 V, and 125 °C. 3. Typ condition: typ model, VDDDDR 1.5 V, and 25 °C, max condition: wcs model, VDDDDR 1.425 V, and 125 °C, min condition: bcs model, VDDDDR 1.575 V, and –40 °C. These values are for digital IO buffers. 4. Values are based on simulated numbers and are not measured on silicon. 3.1.6 SerDes DC parameters The following subsections define the DC-level requirements for the CPRI, SGMII and JESD204B data lines. 3.1.6.1 DC-level requirements for CPRI configurations This section provide various DC-level requirements for CPRI configurations. This table provides the CPRI-LV-XAUI based transmitter DC specifications. Table 11. Transmitter DC specifications (LV: 1.2288, 2.4576 and 3.072 Gbps)(SDn_XPADVDD=1.5) Symbol Characteristic Min VDIFF_P-P Differential Output Voltage 800 RD Differential resistance 80 Nom 100 Max Unit Note 1600 mV p–p — 120 Ω — This table provides the CPRI-LV-XAUI based receiver DC specifications. Table 12. Receiver DC specifications (LV: 1.2288, 2.4576 and 3.072 Gbps) (SDn_XPADVDD=1.5) Symbol Characteristic Min Nom Max Unit Note VIN Differential input voltage 200 1600 mV p–p — RIN Differential resistance 80 120 Ω — AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 41 Electrical characteristics This table provides the CPRI-LV-II and LV_III transmitter DC specifications. Table 13. CPRI transmitter DC specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps, LV-III: 9.8304 Gbps) (SDn_XPADVDD=1.5) Symbols Parameter Min Nom Output differential voltage into floating load Rload=100 Ω 800 VODIFF VTX-DE-RATIO–1.14 dB De-emphasized differential output voltage (Ratio) VTX-DE-RATIO–3.5 dB De-emphasized differential output voltage (Ratio) VTX-DE-RATIO–4.66 dB De-emphasized differential output voltage (Ratio) Max Unit Note — 1200 mV — 0.6 1.1 1.6 dB — 3 3.5 4 dB — 4.1 4.6 5.1 dB — VTX-DE-RATIO–6.0 dB Tx De-emphasized level 5.5 6.0 6.5 dB — VTX-DE-RATIO–9.5 dB De-emphasized differential output voltage (Ratio) 9 9.5 10 dB — T_Rd Differential resistance 80 100 120 Ω — This table provides the CPRI LV-II and LV-III receiver DC timing specifications. Table 14. CPRI receiver DC specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps, LV-III: 9.8304 Gbps) (SDn_XPADVDD=1.5) Symbols Parameter Min Nom Max Unit Note VIN_DIFF Input differential voltage N/A — 1200 mV — RDIN Differential resistance 80 — 120 Ω — NOTE It is assumed that for the VIN_DIFF Min spec, the eye can be closed at the receiver after passing the signal through a CEI/CPRI Level II LR compliant Channel. 3.1.6.2 DC-level requirements for SGMII configurations This table describes the SGMII SerDes transmitter DC specifications. Table 15. SGMII transmitter DC specifications (SDn_XPADVDD=1.5) Symbol Parameter Min Nom Max Unit Note VOH Output high voltage — — 1.5 x |Vod|,max mV 1 VOL Output low voltage |Vod|,min/2 — — mV 1 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 42 Freescale Semiconductor Electrical characteristics Table 15. SGMII transmitter DC specifications (continued)(SDn_XPADVDD=1.5) |VOD| Output differential voltage Z0 Output impedance (single ended) 320 500 725 mV — 293.8 459 665.6 — 266.9 417 604.7 — 240.6 376 545.2 — 213.1 333 482.9 — 186.9 292 423.4 — 160.0 250 362.5 — 40 50 60 Ω — Note: 1. This does not align to DC-coupled SGMII. 2. |VOD|= |VSD_TXn - VSD_TXn_B|. |VOD| is also referred to as output differential peak voltage. VTX-DIFFp-p = 2 x |VOD| 3. The |VOD| value shown in the Typ column is based on the condition of SDn_XCOREVDD-Typ = 1.35 V or 1.5 V, no common mode offset variation. SerDes transmitter is terminated with 100- differential load between differential pins. 4. For recommended operating conditions, see Table 3. This table describes the SGMII SerDes receiver DC timing specifications. Table 16. SGMII receiver DC specifications (SDn_XPADVDD=1.5) Symbols Parameter Input differential voltage VRX_DIFFp–p VLOS Loss of signal threshold ZRX_DIFF 3.1.6.3 Receiver differential input impedance Min Nom Max Unit Note 100 — 1200 mV — 175 — 1200 mV — 30 — 100 mV — 65 — 175 mV — 80 — 120 Ω — DC-level requirements for JESD204B configurations This table provides the JESD204B transmitter DC specifications. Table 17. JESD204B transmitter DC specifications(SDn_XPADVDD=1.5) Symbols Parameter Min Nom Max Unit Note VTX_DIFF Output differential voltage (into floating load Rload = 100 Ω) 360 — 770 mV — RD Differential resistance 80 100 120 Ω — This table below provides the JESD204B receiver DC timing specifications. Table 18. JESD204B receiver DC specifications (SDn_XPADVDD=1.5) Symbols Parameter Min Nom Max Unit Note VRX_DIFF Input differential voltage 110 — 1050 mV — RIN Differential resistance 80 — 120 Ω — AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 43 Electrical characteristics 3.2 Power sequencing The following figure depicts the power-up sequencing requirements.There is no timing parameters associated with it; board designers need to ensure the sequence. FVDD/JVDD/GVDD1-9/MVDD/TVDD/ MVDD1_8/TVDD1_8/LVDD1-3/ SD1-3_XPA_DVDD P1OVDD/P2OVDD VDD RSTIN_B TRST_B Note : 1. The Core VDD should come first. Other supplies can be in any order once the core supply is up and stable. 2. RSTIN_B and TRST_B should remain asserted till the power supplies get stable. 3. Refer to DC operating condition for supply specification. 4. During power off VDD should be the last supply to get turned off. Figure 4. Power-up sequencing 3.2.1 Power-on ramp rate This section describes the AC electrical specifications for the power-on ramp rate requirements. Controlling the maximum power-on ramp rate is required to avoid falsely triggering the ESD circuitry. Table 19 provides the power supply ramp rate specifications. Table 19. Power supply ramp rate Parameter Min Max Unit Note Required ramp rate for all voltage supplies — 25 V/mS 3,4 Required ramp rate for P1OVDD and P2OVDD — 25 V/mS 1, 2,3,4 Note: 1. P1OVDD should be tied to ground during functional applications.This supply is needed in the factory for programming of memory repair fuses. 2. P2OVDD should be tied to ground during functional applications. It can be driven to the specified supply during functional fuse programming. 3. Ramp rate is specified as a linear ramp from 10 to 90%. If non-linear (for example, exponential), the maximum rate of change from 200 to 500 mV is the most critical as this range might falsely trigger the ESD circuitry. 4. Over full recommended operating temperature range (see Table 3). AFD4400 Digital Front End Processor Data Sheet, Rev. 0 44 Freescale Semiconductor Electrical characteristics 3.3 RESET initialization This section describes the electrical specifications for the RESET initialization timing requirements. The figure below shows reset timing diagram. Stable clock DEVCLK1_P/N RSTIN_B 50% 50% CC1 RSTOUT_B RSTOUTn_B CC2 50% 50% CC3 Figure 5. Reset timing diagram NOTE As shown in Figure 5, a stable DEVCLK1_P/N is required (at least one DEVCLK period before) to AFD4400 before releasing the RSTIN_B pin. This table provides RESET initialization timing specifications. Table 20. Reset initialization timing specifications ID Parameter Symbol Min Max Unit Note CC1 Duration of RSTIN_B to be qualified as valid (assumption: Input slope = 5 ns) TRSTINV 50 — ns — CC2 Duration of RSTOUT_B, RSTOUTn_B assertion after de-assertion of RSTIN_B TRSTOUTW 200 — μs 2 CC3 Delay from RSTIN_B to RSTOUT_B, RSTOUTn_B assertion TROUTLRINV — 35 ns 2 CC4 Duration of RSTOUTn_B for software bit based assertion 45 — μs 1,2 TRSTOUTnW Note: 1. RSTOUT1_B to RSTOUT7_B can be asserted by writing into corresponding register bits in System Reset Controller module. Refer AFD4400 Reference Manual for details. 2. RSTOUT1_B to RSTOUT7_B pulse width matches RSTOUT_B timing in case of power on reset, cold reset and warm reset assertion. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 45 Electrical characteristics 3.4 Power characteristics 3.4.1 Power specifications 3.4.1.1 Device AFD4400NXN763VB power specification This table defines the frequency settings used for specifying power consumption. All power states are specified at 105oC junction temperature. Table 21. Frequency definition for power consumption measurement Parameter Symbol Value Unit ARM® Cortex-A9 core clock fmcu 614.4 MHz VSP clock fVSP 614.4 MHz AXI clock faxi 307.2 MHz AHB clock fahb 153.6 MHz IPG clock fip 76.8 MHz CPRI baud rate fcpri 9830.4 Mbps JESD204 baud rate fjesd 9830.4 Mbps Ethernet (SGMII) baud rate fetsec 1250 Mbps fddr 500 MHz DDR clock rate VID 33.2 37.1 1,3,4 Full run mode • All VSPA running FIR 70% with 10% control Thermal code • ARM running code with 75% utilization • 8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane per interface Typical • 2 JESD RX for SRx function at 9.8G rate • 4 CPRI running at 9.8G, 2 links in RE mode, 2 links in REC mode 105 VID 26.2 30.1 2,3,4 70 VID 22.4 26.3 2,3,4,5 Notes SoC Power (IO + VDD)(Watts) 105 VDD (V) All VSPA running FIR with 100% utilization Maximum ARM running code with 100% utilization. ARM Data accesses from DDR memory 8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane per interface • 2 JESD RX for SRx function at 9.8G rate • 4 CPRI running at 9.8G, 2 links in RE mode, 2 links in REC mode • 2 Ethernet ports running at 1.25G Condition Junction Temp (oC) • • • • Characteristic Power mode VDD Power (Core+ platform) This table provides the current consumption in various operating modes. Table 22. Power numbers AFD4400 Digital Front End Processor Data Sheet, Rev. 0 46 Freescale Semiconductor Electrical characteristics 19.1 21.9 1,3,4 • Six VSPA running FIR 70% with 10% control Thermal code. Remaining five power gated. • ARM running code with 75% utilization • 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane per interface Typical • 2 JESD RX for SRx function at 9.8G rate • 2 CPRI running at 9.8G, one link in RE mode, one link in REC mode 105 VID 15.3 18.1 2,3,4 70 VID 12.9 15.7 2,3,4,5 4T4R 40 MHz bandwidth • • • • • • • • 105 VID 16.2 18.2 5 Full Standby (CPRI active, antenna paths configured but not active) • All VSPA in partial powerdown waiting for go Typical event. Clocks enabled but gated. • ARM in stop mode. Clocks enabled but gated. Servicing only CPRI C&M messages • 8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane per interface. Links active but no data transfer (zeros sent, receive data ignored) • 2 JESD RX for SRx function at 9.8G rate. Link active but receive data ignored. • 4 CPRI running at 9.8G, 2 links in RE mode, 2 links in REC mode 70 VID 3.4 7.2 5 Half run mode 4 Tx Antenna (153.6 MSPS) 4 Rx Antenna (76.8 MSPS) 2 SRx (153.6 MSPS) 40 MHz Occupied Bandwidth (8 - 5MHz LTE carriers per antenna) 40 MHz Instantaneous Bandwidth 153.6 MHz DPD Bandwidth 2 CPRI links at 9.8304Gbps rate Thermal Notes SoC Power (IO + VDD)(Watts) VID VDD (V) 105 Condition Junction Temp (oC) • Six VSPA running FIR with 100% utilization. Maximum Remaining five power gated. • ARM running code with 100% utilization. • ARM Data accesses from DDR memory • 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane per interface • 2 JESD RX for SRx function at 9.8G rate • 2 CPRI running at 9.8G, one link in RE mode, one link in REC mode • Single Ethernet lane running at 1.25G Characteristic Power mode VDD Power (Core+ platform) Table 22. Power numbers (continued) AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 47 Electrical characteristics VID 2.8 5.7 5 Sleep (CPRI active, no antenna paths configured or active) • All VSPA in full powerdown. Clocks disabled. Typical • ARM in stop mode. Clocks enabled but gated. Servicing only CPRI C&M messages. • All JESD disabled. Links inactive with SerDes powered down or disabled. • 2 CPRI running at 9.8G, 1 link in RE mode, 1 link in REC mode 70 VID 1.5 2.3 5 Notes SoC Power (IO + VDD)(Watts) 70 VDD (V) • 6 VSPA in partial powerdown waiting for go Typical event. Clocks enabled but gated. Remaining VSPA in full powerdown. • ARM in stop mode. Clocks enabled but gated. Servicing only CPRI C&M messages • 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane per interface. Links active but no data transfer (zeros sent, receive data ignored). Remaining links inactive with SerDes powered down or disabled. • 2 JESD RX for SRx function at 9.8G rate. Link active but receive data ignored. • 2 CPRI running at 9.8G, 1 link in RE mode, 1 link in REC mode Condition Junction Temp (oC) Half Standby (CPRI active, antenna paths configured but not active) Characteristic Power mode VDD Power (Core+ platform) Table 22. Power numbers (continued) Note: 1. The maximum power is the peak power to be used for power supply sizing. 