Freescale Semiconductor
Data Sheet: Technical Data
Document Number: AFD4400
Rev. 0, 10/2015
AFD4400
AFD4400 Digital Front End
Processor Data Sheet
The following list provides an overview of the feature set:
• Flexible radio configurations
– Up to eight carriers in single or multi-mode
combinations
– LTE(FDD and TDD), WCDMA, N-CDMA, and GSM
supported
– Supported at least 80 MHz total carrier bandwidth
– Supported at least 100 MHz of instantaneous bandwidth
with non-contiguous carriers.
– Up to eight transmitters, eight receivers, and four
observability/sampling receivers
– Ability to cascade to support multi-sector or distributed
antenna systems
• Fully programmable signal processing paths
– Transmit path: eight vector signal processors
– Receive path: two vector signal processors
– Observability Path: one vector signal processor
– Processor elements sized to support common RF
subsystem processing requirements—crest factor
reduction, digital pre-distortion (DPD), channel filters,
up and down conversion, carrier combining and
separation, IQ compensation equalization, interpolation
and decimation, and beam forming
– Transmit/receive processing, busing, and memory
system sized for—closed-loop DPD operation up to
491.52 Msps, maximum transmit sample rate of 491.52
Msps, maximum receive sample rate of 245.76 Msps,
and maximum observability/sampling rate of 491.52
Msps
• Industry standard interfaces to external components
– CPRI v4.2 modem interface
– JESD204B transceiver interface
© 2015 Freescale Semiconductor, Inc. All rights reserved.
FC PBGA 1152
35 mm x 35 mm
– Ethernet OA&M interface
– AISG antenna accessory interface
• ARM® Cortex®-A9 processor
– 32 KB L1 instruction cache
– 32 KB L1 data cache
– 256 KB L2 cache
– Neon extension for SIMD and floating point instructions
• Hierarchical memory architecture
– Local memories within each vector signal processor
domain
– System level shared memory
– 32-bit DDR3 interface with 500 MHz memory bus
speed.
– External NOR and SPI flash
• Debug – Built around ARM® CoreSight™ architecture
– JTAG run control interface
– 32-bit instruction trace port
– Dedicated JESD204B interface for debug IQ streaming
• Low-power design techniques
– Clock gating and isolation of clocks
– Power gating (PG)
– Power islands
Table of Contents
1
2
3
4
Pinout list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
AFD4400 ball map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
3.1 Overall DC electrical characteristics . . . . . . . . . . . . . . .34
3.2 Power sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
3.3 RESET initialization . . . . . . . . . . . . . . . . . . . . . . . . . . .45
3.4 Power characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .46
3.5 Input clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
3.6 Module electrical characteristics . . . . . . . . . . . . . . . . . .51
Hardware design considerations . . . . . . . . . . . . . . . . . . . . . .90
4.1 System clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
4.2
4.3
4.4
Power supply design . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Decoupling recommendations . . . . . . . . . . . . . . . . . . . 95
SerDes block power supply decoupling
recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 Guidelines for high-speed interface termination . . . . . 95
4.6 Temperature diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 97
5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1 Package parameters for the FC-PBGA . . . . . . . . . . . . 97
5.2 Mechanical dimensions of AFD4400FC-PBGA . . . . . . 99
5.3 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
2
Freescale Semiconductor
This figure shows the major functional units.
AFD4400
ARM® Cortex® -A9
32-Kbyte
I-Cache
256-Kbyte L2 Cache
OA&M
To/From Modem
CPRI
CPRI
JESD204B
Flash
Controller
DDR
Controller
32-Kbyte
D-Cache
DMA
Ethernet
Interconnect Fabric
Timebase
Generator
Transmit
Processing
Sample
Processing
Receive
Processing
Peripherals
JESD204BRX
JESD204BTX
To/From Transceivers
Figure 1. Block diagram
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
3
Pinout list
1
Pinout list
This table shows the AFD4400 pin multiplexing.
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
DDR Memory interface
DDR_DQ0
DDR3 Data
AP29
I/O
MVDD
DDR_DQ1
DDR3 Data
AN29
I/O
MVDD
DDR_DQ2
DDR3 Data
AM26
I/O
MVDD
DDR_DQ3
DDR3 Data
AP30
I/O
MVDD
DDR_DQ4
DDR3 Data
AN28
I/O
MVDD
DDR_DQ5
DDR3 Data
AN26
I/O
MVDD
DDR_DQ6
DDR3 Data
AP25
I/O
MVDD
DDR_DQ7
DDR3 Data
AP26
I/O
MVDD
DDR_DQ8
DDR3 Data
AJ26
I/O
MVDD
DDR_DQ9
DDR3 Data
AG25
I/O
MVDD
DDR_DQ10
DDR3 Data
AH26
I/O
MVDD
DDR_DQ11
DDR3 Data
AG24
I/O
MVDD
DDR_DQ12
DDR3 Data
AK26
I/O
MVDD
DDR_DQ13
DDR3 Data
AF24
I/O
MVDD
DDR_DQ14
DDR3 Data
AL25
I/O
MVDD
DDR_DQ15
DDR3 Data
AH24
I/O
MVDD
DDR_DQ16
DDR3 Data
AP17
I/O
MVDD
DDR_DQ17
DDR3 Data
AP16
I/O
MVDD
DDR_DQ18
DDR3 Data
AN15
I/O
MVDD
DDR_DQ19
DDR3 Data
AM17
I/O
MVDD
DDR_DQ20
DDR3 Data
AL16
I/O
MVDD
DDR_DQ21
DDR3 Data
AM15
I/O
MVDD
DDR_DQ22
DDR3 Data
AK15
I/O
MVDD
DDR_DQ23
DDR3 Data
AL15
I/O
MVDD
DDR_DQ24
DDR3 Data
AK17
I/O
MVDD
DDR_DQ25
DDR3 Data
AH17
I/O
MVDD
DDR_DQ26
DDR3 Data
AF18
I/O
MVDD
DDR_DQ27
DDR3 Data
AJ17
I/O
MVDD
DDR_DQ28
DDR3 Data
AF17
I/O
MVDD
DDR_DQ29
DDR3 Data
AG15
I/O
MVDD
DDR_DQ30
DDR3 Data
AH15
I/O
MVDD
DDR_DQ31
DDR3 Data
AG16
I/O
MVDD
DDR_DM0
DDR3 Data Mask Strobe 0
AM27
Out
MVDD
DDR_DM1
DDR3 Data Mask Strobe 1
AH25
Out
MVDD
DDR_DM2
DDR3 Data Mask Strobe 2
AP15
Out
MVDD
DDR_DM3
DDR3 Data Mask Strobe 3
AG17
Out
MVDD
DDR_DQS0
DDR3 Data Sample Strobe 0
AP27
I/O
MVDD
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
4
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
DDR_DQS0_B
DDR3 Data Sample Strobe
Complement 0
AP28
I/O
MVDD
DDR_DQS1
DDR3 Data Sample Strobe 1
AJ25
I/O
MVDD
DDR_DQS1_B
DDR3 Data Sample Strobe
Complement 1
AK25
I/O
MVDD
DDR_DQS2
DDR3 Data Sample Strobe 2
AM16
I/O
MVDD
DDR_DQS2_B
DDR3 Data Sample Strobe
Complement 2
AN16
I/O
MVDD
DDR_DQS3
DDR3 Data Sample Strobe 3
AH16
I/O
MVDD
DDR_DQS3_B
DDR3 Data Sample Strobe
Complement 3
AJ16
I/O
MVDD
DDR_BA0
DDR3 Bank Select 0
AN18
Out
MVDD
DDR_BA1
DDR3 Bank Select 1
AM19
Out
MVDD
DDR_BA2
DDR3 Bank Select 2
AP19
Out
MVDD
DDR_A0
DDR3 Address
AJ23
Out
MVDD
DDR_A1
DDR3 Address
AN24
Out
MVDD
DDR_A2
DDR3 Address
AH22
Out
MVDD
DDR_A3
DDR3 Address
AJ22
Out
MVDD
DDR_A4
DDR3 Address
AK23
Out
MVDD
DDR_A5
DDR3 Address
AL23
Out
MVDD
DDR_A6
DDR3 Address
AM24
Out
MVDD
DDR_A7
DDR3 Address
AL22
Out
MVDD
DDR_A8
DDR3 Address
AN23
Out
MVDD
DDR_A9
DDR3 Address
AP23
Out
MVDD
DDR_A10
DDR3 Address
AM23
Out
MVDD
DDR_A11
DDR3 Address
AH21
Out
MVDD
DDR_A12
DDR3 Address
AL21
Out
MVDD
DDR_A13
DDR3 Address
AP22
Out
MVDD
DDR_A14
DDR3 Address
AK21
Out
MVDD
DDR_A15
DDR3 Address
AL20
Out
MVDD
DDR_WE_B
DDR3 Write Enable
AH20
Out
MVDD
DDR_RAS_B
DDR3 Row Address Strobe
AJ20
Out
MVDD
DDR_CAS_B
DDR3 Column Address Strobe
AJ21
Out
MVDD
DDR_CS0_B
DDR3 Chip Select 0
AM20
Out
MVDD
DDR_CS1_B
DDR3 Chip Select 1
AL19
Out
MVDD
DDR_CKE0
DDR3 Clock Enable 0
AK19
Out
MVDD
DDR_CKE1
DDR3 Clock Enable 1
AJ19
Out
MVDD
DDR_CK0
DDR3 Clock 0
AN21
Out
MVDD
DDR_CK0_B
DDR3 Clock 0 Complement
AP21
Out
MVDD
DDR_CK1
DDR3 Clock 1
AN20
Out
MVDD
DDR_CK1_B
DDR3 Clock 1 Complement
AP20
Out
MVDD
DDR_ODT0
DDR3 On Die Termination
AJ18
Out
MVDD
DDR_ODT1
DDR3 On Die Termination
AL18
Out
MVDD
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
5
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
DDR_RESET
DDR3 Reset
AH19
Out
MVDD
DDR_ZQ
DDR3 Driver Impedance
Calibration
AG19
Out
MVDD
DDR_VREF
DDR3 Reference Voltage
AD24
In
MVDD
FLASH_DAT0
GPIOE0
Flash Data
AD29
I/O
FVDD
FLASH_DAT1
GPIOE1
Flash Data
AD34
I/O
FVDD
FLASH_DAT2
GPIOE2
Flash Data
AC33
I/O
FVDD
FLASH_DAT3
GPIOE3
Flash Data
AE29
I/O
FVDD
FLASH_DAT4
GPIOE4
Flash Data
AB27
I/O
FVDD
FLASH_DAT5
GPIOE5
Flash Data
AD31
I/O
FVDD
FLASH_DAT6
GPIOE6
Flash Data
AE30
I/O
FVDD
FLASH_DAT7
GPIOE7
Flash Data
AD32
I/O
FVDD
FLASH_DAT8
GPIOE8
Flash Data
AE31
I/O
FVDD
FLASH_DAT9
GPIOE9
Flash Data
AG32
I/O
FVDD
FLASH_DAT10
GPIOE10
Flash Data
AE34
I/O
FVDD
FLASH_DAT11
GPIOE11
Flash Data
AF33
I/O
FVDD
FLASH_DAT12
GPIOE12
Flash Data
AF30
I/O
FVDD
FLASH_DAT13
GPIOE13
Flash Data
AE33
I/O
FVDD
FLASH_DAT14
GPIOE14
Flash Data
AF32
I/O
FVDD
FLASH_DAT15
GPIOE15
Flash Data
AF29
I/O
FVDD
FLASH_A0
GPIOE16
Flash Address
V32
I/O
FVDD
FLASH_A1
GPIOE17
Flash Address
V25
I/O
FVDD
FLASH_A2
GPIOE18
Flash Address
V29
I/O
FVDD
FLASH_A3
GPIOE19
Flash Address
W26
I/O
FVDD
FLASH interface
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
6
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
FLASH_A4
GPIOE20
Flash Address
V28
I/O
FVDD
FLASH_A5
GPIOE21
Flash Address
W27
I/O
FVDD
FLASH_A6
GPIOE22
Flash Address
W31
I/O
FVDD
FLASH_A7
GPIOE23
Flash Address
W32
I/O
FVDD
FLASH_A8
GPIOE24
Flash Address
W30
I/O
FVDD
FLASH_A9
GPIOE25
Flash Address
W33
I/O
FVDD
FLASH_A10
GPIOE26
Flash Address
W34
I/O
FVDD
FLASH_A11
GPIOE27
Flash Address
Y34
I/O
FVDD
FLASH_A12
GPIOE28
Flash Address
Y33
I/O
FVDD
FLASH_A13
GPIOE29
Flash Address
Y32
I/O
FVDD
FLASH_A14
GPIOE30
Flash Address
Y30
I/O
FVDD
FLASH_A15
GPIOE31
Flash Address
Y29
I/O
FVDD
FLASH_A16
GPIOD9
Flash Address
AA34
I/O
FVDD
FLASH_A17
GPIOD10
Flash Address
AA29
I/O
FVDD
FLASH_A18
GPIOD11
Flash Address
AA28
I/O
FVDD
FLASH_A19
GPIOD12
Flash Address
AA32
I/O
FVDD
FLASH_A20
GPIOD13
Flash Address
AA30
I/O
FVDD
FLASH_A21
QSPI_CK
Flash Address
AB33
I/O
FVDD
FLASH_A22
QSPI_IO0
Flash Address
AA31
I/O
FVDD
FLASH_A23
QSPI_IO1
Flash Address
AB31
I/O
FVDD
FLASH_A24
QSPI_IO2
Flash Address
AC30
I/O
FVDD
FLASH_A25
QSPI_IO3
Flash Address
AB34
I/O
FVDD
FLASH_CS0_B
GPIOD14
Flash Chip Select 0
AC28
I/O
FVDD
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
7
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
FLASH_CS1_B
GPIOD15
Flash Chip Select 1
AB26
I/O
FVDD
FLASH_CS2_B
QSPI_CS_B
Flash Chip Select 2
AB30
Out
FVDD
FLASH_BE0_B
GPIOD16
Flash Byte Enable
AA27
I/O
FVDD
FLASH_BE1_B
GPIOD17
Flash Byte Enable
AC26
I/O
FVDD
FLASH_OE_B
GPIOD18
Flash Output Enable
AC29
I/O
FVDD
FLASH_WE_B
GPIOD19
Flash Write Enable
AD28
I/O
FVDD
FLASH_WAIT_B
GPIOD20
Flash Busy/Ready/Wait
AC32
I/O
FVDD
FLASH_BCLK
GPIOD21
Flash Burst Clock
AC34
I/O
FVDD
FLASH_ADV_B
GPIOD22
Flash Address Valid
AB28
I/O
FVDD
SPI1_MOSI
GPIOE0
SPI1_MISO
SPI1 Master Out Slave In
G16
I/O
GVDD3
SPI1_MISO
GPIOE1
SPI1 Master In Slave Out
B16
I/O
GVDD3
SPI1_CLK
GPIOD22
SPI1 Serial Clock
A15
I/O
GVDD3
SPI1_SS0
GPIOD23
SPI1 Slave Select 0
E16
I/O
GVDD3
SPI1_SS1
GPIOE23
SPI1 Slave Select 1
D16
I/O
GVDD3
SPI-1 interface
SPI-2 interface
SPI2_MOSI
GPIOE2
SPI2_MISO
SPI2 Master Out Slave In Data
A16
I/O
GVDD3
SPI2_MISO
GPIOE3
SPI2 Master In Slave Out Data
D17
I/O
GVDD3
SPI2_CLK
GPIOD24
SPI2 Serial Clock
H17
I/O
GVDD3
SPI2_SS0
GPIOD25
SPI2 Slave Select 0
G17
I/O
GVDD3
SPI2_SS1
GPIOE24
SPI2 Slave Select 1
F17
I/O
GVDD3
SPI3_MOSI
GPIOE4
SPI3_MISO
SPI3 Master Out Slave In Data
C17
I/O
GVDD3
SPI-3 interface
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
8
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
SPI3_MISO
GPIOE5
SPI3 Master In Slave Out Data
A17
I/O
GVDD3
SPI3_CLK
GPIOD26
SPI3 Serial Clock
E18
I/O
GVDD3
SPI3_SS0
GPIOD27
SPI3 Slave Select 0
G18
I/O
GVDD3
SPI3_SS1
GPIOE25
SPI3 Slave Select 1
F18
I/O
GVDD3
SPI4_MOSI
GPIOE6
SPI4_MISO
SPI4 Master Out Slave In Data
C18
I/O
GVDD3
SPI4_MISO
GPIOE7
SPI4 Master In Slave Out Data
B18
I/O
GVDD3
SPI4_CLK
GPIOD28
SPI4 Serial Clock
D18
I/O
GVDD3
SPI4_SS0
GPIOD29
SPI4 Slave Select 0
A19
I/O
GVDD3
SPI4_SS1
GPIOE26
SPI4 Slave Select 1
A18
I/O
GVDD3
SPI-4 interface
SPI-5 interface
SPI5_MOSI
GPIOE8
SPI5_MISO
SPI5 Master Out Slave In Data
D20
I/O
GVDD4
SPI5_MISO
GPIOE9
SPI5 Master In Slave Out Data
F19
I/O
GVDD4
SPI5_CLK
GPIOD29
SPI5 Serial Clock
F20
I/O
GVDD4
SPI5_SS0
GPIOD30
SPI5 Slave Select 0
C21
I/O
GVDD4
SPI5_SS1
GPIOD31
SPI5 Slave Select 1
G20
I/O
GVDD4
SPI6_MOSI
GPIOE10
SPI6_MISO
TBGEN_AGC_EN0
SPI6 Master Out Slave In Data
D21
I/O
GVDD4
SPI6_MISO
GPIOE11
TBGEN_AGC_EN1
SPI6 Master In Slave Out Data
A21
I/O
GVDD4
SPI6_CLK
GPIOE12
TBGEN_AGC_EN2
SPI6 Serial Clock
B21
I/O
GVDD4
SPI6_SS0
GPIOE13
TBGEN_AGC_EN3
SPI6 Slave Select 0
G21
I/O
GVDD4
SPI-6 interface
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
9
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
SPI6_SS1
GPIOE27
SPI6 Slave Select 1
SPI7_MOSI
GPIOE14
SPI7_MISO
TBGEN_AGC_EN4
Package
Pin
Pin Type
Power Supply
E21
I/O
GVDD4
SPI7 Master Out Slave In Data
H21
I/O
GVDD4
SPI7_MISO
GPIOE15
TBGEN_AGC_EN5
SPI7 Master In Slave Out Data
A22
I/O
GVDD4
SPI7_CLK
GPIOE16
TBGEN_AGC_EN6
SPI7 Serial Clock
F21
I/O
GVDD4
SPI7_SS0
GPIOE17
TBGEN_AGC_EN7
SPI7 Slave Select 0
G22
I/O
GVDD4
SPI7_SS1
GPIOE28
SPI7 Slave Select 1
D22
I/O
GVDD4
SPI-7 interface
SPI-8 interface
SPI8_MOSI
GPIOE18
SPI8_MISO
SPI8 Master Out Slave In Data
D23
I/O
GVDD4
SPI8_MISO
GPIOE19
SPI8 Master In Slave Out Data
B22
I/O
GVDD4
SPI8_CLK
GPIOE20
SPI8 Serial Clock
E22
I/O
GVDD4
SPI8_SS0
GPIOE21
SPI8 Slave Select 0
C23
I/O
GVDD4
SPI8_SS1
GPIOE22
SPI8 Slave Select 1
A23
I/O
GVDD4
UART1_TXD
GPIOE23
UART1 Receive Data
C8
I/O
GVDD7
UART1_RXD
GPIOE24
UART1 Transmit Data
F11
I/O
GVDD7
UART2_TXD
GPIOE25
UART2 Receive Data
E10
I/O
GVDD7
UART2_RXD
GPIOE26
UART2 Transmit Data
B9
I/O
GVDD7
UART3_TXD
GPIOE27
UART3 Receive Data
A10
I/O
GVDD7
UART3_RXD
GPIOE28
UART3 Transmit Data
G12
I/O
GVDD7
UART1 interface
UART2 interface
UART3 interface
UART4 interface
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
10
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
UART4_TXD
GPIOE29
I2C4_SDA
UART4 Receive Data
C10
I/O
GVDD7
UART4_RXD
GPIOE30
I2C4_SCL
UART4 Transmit Data
D11
I/O
GVDD7
I2C1_SDA
GPIOE0
I2C1 Serial Clock
B3
I/O
GVDD7
I2C1_SCL
GPIOE1
I2C1 Serial Data
A6
I/O
GVDD7
I2C2_SDA
GPIOE2
I2C2 Serial Clock
C4
I/O
GVDD7
I2C2_SCL
GPIOE3
I2C2 Serial Data
H11
I/O
GVDD7
I2C3_SDA
GPIOE4
I2C3 Serial Clock
G10
I/O
GVDD7
I2C3_SCL
GPIOE5
I2C3 Serial Data
D6
I/O
GVDD7
I2C5_SDA
GPIOE31
I2C5 Serial Clock
A7
I/O
GVDD7
I2C5_SCL
GPIOD9
I2C5 Serial Data
F9
I/O
GVDD7
I2C6_SDA
GPIOD10
I2C6 Serial Clock
G11
I/O
GVDD7
I2C6_SCL
GPIOD11
I2C6 Serial Data
C5
I/O
GVDD7
I2C7_SDA
GPIOD12
I2C7 Serial Clock
B4
I/O
GVDD7
I2C7_SCL
GPIOD13
I2C7 Serial Data
A8
I/O
GVDD7
I2C8_SDA
GPIOD14
TBGEN_GP_EVENT0
UART1_RTS_B
SPI1_SS3
I2C8 Serial Clock
E8
I/O
GVDD7
I2C8_SCL
GPIOD15
TBGEN_GP_EVENT1
UART1_CTS_B
SPI2_SS3
I2C8 Serial Data
A3
I/O
GVDD7
I2C1 interface
I2C2 interface
I2C3 interface
I2C5 interface
I2C6 interface
I2C7 interface
I2C8 interface
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
11
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
I2C9 interface
I2C9_SDA
GPIOD16
TBGEN_GP_EVENT2
UART2_RTS_B
SPI3_SS3
I2C9 Serial Clock
A4
I/O
GVDD7
I2C9_SCL
GPIOD17
TBGEN_GP_EVENT3
UART2_CTS_B
SPI4_SS3
I2C9 Serial Data
E9
I/O
GVDD7
I2C10 interface
I2C10_SDA
GPIOD18
TBGEN_GP_EVENT4
UART3_RTS_B
SPI5_SS3
I2C10 Serial Clock
C9
I/O
GVDD7
I2C10_SCL
GPIOD19
TBGEN_GP_EVENT5
UART3_CTS_B
SPI6_SS3
I2C10 Serial Data
