0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AFT23H160-25SR3

AFT23H160-25SR3

  • 厂商:

    NXP(恩智浦)

  • 封装:

    NI-880X-4L4S-8

  • 描述:

    ICTRANSRFLDMOS

  • 数据手册
  • 价格&库存
AFT23H160-25SR3 数据手册
Freescale Semiconductor Technical Data Document Number: AFT23H160--25S Rev. 0, 11/2015 RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET AFT23H160--25SR3 This 32 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications covering the frequency range of 2300 to 2400 MHz. 2300 MHz  Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Vdc, IDQA = 450 mA, VGSB = 0.6 Vdc, Pout = 32 W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) D (%) Output PAR (dB) ACPR (dBc) 2300 MHz 16.7 46.6 8.0 –31.7 2350 MHz 16.9 46.4 7.7 –32.8 2400 MHz 16.8 46.3 7.6 –34.1 2300–2400 MHz, 32 W AVG., 28 V AIRFAST RF POWER LDMOS TRANSISTOR Features  Advanced High Performance In--Package Doherty  Greater Negative Gate--Source Voltage Range for Improved Class C Operation  Designed for Digital Predistortion Error Correction Systems NI--880XS--4L4S N.C. 1 8 VBWA(1) Carrier RFinA/VGSA 2 7 RFoutA/VDSA RFinB/VGSB 3 6 RFoutB/VDSB N.C. 4 Peaking 5 VBWB(1) (Top View) Figure 1. Pin Connections 1. Device cannot operate with VDD current supplied through pin 5 and pin 8.  Freescale Semiconductor, Inc., 2015. All rights reserved. RF Device Data Freescale Semiconductor, Inc. AFT23H160--25SR3 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS –0.5, +65 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg –65 to +150 C Case Operating Temperature Range TC –40 to +150 C TJ –40 to +225 C Operating Junction Temperature Range (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 72C, 32 W Avg., W--CDMA, 28 Vdc, IDQA = 450 mA, VGSB = 0.6 Vdc, 2350 MHz Symbol Value (2,3) Unit RJC 0.40 C/W Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 Machine Model (per EIA/JESD22--A115) B Charge Device Model (per JESD22--C101) IV Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Zero Gate Voltage Drain Leakage Current (VDS = 32 Vdc, VGS = 0 Vdc) IDSS — — 1 Adc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 Adc Gate Threshold Voltage (VDS = 10 Vdc, ID = 80 Adc) VGS(th) 0.8 1.2 1.6 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, ID = 450 mAdc, Measured in Functional Test) VGSA(Q) 1.4 1.8 2.2 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 0.8 Adc) VDS(on) 0.1 0.15 0.3 Vdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 120 Adc) VGS(th) 0.8 1.2 1.6 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.2 Adc) VDS(on) 0.1 0.15 0.3 Vdc Characteristic Off Characteristics (4) On Characteristics -- Side A, Carrier On Characteristics -- Side B, Peaking 1. 2. 3. 4. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.freescale.com/rf/calculators. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955. Each side of device measured separately. (continued) AFT23H160--25SR3 2 RF Device Data Freescale Semiconductor, Inc. Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Functional Tests (1,2) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 450 mA, VGSB = 0.6 Vdc, Pout = 32 W Avg., f = 2300 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ 5 MHz Offset. Power Gain Gps 15.3 16.7 18.3 dB Drain Efficiency D 43.0 46.6 — % PAR 7.4 8.0 — dB ACPR — –31.7 –28.0 dBc Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Load Mismatch (2) (In Freescale Doherty Test Fixture, 50 ohm system) IDQA = 450 mA, VGSB = 0.6 Vdc, f = 2300 MHz No Device Degradation VSWR 10:1 at 32 Vdc, 224 W CW Output Power (3 dB Input Overdrive from 114 W CW Rated Power) Typical Performance (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 450 mA, VGSB = 0.6 Vdc, 2300–2400 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 114 — W Pout @ 3 dB Compression Point (3) P3dB — 203 — W  — –14 —  VBWres — 95 — MHz Gain Flatness in 100 MHz Bandwidth @ Pout = 32 W Avg. GF — 1.3 — dB Gain Variation over Temperature (–30C to +85C) G — 0.008 — dB/C P1dB — 0.008 — dB/C AM/PM (Maximum value measured at the P3dB compression point across the 2300–2400 MHz frequency range) VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) Output Power Variation over Temperature (–30C to +85C) Table 5. Ordering Information Device AFT23H160--25SR3 Tape and Reel Information R3 Suffix = 250 Units, 56 mm Tape Width, 13--inch Reel Package NI--880XS--4L4S 1. Part internally matched both on input and output. 2. Measurements made with device in an asymmetrical Doherty configuration. 3. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W--CDMA single--carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF. AFT23H160--25SR3 RF Device Data Freescale Semiconductor, Inc. 3 VGGA VDDA C17 C13 C1 C2 C15 R2 C3 Z1 R1 C5 C16 C7 CUT OUT AREA C4 C P D62543 C8 C9 C10 C11 R3 C6 C18 C19 AFT23H160--25S Rev. 2 C14 C12 C20 VDDB VGGB Figure 2. AFT23H160--25SR3 Test Circuit Component Layout Table 6. AFT23H160--25SR3 Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C4, C5, C6, C7, C12 8.2 pF Chip Capacitors ATC600F8R2BT250XT ATC C2, C3 0.2 pF Chip Capacitors ATC600F0R2BT250XT ATC C8, C11 0.9 pF Chip Capacitors ATC600F0R9BT250XT ATC C9 12 pF Chip Capacitor ATC600F12R0BT250XT ATC C10 5.6 pF Chip Capacitor ATC600F5R6BT250XT ATC C13, C14, C15, C16, C18, C19 10 F Chip Capacitors C5750X7S2A106M230KB TDK C17, C20 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26 Multicomp R1 50 , 10 W Termination CW12010T0050GBK ATC R2, R3 5.9 , 1/4 W Chip Resistors CRCW12065R9FKEA Vishay Z1 2300–2700 MHz Band, 90, 5 dB Directional Coupler X3C25P1-05S Anaren PCB Rogers RO4350B, 0.020, r = 3.66 D62543 MTL AFT23H160--25SR3 4 RF Device Data Freescale Semiconductor, Inc. 45.8 45.6 D 16.5 45.4 45.2 16.4 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 16.3 16.2 Gps 16.1 –30 –1.6 –31 –1.8 ACPR (dBc) Gps, POWER GAIN (dB) V = 28 Vdc, P = 32 W (Avg.), IDQA = 450 mA 16.7 VDD = 0.6 Vdc, out Single--Carrier W--CDMA GSB 16.6 3.84 MHz Channel Bandwidth –32 ACPR 16 –33 PARC 15.9 15.8 2290 2305 2320 –34 2335 2350 2365 f, FREQUENCY (MHz) 2380 2395 –2 –2.2 –2.4 PARC (dB) 46 16.8 D, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS –2.6 –35 2410 IMD, INTERMODULATION DISTORTION (dBc) Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 32 