2. The thermal power is the average power of a worse case device running the defined use case. 3. The full run mode max power is tested (excluding IO power) using correlated static leakage limits. All other power modes are based on estimation and not guaranteed. 4. IO power is estimated based on typical design. It is highly dependent on board design and use case. 5. Typical power based on nominal process distribution for this device. 6. Voltage ID (VID) operating range is between 0.975V to 1.025V. 3.4.1.2 Device AFD4400NXN752VB power specification This table defines the frequency settings used for specifying power consumption. All power states are specified at 105oC junction temperature. Table 23. Frequency definition for power consumption measurement Parameter Symbol Value Unit ARM® Cortex-A9 core clock fmcu 553 MHz VSP clock fVSP 553 MHz AXI clock faxi 276.5 MHz AHB clock fahb 138.3 MHz IPG clock CPRI baud rate fip 69.1 MHz fcpri 9830.4 Mbps AFD4400 Digital Front End Processor Data Sheet, Rev. 0 48 Freescale Semiconductor Electrical characteristics Table 23. Frequency definition for power consumption measurement (continued) Parameter Symbol Value Unit JESD204 baud rate fjesd 9830.4 Mbps Ethernet (SGMII) baud rate fetsec 1250 Mbps fddr 500 MHz DDR clock rate This table provides the current consumption in various operating modes. VID 34.9 38.8 1,3,4 Full run mode • All VSPA running FIR 70% with 10% control Thermal code • ARM running code with 75% utilization • 8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane per interface Typical • 2 JESD RX for SRx function at 9.8G rate • 4 CPRI running at 9.8G, 2 links in RE mode, 2 links in REC mode 105 VID 28.2 32.1 2,3,4 70 VID 22.6 26.5 2,3,4,5 • Six VSPA running FIR with 100% utilization. Maximum Remaining five power gated. • ARM running code with 100% utilization. • ARM Data accesses from DDR memory • 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane per interface • 2 JESD RX for SRx function at 9.8G rate • 2 CPRI running at 9.8G, one link in RE mode, one link in REC mode • Single Ethernet lane running at 1.25G 105 VID 20.4 23.2 1,3,4 Half run mode • Six VSPA running FIR 70% with 10% control Thermal code. Remaining five power gated. • ARM running code with 75% utilization • 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane per interface Typical • 2 JESD RX for SRx function at 9.8G rate • 2 CPRI running at 9.8G, one link in RE mode, one link in REC mode 105 VID 16.7 19.5 2,3,4 70 VID 13.2 16.0 2,3,4,5 Notes SoC Power (IO + VDD)(Watts) 105 VDD (V) All VSPA running FIR with 100% utilization Maximum ARM running code with 100% utilization. ARM Data accesses from DDR memory 8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane per interface • 2 JESD RX for SRx function at 9.8G rate • 4 CPRI running at 9.8G, 2 links in RE mode, 2 links in REC mode • 2 Ethernet ports running at 1.25G Condition Junction Temp (oC) • • • • Characteristic Power mode VDD Power (Core+ platform) Table 24. Power numbers AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 49 Electrical characteristics 21.0 5 • All VSPA in partial powerdown waiting for go Typical event. Clocks enabled but gated. • ARM in stop mode. Clocks enabled but gated. Servicing only CPRI C&M messages • 8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane per interface. Links active but no data transfer (zeros sent, receive data ignored) • 2 JESD RX for SRx function at 9.8G rate. Link active but receive data ignored. • 4 CPRI running at 9.8G, 2 links in RE mode, 2 links in REC mode 70 VID 4.3 8.3 5 Half Standby (CPRI active, antenna paths configured but not active) • 6 VSPA in partial powerdown waiting for go Typical event. Clocks enabled but gated. Remaining VSPA in full powerdown. • ARM in stop mode. Clocks enabled but gated. Servicing only CPRI C&M messages • 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane per interface. Links active but no data transfer (zeros sent, receive data ignored). Remaining links inactive with SerDes powered down or disabled. • 2 JESD RX for SRx function at 9.8G rate. Link active but receive data ignored. • 2 CPRI running at 9.8G, 1 link in RE mode, 1 link in REC mode 70 VID 3.5 6.4 5 Sleep (CPRI active, no antenna paths configured or active) • All VSPA in full powerdown. Clocks disabled. Typical • ARM in stop mode. Clocks enabled but gated. Servicing only CPRI C&M messages. • All JESD disabled. Links inactive with SerDes powered down or disabled. • 2 CPRI running at 9.8G, 1 link in RE mode, 1 link in REC mode 70 VID 1.9 2.7 5 • • • • • • • • Full Standby (CPRI active, antenna paths configured but not active) 4 Tx Antenna (153.6 MSPS) 4 Rx Antenna (76.8 MSPS) 2 SRx (153.6 MSPS) 40 MHz Occupied Bandwidth (8 - 5MHz LTE carriers per antenna) 40 MHz Instantaneous Bandwidth 153.6 MHz DPD Bandwidth 2 CPRI links at 9.8304Gbps rate Thermal Notes SoC Power (IO + VDD)(Watts) 19.0 4T4R 40 MHz bandwidth VDD (V) VID Condition Junction Temp (oC) 105 Characteristic Power mode VDD Power (Core+ platform) Table 24. Power numbers (continued) AFD4400 Digital Front End Processor Data Sheet, Rev. 0 50 Freescale Semiconductor Electrical characteristics Notes SoC Power (IO + VDD)(Watts) VDD Power (Core+ platform) VDD (V) Condition Junction Temp (oC) Characteristic Power mode Table 24. Power numbers (continued) Note: 1. The maximum power is the peak power to be used for power supply sizing. 2. The thermal power is the average power of a worse case device running the defined use case. 3. The full run mode max power is tested (excluding IO power) using correlated static leakage limits. All other power modes are based on estimation and not guaranteed. 4. IO power is estimated based on typical design. It is highly dependent on board design and use case. 5. Typical power based on nominal process distribution for this device. 6. Voltage ID (VID) operating range is between 0.975V to 1.025V. 3.5 Input clocks AFD4400 has four sets of reference input clocks : DEVCLK1_P/N, DEVCLK2_P/N, SGMII_REFCLK_P/N, and RGMII_REFCLK_P/N.The DEVCLK1 is the default system clock and must be present for the device to come out of reset. Refer to Section 3.6.11.2, “SerDes reference clocks” for DEVCLKn_P/N and SGMII_REFCLK_P/N electrical specification. This table provides the RGMII_REFCLK_P/N clock parameters. This clock is an optional source of reference clock to PLLs. Table 25. SGMII_REFCLK/RGMII_REFCLK AC parameters Parameter/Condition Symbol Min Typ Max Unit Note Clock frequency fRGMII 66 125 167 MHz — SGMII clock duty cycle — 40 50 60 % — Period Jitter (Short + Long) TJ_PERIOD — — 150 ps — Jitter phase noise at -56 dBc — — — 500 KHz — Note: 1. Refer LVDS IO timing spec for pulse skew requirement. 3.6 Module electrical characteristics This section describes the electrical information including timing specification for the various modules. 3.6.1 Configurable serial peripheral interface (CSPI) This section describes the electrical information of the CSPI. Table 26. SPI master mode timing characteristics ID Parameter Description Symbol Min Max Unit Note CSM1 SPIn_CLK Cycle Time TSPK 38.5 — ns — CSM2 SPIn_CLK High or Low Time TSPKLH 17 — ns — AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 51 Electrical characteristics Table 26. SPI master mode timing characteristics (continued) ID Parameter Description Symbol Min Max Unit Note CSM4 SPIn_SSm negated pulse width TSPOW 30 — ns — CSM5 SPIn_SSm Lead Time (CS setup time) TSPKHOH 5 — ns — CSM6 SPIn_SSm Lag Time (CS hold time) TSPKLOL 5 — ns — CSM10 SPIn_DI Setup Time TSPIVKL 5 — ns — CSM11 SPIn_DI Hold Time TSPIXKL 5 — ns — CSM12 SPIn_DO Output Delay TSPKHOV — 6 ns — CSM13 SPIn_RDY Setup Time TSPOHIH 5 — ns — Table 27. SPI slave timing characteristics Ref. Num Parameter Description Symbol Min Max Unit Note CSS1 SPIn_CLK Cycle Time TSPK2 55.5 — ns — CSS2 SPIn_CLK High or Low Time TSPKLH2 25.5 — ns — CSS4 SPIn_SSm negated pulse width TSPIW2 47 — ns — CSS5 SPIn_SSm Lead Time (CS setup time) TSPIHKH 5 — ns — CSS6 SPIn_SSm Lag Time (CS hold time) TSPILKL 5 — ns — CSS7 SPIn_DI Setup Time TSPIVKL2 5 — ns — CSS8 SPIn_DI Hold Time TSPIXKL2 5 — ns — CSS9 SPIn_DO Output Delay TSPKHOV2 — 17 ns — AFD4400 Digital Front End Processor Data Sheet, Rev. 0 52 Freescale Semiconductor Electrical characteristics SPIn_RDY(input) TSPOHIH TSPKLH TSPK SPIn_SSm(output) TSPKLH TSPKLOL TSPKHOH TSPOW SPIn_CLK(output) TSPKHOV SPIn_DO(output) TSPIVKL TSPIXKL SPIn_DI(input) Master Mode Timing Diagram TSPKLH2 TSPKLH2 TSPK2 SPIn_SSm(input) TSPILKL TSPIHKH TSPIW2 SPIn_CLK(input) TSPIVKL2 TSPIXKL2 SPIn_DI(input) TSPKHOV2 SPIn_DO(output) Slave Mode Timing Diagram Figure 6. CSPI Timing Diagram 3.6.2 3.6.2.1 IO electrical characteristics LVCMOS pads This section describes the electrical specifications for the LVCMOS interface. 3.6.2.1.1 AC characteristics conditions AC electrical characteristics are not applicable for output open drain pulldown driver. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 53 Electrical characteristics This table provides the AC electical characteristics at 1.8 V. Table 28. AC electrical characteristics (1.8 V voltage mode) Parameter Symbol IO output TTLH transition time TTHL , (Rise/Fall) Drive strength (dse2,des1,dse0) Slew rate Test conditions Min Max Unit Notes High (011) Slow 1.89/1.84 — Fast 1.97/2.20 — Low (100) Slow 2.99/2.96 — fast 2.44/2.58 15 pF capacitive load on pad 2.56/2.42 — ns Medium (101) Slow — fast 1.84/1.96 — Max (111) Slow 1.82/1.67 — fast 1.13/1.24 — Note: 1. Refer AFD4400 Reference Manual for drive strength setting (dse2,dse1 and dse0) configuration register. This table provides the AC electrical characteristics at 3.3 V. Table 29. AC electrical characteristics (3.3 V voltage mode) Parameter IO output transition time , (Rise/Fall) Symbol TTLH TTHL Drive strength (dse2,des1,dse0) Slew rate Test conditions Min Max Unit Notes High (011) Slow 3.00/3.16 — Fast 2.17/2.73 — Low (100) Slow 3.37/3.58 — 2.64/3.07 — Medium (101) Slow fast 2.04/2.37 — Max (111) Slow 2.19/2.18 — fast 1.28/1.57 — fast 15 pF capacitive load on pad 2.98/3.00 ns — Note: 1. Refer AFD4400 Reference Manual for drive strength setting (dse2,dse1 and dse0) configuration register. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 54 Freescale Semiconductor Electrical characteristics This figure provides the pad load circuit. From output under test Test point Capacitive load Capacitive load includes package, die and equivalent lumped load, external to pad Figure 7. Pad load circuit The output pad propagation and transition time waveform is shown below in the figure. 80% 80% 20% Output (at pad) 20% TTHL TTLH 0V Figure 8. Output pad transition time waveform 3.6.2.2 3.6.2.2.1 LVDS pads AC characteristics conditions The AC operating characteristics are provided in Table 30 for LVDS pads. Table 30. AC electrical characteristics Symbol Parameter Tskd Differential pulse skew Ttlh Output transition time low to high Tthl Test conditions Min Typ Max Unit Notes Output transition time high to low Resistive load = 100 0.01 — Ω between padp and 0.12 — padn, capacitive load = 2 pF 0.10 — 0.25 0.73 F Operating frequency — — 125 600 MHz — Vos Offset voltage imbalance — — — 150 mV — 0.58 ns 1,2 Note: 1. TIA/EIA-644-A Spec, section 4.1.4. 