F10
I/O
GVDD7
I2C11_SDA
GPIOD20
TBGEN_GP_EVENT6
UART4_RTS_B
SPI7_SS3
I2C11 Serial Clock
D8
I/O
GVDD7
I2C11_SCL
GPIOD21
TBGEN_GP_EVENT7
UART4_CTS_B
SPI8_SS3
I2C11 Serial Data
C7
I/O
GVDD7
I2C11 interface
General purpose IO module A (GPIOA) interface
GPIOA0
UART4_RTS_B
SOC_OBS0
General Purpose IO GPIOA pin 0
H13
I/O
GVDD7
GPIOA1
UART4_CTS_B
SOC_OBS1
General Purpose IO GPIOA pin 1
D10
I/O
GVDD7
GPIOA2
SPI8_SS2
EIM_CS4_B
SOC_OBS2
General Purpose IO GPIOA pin 2
A20
I/O
GVDD4
GPIOA3
SPI7_SS2
SOC_OBS3
General Purpose IO GPIOA pin 3
B19
I/O
GVDD4
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
12
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
GPIOA4
SPI6_RDY
TBGEN_GP_TIMESTAMP0
SOC_OBS4
General Purpose IO GPIOA pin 4
C19
I/O
GVDD4
GPIOA5
SPI7_RDY
TBGEN_GP_TIMESTAMP1
SOC_OBS5
General Purpose IO GPIOA pin 5
C20
I/O
GVDD4
GPIOA6
SPI8_RDY
TBGEN_GP_TIMESTAMP2
SOC_OBS6
General Purpose IO GPIOA pin 6
J9
I/O
GVDD2
GPIOA7
TBGEN_GP_TIMESTAMP3
SOC_OBS7
General Purpose IO GPIOA pin 7
A2
I/O
GVDD2
GPIOA8
SOC_OBS8
General Purpose IO GPIOA pin 8
J10
I/O
GVDD2
GPIOA9
SOC_OBS9
General Purpose IO GPIOA pin 9
J11
I/O
GVDD2
GPIOA10
General Purpose IO GPIOA pin 10 H8
I/O
GVDD2
GPIOA11
General Purpose IO GPIOA pin 11 F4
I/O
GVDD2
GPIOA12
TBGEN_GP_TIMESTAMP0
General Purpose IO GPIOA pin 12 H10
I/O
GVDD2
GPIOA13
TBGEN_GP_TIMESTAMP1
General Purpose IO GPIOA pin 13 E4
I/O
GVDD2
GPIOA14
TBGEN_GP_TIMESTAMP2
General Purpose IO GPIOA pin 14 A5
I/O
GVDD2
GPIOA15
TBGEN_GP_TIMESTAMP3
General Purpose IO GPIOA pin 15 E13
I/O
GVDD3
GPIOA16
TBGEN_GP_TIMESTAMP0
VSP7_GPO0_4
General Purpose IO GPIOA pin 16 A13
I/O
GVDD3
GPIOA17
TBGEN_GP_TIMESTAMP1
VSP7_GPO0_5
General Purpose IO GPIOA pin 17 G14
I/O
GVDD3
GPIOA18
TBGEN_GP_TIMESTAMP2
VSP7_GPO0_6
General Purpose IO GPIOA pin 18 F14
I/O
GVDD3
GPIOA19
SPI5_RDY
TBGEN_GP_TIMESTAMP3
VSP7_GPO0_7
General Purpose IO GPIOA pin 19 C13
I/O
GVDD3
GPIOA20
SPI1_RDY
TBGEN_GP_EVENT0
VSP7_GPO0_0
General Purpose IO GPIOA pin 20 G15
I/O
GVDD3
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
13
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
GPIOA21
SPI2_RDY
TBGEN_GP_EVENT1
VSP7_GPO0_1
General Purpose IO GPIOA pin 21 A14
I/O
GVDD3
GPIOA22
SPI3_RDY
TBGEN_GP_EVENT2
MC_SYNC_OUT
VSP7_GPO0_2
General Purpose IO GPIOA pin 22 B13
I/O
GVDD3
GPIOA23
SPI4_RDY
TBGEN_GP_EVENT3
VSP7_GPO0_3
General Purpose IO GPIOA pin 23 F15
I/O
GVDD3
GPIOA24
SPI8_SS3
MC_SYNC_OUT
VSP5_GPO0_0
General Purpose IO GPIOA pin 24 F5
I/O
GVDD2
GPIOA25
SPI7_SS3
VSP5_GPO0_1
General Purpose IO GPIOA pin 25 G9
I/O
GVDD2
GPIOA26
SPI6_SS2
VSP5_GPO0_2
General Purpose IO GPIOA pin 26 D3
I/O
GVDD2
GPIOA27
SPI6_SS3
VSP_EXT_GO16
VSP5_GPO0_3
General Purpose IO GPIOA pin 27 F8
I/O
GVDD2
GPIOA28
SPI5_SS2
TBGEN_GP_EVENT4
VSP_EXT_GO17
VSP6_GPO0_0
General Purpose IO GPIOA pin 28 H15
I/O
GVDD2
GPIOA29
SPI5_SS3
TBGEN_GP_EVENT5
VSP_EXT_GO18
VSP6_GPO0_1
General Purpose IO GPIOA pin 29 E6
I/O
GVDD2
GPIOA30
TBGEN_GP_EVENT6
VSP_EXT_GO19
VSP6_GPO0_2
General Purpose IO GPIOA pin 30 D5
I/O
GVDD2
GPIOA31
TBGEN_GP_EVENT7
VSP_EXT_GO20
VSP6_GPO0_3
General Purpose IO GPIOA pin 31 E7
I/O
GVDD2
General purpose IO module B (GPIOB) interface
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
14
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
GPIOB0
TIMED_GPIOB0
VSP_EXT_GO21
VSP1_GPO0_0
VSP2_GPO0_0
General Purpose IO GPIOB pin 0
AP13
I/O
GVDD8
GPIOB1
TIMED_GPIOB1
ARM_EVENTI
VSP_EXT_GO22
VSP1_GPO0_1
VSP2_GPO0_1
General Purpose IO GPIOB pin 1
AL13
I/O
GVDD8
GPIOB2
TIMED_GPIOB2
VSP_EXT_GO23
VSP1_GPO0_2
VSP2_GPO0_2
General Purpose IO GPIOB pin 2
AK13
I/O
GVDD8
GPIOB3
TIMED_GPIOB3
VSP1_GPO0_3
VSP2_GPO0_3
General Purpose IO GPIOB pin 3
AJ14
I/O
GVDD8
GPIOB4
TIMED_GPIOB4
VSP3_GPO0_0
VSP4_GPO0_0
General Purpose IO GPIOB pin 4
AP11
I/O
GVDD8
GPIOB5
TIMED_GPIOB5
VSP3_GPO0_1
VSP4_GPO0_1
General Purpose IO GPIOB pin 5
AN10
I/O
GVDD8
GPIOB6
TIMED_GPIOB6
VSP3_GPO0_2
VSP4_GPO0_2
General Purpose IO GPIOB pin 6
AM13
I/O
GVDD8
GPIOB7
TIMED_GPIOB7
VSP3_GPO0_3
VSP4_GPO0_3
General Purpose IO GPIOB pin 7
AM12
I/O
GVDD8
GPIOB8
TIMED_GPIOB8
VSP8_GPO0_0
VSP9_GPO0_0
General Purpose IO GPIOB pin 8
AN11
I/O
GVDD1
GPIOB9
TIMED_GPIOB9
VSP8_GPO0_1
VSP9_GPO0_1
General Purpose IO GPIOB pin 9
AN13
I/O
GVDD1
GPIOB10
TIMED_GPIOB10
VSP8_GPO0_2
VSP9_GPO0_2
General Purpose IO GPIOB pin 10 AL12
I/O
GVDD1
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
15
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
GPIOB11
TIMED_GPIOB11
VSP8_GPO0_3
VSP9_GPO0_3
General Purpose IO GPIOB pin 11 AM10
I/O
GVDD1
GPIOB12
TIMED_GPIOB12
VSP10_GPO0_0
VSP11_GPO0_0
General Purpose IO GPIOB pin 12 AM11
I/O
GVDD1
GPIOB13
TIMED_GPIOB13
VSP10_GPO0_1
VSP11_GPO0_1
General Purpose IO GPIOB pin 13 AH13
I/O
GVDD1
GPIOB14
TIMED_GPIOB14
VSP10_GPO0_2
VSP11_GPO0_2
General Purpose IO GPIOB pin 14 AP12
I/O
GVDD1
GPIOB15
TIMED_GPIOB15
VSP10_GPO0_3
VSP11_GPO0_3
General Purpose IO GPIOB pin 15 AL11
I/O
GVDD1
GPIOB16
TIMED_GPIOB16
VSP1_GPO0_4
VSP2_GPO0_4
General Purpose IO GPIOB pin 16 AN9
I/O
GVDD1
GPIOB17
TIMED_GPIOB17
VSP1_GPO0_5
VSP2_GPO0_5
General Purpose IO GPIOB pin 17 AJ12
I/O
GVDD1
GPIOB18
TIMED_GPIOB18
VSP1_GPO0_6
VSP2_GPO0_6
General Purpose IO GPIOB pin 18 AK11
I/O
GVDD1
GPIOB19
TIMED_GPIOB19
VSP1_GPO0_7
VSP2_GPO0_7
General Purpose IO GPIOB pin 19 AN8
I/O
GVDD1
GPIOB20
TIMED_GPIOB20
VSP3_GPO0_4
VSP4_GPO0_4
General Purpose IO GPIOB pin 20 AP10
I/O
GVDD1
GPIOB21
TIMED_GPIOB21
VSP3_GPO0_5
VSP4_GPO0_5
General Purpose IO GPIOB pin 21 AP8
I/O
GVDD1
GPIOB22
TIMED_GPIOB22
VSP_GPI3_15
VSP3_GPO0_6
VSP4_GPO0_6
General Purpose IO GPIOB pin 22 AP7
I/O
GVDD1
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
16
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
GPIOB23
TIMED_GPIOB23
VSP_GPI3_16
VSP3_GPO0_7
VSP4_GPO0_7
General Purpose IO GPIOB pin 23 AN7
I/O
GVDD1
GPIOB24
TIMED_GPIOB24
VSP_GPI3_17
VSP8_GPO0_4
VSP9_GPO0_4
General Purpose IO GPIOB pin 24 AM7
I/O
GVDD9
GPIOB25
TIMED_GPIOB25
VSP_GPI3_18
VSP8_GPO0_5
VSP9_GPO0_5
General Purpose IO GPIOB pin 25 AJ11
I/O
GVDD9
GPIOB26
TIMED_GPIOB26
VSP_GPI3_19
VSP8_GPO0_6
VSP9_GPO0_6
General Purpose IO GPIOB pin 26 AH12
I/O
GVDD9
GPIOB27
TIMED_GPIOB27
VSP_GPI3_20
VSP8_GPO0_7
VSP9_GPO0_7
General Purpose IO GPIOB pin 27 AG12
I/O
GVDD9
GPIOB28
TIMED_GPIOB28
VSP_GPI3_21
VSP10_GPO0_4
VSP11_GPO0_4
General Purpose IO GPIOB pin 28 AP9
I/O
GVDD9
GPIOB29
TIMED_GPIOB29
VSP_GPI3_22
VSP10_GPO0_5
VSP11_GPO0_5
General Purpose IO GPIOB pin 29 AG13
I/O
GVDD9
GPIOB30
TIMED_GPIOB30
VSP_GPI3_23
VSP10_GPO0_6
VSP11_GPO0_6
General Purpose IO GPIOB pin 30 AF12
I/O
GVDD9
GPIOB31
TIMED_GPIOB31
VSP_GPI3_24
VSP10_GPO0_7
VSP11_GPO0_7
General Purpose IO GPIOB pin 31 AF13
I/O
GVDD9
General purpose IO module C (GPIOC) interface
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
17
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
GPIOC0
SPI8_SS2
SPI1_SS2
VSP_GPI3_25
TIMED_GPIOC0
TBGEN_T0_CTRL1
VSP2_GPO0_8
General Purpose IO GPIOC pin 0
D26
I/O
GVDD6
GPIOC1
TSEC_1588_CLKIN
SPI1_SS3
VSP_GPI3_26
TIMED_GPIOC1
TBGEN_T1_CTRL1
VSP2_GPO0_9
General Purpose IO GPIOC pin 1
A29
I/O
GVDD6
GPIOC2
TSEC_1588_TRIG1
SPI2_SS2
VSP_GPI3_27
TIMED_GPIOC2
TBGEN_T2_CTRL1
VSP4_GPO0_8
General Purpose IO GPIOC pin 2
G25
I/O
GVDD6
GPIOC3
TSEC_1588_TRIG2
SPI2_SS3
TBGEN_GP_TIMESTAMP0
TIMED_GPIOC3
TBGEN_T3_CTRL1
VSP4_GPO0_9
General Purpose IO GPIOC pin 3
A28
I/O
GVDD6
GPIOC4
TSEC_1588_ALARM1
SPI3_SS2
TIMED_GPIOC4
TBGEN_T4_CTRL1
VSP9_GPO0_8
General Purpose IO GPIOC pin 4
E26
I/O
GVDD6
GPIOC5
TSEC_1588_ALARM2
SPI3_SS3
TBGEN_GP_TIMESTAMP1
TIMED_GPIOC5
TBGEN_T5_CTRL1
VSP9_GPO0_9
General Purpose IO GPIOC pin 5
B28
I/O
GVDD6
GPIOC6
TSEC_1588_FIPER1
SPI4_SS2
TBGEN_GP_TIMESTAMP2
TIMED_GPIOC6
TBGEN_T6_CTRL1
VSP11_GPO0_8
General Purpose IO GPIOC pin 6
C29
I/O
GVDD6
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
18
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
GPIOC7
TSEC_1588_FIPER2
SPI4_SS3
TBGEN_GP_TIMESTAMP3
TIMED_GPIOC7
TBGEN_T7_CTRL1
VSP11_GPO0_9
General Purpose IO GPIOC pin 7
C28
I/O
GVDD6
GPIOC8
TSEC_1588_FIPER3
SPI5_SS2
TBGEN_AGC_EN0
TIMED_GPIOC8
TBGEN_T0_CTRL2
VSP5_GPO0_8
General Purpose IO GPIOC pin 8
A30
I/O
GVDD6
GPIOC9
TSEC_1588_CLKOUT
SPI5_SS3
TBGEN_AGC_EN1
TIMED_GPIOC9
TBGEN_T1_CTRL2
VSP5_GPO0_9
General Purpose IO GPIOC pin 9
B29
I/O
GVDD6
GPIOC10
UART1_RTS_B
SPI6_SS2
TBGEN_AGC_EN2
TIMED_GPIOC10
TBGEN_T2_CTRL2
VSP5_GPO0_10
General Purpose IO GPIOC pin 10 D28
I/O
GVDD6
GPIOC11
UART1_CTS_B
SPI6_SS3
TBGEN_AGC_EN3
TIMED_GPIOC11
TBGEN_T3_CTRL2
VSP5_GPO0_11
General Purpose IO GPIOC pin 11 A31
I/O
GVDD6
GPIOC12
UART2_RTS_B
SPI7_SS3
TBGEN_AGC_EN4
TIMED_GPIOC12
TBGEN_T4_CTRL2
VSP6_GPO0_8
General Purpose IO GPIOC pin 12 A33
I/O
GVDD6
GPIOC13
UART2_CTS_B
SPI8_SS3
TBGEN_AGC_EN5
TIMED_GPIOC13
TBGEN_T5_CTRL2
VSP6_GPO0_9
General Purpose IO GPIOC pin 13 C30
I/O
GVDD6
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
19
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
GPIOC14
UART3_RTS_B
EXT_DMA_REQ1
TBGEN_AGC_EN6
TIMED_GPIOC14
TBGEN_T6_CTRL2
VSP6_GPO0_10
General Purpose IO GPIOC pin 14 D29
I/O
GVDD6
GPIOC15
UART3_CTS_B
VSP_GPI3_0
TBGEN_AGC_EN7
TIMED_GPIOC15
TBGEN_T7_CTRL2
VSP6_GPO0_11
General Purpose IO GPIOC pin 15 B32
I/O
GVDD6
GPIOC16
UART4_RTS_B
VSP_GPI3_1
TBGEN_T0_CTRL2_B
TIMED_GPIOC16
VSP5_GPO0_4
VSP7_GPO0_8
General Purpose IO GPIOC pin 16 B31
I/O
GVDD6
GPIOC17
UART4_CTS_B
VSP_GPI3_2
TBGEN_T1_CTRL2_B
TIMED_GPIOC17
VSP5_GPO0_5
VSP7_GPO0_9
General Purpose IO GPIOC pin 17 C31
I/O
GVDD6
GPIOC18
VSP_GPI3_3
TBGEN_T2_CTRL2_B
TIMED_GPIOC18
VSP6_GPO0_4
VSP7_GPO0_10
General Purpose IO GPIOC pin 18 C32
I/O
GVDD6
GPIOC19
SPI1_RDY
VSP_GPI3_4
TBGEN_T3_CTRL2_B
TIMED_GPIOC19
VSP6_GPO0_5
VSP7_GPO0_11
General Purpose IO GPIOC pin 19 C33
I/O
GVDD6
GPIOC20
SPI2_RDY
VSP_GPI3_5
TBGEN_T4_CTRL2_B
TIMED_GPIOC20
VSP5_GPO0_6
VSP7_GPO0_12
General Purpose IO GPIOC pin 20 C34
I/O
GVDD6
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
20
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
GPIOC21
SPI3_RDY
VSP_GPI3_6
TBGEN_T5_CTRL2_B
TIMED_GPIOC21
VSP5_GPO0_7
VSP7_GPO0_13
General Purpose IO GPIOC pin 21 F26
I/O
GVDD6
GPIOC22
SPI4_RDY
VSP_GPI3_7
TBGEN_T6_CTRL2_B
TIMED_GPIOC22
VSP6_GPO0_6
VSP7_GPO0_14
General Purpose IO GPIOC pin 22 D30
I/O
GVDD6
GPIOC23
SPI5_RDY
VSP_GPI3_8
TBGEN_T7_CTRL2_B
TIMED_GPIOC23
VSP6_GPO0_7
VSP7_GPO0_15
General Purpose IO GPIOC pin 23 E31
I/O
GVDD6
GPIOC24
TSEC1_RXD1
VSP_GPI3_9
TIMED_GPIOC24
TBGEN_T0_CTRL2_B
VSP2_GPO0_10
TBGEN_T0_CTRL1
General Purpose IO GPIOC pin 24 C24
I/O
GVDD5
GPIOC25
TSEC1_RXD2
VSP_GPI3_10
SPI6_RDY
TIMED_GPIOC25
TBGEN_T1_CTRL2_B
VSP2_GPO0_11
TBGEN_T1_CTRL1
General Purpose IO GPIOC pin 25 H22
I/O
GVDD5
GPIOC26
TSEC1_RXD3
VSP_GPI3_11
SPI7_RDY
TIMED_GPIOC26
TBGEN_T2_CTRL2_B
VSP4_GPO0_10
TBGEN_T2_CTRL1
General Purpose IO GPIOC pin 26 G23
I/O
GVDD5
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
21
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
GPIOC27
TSEC1_RX_ER
VSP_GPI3_12
SPI8_RDY
TIMED_GPIOC27
TBGEN_T3_CTRL2_B
VSP4_GPO0_11
TBGEN_T3_CTRL1
General Purpose IO GPIOC pin 27 D24
I/O
GVDD5
GPIOC28
TSEC1_GTX_CLK
VSP_GPI3_13
EIM_CS5_B
TIMED_GPIOC28
TBGEN_T4_CTRL2_B
VSP9_GPO0_10
TBGEN_T4_CTRL1
General Purpose IO GPIOC pin 28 A25
I/O
GVDD5
GPIOC29
TSEC1_TX_CLK
VSP_GPI3_14
EIM_CS3_B
TIMED_GPIOC29
TBGEN_T5_CTRL2_B
VSP9_GPO0_11
TBGEN_T5_CTRL1
General Purpose IO GPIOC pin 29 E23
I/O
GVDD5
GPIOC30
TSEC1_TXD0
VSP_GPI3_28
EXT_DMA_REQ1
TIMED_GPIOC30
TBGEN_T6_CTRL2_B
VSP11_GPO0_10
TBGEN_T6_CTRL1
General Purpose IO GPIOC pin 30 F23
I/O
GVDD5
GPIOC31
TSEC1_TXD1
VSP_GPI3_29
EXT_DMA_REQ2
TIMED_GPIOC31
TBGEN_T7_CTRL2_B
VSP11_GPO0_11
TBGEN_T7_CTRL1
General Purpose IO GPIOC pin 31 C25
I/O
GVDD5
General purpose IO module D (GPIOD) interface
GPIOD0
TSEC1_TXD2
VSP_GPI3_30
SOC_OBS0
General Purpose IO GPIOD pin 0
B25
I/O
GVDD5
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
22
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
GPIOD1
TSEC1_TXD3
EXT_DMA_REQ2
VSP_EXT_GO16
SOC_OBS1
TBGEN_T0_CTRL2
TBGEN_GP_EVENT0
Package
Pin
Pin Type
Power Supply
General Purpose IO GPIOD pin 1
A26
I/O
GVDD5
GPIOD2
General Purpose IO GPIOD pin 2
TSEC1_TX_ERVSP_EXT_G
O17
SOC_OBS2
TBGEN_T1_CTRL2
TBGEN_GP_EVENT1
D25
I/O
GVDD5
GPIOD3
General Purpose IO GPIOD pin 3
TSEC1_TX_ENVSP_EXT_G
O18
SOC_OBS3
TBGEN_T2_CTRL2
TBGEN_GP_EVENT2
F24
I/O
GVDD5
GPIOD4
TSEC1_COLVSP_EXT_GO
19
SOC_OBS4
TBGEN_T3_CTRL2
TBGEN_GP_EVENT3
General Purpose IO GPIOD pin 4
G24
I/O
GVDD5
GPIOD5
TSEC1_CRS
VSP_GPI3_31
VSP_EXT_GO20
SOC_OBS5
TBGEN_T4_CTRL2
TBGEN_GP_EVENT4
General Purpose IO GPIOD pin 5
B26
I/O
GVDD5
GPIOD6
TSEC1_RX_CLK
SPI7_SS2
VSP_EXT_GO21
SOC_OBS6
TBGEN_T5_CTRL2
TBGEN_GP_EVENT5
General Purpose IO GPIOD pin 6
C26
I/O
GVDD5
GPIOD7
TSEC1_RX_DV
SPI8_SS2
VSP_EXT_GO22
SOC_OBS7
TBGEN_T6_CTRL2
TBGEN_GP_EVENT6
General Purpose IO GPIOD pin 7
F25
I/O
GVDD5
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
23
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
GPIOD8
TSEC1_RXD0
MC_SYNC_OUT
VSP_EXT_GO23
SOC_OBS8
TBGEN_T7_CTRL2
TBGEN_GP_EVENT7
General Purpose IO GPIOD pin 8
TSEC_MDC
GPIOD9
SOC_OBS9
Ethernet MDC
TSEC_MDIO
GPIOD10
Ethernet MDIO
Package
Pin
E25
Pin Type
Power Supply
I/O
GVDD5
C27
Out
GVDD5
A27
I/O
GVDD5
Ethernet management channel interface
Reset, Clocks and misc. signals
RSTIN_B
Hard Reset In
E12
In
JVDD
URST_B
User Reset In (Warm Reset)
D12
In
JVDD
RSTOUT_B
Hard Reset Out
B6
Out
GVDD7
RSTOUT1_B
GPIOD22
Hard & Soft Reset Out 1
H19
Out
GVDD4
RSTOUT2_B
GPIOD23
Hard & Soft Reset Out 2
G19
Out
GVDD4
RSTOUT3_B
GPIOD24
Hard & Soft Reset Out 3
D14
Out
GVDD3
RSTOUT4_B
GPIOD25
Hard & Soft Reset Out 4
E15
Out
GVDD3
RSTOUT5_B
GPIOD26
Hard & Soft Reset Out 5
B15
Out
GVDD3
RSTOUT6_B
GPIOD27
Hard & Soft Reset Out 6
C14
Out
GVDD3
RSTOUT7_B
GPIOD28
Hard & Soft Reset Out 7
D15
Out
GVDD3
WDOG_B
WDOG out
B7
Out
GVDD7
DEVCLK1_P
Device Clock used as the main
reference to the IC
R25
In
SD3_XCOREVDD
DEVCLK1_N
Device Clock used as the main
reference to the IC
R24
In
SD3_XCOREVDD
DEVCLK2_P
Device Clock used as the
reference to JESDTX1-8 and
JESDRX1-12 SerDes
Y11
In
SD1_XCOREVDD
DEVCLK2_N
Device Clock used as the
reference to JESDTX1-8 and
JESDRX1-12 SerDes
Y12
In
SD1_XCOREVDD
SYSREF_OUT_N
Sys reference out
N34
Out
LVDD3
SYSREF_OUT_P
Sys reference out
N33
Out
LVDD3
SYSREF_IN_N
Sys reference in
T28
In
LVDD3
SYSREF_IN_P
Sys reference in
T29
In
LVDD3
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
24
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
FRMCLK_N
Frame Clock (JESD204A only)
R31
Out
LVDD3
FRMCLK_P
Frame Clock (JESD204A only)
R30
Out
LVDD3
CPRI_REVCLK_P
Differential CPRI Recovered Clock P33
Out
LVDD3
CPRI_REVCLK_N
Differential CPRI Recovered
Clock, LVDS signaling
P34
Out
LVDD3
CPRI_REVCLK
Single ended CPRI Recovered
Clock
A32
Out
GVDD6
RGMII_REFCLK_P
Ethernet Reference Clock
U27
In
LVDD3
RGMII_REFCLK_N
Ethernet Reference Clock
U26
In
LVDD3
SGMII_PHY_REFCLK
25 MHz Reference Clock to
Ethernet PHYs
A24
Out
GVDD5
MC_SYNC_IN
System Synchronization
C15
In
GVDD3
TG_RF_SYNC_P
10ms Tone Generator
Synchronization
T33
Out