Watts Avg. –10 VDD = 28 Vdc, Pout = 64 W (PEP), IDQA = 450 mA VGSB = 0.6 Vdc, Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 2350 MHz –20 IM3--U –30 IM3--L –40 IM5--U IM5--L –50 IM7--U –60 1 IM7--L 10 100 200 TWO--TONE SPACING (MHz) 18 0 17.5 17 16.5 16 15.5 VDD = 28 Vdc, IDQA = 450 mA, VGSB = 0.6 Vdc f = 2350 MHz, Single--Carrier W--CDMA ACPR 55 –25 50 –30 D 45 –1 –2 –1 dB = 20.47 W –2 dB = 30.22 W 40 –3 dB = 41.27 W –3 –4 –5 10 35 PARC 3.84 MHz Channel Bandwidth Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 20 30 40 Pout, OUTPUT POWER (WATTS) Gps 50 –35 –40 ACPR (dBc) 1 D DRAIN EFFICIENCY (%) 18.5 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) Figure 4. Intermodulation Distortion Products versus Two--Tone Spacing –45 30 –50 25 60 –55 Figure 5. Output Peak--to--Average Ratio Compression (PARC) versus Output Power AFT23H160--25SR3 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS Gps, POWER GAIN (dB) 18 D Gps 16 2300 MHz 2400 MHz 2350 MHz 14 2300 MHz 2350 MHz ACPR 2400 MHz 12 0 50 –10 40 30 20 VDD = 28 Vdc, IDQA = 450 mA, VGSB = 0.6 Vdc Single--Carrier W--CDMA, 3.84 MHz Channel 10 Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 0 10 100 Pout, OUTPUT POWER (WATTS) AVG. 10 8 2300 MHz 60 1 –20 –30 –40 ACPR (dBc) 2350 MHz 2400 MHz D, DRAIN EFFICIENCY (%) 20 –50 –60 Figure 6. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 20 18 Gain GAIN (dB) 16 14 VDD = 28 Vdc Pin = 0 dBm IDQA = 450 mA VGSB = 0.6 Vdc 12 10 8 2000 2100 2200 2300 2400 2500 f, FREQUENCY (MHz) 2600 2700 2800 Figure 7. Broadband Frequency Response AFT23H160--25SR3 6 RF Device Data Freescale Semiconductor, Inc. Table 7. Carrier Side Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, IDQA = 493 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () 2300 7.70 – j15.4 7.58 + j14.9 2350 11.0 – j16.4 10.9 + j15.6 2400 17.1 – j18.0 16.9 + j15.7 Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 5.12 – j7.00 18.5 49.4 87 53.6 –12 5.00 – j7.12 18.5 49.4 87 52.7 –12 4.90 – j7.21 18.5 49.4 87 53.6 –13 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 2300 7.70 – j15.4 7.82 + j15.8 4.96 – j7.92 16.2 50.2 105 54.1 –16 2350 11.0 – j16.4 11.8 + j16.8 4.97 – j7.93 16.3 50.2 105 54.2 –17 2400 17.1 – j18.0 19.0 + j16.8 4.98 – j8.06 16.3 50.2 104 53.8 –18 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 8. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning VDD = 28 Vdc, IDQA = 493 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 2300 7.70 – j15.4 7.53 + j15.5 11.5 – j2.65 21.0 47.3 54 63.3 –19 2350 11.0 – j16.4 11.0 + j16.3 9.63 – j2.57 20.9 47.5 56 63.1 –19 2400 17.1 – j18.0 17.2 + j16.5 7.79 – j3.03 20.6 47.9 61 63.3 –19 Max Drain Efficiency P3dB f (MHz) Zsource () Zin () 2300 7.70 – j15.4 7.57 + j16.1 Zload () (2) Gain (dB) (dBm) (W) D (%) AM/PM () 9.19 – j4.55 18.4 48.9 78 63.7 –23 2350 11.0 – j16.4 11.6 + j17.4 8.35 – j3.56 18.5 48.7 74 63.7 –25 2400 17.1 – j18.0 19.0 + j17.7 7.42 – j3.66 18.4 48.8 76 64.0 –26 (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload AFT23H160--25SR3 RF Device Data Freescale Semiconductor, Inc. 7 Table 9. Peaking