0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FS32K142UIT0VLHT

FS32K142UIT0VLHT

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LQFP64_10X10MM

  • 描述:

    FS32K142UIT0VLHT

  • 数据手册
  • 价格&库存
FS32K142UIT0VLHT 数据手册
NXP Semiconductors Data Sheet: Technical Data Document Number S32K1XX Rev. 13, 04/2020 S32K1XX S32K1xx Data Sheet Notes • Supports S32K116, S32K118, S32K142, S32K142W, S32K144, S32K144W, S32K146, and S32K148 – Technical information for S32K142W and S32K144W device families is preliminary until these devices achieve qualification • The following two attachments are available with the Datasheet: – S32K1xx_Orderable_Part_Number_ List.xlsx – S32K1xx_Power_Modes_Configuration.xlsx Key Features • Operating characteristics – Voltage range: 2.7 V to 5.5 V – Ambient temperature range: -40 °C to 105 °C for HSRUN mode, -40 °C to 150 °C for RUN mode • Arm™ Cortex-M4F/M0+ core, 32-bit CPU – Supports up to 112 MHz frequency (HSRUN mode) with 1.25 Dhrystone MIPS per MHz – Arm Core based on the Armv7 Architecture and Thumb®-2 ISA – Integrated Digital Signal Processor (DSP) – Configurable Nested Vectored Interrupt Controller (NVIC) – Single Precision Floating Point Unit (FPU) • Clock interfaces – 4 - 40 MHz fast external oscillator (SOSC) with up to 50 MHz DC external square input clock in external clock mode – 48 MHz Fast Internal RC oscillator (FIRC) – 8 MHz Slow Internal RC oscillator (SIRC) – 128 kHz Low Power Oscillator (LPO) – Up to 112 MHz (HSRUN) System Phased Lock Loop (SPLL) – Up to 20 MHz TCLK and 25 MHz SWD_CLK – 32 kHz Real Time Counter external clock (RTC_CLKIN) • Power management – Low-power Arm Cortex-M4F/M0+ core with excellent energy efficiency – Power Management Controller (PMC) with multiple power modes: HSRUN, RUN, STOP, VLPR, and VLPS. Note: CSEc (Security) or EEPROM writes/ erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase. – Clock gating and low power operation supported on specific peripherals. • Memory and memory interfaces – Up to 2 MB program flash memory with ECC – 64 KB FlexNVM for data flash memory with ECC and EEPROM emulation. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase. – Up to 256 KB SRAM with ECC – Up to 4 KB of FlexRAM for use as SRAM or EEPROM emulation – Up to 4 KB Code cache to minimize performance impact of memory access latencies – QuadSPI with HyperBus™ support • Mixed-signal analog – Up to two 12-bit Analog-to-Digital Converter (ADC) with up to 32 channel analog inputs per module – One Analog Comparator (CMP) with internal 8-bit Digital to Analog Converter (DAC) • Debug functionality – Serial Wire JTAG Debug Port (SWJ-DP) combines – Debug Watchpoint and Trace (DWT) – Instrumentation Trace Macrocell (ITM) – Test Port Interface Unit (TPIU) – Flash Patch and Breakpoint (FPB) Unit • Human-machine interface (HMI) – Up to 156 GPIO pins with interrupt functionality – Non-Maskable Interrupt (NMI) NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. • Communications interfaces – Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support and low power availability – Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability – Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability – Up to three FlexCAN modules (with optional CAN-FD support) – FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc). – Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous Audio Interface (SAI) modules. • Safety and Security – Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase. – 128-bit Unique Identification (ID) number – Error-Correcting Code (ECC) on flash and SRAM memories – System Memory Protection Unit (System MPU) – Cyclic Redundancy Check (CRC) module – Internal watchdog (WDOG) – External Watchdog monitor (EWM) module • Timing and control – Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 standard channels (IC/OC/PWM) – One 16-bit Low Power Timer (LPTMR) with flexible wake up control – Two Programmable Delay Blocks (PDB) with flexible trigger system – One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels – 32-bit Real Time Counter (RTC) • Package – 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA, 144-pin LQFP, 176-pin LQFP package options • 16 channel DMA with up to 63 request sources using DMAMUX S32K1xx Data Sheet, Rev. 13, 04/2020 2 NXP Semiconductors Table of Contents 1 Block diagram.................................................................................... 