LVDD3
TG_RF_SYNC_N
10ms Tone Generator
Synchronization
T34
Out
LVDD3
TG_RF_SYNC
10ms Tone Generator
Synchronization
B34
Out
GVDD6
BMOD0
Boot Mode 0
F13
In
JVDD
BMOD1
Boot Mode 1
A12
In
JVDD
CKO
Clock Out
E19
Out
GVDD4
TEST
Factory test mode enable
C12
In
JVDD
ANL_TEST
Analog Test
Y27
Out
FVDD
ANL_REFCLK_P_TEST
Analog Test for DEVCLK1 pads
W29
Out
FVDD
ANL_REFCLK_N_TEST
Analog Test for DEVCLK1 pads
W28
Out
FVDD
JTAG_TRST_B
JTAG Test Reset
A9
In
JVDD
JTAG_TDO
JTAG Test Data Out
C11
Out
JVDD
JTAG_TDI
JTAG Test Data In
B10
In
JVDD
JTAG_TCK
JTAG Test Clock
B12
In
JVDD
JTAG_TMS
JTAG Test Mode Select
A11
I/O
JVDD
JTAG_VSP_SEL
Select the secondary JTAG
multiplexed on HW MUX1 of
GPIOD4-8
G13
In
JVDD
SJC_MOD_B
JTAG controller mode
AG30
In
FVDD
JTAG interface
TRACE interface
TRACE_CLK
Trace Clock
AK32
Out
TVDD
TRACE_IN_CLK
Trace Input Clock
AF34
In
FVDD
TRACE_CTL
Trace Control
AL32
Out
TVDD
TRACE_DATA0
Trace Data
AH34
Out
TVDD
TRACE_DATA1
Trace Data
AG34
Out
TVDD
TRACE_DATA2
Trace Data
AH33
Out
TVDD
TRACE_DATA3
Trace Data
AJ34
Out
TVDD
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
25
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
TRACE_DATA4
Trace Data
AJ33
Out
TVDD
TRACE_DATA5
Trace Data
AH30
Out
TVDD
TRACE_DATA6
Trace Data
AK34
Out
TVDD
TRACE_DATA7
Trace Data
AJ32
Out
TVDD
TRACE_DATA8
Trace Data
AH29
Out
TVDD
TRACE_DATA9
Trace Data
AL34
Out
TVDD
TRACE_DATA10
Trace Data
AM34
Out
TVDD
TRACE_DATA11
Trace Data
AH31
Out
TVDD
TRACE_DATA12
Trace Data
AG28
Out
TVDD
TRACE_DATA13
Trace Data
AJ30
Out
TVDD
TRACE_DATA14
Trace Data
AL33
Out
TVDD
TRACE_DATA15
Trace Data
AK30
Out
TVDD
TRACE_DATA16
Trace Data
AM30
Out
TVDD
TRACE_DATA17
Trace Data
AN34
Out
TVDD
TRACE_DATA18
Trace Data
AN32
Out
TVDD
TRACE_DATA19
Trace Data
AK31
Out
TVDD
TRACE_DATA20
Trace Data
AJ28
Out
TVDD
TRACE_DATA21
Trace Data
AN31
Out
TVDD
TRACE_DATA22
Trace Data
AM31
Out
TVDD
TRACE_DATA23
Trace Data
AL29
Out
TVDD
TRACE_DATA24
Trace Data
AL30
Out
TVDD
TRACE_DATA25
Trace Data
AK28
Out
TVDD
TRACE_DATA26
Trace Data
AP33
Out
TVDD
TRACE_DATA27
Trace Data
AK29
Out
TVDD
TRACE_DATA28
Trace Data
AH28
Out
TVDD
TRACE_DATA29
Trace Data
AP32
Out
TVDD
TRACE_DATA30
Trace Data
AL28
Out
TVDD
TRACE_DATA31
Trace Data
AG27
Out
TVDD
TX1_DAT_P
TX Data Out 1
AA4
Out
SD1_XPADVDD
TX1_DAT_N
TX Data Out 1
AA5
Out
SD1_XPADVDD
RX1_DAT_P
Rx/SRX Data In 1
W1
In
SD1_XCOREVDD
RX1_DAT_N
Rx/SRX Data In 1
W2
In
SD1_XCOREVDD
TX2_DAT_P
TX Data Out 2
AB6
Out
SD1_XPADVDD
TX2_DAT_N
TX Data Out 2
AB7
Out
SD1_XPADVDD
RX2_DAT_P
Rx/SRX Data In 2
AA1
In
SD1_XCOREVDD
RX2_DAT_N
Rx/SRX Data In 2
AA2
In
SD1_XCOREVDD
TX3_DAT_P
TX Data Out 3
AC4
Out
SD1_XPADVDD
TX3_DAT_N
TX Data Out 3
AC5
Out
SD1_XPADVDD
RX3_DAT_P
Rx/SRX Data In 3
AC1
In
SD1_XCOREVDD
RX3_DAT_N
Rx/SRX Data In 3
AC2
In
SD1_XCOREVDD
TX4_DAT_P
TX Data Out 4
AD6
Out
SD1_XPADVDD
JESD interface data signals
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
26
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
TX4_DAT_N
TX Data Out 4
AD7
Out
SD1_XPADVDD
RX4_DAT_P
Rx/SRX Data In 4
AE1
In
SD1_XCOREVDD
RX4_DAT_N
Rx/SRX Data In 4
AE2
In
SD1_XCOREVDD
TX5_DAT_P
TX Data Out 5
AE4
Out
SD1_XPADVDD
TX5_DAT_N
TX Data Out 5
AE5
Out
SD1_XPADVDD
RX5_DAT_P
Rx/SRX Data In 5
AG1
In
SD1_XCOREVDD
RX5_DAT_N
Rx/SRX Data In 5
AG2
In
SD1_XCOREVDD
TX6_DAT_P
TX Data Out 6
AF6
Out
SD1_XPADVDD
TX6_DAT_N
TX Data Out 6
AF7
Out
SD1_XPADVDD
RX6_DAT_P
Rx/SRX Data In 6
AJ1
In
SD1_XCOREVDD
RX6_DAT_N
Rx/SRX Data In 6
AJ2
In
SD1_XCOREVDD
TX7_DAT_P
TX Data Out 7
AG4
Out
SD1_XPADVDD
TX7_DAT_N
TX Data Out 7
AG5
Out
SD1_XPADVDD
RX7_DAT_P
Rx/SRX Data In 7
AL1
In
SD1_XCOREVDD
RX7_DAT_N
Rx/SRX Data In 7
AL2
In
SD1_XCOREVDD
TX8_DAT_P
TX Data Out 8
AH6
Out
SD1_XPADVDD
TX8_DAT_N
TX Data Out 8
AH7
Out
SD1_XPADVDD
RX8_DAT_P
Rx/SRX Data In 8
AN1
In
SD1_XCOREVDD
RX8_DAT_N
Rx/SRX Data In 8
AN2
In
SD1_XCOREVDD
RX9_DAT_P
SRx. Data In 9
V3
In
SD2_XCOREVDD
RX9_DAT_N
SRx. Data In 9
V4
In
SD2_XCOREVDD
RX10_DAT_P
SRx. Data In 10
U1
In
SD2_XCOREVDD
RX10_DAT_N
SRx. Data In 10
U2
In
SD2_XCOREVDD
RX11_DAT_P
SRx. Data In 11
R1
In
SD2_XCOREVDD
RX11_DAT_N
SRx. Data In 11
R2
In
SD2_XCOREVDD
RX12_DAT_P
SRx. Data In 12
N1
In
SD2_XCOREVDD
RX12_DAT_N
SRx. Data In 12
N2
In
SD2_XCOREVDD
SerDes1 misc ports
SD1_IC_TX
TX Impedance Calibration
AE11
In
SD1_XPADVDD
SD1_IC_RX
RX Impedance Calibration
W6
In
SD1_XPADVDD
SD1_PLL1_TPA
PLL1 Analog Test Point
Y7
Out
SD1_XPADVDD
SD1_PLL1_TPD
PLL1 Digital Test Point
Y9
Out
SD1_XPADVDD
SD1_PLL2_TPA
PLL2 Analog Test Point
AE9
Out
SD1_XPADVDD
SD1_PLL2_TPD
PLL2 Digital Test Point
AD10
Out
SD1_XPADVDD
TX1_SYNC_N
Synchronization for TX1
AK9
In
LVDD1
TX1_SYNC_P
Synchronization for TX1
AL9
In
LVDD1
TX2_SYNC_N
Synchronization for TX2
AL8
In
LVDD1
TX2_SYNC_P
Synchronization for TX2
AK8
In
LVDD1
TX3_SYNC_N
Synchronization for TX3
AP4
In
LVDD1
TX3_SYNC_P
Synchronization for TX3
AN4
In
LVDD1
TX4_SYNC_N
Synchronization for TX4
AN5
In
LVDD1
JESD204B interface SYNC~ signals
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
27
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
TX4_SYNC_P
Synchronization for TX4
AP5
In
LVDD1
TX5_SYNC_N
Synchronization for TX5
AK6
In
LVDD1
TX5_SYNC_P
Synchronization for TX5
AL6
In
LVDD1
TX6_SYNC_N
Synchronization for TX6
AL5
In
LVDD1
TX6_SYNC_P
Synchronization for TX6
AK5
In
LVDD1
TX7_SYNC_N
Synchronization for TX7
AH9
In
LVDD1
TX7_SYNC_P
Synchronization for TX7
AG9
In
LVDD1
TX8_SYNC_N
Synchronization for TX8
AG10
In
LVDD1
TX8_SYNC_P
Synchronization for TX8
AH10
In
LVDD1
RX1_SYNC_N
Synchronization for RX1
P10
Out
LVDD2
RX1_SYNC_P
Synchronization for RX1
P9
Out
LVDD2
RX2_SYNC_N
Synchronization for RX2
M7
Out
LVDD2
RX2_SYNC_P
Synchronization for RX2
M6
Out
LVDD2
RX3_SYNC_N
Synchronization for RX3
N9
Out
LVDD2
RX3_SYNC_P
Synchronization for RX3
N10
Out
LVDD2
RX4_SYNC_N
Synchronization for RX4
L7
Out
LVDD2
RX4_SYNC_P
Synchronization for RX4
L6
Out
LVDD2
RX5_SYNC_N
Synchronization for RX5
H5
Out
LVDD2
RX5_SYNC_P
Synchronization for RX5
H4
Out
LVDD2
RX6_SYNC_N
Synchronization for RX6
K5
Out
LVDD2
RX6_SYNC_P
Synchronization for RX6
K4
Out
LVDD2
RX7_SYNC_N
Synchronization for RX7
G3
Out
LVDD2
RX7_SYNC_P
Synchronization for RX7
G2
Out
LVDD2
RX8_SYNC_N
Synchronization for RX8
L10
Out
LVDD2
RX8_SYNC_P
Synchronization for RX8
L9
Out
LVDD2
RX9_SYNC_N
Synchronization for RX9
C2
Out
LVDD2
RX9_SYNC_P
Synchronization for RX9
C1
Out
LVDD2
RX10_SYNC_N
Synchronization for RX10
J7
Out
LVDD2
RX10_SYNC_P
Synchronization for RX10
J6
Out
LVDD2
RX11_SYNC_N
Synchronization for RX11
E2
Out
LVDD2
RX11_SYNC_P
Synchronization for RX11
E1
Out
LVDD2
RX12_SYNC_N
Synchronization for RX12
G7
Out
LVDD2
RX12_SYNC_P
Synchronization for RX12
G6
Out
LVDD2
Ethernet interface
SGMII1_TXDAT_P
Ethernet Data Out
U6
Out
SD2_XPADVDD
SGMII1_TXDAT_N
Ethernet Data Out
U7
Out
SD2_XPADVDD
SGMII1_RXDAT_P
Ethernet Data In
L1
In
SD2_XCOREVDD
SGMII1_RXDAT_N
Ethernet Data In
L2
In
SD2_XCOREVDD
SGMII2_TXDAT_P
Ethernet Data Out
T4
Out
SD2_XPADVDD
SGMII2_TXDAT_N
Ethernet Data Out
T5
Out
SD2_XPADVDD
SGMII2_RXDAT_P
Ethernet Data In
J1
In
SD2_XCOREVDD
SGMII2_RXDAT_N
Ethernet Data In
J2
In
SD2_XCOREVDD
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
28
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Package
Pin
Description
Pin Type
Power Supply
SGMII_REFCLK_P
SerDes Reference Clock for SGMII V11
In
SD2_XCOREVDD
SGMII_REFCLK_N
SerDes Reference Clock for SGMII V12
In
SD2_XCOREVDD
SD2_IC_TX
TX Impedance Calibration
M4
In
SD2_XPADVDD
SD2_IC_RX
RX Impedance Calibration
W10
In
SD2_XPADVDD
SD2_PLL1_TPA
PLL1 Analog Test Point
U10
Out
SD2_XPADVDD
SD2_PLL1_TPD
PLL1 Digital Test Point
W8
Out
SD2_XPADVDD
SD2_PLL2_TPA
PLL2 Analog Test Point
P7
Out
SD2_XPADVDD
SD2_PLL2_TPD
PLL2 Digital Test Point
P5
Out
SD2_XPADVDD
SerDes2 misc signals
CPRI interface
CPRI1_TXDAT1_P
CPRI Data Out
L31
Out
SD3_XPADVDD
CPRI1_TXDAT1_N
CPRI Data Out
L30
Out
SD3_XPADVDD
CPRI1_RXDAT1_P
CPRI Data In
L34
In
SD3_XCOREVDD
CPRI1_RXDAT1_N
CPRI Data In
L33
In
SD3_XCOREVDD
CPRI1_TXDAT2_P
CPRI Data Out
K29
Out
SD3_XPADVDD
CPRI1_TXDAT2_N
CPRI Data Out
K28
Out
SD3_XPADVDD
CPRI1_RXDAT2_P
CPRI Data In
J34
In
SD3_XCOREVDD
CPRI1_RXDAT2_N
CPRI Data In
J33
In
SD3_XCOREVDD
CPRI2_TXDAT1_P
BBI_JESD_TXDAT1_P
CPRI or Modem Interface JESD
Data Out
J31
Out
SD3_XPADVDD
CPRI2_TXDAT1_N
BBI_JESD_TXDAT1_N
CPRI or Modem Interface JESD
Data Out
J30
Out
SD3_XPADVDD
CPRI2_RXDAT1_P
BBI_JESD_RXDAT1_P
CPRI or Modem Interface JESD
Data In
G34
In
SD3_XCOREVDD
CPRI2_RXDAT1_N
BBI_JESD_RXDAT1_N
CPRI or Modem Interface JESD
Data In
G33
In
SD3_XCOREVDD
CPRI2_TXDAT2_P
BBI_JESD_TXDAT2_P
CPRI or Modem Interface JESD
Data Out
H29
Out
SD3_XPADVDD
CPRI2_TXDAT2_N
BBI_JESD_TXDAT2_N
CPRI or Modem Interface JESD
Data Out
H28
Out
SD3_XPADVDD
CPRI2_RXDAT2_P
BBI_JESD_RXDAT2_P
CPRI or Modem Interface JESD
Data In
E34
In
SD3_XCOREVDD
CPRI2_RXDAT2_N
BBI_JESD_RXDAT2_N
CPRI or Modem Interface JESD
Data In
E33
In
SD3_XCOREVDD
SD3_IC_TX
TX Impedance Calibration
J24
In
SD3_XPADVDD
SD3_IC_RX
RX Impedance Calibration
N31
In
SD3_XPADVDD
SD3_PLL1_TPA
PLL1 Analog Test Point
N26
Out
SD3_XPADVDD
SD3_PLL1_TPD
PLL1 Digital Test Point
M28
Out
SD3_XPADVDD
SD3_PLL2_TPA
PLL2 Analog Test Point
J26
Out
SD3_XPADVDD
SD3_PLL2_TPD
PLL2 Digital Test Point
L26
Out
SD3_XPADVDD
In
LVDD3
SerDes3 misc signals
BBI JESD204B interface SYNC~ signals
BBI_TXSYNC_P
Modem Interface JESD Tx.
Synchronization
U31
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
29
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
BBI_TXSYNC_N
Modem Interface JESD Tx.
Synchronization
U30
In
LVDD3
BBI_RXSYNC_P
Modem Interface JESD Rx.
Synchronization
U33
Out
LVDD3
BBI_RXSYNC_N
Modem Interface JESD Rx.
Synchronization
U34
Out
LVDD3
Debug JESD204B interface
TX10_DAT1_P
Debug JESD Tx. Data Out
G31
Out
SD3_XPADVDD
TX10_DAT1_N
Debug JESD Tx. Data Out
G30
Out
SD3_XPADVDD
TX10_DAT2_P
Debug JESD Tx. Data Out
F29
Out
SD3_XPADVDD
TX10_DAT2_N
Debug JESD Tx. Data Out
F28
Out
SD3_XPADVDD
TX10_SYNC_N
Debug JESD Synchronization
P29
In
LVDD3
TX10_SYNC_P
Debug JESD Synchronization
P28
In
LVDD3
ANODE
Thermal Diode Anode
—
LVDD3
CATHODE
Thermal Diode Cathode
AH14
—
LVDD3
FA_ANALOG_PIN
Leakage Measurement
AE28
Gnd
TVDD1_8
FA_ANALOG_G_V
Transistor Gate Voltage
AE27
Gnd
TVDD1_8
FAVDD
FA supply
AF26
Power
—
SENSE_DVDD1
Voltage sense
K10
Power
—
SENSE_DVSS1
Voltage sense
K9
Gnd
—
SENSE_DVDD2
Voltage sense
AK27
Power
—
SENSE_DVSS2
Voltage sense
AJ27
Gnd
—
DVDD
Digital supply
Thermal diode and FA
AF14
Supply and Ground balls
AA14,AA16,AA18,AA20,AA22,AA24,AB15,A
B17,AB19,AB21,AB23,AC14,AC16,AC18,AC
20,AC22,AC24,L12,L14,L16,L22,M13,M15,M
17,M19,M21,N12,N14,N16,N18,N20,N22,P1
3,P15,P17,P19,P21,R14,R16,R18,R20,R22,
T15,T17,T19,T21,U14,U16,U18,U20,U22,V1
5,V17,V19,V21,V23,W14,W16,W18,W20,W2
2,Y15,Y17,Y19,Y21,Y23
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
30
Freescale Semiconductor
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
DVSS
Ground
AA15,AA17,AA19,AA21,AA23,AA33,AB14,A
B16,AB18,AB20,AB22,AB24,AB29,AB32,AC
15,AC17,AC19,AC21,AC23,AC27,AC31,AD1
9,AD21,AD23,AD30,AD33,AE20,AE22,AE24,
AE26,AE32,AF15,AF16,AF19,AF21,AF23,AF
25,AF31,AG11,AG14,AG18,AG20,AG23,AG2
6,AG29,AG31,AG33,AH11,AH18,AH23,AH27
,AH32,AJ10,AJ13,AJ15,AJ24,AJ29,AJ31,AJ9
,AK10,AK12,AK14,AK16,AK24,AK33,AK4,AK
7,AL10,AL14,AL17,AL26,AL27,AL31,AL4,AL
7,AM14,AM18,AM25,AM28,AM29,AM32,AM
33,AM4,AM5,AM6,AM8,AM9,AN12,AN14,AN
17,AN25,AN27,AN30,AN33,AN6,AP14,AP18
,AP31,AP6,B1,B11,B14,B17,B2,B20,B23,B2
4,B27,B30,B33,B5,B8,C16,C22,C3,C6,D1,D
13,D19,D2,D27,D31,D7,D9,E11,E14,E17,E2
0,E24,E3,E5,F1,F12,F16,F2,F22,F3,F6,F7,G
1,G26,G4,G5,G8,H12,H14,H16,H18,H20,H6,
H7,H9,J22,J4,J5,J8,K11,K6,K7,K8,L13,L15,L
17,L18,L21,L8,M12,M14,M16,M18,M20,M22,
M8,M9,N13,N15,N17,N19,N21,P12,P14,P16,
P18,P20,P22,R15,R17,R19,R21,R28,R29,R3
2,R33,R34,T14,T16,T18,T20,T22,T30,T31,T
32,U15,U17,U19,U21,U23,U25,U32,V14,V16
,V18,V20,V22,V27,V30,V31,V33,V34,W15,W
17,W19,W21,W23,Y14,Y16,Y18,Y20,Y22,Y2
4,Y26,Y28,Y31
P1OVDD
Fusebox supply
AF27
P2OVDD
Fusebox supply
AF28
APVDD1
System PLL supply
V26
APVDD2
DDR PLL supply
U29
APVDD3
TbGen PLL supply
U28
FVDD
Flash supply
AA25,AA26,W25,Y25
GVDD1
Supply group GVDD1
AD16,AE16
GVDD2
Supply group GVDD2
J12,J13,K12,K13
GVDD3
Supply group GVDD3
J17,J18,K17,K18
GVDD4
Supply group GVDD4
J19,K19,L19
GVDD5
Supply group GVDD5
J20,K20,L20
GVDD6
Supply group GVDD6
J21,K21,K22
GVDD7
Supply group GVDD7
J14,J15,K14,K15
GVDD8
Supply group GVDD8
AD17,AE17
GVDD9
Supply group GVDD9
AD15,AE15
JVDD
Supply group JVDD
J16,K16
LVDD1
Supply group LVDD1
AD14,AE13,AE14
LVDD2
Supply group LVDD2
L11,M10,M11,N11,P11
LVDD3
Supply group LVDD3
U24,V24,W24
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
31
Pinout list
Table 1. AFD4400 Pinout
Signal
Description
Package
Pin
Pin Type
Power Supply
MVDD
Supply group MVDD
AD18,AD20,AD22,AE19,AE21,AF20,AF22,A
G21,AG22,AK18,AK20,AK22,AL24,AM21,A
M22,AN19,AN22,AP24
MVDD1_8
Supply group MVDD1_8
AE18,AE23
SD1_XCOREVDD
Supply group SD1_XCOREVDD
AA13,AB13,AC13,AD13,Y13
SD1_XCOREVSS
Supply group SD1_XCOREVSS
AA10,AA3,AB1,AB10,AB11,AB12,AB2,AB3,A
B9,AC10,AC3,AD1,AD11,AD12,AD2,AD3,AE
10,AE12,AE3,AF1,AF10,AF11,AF2,AF3,AF9,
AG3,AH1,AH2,AH3,AJ3,AK1,AK2,AK3,AL3,
AM1,AM2,AM3,AN3,AP2,AP3,W3,W4,W5,W
7,Y1,Y10,Y2,Y3
SD1_XPADVDD
Supply group SD1_XPADVDD
AA8,AB8,AC8,AD8,AE8,AF8,AG8,AH8,AJ8
SD1_XPADVSS
Supply group SD1_XPADVSS
AA6,AA7,AB4,AB5,AC6,AC7,AD4,AD5,AE6,
AE7,AF4,AF5,AG6,AG7,AH4,AH5,AJ4,AJ5,A
J6,AJ7,Y4,Y5,Y6
SD1_AVDD_PLL1
PLL1 Supply
AA9
SD1_AVSS_PLL1
PLL1 Supply
Y8
SD1_AVDD_PLL2
PLL2 supply
AD9
SD1_AVSS_PLL2
PLL2 supply
AC9
SD2_XCOREVDD
Supply group SD2_XCOREVDD
R13,T13,U13,V13,W13
SD2_XCOREVSS
Supply group SD2_XCOREVSS
H1,H2,H3,J3,K1,K2,K3,L3,L4,L5,M1,M2,M3,
M5,N3,N4,N5,N6,N7,N8,P1,P2,P3,P4,P8,R1
0,R11,R12,R3,R9,T1,T10,T2,T3,T9,U11,U12,
U3,U4,V1,V10,V2,V5,W11,W12,W9
SD2_XPADVDD
Supply group SD2_XPADVDD
R8,T8,U8,V8
SD2_XPADVSS
Supply group SD2_XPADVSS
R4,R5,R6,T6,T7,U5,V6,V7
SD2_AVDD_PLL1
PLL1 Supply
U9
SD2_AVSS_PLL1
PLL1 Supply
V9
SD2_AVDD_PLL2
PLL2 supply
P6
SD2_AVSS_PLL2
PLL2 supply
R7
SD3_XCOREVDD
Supply group SD3_XCOREVDD
K23,L23,M23,N23,P23,R23,T23
SD3_XCOREVSS
Supply group SD3_XCOREVSS
D32,D33,D34,E32,F32,F33,F34,G32,H23,H2
4,H25,H26,H32,H33,H34,J23,J25,J32,K24,K
32,K33,K34,L24,L25,L32,M26,M32,M33,M34
,N24,N25,N28,N29,N30,N32,P26,P27,P30,P
31,P32,R26,R27,T24,T25,T26,T27
SD3_XPADVDD
Supply group SD3_XPADVDD
E27,F27,G27,H27,J27,K27,L27
SD3_XPADVSS
Supply group SD3_XPADVSS
E28,E29,E30,F30,F31,G28,G29,H30,H31,J2
8,J29,K30,K31,L28,L29,M29,M30,M31
SD3_AVDD_PLL1
PLL1 Supply
M27
SD3_AVSS_PLL1
PLL1 Supply
N27
SD3_AVDD_PLL2
PLL2 supply
K25
SD3_AVSS_PLL2
PLL2 supply
K26
TVDD
Supply group TVDD
AB25,AC25,AD25,AE25
TVDD1_8
Supply group TVDD1_8
AD26,AD27
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
32
Freescale Semiconductor
AFD4400 ball map
Table 1. AFD4400 Pinout
Signal
Package
Pin
Description
NC
Not connected
2
Pin Type
Power Supply
AA11,AA12,AC11,AC12,D4,M24,M25,P24,P2
5,T11,T12
AFD4400 ball map
This figure shows the AFD4400 ball map.