Side Load Pull Performance — Maximum Power Tuning VDD = 28 Vdc, VGSB = 0.6 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Output Power P1dB f (MHz) Zsource () Zin () 2300 7.70 – j15.4 6.47 + j15.8 2350 11.0 – j16.4 9.78 + j17.0 2400 16.7 – j15.9 15.4 + j17.5 Zload () (1) Gain (dB) (dBm) (W) D (%) AM/PM () 4.76 – j6.72 13.4 51.0 125 53.0 –23 4.63 – j6.66 13.5 51.0 126 53.5 –24 4.47 – j6.69 13.6 51.0 126 54.2 –25 Max Output Power P3dB f (MHz) Zsource () Zin () Zload (2) () Gain (dB) (dBm) (W) D (%) AM/PM () 2300 7.70 – j15.4 6.99 + j16.7 4.85 – j7.29 11.2 51.8 150 54.6 –29 2350 11.0 – j16.4 11.1 + j18.0 4.82 – j7.32 11.3 51.7 149 54.5 –31 2400 16.7 – j15.9 18.2 + j17.9 4.82 – j7.44 11.5 51.7 149 54.8 –31 (1) Load impedance for optimum P1dB power. (2) Load impedance for optimum P3dB power. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Table 10. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning VDD = 28 Vdc, VGSB = 0.6 Vdc, Pulsed CW, 10 sec(on), 10% Duty Cycle Max Drain Efficiency P1dB f (MHz) Zsource () Zin () Zload (1) () Gain (dB) (dBm) (W) D (%) AM/PM () 2300 7.70 – j15.4 5.61 + j15.7 8.65 – j1.94 14.4 49.4 88 64.4 –27 2350 11.0 – j16.4 8.68 + j17.3 7.79 – j2.72 14.5 49.7 92 64.5 –28 2400 16.7 – j15.9 13.9 + j18.5 6.48 – j3.10 14.6 49.8 96 64.5 –28 Max Drain Efficiency P3dB Gain (dB) (dBm) (W) D (%) AM/PM () 9.88 – j3.77 12.3 50.4 109 64.2 –33 10.0 + j18.4 8.16 – j2.83 12.4 50.2 106 64.2 –36 16.8 + j19.2 6.75 – j3.16 12.6 50.4 110 64.2 –37 f (MHz) Zsource () Zin () 2300 7.70 – j15.4 6.34 + j16.7 2350 11.0 – j16.4 2400 16.7 – j15.9 Zload () (2) (1) Load impedance for optimum P1dB efficiency. (2) Load impedance for optimum P3dB efficiency. Zsource = Measured impedance presented to the input of the device at the package reference plane. Zin = Impedance as measured from gate contact to ground. Zload = Measured impedance presented to the output of the device at the package reference plane. Input Load Pull Tuner and Test Circuit Output Load Pull Tuner and Test Circuit Device Under Test Zsource Zin Zload AFT23H160--25SR3 8 RF Device Data Freescale Semiconductor, Inc. P1dB – TYPICAL CARRIER LOAD PULL CONTOURS — 2350 MHz 2 2 45.5 0 0 –2 IMAGINARY () IMAGINARY () 46 E 46.5 –4 47.5 47 –6 49 P –2 –4 62 –6 48 48.5 –8 –10 –10 4 6 8 14 10 12 REAL () 16 18 56 48 52 50 54 56 2 6 4 2 2 21.5 8 21 –4 18.5 –6 19 18 –10 2 4 –2 6 19.5 8 10 12 REAL () –16 –6 P 14 16 18 Figure 10. P1dB Load Pull Gain Contours (dB) NOTE: –18 –4 –8 20 18 –20 E 20.5 P –8 16 –28 –26 –24 0 IMAGINARY () IMAGINARY () E 14 10 12 REAL () –22 –2 52 54 Figure 9. P1dB Load Pull Efficiency Contours (%) Figure 8. P1dB Load Pull Output Power Contours (dBm) 0 58 60 P –8 2 E –10 –14 –12 2 4 6 8 10 12 REAL () 14 16 18 Figure 11. P1dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power AFT23H160--25SR3 RF Device Data Freescale Semiconductor, Inc. 9 P3dB – TYPICAL CARRIER LOAD PULL CONTOURS — 2350 MHz 2 2 46.5 46 47 0 47.5 –2 48 E –4 IMAGINARY () IMAGINARY () 0 48.5 –6 –8 50 49 49.5 2 4 6 12 8 10 REAL () 14 16 –12 60 58 P 56 52 48 50 2 4 54 6 8 10 REAL () 12 2 19.5 0 52 14 –30 –28 0 –26 –2 