4 2 Feature comparison............................................................................ 5 3 Ordering information......................................................................... 8 4 6.2.5 6.3 Memory and memory interfaces................................................42 6.3.1 specifications................................................................42 3.2 Ordering information ................................................................ 9 6.3.1.1 General............................................................................................... 10 Flash timing specifications — commands................................................ 42 6.3.1.2 4.2 Voltage and current operating requirements..............................12 6.3.2 4.3 Thermal operating characteristics..............................................13 Reliability specifications..........................49 QuadSPI AC specifications..........................................49 6.4 Analog modules......................................................................... 54 4.4 Power and ground pins.............................................................. 15 6.4.1 ADC electrical specifications...................................... 54 4.5 LVR, LVD and POR operating requirements............................17 6.4.1.1 12-bit ADC operating conditions............. 54 4.6 Power mode transition operating behaviors.............................. 18 6.4.1.2 12-bit ADC electrical characteristics....... 57 4.7 Power consumption................................................................... 20 6.4.2 4.8 ESD handling ratings.................................................................27 CMP with 8-bit DAC electrical specifications............ 59 6.5 Communication modules........................................................... 65 4.9 EMC radiated emissions operating behaviors........................... 27 6.5.1 LPUART electrical specifications............................... 65 I/O parameters....................................................................................28 6.5.2 LPSPI electrical specifications.................................... 65 5.1 AC electrical characteristics...................................................... 28 6.5.3 LPI2C electrical specifications.................................... 71 5.2 General AC specifications......................................................... 28 6.5.4 FlexCAN electical specifications.................................72 5.3 DC electrical specifications at 3.3 V Range.............................. 29 6.5.5 SAI electrical specifications........................................ 72 5.4 DC electrical specifications at 5.0 V Range.............................. 31 6.5.6 Ethernet AC specifications.......................................... 74 5.5 AC electrical specifications at 3.3 V range .............................. 32 6.5.7 Clockout frequency......................................................77 5.6 AC electrical specifications at 5 V range ................................. 33 6 Flash memory module (FTFC/FTFM) electrical 3.1 Selecting orderable part number ...............................................8 4.1 Absolute maximum ratings........................................................10 5 SPLL electrical specifications .....................................42 6.6 Debug modules.......................................................................... 77 5.7 Standard input pin capacitance.................................................. 