1
A
B
C
D
E
DVSS
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
I2C8_SCL
I2C9_SDA
GPIOA14
I2C1_SCL
I2C5_SDA
I2C7_SCL
JTAG_TRST_
B
UART3_TXD
JTAG_TMS
BMOD1
GPIOA16
GPIOA21
SPI1_CLK
SPI2_MOSI
SPI3_MISO
SPI4_SS1
SPI4_SS0
GPIOA2
SPI6_MISO
SPI7_MISO
SPI8_SS1
SGMII_PHY_R
EFCLK
GPIOC28
GPIOD1
TSEC_MDIO
GPIOC3
GPIOC1
GPIOC8
GPIOC11
CPRI_REVCL
K
GPIOC12
DVSS
I2C1_SDA
I2C7_SDA
DVSS
RSTOUT_B
WDOG_B
DVSS
UART2_RXD
JTAG_TDI
DVSS
JTAG_TCK
GPIOA22
DVSS
RSTOUT5_B
SPI1_MISO
DVSS
SPI4_MISO
GPIOA3
DVSS
SPI6_CLK
SPI8_MISO
DVSS
DVSS
GPIOD0
GPIOD5
DVSS
GPIOC5
GPIOC9
DVSS
GPIOC16
GPIOC15
DVSS
TG_RF_SYNC
DVSS
I2C2_SDA
I2C6_SCL
DVSS
I2C11_SCL
UART1_TXD
I2C10_SDA
UART4_TXD
JTAG_TDO
TEST
GPIOA19
RSTOUT6_B
MC_SYNC_IN
DVSS
SPI3_MOSI
SPI4_MOSI
GPIOA4
GPIOA5
SPI5_SS0
DVSS
SPI8_SS0
GPIOC24
GPIOC31
GPIOD6
TSEC_MDC
GPIOC7
GPIOC6
GPIOC13
GPIOC17
GPIOC18
GPIOC19
GPIOC20
GPIOA26
NC
GPIOA30
I2C3_SCL
DVSS
I2C11_SDA
DVSS
GPIOA1
UART4_RXD
URST_B
DVSS
RSTOUT3_B
RSTOUT7_B
SPI1_SS1
SPI2_MISO
SPI4_CLK
DVSS
SPI5_MOSI
SPI6_MOSI
SPI7_SS1
SPI8_MOSI
GPIOC27
GPIOD2
GPIOC0
DVSS
GPIOC10
GPIOC14
GPIOC22
DVSS
SD3_XCOREV SD3_XCOREV SD3_XCOREV
SS
SS
SS
DVSS
GPIOA13
DVSS
GPIOA29
GPIOA31
I2C8_SDA
I2C9_SCL
UART2_TXD
DVSS
RSTIN_B
GPIOA15
DVSS
RSTOUT4_B
SPI1_SS0
DVSS
SPI3_CLK
CKO
DVSS
SPI6_SS1
SPI8_CLK
GPIOC29
DVSS
GPIOD8
GPIOC4
SD3_XPADVD SD3_XPADVS SD3_XPADVS SD3_XPADVS
D
S
S
S
GPIOC23
SD3_XCOREV CPRI2_RXDA CPRI2_RXDA
SS
T2_N
T2_P
DVSS
GPIOA11
GPIOA24
DVSS
DVSS
GPIOA27
I2C5_SCL
I2C10_SCL
UART1_RXD
DVSS
BMOD0
GPIOA18
GPIOA23
DVSS
SPI2_SS1
SPI3_SS1
SPI5_MISO
SPI5_CLK
SPI7_CLK
DVSS
GPIOC30
GPIOD3
GPIOD7
GPIOC21
SD3_XPADVD
SD3_XPADVS SD3_XPADVS SD3_XCOREV SD3_XCOREV SD3_XCOREV
TX10_DAT2_N TX10_DAT2_P
D
S
S
SS
SS
SS
DVSS
DVSS
DVSS
GPIOA25
I2C3_SDA
I2C6_SDA
UART3_RXD
JTAG_VSP_S
EL
GPIOA17
GPIOA20
SPI1_MOSI
SPI2_SS0
SPI3_SS0
RSTOUT2_B
SPI5_SS1
SPI6_SS0
SPI7_SS0
GPIOC26
GPIOD4
GPIOC2
DVSS
SD3_XPADVD SD3_XPADVS SD3_XPADVS
SD3_XCOREV CPRI2_RXDA CPRI2_RXDA
TX10_DAT1_N TX10_DAT1_P
D
S
S
SS
T1_N
T1_P
GPIOA10
DVSS
GPIOA12
I2C2_SCL
DVSS
GPIOA0
DVSS
GPIOA28
DVSS
SPI2_CLK
DVSS
RSTOUT1_B
DVSS
SPI7_MOSI
GPIOC25
GPIOA6
GPIOA8
GPIOA9
GVDD2
GVDD2
GVDD7
GVDD7
JVDD
GVDD3
GVDD3
GVDD4
GVDD5
GVDD6
DVSS
RX9_SYNC_P RX9_SYNC_N
DVSS
DVSS
RX11_SYNC_ RX11_SYNC_
P
N
F
DVSS
G
DVSS
H
2
GPIOA7
DVSS
RX7_SYNC_P RX7_SYNC_N
SD2_XCOREV SD2_XCOREV SD2_XCOREV
RX5_SYNC_P RX5_SYNC_N
SS
SS
SS
RX12_SYNC_ RX12_SYNC_
P
N
DVSS
DVSS
J
SGMII2_RXDA SGMII2_RXDA SD2_XCOREV
T_P
T_N
SS
K
SD2_XCOREV SD2_XCOREV SD2_XCOREV
RX6_SYNC_P RX6_SYNC_N
SS
SS
SS
L
SGMII1_RXDA SGMII1_RXDA SD2_XCOREV SD2_XCOREV SD2_XCOREV
RX4_SYNC_P RX4_SYNC_N
SS
T_P
T_N
SS
SS
M
SD2_XCOREV SD2_XCOREV SD2_XCOREV
SS
SS
SS
DVSS
N
RX12_DAT_P RX12_DAT_N
DVSS
SD2_IC_TX
DVSS
RX10_SYNC_ RX10_SYNC_
P
N
DVSS
DVSS
SD2_XCOREV
RX2_SYNC_P RX2_SYNC_N
SS
DVSS
DVSS
GVDD2
GVDD2
GVDD7
GVDD7
JVDD
GVDD3
GVDD3
GVDD4
GVDD5
GVDD6
GVDD6
RX8_SYNC_P RX8_SYNC_N
LVDD2
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVSS
GVDD4
GVDD5
DVSS
DVDD
SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_PLL2_TP SD3_XPADVD SD3_XPADVS SD3_XPADVS CPRI1_TXDAT CPRI1_TXDAT SD3_XCOREV CPRI1_RXDA CPRI1_RXDA
DD
SS
SS
D
D
S
S
1_N
1_P
SS
T1_N
T1_P
LVDD2
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
SD3_XCOREV
DD
LVDD2
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_PLL1_TP SD3_AVSS_P SD3_XCOREV SD3_XCOREV SD3_XCOREV
DD
SS
SS
A
LL1
SS
SS
SS
DVSS
LVDD2
RX11_DAT_P RX11_DAT_N
T
SD2_XCOREV SD2_XCOREV SD2_XCOREV SGMII2_TXDA SGMII2_TXDA SD2_XPADVS SD2_XPADVS SD2_XPADVD SD2_XCOREV SD2_XCOREV
SS
SS
SS
T_P
T_N
S
S
D
SS
SS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
SD3_XCOREV
DEVCLK1_N
DD
SD2_XCOREV
DD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_XCOREV
SYSREF_IN_N SYSREF_IN_P
SS
DD
SS
SS
SS
SD2_XCOREV SD2_XCOREV SD2_XPADVS SGMII1_TXDA SGMII1_TXDA SD2_XPADVD SD2_AVDD_P SD2_PLL1_TP SD2_XCOREV SD2_XCOREV SD2_XCOREV
SS
SS
S
T_P
T_N
D
LL1
A
SS
SS
DD
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
LVDD3
DVSS
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
LVDD3
FLASH_A1
AC
AD
AE
AF
AG
AH
AJ
AK
AL
AM
AN
AP
RX9_DAT_N
NC
SD1_IC_RX
SD1_XCOREV SD2_PLL1_TP SD2_XCOREV
SS
D
SS
SD1_XCOREV
SS
TX1_DAT_P
TX1_DAT_N
SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XPADVS SD1_XPADVS
SS
SS
SS
S
S
RX3_DAT_N
SD1_XCOREV
SS
TX3_DAT_P
TX3_DAT_N
SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XPADVS SD1_XPADVS
SS
SS
SS
S
S
RX4_DAT_P
RX4_DAT_N
SD1_XCOREV
SS
TX5_DAT_P
TX5_DAT_N
SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XPADVS SD1_XPADVS
SS
SS
SS
S
S
RX5_DAT_P
RX5_DAT_N
SD1_XCOREV
SS
TX7_DAT_P
TX7_DAT_N
SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XPADVS SD1_XPADVS
SS
SS
SS
S
S
RX6_DAT_P
RX6_DAT_N
DVDD
NC
SD2_IC_RX
SD2_XCOREV SD2_XCOREV SD2_XCOREV
SS
SS
DD
TX2_DAT_N
TX4_DAT_N
TX6_DAT_N
TX8_DAT_N
APVDD1
DVSS
DVSS
BBI_RXSYNC_ BBI_RXSYNC_
P
N
BBI_TXSYNC_ BBI_TXSYNC_
N
P
FLASH_A0
DVSS
DVSS
DVSS
DVSS
DVSS
DVSS
FLASH_A8
FLASH_A6
FLASH_A7
FLASH_A9
FLASH_A10
FLASH_A14
DVSS
FLASH_A13
FLASH_A12
FLASH_A11
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
LVDD3
FVDD
FLASH_A3
FLASH_A5
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
FVDD
DVSS
ANL_TEST
DVSS
FLASH_A15
NC
SD1_XCOREV
DD
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
FVDD
FVDD
FLASH_BE0_
B
FLASH_A18
FLASH_A17
FLASH_A20
FLASH_A22
FLASH_A19
DVSS
FLASH_A16
SD1_XPADVD SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XCOREV
D
SS
SS
SS
SS
DD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
TVDD
FLASH_CS1_
FLASH_ADV_
FLASH_DAT4
B
B
DVSS
FLASH_CS2_
B
FLASH_A23
DVSS
FLASH_A21
FLASH_A25
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
DVSS
DVDD
TVDD
FLASH_BE1_
B
DVSS
NC
NC
SD1_XCOREV
DD
NC
SD1_XPADVD SD1_AVDD_P SD1_PLL2_TP SD1_XCOREV SD1_XCOREV SD1_XCOREV
D
LL2
D
SS
SS
DD
SD1_IC_TX
SD1_XPADVD SD1_XCOREV SD1_XCOREV SD1_XCOREV
D
SS
SS
SS
SD1_XPADVD
TX7_SYNC_N TX8_SYNC_P
D
DVSS
DVSS
DVSS
LVDD1
GVDD9
GVDD1
GVDD8
MVDD
DVSS
MVDD
DVSS
MVDD
DVSS
DDR_VREF
TVDD
TVDD1_8
SD1_XCOREV
SS
LVDD1
LVDD1
GVDD9
GVDD1
GVDD8
MVDD1_8
MVDD
DVSS
MVDD
DVSS
MVDD1_8
DVSS
TVDD
DVSS
GPIOB30
GPIOB31
ANODE
DVSS
DVSS
DDR_DQ28
DDR_DQ26
DVSS
MVDD
DVSS
MVDD
DVSS
DDR_DQ13
DVSS
FAVDD
GPIOB27
GPIOB29
DVSS
DDR_DQ29
DDR_DQ31
DDR_DM3
DVSS
DDR_ZQ
DVSS
MVDD
MVDD
DVSS
DDR_DQ11
DDR_DQ9
DVSS
DVSS
FLASH_CS0_
FLASH_OE_B
B
FLASH_A24
TVDD1_8
FLASH_WE_B FLASH_DAT0
DVSS
P1OVDD
DVSS
DVSS
SJC_MOD_B
FLASH_DAT1 FLASH_DAT1 TRACE_IN_CL
4
1
K
FLASH_DAT9
GPIOB26
GPIOB13
CATHODE
DDR_DQ30
DDR_DQS3
DDR_DQ25
DVSS
DDR_RESET
DDR_WE_B
DDR_A11
DDR_A2
DVSS
DDR_DQ15
DDR_DM1
DDR_DQ10
GPIOB17
DVSS
GPIOB3
DVSS
DDR_DQS3_B
DDR_DQ27
DDR_ODT0
DDR_CKE1
DDR_RAS_B
DDR_CAS_B
DDR_A3
DDR_A0
DVSS
DDR_DQS1
DDR_DQ8
SENSE_DVSS TRACE_DATA
2
20
SENSE_DVDD TRACE_DATA TRACE_DATA TRACE_DATA TRACE_DATA
TRACE_CLK
2
25
27
15
19
DVSS
TX2_SYNC_P TX1_SYNC_N
DVSS
GPIOB18
DVSS
GPIOB2
DVSS
DDR_DQ22
DVSS
DDR_DQ24
MVDD
DDR_CKE0
MVDD
DDR_A14
MVDD
DDR_A4
DVSS
DDR_DQS1_B
DDR_DQ12
TX2_SYNC_N TX1_SYNC_P
DVSS
GPIOB15
GPIOB10
GPIOB1
DVSS
DDR_DQ23
DDR_DQ20
DVSS
DDR_ODT1
DDR_CS1_B
DDR_A15
DDR_A12
DDR_A7
DDR_A5
MVDD
DDR_DQ14
DVSS
DVSS
SD1_XCOREV SD1_XCOREV SD1_XCOREV
SS
SS
SS
DVSS
GPIOB11
GPIOB12
GPIOB7
GPIOB6
DVSS
DDR_DQ21
DDR_DQS2
DDR_DQ19
DVSS
DDR_BA1
DDR_CS0_B
MVDD
MVDD
DDR_A10
DDR_A6
DVSS
DDR_DQ2
DDR_DM0
TRACE_DATA
13
TRACE_DATA TRACE_DATA TRACE_DATA
24
30
23
DVSS
DVSS
DVSS
DVSS
TRACE_DATA TRACE_DATA
16
22
SD1_XCOREV
RX8_DAT_N
TX3_SYNC_P TX4_SYNC_N
SS
DVSS
GPIOB23
GPIOB19
GPIOB16
GPIOB5
GPIOB8
DVSS
GPIOB9
DVSS
DDR_DQ18
DDR_DQS2_B
DVSS
DDR_BA0
MVDD
DDR_CK1
DDR_CK0
MVDD
DDR_A8
DDR_A1
DVSS
DDR_DQ5
DVSS
DDR_DQ4
DDR_DQ1
DVSS
SD1_XCOREV SD1_XCOREV
TX3_SYNC_N TX4_SYNC_P
SS
SS
DVSS
GPIOB22
GPIOB21
GPIOB28
GPIOB20
GPIOB4
GPIOB14
GPIOB0
DVSS
DDR_DM2
DDR_DQ17
DDR_DQ16
DVSS
DDR_BA2
DDR_CK1_B
DDR_CK0_B
DDR_A13
DDR_A9
MVDD
DDR_DQ6
DDR_DQ7
DDR_DQS0
DDR_DQS0_B
DDR_DQ0
DDR_DQ3
FLASH_DAT1
DVSS
TRACE_DATA TRACE_DATA TRACE_DATA TRACE_DATA
28
8
5
11
DVSS
DVSS
FLASH_DAT1 FLASH_DAT1
3
0
DVSS
DVSS
DVSS
DVSS
FLASH_DAT1 FLASH_DAT1
5
2
DVSS
GPIOB25
TX6_SYNC_P TX5_SYNC_N
DVSS
P2OVDD
TRACE_DATA TRACE_DATA
31
12
FLASH_WAIT_
FLASH_DAT2 FLASH_BCLK
B
FLASH_DAT5 FLASH_DAT7
FA_ANALOG_ FA_ANALOG_
FLASH_DAT3 FLASH_DAT6 FLASH_DAT8
G_V
PIN
TX6_SYNC_N TX5_SYNC_P
RX8_DAT_P
TG_RF_SYNC TG_RF_SYNC
_P
_N
DVSS
DVSS
GPIOB24
DVSS
DVDD
DVSS
DVSS
ANL_REFCLK ANL_REFCLK
_N_TEST
_P_TEST
DVSS
DVSS
DVSS
SD1_XCOREV SD1_XPADVS SD1_XPADVS SD1_XPADVS SD1_XPADVS SD1_XPADVD
SS
S
S
S
S
D
DVSS
APVDD2
FLASH_A2
FRMCLK_N
DVSS
DVDD
SD1_XCOREV
SS
RX7_DAT_N
APVDD3
FLASH_A4
FRMCLK_P
DVSS
SD1_XCOREV SD1_XCOREV SD1_XCOREV
SS
SS
SS
RX7_DAT_P
DVSS
DVDD
SD1_XPADVS SD1_XPADVS SD1_XPADVD
TX7_SYNC_P TX8_SYNC_N
D
S
S
TX8_DAT_P
RGMII_REFCL RGMII_REFCL
K_N
K_P
DVSS
DVSS
SD1_XPADVS SD1_XPADVS SD1_XPADVD SD1_PLL2_TP SD1_XCOREV
S
S
D
A
SS
TX6_DAT_P
SD3_XCOREV SD3_XCOREV
SS
SS
DVDD
SD1_XPADVS SD1_XPADVS SD1_XPADVD SD1_AVSS_P SD1_XCOREV
S
S
D
LL2
SS
TX4_DAT_P
NC
DEVCLK1_P
SD3_XCOREV SYSREF_OUT SYSREF_OUT
SS
_P
_N
SD1_XCOREV
DD
SD1_XPADVS SD1_XPADVS SD1_XPADVD SD1_AVDD_P SD1_XCOREV
S
S
D
LL1
SS
TX2_DAT_P
NC
SD3_IC_RX
SD3_XCOREV SD3_XCOREV TX10_SYNC_ TX10_SYNC_ SD3_XCOREV SD3_XCOREV SD3_XCOREV CPRI_REVCL CPRI_REVCL
SS
SS
P
N
SS
SS
SS
K_P
K_N
DEVCLK2_N
SD1_XCOREV SD1_XCOREV SD1_XCOREV SD1_XPADVS SD1_XPADVS SD1_XPADVS SD1_PLL1_TP SD1_AVSS_P SD1_PLL1_TP SD1_XCOREV
DEVCLK2_P
SS
SS
SS
S
S
S
A
LL1
D
SS
RX3_DAT_P
DVSS
SD2_XCOREV SD2_XPADVS SD2_XPADVS SD2_XPADVD SD2_AVSS_P SD2_XCOREV SGMII_REFCL SGMII_REFCL SD2_XCOREV
SS
S
S
D
LL1
SS
K_P
K_N
DD
SD1_XCOREV SD1_XCOREV SD1_XCOREV
RX1_DAT_N
SS
SS
SS
RX2_DAT_N
SD3_XCOREV SD3_AVDD_P SD3_PLL1_TP SD3_XPADVS SD3_XPADVS SD3_XPADVS SD3_XCOREV SD3_XCOREV SD3_XCOREV
SS
LL1
D
S
S
S
SS
SS
SS
DVSS
RX10_DAT_P RX10_DAT_N
RX2_DAT_P
NC
DVDD
LVDD2
SD2_XCOREV SD2_XPADVS SD2_XPADVS SD2_XPADVS SD2_AVSS_P SD2_XPADVD SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV
SS
S
S
S
LL2
D
SS
SS
SS
SS
DD
SD2_XCOREV SD2_XCOREV
RX9_DAT_P
SS
SS
AB
NC
SD3_XCOREV
DD
V
AA
SD3_XCOREV SD3_PLL2_TP SD3_XPADVD SD3_XPADVS SD3_XPADVS CPRI2_TXDAT CPRI2_TXDAT SD3_XCOREV CPRI1_RXDA CPRI1_RXDA
SS
A
D
S
S
1_N
1_P
SS
T2_N
T2_P
DVSS
P
RX1_DAT_P
SD3_IC_TX
DVSS
R
Y
SD3_XCOREV
SS
SD3_XCOREV SD3_XCOREV SD3_AVDD_P SD3_AVSS_P SD3_XPADVD CPRI1_TXDAT CPRI1_TXDAT SD3_XPADVS SD3_XPADVS SD3_XCOREV SD3_XCOREV SD3_XCOREV
DD
SS
LL2
LL2
D
2_N
2_P
S
S
SS
SS
SS
SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_PLL2_TP SD2_AVDD_P SD2_PLL2_TP SD2_XCOREV
RX1_SYNC_P RX1_SYNC_N
SS
SS
SS
D
LL2
A
SS
SS
W
SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_XCOREV SD3_XPADVD CPRI2_TXDAT CPRI2_TXDAT SD3_XPADVS SD3_XPADVS SD3_XCOREV SD3_XCOREV SD3_XCOREV
SS
SS
D
2_N
2_P
S
S
SS
SS
SS
SS
SS
SENSE_DVSS SENSE_DVDD
1
1
SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV SD2_XCOREV
RX3_SYNC_N RX3_SYNC_P
SS
SS
SS
SS
SS
SS
U
34
DVSS
TRACE_DATA
1
TRACE_DATA TRACE_DATA TRACE_DATA
7
4
3
TRACE_CTL
DVSS
TRACE_DATA TRACE_DATA
21
18
DVSS
DVSS
TRACE_DATA TRACE_DATA
2
0
DVSS
TRACE_DATA
6
TRACE_DATA TRACE_DATA
14
9
DVSS
TRACE_DATA
10
DVSS
TRACE_DATA
17
TRACE_DATA TRACE_DATA
29
26
Figure 2. AFD4400 ball map
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
33
Electrical characteristics
3
Electrical characteristics
This section provides the AC and DC electrical specifications. The device is currently targeted to these specifications. Some of
these specifications are independent of the I/O cell, but are included for a more complete reference.
3.1
Overall DC electrical characteristics
This section covers the ratings, conditions and other characteristics.
3.1.1
Absolute maximum ratings
Table 2 shows the absolute maximum operating ratings.
CAUTION
Stress beyond those listed in Table 2 may cause permanent damage to the device. These are
stress ratings only. Functional operation of the device at these or any other conditions
beyond those indicated under “recommended operating conditions” is not implied.
Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.
Table 2. Absolute maximum operating ratings
Parameter Symbol
Symbol
Min
Max
Unit
Note
Core supply voltage
DVDD
VDD
–0.3
1.1
V
—
PLL supply voltage
APVDD1
APVDD2
APVDD3
VDPLL
–0.3
1.98
V
—
SerDes PLL supply voltage
SD1_AVDD_PLL1
SD1_AVDD_PLL2
SD2_AVDD_PLL1
SD2_AVDD_PLL2
SD3_AVDD_PLL1
SD3_AVDD_PLL2
VDDSDP
–0.3
1.65
V
1
SerDes transceiver Core power supply for
receivers
SD1_XCOREVDD
SD2_XCOREVDD
SD3_XCOREVDD
VDDSDX
–0.3
1.1
V
—
SerDes transceiver pad power supply for
transmitter
SD1_XPADVDD
SD2_XPADVDD
SD3_XPADVDD
VDDSDIO
–0.3
1.65
V
1
JTAG supply voltage
JVDD
VDDGPIO
–0.3
3.6
V
—
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
34
Freescale Semiconductor
Electrical characteristics
Table 2. Absolute maximum operating ratings (continued)
Parameter Symbol
Symbol
Min
Max
Unit
Note
LVCMOS Input/output supply voltage
FVDD
GVDD1
GVDD2
GVDD3
GVDD4
GVDD5
GVDD6
GVDD7
GVDD8
GVDD9
VDDGPIO
–0.3
3.6
V
2
DDR pad supply voltage
MVDD
TVDD
VDDDDR
–0.3
1.65
V
—
DDR pad 1.8V supply voltage
MVDD1_8
TVDD1_8
VDDDDR1p8
–0.3
1.98
V
—
LVDS Input/output supply voltage
LVDD1
LVDD2
LVDD3
VDDLVDS
–0.3
1.98
V
—
Fuse programming Supply
P1OVDD
P2OVDD
VDDEFUSE_PGM
–0.3
1.98
V
—
Input voltage range
DDR input signal
MVIN
–0.3
0.3 + VDDDDR
V
—
LVCMOS input
VIN_GPIO
–0.3
0.3 + VDDGPIO
V
—
LVDS input
VIN_LVDS
–0.3
0.3 + VDDLVDS V
—
DDR reference
DDRREF
–0.3
0.3 + (0.5 x
VDDDDR1p8)
V
—
SerDes input
VIN_SerDes
–0.3
0.3 + VDDSDIO
V
—
125
oC
—
Storage temperature
range
Tstorage
–40
Note:
1. Supply can be configured for two different nominal voltage settings. Refer AFD4400 Reference Manual for details.
2. The LVCMOS IO voltage is configured through VSEL bits. Refer AFD4400 Reference Manual for details.
3.1.2
Recommended operating conditions
Table 3 provides the recommended operating conditions.
Table 3. Recommended operating conditions
Supply
Digital logic voltage
DVDD
Symbol
Min
Typ
Max
Unit
At initial startup
VDD
(VID or
1.025)-30mV
(VID or
1.025)
(VID or
1.025)+30m
V
V
During normal
operation
VDD
VID-30mV
VID
VID+30mV
V
Notes
2,3,4,5
,8
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
35
Electrical characteristics
Table 3. Recommended operating conditions (continued)
Supply
Symbol
PLL voltage
Analog supply
• APVDD1
• APVDD2
• APVDD3
SerDes
VDPLL
Min
Typ
Max
Unit
Notes
1.71
1.8
1.89
V
—
SerDes transceiver VDDSDX
core supply for
receiver
• SD1_XCOREVDD
• SD2_XCOREVDD
• SD3_XCOREVDD
0.95
1
1.05
V
—
SerDes PLL supply VDDSDP
• SD1_AVDD_PLL1
• SD1_AVDD_PLL2
• SD2_AVDD_PLL1
• SD2_AVDD_PLL2
• SD3_AVDD_PLL1
• SD3_AVDD_PLL2
1.425
1.5
1.575
V
—
SerDes transceiver
pad supply for
transmitter
• SD1_XPADVDD
• SD2_XPADVDD
• SD3_XPADVDD
VDDSDIO
1.425
1.5
1.575
V
—
JTAG power supply
• JVDD
VDDGPIO
2.85
3.0
3.3
3.465
V
1
LVCMOS power supply
• FVDD
• GVDD1
• GVDD2
• GVDD3
• GVDD4
• GVDD5
• GVDD6
• GVDD7
• GVDD8
• GVDD9
VDDGPIO
1.71
1.8
1.89
V
1
2.85
3.0
3.3
3.465
DDR pad supply voltage
range
• MVDD
• TVDD
VDDDDR
1.425
1.5
1.575
V
—
DDR pad 1.8V supply
• MVDD1_8
• TVDD1_8
VDDDDR1p8 1.71
1.8
1.89
V
—
DDR pad Reference Voltage
• DDR_VREF
DDRREF
(0.5 x
0.5 x
VDDDDR) − 2% VDDDDR
(0.5 x
VDDDDR) +
2%
V
—
LVDS power supply
• LVDD1
• LVDD2
• LVDD3
VDDLVDS
1.71
1.89
V
1
1.8
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
36
Freescale Semiconductor
Electrical characteristics
Table 3. Recommended operating conditions (continued)
Supply
Symbol
Fuse program voltage
• P1OVDD
• P2OVDD
VEFUSE_PG
Operating temperature
range (Junction)
TJ
Min
Typ
Max
Unit
Notes
1.71
1.8
1.89
V
6,7
–40
—
105
oC
—
M
Note:
1. Overshoot and undershoot conditions (transitions above max IO supply and below ground) on switching pads must be
held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle.
2. Refer to Section 4.2.1, “Voltage ID (VID) controllable supply and Section 4.2.2, “Core supply voltage (VDD) filtering for
additional information
3. Supply voltage specified at the voltage sense pin. Voltage input pins should be regulated to provide specified voltage at
the sense pin. Refer to Section 4.2.6, “Remote power-supply sense recommendations” for more detail.
4. Operation at 1.1V is allowable for up to 25ms at initial power on.
5. Voltage ID (VID) operating range is between 0.975V to 1.025V. Regulator selection should be based on Vout range wider
than VIDmin to VIDmax with resolution of 12.5mV or better.
6. P1OVDD should be tied to ground during functional applications.This supply is needed in the factory for programming of
memory repair fuses.
7. P2OVDD should be tied to ground during functional applications. It can be driven to the specified supply during functional
fuse programming.
8. If VID is known at initial start-up, set VDD=VID else if VID is not known at initial start-up, set VDD to 1.025V and change it
immediately, to VDD=VID after reading the VID at the beginning of software.
3.1.3
LVCMOS DC parameters
Table 4 provides the DC operating characteristics for LVCMOS pads.
Table 4. LVCMOS DC electrical characteristics
Symbol
Parameter
Test conditions
Min
Typ
Max
Unit
Notes
VOH
High-level output voltage
Ioh = –1mA
VDDGPIO–0.15
—
V
—
VOL
Low-level output voltage
Iol = 1mA
—
0.15
V
—
VIH
High-level DC input voltage
—
0.7 × VDDGPIO
VDDGPIO
V
VIL
Low-level DC input voltage
—
0
—
0.2 × VDDGP V
1
IO
IIN
Input current
(no pull-up/down)
Vin = VDDGPIO or 0
—
—
1
μA
2
Iin_33pu
Input current (33 KΩ PU)
Vin = 0
Vin = VDDGPIO
—
—
220
1
μA
2,4
Iin_50pu
Input current (50 KΩ PU)
Vin = 0
Vin = VDDGPIO
—
—
100
1
μA
2,4
Iin_100pu
Input current (100 KΩ PU)
Vin = 0
Vin = VDDGPIO
—
—
50
1
μA
2,4
Iin_100pd
Input current (100 KΩ PD)
Vin = 0
Vin = VDDGPIO
—
—
1
50
μA
2,4
Rkeep
Pad keeper resistance
—
105
135
175
KΩ
3,4
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
37
Electrical characteristics
Table 4. LVCMOS DC electrical characteristics (continued)
Symbol
Rod_keep
Parameter
Test conditions
Maximum external resistor
value that is guaranteed to
overdrive the pad keeper
—
Min
Typ
—
—
Max
Unit
47
KΩ
Notes
4
Note:
1. To maintain a valid level, the transitioning edge of the input must sustain a constant slew rate (monotonic) from the current
DC level through to the target DC level, VIL or VIH. monotonic input transition time is from 0.1ns to 1s.
2. Max condition: with best case process corner, 3.6 V supply, and 105 °C temperature.
3. Typ condition: Typical conditions: typical process corner, 1.8 V supply, and 25 °C temperature, max condition: worst case
process conditions, 1.71 V supply, and 105 °C temperature, min condition: best case process conditions, 3.6 V supply,
and –40 °C temperature. These values are for I/O buffers. Pad keeper resistance is weak to save power in special cases
when after reset pad keeper is enabled and external resistor is connected to pad to overwrite keeper value.
4. Values are based on simulated numbers and are not measured on silicon.
Table 5. LVCMOS Schmitt trigger operation
Symbol
Parameter
Test conditions
VT+
Positive going threshold
voltage
VTVHYS
Supply
voltage
VOUT >= (VOH)min 1.8V
Min
Typ
Max
Unit
Notes
0.4 x VDDGPIO —
—
V
1
Negative going threshold VOUT =< (VOL)max 1.8V
voltage
—
—
0.6 x VDDGPIO V
1
Hysteresis voltage
1.8V
0.17
—
—
V
1
3.3V
0.12
—
—
V
1
VT+ - VT-
Note:
1. Values are based on simulated numbers and are not measured on silicon.
3.1.3.1
Output driver impedance
The tables below shows the average impedance at different operating points.
Table 6. Output driver average impedance (1.8 V voltage mode)
Parameter
Symbol
Output driver impedance Rdrv
Drive strength setting
Min
Typ
Max
Unit
Note
001
170
220
300
Ω
—
010
65
85
115
Ω
—
011
45
60
80
Ω
—
100
55
75
100
Ω
—
101
40
55
75
Ω
—
110
30
40
52
Ω
—
111
25
33
44
Ω
—
Note:
1. Drive strength value 000 sets the pad at high Z.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
38
Freescale Semiconductor
Electrical characteristics
Table 8. Output driver average impedance (3.3 V voltage mode)
Parameter
Symbol
Output driver impedance
Rdrv
Drive strength setting
Min
Typ
Max
Unit
Note
001
180
250
400
Ω
—
010
65
90
145
Ω
—
011
45
65
90
Ω
—
100
60
80
115
Ω
—
101
45
55
80
Ω
—
110
30
40
55
Ω
—
111
25
34
45
Ω
—
Note:
1. Drive strength value 000 sets the pad at high Z.
3.1.4
LVDS DC parameters
The DC operating characteristics are provided in the table below for LVDS pads.
Table 9. LVDS DC electrical characteristics
Symbol
Parameter
Test conditions
Vod
Output differential voltage
Voh
High-level output voltage
Vol
Low-level output voltage
Vos
Offset voltage
Vid
Input Differential Voltage
Vicm
Min
Typ
Max
Unit
250
350
450
1.25
1.375
1.6
0.9
1.025
1.25
1.125
1.2
1.375
—
100
—
600
mV
|Vpadp–Vpadn|
Input common mode voltage
—
50mV
—
1.57
V
—
ICC
Power supply current
(VDDLVDS)
Resistive
—
load = 100 Ω between
padp and padn
—
5
mA
—
RT
RX Termination resistor
—
100
—
Ω
1
Resistive load = 100
Ω between padp and
padn
—
mV
Notes
|Vpadp–Vpadn|
—
V
—
—
Note:
1. Values are based on simulated numbers and are not measured on silicon.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
39
Electrical characteristics
Vpadp
Vos
Vpadn
Vpadp
Vpadn
Vod
Vpadp—Vpadn
0V(Diff)
Vod
Figure 3. LVDS parameters
3.1.5
DDR DC parameters
Table 10 provides DC electrical characteristics for DDR.