IMAGINARY () –2 19 E –4 –6 18.5 –8 P –10 2 4 16 17 15.5 16.5 6 17.5 8 10 REAL () –24 E –4 –22 –6 –20 –8 18 P –18 –10 12 14 16 Figure 14. P3dB Load Pull Gain Contours (dB) NOTE: 16 Figure 13. P3dB Load Pull Efficiency Contours (%) 2 IMAGINARY () 62 –6 –10 Figure 12. P3dB Load Pull Output Power Contours (dBm) –12 E –4 –8 P –10 –12 –2 –12 –16 2 4 6 8 10 REAL () 12 14 16 Figure 15. P3dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power AFT23H160--25SR3 10 RF Device Data Freescale Semiconductor, Inc. P1dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2350 MHz 2 0 48 0 48.5 49 –2 E IMAGINARY () IMAGINARY () 2 47.5 47 49.5 –4 –6 P 50 50.5 –8 –10 49 –4 62 60 –6 2 3 4 5 6 8 7 REAL () 9 10 11 12 13 –10 58 P 56 54 52 48 2 3 4 5 6 2 0 –38 –36 IMAGINARY () E 14.5 –4 –6 –8 11 3 4 5 6 7 10 50 11 12 13 –30 –28 –2 E –26 –4 –6 –24 P –8 13.5 13 12.5 10.5 11.5 2 14 P 12 9 –32 –34 0 –2 7 8 REAL () Figure 17. P1dB Load Pull Efficiency Contours (%) 2 IMAGINARY () E 64 –8 Figure 16. P1dB Load Pull Output Power Contours (dBm) –10 64 –2 8 9 10 11 12 13 –10 2 3 4 5 6 7 8 9 10 11 12 REAL () REAL () Figure 18. P1dB Load Pull Gain Contours (dB) Figure 19. P1dB Load Pull AM/PM Contours () NOTE: P = Maximum Output Power E = Maximum Drain Efficiency 13 Gain Drain Efficiency Linearity Output Power AFT23H160--25SR3 RF Device Data Freescale Semiconductor, Inc. 11 P3dB – TYPICAL PEAKING LOAD PULL CONTOURS — 2350 MHz 2 2 47.5 48 49 49.5 –2 EE 50 –4 –6 51 51.5 PP –8 50.5 E –4 –12 8 10 REAL () 12 14 16 2 2 0 0 –2 –2 12.5 E –4 –6 P –8 9.5 –10 –12 12 8.5 2 4 6 50 48 2 4 6 8 10 REAL () 12 14 16 –42 –38 –40 –36 –34 –32 E –4 –30 –6 P –28 –10 11 10 9 52 –8 11.5 10.5 54 Figure 21. P3dB Load Pull Efficiency Contours (%) IMAGINARY () IMAGINARY () Figure 20. P3dB Load Pull Output Power Contours (dBm) 58 56 P –8 –12 6 60 –6 –10 4 62 –2 –10 2 52 0 IMAGINARY () IMAGINARY () 0 48.5 8 10 REAL () 12 14 16 Figure 22. P3dB Load Pull Gain Contours (dB) NOTE: –12 –26 2 4 6 8 10 REAL () 12 14 16 Figure 23. P3dB Load Pull AM/PM Contours () P = Maximum Output Power E = Maximum Drain Efficiency Gain Drain Efficiency Linearity Output Power AFT23H160--25SR3 12 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS AFT23H160--25SR3 RF Device Data Freescale Semiconductor, Inc. 13 AFT23H160--25SR3 14 RF Device Data Freescale Semiconductor, Inc. PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes  AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins  EB212: Using Data Sheet Impedances for RF LDMOS Devices Software  Electromigration MTTF Calculator  RF High Power Model  s2p File Development Tools  Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.freescale.com/rf 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Nov. 2015 Description  Initial Release of Data Sheet AFT23H160--25SR3 RF Device Data Freescale Semiconductor, Inc. 15 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2015 Freescale Semiconductor, Inc. AFT23H160--25SR3 Document Number: AFT23H160--25S Rev. 0, 11/2015 16 RF Device Data Freescale Semiconductor, Inc.
AFT23H160-25SR3 价格&库存

很抱歉,暂时无法提供与“AFT23H160-25SR3”相匹配的价格&库存,您可以联系我们找货

免费人工找货