2. Measurement levels are 20–80% from output voltage This figure shows differential LVDS driver propagation delay and transition time waveforms. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 55 Electrical characteristics padp Voh 80% 80% 20% 20% padn Ttlh Vol Tthl Figure 9. Differential LVDS driver transition time waveforms 3.6.2.3 DDR IOs This section provides AC electrical specifications for the DDR IOs. 3.6.2.3.1 AC electrical characteristics This table provides the AC characteristics for the DDR IO. Table 31. DDR AC electrical characteristics Parameter Symbol Min Max Unit Notes Single output slew rate tsr 0.4 2 V/ns — Skew between pad rise/fall asymmetry + skew caused by simultaneous switching noise (SSN) tskd — 70 ps — This figure shows the AC pad load circuit. From output under test Test point Capacitive load Figure 10. Pad load circuit This figure shows output pad propagation and transition time waveform. VDDDDR 80% Output at pad 20% 80% 20% 0V Figure 11. Output pad transition time waveform AFD4400 Digital Front End Processor Data Sheet, Rev. 0 56 Freescale Semiconductor Electrical characteristics 3.6.3 DDR controller This table provides the timing parameters for DDR3 controller. Table 32. DDR3 timing parameter ID Parameter Symbol Min Max Unit Note DDR0 Clock Period TMMKW 2 — ns — DDR1 CK clock high-level width TMMKH 0.47 0.53 TMMKW — DDR2 CK clock low-level width TMMKL 0.47 0.53 TMMKW — DDR4 CS, RAS, CAS, CKE, WE, ODT setup time TMMKHOV 440 — ps — DDR5 CS, RAS, CAS, CKE, WE, ODT hold time TMMKHOX 315 — ps — DDR6 Address output setup time TMMKHOV2 440 — ps — DDR7 Address output hold time TMMKHOX2 315 — ps — Note: 1. All measurements are in reference to Vref level. 2. Measurements are done using balanced load and 25 Ω resistor from outputs to VDD_REF. This table provides the write timing parameters for DDR3 write cycle. Table 33. DDR3 write cycle ID Parameter Symbol Min Max Unit Note DDR17 DQ and DQM setup time to DQS (differential TMMDHDV strobe) 215 — ps — DDR18 DQ and DQM hold time to DQS (differential TMMDHDX strobe) 215 — ps — DDR21 DQS latching rising transitions to associated TMMKHDH clock edges –0.25 +0.25 TMMKW — DDR22 DQS high level width TMMDQSH 0.45 0.55 TMMKW — DDR23 DQS low level width TMMDQSL 0.45 0.55 TMMKW — Note: 1. To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the middle of DQ window. 2. All measurements are in reference to Vref level. 3. Measurements are done using balanced load and 25 Ω resistor from outputs to VDD_REF. This table provides the timing parameters for DDR3 read cycle. Table 34. DDR3 read cycle ID DDR27 Parameters Tolerated skew for DDR_DQS - DDR_DQ Symbol TMMDSKEW -150 Min Max 150 Unit ps Note — Note: 1. To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle of DQ window. 2. All measurements are in reference to Vref level. 3. Measurements are done using balanced load and 25 Ω resistor from outputs to VDD_REF. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 57 Electrical characteristics This figure shows the basic timing parameters of DDR3. TMMKW TMMKH DDR_CKn_B DDR_CKn TMMKL TMMKHOV DDR_CSn_B TMMKHOX DDR_RAS_B TMMKHOX TMMKHOV DDR_CAS_B TMMKHOV TMMKHOX TMMKHOX DDR_WE_B DDR_ODTn/CKEn TMMKHOV2 DDR_A[15:0] TMMKHOX2 ROW/BA TMMKHOV COL/BA Figure 12. DDR3 command and address parameters AFD4400 Digital Front End Processor Data Sheet, Rev. 0 58 Freescale Semiconductor Electrical characteristics This figure shows the write timing parameters. DDR_CKn DDR_CKn_B TMMDQSH TMMKHDH DDR_DQS(Output) TMMDHDX TMMDHDV TMMDHDV DDR_DQ(Output) DDR_DQM(Output) TMMDQSL TMMDHDX DATA DATA DATA DATA DATA DATA DATA DATA DM DM DM DM DM DM DM DM TMMDHDV TMMDHDV TMMDHDX TMMDHDX Figure 13. DDR3 write cycle This figure shows the read timing parameters. DDR_CKn DDR_CKn_B DDR_DQS(Input) DDR_DQ(Input) DATA DATA TMMDSKEW DATA DATA DATA DATA DATA DATA TMMDSKEW Figure 14. DDR3 read cycle AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 59 Electrical characteristics 3.6.4 Digital phase lock loop (DPLL) This table lists the DDR PLL, System PLL and TbGen PLL electrical characteristics. Table 35. DPLL electrical characteristics Parameter Min Max Unit Note Reference clock frequency range 66.67 166 MHz — Output clock frequency range 491.52 2000 MHz 1 PLL lock time — 100 μs — Period jitter (peak-to-peak) for PLL output — ±(40 + clock out period × 1%) ps — Phase jitter (peak-to-peak) for PLL output — ±(75 + ref_clock_period × 1%) ps — Note: 1. The maximum PLL output frequency should be programmed based on the maximum operating limit. 3.6.5 Ethernet: Enhanced three-speed ethernet (eTSEC) This section provides the AC electrical characteristics for the enhanced three-speed Ethernet 10/100/1000 controller and MII management interface. 3.6.5.1 MII AC timing specifications This section describes the MII transmit and receive AC timing specifications. This table provides the MII transmit AC timing specifications. Table 36. MII transmit AC timing specifications Parameter Symbol Min Typ Max Unit Note TSEC1_TX_CLK clock period 10 Mbps tMTX 399.96 400 400.04 ns — TSEC1_TX_CLK clock period 100 Mbps tMTX 39.996 40 40.004 ns — TSEC1_TX_CLK duty cycle tMTXH/tMTX 35 — 65 % — TSEC1_TX_CLK to MII data TSEC1_TXD[3:0], TSEC1_TX_ER, TSEC1_TX_EN delay tMTKHDX 0 — 25 ns — TSEC1_TX_CLK data clock rise (20%–80%) tMTXR 1.0 — 4.0 ns — TSEC1_TX_CLK data clock fall (80%–20%) tMTXF 1.0 — 4.0 ns — This figure shows the MII transmit AC timing diagram. tMTXR tMTX TSEC1_TX_CLK tMTXH tMTXF TSEC1_TXD[3:0] TSEC1_TX_EN TSEC1_TX_ER tMTKHDX Figure 15. MII transmit AC timing diagram AFD4400 Digital Front End Processor Data Sheet, Rev. 0 60 Freescale Semiconductor Electrical characteristics This table provides the MII receive AC timing specifications. Table 37. MII receive AC timing specifications Parameter Symbol Min Typ Max Unit Note TSEC1_RX_CLK clock period 10 Mbps tMRX 399.96 400 400.04 ns — TSEC1_RX_CLK clock period 100 Mbps tMRX 39.996 40 40.004 ns — TSEC1_RX_CLK duty cycle tMRXH/tMRX 35 — 65 % — TSEC1_RXD[3:0], TSEC1_RX_DV, TSEC1_RX_ER tMRDVKH setup time to TSEC1_RX_CLK 10.0 — — ns — TSEC1_RXD[3:0], TSEC1_RX_DV, TSEC1_RX_ER tMRDXKH hold time to TSEC1_RX_CLK 10.0 — — ns — Note: The frequency of TSEC1_RX_CLK (input) should not exceed the frequency of TSEC1_TX_CLK (input) by more than 300 ppm. This figure shows the MII receive AC timing diagram. tMRXR tMRX TSEC1_RX_CLK tMRXF tMRXH TSEC1_RXD[3:0] TSEC1_RX_DV TSEC1_RX_ER Valid Data tMRDVKH tMRDXKH Figure 16. MII receive AC timing diagram 3.6.5.2 RGMII AC timing specifications This table presents the RGMII AC timing specifications. Table 38. RGMII AC timing specifications Parameter Symbol Min Typ Max Unit Notes Data to clock output skew (at transmitter) tSKRGT_TX –770 0 950 ps 5 Data to clock input skew (at receiver) tSKRGT_RX 1.3 — 2.6 ns 2 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 61 Electrical characteristics Table 38. RGMII AC timing specifications (continued) Parameter Symbol Min Typ Max Unit Notes Clock period duration tRGT 7.2 8.0 8.8 ns 3 Duty cycle for 10BASE-T and 100BASE-TX tRGTH/tRGT 40 50 60 % 3,4 Duty cycle for Gigabit tRGTH/tRGT 45 50 55 % — Note: 2. This implies that the PC board design requires clocks to be routed such that an additional trace delay greater than 1.5 ns is added to the associated clock signal. Many PHY vendors already incorporate the necessary delay inside their chip. If so, additional PCB delay is probably not needed. 3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively. 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed transitioned between. 5. The frequency of TSEC1_RX_CLK (input) should not exceed the frequency of TSEC1_GTX_CLK (output) by more than 300 ppm. This figure shows the RGMII AC timing and multiplexing diagrams. tRGTH tRGT TSEC1_GTX_CLK (At MAC, output) tSKRGT_TX TSEC1_TXD[8:5][3:0] TSEC1_TXD[7:4][3:0] (At MAC, output) TSEC1_TX_CTL (At MAC, output) TXD[3:0] TXD[8:5] TXD[7:4] TXD[4] TXEN TXD[9] TXERR tSKRGT_TX PHY equivalent to tSKRGT_RX PHY equivalent to tSKRGT_RX TSEC1_TX_CLK (At PHY, input) tRGTH tRGT TSEC1_RX_CLK (At PHY, output) TSEC1_RXD[8:5][3:0] TSEC1_RXD[7:4][3:0] (At PHY, output) TSEC1_RX_CTL (At PHY, output) RXD[8:5] RXD[3:0] RXD[7:4] PHY equivalent to tSKRGT_TX RXD[4] RXDV PHY equivalent to tSKRGT_TX RXD[9] RXERR tSKRGT_RX tSKRGT_RX TSEC1_RX_CLK (At MAC, input) Figure 17. RGMII timing and multiplexing diagrams AFD4400 Digital Front End Processor Data Sheet, Rev. 0 62 Freescale Semiconductor Electrical characteristics WARNING Freescale guarantees timings generated from the MAC. Board designers must ensure delays needed at the PHY or the MAC. 3.6.5.3 RMII AC timing specifications In RMII mode, the reference clock should be fed to TSEC1_TX_CLK. This section describes the RMII transmit and receive AC timing specifications. This table lists the RMII transmit AC timing specifications. Table 39. RMII transmit AC timing specifications Parameter Symbol Min Typ Max Unit Typ TSEC1_TX_CLK clock period tRMT — 20.0 — ns — TSEC1_TX_CLK duty cycle tRMTH 35 — 65 % — TSEC1_TX_CLK peak-to-peak jitter tRMTJ — — 250 ps — 2.0 — 10.0 ns — TSEC1_TX_CLK to RMII data TXD[1:0], TX_EN delay tRMTDX This figure shows the RMII transmit AC timing diagram. tRMT tRMTR TSEC1_TX_CLK tRMTH tRMTF TSEC1_TXD[1:0] TSEC1_TX_EN TSEC1_TX_ER tRMTDX Figure 18. RMII transmit AC timing diagram This table lists the RMII receive AC timing specifications. Table 40. RMII receive AC timing specifications Parameter Symbol Min Typ Max Unit Note TSEC1_TX_CLK clock period tRMR — 20.0 — ns — TSEC1_TX_CLK duty cycle tRMRH 35 — 65 % — TSEC1_TX_CLK peak-to-peak jitter tRMRJ — — 250 ps — RXD[1:0], CRS_DV, RX_ER set-up time to TSEC1_TX_CLK tRMRDV rising edge 4.0 — — ns — RXD[1:0], CRS_DV, RX_ER hold time to TSEC1_TX_CLK rising edge 2.0 — — ns — tRMRDX AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 63 Electrical characteristics This figure shows the RMII receive AC timing diagram. tRMR tRMRR TSEC1_TX_CLK tRMRF tRMRH TSEC1_RXD[1:0] TSEC1_CRS_DV TSEC1_RX_ER Valid Data tRMRDV tRMRDX Figure 19. RMII receive AC timing diagram 3.6.5.4 MII management AC timing specifications This table provides the MII management AC timing specifications. Table 41. MII management AC timing specifications At recommended operating conditions with VDDGPIO = 3.3 V ± 5%. Parameter Symbol1 Min Typ Max Unit Notes MDC frequency fMDC — — 2.5 MHz 1 MDC period tMDC 400 — — ns — MDC clock pulse width high tMDCH 32 — — ns — MDC to MDIO delay tMDKHDX (8 × taxi) – 3 — (8 × taxi) + 3 ns 2, 3 MDIO to MDC setup time tMDDVKH 15 — — ns — MDIO to MDC hold time tMDDXKH 0 — — ns — Notes: 1. This parameter is dependent on the platform clock frequency (MIIMCFG [MgmtClk] field determines the clock frequency of the MgmtClk Clock MDC). 2. This parameter is dependent on the platform (AXI) clock frequency (faxi). The delay is equal to 8 platform clock periods ±3 ns. For example, with a platform clock of 307.2 MHz, the min/max delay is 26 ns ± 3 ns. 3. taxi is the platform AXI bus clock. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 64 Freescale Semiconductor Electrical characteristics The figure below shows the MII management interface timing diagram. tMDCR tMDC MDC tMDCF tMDCH MDIO (Input) tMDDVKH tMDDXKH MDIO (Output) tMDKHDX Figure 20. MII management interface timing diagram 3.6.5.5 Ethernet controller IEEE Std 1588 AC timing specifications This table provides the IEEE 1588 AC timing specifications. Table 42. Ethernet controller IEEE 1588 AC timing specifications Parameter Symbol Min Typ Max Unit Notes Clock period tT1588CLK 3.3 — TRX_CLK × 7 ns 1, 3 Duty cycle tT1588CLKH/ tT1588CLK 40 50 60 % 2 Peak-to-peak jitter tT1588CLKINJ — — 250 ps — Rise time TSEC_1588_CLKIN (20%–80%) tT1588CLKINR 1.0 — 2.0 ns — Fall time TSEC_1588_CLKIN (80%–20%) tT1588CLKINF 1.0 — 2.0 ns — TSEC_1588_CLKOUT clock period tT1588CLKOUT 2 × tT1588CLK — — ns 4 TSEC_1588_CLKOUT duty cycle tT1588CLKOUTH/ 30 tT1588CLKOUT 50 70 % — TSEC_1588_ALARMn, TSEC_1588_FIPERn hold time tT1588OX 0.5 — — ns 5 TSEC_1588_ALARMn, TSEC_1588_FIPERn delay tT1588OV — — 3.0 ns — TSEC_1588_TRIGn pulse width tT1588TRIGH 2 × tT1588CLK_MAX — — ns 3 Notes: 1. TRX_CLK is the maximum clock period of TSEC receiving clock selected by TMR_CTRL[CKSEL]. See the AFD4400 Reference Manual for a description of TMR_CTRL registers. 