Table 10. DDR DC electrical characteristics
Symbol
Parameter
Test
conditions
Min
Typ
Max
Unit
Notes
Vih
Input high voltage
—
DDRREF +
0.100
—
VDDDDR
V
—
Vil
Input low voltage
—
GND
—
DDRREF –
0.100
—
—
Voh
High-level output voltage Ioh = –1 mA
0.8×VDDDDR
—
—
Vol
Low-level output voltage Iol = 1 mA
—
—
0.2×VDDDDR
Vref
Input reference voltage
0.49×VDDDDR 0.5×VDDDDR 0.51×VDDDDR
Iin
Input current for the IO
Vi = 0 or
cell (no internal
VDDDDR
pullup/pulldown resistor)
MMpupd
Pullup/pulldown driver
impedance mismatch
—
—
34 Ω full
–10
strength driver
—
—
—
V
—
1
50
+10
μA
2
%
4
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
40
Freescale Semiconductor
Electrical characteristics
Table 10. DDR DC electrical characteristics (continued)
Symbol
Test
conditions
Parameter
Min
Typ
Max
Unit
Notes
Rres
Driver 240 Ω unit
calibration resolution
—
—
—
10
Ω
4
Rkeep
Pad keeper resistance
—
105
135
175
kΩ
3,4
Rod_keep
Maximum external
resistor value that is
guaranteed to overdrive
the pad keeper
—
—
—
47
kΩ
4
Note:
1. VTT is not applied directly to the device. It is the supply to which far end signal termination is made, and it is expected to
be equal to Vref with a min value of Vref - 0.04 and a max value of Vref + 0.04. VTT should track variations in the DC
level of Vref.
2. Typ condition: typ model, VDDDDR 1.5 V, and 25 °C. Max condition: bcs model, VDDDDR1.575 V, and –40 °C. Min
condition: wcs model, VDDDDR 1.425 V, and 125 °C.
3. Typ condition: typ model, VDDDDR 1.5 V, and 25 °C, max condition: wcs model, VDDDDR 1.425 V, and 125 °C, min
condition: bcs model, VDDDDR 1.575 V, and –40 °C. These values are for digital IO buffers.
4. Values are based on simulated numbers and are not measured on silicon.
3.1.6
SerDes DC parameters
The following subsections define the DC-level requirements for the CPRI, SGMII and JESD204B data lines.
3.1.6.1
DC-level requirements for CPRI configurations
This section provide various DC-level requirements for CPRI configurations.
This table provides the CPRI-LV-XAUI based transmitter DC specifications.
Table 11. Transmitter DC specifications (LV: 1.2288, 2.4576 and 3.072 Gbps)(SDn_XPADVDD=1.5)
Symbol
Characteristic
Min
VDIFF_P-P
Differential Output Voltage
800
RD
Differential resistance
80
Nom
100
Max
Unit
Note
1600
mV p–p
—
120
Ω
—
This table provides the CPRI-LV-XAUI based receiver DC specifications.
Table 12. Receiver DC specifications (LV: 1.2288, 2.4576 and 3.072 Gbps) (SDn_XPADVDD=1.5)
Symbol
Characteristic
Min
Nom
Max
Unit
Note
VIN
Differential input voltage
200
1600
mV p–p
—
RIN
Differential resistance
80
120
Ω
—
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
41
Electrical characteristics
This table provides the CPRI-LV-II and LV_III transmitter DC specifications.
Table 13. CPRI transmitter DC specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps, LV-III:
9.8304 Gbps) (SDn_XPADVDD=1.5)
Symbols
Parameter
Min
Nom
Output differential voltage into floating load Rload=100 Ω 800
VODIFF
VTX-DE-RATIO–1.14 dB De-emphasized differential output voltage (Ratio)
VTX-DE-RATIO–3.5 dB
De-emphasized differential output voltage (Ratio)
VTX-DE-RATIO–4.66 dB De-emphasized differential output voltage (Ratio)
Max
Unit
Note
—
1200
mV
—
0.6
1.1
1.6
dB
—
3
3.5
4
dB
—
4.1
4.6
5.1
dB
—
VTX-DE-RATIO–6.0 dB
Tx De-emphasized level
5.5
6.0
6.5
dB
—
VTX-DE-RATIO–9.5 dB
De-emphasized differential output voltage (Ratio)
9
9.5
10
dB
—
T_Rd
Differential resistance
80
100
120
Ω
—
This table provides the CPRI LV-II and LV-III receiver DC timing specifications.
Table 14. CPRI receiver DC specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps, LV-III: 9.8304
Gbps) (SDn_XPADVDD=1.5)
Symbols
Parameter
Min
Nom
Max
Unit
Note
VIN_DIFF
Input differential voltage
N/A
—
1200
mV
—
RDIN
Differential resistance
80
—
120
Ω
—
NOTE
It is assumed that for the VIN_DIFF Min spec, the eye can be closed at the receiver after
passing the signal through a CEI/CPRI Level II LR compliant Channel.
3.1.6.2
DC-level requirements for SGMII configurations
This table describes the SGMII SerDes transmitter DC specifications.
Table 15. SGMII transmitter DC specifications (SDn_XPADVDD=1.5)
Symbol
Parameter
Min
Nom
Max
Unit
Note
VOH
Output high voltage
—
—
1.5 x |Vod|,max
mV
1
VOL
Output low voltage
|Vod|,min/2
—
—
mV
1
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
42
Freescale Semiconductor
Electrical characteristics
Table 15. SGMII transmitter DC specifications (continued)(SDn_XPADVDD=1.5)
|VOD|
Output differential voltage
Z0
Output impedance (single ended)
320
500
725
mV
—
293.8
459
665.6
—
266.9
417
604.7
—
240.6
376
545.2
—
213.1
333
482.9
—
186.9
292
423.4
—
160.0
250
362.5
—
40
50
60
Ω
—
Note:
1. This does not align to DC-coupled SGMII.
2. |VOD|= |VSD_TXn - VSD_TXn_B|. |VOD| is also referred to as output differential peak voltage. VTX-DIFFp-p = 2 x |VOD|
3. The |VOD| value shown in the Typ column is based on the condition of SDn_XCOREVDD-Typ = 1.35 V or 1.5 V, no
common mode offset variation. SerDes transmitter is terminated with 100- differential load between differential pins.
4. For recommended operating conditions, see Table 3.
This table describes the SGMII SerDes receiver DC timing specifications.
Table 16. SGMII receiver DC specifications (SDn_XPADVDD=1.5)
Symbols
Parameter
Input differential voltage
VRX_DIFFp–p
VLOS
Loss of signal threshold
ZRX_DIFF
3.1.6.3
Receiver differential input
impedance
Min
Nom
Max
Unit
Note
100
—
1200
mV
—
175
—
1200
mV
—
30
—
100
mV
—
65
—
175
mV
—
80
—
120
Ω
—
DC-level requirements for JESD204B configurations
This table provides the JESD204B transmitter DC specifications.
Table 17. JESD204B transmitter DC specifications(SDn_XPADVDD=1.5)
Symbols
Parameter
Min
Nom
Max
Unit
Note
VTX_DIFF
Output differential voltage (into
floating load Rload = 100 Ω)
360
—
770
mV
—
RD
Differential resistance
80
100
120
Ω
—
This table below provides the JESD204B receiver DC timing specifications.
Table 18. JESD204B receiver DC specifications (SDn_XPADVDD=1.5)
Symbols
Parameter
Min
Nom
Max
Unit
Note
VRX_DIFF
Input differential voltage
110
—
1050
mV
—
RIN
Differential resistance
80
—
120
Ω
—
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
43
Electrical characteristics
3.2
Power sequencing
The following figure depicts the power-up sequencing requirements.There is no timing parameters associated with it; board
designers need to ensure the sequence.
FVDD/JVDD/GVDD1-9/MVDD/TVDD/
MVDD1_8/TVDD1_8/LVDD1-3/
SD1-3_XPA_DVDD
P1OVDD/P2OVDD
VDD
RSTIN_B
TRST_B
Note :
1. The Core VDD should come first. Other supplies can be in any order once the core supply is up and stable.
2. RSTIN_B and TRST_B should remain asserted till the power supplies get stable.
3. Refer to DC operating condition for supply specification.
4. During power off VDD should be the last supply to get turned off.
Figure 4. Power-up sequencing
3.2.1
Power-on ramp rate
This section describes the AC electrical specifications for the power-on ramp rate requirements. Controlling the maximum
power-on ramp rate is required to avoid falsely triggering the ESD circuitry. Table 19 provides the power supply ramp rate
specifications.
Table 19. Power supply ramp rate
Parameter
Min
Max
Unit
Note
Required ramp rate for all voltage supplies
—
25
V/mS
3,4
Required ramp rate for P1OVDD and P2OVDD
—
25
V/mS
1, 2,3,4
Note:
1. P1OVDD should be tied to ground during functional applications.This supply is needed in the factory for programming
of memory repair fuses.
2. P2OVDD should be tied to ground during functional applications. It can be driven to the specified supply during
functional fuse programming.
3. Ramp rate is specified as a linear ramp from 10 to 90%. If non-linear (for example, exponential), the maximum rate of
change from 200 to 500 mV is the most critical as this range might falsely trigger the ESD circuitry.
4. Over full recommended operating temperature range (see Table 3).
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
44
Freescale Semiconductor
Electrical characteristics
3.3
RESET initialization
This section describes the electrical specifications for the RESET initialization timing requirements.
The figure below shows reset timing diagram.
Stable clock
DEVCLK1_P/N
RSTIN_B
50%
50%
CC1
RSTOUT_B
RSTOUTn_B
CC2
50%
50%
CC3
Figure 5. Reset timing diagram
NOTE
As shown in Figure 5, a stable DEVCLK1_P/N is required (at least one DEVCLK period
before) to AFD4400 before releasing the RSTIN_B pin.
This table provides RESET initialization timing specifications.
Table 20. Reset initialization timing specifications
ID
Parameter
Symbol
Min
Max
Unit
Note
CC1
Duration of RSTIN_B to be qualified as valid (assumption:
Input slope = 5 ns)
TRSTINV
50
—
ns
—
CC2
Duration of RSTOUT_B, RSTOUTn_B assertion after
de-assertion of RSTIN_B
TRSTOUTW
200
—
μs
2
CC3
Delay from RSTIN_B to RSTOUT_B, RSTOUTn_B assertion TROUTLRINV
—
35
ns
2
CC4
Duration of RSTOUTn_B for software bit based assertion
45
—
μs
1,2
TRSTOUTnW
Note:
1. RSTOUT1_B to RSTOUT7_B can be asserted by writing into corresponding register bits in System Reset Controller
module. Refer AFD4400 Reference Manual for details.
2. RSTOUT1_B to RSTOUT7_B pulse width matches RSTOUT_B timing in case of power on reset, cold reset and warm
reset assertion.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
45
Electrical characteristics
3.4
Power characteristics
3.4.1
Power specifications
3.4.1.1
Device AFD4400NXN763VB power specification
This table defines the frequency settings used for specifying power consumption. All power states are specified at 105oC
junction temperature.
Table 21. Frequency definition for power consumption measurement
Parameter
Symbol
Value
Unit
ARM® Cortex-A9 core clock
fmcu
614.4
MHz
VSP clock
fVSP
614.4
MHz
AXI clock
faxi
307.2
MHz
AHB clock
fahb
153.6
MHz
IPG clock
fip
76.8
MHz
CPRI baud rate
fcpri
9830.4
Mbps
JESD204 baud rate
fjesd
9830.4
Mbps
Ethernet (SGMII) baud rate
fetsec
1250
Mbps
fddr
500
MHz
DDR clock rate
VID
33.2
37.1
1,3,4
Full run mode
• All VSPA running FIR 70% with 10% control
Thermal
code
• ARM running code with 75% utilization
• 8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane
per interface
Typical
• 2 JESD RX for SRx function at 9.8G rate
• 4 CPRI running at 9.8G, 2 links in RE mode, 2
links in REC mode
105
VID
26.2
30.1
2,3,4
70
VID
22.4
26.3
2,3,4,5
Notes
SoC Power
(IO + VDD)(Watts)
105
VDD
(V)
All VSPA running FIR with 100% utilization
Maximum
ARM running code with 100% utilization.
ARM Data accesses from DDR memory
8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane
per interface
• 2 JESD RX for SRx function at 9.8G rate
• 4 CPRI running at 9.8G, 2 links in RE mode, 2
links in REC mode
• 2 Ethernet ports running at 1.25G
Condition
Junction
Temp (oC)
•
•
•
•
Characteristic
Power mode
VDD Power
(Core+ platform)
This table provides the current consumption in various operating modes.
Table 22. Power numbers
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
46
Freescale Semiconductor
Electrical characteristics
19.1
21.9
1,3,4
• Six VSPA running FIR 70% with 10% control
Thermal
code. Remaining five power gated.
• ARM running code with 75% utilization
• 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane
per interface
Typical
• 2 JESD RX for SRx function at 9.8G rate
• 2 CPRI running at 9.8G, one link in RE mode,
one link in REC mode
105
VID
15.3
18.1
2,3,4
70
VID
12.9
15.7
2,3,4,5
4T4R 40 MHz
bandwidth
•
•
•
•
•
•
•
•
105
VID
16.2
18.2
5
Full Standby
(CPRI active,
antenna paths
configured but
not active)
• All VSPA in partial powerdown waiting for go
Typical
event. Clocks enabled but gated.
• ARM in stop mode. Clocks enabled but gated.
Servicing only CPRI C&M messages
• 8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane
per interface. Links active but no data transfer
(zeros sent, receive data ignored)
• 2 JESD RX for SRx function at 9.8G rate. Link
active but receive data ignored.
• 4 CPRI running at 9.8G, 2 links in RE mode, 2
links in REC mode
70
VID
3.4
7.2
5
Half run mode
4 Tx Antenna (153.6 MSPS)
4 Rx Antenna (76.8 MSPS)
2 SRx (153.6 MSPS)
40 MHz Occupied Bandwidth
(8 - 5MHz LTE carriers per antenna)
40 MHz Instantaneous Bandwidth
153.6 MHz DPD Bandwidth
2 CPRI links at 9.8304Gbps rate
Thermal
Notes
SoC Power
(IO + VDD)(Watts)
VID
VDD
(V)
105
Condition
Junction
Temp (oC)
• Six VSPA running FIR with 100% utilization.
Maximum
Remaining five power gated.
• ARM running code with 100% utilization.
• ARM Data accesses from DDR memory
• 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane
per interface
• 2 JESD RX for SRx function at 9.8G rate
• 2 CPRI running at 9.8G, one link in RE mode,
one link in REC mode
• Single Ethernet lane running at 1.25G
Characteristic
Power mode
VDD Power
(Core+ platform)
Table 22. Power numbers (continued)
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
47
Electrical characteristics
VID
2.8
5.7
5
Sleep
(CPRI active, no
antenna paths
configured or
active)
• All VSPA in full powerdown. Clocks disabled.
Typical
• ARM in stop mode. Clocks enabled but gated.
Servicing only CPRI C&M messages.
• All JESD disabled. Links inactive with SerDes
powered down or disabled.
• 2 CPRI running at 9.8G, 1 link in RE mode, 1 link
in REC mode
70
VID
1.5
2.3
5
Notes
SoC Power
(IO + VDD)(Watts)
70
VDD
(V)
• 6 VSPA in partial powerdown waiting for go
Typical
event. Clocks enabled but gated. Remaining
VSPA in full powerdown.
• ARM in stop mode. Clocks enabled but gated.
Servicing only CPRI C&M messages
• 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane
per interface. Links active but no data transfer
(zeros sent, receive data ignored). Remaining
links inactive with SerDes powered down or
disabled.
• 2 JESD RX for SRx function at 9.8G rate. Link
active but receive data ignored.
• 2 CPRI running at 9.8G, 1 link in RE mode, 1 link
in REC mode
Condition
Junction
Temp (oC)
Half Standby
(CPRI active,
antenna paths
configured but
not active)
Characteristic
Power mode
VDD Power
(Core+ platform)
Table 22. Power numbers (continued)
Note:
1. The maximum power is the peak power to be used for power supply sizing.
2. The thermal power is the average power of a worse case device running the defined use case.
3. The full run mode max power is tested (excluding IO power) using correlated static leakage limits. All other power modes
are based on estimation and not guaranteed.
4. IO power is estimated based on typical design. It is highly dependent on board design and use case.
5. Typical power based on nominal process distribution for this device.
6. Voltage ID (VID) operating range is between 0.975V to 1.025V.
3.4.1.2
Device AFD4400NXN752VB power specification
This table defines the frequency settings used for specifying power consumption. All power states are specified at 105oC
junction temperature.
Table 23. Frequency definition for power consumption measurement
Parameter
Symbol
Value
Unit
ARM® Cortex-A9 core clock
fmcu
553
MHz
VSP clock
fVSP
553
MHz
AXI clock
faxi
276.5
MHz
AHB clock
fahb
138.3
MHz
IPG clock
CPRI baud rate
fip
69.1
MHz
fcpri
9830.4
Mbps
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
48
Freescale Semiconductor
Electrical characteristics
Table 23. Frequency definition for power consumption measurement (continued)
Parameter
Symbol
Value
Unit
JESD204 baud rate
fjesd
9830.4
Mbps
Ethernet (SGMII) baud rate
fetsec
1250
Mbps
fddr
500
MHz
DDR clock rate
This table provides the current consumption in various operating modes.
VID
34.9
38.8
1,3,4
Full run mode
• All VSPA running FIR 70% with 10% control
Thermal
code
• ARM running code with 75% utilization
• 8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane
per interface
Typical
• 2 JESD RX for SRx function at 9.8G rate
• 4 CPRI running at 9.8G, 2 links in RE mode, 2
links in REC mode
105
VID
28.2
32.1
2,3,4
70
VID
22.6
26.5
2,3,4,5
• Six VSPA running FIR with 100% utilization.
Maximum
Remaining five power gated.
• ARM running code with 100% utilization.
• ARM Data accesses from DDR memory
• 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane
per interface
• 2 JESD RX for SRx function at 9.8G rate
• 2 CPRI running at 9.8G, one link in RE mode,
one link in REC mode
• Single Ethernet lane running at 1.25G
105
VID
20.4
23.2
1,3,4
Half run mode
• Six VSPA running FIR 70% with 10% control
Thermal
code. Remaining five power gated.
• ARM running code with 75% utilization
• 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane
per interface
Typical
• 2 JESD RX for SRx function at 9.8G rate
• 2 CPRI running at 9.8G, one link in RE mode,
one link in REC mode
105
VID
16.7
19.5
2,3,4
70
VID
13.2
16.0
2,3,4,5
Notes
SoC Power
(IO + VDD)(Watts)
105
VDD
(V)
All VSPA running FIR with 100% utilization
Maximum
ARM running code with 100% utilization.
ARM Data accesses from DDR memory
8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane
per interface
• 2 JESD RX for SRx function at 9.8G rate
• 4 CPRI running at 9.8G, 2 links in RE mode, 2
links in REC mode
• 2 Ethernet ports running at 1.25G
Condition
Junction
Temp (oC)
•
•
•
•
Characteristic
Power mode
VDD Power
(Core+ platform)
Table 24. Power numbers
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
49
Electrical characteristics
21.0
5
• All VSPA in partial powerdown waiting for go
Typical
event. Clocks enabled but gated.
• ARM in stop mode. Clocks enabled but gated.
Servicing only CPRI C&M messages
• 8 JESD TX and 8 JESD RX at 9.8G rate, 1 lane
per interface. Links active but no data transfer
(zeros sent, receive data ignored)
• 2 JESD RX for SRx function at 9.8G rate. Link
active but receive data ignored.
• 4 CPRI running at 9.8G, 2 links in RE mode, 2
links in REC mode
70
VID
4.3
8.3
5
Half Standby
(CPRI active,
antenna paths
configured but
not active)
• 6 VSPA in partial powerdown waiting for go
Typical
event. Clocks enabled but gated. Remaining
VSPA in full powerdown.
• ARM in stop mode. Clocks enabled but gated.
Servicing only CPRI C&M messages
• 4 JESD TX and 4 JESD RX at 9.8G rate, 1 lane
per interface. Links active but no data transfer
(zeros sent, receive data ignored). Remaining
links inactive with SerDes powered down or
disabled.
• 2 JESD RX for SRx function at 9.8G rate. Link
active but receive data ignored.
• 2 CPRI running at 9.8G, 1 link in RE mode, 1 link
in REC mode
70
VID
3.5
6.4
5
Sleep
(CPRI active, no
antenna paths
configured or
active)
• All VSPA in full powerdown. Clocks disabled.
Typical
• ARM in stop mode. Clocks enabled but gated.
Servicing only CPRI C&M messages.
• All JESD disabled. Links inactive with SerDes
powered down or disabled.
• 2 CPRI running at 9.8G, 1 link in RE mode, 1 link
in REC mode
70
VID
1.9
2.7
5
•
•
•
•
•
•
•
•
Full Standby
(CPRI active,
antenna paths
configured but
not active)
4 Tx Antenna (153.6 MSPS)
4 Rx Antenna (76.8 MSPS)
2 SRx (153.6 MSPS)
40 MHz Occupied Bandwidth
(8 - 5MHz LTE carriers per antenna)
40 MHz Instantaneous Bandwidth
153.6 MHz DPD Bandwidth
2 CPRI links at 9.8304Gbps rate
Thermal
Notes
SoC Power
(IO + VDD)(Watts)
19.0
4T4R 40 MHz
bandwidth
VDD
(V)
VID
Condition
Junction
Temp (oC)
105
Characteristic
Power mode
VDD Power
(Core+ platform)
Table 24. Power numbers (continued)
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
50
Freescale Semiconductor
Electrical characteristics
Notes
SoC Power
(IO + VDD)(Watts)
VDD Power
(Core+ platform)
VDD
(V)
Condition
Junction
Temp (oC)
Characteristic
Power mode
Table 24. Power numbers (continued)
Note:
1. The maximum power is the peak power to be used for power supply sizing.
2. The thermal power is the average power of a worse case device running the defined use case.
3. The full run mode max power is tested (excluding IO power) using correlated static leakage limits. All other power modes
are based on estimation and not guaranteed.
4. IO power is estimated based on typical design. It is highly dependent on board design and use case.
5. Typical power based on nominal process distribution for this device.
6. Voltage ID (VID) operating range is between 0.975V to 1.025V.
3.5
Input clocks
AFD4400 has four sets of reference input clocks : DEVCLK1_P/N, DEVCLK2_P/N, SGMII_REFCLK_P/N, and
RGMII_REFCLK_P/N.The DEVCLK1 is the default system clock and must be present for the device to come out of reset.
Refer to Section 3.6.11.2, “SerDes reference clocks” for DEVCLKn_P/N and SGMII_REFCLK_P/N electrical specification.
This table provides the RGMII_REFCLK_P/N clock parameters. This clock is an optional source of reference clock to PLLs.
Table 25. SGMII_REFCLK/RGMII_REFCLK AC parameters
Parameter/Condition
Symbol
Min
Typ
Max
Unit
Note
Clock frequency
fRGMII
66
125
167
MHz
—
SGMII clock duty cycle
—
40
50
60
%
—
Period Jitter (Short + Long)
TJ_PERIOD
—
—
150
ps
—
Jitter phase noise at -56 dBc
—
—
—
500
KHz
—
Note:
1. Refer LVDS IO timing spec for pulse skew requirement.
3.6
Module electrical characteristics
This section describes the electrical information including timing specification for the various modules.
3.6.1
Configurable serial peripheral interface (CSPI)
This section describes the electrical information of the CSPI.
Table 26. SPI master mode timing characteristics
ID
Parameter Description
Symbol
Min
Max
Unit
Note
CSM1
SPIn_CLK Cycle Time
TSPK
38.5
—
ns
—
CSM2
SPIn_CLK High or Low Time
TSPKLH
17
—
ns
—
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
51
Electrical characteristics
Table 26. SPI master mode timing characteristics (continued)
ID
Parameter Description
Symbol
Min
Max
Unit
Note
CSM4
SPIn_SSm negated pulse width
TSPOW
30
—
ns
—
CSM5
SPIn_SSm Lead Time (CS setup time)
TSPKHOH
5
—
ns
—
CSM6
SPIn_SSm Lag Time (CS hold time)
TSPKLOL
5
—
ns
—
CSM10
SPIn_DI Setup Time
TSPIVKL
5
—
ns
—
CSM11
SPIn_DI Hold Time
TSPIXKL
5
—
ns
—
CSM12
SPIn_DO Output Delay
TSPKHOV
—
6
ns
—
CSM13
SPIn_RDY Setup Time
TSPOHIH
5
—
ns
—
Table 27. SPI slave timing characteristics
Ref.
Num
Parameter Description
Symbol
Min
Max
Unit
Note
CSS1
SPIn_CLK Cycle Time
TSPK2
55.5
—
ns
—
CSS2
SPIn_CLK High or Low Time
TSPKLH2
25.5
—
ns
—
CSS4
SPIn_SSm negated pulse width
TSPIW2
47
—
ns
—
CSS5
SPIn_SSm Lead Time (CS setup time)
TSPIHKH
5
—
ns
—
CSS6
SPIn_SSm Lag Time (CS hold time)
TSPILKL
5
—
ns
—
CSS7
SPIn_DI Setup Time
TSPIVKL2
5
—
ns
—
CSS8
SPIn_DI Hold Time
TSPIXKL2
5
—
ns
—
CSS9
SPIn_DO Output Delay
TSPKHOV2
—
17
ns
—
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
52
Freescale Semiconductor
Electrical characteristics
SPIn_RDY(input)
TSPOHIH
TSPKLH
TSPK
SPIn_SSm(output)
TSPKLH
TSPKLOL
TSPKHOH
TSPOW
SPIn_CLK(output)
TSPKHOV
SPIn_DO(output)
TSPIVKL
TSPIXKL
SPIn_DI(input)
Master Mode Timing Diagram
TSPKLH2 TSPKLH2
TSPK2
SPIn_SSm(input)
TSPILKL
TSPIHKH
TSPIW2
SPIn_CLK(input)
TSPIVKL2
TSPIXKL2
SPIn_DI(input)
TSPKHOV2
SPIn_DO(output)
Slave Mode Timing Diagram
Figure 6. CSPI Timing Diagram
3.6.2
3.6.2.1
IO electrical characteristics
LVCMOS pads
This section describes the electrical specifications for the LVCMOS interface.
3.6.2.1.1
AC characteristics conditions
AC electrical characteristics are not applicable for output open drain pulldown driver.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
53
Electrical characteristics
This table provides the AC electical characteristics at 1.8 V.
Table 28. AC electrical characteristics (1.8 V voltage mode)
Parameter
Symbol
IO output
TTLH
transition time TTHL
, (Rise/Fall)
Drive strength
(dse2,des1,dse0)
Slew
rate
Test conditions
Min
Max
Unit
Notes
High
(011)
Slow
1.89/1.84
—
Fast
1.97/2.20
—
Low
(100)
Slow
2.99/2.96
—
fast
2.44/2.58
15 pF capacitive
load on pad
2.56/2.42
—
ns
Medium
(101)
Slow
—
fast
1.84/1.96
—
Max
(111)
Slow
1.82/1.67
—
fast
1.13/1.24
—
Note:
1. Refer AFD4400 Reference Manual for drive strength setting (dse2,dse1 and dse0) configuration register.
This table provides the AC electrical characteristics at 3.3 V.