34 6.6.1 SWD electrical specofications .................................... 77 5.8 Device clock specifications....................................................... 35 6.6.2 Trace electrical specifications......................................79 Peripheral operating requirements and behaviors.............................. 36 6.6.3 JTAG electrical specifications..................................... 80 6.1 System modules......................................................................... 36 7 6.2 Clock interface modules............................................................ 36 Thermal attributes.............................................................................. 84 7.1 Description.................................................................................84 6.2.1 External System Oscillator electrical specifications....36 7.2 Thermal characteristics..............................................................84 6.2.2 External System Oscillator frequency specifications . 38 7.3 General notes for specifications at maximum junction 6.2.3 System Clock Generation (SCG) specifications.......... 40 6.2.3.1 Fast internal RC Oscillator (FIRC) temperature................................................................................ 89 8 electrical specifications............................ 40 6.2.3.2 Slow internal RC oscillator (SIRC) electrical specifications ........................... 41 6.2.4 Low Power Oscillator (LPO) electrical specifications Dimensions.........................................................................................90 8.1 Obtaining package dimensions ................................................. 90 9 Pinouts................................................................................................91 9.1 Package pinouts and signal descriptions....................................91 10 Revision History.................................................................................91 ......................................................................................41 S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 3 Block diagram 1 Block diagram Following figures show superset high level architecture block diagrams of S32K14x, S32K14xW and S32K11x series respectively. Other devices within the family have a subset of the features. See Feature comparison for chip specific values. Async Trace port JTAG & Serial Wire Arm Cortex M4F Core MCM TPIU PPB SWJ-DP NVIC AHB-AP FPU FPB DSP DWT System ICODE DCODE LMEM Upper region EIM LMEM controller Lower region System MPU1 Mux Main SRAM2 AWIC ITM Clock generation DMA MUX LPO 128 kHz eDMA FIRC 48 MHz SIRC 8 MHz SOSC 4-40 MHz 8-40 MHz SPLL TCD 512B Code Cache ENET S1 System MPU1 M3 M2 M1 M0 S2 Crossbar switch (AXBS-Lite) S3 S0 System MPU1 Mux System MPU1 QuadSPI GPIO Flash memory controller Peripheral bus controller ERM WDOG EWM CRC 12-bit ADC CMP 8-bit DAC TRGMUX LPI2C LPUART LPSPI FlexCAN PDB Low Power Timer FlexIO FlexTimer FlexRAM/ SRAM LPIT QSPI LPIT RTC Code flash memory CSEc3 SAI 1: On this device, NXP’s system MPU implements the safety mechanisms to prevent masters from accessing restricted memory regions. This system MPU provides memory protection at the level of the Crossbar Switch. Each Crossbar master (Core, DMA, Ethernet) can be assigned different access rights to each protected memory region. The Arm M4 core version in this family does not integrate the Arm Core MPU, which would concurrently monitor only core-initiated memory accesses. In this document, the term MPU refers to NXP’s system MPU. 2: For the device-specific sizes, see the "On-chip SRAM sizes" table in the "Memories and Memory Interfaces" chapter of the S32K1xx Series Reference Manual. 