0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AFT05MP075NR1

AFT05MP075NR1

  • 厂商:

    NXP(恩智浦)

  • 封装:

    TO270AB

  • 描述:

    RF Mosfet LDMOS (Dual) 12.5V 400mA 520MHz 18.5dB 70W TO-270 WB-4

  • 数据手册
  • 价格&库存
AFT05MP075NR1 数据手册
Freescale Semiconductor Technical Data Document Number: AFT05MP075N Rev. 1, 8/2014 RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs AFT05MP075NR1 AFT05MP075GNR1 Designed for mobile two--way radio applications with frequencies from 136 to 520 MHz. The high gain, ruggedness and broadband performance of these devices make them ideal for large--signal, common source amplifier applications in mobile radio equipment. Typical Performance: 12.5 V, TA = 25C, CW Frequency Gps (dB) D (%) Pout (W) 136 MHz 21.0 68.0 76 450--520 MHz (1) 14.6 65.8 75 520 MHz (2) 18.5 68.5 70 136–520 MHz, 70 W, 12.5 V BROADBAND RF POWER LDMOS TRANSISTORS TO--270WB--4 AFT05MP075NR1 Load Mismatch/Ruggedness Frequency (MHz) Signal Type 520 (2) CW VSWR Pin (W) Test Voltage > 65:1 at all Phase Angles 2 (3 dB Overdrive) 17 Result No Device Degradation 1. Measured in 450--520 MHz UHF broadband reference circuit. 2. Measured in 520 MHz narrowband test circuit. Features  Characterized for Operation from 136 to 520 MHz  Unmatched Input and Output Allowing Wide Frequency Range Utilization  Integrated ESD Protection  Integrated Stability Enhancements  Wideband — Full Power Across the Band  Exceptional Thermal Performance  Extreme Ruggedness  High Linearity for: TETRA, SSB, LTE  In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel. Typical Applications  Output Stage VHF Band Mobile Radio  Output Stage UHF Band Mobile Radio TO--270WBG--4 AFT05MP075GNR1 Gate A Drain A Gate B Drain B (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Pin Connections  Freescale Semiconductor, Inc., 2013–2014. All rights reserved. RF Device Data Freescale Semiconductor, Inc. AFT05MP075NR1 AFT05MP075GNR1 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +40 Vdc Gate--Source Voltage VGS --6.0, +12 Vdc Operating Voltage VDD 17, +0 Vdc Storage Temperature Range Tstg --65 to +150 C Case Operating Temperature Range TC –40 to +150 C Operating Junction Temperature Range (1,2) TJ –40 to +225 C Total Device Dissipation @ TC = 25C Derate above 25C PD 690 3.45 W W/C Symbol Value (2,3) Unit RJC 0.29 C/W Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80C, 70 W CW, 12.5 Vdc, IDQ(A+B) = 400 mA, 520 MHz Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Machine Model (per EIA/JESD22--A115) A, passes 250 V Charge Device Model (per JESD22--C101) IV, passes 2000 V Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 40 Vdc, VGS = 0 Vdc) IDSS — — 3 Adc Zero Gate Voltage Drain Leakage Current (VDS = 12.5 Vdc, VGS = 0 Vdc) IDSS — — 2 Adc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 600 nAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 295 Adc) VGS(th) 1.7 2.1 2.5 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 3.0 Adc) VDS(on) — 0.14 — Vdc Forward Transconductance (4) (VGS = 10 Vdc, ID = 8 Adc) gfs — 7.3 — S Characteristic Off Characteristics On Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. 