Table 29. AC electrical characteristics (3.3 V voltage mode)
Parameter
IO output
transition time
, (Rise/Fall)
Symbol
TTLH
TTHL
Drive strength
(dse2,des1,dse0)
Slew
rate
Test conditions
Min
Max
Unit
Notes
High
(011)
Slow
3.00/3.16
—
Fast
2.17/2.73
—
Low
(100)
Slow
3.37/3.58
—
2.64/3.07
—
Medium
(101)
Slow
fast
2.04/2.37
—
Max
(111)
Slow
2.19/2.18
—
fast
1.28/1.57
—
fast
15 pF capacitive
load on pad
2.98/3.00
ns
—
Note:
1. Refer AFD4400 Reference Manual for drive strength setting (dse2,dse1 and dse0) configuration register.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
54
Freescale Semiconductor
Electrical characteristics
This figure provides the pad load circuit.
From output
under test
Test point
Capacitive load
Capacitive load includes package, die and equivalent lumped load, external to pad
Figure 7. Pad load circuit
The output pad propagation and transition time waveform is shown below in the figure.
80%
80%
20%
Output (at pad)
20%
TTHL
TTLH
0V
Figure 8. Output pad transition time waveform
3.6.2.2
3.6.2.2.1
LVDS pads
AC characteristics conditions
The AC operating characteristics are provided in Table 30 for LVDS pads.
Table 30. AC electrical characteristics
Symbol
Parameter
Tskd
Differential pulse skew
Ttlh
Output transition time low to high
Tthl
Test conditions
Min
Typ
Max
Unit
Notes
Output transition time high to low
Resistive load = 100 0.01 —
Ω between padp and
0.12 —
padn,
capacitive load = 2 pF 0.10 —
0.25
0.73
F
Operating frequency
—
—
125
600
MHz
—
Vos
Offset voltage imbalance
—
—
—
150
mV
—
0.58
ns
1,2
Note:
1. TIA/EIA-644-A Spec, section 4.1.4.
2. Measurement levels are 20–80% from output voltage
This figure shows differential LVDS driver propagation delay and transition time waveforms.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
55
Electrical characteristics
padp
Voh
80%
80%
20%
20%
padn
Ttlh
Vol
Tthl
Figure 9. Differential LVDS driver transition time waveforms
3.6.2.3
DDR IOs
This section provides AC electrical specifications for the DDR IOs.
3.6.2.3.1
AC electrical characteristics
This table provides the AC characteristics for the DDR IO.
Table 31. DDR AC electrical characteristics
Parameter
Symbol
Min
Max
Unit
Notes
Single output slew rate
tsr
0.4
2
V/ns
—
Skew between pad rise/fall asymmetry + skew caused by
simultaneous switching noise (SSN)
tskd
—
70
ps
—
This figure shows the AC pad load circuit.
From output
under test
Test point
Capacitive load
Figure 10. Pad load circuit
This figure shows output pad propagation and transition time waveform.
VDDDDR
80%
Output at pad
20%
80%
20%
0V
Figure 11. Output pad transition time waveform
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
56
Freescale Semiconductor
Electrical characteristics
3.6.3
DDR controller
This table provides the timing parameters for DDR3 controller.
Table 32. DDR3 timing parameter
ID
Parameter
Symbol
Min
Max
Unit
Note
DDR0
Clock Period
TMMKW
2
—
ns
—
DDR1
CK clock high-level width
TMMKH
0.47
0.53
TMMKW
—
DDR2
CK clock low-level width
TMMKL
0.47
0.53
TMMKW
—
DDR4
CS, RAS, CAS, CKE, WE, ODT setup time
TMMKHOV
440
—
ps
—
DDR5
CS, RAS, CAS, CKE, WE, ODT hold time
TMMKHOX
315
—
ps
—
DDR6
Address output setup time
TMMKHOV2 440
—
ps
—
DDR7
Address output hold time
TMMKHOX2 315
—
ps
—
Note:
1. All measurements are in reference to Vref level.
2. Measurements are done using balanced load and 25 Ω resistor from outputs to VDD_REF.
This table provides the write timing parameters for DDR3 write cycle.
Table 33. DDR3 write cycle
ID
Parameter
Symbol
Min
Max
Unit
Note
DDR17
DQ and DQM setup time to DQS (differential TMMDHDV
strobe)
215
—
ps
—
DDR18
DQ and DQM hold time to DQS (differential TMMDHDX
strobe)
215
—
ps
—
DDR21
DQS latching rising transitions to associated TMMKHDH
clock edges
–0.25
+0.25
TMMKW
—
DDR22
DQS high level width
TMMDQSH
0.45
0.55
TMMKW
—
DDR23
DQS low level width
TMMDQSL
0.45
0.55
TMMKW
—
Note:
1. To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the
middle of DQ window.
2. All measurements are in reference to Vref level.
3. Measurements are done using balanced load and 25 Ω resistor from outputs to VDD_REF.
This table provides the timing parameters for DDR3 read cycle.
Table 34. DDR3 read cycle
ID
DDR27
Parameters
Tolerated skew for DDR_DQS - DDR_DQ
Symbol
TMMDSKEW -150
Min
Max
150
Unit
ps
Note
—
Note:
1. To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS
in the middle of DQ window.
2. All measurements are in reference to Vref level.
3. Measurements are done using balanced load and 25 Ω resistor from outputs to VDD_REF.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
57
Electrical characteristics
This figure shows the basic timing parameters of DDR3.
TMMKW
TMMKH
DDR_CKn_B
DDR_CKn
TMMKL
TMMKHOV
DDR_CSn_B
TMMKHOX
DDR_RAS_B
TMMKHOX
TMMKHOV
DDR_CAS_B
TMMKHOV
TMMKHOX
TMMKHOX
DDR_WE_B
DDR_ODTn/CKEn
TMMKHOV2
DDR_A[15:0]
TMMKHOX2
ROW/BA
TMMKHOV
COL/BA
Figure 12. DDR3 command and address parameters
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
58
Freescale Semiconductor
Electrical characteristics
This figure shows the write timing parameters.
DDR_CKn
DDR_CKn_B
TMMDQSH
TMMKHDH
DDR_DQS(Output)
TMMDHDX
TMMDHDV
TMMDHDV
DDR_DQ(Output)
DDR_DQM(Output)
TMMDQSL
TMMDHDX
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DM
DM
DM
DM
DM
DM
DM
DM
TMMDHDV
TMMDHDV
TMMDHDX
TMMDHDX
Figure 13. DDR3 write cycle
This figure shows the read timing parameters.
DDR_CKn
DDR_CKn_B
DDR_DQS(Input)
DDR_DQ(Input)
DATA
DATA
TMMDSKEW
DATA
DATA
DATA
DATA
DATA
DATA
TMMDSKEW
Figure 14. DDR3 read cycle
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
59
Electrical characteristics
3.6.4
Digital phase lock loop (DPLL)
This table lists the DDR PLL, System PLL and TbGen PLL electrical characteristics.
Table 35. DPLL electrical characteristics
Parameter
Min
Max
Unit
Note
Reference clock frequency range
66.67
166
MHz
—
Output clock frequency range
491.52
2000
MHz
1
PLL lock time
—
100
μs
—
Period jitter (peak-to-peak) for PLL output —
±(40 + clock out period × 1%)
ps
—
Phase jitter (peak-to-peak) for PLL output —
±(75 + ref_clock_period × 1%)
ps
—
Note:
1. The maximum PLL output frequency should be programmed based on the maximum operating limit.
3.6.5
Ethernet: Enhanced three-speed ethernet (eTSEC)
This section provides the AC electrical characteristics for the enhanced three-speed Ethernet 10/100/1000 controller and MII
management interface.
3.6.5.1
MII AC timing specifications
This section describes the MII transmit and receive AC timing specifications.
This table provides the MII transmit AC timing specifications.
Table 36. MII transmit AC timing specifications
Parameter
Symbol
Min
Typ
Max
Unit
Note
TSEC1_TX_CLK clock period 10 Mbps
tMTX
399.96 400
400.04 ns
—
TSEC1_TX_CLK clock period 100 Mbps
tMTX
39.996 40
40.004 ns
—
TSEC1_TX_CLK duty cycle
tMTXH/tMTX
35
—
65
%
—
TSEC1_TX_CLK to MII data TSEC1_TXD[3:0],
TSEC1_TX_ER, TSEC1_TX_EN delay
tMTKHDX
0
—
25
ns
—
TSEC1_TX_CLK data clock rise (20%–80%)
tMTXR
1.0
—
4.0
ns
—
TSEC1_TX_CLK data clock fall (80%–20%)
tMTXF
1.0
—
4.0
ns
—
This figure shows the MII transmit AC timing diagram.
tMTXR
tMTX
TSEC1_TX_CLK
tMTXH
tMTXF
TSEC1_TXD[3:0]
TSEC1_TX_EN
TSEC1_TX_ER
tMTKHDX
Figure 15. MII transmit AC timing diagram
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
60
Freescale Semiconductor
Electrical characteristics
This table provides the MII receive AC timing specifications.
Table 37. MII receive AC timing specifications
Parameter
Symbol
Min
Typ
Max
Unit
Note
TSEC1_RX_CLK clock period 10 Mbps
tMRX
399.96
400
400.04
ns
—
TSEC1_RX_CLK clock period 100 Mbps
tMRX
39.996
40
40.004
ns
—
TSEC1_RX_CLK duty cycle
tMRXH/tMRX
35
—
65
%
—
TSEC1_RXD[3:0], TSEC1_RX_DV, TSEC1_RX_ER tMRDVKH
setup time to TSEC1_RX_CLK
10.0
—
—
ns
—
TSEC1_RXD[3:0], TSEC1_RX_DV, TSEC1_RX_ER tMRDXKH
hold time to TSEC1_RX_CLK
10.0
—
—
ns
—
Note: The frequency of TSEC1_RX_CLK (input) should not exceed the frequency of TSEC1_TX_CLK (input) by more than
300 ppm.
This figure shows the MII receive AC timing diagram.
tMRXR
tMRX
TSEC1_RX_CLK
tMRXF
tMRXH
TSEC1_RXD[3:0]
TSEC1_RX_DV
TSEC1_RX_ER
Valid Data
tMRDVKH
tMRDXKH
Figure 16. MII receive AC timing diagram
3.6.5.2
RGMII AC timing specifications
This table presents the RGMII AC timing specifications.
Table 38. RGMII AC timing specifications
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Data to clock output skew (at transmitter)
tSKRGT_TX
–770
0
950
ps
5
Data to clock input skew (at receiver)
tSKRGT_RX
1.3
—
2.6
ns
2
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
61
Electrical characteristics
Table 38. RGMII AC timing specifications (continued)
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Clock period duration
tRGT
7.2
8.0
8.8
ns
3
Duty cycle for 10BASE-T and 100BASE-TX
tRGTH/tRGT
40
50
60
%
3,4
Duty cycle for Gigabit
tRGTH/tRGT
45
50
55
%
—
Note:
2. This implies that the PC board design requires clocks to be routed such that an additional trace delay greater than 1.5 ns
is added to the associated clock signal. Many PHY vendors already incorporate the necessary delay inside their chip. If
so, additional PCB delay is probably not needed.
3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as
long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed
transitioned between.
5. The frequency of TSEC1_RX_CLK (input) should not exceed the frequency of TSEC1_GTX_CLK (output) by more than
300 ppm.
This figure shows the RGMII AC timing and multiplexing diagrams.
tRGTH
tRGT
TSEC1_GTX_CLK
(At MAC, output)
tSKRGT_TX
TSEC1_TXD[8:5][3:0]
TSEC1_TXD[7:4][3:0]
(At MAC, output)
TSEC1_TX_CTL
(At MAC, output)
TXD[3:0]
TXD[8:5]
TXD[7:4]
TXD[4]
TXEN
TXD[9]
TXERR
tSKRGT_TX
PHY equivalent to tSKRGT_RX
PHY equivalent to tSKRGT_RX
TSEC1_TX_CLK
(At PHY, input)
tRGTH
tRGT
TSEC1_RX_CLK
(At PHY, output)
TSEC1_RXD[8:5][3:0]
TSEC1_RXD[7:4][3:0]
(At PHY, output)
TSEC1_RX_CTL
(At PHY, output)
RXD[8:5]
RXD[3:0] RXD[7:4]
PHY equivalent to tSKRGT_TX
RXD[4]
RXDV
PHY equivalent to tSKRGT_TX
RXD[9]
RXERR
tSKRGT_RX
tSKRGT_RX
TSEC1_RX_CLK
(At MAC, input)
Figure 17. RGMII timing and multiplexing diagrams
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
62
Freescale Semiconductor
Electrical characteristics
WARNING
Freescale guarantees timings generated from the MAC. Board designers must ensure
delays needed at the PHY or the MAC.
3.6.5.3
RMII AC timing specifications
In RMII mode, the reference clock should be fed to TSEC1_TX_CLK. This section describes the RMII transmit and receive
AC timing specifications.
This table lists the RMII transmit AC timing specifications.
Table 39. RMII transmit AC timing specifications
Parameter
Symbol
Min
Typ
Max
Unit
Typ
TSEC1_TX_CLK clock period
tRMT
—
20.0
—
ns
—
TSEC1_TX_CLK duty cycle
tRMTH
35
—
65
%
—
TSEC1_TX_CLK peak-to-peak jitter
tRMTJ
—
—
250
ps
—
2.0
—
10.0
ns
—
TSEC1_TX_CLK to RMII data TXD[1:0], TX_EN delay tRMTDX
This figure shows the RMII transmit AC timing diagram.
tRMT
tRMTR
TSEC1_TX_CLK
tRMTH
tRMTF
TSEC1_TXD[1:0]
TSEC1_TX_EN
TSEC1_TX_ER
tRMTDX
Figure 18. RMII transmit AC timing diagram
This table lists the RMII receive AC timing specifications.
Table 40. RMII receive AC timing specifications
Parameter
Symbol
Min
Typ
Max
Unit
Note
TSEC1_TX_CLK clock period
tRMR
—
20.0
—
ns
—
TSEC1_TX_CLK duty cycle
tRMRH
35
—
65
%
—
TSEC1_TX_CLK peak-to-peak jitter
tRMRJ
—
—
250
ps
—
RXD[1:0], CRS_DV, RX_ER set-up time to TSEC1_TX_CLK tRMRDV
rising edge
4.0
—
—
ns
—
RXD[1:0], CRS_DV, RX_ER hold time to TSEC1_TX_CLK
rising edge
2.0
—
—
ns
—
tRMRDX
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
63
Electrical characteristics
This figure shows the RMII receive AC timing diagram.
tRMR
tRMRR
TSEC1_TX_CLK
tRMRF
tRMRH
TSEC1_RXD[1:0]
TSEC1_CRS_DV
TSEC1_RX_ER
Valid Data
tRMRDV
tRMRDX
Figure 19. RMII receive AC timing diagram
3.6.5.4
MII management AC timing specifications
This table provides the MII management AC timing specifications.
Table 41. MII management AC timing specifications
At recommended operating conditions with VDDGPIO = 3.3 V ± 5%.
Parameter
Symbol1
Min
Typ
Max
Unit
Notes
MDC frequency
fMDC
—
—
2.5
MHz
1
MDC period
tMDC
400
—
—
ns
—
MDC clock pulse width high
tMDCH
32
—
—
ns
—
MDC to MDIO delay
tMDKHDX
(8 × taxi) – 3
—
(8 × taxi) + 3
ns
2, 3
MDIO to MDC setup time
tMDDVKH
15
—
—
ns
—
MDIO to MDC hold time
tMDDXKH
0
—
—
ns
—
Notes:
1. This parameter is dependent on the platform clock frequency (MIIMCFG [MgmtClk] field determines the clock frequency
of the MgmtClk Clock MDC).
2. This parameter is dependent on the platform (AXI) clock frequency (faxi). The delay is equal to 8 platform clock periods
±3 ns. For example, with a platform clock of 307.2 MHz, the min/max delay is 26 ns ± 3 ns.
3. taxi is the platform AXI bus clock.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
64
Freescale Semiconductor
Electrical characteristics
The figure below shows the MII management interface timing diagram.
tMDCR
tMDC
MDC
tMDCF
tMDCH
MDIO
(Input)
tMDDVKH
tMDDXKH
MDIO
(Output)
tMDKHDX
Figure 20. MII management interface timing diagram
3.6.5.5
Ethernet controller IEEE Std 1588 AC timing specifications
This table provides the IEEE 1588 AC timing specifications.
Table 42. Ethernet controller IEEE 1588 AC timing specifications
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Clock period
tT1588CLK
3.3
—
TRX_CLK × 7
ns
1, 3
Duty cycle
tT1588CLKH/
tT1588CLK
40
50
60
%
2
Peak-to-peak jitter
tT1588CLKINJ
—
—
250
ps
—
Rise time TSEC_1588_CLKIN (20%–80%) tT1588CLKINR
1.0
—
2.0
ns
—
Fall time TSEC_1588_CLKIN (80%–20%) tT1588CLKINF
1.0
—
2.0
ns
—
TSEC_1588_CLKOUT clock period
tT1588CLKOUT
2 × tT1588CLK
—
—
ns
4
TSEC_1588_CLKOUT duty cycle
tT1588CLKOUTH/ 30
tT1588CLKOUT
50
70
%
—
TSEC_1588_ALARMn,
TSEC_1588_FIPERn hold time
tT1588OX
0.5
—
—
ns
5
TSEC_1588_ALARMn,
TSEC_1588_FIPERn delay
tT1588OV
—
—
3.0
ns
—
TSEC_1588_TRIGn pulse width
tT1588TRIGH
2 × tT1588CLK_MAX —
—
ns
3
Notes:
1. TRX_CLK is the maximum clock period of TSEC receiving clock selected by TMR_CTRL[CKSEL]. See the AFD4400
Reference Manual for a description of TMR_CTRL registers.
2. It needs to be at least two times the clock period of the clock selected by TMR_CTRL[CKSEL]. See the AFD4400
Reference Manual for a description of TMR_CTRL registers.
3. The maximum value of tT1588CLK is not only defined by the value of TRX_CLK, but also defined by the recovered clock.
For example, for 10/100/1000 Mbps modes, the maximum value of tT1588CLK is 2800, 280, and 56 ns, respectively.
4. For 1588, there are three input clock sources: TSEC_1588_CLKIN, RTC and AXI clock. When using
TSEC_1588_CLKIN, the minimum clock period is 2 × tT1588CLK.
5. The parameter has been characterized at highest slew rate and drive strength.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
65
Electrical characteristics
This figure shows the data and command output AC timing diagram.
tT1588CLKOUT
tT1588CLKOUTH
TSEC_1588_CLKOUT
tT1588OV
tT1588OX
TSEC_1588_ALARM1/2
TSEC_1588_FIPER1/2/3
Note: The output delay is counted starting at the rising edge if tT1588CLKOUT is non-inverting. Otherwise, it
is counted starting at the falling edge.
Figure 21. Ethernet controller IEEE 1588 output AC timing
This figure shows the data and command input AC timing diagram.
tT1588CLK
tT1588CLKH
TSEC_1588_CLKIN
TSEC_1588_TRIG1/2
tT1588TRIGH
Figure 22. Ethernet controller IEEE 1588 input AC timing
3.6.5.6
SGMII interface electrical characteristics
For SGMII interface electrical characteristics, see Section 3.6.11, “SerDes”.
3.6.6
Fusebox
This section describes the fusebox electrical characteristics.
The table below shows the fusebox supply current parameters. These parameters are validated through characterization.
Table 43. Fusebox supply current parameters
Parameter
Symbol
Min
Typ
Max
Unit
Note
The VEFUSE_PGM current flow when not programming IVPGM_UNPROG
0.35
0.41
1.76
mA
—
The VEFUSE_PGM current flow during programming
IVPGM_PROG
87.2
87.3
96.09
mA
—
Programming time
TPGM
11
12
13
μs
—
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
66
Freescale Semiconductor
Electrical characteristics
3.6.7
JTAG
This section describes the AC electrical specifications for the IEEE Std 1149.1™/1149.6™ (JTAG) interface. This section
applies to both the ARM and VSP JTAG ports.
NOTE
The VSP JTAG cannot be used for boundary scan (BSR). The BSR TAP is connected to
main JTAG port (ARM JTAG).
3.6.7.1
JTAG AC timing specifications
This table provides the JTAG AC timing specifications as defined in Figure 23 through Figure 26.
Table 44. JTAG AC timing specifications
For recommended operating conditions see Table 3.
Parameter
Symbol
Min
Max
Unit
Notes
JTAG external clock frequency of operation
fJTG
—
20
MHz
—
JTAG external clock cycle time
tJTG
50
—
ns
—
JTAG external clock pulse width
tJTKHKL
25
—
ns
—
JTAG external clock rise and fall times
tJTGR and tJTGF
—
2
ns
—
JTAG_TRST_B/JTAG_VSP_TRST_B assert time tTRST
125
—
ns
1
Input setup times
tJTDVKH
4
—
ns
—
Input hold times
tJTDXKH
21
—
ns
—
Output valid times
tJTKLDV
—
25
ns
2
Output hold times
tJTKLDX
0
—
ns
2
JTAG external clock to output high impedance
tJTKLDZ
4
10
ns
—
Note:
1. JTAG_TRST_B/JTAG_VSP_TRST_B is an asynchronous level sensitive signal.
2. All the output timings are measured from the midpoint voltage of the falling/rising edge of JTAG clock to the midpoint of
the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω
load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
This figure shows the AC test load for TDO and the boundary-scan outputs.
Output
Z0 = 50 Ω
RL = 50 Ω
VDDGPIO/2
Figure 23. AC test load for the JTAG interface
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
67
Electrical characteristics
This figure provides the JTAG clock input timing diagram.
JTAG_TCK
JTAG_VSP_TCK
tJTGR
tJTKHKL
tJTGF
tJTG
Figure 24. JTAG clock input timing diagram
This figure provides the TRST_B timing diagram.
JTAG_TRST_B
JTAG_VSP_TRST_B
tTRST
Figure 25. TRST_B timing diagram
This figure provides the boundary-scan timing diagram.
JTAG_TCK
tJTDVKH
Boundary
data inputs
tJTDXKH
Input
data valid
tJTKLDX
tJTKLDV
Boundary
data outputs
Output data valid
tJTKLDZ
Boundary
data outputs
Output Data Valid
Figure 26. Boundary-scan timing diagram
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
68
Freescale Semiconductor
Electrical characteristics
3.6.8
GPIO signals
This section describes the AC electrical specifications for the GPIO pins.
3.6.8.1
GPIO AC timing specifications
This table provides the GPIO input and output AC timing specifications.
Table 45. GPIO pin input AC timing specifications
For recommended operating conditions, see Table 3.
Parameter
Symbol
GPIO inputs—minimum pulse width
Min
tPIWID
20
Unit
ns
Notes
1
Note:
1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any
external synchronous logic. GPIO inputs are required to be valid for at least tPIWID to ensure proper operation.
This figure provides the AC test load for the GPIO pin.
Output
Z0 = 50 Ω
OVDD/2
R L = 50 Ω
Figure 27. GPIO pin AC test load
3.6.9
I2C
This section describes the electrical information of the I2C interface.
3.6.9.1
I2C module timing
This table provides the timing characteristics for the I2C module.
Table 46. I2C module timing characteristics
Standard Mode
ID
Parameter
Fast Mode
Symbol
Unit
Min
Max
Min
Note
Max
IC0
I2Cn_SCL frequency
fI2C
—
100
—
400
KHz
—
IC1
I2Cn_SCL cycle time
tI2C
10
—
2.5
—
μs
—
IC6
LOW Period of the I2Cn_SCL
Clock
tI2CL
4.7
—
1.3
—
μs
—
IC5
HIGH Period of I2Cn_SCL Clock
tI2CH
4.0
—
0.6
—
μs
—
IC2
Hold time (repeated) START
condition
tI2SXKL
4.0
—
0.6
—
μs
—
IC3
Set-up time for STOP condition
tI2PVKH
4.0
—
0.6
—
μs
—
IC4
Data hold time
tI2DXKL
0
3.45
0
0.9
μs
1,2
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
69
Electrical characteristics
Table 46. I2C module timing characteristics (continued)
Standard Mode
ID
Parameter
Fast Mode
Symbol
Unit
Min
Max
Min
Note
Max
0.25
—
0.1
—
μs
3
Set-up time for a repeated START tI2DLKH
condition
4.7
—
0.6
—
μs
—
Bus free time between a STOP and tI2KHDX
START condition
4.7
—
1.3
—
μs
—
IC8
Data set-up time
IC7
IC9
tI2DVKH
Note:
1. A device must internally provide a hold time of at least 300 ns for I2Cn_SDA signal in order to bridge the undefined
region of the falling edge of I2Cn_SCL. The “n“ is the instance number of the I2C module.
2. The maximum hold time has only to be met if the device does not stretch the LOW period (ID # IC6) of the I2Cn_SCL
signal.
3. Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (IC8)
of 250 ns must be met. This will automatically be the case if the device does not stretch the LOW period of the
I2Cn_SCL. If such a device does stretch the LOW period of the I2Cn_SCL signal, it must output the next data bit to the
I2Cn_SDA line (IO max rise time + data_setup_time(IC8) time (according to the Standard-mode I2C-bus specification)
before the I2Cn_SCL line is released.
4. Cb = total capacitance of one bus line in pF. Assumed to be ~400 pF (max).
This figure below depicts the timing of I2C module.
tI2KHDX
I2Cn_SDA
I2Cn_SCL
tI2DLKH
tI2SXKL
tI2DVKH
START
tI2CL
tI2PVKH
tI2DXKL
tI2C
tI2CH
STOP
START
START
Figure 28. I2C bus timing
3.6.10
Quad-SPI
This table provides Quad-SPI timing characteristics.
Table 47. Quad-SPI module timing characteristics
Value
Parameter
Symbol
Unit
Min
Typ
Note
Max
Frequency
fQSK
—
—
52
Mhz
—
Clock to Q delay
TQSKLDV
—
—
5.0
ns
—
Setup time for incoming data
TQSDVKL
10.5
—
—
ns
—
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
70
Freescale Semiconductor
Electrical characteristics
Table 47. Quad-SPI module timing characteristics (continued)
Value
Parameter
Symbol
Unit
Min
Hold time requirement for incoming data
TQSDXKL
1.0
Typ
Note
Max
—
—
ns
—
Note:
1. All data are based on a negative edge data launch from AFD4400 and a negative edge data capture as shown in the
timing diagrams.
2. Timings correspond to QSPI_SMPR = 0x0000_000x.
3. A negative value of hold is an indication of pad delay on the clock pad (delay between the edge capturing data inside
device and the edge appearing at the pin).
4. 15 pF load has been assumed on the pads.
The figure below depicts Quad-SPI timing.
TQSDXKL
TQSKLDV
1
2
TQSDVKL
3
4
5
6
7
8
QSPI_CK
QSPI_IO[3:0]
(For Output)
QSPI_IO[3:0]
(For Input)
1. Last address out
2. Address captured at flash
3. Data out from Flash
4. This is SPI protocol defined Ideal Data Capture edge.The capture edge can be programmed as shown in 5,6,7,8.
5. Delayed data captured edge with QSPI_SMPR=0000_000x
6. Delayed data captured edge with QSPI_SMPR=0000_002x
7. Delayed data captured edge with QSPI_SMPR=0000_004x
8. Delayed data captured edge with QSPI_SMPR=0000_006x
Figure 29. Quad-SPI input timing
3.6.11
SerDes
The following subsections define the AC-level specifications for the CPRI, SGMII and JESD204B data lines.