3: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase. Data flash memory Device architectural IP on all S32K devices Key: Peripherals present on all S32K devices Peripherals present on selected S32K devices (see the "Feature Comparison" section) Figure 1. High-level architecture diagram for the S32K14x and S32K14xW family S32K1xx Data Sheet, Rev. 13, 04/2020 4 NXP Semiconductors Feature comparison IO PORT Arm Cortex M0+ Clock generation IO PORT Serial Wire SW-DP NVIC AHB-AP LPO 128 kHz AWIC FIRC 48 MHz SIRC 8 MHz SOSC 4-40 MHz DMA MUX PPB Unified Bus BPU MTB+DWT eDMA AHBLite AHBLite M2 M0 Crossbar switch (AXBS-Lite) S0 S2 S1 System MPU1 System MPU1 EIM Flash memory controller SRAM2 FlexRAM/ SRAM2 Code flash memory Peripheral bus controller Data flash memory ERM 12-bit ADC WDOG LPI2C FlexIO Low Power Timer LPIT CSEc CMP 8-bit DAC CMU CRC LPUART TRGMUX FlexCAN LPSPI 1: On this device, NXP’s system MPU implements the safety mechanisms to prevent masters from accessing restricted memory regions. This system MPU provides memory protection at the level of the Crossbar Switch. Crossbar master (Core, DMA) can be assigned different access rights to each protected memory region. The Arm M0+ core version in this family does not integrate the Arm Core MPU, which would concurrently monitor only core-initiated memory accesses. In this document, the term MPU refers to NXP’s system MPU. 2: For the device-specific sizes, see the "On-chip SRAM sizes" table in the "Memories and Memory Interfaces" chapter of the S32K1xx Series Reference Manual. PDB FlexTimer GPIO RTC LPIT Device architectural IP on all S32K devices Peripherals present on all S32K devices Key: Peripherals present on selected S32K devices (see the "Feature Comparison" section) Figure 2. High-level architecture diagram for the S32K11x family 2 Feature comparison The following figure summarizes the memory, peripherals and packaging options for the S32K1xx and S32K14xW devices. All devices which share a common package are pinto-pin compatible. NOTE Availability of peripherals depends on the pin availability in a particular package. For more information see IO Signal S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 5 Feature comparison Description Input Multiplexing sheet(s) attached with Reference Manual. S32K14x S32K11x K116 Parameter K118 Core Arm® Cortex™-M0+ Frequency 48 MHz K142 K146 K144 K148 Arm® Cortex™-M4F 80 MHz (RUN mode) or 112 MHz (HSRUN mode)1 IEEE-754 FPU Cryptographic Services Engine (CSEc)1 1x 1x capable up to ASIL-B capable up to ASIL-B up to 48 MHz up to 112 MHz (HSRUN) 1x 1x CRC module ISO 26262 Peripheral speed System Crossbar DMA External Watchdog Monitor (EWM) Memory Protection Unit (MPU) FIRC CMU Watchdog Low power modes HSRUN mode1 up to 58 up to 43 Number of I/Os up to 89 up to 128 2.7 - 5.5 V Single supply voltage Ambient Operation Temperature (Ta) -40oC to +105oC / +125oC 128 KB Flash up to 156 2.7 - 5.5 V -40oC to +105oC / +125oC 256 KB 256 KB 512 KB 25 KB 32 KB 64 KB 1 MB 2 MB2 128 KB 256 KB Error Correcting Code (ECC) Memory System RAM (including FlexRAM and MTB) 17 KB FlexRAM (also available as system RAM) 2 KB 4 KB 4 KB Cache EEPROM emulated by FlexRAM1 See footnote 3 4 KB (up to 64 KB D-Flash) 2 KB (up to 32 KB D-Flash) QuadSPI incl. HyperBus™ External memory interface Analog Timer Low Power Interrupt Timer (LPIT) 1x 1x 2x (16) FlexTimer (16-bit counter) 8 channels 4x (32) 1x 1x Real Time Counter (RTC) 1x 1x Programmable Delay Block (PDB) 1x Low Power Timer (LPTMR) 6x (48) 8x (64) 2x Trigger mux (TRGMUX) 1x (43) 1x (45) 1x (64) 1x (73) 1x (81) 12-bit SAR ADC (1 Msps each) 1x (13) 1x (16) 2x (16) 2x (24) 2x (32) Comparator with 8-bit DAC 1x 1x 1x Communication 10/100 Mbps IEEE-1588 Ethernet MAC 2x Serial Audio Interface (AC97, TDM, I2S) Low Power UART/LIN (LPUART) 2x (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A, and SAE J2602) 1x Low Power SPI (LPSPI) 2x Other IDEs FlexIO (8 pins configurable as UART, SPI, I2C, I2S) Packages5 2x 3x 1x 1x (1x with FD) FlexCAN (CAN-FD ISO/CD 11898-1) Ecosystem (IDE, compiler, debugger) 3x 1x Low Power I2C (LPI2C) Debug & trace 2x 2x (1x with FD) 1x 3x (2x with FD) 3x (3x with FD) 1x SWD, MTB (1 KB), JTAG4 NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm®, Lauterbach, iSystems 