4. Each side of device measured separately. (continued) AFT05MP075NR1 AFT05MP075GNR1 2 RF Device Data Freescale Semiconductor, Inc. Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Reverse Transfer Capacitance (VDS = 12.5 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 2.3 — pF Output Capacitance (VDS = 12.5 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 64 — pF Input Capacitance (VDS = 12.5 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz) Ciss — 148 — pF Dynamic Characteristics (1) Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 12.5 Vdc, IDQ(A+B) = 400 mA, Pin = 1 W, f = 520 MHz Common--Source Amplifier Output Power Drain Efficiency Pout — 70 — W D — 68.5 — % Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) IDQ(A+B) = 400 mA Frequency (MHz) Signal Type VSWR 520 CW > 65:1 at all Phase Angles Pin (W) 2 (3 dB Overdrive) Test Voltage, VDD Result 17 No Device Degradation 1. Each side of device measured separately. 2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. AFT05MP075NR1 AFT05MP075GNR1 RF Device Data Freescale Semiconductor, Inc. 3 TYPICAL CHARACTERISTICS 300 11 Ciss 9 IDS, DRAIN CURRENT (AMPS) C, CAPACITANCE (pF) 100 Coss 10 8 6 5 4 10 3.25 Vdc 3 2 2.5 Vdc 3 Vdc 1 Measured with 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc 5 3.5 Vdc 7 Crss 1 0 VGS = 3.75 Vdc TA = 25C 10 0 20 15 0 2 4 6 8 10 12 14 16 18 20 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Note: Each side of device measured separately. Note: Measured with both sides of the transistor tied together. Figure 2. Capacitance versus Drain--Source Voltage Figure 3. Drain Current versus Drain--Source Voltage 108 VDD = 12.5 Vdc ID = 6.3 Amps MTTF (HOURS) 107 7.8 Amps 106 9.4 Amps 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 4. MTTF versus Junction Temperature -- CW AFT05MP075NR1 AFT05MP075GNR1 4 RF Device Data Freescale Semiconductor, Inc. 520 MHz NARROWBAND PRODUCTION TEST FIXTURE C1 B1 AFT05MP075N Rev. 1 C4 C17 C18 C16 C15 L1 COAX1 C21 C8* C9 L2 CUT OUT AREA COAX2 COAX3 L3 C6 C7 C5 C22 C24 B2 C12 C14 C10 C23* L4 COAX4 C25 C11 C20 C19 C3 C2 C26 C27 C28 C29 C13 C30 *C8 and C23 are mounted vertically. Figure 5. AFT05MP075NR1 Narrowband Test Circuit Component Layout — 520 MHz Table 6. AFT05MP075NR1 Narrowband Test Circuit Component Designations and Values — 520 MHz Part Description Part Number Manufacturer B1, B2 Ferrite Beads 2743019447 Fair-Rite C1, C11 22 F, 35 V, Tantalum Capacitors T491X226K035AT Kemet C2, C12, C18, C28 0.1 F Chip Capacitors