3.6.11.1
Signal terms definition
The SerDes utilizes differential signaling to transfer data across the serial link. This section defines the terms that are used in
the description and specification of differential signals.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
71
Electrical characteristics
This figure shows how the signals are defined. For illustration purposes only, one SerDes lane is used in the description. This
figure shows the waveform for either a transmitter output (SD_TXn_P and SD_TXn_N) or a receiver input (SD_RXn_P and
SD_RXn_N). Each signal swings between A volts and B volts where A > B.
SD_TXn_P or
SD_RXn_P
A volts
Vcm = (A + B)/2
SD_TXn_N or
SD_RXn_N
B volts
Differential swing, VID or VOD = A – B
Differential peak voltage, VDIFFp = |A – B|
Differential peak-to-peak voltage, VDIFFpp = 2 × VDIFFp (not shown)
Figure 30. Differential voltage definitions for transmitter or receiver
Using this waveform, the definitions are as shown in the following list. To simplify the illustration, the definitions assume that
the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment:
Single-Ended Swing
The transmitter output signals and the receiver input signals SD_TXn, SD_TXn_B, SD_RXn, and
SD_RXn_B each have a peak-to-peak swing of A – B volts. This is also referred as each signal
wire’s single-ended swing.
Differential Output Voltage, VOD (or Differential Output Swing)
The differential output voltage (or swing) of the transmitter, VOD, is defined as the difference of
the two complimentary output voltages: VSD_TXn – VSD_TXn_B. The VOD value can be either
positive or negative.
Differential Input Voltage, VID (or Differential Input Swing)
The differential input voltage (or swing) of the receiver, VID, is defined as the difference of the two
complimentary input voltages: VSD_RXn – VSD_RXn_B. The VID value can be either positive or
negative.
Differential Peak Voltage, VDIFFp
The peak value of the differential transmitter output signal or the differential receiver input signal
is defined as the differential peak voltage, VDIFFp = |A – B| volts.
Differential Peak-to-Peak, VDIFFp-p
Since the differential output signal of the transmitter and the differential input signal of the receiver
each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter
output signal or the differential receiver input signal is defined as differential peak-to-peak voltage,
VDIFFp-p = 2 × VDIFFp = 2 × |(A – B)| volts, which is twice the differential swing in amplitude, or
twice of the differential peak. For example, the output differential peak-to-peak voltage can also
be calculated as VTX-DIFFp-p = 2 × |VOD|.
Differential Waveform
The differential waveform is constructed by subtracting the inverting signal (SD_TXn_B, for
example) from the non-inverting signal (SD_TXn_B, for example) within a differential pair. There
is only one signal trace curve in a differential waveform. The voltage represented in the differential
waveform is not referenced to ground. See Figure 35 as an example for differential waveform.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
72
Freescale Semiconductor
Electrical characteristics
Common Mode Voltage, Vcm
The common mode voltage is equal to half of the sum of the voltages between each conductor of
a balanced interchange circuit and ground. In this example, for SerDes output,
Vcm_out = (VSD_TXn + VSD_TXn) ÷ 2 = (A + B) ÷ 2, which is the arithmetic mean of the two
complimentary output voltages within a differential pair. In a system, the common mode voltage
may often differ from one component’s output to the other’s input. It may be different between the
receiver input and driver output circuits within the same component. It is also referred to as the DC
offset on some occasions.
To illustrate these definitions using real values, consider the example of a current mode logic (CML) transmitter that has a
common mode voltage of 2.25 V and outputs, TD and TD_B. If these outputs have a swing from 2.0 V to 2.5 V, the peak-to-peak
voltage swing of each signal (TD or TD_B) is 500 mV p-p, which is referred to as the single-ended swing for each signal.
Because the differential signaling environment is fully symmetrical in this example, the transmitter output’s differential swing
(VOD) has the same amplitude as each signal’s single-ended swing. The differential output signal ranges between 500 mV
and –500 mV. In other words, VOD is 500 mV in one phase and –500 mV in the other phase. The peak differential voltage
(VDIFFp) is 500 mV. The peak-to-peak differential voltage (VDIFFp-p) is 1000 mV p-p.
3.6.11.2
SerDes reference clocks
The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding
SerDes lanes.
The following sections describe the SerDes reference clock requirements and provide application information.
3.6.11.2.1
SerDes reference clock receiver characteristics
This figure shows a receiver reference diagram of the SerDes reference clocks.
DEVCLK1_P
DEVCLK2_P
SGMII_REFCLK_P
DEVCLK1_N
DEVCLK2_N
SGMII_REFCLK_N
50 Ω
Input
Amp
50 Ω
Figure 31. Receiver of SerDes reference clocks
The characteristics of the clock signals are as follows:
•
•
The SerDes transceivers core power supply voltage requirements (VDDSDX) are as specified in Section 3.1.2,
“Recommended operating conditions.”
The SerDes reference clock receiver reference circuit structure is as follows:
— Pins are internally AC-coupled differential inputs as shown in Figure 31. Each differential clock input has on-chip
50-Ω termination to SDn_XCOREVSS followed by on-chip AC-coupling.
— The external reference clock driver must be able to drive this termination.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
73
Electrical characteristics
•
•
— The SerDes reference clock input can be either differential or single-ended. See the differential mode and
single-ended mode descriptions below for detailed requirements.
The maximum average current requirement also determines the common mode voltage range.
— When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the
maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage
is not critical as long as it is within the range allowed by the maximum average current of 8 mA because the input
is AC-coupled on-chip.
— This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V ÷ 50 = 8 mA)
while the minimum common mode input level is 0.1 V above SDn_XCOREVSS. For example, a clock with a
50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 mA to 16 mA
(0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the
common mode voltage at 400 mV.
— If the device driving the clock inputs cannot drive 50 Ω to SDn_XCOREVSS DC or the drive strength of the clock
driver chip exceeds the maximum input current limitations, it must be AC-coupled off-chip.
The input amplitude requirement is described in detail in the following sections.
3.6.11.2.2
DC-level requirement for SerDes reference clocks
The DC level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect
the clock driver chip and SerDes reference clock inputs, as described below:
•
Differential Mode
— The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-to-peak (or
between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have
a single-ended swing of less than 800 mV and greater than 200 mV. This requirement is the same for both external
DC-coupled or AC-coupled connection.
— For an external DC-coupled connection, as described in Section 3.6.11.2.1, “SerDes reference clock receiver
characteristics,” the maximum average current requirements sets the requirement for average voltage (common
mode voltage) as between 100 mV and 400 mV. Figure 32 shows the SerDes reference clock input requirement
for DC-coupled connection scheme.
SDn_REFn_CLK
200 mV < Input amplitude or differential peak < 800 mV
Vmax
100 mV < Vcm
< 400 mV
Vmin
SDn_REFn_CLK_B
< 800 mV
>0V
Figure 32. Differential reference clock input DC requirements (external DC-coupled)
— For an external AC-coupled connection, there is no common mode voltage requirement for the clock driver.
Because the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock
receiver operate in different common mode voltages. The SerDes reference clock receiver in this connection
scheme has its common mode voltage set to SDn_XCOREVSS. Each signal wire of the differential inputs is
allowed to swing below and above the common mode voltage (SDn_XCOREVSS). Figure 33 shows the SerDes
reference clock input requirement for AC-coupled connection scheme.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
74
Freescale Semiconductor
Electrical characteristics
200 mV < Input amplitude or differential peak < 800 mV
SDn_REFn_CLK
Vmax < Vcm + 400 mV
Vcm
Vmin
SDn_REFn_CLK_B
> Vcm – 400 mV
Figure 33. Differential reference clock input DC requirements (external AC-coupled)
•
Single-Ended Mode
— The reference clock can also be single-ended. The DEVCLK1_P/DEVCLK2_P/SGMII_REFCLK_P input
amplitude (single-ended swing) must be between 400 mV and 800 mV peak-to-peak (from VMIN to VMAX) with
DEVCLK1_N/DEVCLK2_N/SGMII_REFCLK_N either left unconnected or tied to ground.
— The DEVCLK1_P/DEVCLK2_P/SGMII_REFCLK_P input average voltage must be between 200 and 400 mV.
Figure 34 shows the SerDes reference clock input requirement for single-ended signaling mode.
— To meet the input amplitude requirement, the reference clock inputs may need to be DC- or AC-coupled
externally. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused
phase (DEVCLK1_N/DEVCLK2_N/SGMII_REFCLK_N) through the same source impedance as the clock input
(DEVCLK1_P/DEVCLK2_P/SGMII_REFCLK_P) in use.
400 mV
< SD_REF_CLKn input amplitude < 800 mV
SDn_REFn_CLK
0V
SDn_REFn_CLK_B
Figure 34. Single-ended reference clock input DC requirements
3.6.11.2.3
AC requirements of reference clock
The table below lists the AC requirements for SerDes reference clock SGMII_REFCLK_P/SGMII_REFCLK_N.
Table 48. SGMII_REFCLK_P/SGMIIREFCLK_N requirement
Parameter
SGMII_REFCLK_P/SGMIIREFCLK_N
frequency range
SGMII_REFCLK_P/SGMIIREFCLK_N clock
frequency tolerance
SGMII_REFCLK_P/SGMIIREFCLK_N
reference clock duty cycle
SGMII_REFCLK_P/SGMIIREFCLK_N max
deterministic peak-to-peak jitter at 10-6 BER
Symbol
Min
Typ
Max
Unit
Notes
fSGMII
—
125
—
MHz
1
tCLK_TOL
–100
—
100
ppm
—
tCLK_DUTY
40
50
60
%
—
tCLK_DJ
—
—
42
ps
—
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
75
Electrical characteristics
Table 48. SGMII_REFCLK_P/SGMIIREFCLK_N (continued)requirement
Parameter
Symbol
Min
Typ
Max
Unit
Notes
SGMII_REFCLK_P/SGMIIREFCLK_N total
reference clock jitter at 10-6 BER (peak-to-peak
jitter at refClk input)
tCLK_TJ
—
—
86
ps
—
tCLKRR/tCLKFR
1
—
4
V/ns
2
Differential input high voltage
VIH
VCM+200
mV
—
—
mV
3
Differential input low voltage
VIL
—
—
VCM –200
mV
mV
3
Rise-Fall
Matching
—
—
20
%
4, 5
SGMII_REFCLK_P/SGMIIREFCLK_N
rising/falling edge rate
Rising edge rate (SGMII_REFCLK_P) to falling
edge rate (SGMII_REFCLK_N) matching
Notes:
1. Caution: Only 125 have been tested. In-between values do not work correctly with the rest of the system.
2. Measured from –200 mV to +200 mV on the differential waveform (derived from SGMII_REFCLK_P minus
SGMII_REFCLK_N). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV
measurement window is centered on the differential zero crossing. See Figure 35.
3. Measurement taken from differential waveform
4. Measurement taken from single-ended waveform
5. Matching applies to rising edge for SGMII_REFCLK_P and falling edge rate for SGMII_REFCLK_N. It is measured using
a 200 mV window centered on the median cross point where SGMII_REFCLK_P rising meets SGMII_REFCLK_N falling.
The median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate
calculations. The rise edge rate of SGMII_REFCLK_P must be compared to the fall edge rate of SGMII_REFCLK_N, the
maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 36.
This table lists the AC requirements for SerDes reference clock DEVCLKn_P/DEVCLKn_N.
Table 49. DEVCLKn_P/DEVCLKn_N input clock requirements
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Frequency range
tCLK_REF
—
122.88
—
MHz
1
Clock frequency tolerance
tCLK_TOL
–100
—
100
ppm
—
tCLK_DUTY
45
50
55
%
—
Single side band noise at 1 KHz
tSSN_1K
—
—
–85
dBC/Hz
—
Single side band noise at 10 KHz
tSSN_10K
—
—
–108
dBC/Hz
—
Single side band noise at 100 KHz
tSSN_100K
—
—
–128
dBC/Hz
—
Single side band noise at 1 MHz
tSSN_1M
—
—
–138
dBC/Hz
—
Single side band noise at 10 MHz
tSSN_10M
—
—
–138
dBC/Hz
—
Random jitter (1.2 MHz to 15 MHz)
tJ_RANDOM
—
—
0.8
ps
—
Reference clock duty cycle (measured at 1.6 V)
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
76
Freescale Semiconductor
Electrical characteristics
Table 49. DEVCLKn_P/DEVCLKn_N input clock requirements (continued)
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Total reference clock jitter at 10-12 BER (1.2 MHz to 15 MHz)
tJ_TOTAL
—
—
11
ps
—
Spurious noise (1.2 MHz to 15 MHz)
tJ_NOISE
—
—
–75
dBC
—
—
—
—
500
KHz
—
Jitter phase noise at -56 DBc
Notes:
1. Caution: Only 122.88 have been tested. In-between values do not work correctly with the rest of the system.
Rise edge rate
Fall edge rate
VIH = +200 mV
0.0 V
VIL = –200 mV
SD_REF_CLK –
SD_REF_CLK_B
SD_REF_CLK = DEVCLKn_P, SGMII_REFCLK_P
SD_REF_CLK_B = DEVCLKn_N, SGMII_REFCLK_N
Figure 35. Differential measurement points for rise and fall time
SDn_REFn_CLK_B
SDn_REFn_CLK_B
TFALL
TRISE
VCROSS MEDIAN + 100 mV
VCROSS MEDIAN
VCROSS MEDIAN
VCROSS MEDIAN – 100 mV
SDn_REFn_CLK
SDn_REFn_CLK
SD_REF_CLK = DEVCLKn_P, SGMII_REFCLK_P
SD_REF_CLK_B = DEVCLKn_N, SGMII_REFCLK_N
Figure 36. Single-ended measurement points for rise and fall time matching
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
77
Electrical characteristics
3.6.11.3
SerDes transmitter and receiver reference circuits
This figure shows the reference circuits for SerDes data lane’s transmitter and receiver.
50 Ω
SDn_RXn
SDn_TXn
50 Ω
Transmitter
Receiver
50 Ω
SDn_TXn_B
SDn_RXn_B
50 Ω
Figure 37. SerDes transmitter and receiver reference circuits
The AC specification of SerDes data lanes are defined in each interface protocol section below based on the application usage:
•
•
•
Section 3.6.11.4, “CPRI AC timing specifications”
Section 3.6.11.5, “SGMII interface”
Section 3.6.11.6, “JESD204B”
Note that external AC-coupling capacitor is required for the above serial transmission protocols with the capacitor value defined
in the specification of each protocol section.
3.6.11.4
CPRI AC timing specifications
Lynx supports following CPRI electrical variants to the limited extent described below:•
•
•
Low Voltage (LV) variant guided by XAUI electrical interface (IEEE 802.3-2005) for data rates: 1.2288, 2.4576 and
3.072 Gb/s +/- 100ppm is supported.
Low Voltage-II ( LV-II) guided by guided by OIF-CEI-02.0 for data rates: 1.2288, 2.4576, 3.072, 4.9152 and
6.144Gb/s, +/- 100ppm is supported.
The LV-III variant is supported for CPRI line bit rates: 2.4576, 3.072, 4.9152, 6.144 and 9.8304Gb/s +/- 100ppm.
This table below defines the AC specifications for the differential output at all transmitters (TXs). The parameters are specified
at the component pins.
Table 50. CPRI transmitter AC timing specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps)
Characteristic
Symbol
Min
Nom
Max
Unit
Note
Deterministic Jitter
JD
—
—
0.17
UI p–p
—
Total Jitter
JT
—
—
0.35
UI p–p
—
Unit Interval: 1.2288 Gbaud
UI
1/1228.8 – 100ppm
1/1228.8
1/1228.8 + 100ppm μs
—
Unit Interval: 2.4576 Gbaud
UI
1/2457.6 – 100ppm
1/2457.6
1/2457.6 + 100ppm μs
—
Unit Interval: 3.072 Gbaud
UI
1/3072.0 – 100ppm
1/3072.0
1/3072.0 + 100ppm μs
—
NOTE
The AC specifications do not include Refclk jitter.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
78
Freescale Semiconductor
Electrical characteristics
This table defines the AC specifications for the differential input at all receivers (RXs). The parameters are specified at the
component pins.
Table 51. CPRI receiver AC timing specifications (LV-I: 1.2288, 2.4576, and 3.072 Gbps)
Characteristic Symbol
Deterministic
jitter tolerance
JD
Min
Nom
Max
Unit
Condition
Notes
—
—
0.37
UI p–p
Measured at
receiver
—
Combined
JDR
deterministic and
random jitter
tolerance
—
—
0.55
UI p–p
Measured at
receiver
—
total jitter
tolerance
JT
—
—
0.65
UI p–p
Measured at
receiver
1,2
Unit interval:
1.2288 Gbaud
UI
1/1228.8 – 100ppm 1/1228.8
—
—
Bit error ratio
BER
Unit interval:
2.4576 Gbaud
UI
Unit interval:
3.072 Gbaud
UI
1/1228.8 + 100ppm ps
10–12
—
—
1/2457.6 – 100ppm 1/2457.6
1/2457.6 + 100ppm ps
—
—
1/3072.0 – 100ppm 1/3072.0
1/3072.0 + 100ppm ps
—
—
Note:
1. Total random jitter is composed of deterministic jitter, random jitter, and single frequency sinusoidal jitter. The sinusoidal
jitter’s amplitude and frequency is defined in agreement with XAUI specification IEEE 802.3-2005 [1], clause 47.
2. The AC specifications do not include Refclk jitter.
This table provides the CPRI-LV-II/LV_III transmitter AC specifications.
Table 52. CPRI transmitter AC timing specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps,
LV-III: 9.8304 Gbps)
Parameter
Symbols
Min
Nom
Max
Condition
Unit
Notes
Uncorrelated high
probability jitter/random
jitter
T_UHPJ/T_RJ —
—
0.18
—
UI p–p —
Total jitter
T_TJ
—
0.30
—
UI p–p —
—
Unit interval: 1.2288 Gbaud UI
1/1228.8-100ppm 1/1228.8 1/1228.8+100ppm
—
μs
—
Unit interval: 2.4576 Gbaud UI
1/2457.6-100ppm 1/2457.6 1/2457.6+100ppm
—
μs
—
Unit interval: 3.072 Gbaud
UI
1/3072.0-100ppm 1/3072.0 1/3072.0+100ppm
—
μs
—
Unit interval: 4.9152 Gbaud UI
1/4915.2-100ppm 1/4915.2 1/4915.2+100ppm
—
μs
—
Unit interval: 6.144 Gbaud
UI
1/6144.0-100ppm 1/6144.0 1/6144.0+100ppm
—
μs
—
Unit interval: 9.8304 Gbaud UI
1/9830.4-100ppm 1/9830.4 1/9830.4+100ppm
—
μs
—
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
79
Electrical characteristics
This table provide the CPRI LV-II receiver AC timing specifications. The AC specifications do not include Refclk jitter.
Table 53. CPRI receiver AC timing specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps)
Parameter
Symbols
Gaussian jitter
R_GJ
Min
Nom
Max
Unit
Notes
—
—
0.2
UI p–p —
Uncorrelated bounded high probability jitter R_UBHPJ —
—
0.12
UI p–p —
Correlated bounded high probability jitter
R_CBHPJ —
—
0.63
UI p–p —
Bounded high probability jitter
R_BHPJ
—
—
0.75
UI p–p —
Sinusoidal jitter, maximum
R_SJ-max —
—
5.000
UI p–p —
Sinusoidal jitter, high frequency
R_SJ-hf
—
—
0.050
UI p–p —
Total jitter does not include sinusoidal jitter
R_Tj
—
—
0.950
UI p–p —
Unit Interval: 1.2288 Gbaud
UI
1/1228.8-100ppm 1/1228.8 1/1228.8+100ppm μs
—
Unit interval: 2.4576 Gbaud
UI
1/2457.6-100ppm 1/2457.6 1/2457.6+100ppm μs
—
Unit interval: 3.072 Gbaud
UI
1/3072.0-100ppm 1/3072.0 1/3072.0+100ppm μs
—
Unit interval: 4.9152 Gbaud
UI
1/4915.2-100ppm 1/4915.2 1/4915.2+100ppm μs
—
Unit interval: 6.144 Gbaud
UI
1/6144.0-100ppm 1/6144.0 1/6144.0+100ppm μs
—
The intended application is as a point-to-point interface of approximately 100 cm and up to two connectors. The maximum
allowed total loss (channel + interconnect + other loss) is 20.4 dB at 6.144 Gb/s.
This table provides the LV-III receiver parameters guided by 10 GBase-KR electrical interface (IEEE 802.3 [22], clause 72.7.2).
Table 54. CPRI receiver AC timing specifications (LV-III: 9.8304 Gbps)
Parameter
Symbols
Min
Nom
Max
Unit
Notes
Random jitter
R_GJ
—
—
0.130
UI p–p
—
Sinusoidal jitter, maximum
R_SJ-max —
—
0.115
UI p–p
—
DCD
R_dcd
—
—
0.035
UI p–p
—
Total jitter
R_Tj
—
—
See Note 1
UI p–p
1
Unit Interval: 9.8304 Gbaud
UI
1/9830.4-100pm
1/9830.4
1/9830.4+100ppm
μs
—
Note:
1. The R_Tj is per Interference Tolerance Test IEEE Std 802.3ap-2007 specified in Annex 69A.
2. The AC specifications do not include Refclk jitter.
3. The maximum channel insertion loss is achieved by manual tuning TX equalization.
3.6.11.5
SGMII interface
This section provides AC electrical characteristics of SGMII interface.
This table provides the SGMII transmitter AC specifications. The AC specifications do not include Refclk jitter.
Table 55. SGMII transmitter AC specifications
Parameter
Symbols
Min
Nom
Max
Condition
Unit
Note
Unit interval
UI
800-100 ppm
800
800+100 ppm
±100 ppm
ps
—
Deterministic jitter
JD
—
—
0.17
—
UI p–p
—
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
80
Freescale Semiconductor
Electrical characteristics
Table 55. SGMII transmitter AC specifications (continued)
Parameter
Symbols
Total jitter JT
JT
AC coupling capacitor CTX
Min
Nom
Max
Condition
Unit
Note
—
—
0.35
—
UI p–p
—
75
—
200
All transmitters shall
be AC coupled
nF
—
This table provide the SGMII receiver AC timing specifications. The source-synchronous clocking is not supported and the
clock is recovered from the data.
Table 56. SGMII receiver AC specifications
Parameter
Symbol
Min
Nom
Max
Condition
Unit
Note
Unit interval
UI
800 – 100 ppm
800
800 + 100 ppm
± 100 ppm
ps
—
Deterministic jitter
tolerance
JD
—
—
0.37
Measured at
receiver
UI p–p
—
Combined
deterministic and
random Jitter
tolerance
JDR
—
—
0.55
Measured at
receiver
UI p–p
—
Total jitter tolerance JT
—
—
0.65
Measured at
receiver
UI p–p
—
Bit error ratio
—
—
10–12
—
—
—
BER
Note:
1. The AC specifications do not include Refclk jitter.
2. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of
Figure 38
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
81
Electrical characteristics
This figure shows the single frequency sinusoidal jitter limits.
p-p
Sinusoidal Jitter Amplitude
8.5 UI
20dB/dec
0.10 UI
p-p
20 MHz
baud/1667
baud/142000
Frequency
Figure 38. Single frequency sinusoidal jitter limits
3.6.11.6
JESD204B
This section presents JESD204B specification at 4.9152 Gb/s, 6.144 Gb/s, and 9.8304 Gb/s data rates. The link is required to
operate with a BER 10–12.
This table provides the JESD204B transmitter AC specifications.
Table 57. JESD204B transmitter AC specifications
Symbols
Parameter
Min
Nom
Max
Unit
Condition
Note
T_UHPJ
Uncorrelated high
probability
jitter/Random jitter
—
—
0.18
UI p–p
—
—
T_TJ
Total jitter JT
—
—
0.30
UI p–p
—
—
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
82
Freescale Semiconductor
Electrical characteristics
This table provides the JESD204B receiver AC timing specifications for speeds 1.288, 2.4576, 4.9152, and 6.144 Gbps.
Table 58. JESD204B(1.2288/2.4576/4.9152/6.144 Gbps) receiver AC specifications
Symbols
Parameter
Min
Nom
Max
Unit
Condition
Note
UI_JD1.2 Unit interval for 1.2288
GBaud
1/1228.8 - 100 ppm
1/1228.8
1/1228.8 + 100 ppm
μs
—
—
UI_JD2.4 Unit interval for 2.4576
GBaud
1/2457.6 - 100 ppm
1/2457.6
1/2457.6 + 100 ppm
μs
—
—
UI_JD3.1 Unit interval for 3.072
GBaud
1/3072.0 - 100 ppm
1/3072.0
1/3072.0 + 100 ppm
μs
—
—
UI_JD4.9 Unit interval for 4.9152
GBaud
1/4915.2 - 100 ppm
1/4915.2
1/4915.2 + 100 ppm
μs
—
—
UI_JD6.1 Unit interval for 6.144
GBaud
1/6144.0 - 100 ppm
1/6144.0
1/6144.0 + 100 ppm
μs
—
—
R_UBHPJ Uncorrelated bounded
high probability jitter
—
—
0.15
UI p–p
—
—
R_CBHPJ Correlated bounded high
probability jitter
—
—
0.3
UI p–p
—
—
R_BHPJ
—
—
0.45
UI p–p
—
—
R_SJ-max Sinusoidal jitter,
maximum
—
—
5
UI p–p
—
—
R_SJ-hf
Sinusoidal jitter, high
frequency
—
—
0.05
UI p–p
—
—
R_Tj
Total jitter does not
include sinusoidal jitter
—
—
0.6
UI p–p
—
—
Bounded high probability
jitter
Note:
1. The AC specifications do not include Refclk jitter.
2. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency.
3. The ISI jitter (R_CBHPJ) and amplitude have to correlated for example by a PCB trace.
This table provides the JESD204B receiver AC timing specifications for 9.8304 Gbps speed.
Table 59. JESD204B(9.8304 Gbps) receiver AC specifications
Symbols
Parameter
UI_JD9.8 Unit interval for 9.8304
GBaud
Tj
Total jitter
Min
Nom
Max
Unit
Condition
Note
1/9830.4 - 100 ppm
1/9830.4
1/9830.4 + 100 ppm
μs
—
—
—
—
0.7
UI p–p
—
—
Note:
1. The AC specifications do not include Refclk jitter.
2. Total jitter (Tj) includes high frequency sinusodial jitter.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
83
Electrical characteristics
3.6.12
Special timed signals
3.6.12.1
SYSREF signal
This table provides the values of timing parameters.
Table 60. SYSREF_IN and SYSREF_OUT timing specification
Parameter
Symbols
Min
Nom
Max
Unit
Notes
Device Clock Period
tDEVCLK
—
8.138
—
ns
1
SYSREF_OUT(10ms pulse) Pulse
high Period
tSYSOUTW
2
—
—
tDEVCLK
2
SYSREF_OUT delay with respect to
DEVCLK
tKSYSD
—
—
3.5
ns
—
SYSREF_IN setup time
tSYSHKH
2.5
—
—
ns
—
SYSREF_IN hold time
tSYSXKH
0.5
—
—
ns
—
Note:
1. Refer to Table 20 for DEVCLK characteristics.
2. The signal is generated counting 16 TbGen ref clocks. The pulse width will change based on the ref_clk frequency.
The figure below shows SYSREF_IN and SYSREF_OUT timings with respect to DEVCLK input pin.
tDEVCLK
tKSYSD
DEVCLK
tKSYSD
tSYSOUTW
SYSREF_OUT
tSYSHKH
SYSREF_IN
tSYSXKH
Figure 39. SYSREF timing parameters
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
84
Freescale Semiconductor
Electrical characteristics
3.6.12.2
Timed GPIO, AGC_EN, GP_EVENTs
This table provides the values of timing parameters.