2. It needs to be at least two times the clock period of the clock selected by TMR_CTRL[CKSEL]. See the AFD4400 Reference Manual for a description of TMR_CTRL registers. 3. The maximum value of tT1588CLK is not only defined by the value of TRX_CLK, but also defined by the recovered clock. For example, for 10/100/1000 Mbps modes, the maximum value of tT1588CLK is 2800, 280, and 56 ns, respectively. 4. For 1588, there are three input clock sources: TSEC_1588_CLKIN, RTC and AXI clock. When using TSEC_1588_CLKIN, the minimum clock period is 2 × tT1588CLK. 5. The parameter has been characterized at highest slew rate and drive strength. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 65 Electrical characteristics This figure shows the data and command output AC timing diagram. tT1588CLKOUT tT1588CLKOUTH TSEC_1588_CLKOUT tT1588OV tT1588OX TSEC_1588_ALARM1/2 TSEC_1588_FIPER1/2/3 Note: The output delay is counted starting at the rising edge if tT1588CLKOUT is non-inverting. Otherwise, it is counted starting at the falling edge. Figure 21. Ethernet controller IEEE 1588 output AC timing This figure shows the data and command input AC timing diagram. tT1588CLK tT1588CLKH TSEC_1588_CLKIN TSEC_1588_TRIG1/2 tT1588TRIGH Figure 22. Ethernet controller IEEE 1588 input AC timing 3.6.5.6 SGMII interface electrical characteristics For SGMII interface electrical characteristics, see Section 3.6.11, “SerDes”. 3.6.6 Fusebox This section describes the fusebox electrical characteristics. The table below shows the fusebox supply current parameters. These parameters are validated through characterization. Table 43. Fusebox supply current parameters Parameter Symbol Min Typ Max Unit Note The VEFUSE_PGM current flow when not programming IVPGM_UNPROG 0.35 0.41 1.76 mA — The VEFUSE_PGM current flow during programming IVPGM_PROG 87.2 87.3 96.09 mA — Programming time TPGM 11 12 13 μs — AFD4400 Digital Front End Processor Data Sheet, Rev. 0 66 Freescale Semiconductor Electrical characteristics 3.6.7 JTAG This section describes the AC electrical specifications for the IEEE Std 1149.1™/1149.6™ (JTAG) interface. This section applies to both the ARM and VSP JTAG ports. NOTE The VSP JTAG cannot be used for boundary scan (BSR). The BSR TAP is connected to main JTAG port (ARM JTAG). 3.6.7.1 JTAG AC timing specifications This table provides the JTAG AC timing specifications as defined in Figure 23 through Figure 26. Table 44. JTAG AC timing specifications For recommended operating conditions see Table 3. Parameter Symbol Min Max Unit Notes JTAG external clock frequency of operation fJTG — 20 MHz — JTAG external clock cycle time tJTG 50 — ns — JTAG external clock pulse width tJTKHKL 25 — ns — JTAG external clock rise and fall times tJTGR and tJTGF — 2 ns — JTAG_TRST_B/JTAG_VSP_TRST_B assert time tTRST 125 — ns 1 Input setup times tJTDVKH 4 — ns — Input hold times tJTDXKH 21 — ns — Output valid times tJTKLDV — 25 ns 2 Output hold times tJTKLDX 0 — ns 2 JTAG external clock to output high impedance tJTKLDZ 4 10 ns — Note: 1. JTAG_TRST_B/JTAG_VSP_TRST_B is an asynchronous level sensitive signal. 2. All the output timings are measured from the midpoint voltage of the falling/rising edge of JTAG clock to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system. This figure shows the AC test load for TDO and the boundary-scan outputs. Output Z0 = 50 Ω RL = 50 Ω VDDGPIO/2 Figure 23. AC test load for the JTAG interface AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 67 Electrical characteristics This figure provides the JTAG clock input timing diagram. JTAG_TCK JTAG_VSP_TCK tJTGR tJTKHKL tJTGF tJTG Figure 24. JTAG clock input timing diagram This figure provides the TRST_B timing diagram. JTAG_TRST_B JTAG_VSP_TRST_B tTRST Figure 25. TRST_B timing diagram This figure provides the boundary-scan timing diagram. JTAG_TCK tJTDVKH Boundary data inputs tJTDXKH Input data valid tJTKLDX tJTKLDV Boundary data outputs Output data valid tJTKLDZ Boundary data outputs Output Data Valid Figure 26. Boundary-scan timing diagram AFD4400 Digital Front End Processor Data Sheet, Rev. 0 68 Freescale Semiconductor Electrical characteristics 3.6.8 GPIO signals This section describes the AC electrical specifications for the GPIO pins. 3.6.8.1 GPIO AC timing specifications This table provides the GPIO input and output AC timing specifications. Table 45. GPIO pin input AC timing specifications For recommended operating conditions, see Table 3. Parameter Symbol GPIO inputs—minimum pulse width Min tPIWID 20 Unit ns Notes 1 Note: 1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least tPIWID to ensure proper operation. This figure provides the AC test load for the GPIO pin. Output Z0 = 50 Ω OVDD/2 R L = 50 Ω Figure 27. GPIO pin AC test load 3.6.9 I2C This section describes the electrical information of the I2C interface. 3.6.9.1 I2C module timing This table provides the timing characteristics for the I2C module. Table 46. I2C module timing characteristics Standard Mode ID Parameter Fast Mode Symbol Unit Min Max Min Note Max IC0 I2Cn_SCL frequency fI2C — 100 — 400 KHz — IC1 I2Cn_SCL cycle time tI2C 10 — 2.5 — μs — IC6 LOW Period of the I2Cn_SCL Clock tI2CL 4.7 — 1.3 — μs — IC5 HIGH Period of I2Cn_SCL Clock tI2CH 4.0 — 0.6 — μs — IC2 Hold time (repeated) START condition tI2SXKL 4.0 — 0.6 — μs — IC3 Set-up time for STOP condition tI2PVKH 4.0 — 0.6 — μs — IC4 Data hold time tI2DXKL 0 3.45 0 0.9 μs 1,2 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 69 Electrical characteristics Table 46. I2C module timing characteristics (continued) Standard Mode ID Parameter Fast Mode Symbol Unit Min Max Min Note Max 0.25 — 0.1 — μs 3 Set-up time for a repeated START tI2DLKH condition 4.7 — 0.6 — μs — Bus free time between a STOP and tI2KHDX START condition 4.7 — 1.3 — μs — IC8 Data set-up time IC7 IC9 tI2DVKH Note: 1. A device must internally provide a hold time of at least 300 ns for I2Cn_SDA signal in order to bridge the undefined region of the falling edge of I2Cn_SCL. The “n“ is the instance number of the I2C module. 2. The maximum hold time has only to be met if the device does not stretch the LOW period (ID # IC6) of the I2Cn_SCL signal. 3. Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (IC8) of 250 ns must be met. This will automatically be the case if the device does not stretch the LOW period of the I2Cn_SCL. If such a device does stretch the LOW period of the I2Cn_SCL signal, it must output the next data bit to the I2Cn_SDA line (IO max rise time + data_setup_time(IC8) time (according to the Standard-mode I2C-bus specification) before the I2Cn_SCL line is released. 4. Cb = total capacitance of one bus line in pF. Assumed to be ~400 pF (max). This figure below depicts the timing of I2C module. tI2KHDX I2Cn_SDA I2Cn_SCL tI2DLKH tI2SXKL tI2DVKH START tI2CL tI2PVKH tI2DXKL tI2C tI2CH STOP START START Figure 28. I2C bus timing 3.6.10 Quad-SPI This table provides Quad-SPI timing characteristics. Table 47. Quad-SPI module timing characteristics Value Parameter Symbol Unit Min Typ Note Max Frequency fQSK — — 52 Mhz — Clock to Q delay TQSKLDV — — 5.0 ns — Setup time for incoming data TQSDVKL 10.5 — — ns — AFD4400 Digital Front End Processor Data Sheet, Rev. 0 70 Freescale Semiconductor Electrical characteristics Table 47. Quad-SPI module timing characteristics (continued) Value Parameter Symbol Unit Min Hold time requirement for incoming data TQSDXKL 1.0 Typ Note Max — — ns — Note: 1. All data are based on a negative edge data launch from AFD4400 and a negative edge data capture as shown in the timing diagrams. 2. Timings correspond to QSPI_SMPR = 0x0000_000x. 3. A negative value of hold is an indication of pad delay on the clock pad (delay between the edge capturing data inside device and the edge appearing at the pin). 4. 15 pF load has been assumed on the pads. The figure below depicts Quad-SPI timing. TQSDXKL TQSKLDV 1 2 TQSDVKL 3 4 5 6 7 8 QSPI_CK QSPI_IO[3:0] (For Output) QSPI_IO[3:0] (For Input) 1. Last address out 2. Address captured at flash 3. Data out from Flash 4. This is SPI protocol defined Ideal Data Capture edge.The capture edge can be programmed as shown in 5,6,7,8. 5. Delayed data captured edge with QSPI_SMPR=0000_000x 6. Delayed data captured edge with QSPI_SMPR=0000_002x 7. Delayed data captured edge with QSPI_SMPR=0000_004x 8. Delayed data captured edge with QSPI_SMPR=0000_006x Figure 29. Quad-SPI input timing 3.6.11 SerDes The following subsections define the AC-level specifications for the CPRI, SGMII and JESD204B data lines. 3.6.11.1 Signal terms definition The SerDes utilizes differential signaling to transfer data across the serial link. This section defines the terms that are used in the description and specification of differential signals. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 71 Electrical characteristics This figure shows how the signals are defined. For illustration purposes only, one SerDes lane is used in the description. This figure shows the waveform for either a transmitter output (SD_TXn_P and SD_TXn_N) or a receiver input (SD_RXn_P and SD_RXn_N). Each signal swings between A volts and B volts where A > B. SD_TXn_P or SD_RXn_P A volts Vcm = (A + B)/2 SD_TXn_N or SD_RXn_N B volts Differential swing, VID or VOD = A – B Differential peak voltage, VDIFFp = |A – B| Differential peak-to-peak voltage, VDIFFpp = 2 × VDIFFp (not shown) Figure 30. Differential voltage definitions for transmitter or receiver Using this waveform, the definitions are as shown in the following list. To simplify the illustration, the definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment: Single-Ended Swing The transmitter output signals and the receiver input signals SD_TXn, SD_TXn_B, SD_RXn, and SD_RXn_B each have a peak-to-peak swing of A – B volts. This is also referred as each signal wire’s single-ended swing. Differential Output Voltage, VOD (or Differential Output Swing) The differential output voltage (or swing) of the transmitter, VOD, is defined as the difference of the two complimentary output voltages: VSD_TXn – VSD_TXn_B. The VOD value can be either positive or negative. Differential Input Voltage, VID (or Differential Input Swing) The differential input voltage (or swing) of the receiver, VID, is defined as the difference of the two complimentary input voltages: VSD_RXn – VSD_RXn_B. The VID value can be either positive or negative. Differential Peak Voltage, VDIFFp The peak value of the differential transmitter output signal or the differential receiver input signal is defined as the differential peak voltage, VDIFFp = |A – B| volts. Differential Peak-to-Peak, VDIFFp-p Since the differential output signal of the transmitter and the differential input signal of the receiver each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver input signal is defined as differential peak-to-peak voltage, VDIFFp-p = 2 × VDIFFp = 2 × |(A – B)| volts, which is twice the differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-to-peak voltage can also be calculated as VTX-DIFFp-p = 2 × |VOD|. Differential Waveform The differential waveform is constructed by subtracting the inverting signal (SD_TXn_B, for example) from the non-inverting signal (SD_TXn_B, for example) within a differential pair. There is only one signal trace curve in a differential waveform. The voltage represented in the differential waveform is not referenced to ground. See Figure 35 as an example for differential waveform. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 72 Freescale Semiconductor Electrical characteristics Common Mode Voltage, Vcm The common mode voltage is equal to half of the sum of the voltages between each conductor of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out = (VSD_TXn + VSD_TXn) ÷ 2 = (A + B) ÷ 2, which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the common mode voltage may often differ from one component’s output to the other’s input. It may be different between the receiver input and driver output circuits within the same component. It is also referred to as the DC offset on some occasions. To illustrate these definitions using real values, consider the example of a current mode logic (CML) transmitter that has a common mode voltage of 2.25 V and outputs, TD and TD_B. If these outputs have a swing from 2.0 V to 2.5 V, the peak-to-peak voltage swing of each signal (TD or TD_B) is 500 mV p-p, which is referred to as the single-ended swing for each signal. Because the differential signaling environment is fully symmetrical in this example, the transmitter output’s differential swing (VOD) has the same amplitude as each signal’s single-ended swing. The differential output signal ranges between 500 mV and –500 mV. In other words, VOD is 500 mV in one phase and –500 mV in the other phase. The peak differential voltage (VDIFFp) is 500 mV. The peak-to-peak differential voltage (VDIFFp-p) is 1000 mV p-p. 3.6.11.2 SerDes reference clocks The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding SerDes lanes. The following sections describe the SerDes reference clock requirements and provide application information. 3.6.11.2.1 SerDes reference clock receiver characteristics This figure shows a receiver reference diagram of the SerDes reference clocks. DEVCLK1_P DEVCLK2_P SGMII_REFCLK_P DEVCLK1_N DEVCLK2_N SGMII_REFCLK_N 50 Ω Input Amp 50 Ω Figure 31. Receiver of SerDes reference clocks The characteristics of the clock signals are as follows: • • The SerDes transceivers core power supply voltage requirements (VDDSDX) are as specified in Section 3.1.2, “Recommended operating conditions.” The SerDes reference clock receiver reference circuit structure is as follows: — Pins are internally AC-coupled differential inputs as shown in Figure 31. Each differential clock input has on-chip 50-Ω termination to SDn_XCOREVSS followed by on-chip AC-coupling. — The external reference clock driver must be able to drive this termination. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 73 Electrical characteristics • • — The SerDes reference clock input can be either differential or single-ended. See the differential mode and single-ended mode descriptions below for detailed requirements. The maximum average current requirement also determines the common mode voltage range. — When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA because the input is AC-coupled on-chip. — This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V ÷ 50 = 8 mA) while the minimum common mode input level is 0.1 V above SDn_XCOREVSS. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV. — If the device driving the clock inputs cannot drive 50 Ω to SDn_XCOREVSS DC or the drive strength of the clock driver chip exceeds the maximum input current limitations, it must be AC-coupled off-chip. The input amplitude requirement is described in detail in the following sections. 3.6.11.2.2 DC-level requirement for SerDes reference clocks The DC level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs, as described below: • Differential Mode — The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-to-peak (or between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing of less than 800 mV and greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection. — For an external DC-coupled connection, as described in Section 3.6.11.2.1, “SerDes reference clock receiver characteristics,” the maximum average current requirements sets the requirement for average voltage (common mode voltage) as between 100 mV and 400 mV. Figure 32 shows the SerDes reference clock input requirement for DC-coupled connection scheme. SDn_REFn_CLK 200 mV < Input amplitude or differential peak < 800 mV Vmax 100 mV < Vcm < 400 mV Vmin SDn_REFn_CLK_B < 800 mV >0V Figure 32. Differential reference clock input DC requirements (external DC-coupled) — For an external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Because the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver operate in different common mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to SDn_XCOREVSS. Each signal wire of the differential inputs is allowed to swing below and above the common mode voltage (SDn_XCOREVSS). Figure 33 shows the SerDes reference clock input requirement for AC-coupled connection scheme. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 74 Freescale Semiconductor Electrical characteristics 200 mV < Input amplitude or differential peak < 800 mV SDn_REFn_CLK Vmax < Vcm + 400 mV Vcm Vmin SDn_REFn_CLK_B > Vcm – 400 mV Figure 33. Differential reference clock input DC requirements (external AC-coupled) • Single-Ended Mode — The reference clock can also be single-ended. The DEVCLK1_P/DEVCLK2_P/SGMII_REFCLK_P input amplitude (single-ended swing) must be between 400 mV and 800 mV peak-to-peak (from VMIN to VMAX) with DEVCLK1_N/DEVCLK2_N/SGMII_REFCLK_N either left unconnected or tied to ground. — The DEVCLK1_P/DEVCLK2_P/SGMII_REFCLK_P input average voltage must be between 200 and 400 mV. Figure 34 shows the SerDes reference clock input requirement for single-ended signaling mode. — To meet the input amplitude requirement, the reference clock inputs may need to be DC- or AC-coupled externally. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused phase (DEVCLK1_N/DEVCLK2_N/SGMII_REFCLK_N) through the same source impedance as the clock input (DEVCLK1_P/DEVCLK2_P/SGMII_REFCLK_P) in use. 400 mV < SD_REF_CLKn input amplitude < 800 mV SDn_REFn_CLK 0V SDn_REFn_CLK_B Figure 34. Single-ended reference clock input DC requirements 3.6.11.2.3 AC requirements of reference clock The table below lists the AC requirements for SerDes reference clock SGMII_REFCLK_P/SGMII_REFCLK_N. Table 48. SGMII_REFCLK_P/SGMIIREFCLK_N requirement Parameter SGMII_REFCLK_P/SGMIIREFCLK_N frequency range SGMII_REFCLK_P/SGMIIREFCLK_N clock frequency tolerance SGMII_REFCLK_P/SGMIIREFCLK_N reference clock duty cycle SGMII_REFCLK_P/SGMIIREFCLK_N max deterministic peak-to-peak jitter at 10-6 BER Symbol Min Typ Max Unit Notes fSGMII — 125 — MHz 1 tCLK_TOL –100 — 100 ppm — tCLK_DUTY 40 50 60 % — tCLK_DJ — — 42 ps — AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 75 Electrical characteristics Table 48. SGMII_REFCLK_P/SGMIIREFCLK_N (continued)requirement Parameter Symbol Min Typ Max Unit Notes SGMII_REFCLK_P/SGMIIREFCLK_N total reference clock jitter at 10-6 BER (peak-to-peak jitter at refClk input) tCLK_TJ — — 86 ps — tCLKRR/tCLKFR 1 — 4 V/ns 2 Differential input high voltage VIH VCM+200 mV — — mV 3 Differential input low voltage VIL — — VCM –200 mV mV 3 Rise-Fall Matching — — 20 % 4, 5 SGMII_REFCLK_P/SGMIIREFCLK_N rising/falling edge rate Rising edge rate (SGMII_REFCLK_P) to falling edge rate (SGMII_REFCLK_N) matching Notes: 1. Caution: Only 125 have been tested. In-between values do not work correctly with the rest of the system. 2. Measured from –200 mV to +200 mV on the differential waveform (derived from SGMII_REFCLK_P minus SGMII_REFCLK_N). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 35. 3. Measurement taken from differential waveform 4. Measurement taken from single-ended waveform 5. Matching applies to rising edge for SGMII_REFCLK_P and falling edge rate for SGMII_REFCLK_N. It is measured using a 200 mV window centered on the median cross point where SGMII_REFCLK_P rising meets SGMII_REFCLK_N falling. The median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The rise edge rate of SGMII_REFCLK_P must be compared to the fall edge rate of SGMII_REFCLK_N, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 36. This table lists the AC requirements for SerDes reference clock DEVCLKn_P/DEVCLKn_N. Table 49. DEVCLKn_P/DEVCLKn_N input clock requirements Parameter Symbol Min Typ Max Unit Notes Frequency range tCLK_REF — 122.88 — MHz 1 Clock frequency tolerance tCLK_TOL –100 — 100 ppm — tCLK_DUTY 45 50 55 % — Single side band noise at 1 KHz tSSN_1K — — –85 dBC/Hz — Single side band noise at 10 KHz tSSN_10K — — –108 dBC/Hz — Single side band noise at 100 KHz tSSN_100K — — –128 dBC/Hz — Single side band noise at 1 MHz tSSN_1M — — –138 dBC/Hz — Single side band noise at 10 MHz tSSN_10M — — –138 dBC/Hz — Random jitter (1.2 MHz to 15 MHz) tJ_RANDOM — — 0.8 ps — Reference clock duty cycle (measured at 1.6 V) AFD4400 Digital Front End Processor Data Sheet, Rev. 0 76 Freescale Semiconductor Electrical characteristics Table 49. DEVCLKn_P/DEVCLKn_N input clock requirements (continued) Parameter Symbol Min Typ Max Unit Notes Total reference clock jitter at 10-12 BER (1.2 MHz to 15 MHz) tJ_TOTAL — — 11 ps — Spurious noise (1.2 MHz to 15 MHz) tJ_NOISE — — –75 dBC — — — — 500 KHz — Jitter phase noise at -56 DBc Notes: 1. Caution: Only 122.88 have been tested. In-between values do not work correctly with the rest of the system. Rise edge rate Fall edge rate VIH = +200 mV 0.0 V VIL = –200 mV SD_REF_CLK – SD_REF_CLK_B SD_REF_CLK = DEVCLKn_P, SGMII_REFCLK_P SD_REF_CLK_B = DEVCLKn_N, SGMII_REFCLK_N Figure 35. Differential measurement points for rise and fall time SDn_REFn_CLK_B SDn_REFn_CLK_B TFALL TRISE VCROSS MEDIAN + 100 mV VCROSS MEDIAN VCROSS MEDIAN VCROSS MEDIAN – 100 mV SDn_REFn_CLK SDn_REFn_CLK SD_REF_CLK = DEVCLKn_P, SGMII_REFCLK_P SD_REF_CLK_B = DEVCLKn_N, SGMII_REFCLK_N Figure 36. Single-ended measurement points for rise and fall time matching AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 77 Electrical characteristics 3.6.11.3 SerDes transmitter and receiver reference circuits This figure shows the reference circuits for SerDes data lane’s transmitter and receiver. 50 Ω SDn_RXn SDn_TXn 50 Ω Transmitter Receiver 50 Ω SDn_TXn_B SDn_RXn_B 50 Ω Figure 37. SerDes transmitter and receiver reference circuits The AC specification of SerDes data lanes are defined in each interface protocol section below based on the application usage: • • • Section 3.6.11.4, “CPRI AC timing specifications” Section 3.6.11.5, “SGMII interface” Section 3.6.11.6, “JESD204B” Note that external AC-coupling capacitor is required for the above serial transmission protocols with the capacitor value defined in the specification of each protocol section. 3.6.11.4 CPRI AC timing specifications Lynx supports following CPRI electrical variants to the limited extent described below:• • • Low Voltage (LV) variant guided by XAUI electrical interface (IEEE 802.3-2005) for data rates: 1.2288, 2.4576 and 3.072 Gb/s +/- 100ppm is supported. Low Voltage-II ( LV-II) guided by guided by OIF-CEI-02.0 for data rates: 1.2288, 2.4576, 3.072, 4.9152 and 6.144Gb/s, +/- 100ppm is supported. The LV-III variant is supported for CPRI line bit rates: 2.4576, 3.072, 4.9152, 6.144 and 9.8304Gb/s +/- 100ppm. This table below defines the AC specifications for the differential output at all transmitters (TXs). The parameters are specified at the component pins. Table 50. CPRI transmitter AC timing specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps) Characteristic Symbol Min Nom Max Unit Note Deterministic Jitter JD — — 0.17 UI p–p — Total Jitter JT — — 0.35 UI p–p — Unit Interval: 1.2288 Gbaud UI 1/1228.8 – 100ppm 1/1228.8 1/1228.8 + 100ppm μs — Unit Interval: 2.4576 Gbaud UI 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm μs — Unit Interval: 3.072 Gbaud UI 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm μs — NOTE The AC specifications do not include Refclk jitter. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 78 Freescale Semiconductor Electrical characteristics This table defines the AC specifications for the differential input at all receivers (RXs). The parameters are specified at the component pins. Table 51. CPRI receiver AC timing specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps) Characteristic Symbol Deterministic jitter tolerance JD Min Nom Max Unit Condition Notes — — 0.37 UI p–p Measured at receiver — Combined JDR deterministic and random jitter tolerance — — 0.55 UI p–p Measured at receiver — total jitter tolerance JT — — 0.65 UI p–p Measured at receiver 1,2 Unit interval: 1.2288 Gbaud UI 1/1228.8 – 100ppm 1/1228.8 — — Bit error ratio BER Unit interval: 2.4576 Gbaud UI Unit interval: 3.072 Gbaud UI 1/1228.8 + 100ppm ps 10–12 — — 1/2457.6 – 100ppm 1/2457.6 1/2457.6 + 100ppm ps — — 1/3072.0 – 100ppm 1/3072.0 1/3072.0 + 100ppm ps — — Note: 1. Total random jitter is composed of deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal jitter’s amplitude and frequency is defined in agreement with XAUI specification IEEE 802.3-2005 [1], clause 47. 2. The AC specifications do not include Refclk jitter. This table provides the CPRI-LV-II/LV_III transmitter AC specifications. Table 52. CPRI transmitter AC timing specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps, LV-III: 9.8304 Gbps) Parameter Symbols Min Nom Max Condition Unit Notes Uncorrelated high probability jitter/random jitter T_UHPJ/T_RJ — — 0.18 — UI p–p — Total jitter T_TJ — 0.30 — UI p–p — — Unit interval: 1.2288 Gbaud UI 1/1228.8-100ppm 1/1228.8 1/1228.8+100ppm — μs — Unit interval: 2.4576 Gbaud UI 1/2457.6-100ppm 1/2457.6 1/2457.6+100ppm — μs — Unit interval: 3.072 Gbaud UI 1/3072.0-100ppm 1/3072.0 1/3072.0+100ppm — μs — Unit interval: 4.9152 Gbaud UI 1/4915.2-100ppm 1/4915.2 1/4915.2+100ppm — μs — Unit interval: 6.144 Gbaud UI 1/6144.0-100ppm 1/6144.0 1/6144.0+100ppm — μs — Unit interval: 9.8304 Gbaud UI 1/9830.4-100ppm 1/9830.4 1/9830.4+100ppm — μs — AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 79 Electrical characteristics This table provide the CPRI LV-II receiver AC timing specifications. The AC specifications do not include Refclk jitter. Table 53. CPRI receiver AC timing specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps) Parameter Symbols Gaussian jitter R_GJ Min Nom Max Unit Notes — — 0.2 UI p–p — Uncorrelated bounded high probability jitter R_UBHPJ — — 0.12 UI p–p — Correlated bounded high probability jitter R_CBHPJ — — 0.63 UI p–p — Bounded high probability jitter R_BHPJ — — 0.75 UI p–p — Sinusoidal jitter, maximum R_SJ-max — — 5.000 UI p–p — Sinusoidal jitter, high frequency R_SJ-hf — — 0.050 UI p–p — Total jitter does not include sinusoidal jitter R_Tj — — 0.950 UI p–p — Unit Interval: 1.2288 Gbaud UI 1/1228.8-100ppm 1/1228.8 1/1228.8+100ppm μs — Unit interval: 2.4576 Gbaud UI 1/2457.6-100ppm 1/2457.6 1/2457.6+100ppm μs — Unit interval: 3.072 Gbaud UI 1/3072.0-100ppm 1/3072.0 1/3072.0+100ppm μs — Unit interval: 4.9152 Gbaud UI 1/4915.2-100ppm 1/4915.2 1/4915.2+100ppm μs — Unit interval: 6.144 Gbaud UI 1/6144.0-100ppm 1/6144.0 1/6144.0+100ppm μs — The intended application is as a point-to-point interface of approximately 100 cm and up to two connectors. The maximum allowed total loss (channel + interconnect + other loss) is 20.4 dB at 6.144 Gb/s. This table provides the LV-III receiver parameters guided by 10 GBase-KR electrical interface (IEEE 802.3 [22], clause 72.7.2). Table 54. CPRI receiver AC timing specifications (LV-III: 9.8304 Gbps) Parameter Symbols Min Nom Max Unit Notes Random jitter R_GJ — — 0.130 UI p–p — Sinusoidal jitter, maximum R_SJ-max — — 0.115 UI p–p — DCD R_dcd — — 0.035 UI p–p — Total jitter R_Tj — — See Note 1 UI p–p 1 Unit Interval: 9.8304 Gbaud UI 1/9830.4-100pm 1/9830.4 1/9830.4+100ppm μs — Note: 1. The R_Tj is per Interference Tolerance Test IEEE Std 802.3ap-2007 specified in Annex 69A. 2. The AC specifications do not include Refclk jitter. 3. The maximum channel insertion loss is achieved by manual tuning TX equalization. 3.6.11.5 SGMII interface This section provides AC electrical characteristics of SGMII interface. This table provides the SGMII transmitter AC specifications. The AC specifications do not include Refclk jitter. Table 55. SGMII transmitter AC specifications Parameter Symbols Min Nom Max Condition Unit Note Unit interval UI 800-100 ppm 800 800+100 ppm ±100 ppm ps — Deterministic jitter JD — — 0.17 — UI p–p — AFD4400 Digital Front End Processor Data Sheet, Rev. 0 80 Freescale Semiconductor Electrical characteristics Table 55. SGMII transmitter AC specifications (continued) Parameter Symbols Total jitter JT JT AC coupling capacitor CTX Min Nom Max Condition Unit Note — — 0.35 — UI p–p — 75 — 200 All transmitters shall be AC coupled nF — This table provide the SGMII receiver AC timing specifications. The source-synchronous clocking is not supported and the clock is recovered from the data. Table 56. SGMII receiver AC specifications Parameter Symbol Min Nom Max Condition Unit Note Unit interval UI 800 – 100 ppm 800 800 + 100 ppm ± 100 ppm ps — Deterministic jitter tolerance JD — — 0.37 Measured at receiver UI p–p — Combined deterministic and random Jitter tolerance JDR — — 0.55 Measured at receiver UI p–p — Total jitter tolerance JT — — 0.65 Measured at receiver UI p–p — Bit error ratio — — 10–12 — — — BER Note: 1. The AC specifications do not include Refclk jitter. 2. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of Figure 38 AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 81 Electrical characteristics This figure shows the single frequency sinusoidal jitter limits. p-p Sinusoidal Jitter Amplitude 8.5 UI 20dB/dec 0.10 UI p-p 20 MHz baud/1667 baud/142000 Frequency Figure 38. Single frequency sinusoidal jitter limits 3.6.11.6 JESD204B This section presents JESD204B specification at 4.9152 Gb/s, 6.144 Gb/s, and 9.8304 Gb/s data rates. The link is required to operate with a BER 10–12. This table provides the JESD204B transmitter AC specifications. Table 57. JESD204B transmitter AC specifications Symbols Parameter Min Nom Max Unit Condition Note T_UHPJ Uncorrelated high probability jitter/Random jitter — — 0.18 UI p–p — — T_TJ Total jitter JT — — 0.30 UI p–p — — AFD4400 Digital Front End Processor Data Sheet, Rev. 0 82 Freescale Semiconductor Electrical characteristics This table provides the JESD204B receiver AC timing specifications for speeds 1.288, 2.4576, 4.9152, and 6.144 Gbps. Table 58. JESD204B(1.2288/2.4576/4.9152/6.144 Gbps) receiver AC specifications Symbols Parameter Min Nom Max Unit Condition Note UI_JD1.2 Unit interval for 1.2288 GBaud 1/1228.8 - 100 ppm 1/1228.8 1/1228.8 + 100 ppm μs — — UI_JD2.4 Unit interval for 2.4576 GBaud 1/2457.6 - 100 ppm 1/2457.6 1/2457.6 + 100 ppm μs — — UI_JD3.1 Unit interval for 3.072 GBaud 1/3072.0 - 100 ppm 1/3072.0 1/3072.0 + 100 ppm μs — — UI_JD4.9 Unit interval for 4.9152 GBaud 1/4915.2 - 100 ppm 1/4915.2 1/4915.2 + 100 ppm μs — — UI_JD6.1 Unit interval for 6.144 GBaud 1/6144.0 - 100 ppm 1/6144.0 1/6144.0 + 100 ppm μs — — R_UBHPJ Uncorrelated bounded high probability jitter — — 0.15 UI p–p — — R_CBHPJ Correlated bounded high probability jitter — — 0.3 UI p–p — — R_BHPJ — — 0.45 UI p–p — — R_SJ-max Sinusoidal jitter, maximum — — 5 UI p–p — — R_SJ-hf Sinusoidal jitter, high frequency — — 0.05 UI p–p — — R_Tj Total jitter does not include sinusoidal jitter — — 0.6 UI p–p — — Bounded high probability jitter Note: 1. The AC specifications do not include Refclk jitter. 2. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency. 3. The ISI jitter (R_CBHPJ) and amplitude have to correlated for example by a PCB trace. This table provides the JESD204B receiver AC timing specifications for 9.8304 Gbps speed. Table 59. JESD204B(9.8304 Gbps) receiver AC specifications Symbols Parameter UI_JD9.8 Unit interval for 9.8304 GBaud Tj Total jitter Min Nom Max Unit Condition Note 1/9830.4 - 100 ppm 1/9830.4 1/9830.4 + 100 ppm μs — — — — 0.7 UI p–p — — Note: 1. The AC specifications do not include Refclk jitter. 2. Total jitter (Tj) includes high frequency sinusodial jitter. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 83 Electrical characteristics 3.6.12 Special timed signals 3.6.12.1 SYSREF signal This table provides the values of timing parameters. Table 60. SYSREF_IN and SYSREF_OUT timing specification Parameter Symbols Min Nom Max Unit Notes Device Clock Period tDEVCLK — 8.138 — ns 1 SYSREF_OUT(10ms pulse) Pulse high Period tSYSOUTW 2 — — tDEVCLK 2 SYSREF_OUT delay with respect to DEVCLK tKSYSD — — 3.5 ns — SYSREF_IN setup time tSYSHKH 2.5 — — ns — SYSREF_IN hold time tSYSXKH 0.5 — — ns — Note: 1. Refer to Table 20 for DEVCLK characteristics. 2. The signal is generated counting 16 TbGen ref clocks. The pulse width will change based on the ref_clk frequency. The figure below shows SYSREF_IN and SYSREF_OUT timings with respect to DEVCLK input pin. tDEVCLK tKSYSD DEVCLK tKSYSD tSYSOUTW SYSREF_OUT tSYSHKH SYSREF_IN tSYSXKH Figure 39. SYSREF timing parameters AFD4400 Digital Front End Processor Data Sheet, Rev. 0 84 Freescale Semiconductor Electrical characteristics 3.6.12.2 Timed GPIO, AGC_EN, GP_EVENTs This table provides the values of timing parameters. Table 61. Timed GPIO, AGC_EN, GP_EVENTs timing specification Parameter Delay with respect to Device clock (DEVCLK) input pin Symbols tTIMEDIOVKH Min Nom Max Unit Notes — — 9.63 ns 1 Note: 1. Refer Table 20 for DEVCLK characteristics. 2. Pulse width of these signals can be programmed in the multiple of DEVCLK through TbGen module register. tTIMEDIOVKH DEVCLK TIMED_GPIOBn TIMED_GPIOCn TBGEN_GP_EVENTn TBGEN_AGC_ENn Figure 40. Timed GPIO, AGC_EN and GP_EVENTs Timing parameters 3.6.12.3 MC_SYNC_OUT and MC_SYNC_IN timings Table 62 and Table 63 below provides the values of timing parameters. Table 62. MC_SYNC_OUT timing specification Parameter Delay with respect to DEVCLK input pin Symbols tMCOUTVKH Min Nom Max Unit Notes — — 9.63 ns 1 Note: 1. Refer Table 20 for DEVCLK characteristics. tMCOUTVKH DEVCLK MC_SYNC_OUT Figure 41. MC_SYNC_OUT Timing parameters AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 85 Electrical characteristics Table 63. MC_SYNC_IN timing specification Parameter Minimum pulse width 3.6.13 Symbols Min Nom Max Unit Notes tMCINW 2 — — DEVCLK1 period — Max Unit Trace port timing (TPIU) Table 64 and Table 65 provides the Trace port timing specifications. Table 64. Trace port timing Parameter Symbol TRACE_CLK frequency tTRK Data setup time Data hold time Min — Notes 156 MHz — tTRKHDV,tTRKLDV 1.2 — ns — tTRKHDX,tTRKLDX 0.2 — ns — Table 65. Trace_clk_in port timing Parameter TRACE_CLK_IN frequency Symbol Min Max Unit Notes tTRKIN — 200 MHz — This figure below shows trace port interface timing. tTRKHDV tTRKLDV tTRKLDX tTRKHDX TRACE_CLK TRACE_DATA TRACE_CTL DATA DATA Figure 42. Trace port timing 3.6.14 Universal asynchronous receiver/transmitter (UART) This section provides the universal asynchronous receiver/transmitter (UART) timing parameters. NOTE In the following tables, the maximum value of the ipg_perclk frequency is 78 MHz. The UART generates the baud clock based on “ipg_perclk” which comes from clock controller module (CCM). 3.6.14.1 UART serial mode timing This section provides the transmit and receive timings of the UART serial mode. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 86 Freescale Semiconductor Electrical characteristics 3.6.14.1.1 Transmitter This figure shows the transmit timing of the UART in serial mode. Note that the below figure only shows 8 data bits and 1 stop bit format. UA1 UARTn_TXD (output) Start Bit Possible Parity Bit UA1 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT Next Start Bit UA1 UA1 Figure 43. UART serial mode transmit timing diagram This table lists the UART serial mode transmit timing parameters. Table 66. UART serial mode transmit timing parameters ID UA1 Parameter Transmit bit time Symbol Min Max Notes tUATBW 1/Fbaud_rate– Tref_clk 1/Fbaud_rate + Tref_clk 1,2,3 Note: 1. UA1 applies to all bits. 2. Fbaud_rate: baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16 or 4 mbps whichever is less. 3. Tref_clk: The period of UART reference clock (ipg_perclk after RFDIV divider). 3.6.14.1.2 Receiver This figure shows the receive timing of the UART in serial mode. Note that the below figure only shows 8 data bits and 1 stop bit format. UA2 UARTn_RXD (input) Start Bit Possible Parity Bit UA2 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT UA2 Next Start Bit UA2 Figure 44. UART serial mode receive timing diagram This table lists the UART serial mode receive timing parameters. Table 67. UART serial mode receive timing parameters ID UA2 Parameter Receive bit time Symbol tUARBW Min 1/Fbaud_rate–1/(16×Fbaud_rate) Max 1/Fbaud_rate+1/(16×Fbaud_rate) Notes 1,2,3 Note: 1. UA2 applies to all bits 2. The UART receiver can tolerate 1/(16 × Fbaud_rate) tolerance in each bit, however, accumulation tolerance in one frame must not exceed 3/(16 × Fbaud_rate). 3. Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16 or 4 Mbaud whichever is less. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 87 Electrical characteristics 3.6.15 External flash interface module (EIM) This section provides the parallel Flash interface module (EIM) timing parameters. All EIM output control signals may be asserted and de-asserted by internal clock related to BCLK rising edge according to corresponding assertion/negation control fields. This table show the maximum flash clock frequency. Table 68. EIM (flash controller) timing parameters Parameter Operating frequency Symbol Max Unit Notes fFLK 104 Mhz — NOTE BCD,WSC,WBEA,WADVN,BCS,SRD,ADVA,ADVN,ADH,RADVN,OEA are register configuration bits. Refer AFD4400 Reference Manual for details. In synchronous mode, all output signal timings are relative to the falling edge of any BCLK. The external circuit must use the rising edge of the BCLKs to latch the data.All input timings are relative to the rising edge of BCLKs. This table show the bus timing parameters. Table 69. EIM timing specifications Symbol1 Min Max Unit Notes BCLK cycle time tEMK 9.6 — ns — BCLK duty cycle tEMKH/ tEMK 45 55 % — Sync mode Input setup tEMIVKH1 2.9 — ns — Sync mode Input hold tEMIXKH1 1 — ns — Sync mode Output delay tEMKLOV1 — 1.5 ns — Sync Output hold tEMKLOX1 -2 — ns 1 Async mode Input setup time tEMIVKH2 1 — tEIM_CLK 2,3 Async mode input hold time tEMIXKH2 1 — tEIM_CLK 2,3 Async mode outmode skew tEMKLOV2 -1.5 1.5 ns — Parameter Note: 1. Here, the negative sign means output transit happens earlier than the falling edge of BCLK. 2. tEIM_CLK is 104 MHz maximum.This is module internal clock and not visible outside the chip.Refer AFD4400 reference manual for details. 3. RWSC is a register configurable parameter. Refer AFD4400 Reference Manual for details.Module has different register bits for different timing parameters. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 88 Freescale Semiconductor Electrical characteristics Figures below show the AC timing diagram for input/output signals of EIM NOR interface. The timing specs have been illustrated here by taking timings among few input/output signals. The timing parameters can be configured through programmable register bits in the WEIM module. Refer AFD4400 Reference Manual for details. Figure 45. EIM synchronous mode input timing BCLK tEMIVKH1 tEMIXKH1 Input signals Figure 46. EIM synchronous mode output timing BCLK tEMKLOV1 tEMKLOX1 Output signals Figure 47. EIM Async interface timing EIM CLK RWSC ADDR RD Address OEA tEMKLOV2 OE tEMIXKH2 tEMIVKH2 DATA_IN Read Data AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 89 Hardware design considerations 4 Hardware design considerations 4.1 System clocking This section describes the PLL configuration of the chip. 4.1.1 PLL characteristics Characteristics of the chip’s PLLs include the following: • • • 4.1.2 There are a total of nine PLLs on the chip. There are three PLLs to supply operating clocks for different modules. All the three PLLs can get DEVCLK or RGMII_REFCLK as reference clock. SYSPLL output drives clock to ARM® Cortex-A9, VSP and system buses. The DDR PLL is source to DDR controller. It can also provide clock to VSP7 (dual precision). The TbGen_PLL supplies clock to RF interface modules like JESD controllers and time base generator (TbGen). Each of the three SerDes blocks has two PLLs which generate a core clock from their respective externally supplied reference clock inputs. The frequency ratio is selected using the SerDes PLL ratio configuration bits. Maximum operating frequencies This table provides the clocking specifications for the ARM® Cortex-A9 core, VSP core and memory. Table 70. Processor clocking specifications AFD4400NXN763VB AFD4400NXN752VB Characteristic Frequency (Max) ARM® Cortex-A9 Core frequency 614.4 553 MHz VSP 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 Core frequency 614.4 553 MHz VSP 7 Core frequency 307.2 276.5 MHz System bus frequency 307.2 276.5 MHz 500 500 MHz DDR interface frequency 4.2 4.2.1 Unit Frequency (Max) Power supply design Voltage ID (VID) controllable supply To guarantee performance and power specifications, a specific method of selecting the optimum voltage-level must be implemented when the chip is used. The software must read the VID efuse values stored in the eFuse and then configure the external voltage regulator based on this information. (Refer AFD4400 Reference Manual for fuse definition and mapping) This method requires a point of load voltage regulator for each chip. The default voltage regulator setting that is safe for the system to boot is the recommended operating VDD at initial start-up of 1.025V. It is highly recommended to select a regulator with a Vout range of at least 0.9 V to 1.1 V, with a resolution of 12.5 mV or better, when implementing a VID solution.If the VID for a specific part is already known at initial start up, it is acceptable to program the voltage regulator to that VID value.The device does not require an initial voltage of 1.025V at start-up. Table 71 lists the valid VID efuse values that will be programmed at the factory for this chip. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 90 Freescale Semiconductor Hardware design considerations Table 71. VID fuse settings VDD voltage (in volt) VID fuse value (in binary) 00001 0.9875 00010 0.9750 10000 1.0000 10001 1.0125 10010 1.0250 All other values Reserved Note: 1. If VID_ALT is not all zeros, the software must use VID_ALT fuses for voltage ID configuration. 4.2.2 Core supply voltage (VDD) filtering The VDD supply is normally derived from a high current capacity linear or switching power supply which can regulate its output voltage very accurately despite changes in current demand from the chip within the regulator’s relatively low bandwidth. Several bulk decoupling capacitors must be distributed around the PCB to supply transient current demand above the bandwidth of the voltage regulator. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. However, customers should work directly with their power regulator vendor for best values and types of bulk capacitors. As a guideline for customers and their power regulator vendors, Freescale recommends that these bulk capacitors be chosen to maintain the transient power surges to less than VID+50 mV (negative transient undershoot should comply with specification of VID-30mV) with a slew rate of 12 A/us. These bulk decoupling capacitors ideally supply a stable voltage for current transients into the megahertz range. Above that, see Section 4.3, “Decoupling recommendations for further decoupling recommendations. 4.2.3 PLL power supply filtering Each of the PLLs described in Section 4.1, “System clocking,” is provided with power through independent power supply pins (APVDDn,SDx_AVDD_PLLn). APVDDn voltages must be derived directly from a 1.8 V voltage source through a low frequency filter scheme. SDx_AVDD_PLLn must be derived directly from the SDx_XPADVDD voltage source through a low frequency filter scheme. The recommended solution for PLL filtering is to provide independent filter circuits per PLL power supply, as illustrated in Figure 48, one for each of the APVDD pins. By providing independent filters to each PLL, the opportunity to cause noise injection from one PLL to the other is reduced. This circuit is intended to filter noise in the PLL’s resonant frequency range from a 500 kHz to 10 MHz range. Each circuit should be placed as close as possible to the specific APVDD pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the APVDD pin, which is on the periphery of the footprint, without the inductance of vias. This figure shows the PLL power supply filter circuit. Where: R = 5 Ω ± 5% C1 = 10 μF ± 10%, 0603, X5R, with ESL ≤ 0.5 nH C2 = 1.0 μF ± 10%, 0402, X5R, with ESL ≤ 0.5 nH AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 91 Hardware design considerations NOTE A higher capacitance value for C2 may be used to improve the filter as long as the other C2 parameters do not change (0402 body, X5R, ESL ≤ 0.5 nH). Voltage for APVDD is defined at the input of the PLL supply filter and not the pin of APVDD. 1.8 V source R APVDDn C1 C2 GND Low-ESL surface-mount capacitors Figure 48. PLL power supply filter circuit The SDx_AVDD_PLLn signals provides power for the analog portions of the SerDes PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in following Figure 49. For maximum effectiveness, the filter circuit is placed as closely as possible to the SDx_AVDD_PLLn balls to ensure it filters out as much noise as possible. Prior to release of PLL reset, and start of PLL lock, the PLL supply must be at a stable and quiescent value. The ground connection should be near the SDx_AVSS_PLLn balls. The 0.003-µF capacitors closest to the balls, followed by a 4.7-µF and 47-µF capacitor, and finally the 0.33 Ω resistor to the board supply plane. The capacitors are connected from SDx_AVDD_PLLn to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces should be kept short, wide, and direct. VDDSDIO 0.33 Ω SDx_AVDD_PLLn 47 µF 4.7 µF 0.003 µF SDx_AVSS_PLLn VDDSDIO Board Gnd 0 ohm(0603 sized) default resistance with provision to be changed to inductance Figure 49. SerDes PLL power supply filter circuit Note the following: • • • • • • SDx_AVDD_PLLn should be a filtered version of VDDSDIO. Signals on the SerDes interface are fed from the VDDSDIO power plane. Voltage for SDx_AVDD_PLLn is defined at the PLL supply filter and not the pin of SDx_AVDD_PLLn. A 47-µF 0805 XR5 or XR7, 4.7-µF 0603, and 0.003-µF 0402 capacitor are recommended. The size and material type are important. A 0.33-Ω ± 1% resistor is recommended. There needs to be dedicated analog ground, SDx_AVSS_PLLn for each SDx_AVDD_PLLn pin up to the physical local of the filters themselves. The noise level on the SerDes PLL power supplies must be less than 10 mV Pk-Pk. 4.2.4 SerDes transceiver core supply filtering VDDSDX should be supplied by a dedicated linear regulator. Systems may design to allow flexibility to address system noise dependencies. NOTE For initial system bring-up, the linear regulator option is highly recommended. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 92 Freescale Semiconductor Hardware design considerations An example solution for VDDSDX filtering, where VDDSDX is sourced from linear regulator, is illustrated in Figure 50. The component values in this example filter are system dependent and are still under characterization, component values may need adjustment based on the system or environment noise. Where: • • • C1 = 0.003 μF ± 10%, X5R, with ESL ≤ 0.5 nH C2 and C3 = 2.2 μF ± 10%, X5R, with ESL ≤ 0.5 nH F1 to F4 are 0603 sized Ferrite SMD, like the Murata part BLM18PG121SH1. Its maximum DC resistance is 0.05Ω, or 0.0125Ω for the parallel resultant, and each has about a 120Ω ± 25% of AC impedance at 100 MHz, which will be quarter valued for the parallel resultant, with individual maximum DC current carrying capacity of 2Amps. Bulk and decoupling capacitors are added, as needed, per power supply design. VDDSDX Bulk and decoupling capacitors F1 C1 C2 C3 F2 Linear regulator output F3 GND F4 Figure 50. VDDSDX power supply filter circuit Note the following: • • • • 4.2.5 Refer to Section 3.2.1, “Power-on ramp rate, for maximum VDDSDX power-up ramp rate. There needs to be enough output capacitance or a soft start feature to assure ramp rate requirement is met. The ferrite beads should be placed in parallel to reduce voltage droop. Besides a linear regulator, a low noise dedicated switching regulator can also be used. 10 mVp-p, 50kHz - 500MHz is the noise goal. SerDes transceiver pad supply filtering VDDSDIO must be supplied by a linear regulator or sourced by a filtered VDDDDR. Systems may design in both options to allow flexibility to address system noise dependencies. NOTE For initial system bring-up, the linear regulator option is highly recommended. An example solution for VDDSDIO filtering, where VDDSDIO is sourced from a linear regulator, is illustrated in Figure 51. The component values in this example filter are system dependent and are still under characterization, component values may need adjustment based on the system or environment noise. Where: • • • C1 = 0.003 μF ± 10%, X5R, with ESL ≤ 0.5 nH C2 and C3 = 2.2 μF ± 10%, X5R, with ESL ≤ 0.5 nH F1 to F4 are 0603 sized Ferrite SMD, like the Murata part BLM18PG121SH1. Its maximum DC resistance is 0.05Ω, or 0.0125Ω for the parallel resultant, and each has about a 120Ω ± 25% of AC impedance at 100 MHz, which will be quarter valued for the parallel resultant, with individual maximum DC current carrying capacity of 2Amps.Bulk and decoupling capacitors are added, as needed, per power supply design. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 93 Hardware design considerations VDDSDIO F1 Bulk and decoupling capacitors C1 C2 C3 F2 Linear regulator output F3 GND F4 Figure 51. VDDSDIO power supply filter circuit Note the following: • • • • 4.2.6 Refer to Section 3.2.1, “Power-on ramp rate, for maximum VDDSDIO power-up ramp rate. There needs to be enough output capacitance or a soft-start feature to assure ramp rate requirement is met. The ferrite beads should be placed in parallel to reduce voltage droop. Besides a linear regulator, a low-noise, dedicated switching regulator can be used. 10mVp-p, 50 kHz - 500 MHz is the noise goal. Remote power-supply sense recommendations It is common practice to connect remote sense pin of on-board power supply with one of the supply pin of the connected IC. This arrangement helps to compensate for the slow components of the IR droop caused by the resistive supply current path from the power supply to the IC pins. Following AFD4400 SENSE pins can be connected to the on-board power supply remote sense pins: • • Sense Pins pair 1: SENSE_DVDD1, SENSE_DVSS1 Sense Pins pair 2: SENSE_DVDD2, SENSE_DVSS2 Either of the two pairs (with other pair unconnected) or both the pairs can be connected to power supply. It is recommended to use both the sense pairs on the board. An example circuit with both the sense pins has been illustrated in Figure 53. 2Ω SENSE_DVDD1 SENSE_DVSS1 SENSE_DVDD 3.3 nF 2Ω SENSE_DVSS 2Ω SENSE_DVDD2 2Ω SENSE_DVSS2 Figure 52. Power supply sense circuit AFD4400 Digital Front End Processor Data Sheet, Rev. 0 94 Freescale Semiconductor Hardware design considerations 4.3 Decoupling recommendations Due to large address and data buses, and high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the chip system, and the chip itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place decoupling capacitors at each VDD,VDDGPIO,VDDDDR,VDDLVDS and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part. These capacitors should have a value of 0.1 µF. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes. As presented in Section 4.2.2, “Core supply voltage (VDD) filtering,” it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the VDD and other planes, to enable quick recharging of the smaller chip capacitors. 4.4 SerDes block power supply decoupling recommendations The SerDes block requires a clean, tightly regulated source of power (VDDSDX and VDDSDIO) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below. NOTE Only SMT capacitors should be used to minimize inductance.Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance. 1. 2. 4.5 4.5.1 The board should have at least 1 x 0.1-uF SMT ceramic chip capacitor placed as close as possible to each supply ball of the device. Where the board has blind vias, these capacitors should be placed directly below the chip supply and ground connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the device as close to the supply and ground connections as possible. Between the device and any SerDes voltage regulator there should be a lower bulk capacitor (for example a 10-uF, low ESR SMT tantalum or ceramic) and a higher bulk capacitor (for example a 100uF - 300-uF low ESR SMT tantalum or ceramic capacitor). Guidelines for high-speed interface termination SerDes interface entirely unused If the high-speed SerDes interface is not used at all, the unused pin should be terminated as described in this section. Note that SDn_AVDD_PLLn, SDn_XCOREVDD,SDn_XPADVDD must remain powered. For SDn_AVDD_PLLn, it must be connected to SDn_XPADVDD through a zero ohm resistor (instead of filter circuit shown in Figure 57). The following pins must be left unconnected: • • • • • • CPRIm_TXDATn_P CPRIm_TXDATn_N TX_DATn_P TX_DATn_N SGMIIn_TXDAT_P SGMIIn_TXDAT_N AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 95 Hardware design considerations • • SDn_IC_TX SDn_IC_RX The following pins must be connected to SDn_XCOREVSS : • • SGMII_REFCLK_P SGMII_REFCLK_N It is recommended for the following pins to be connected to SDn_XCOREVSS: • • • • • • CPRIm_RXDATn_P CPRIm_RXDATn_N RX_DATn_P RX_DATn_N SGMIIn_RXDAT_P SGMIIn_RXDAT_N Refer to AFD4400 reference manual for SerDes PLL/Lane programming model. 4.5.2 SerDes interface partly unused If only part of the high speed SerDes interface pins are used, the remaining high-speed serial I/O pins should be terminated as described in this section. Note that both SDn_XCOREVDD and SDn_XPADVDD must remain powered. If any of the PLLs are unused, the corresponding SDn_AVDD_PLLn must be connected to SDn_XPADVDD through a zero ohm resistor (instead of filter circuit shown in Figure 57). The following unused pins must be left unconnected: • • • • • • CPRIm_TXDATn_P CPRIm_TXDATn_N TX_DATn_P TX_DATn_N SGMIIn_TXDAT_P SGMIIn_TXDAT_N The following pins must be connected to SDn_XCOREVSS : • • SGMII_REFCLK_P SGMII_REFCLK_N It is recommended that the following unused pins be connected to SDn_XCOREVSS: • • • • • • CPRIm_RXDATn_P CPRIm_RXDATn_N RX_DATn_P RX_DATn_N SGMIIn_RXDAT_P SGMIIn_RXDAT_N For details on the SerDes PLL/Lane programming model, refer to the AFD4400 Digital Front End Processor Reference Manual. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 96 Freescale Semiconductor Package information 4.6 Temperature diode The chip has temperature diodes that can be used to monitor its temperature using external temperature monitoring devices (such as analog devices, ADT7461A™). These on-chip temperature diodes have pins that may be connected to test points, or left as a no connect when they are not used. The following are specifications of the chip temperature diodes: • • • • 4.7 Operating range: 10-230μA The Non-ideality factor over the temperature range 85C to 105C, n = 1.006 ± 0.003 with approximate error ±1°C Temperature range 0°C to 85°C, the error in measurement is ±3°C. Temperature range -40°C to 0°C, the error in measurement is ±5°C. Thermal characteristics This table shows the thermal characteristics for the chip. Note that these numbers are based on design estimates and are preliminary. Table 72. Package thermal characteristics Rating Board Symbol Value Unit Notes Junction to Ambient, natural Convection Single layer board (1s) RθJA 15 °C/W 1,2 Junction to Ambient, natural Convection Four layer board (2s2p) RθJA 11 °C/W 1,3 Junction to Ambient (@200 ft/min) Single layer board (1s) RθJMA 10 °C/W 1,2 Junction to Ambient (@200 ft/min) Four layer board (2s2p) RθJMA 7 °C/W 1,2 Junction to Board — RθJB 2.8 °C/W 3 Junction to Case (Top) — RθJCtop 0.4 °C/W 4 Junction to Lid Top — RθJClid 0.17 °C/W 5 Note: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Per JEDEC JESD51-3 and JESD51-6 with the board (JESD51-9) horizontal. 3. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measure on the top surface of the board near the package. 4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 5. Junction-to-Lid-Top thermal resistance determined using the using MIL-STD 883 Method 1012.1. However, instead of the cold plate, the lid top temperature is used here for the reference case temperature. Reported value does not include the thermal resistance of the interface layer between the package and cold plate. 5 Package information 5.1 Package parameters for the FC-PBGA The package parameters are as provided in the following list. The package type is 35 mm × 35 mm, 1152 flip-chip, plastic-ball, grid array (FC-PBGA). The AFD4400part is designed to be RoHS and Pb-free compliant. AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 97 Package information Package outline Interconnects Ball Pitch Ball Diameter (typical) Solder Balls Module height (typical) 35 mm × 35 mm 1152 1.0 mm 0.60 mm 96.5% Sn, 3% Ag, 0.5% Cu 2.52 mm to 2.82 mm (maximum) AFD4400 Digital Front End Processor Data Sheet, Rev. 0 98 Freescale Semiconductor Package information 5.2 Mechanical dimensions of AFD4400FC-PBGA This figure shows the mechanical dimensions and bottom surface nomenclature of the chip. Figure 53. Mechanical dimensions AFD4400 Digital Front End Processor Data Sheet, Rev. 0 Freescale Semiconductor 99 Package information Note: 1. All dimensions are in millimeters. 2. Dimensions and tolerances per ASME Y14.5M-1994. 3. All dimensions are symmetric across the package center lines unless dimensioned otherwise. 4. Maximum solder ball diameter measured parallel to datum A. 5. Datum A, the seating plane, is determined by the spherical crowns of the solder balls. 6. Parallelism measurement excludes any effect of mark on top surface of package. 5.3 Revision history This table summarizes revisions to this document. Table 73. Revision History Rev. Number Date 0 10/2015 Substantive change(s) • Initial public release AFD4400 Digital Front End Processor Data Sheet, Rev. 0 100 Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products Freescale, the Freescale logo, and QorIQ are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Layerscape and QUICC Engine are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. ARM, ARM Powered, Cortex, and TrustZone are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. NEON is a trademark of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. ©2015 Freescale Semiconductor, Inc. Document Number: AFD4400 Rev. 0 10/2015
AFD4400NXN763VB 价格&库存

很抱歉,暂时无法提供与“AFD4400NXN763VB”相匹配的价格&库存,您可以联系我们找货

免费人工找货