CDR33BX104AKWS AVX C3, C13 220 nF Chip Capacitors C1812C224K5RAC-TU Kemet C4, C14 2.2 F Chip Capacitors C1825C225J5RAC-TU Kemet C5 5.1 pF Chip Capacitor ATC100B5R1CT500XT ATC C6, C7 20 pF Chip Capacitors ATC100B200JT500XT ATC C8 16 pF Chip Capacitor ATC100B160JT500XT ATC C9 36 pF Chip Capacitor ATC100B360JT500XT ATC C10 2.7 pF Chip Capacitor ATC100B2R7BT500XT ATC C15, C25 240 pF Chip Capacitors ATC100B241JT200XT ATC C16, C26 2.2 F Chip Capacitors G2225X7R225KT3AB ATC C17, C27 0.1 F Chip Capacitors C1812F104K1RAC--TU Kemet C19, C20, C29, C30 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp C21 51 pF Chip Capacitor ATC100B510GT500XT ATC C22, C24 100 pF Chip Capacitors ATC100B101JT500XT ATC C23 24 pF Chip Capacitor ATC100B240JT500XT ATC L1, L2 5.0 nH Inductors A02TKLC Coilcraft L3, L4 17.5 nH Inductors GA3095--ALC Coilcraft Coax1, 2, 3, 4 25  Semi Rigid Coax, 2.4 Shield Length UT-141C-25 Micro-Coax PCB 0.030, r = 2.55 AD255A Arlon AFT05MP075NR1 AFT05MP075GNR1 RF Device Data Freescale Semiconductor, Inc. 5 AFT05MP075NR1 AFT05MP075GNR1 6 RF Device Data Freescale Semiconductor, Inc. RF INPUT Z1 COAX2 COAX1 C11 + C5 Z16 Z3 C1 + B2 C7 C6 C12 Z17 Z4 C2 C13 C8 Z18 Z5 C3 C9 C14 C4 L2 Z20 Z19 Z6 Z7 L1 DUT Z22 Z9 L4 Z21 Z23 C21 Z10 Z8 L3 C25 C24 C22 C15 C26 Z24 Z11 C16 C27 Z25 C23 Z12 C17 C28 C18 0.018  0.125 Microstrip 0.135  0.125 Microstrip 0.100  0.125 Microstrip 0.430  0.740 Microstrip 0.726  0.058 Microstrip Z3, Z16 Z4, Z17 Z5, Z18 Z6, Z19 Z7*, Z20* * Line length includes microstrip bends 0.010  0.125 Microstrip Z2, Z15 Description 0.366  0.082 Microstrip Z1 Microstrip Z14 Z13 Z12, Z25 Z11, Z24 Z10, Z23 Z9, Z22 Z8*, Z21* Microstrip 0.100  0.082 Microstrip 0.154  0.082 Microstrip 0.010  0.230 Microstrip 0.030  0.230 Microstrip 0.590  0.230 Microstrip 0.290  0.522 Microstrip 0.672  0.150 Microstrip Description Table 7. AFT05MP075NR1 Narrowband Test Circuit Microstrips — 520 MHz C19 + C29 + + C30 + C20 COAX4 COAX3 Figure 6. AFT05MP075NR1 Narrowband Test Circuit Schematic — 520 MHz VBIAS Z15 Z2 VBIAS B1 VSUPPLY Z13 VSUPPLY C10 Z14 RF OUTPUT TYPICAL CHARACTERISTICS — 520 MHz 120 VDD = 13.6 Vdc, Pin = 1 W Pout, OUTPUT POWER (WATTS) 100 VDD = 12.5 Vdc, Pin = 1 W 80 VDD = 13.6 Vdc, Pin = 0.5 W 60 VDD = 12.5 Vdc Pin = 0.5 W 40 20 f = 520 MHz 0 0.5 0 1 1.5 2 2.5 3.5 3 4.5 4 VGS, GATE--SOURCE VOLTAGE (VOLTS) 80 20 70 19 60 Gps 50 18 17 40 Pout D 16 30 20 15 VDD = 12.5 Vdc, IDQ(A+B) = 400 mA f = 520 MHz 14 13 10 3 1 0.1 D, DRAIN EFFICIENCY (%) 21 Pout, OUTPUT POWER (WATTS) Gps, POWER GAIN (dB) Figure 7. Output Power versus Gate--Source Voltage 0 Pin, INPUT POWER (WATTS) Figure 8. Power Gain, Output Power and Drain Efficiency versus Input Power VDD = 12.5 Vdc, IDQ(A+B) = 400 mA, Pout = 70 W f MHz Zsource  Zload  520 0.91 + j2.37 2.56 + j0.27 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50  Input Matching Network = Test circuit impedance as measured from drain to drain, balanced configuration. + -- Zsource Device Under Test -- Output Matching Network 50  + Zload Figure 9. Narrowband Series Equivalent Source and Load Impedance — 520 MHz AFT05MP075NR1 AFT05MP075GNR1 RF Device Data Freescale Semiconductor, Inc. 7 450--520 MHz UHF BROADBAND REFERENCE CIRCUIT Table 8. 