Table 61. Timed GPIO, AGC_EN, GP_EVENTs timing specification
Parameter
Delay with respect to Device clock (DEVCLK) input pin
Symbols
tTIMEDIOVKH
Min
Nom
Max
Unit
Notes
—
—
9.63
ns
1
Note:
1. Refer Table 20 for DEVCLK characteristics.
2. Pulse width of these signals can be programmed in the multiple of DEVCLK through TbGen module register.
tTIMEDIOVKH
DEVCLK
TIMED_GPIOBn
TIMED_GPIOCn
TBGEN_GP_EVENTn
TBGEN_AGC_ENn
Figure 40. Timed GPIO, AGC_EN and GP_EVENTs Timing parameters
3.6.12.3
MC_SYNC_OUT and MC_SYNC_IN timings
Table 62 and Table 63 below provides the values of timing parameters.
Table 62. MC_SYNC_OUT timing specification
Parameter
Delay with respect to DEVCLK input pin
Symbols
tMCOUTVKH
Min
Nom
Max
Unit
Notes
—
—
9.63
ns
1
Note:
1. Refer Table 20 for DEVCLK characteristics.
tMCOUTVKH
DEVCLK
MC_SYNC_OUT
Figure 41. MC_SYNC_OUT Timing parameters
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
85
Electrical characteristics
Table 63. MC_SYNC_IN timing specification
Parameter
Minimum pulse width
3.6.13
Symbols
Min
Nom
Max
Unit
Notes
tMCINW
2
—
—
DEVCLK1 period
—
Max
Unit
Trace port timing (TPIU)
Table 64 and Table 65 provides the Trace port timing specifications.
Table 64. Trace port timing
Parameter
Symbol
TRACE_CLK frequency
tTRK
Data setup time
Data hold time
Min
—
Notes
156
MHz
—
tTRKHDV,tTRKLDV 1.2
—
ns
—
tTRKHDX,tTRKLDX 0.2
—
ns
—
Table 65. Trace_clk_in port timing
Parameter
TRACE_CLK_IN frequency
Symbol
Min
Max
Unit
Notes
tTRKIN
—
200
MHz
—
This figure below shows trace port interface timing.
tTRKHDV
tTRKLDV
tTRKLDX
tTRKHDX
TRACE_CLK
TRACE_DATA
TRACE_CTL
DATA
DATA
Figure 42. Trace port timing
3.6.14
Universal asynchronous receiver/transmitter (UART)
This section provides the universal asynchronous receiver/transmitter (UART) timing parameters.
NOTE
In the following tables, the maximum value of the ipg_perclk frequency is 78 MHz. The
UART generates the baud clock based on “ipg_perclk” which comes from clock controller
module (CCM).
3.6.14.1
UART serial mode timing
This section provides the transmit and receive timings of the UART serial mode.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
86
Freescale Semiconductor
Electrical characteristics
3.6.14.1.1
Transmitter
This figure shows the transmit timing of the UART in serial mode. Note that the below figure only shows 8 data bits and 1 stop
bit format.
UA1
UARTn_TXD
(output)
Start
Bit
Possible
Parity
Bit
UA1
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Par Bit STOP
BIT
Next
Start
Bit
UA1
UA1
Figure 43. UART serial mode transmit timing diagram
This table lists the UART serial mode transmit timing parameters.
Table 66. UART serial mode transmit timing parameters
ID
UA1
Parameter
Transmit bit time
Symbol
Min
Max
Notes
tUATBW
1/Fbaud_rate– Tref_clk
1/Fbaud_rate + Tref_clk
1,2,3
Note:
1. UA1 applies to all bits.
2. Fbaud_rate: baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16 or 4 mbps
whichever is less.
3. Tref_clk: The period of UART reference clock (ipg_perclk after RFDIV divider).
3.6.14.1.2
Receiver
This figure shows the receive timing of the UART in serial mode. Note that the below figure only shows 8 data bits and 1 stop
bit format.
UA2
UARTn_RXD
(input)
Start
Bit
Possible
Parity
Bit
UA2
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Par Bit STOP
BIT
UA2
Next
Start
Bit
UA2
Figure 44. UART serial mode receive timing diagram
This table lists the UART serial mode receive timing parameters.
Table 67. UART serial mode receive timing parameters
ID
UA2
Parameter
Receive bit time
Symbol
tUARBW
Min
1/Fbaud_rate–1/(16×Fbaud_rate)
Max
1/Fbaud_rate+1/(16×Fbaud_rate)
Notes
1,2,3
Note:
1. UA2 applies to all bits
2. The UART receiver can tolerate 1/(16 × Fbaud_rate) tolerance in each bit, however, accumulation tolerance in one frame
must not exceed 3/(16 × Fbaud_rate).
3. Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16 or 4 Mbaud
whichever is less.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
87
Electrical characteristics
3.6.15
External flash interface module (EIM)
This section provides the parallel Flash interface module (EIM) timing parameters.
All EIM output control signals may be asserted and de-asserted by internal clock related to BCLK rising edge according to
corresponding assertion/negation control fields.
This table show the maximum flash clock frequency.
Table 68. EIM (flash controller) timing parameters
Parameter
Operating frequency
Symbol
Max
Unit
Notes
fFLK
104
Mhz
—
NOTE
BCD,WSC,WBEA,WADVN,BCS,SRD,ADVA,ADVN,ADH,RADVN,OEA are register
configuration bits. Refer AFD4400 Reference Manual for details.
In synchronous mode, all output signal timings are relative to the falling edge of any BCLK. The external circuit must use the
rising edge of the BCLKs to latch the data.All input timings are relative to the rising edge of BCLKs.
This table show the bus timing parameters.
Table 69. EIM timing specifications
Symbol1
Min
Max
Unit
Notes
BCLK cycle time
tEMK
9.6
—
ns
—
BCLK duty cycle
tEMKH/ tEMK
45
55
%
—
Sync mode Input setup
tEMIVKH1
2.9
—
ns
—
Sync mode Input hold
tEMIXKH1
1
—
ns
—
Sync mode Output delay
tEMKLOV1
—
1.5
ns
—
Sync Output hold
tEMKLOX1
-2
—
ns
1
Async mode Input setup time
tEMIVKH2
1
—
tEIM_CLK
2,3
Async mode input hold time
tEMIXKH2
1
—
tEIM_CLK
2,3
Async mode outmode skew
tEMKLOV2
-1.5
1.5
ns
—
Parameter
Note:
1. Here, the negative sign means output transit happens earlier than the falling edge of BCLK.
2. tEIM_CLK is 104 MHz maximum.This is module internal clock and not visible outside the chip.Refer AFD4400 reference
manual for details.
3. RWSC is a register configurable parameter. Refer AFD4400 Reference Manual for details.Module has different register
bits for different timing parameters.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
88
Freescale Semiconductor
Electrical characteristics
Figures below show the AC timing diagram for input/output signals of EIM NOR interface. The timing specs have been
illustrated here by taking timings among few input/output signals. The timing parameters can be configured through
programmable register bits in the WEIM module. Refer AFD4400 Reference Manual for details.
Figure 45. EIM synchronous mode input timing
BCLK
tEMIVKH1
tEMIXKH1
Input signals
Figure 46. EIM synchronous mode output timing
BCLK
tEMKLOV1
tEMKLOX1
Output signals
Figure 47. EIM Async interface timing
EIM CLK
RWSC
ADDR
RD Address
OEA
tEMKLOV2
OE
tEMIXKH2
tEMIVKH2
DATA_IN
Read Data
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
89
Hardware design considerations
4
Hardware design considerations
4.1
System clocking
This section describes the PLL configuration of the chip.
4.1.1
PLL characteristics
Characteristics of the chip’s PLLs include the following:
•
•
•
4.1.2
There are a total of nine PLLs on the chip.
There are three PLLs to supply operating clocks for different modules. All the three PLLs can get DEVCLK or
RGMII_REFCLK as reference clock. SYSPLL output drives clock to ARM® Cortex-A9, VSP and system buses. The
DDR PLL is source to DDR controller. It can also provide clock to VSP7 (dual precision). The TbGen_PLL supplies
clock to RF interface modules like JESD controllers and time base generator (TbGen).
Each of the three SerDes blocks has two PLLs which generate a core clock from their respective externally supplied
reference clock inputs. The frequency ratio is selected using the SerDes PLL ratio configuration bits.
Maximum operating frequencies
This table provides the clocking specifications for the ARM® Cortex-A9 core, VSP core and memory.
Table 70. Processor clocking specifications
AFD4400NXN763VB AFD4400NXN752VB
Characteristic
Frequency (Max)
ARM® Cortex-A9 Core frequency
614.4
553
MHz
VSP 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 Core
frequency
614.4
553
MHz
VSP 7 Core frequency
307.2
276.5
MHz
System bus frequency
307.2
276.5
MHz
500
500
MHz
DDR interface frequency
4.2
4.2.1
Unit
Frequency (Max)
Power supply design
Voltage ID (VID) controllable supply
To guarantee performance and power specifications, a specific method of selecting the optimum voltage-level must be
implemented when the chip is used. The software must read the VID efuse values stored in the eFuse and then configure the
external voltage regulator based on this information. (Refer AFD4400 Reference Manual for fuse definition and mapping) This
method requires a point of load voltage regulator for each chip.
The default voltage regulator setting that is safe for the system to boot is the recommended operating VDD at initial start-up of
1.025V. It is highly recommended to select a regulator with a Vout range of at least 0.9 V to 1.1 V, with a resolution of 12.5 mV
or better, when implementing a VID solution.If the VID for a specific part is already known at initial start up, it is acceptable
to program the voltage regulator to that VID value.The device does not require an initial voltage of 1.025V at start-up.
Table 71 lists the valid VID efuse values that will be programmed at the factory for this chip.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
90
Freescale Semiconductor
Hardware design considerations
Table 71. VID fuse settings
VDD voltage (in volt)
VID fuse value (in binary)
00001
0.9875
00010
0.9750
10000
1.0000
10001
1.0125
10010
1.0250
All other values
Reserved
Note:
1. If VID_ALT is not all zeros, the software must use VID_ALT fuses for voltage ID
configuration.
4.2.2
Core supply voltage (VDD) filtering
The VDD supply is normally derived from a high current capacity linear or switching power supply which can regulate its output
voltage very accurately despite changes in current demand from the chip within the regulator’s relatively low bandwidth.
Several bulk decoupling capacitors must be distributed around the PCB to supply transient current demand above the bandwidth
of the voltage regulator.
These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary.
They should also be connected to the power and ground planes through two vias to minimize inductance. However, customers
should work directly with their power regulator vendor for best values and types of bulk capacitors.
As a guideline for customers and their power regulator vendors, Freescale recommends that these bulk capacitors be chosen to
maintain the transient power surges to less than VID+50 mV (negative transient undershoot should comply with specification
of VID-30mV) with a slew rate of 12 A/us.
These bulk decoupling capacitors ideally supply a stable voltage for current transients into the megahertz range. Above that,
see Section 4.3, “Decoupling recommendations for further decoupling recommendations.
4.2.3
PLL power supply filtering
Each of the PLLs described in Section 4.1, “System clocking,” is provided with power through independent power supply pins
(APVDDn,SDx_AVDD_PLLn). APVDDn voltages must be derived directly from a 1.8 V voltage source through a low
frequency filter scheme. SDx_AVDD_PLLn must be derived directly from the SDx_XPADVDD voltage source through a low
frequency filter scheme. The recommended solution for PLL filtering is to provide independent filter circuits per PLL power
supply, as illustrated in Figure 48, one for each of the APVDD pins. By providing independent filters to each PLL, the
opportunity to cause noise injection from one PLL to the other is reduced. This circuit is intended to filter noise in the PLL’s
resonant frequency range from a 500 kHz to 10 MHz range.
Each circuit should be placed as close as possible to the specific APVDD pin being supplied to minimize noise coupled from
nearby circuits. It should be possible to route directly from the capacitors to the APVDD pin, which is on the periphery of the
footprint, without the inductance of vias.
This figure shows the PLL power supply filter circuit.
Where:
R = 5 Ω ± 5%
C1 = 10 μF ± 10%, 0603, X5R, with ESL ≤ 0.5 nH
C2 = 1.0 μF ± 10%, 0402, X5R, with ESL ≤ 0.5 nH
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
91
Hardware design considerations
NOTE
A higher capacitance value for C2 may be used to improve the filter as long as the other C2
parameters do not change (0402 body, X5R, ESL ≤ 0.5 nH).
Voltage for APVDD is defined at the input of the PLL supply filter and not the pin of
APVDD.
1.8 V source
R
APVDDn
C1
C2
GND
Low-ESL surface-mount capacitors
Figure 48. PLL power supply filter circuit
The SDx_AVDD_PLLn signals provides power for the analog portions of the SerDes PLL. To ensure stability of the internal
clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in following Figure 49. For maximum
effectiveness, the filter circuit is placed as closely as possible to the SDx_AVDD_PLLn balls to ensure it filters out as much
noise as possible. Prior to release of PLL reset, and start of PLL lock, the PLL supply must be at a stable and quiescent value.
The ground connection should be near the SDx_AVSS_PLLn balls. The 0.003-µF capacitors closest to the balls, followed by a
4.7-µF and 47-µF capacitor, and finally the 0.33 Ω resistor to the board supply plane. The capacitors are connected from
SDx_AVDD_PLLn to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All
traces should be kept short, wide, and direct.
VDDSDIO
0.33 Ω
SDx_AVDD_PLLn
47 µF
4.7 µF
0.003 µF
SDx_AVSS_PLLn
VDDSDIO
Board Gnd
0 ohm(0603 sized) default resistance
with provision to be changed to inductance
Figure 49. SerDes PLL power supply filter circuit
Note the following:
•
•
•
•
•
•
SDx_AVDD_PLLn should be a filtered version of VDDSDIO.
Signals on the SerDes interface are fed from the VDDSDIO power plane.
Voltage for SDx_AVDD_PLLn is defined at the PLL supply filter and not the pin of SDx_AVDD_PLLn.
A 47-µF 0805 XR5 or XR7, 4.7-µF 0603, and 0.003-µF 0402 capacitor are recommended. The size and material type
are important. A 0.33-Ω ± 1% resistor is recommended.
There needs to be dedicated analog ground, SDx_AVSS_PLLn for each SDx_AVDD_PLLn pin up to the physical local
of the filters themselves.
The noise level on the SerDes PLL power supplies must be less than 10 mV Pk-Pk.
4.2.4
SerDes transceiver core supply filtering
VDDSDX should be supplied by a dedicated linear regulator. Systems may design to allow flexibility to address system noise
dependencies.
NOTE
For initial system bring-up, the linear regulator option is highly recommended.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
92
Freescale Semiconductor
Hardware design considerations
An example solution for VDDSDX filtering, where VDDSDX is sourced from linear regulator, is illustrated in Figure 50. The
component values in this example filter are system dependent and are still under characterization, component values may need
adjustment based on the system or environment noise.
Where:
•
•
•
C1 = 0.003 μF ± 10%, X5R, with ESL ≤ 0.5 nH
C2 and C3 = 2.2 μF ± 10%, X5R, with ESL ≤ 0.5 nH
F1 to F4 are 0603 sized Ferrite SMD, like the Murata part BLM18PG121SH1. Its maximum DC resistance is 0.05Ω,
or 0.0125Ω for the parallel resultant, and each has about a 120Ω ± 25% of AC impedance at 100 MHz, which will be
quarter valued for the parallel resultant, with individual maximum DC current carrying capacity of 2Amps. Bulk and
decoupling capacitors are added, as needed, per power supply design.
VDDSDX
Bulk and
decoupling
capacitors
F1
C1
C2
C3
F2
Linear regulator
output
F3
GND
F4
Figure 50. VDDSDX power supply filter circuit
Note the following:
•
•
•
•
4.2.5
Refer to Section 3.2.1, “Power-on ramp rate, for maximum VDDSDX power-up ramp rate.
There needs to be enough output capacitance or a soft start feature to assure ramp rate requirement is met.
The ferrite beads should be placed in parallel to reduce voltage droop.
Besides a linear regulator, a low noise dedicated switching regulator can also be used. 10 mVp-p, 50kHz - 500MHz is
the noise goal.
SerDes transceiver pad supply filtering
VDDSDIO must be supplied by a linear regulator or sourced by a filtered VDDDDR. Systems may design in both options to allow
flexibility to address system noise dependencies.
NOTE
For initial system bring-up, the linear regulator option is highly recommended.
An example solution for VDDSDIO filtering, where VDDSDIO is sourced from a linear regulator, is illustrated in Figure 51. The
component values in this example filter are system dependent and are still under characterization, component values may need
adjustment based on the system or environment noise.
Where:
•
•
•
C1 = 0.003 μF ± 10%, X5R, with ESL ≤ 0.5 nH
C2 and C3 = 2.2 μF ± 10%, X5R, with ESL ≤ 0.5 nH
F1 to F4 are 0603 sized Ferrite SMD, like the Murata part BLM18PG121SH1. Its maximum DC resistance is 0.05Ω,
or 0.0125Ω for the parallel resultant, and each has about a 120Ω ± 25% of AC impedance at 100 MHz, which will be
quarter valued for the parallel resultant, with individual maximum DC current carrying capacity of 2Amps.Bulk and
decoupling capacitors are added, as needed, per power supply design.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
93
Hardware design considerations
VDDSDIO
F1
Bulk and
decoupling
capacitors
C1
C2
C3
F2
Linear regulator output
F3
GND
F4
Figure 51. VDDSDIO power supply filter circuit
Note the following:
•
•
•
•
4.2.6
Refer to Section 3.2.1, “Power-on ramp rate, for maximum VDDSDIO power-up ramp rate.
There needs to be enough output capacitance or a soft-start feature to assure ramp rate requirement is met.
The ferrite beads should be placed in parallel to reduce voltage droop.
Besides a linear regulator, a low-noise, dedicated switching regulator can be used. 10mVp-p, 50 kHz - 500 MHz is the
noise goal.
Remote power-supply sense recommendations
It is common practice to connect remote sense pin of on-board power supply with one of the supply pin of the connected IC.
This arrangement helps to compensate for the slow components of the IR droop caused by the resistive supply current path from
the power supply to the IC pins.
Following AFD4400 SENSE pins can be connected to the on-board power supply remote sense pins:
•
•
Sense Pins pair 1: SENSE_DVDD1, SENSE_DVSS1
Sense Pins pair 2: SENSE_DVDD2, SENSE_DVSS2
Either of the two pairs (with other pair unconnected) or both the pairs can be connected to power supply. It is recommended to
use both the sense pairs on the board. An example circuit with both the sense pins has been illustrated in Figure 53.
2Ω
SENSE_DVDD1
SENSE_DVSS1
SENSE_DVDD
3.3 nF
2Ω
SENSE_DVSS
2Ω
SENSE_DVDD2
2Ω
SENSE_DVSS2
Figure 52. Power supply sense circuit
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
94
Freescale Semiconductor
Hardware design considerations
4.3
Decoupling recommendations
Due to large address and data buses, and high operating frequencies, the device can generate transient power surges and high
frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching
other components in the chip system, and the chip itself requires a clean, tightly regulated source of power. Therefore, it is
recommended that the system designer place decoupling capacitors at each VDD,VDDGPIO,VDDDDR,VDDLVDS and GND
power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device
using a standard escape pattern. Others may surround the part.
These capacitors should have a value of 0.1 µF. Only ceramic SMT (surface mount technology) capacitors should be used to
minimize lead inductance, preferably 0402 or 0603 sizes.
As presented in Section 4.2.2, “Core supply voltage (VDD) filtering,” it is recommended that there be several bulk storage
capacitors distributed around the PCB, feeding the VDD and other planes, to enable quick recharging of the smaller chip
capacitors.
4.4
SerDes block power supply decoupling
recommendations
The SerDes block requires a clean, tightly regulated source of power (VDDSDX and VDDSDIO) to ensure low jitter on transmit
and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below.
NOTE
Only SMT capacitors should be used to minimize inductance.Connections from all
capacitors to power and ground should be done with multiple vias to further reduce
inductance.
1.
2.
4.5
4.5.1
The board should have at least 1 x 0.1-uF SMT ceramic chip capacitor placed as close as possible to each supply ball
of the device. Where the board has blind vias, these capacitors should be placed directly below the chip supply and
ground connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the
device as close to the supply and ground connections as possible.
Between the device and any SerDes voltage regulator there should be a lower bulk capacitor (for example a 10-uF, low
ESR SMT tantalum or ceramic) and a higher bulk capacitor (for example a 100uF - 300-uF low ESR SMT tantalum
or ceramic capacitor).
Guidelines for high-speed interface termination
SerDes interface entirely unused
If the high-speed SerDes interface is not used at all, the unused pin should be terminated as described in this section.
Note that SDn_AVDD_PLLn, SDn_XCOREVDD,SDn_XPADVDD must remain powered.
For SDn_AVDD_PLLn, it must be connected to SDn_XPADVDD through a zero ohm resistor (instead of filter circuit shown
in Figure 57).
The following pins must be left unconnected:
•
•
•
•
•
•
CPRIm_TXDATn_P
CPRIm_TXDATn_N
TX_DATn_P
TX_DATn_N
SGMIIn_TXDAT_P
SGMIIn_TXDAT_N
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
95
Hardware design considerations
•
•
SDn_IC_TX
SDn_IC_RX
The following pins must be connected to SDn_XCOREVSS :
•
•
SGMII_REFCLK_P
SGMII_REFCLK_N
It is recommended for the following pins to be connected to SDn_XCOREVSS:
•
•
•
•
•
•
CPRIm_RXDATn_P
CPRIm_RXDATn_N
RX_DATn_P
RX_DATn_N
SGMIIn_RXDAT_P
SGMIIn_RXDAT_N
Refer to AFD4400 reference manual for SerDes PLL/Lane programming model.
4.5.2
SerDes interface partly unused
If only part of the high speed SerDes interface pins are used, the remaining high-speed serial I/O pins should be terminated as
described in this section.
Note that both SDn_XCOREVDD and SDn_XPADVDD must remain powered.
If any of the PLLs are unused, the corresponding SDn_AVDD_PLLn must be connected to SDn_XPADVDD through a zero
ohm resistor (instead of filter circuit shown in Figure 57).
The following unused pins must be left unconnected:
•
•
•
•
•
•
CPRIm_TXDATn_P
CPRIm_TXDATn_N
TX_DATn_P
TX_DATn_N
SGMIIn_TXDAT_P
SGMIIn_TXDAT_N
The following pins must be connected to SDn_XCOREVSS :
•
•
SGMII_REFCLK_P
SGMII_REFCLK_N
It is recommended that the following unused pins be connected to SDn_XCOREVSS:
•
•
•
•
•
•
CPRIm_RXDATn_P
CPRIm_RXDATn_N
RX_DATn_P
RX_DATn_N
SGMIIn_RXDAT_P
SGMIIn_RXDAT_N
For details on the SerDes PLL/Lane programming model, refer to the AFD4400 Digital Front End Processor Reference Manual.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
96
Freescale Semiconductor
Package information
4.6
Temperature diode
The chip has temperature diodes that can be used to monitor its temperature using external temperature monitoring devices
(such as analog devices, ADT7461A™). These on-chip temperature diodes have pins that may be connected to test points, or
left as a no connect when they are not used.
The following are specifications of the chip temperature diodes:
•
•
•
•
4.7
Operating range: 10-230μA
The Non-ideality factor over the temperature range 85C to 105C, n = 1.006 ± 0.003 with approximate error ±1°C
Temperature range 0°C to 85°C, the error in measurement is ±3°C.
Temperature range -40°C to 0°C, the error in measurement is ±5°C.
Thermal characteristics
This table shows the thermal characteristics for the chip. Note that these numbers are based on design estimates and are
preliminary.
Table 72. Package thermal characteristics
Rating
Board
Symbol
Value
Unit
Notes
Junction to Ambient, natural Convection
Single layer board (1s)
RθJA
15
°C/W
1,2
Junction to Ambient, natural Convection
Four layer board (2s2p)
RθJA
11
°C/W
1,3
Junction to Ambient (@200 ft/min)
Single layer board (1s)
RθJMA
10
°C/W
1,2
Junction to Ambient (@200 ft/min)
Four layer board (2s2p)
RθJMA
7
°C/W
1,2
Junction to Board
—
RθJB
2.8
°C/W
3
Junction to Case (Top)
—
RθJCtop
0.4
°C/W
4
Junction to Lid Top
—
RθJClid
0.17
°C/W
5
Note:
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
2. Per JEDEC JESD51-3 and JESD51-6 with the board (JESD51-9) horizontal.
3. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is
measure on the top surface of the board near the package.
4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
5. Junction-to-Lid-Top thermal resistance determined using the using MIL-STD 883 Method 1012.1. However, instead
of the cold plate, the lid top temperature is used here for the reference case temperature. Reported value does not
include the thermal resistance of the interface layer between the package and cold plate.
5
Package information
5.1
Package parameters for the FC-PBGA
The package parameters are as provided in the following list. The package type is 35 mm × 35 mm, 1152 flip-chip, plastic-ball,
grid array (FC-PBGA). The AFD4400part is designed to be RoHS and Pb-free compliant.
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
97
Package information
Package outline
Interconnects
Ball Pitch
Ball Diameter (typical)
Solder Balls
Module height (typical)
35 mm × 35 mm
1152
1.0 mm
0.60 mm
96.5% Sn, 3% Ag, 0.5% Cu
2.52 mm to 2.82 mm (maximum)
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
98
Freescale Semiconductor
Package information
5.2
Mechanical dimensions of AFD4400FC-PBGA
This figure shows the mechanical dimensions and bottom surface nomenclature of the chip.
Figure 53. Mechanical dimensions
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
Freescale Semiconductor
99
Package information
Note:
1. All dimensions are in millimeters.
2. Dimensions and tolerances per ASME Y14.5M-1994.
3. All dimensions are symmetric across the package center lines unless dimensioned otherwise.
4. Maximum solder ball diameter measured parallel to datum A.
5. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
6. Parallelism measurement excludes any effect of mark on top surface of package.
5.3
Revision history
This table summarizes revisions to this document.
Table 73. Revision History
Rev.
Number
Date
0
10/2015
Substantive change(s)
• Initial public release
AFD4400 Digital Front End Processor Data Sheet, Rev. 0
100
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.
Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale
assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's
technical experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products
Freescale, the Freescale logo, and QorIQ are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Layerscape and QUICC
Engine are trademarks of Freescale Semiconductor, Inc. All other product or
service names are the property of their respective owners. ARM, ARM
Powered, Cortex, and TrustZone are registered trademarks of ARM Limited
(or its subsidiaries) in the EU and/or elsewhere. NEON is a trademark of
ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.
©2015 Freescale Semiconductor, Inc.
Document Number: AFD4400
Rev. 0
10/2015