450--520 MHz UHF Broadband Performance (In Freescale Reference Circuit, 50 ohm system) VDD = 12.5 Volts, IDQ(A+B) = 500 mA, TA = 25C, CW Frequency (MHz) Gps (dB) D (%) Pout (W) 450 15.9 65.8 75 485 14.6 72.9 75 520 15.1 71.1 75 Table 9. Load Mismatch/Ruggedness (In Freescale Reference Circuit) Frequency (MHz) Signal Type 485 CW VSWR Pin (W) > 65:1 at all Phase Angles 6 (3 dB Overdrive) Test Voltage, VDD Result 17 No Device Degradation AFT05MP075NR1 AFT05MP075GNR1 8 RF Device Data Freescale Semiconductor, Inc. 450--520 MHz UHF BROADBAND REFERENCE CIRCUIT C15 C19 B1 C21 C23 C16 C20 C17 L1 C18 C3 C5 C22 L3 C7 C9 C11 R1 R2 C1 C2 L2 C4 Q1 C6 R3 C14* C12 C8 C10 C24 C13 AFT05MP075N Rev. 1 *C14 is mounted vertically. Figure 10. AFT05MP075NR1 UHF Broadband Reference Circuit Component Layout — 450--520 MHz Table 10. AFT05MP075NR1 UHF Broadband Reference Circuit Component Designations and Values — 450--520 MHz Part Description Part Number Manufacturer B1 Ferrite Bead 2661000101 Fair-Rite C1, C3, C4 10 pF Chip Capacitors ATC600F100JT250XT ATC C2 15 pF Chip Capacitor ATC600F150JT250XT ATC C5, C6 56 pF Chip Capacitors ATC600F560JT250XT ATC C7, C8 33 pF Chip Capacitors ATC800B330JT500XT ATC C9, C10 30 pF Chip Capacitors ATC800B300JT500XT ATC C11, C12 5.6 pF Chip Capacitors ATC800B5R6CT500XT ATC C13 16 pF Chip Capacitor ATC800B160JT500XT ATC C14 100 pF Chip Capacitor ATC800B101JT500XT ATC C15 47 F, 16 V Tantalum Capacitor T491D476K016AT Kemet C16, C21 1000 pF Chip Capacitors ATC100B102JT50XT ATC C17, C20 200 pF Chip Capacitors ATC100B201JT300XT ATC C18, C19 100 pF Chip Capacitors ATC100B101JT500XT ATC C22 10 F Chip Capacitor GRM55DR61H106KA88L Murata C23 330 F, 35 V Electrolytic Capacitor MCGPR35V337M10X16-RH Multicomp C24 1.5 pF Chip Capacitor ATC800B1R5CT500XT ATC L1 120 nH Chip Inductor 0805CS-121X-LB CoilCraft L2 2.55 nH, 3 Turn Inductor 0906-3JLC CoilCraft L3 6 Turns, #22 AWG, 0.125 ID 8075 Copper Magnetic Wire Beldon Q1 RF Power LDMOS Transistor AFT05MP075NR1 Freescale R1 180 , 1/10 W Chip Resistor RR1220P-181-B-T5 Vishay R2, R3 10 , 3/4 W Chip Resistors CRCW201010R0FKEF Vishay PCB 0.030, r = 4.8 S1000-2, FR4 Shengyi AFT05MP075NR1 AFT05MP075GNR1 RF Device Data Freescale Semiconductor, Inc. 9 AFT05MP075NR1 AFT05MP075GNR1 10 RF Device Data Freescale Semiconductor, Inc. RF INPUT Z1 VBIAS + C1 Z2 C15 Z7 Z6 Z9 Z8 C4 C6 Z13 Z12 Z10 Z11 C5 C3 Z15 Z14 Z17 R2 Z16 Z19 Z18 DUT Z21 Z23 Z20 Z22 Z25 R3 Z24 C8 Z27 Z26 C7 B1 Z29 Z28 L3 C9 C20 C10 0.195  0.073 Microstrip 0.035  0.083 Microstrip 0.055  0.083 Microstrip Z6*, Z7* Z8, Z9 Z10, Z11 * Line length includes microstrip bends 0.054  0.064 Microstrip 0.200  0.054 Microstrip Z4 0.060  0.050 Microstrip Z3 Z5 0.059  0.064 Microstrip Z2 Description 0.250  0.052 Microstrip Z1 0.110  0.170 Microstrip Z18, Z19 Z26, Z27 Z24, Z25 Z22, Z23 0.048  0.093 Microstrip 0.017  0.093 Microstrip 0.050  0.093 Microstrip 0.110  0.170 Microstrip 0.050  0.093 Microstrip Z16, Z17 Z20, Z21 0.065  0.093 Microstrip Z14, Z15 Description 0.015  0.083 Microstrip Microstrip Z12, Z13 Z34*, Z35* Z39 Z38 Z37 0.200  0.054 Microstrip 0.130  0.054 Microstrip 0.470  0.054 Microstrip 0.177  0.054 Microstrip 0.109  0.073 Microstrip Z32*, Z33* Z36 0.030  0.083 Microstrip 0.108  0.073 Microstrip Z30, Z31 0.075  0.083 Microstrip C24 Z37 C23 Z28, Z29 Microstrip C12 Z35 Z36 C22 C11 Z34 C21 Description Z31 Z33 Z30 Z32 C19 Figure 11. AFT05MP075NR1 UHF Broadband Reference Circuit Schematic — 450--520 MHz Z5 C18 Table 11. AFT05MP075NR1 UHF Broadband Reference Circuit Microstrips — 450--520 MHz L2 C17 Microstrip C2 Z4 Z3 R1 L1 C16 + C13 C14 Z38 VSUPPLY RF Z39 OUTPUT TYPICAL CHARACTERISTICS — 450--520 MHz UHF BROADBAND REFERENCE CIRCUIT 17 72 D 16 70 15.5 68 Gps 15 100 14.5 14 13.5 13 440 66 Pout VDD = 13.6 Vdc, Pin = 3 W IDQ(A+B) = 500 mA 450 460 470 480 490 500 510 520 90 80 70 530 Pout, OUTPUT POWER (WATTS) Gps, POWER GAIN (dB) 16.5 D, DRAIN EFFICIENCY (%) 74 f, FREQUENCY (MHz) Figure 12. Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power — 13.6 V 17 16 15.5 15 70 68 VDD = 12.5 Vdc, Pin = 3 W IDQ(A+B) = 500 mA 66 14.5 Gps 14 100 90 Pout 13.5 13 440 72 450 460 470 480 490 500 510 520 80 70 530 Pout, OUTPUT POWER (WATTS) Gps, POWER GAIN (dB) 16.5 D, DRAIN EFFICIENCY (%) 74 D f, FREQUENCY (MHz) Figure 13. Power Gain, Drain Efficiency and Output Power versus Frequency at a Constant Input Power — 12.5 V AFT05MP075NR1 AFT05MP075GNR1 RF Device Data Freescale Semiconductor, Inc. 11 TYPICAL CHARACTERISTICS — 450--520 MHz UHF BROADBAND REFERENCE CIRCUIT 140 f = 485 MHz VDD = 13.6 Vdc, Pin = 3 W 90 VDD = 13.6 Vdc, Pin = 1.5 W Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) 120 VDD = 12.5 Vdc, Pin = 3 W 100 VDD = 12.5 Vdc Pin = 1.5 W 80 60 Detail A 40 20 0 70 1 2 3 4 VDD = 12.5 Vdc Pin = 3 W 60 50 VDD = 13.6 Vdc Pin = 1.5 W 40 30 VDD = 12.5 Vdc Pin = 1.5 W 20 10 0 0 VDD = 13.6 Vdc Pin = 3 W f = 485 MHz 80 0 0.5 1 1.5 2 2.5 3 3.5 VGS, GATE--SOURCE VOLTAGE (VOLTS) 5 Detail A VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 14. Output Power versus Gate--Source Voltage 520 MHz 485 MHz 17 450 MHz 100 520 MHz Gps 485 MHz 80 485 MHz 16 450 MHz 15 60 450 MHz 520 MHz 40 D 14 20 Pout 13 0.05 D, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 18 120 VDD = 12.5 Vdc, IDQ(A+B) = 500 mA Pout, OUTPUT POWER (WATTS) 19 0 0.1 1 5 Pin, INPUT POWER (WATTS) Figure 15. Power Gain, Output Power and Drain Efficiency versus Input Power and Frequency AFT05MP075NR1 AFT05MP075GNR1 12 RF Device Data Freescale Semiconductor, Inc. 450--520 MHz UHF BROADBAND REFERENCE CIRCUIT Zo = 2  f = 530 MHz Zsource f = 450 MHz f = 530 MHz Zload f = 450 MHz VDD = 12.5 Vdc, IDQ(A+B) = 500 mA, Pout = 75 W f MHz Zsource  Zload  450 0.55 + j0.59 0.75 + j0.30 460 0.72 + j0.81 0.82 + j0.39 470 0.79 + j0.93 0.90 + j0.42 480 0.71 + j0.86 0.92 + j0.44 490 0.62 + j0.78 0.93 + j0.41 500 0.60 + j0.74 0.89 + j0.39 510 0.64 + j0.72 0.85 + j0.39 520 0.69 + j0.78 0.79 + j0.39 530 0.70 + j1.03 0.74 + j0.43 Zsource = Test circuit impedance as measured from gate to ground. Zload 50  = Test circuit impedance as measured from drain to ground. Input Matching Network Output Matching Network Device Under Test Zsource 50  Zload Figure 16. UHF Broadband Series Equivalent Source and Load Impedance — 450--520 MHz AFT05MP075NR1 AFT05MP075GNR1 RF Device Data Freescale Semiconductor, Inc. 13 PACKAGE DIMENSIONS AFT05MP075NR1 AFT05MP075GNR1 14 RF Device Data Freescale Semiconductor, Inc. AFT05MP075NR1 AFT05MP075GNR1 RF Device Data Freescale Semiconductor, Inc. 15 AFT05MP075NR1 AFT05MP075GNR1 16 RF Device Data Freescale Semiconductor, Inc. AFT05MP075NR1 AFT05MP075GNR1 RF Device Data Freescale Semiconductor, Inc. 17 AFT05MP075NR1 AFT05MP075GNR1 18 RF Device Data Freescale Semiconductor, Inc. AFT05MP075NR1 AFT05MP075GNR1 RF Device Data Freescale Semiconductor, Inc. 19 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes  AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages  AN1955: Thermal Measurement Methodology of RF Power Amplifiers  AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages Engineering Bulletins  EB212: Using Data Sheet Impedances for RF LDMOS Devices Software  Electromigration MTTF Calculator  RF High Power Model  .s2p File Development Tools  Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Feb. 2013  1 Aug. 2014  Tape and Reel information: corrected tape width information from 32--inch reel to 44--inch reel to reflect actual reel size, p. 1 Initial Release of Data Sheet  Replaced case outline TO--270WB--4, Issue D with Issue E, pp. 14–16. Added notes 9 and 10, four exposed source tabs, and a feature control frame to E and E5 on p. 14. Removed style and pin information from notes section on p. 16. AFT05MP075NR1 AFT05MP075GNR1 20 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Home Page: freescale.com Web Support: freescale.com/support Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2013–2014 Freescale Semiconductor, Inc. AFT05MP075NR1 AFT05MP075GNR1 Document Number: AFT05MP075N RF Device Data Rev. 1,Freescale 8/2014 Semiconductor, Inc. 21
AFT05MP075NR1 价格&库存

很抱歉,暂时无法提供与“AFT05MP075NR1”相匹配的价格&库存,您可以联系我们找货

免费人工找货