32-pin QFN 48-pin LQFP 2x 3x (1x with FD) 48-pin LQFP 64-pin LQFP SWD, JTAG (ITM, SWV, SWO) SWD, JTAG (ITM, SWV, SWO), ETM NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm®, Lauterbach, iSystems 64-pin LQFP 100-pin MAPBGA 48-pin LQFP 48-pin LQFP 64-pin LQFP 100-pin MAPBGA 100-pin LQFP6 64-pin LQFP 144-pin LQFP 100-pin LQFP 100-pin LQFP 100-pin LQFP 176-pin LQFP 100-pin MAPBGA 144-pin LQFP LEGEND: Not implemented Available on the device 1 No write or erase access to Flash module, including Security (CSEc) and EEPROM commands, are allowed when device is running at HSRUN mode (112MHz) or VLPR mode. 2 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash. 3 4 KB (up to 512 KB D-Flash as a part of 2 MB Flash). Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details. 4 Only for Boundary Scan Register 5 See Dimensions section for package drawings 6 QuadSPI is not supported for S32K148 in 100-pin LQFP Figure 3. S32K1xx product series comparison S32K1xx Data Sheet, Rev. 13, 04/2020 6 NXP Semiconductors Feature comparison S32K14xW Parameter S32K144W S32K142W Arm® Cortex™-M4F Core up to 80 MHz Frequency IEEE-754 FPU Cryptographic Services Engine (CSEc) 1x CRC module capable up to ASIL-B ISO 26262 Peripheral speed up to 80 MHz System Crossbar DMA External Watchdog Monitor (EWM) Memory Protection Unit (MPU) FIRC CMU Watchdog Low power modes HSRUN mode 43 (48-pin LQFP) Number of I/Os 58 (64-pin LQFP) 3.13 - 5.5 V Single supply voltage Ambient Operation Temperature (Ta) Flash -40oC to +150oC 256 KB 512 KB Error Correcting Code (ECC) Memory System RAM (including FlexRAM) 64 KB FlexRAM 32 KB 4 KB 4 KB Cache EEPROM emulated by FlexRAM 4 KB (up to 64 KB D-Flash) External memory interface Timer Low Power Interrupt Timer (LPIT) FlexTimer (16-bit counter) 8 channels 1x 64-pin LQFP: 4x (30 channels) 48-pin LQFP: 4x (26 channels) Low Power Timer (LPTMR) 1x Real Time Counter (RTC) 1x 2x Programmable Delay Block (PDB) 1x (59) Analog Trigger mux (TRGMUX) 12-bit SAR ADC (1 Msps each) Comparator with 8-bit DAC 48-pin LQFP: 1x (14 channels), 1x(9 channels) 64-pin LQFP: 1x (16 channels), 1x(13 channels) 48-pin LQFP: 1x (6 channels) 64-pin LQFP: 1x (8 channels) Communication 10/100 Mbps IEEE-1588 Ethernet MAC Serial Audio Interface (AC97, TDM, I2S) Low Power UART/LIN (LPUART) (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A, and SAE J2602) Low Power SPI (LPSPI) 48-pin LQFP: 2x 48-pin LQFP: 2x(2x FD) Other IDEs FlexIO (8 pins configurable as UART, SPI, I2C, I2S) Ecosystem (IDE, compiler, debugger) Packages1 64-pin LQFP: 3x 1x Low Power I2C (LPI2C) FlexCAN (CAN-FD ISO/CD 11898-1) Debug & trace 64-pin LQFP: 3x 48-pin LQFP: 2x 64-pin LQFP: 2x(2x FD) 1x SWD, JTAG (ITM, SWV, SWO) NXP S32 Design Studio (GCC) + SDK, IAR, GHS, Arm®, Lauterbach, iSystems 48-pin LQFP 64-pin LQFP LEGEND: Not implemented Available on the device 1 See Dimensions section of Datasheet for package drawings Figure 4. S32K14xW product series comparison S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 7 Ordering information 3 Ordering information 3.1 Selecting orderable part number Not all part number combinations are available. See the attachment S32K1xx_Orderable_Part_Number_ List.xlsx attached with the Datasheet for a list of standard orderable part numbers. S32K1xx Data Sheet, Rev. 13, 04/2020 8 NXP Semiconductors Ordering information 3.2 Ordering information F/P S32 K 1 0 0 X Y T0 M LH R Product status Product type/brand Product line Series/Family (including generation) Core platform/ Performance Memory size Ordering option 1: Letter Ordering option 2: Letter Wafer Fab and revision Temperature Package Tape and Reel Product status P: Prototype F: Qualified Product type/brand S32: Automotive 32-bit MCU Product line K: Arm Cortex MCUs Series/Family 1: 1st product series 2: 2nd product series Core platform/Performance 1: Arm Cortex M0+ 4: Arm Cortex M4F Ordering option X: Speed L: 48 MHz with DMA (S32K11x only) H: 80 MHz U1: 112 MHz (Not valid with M temperature/125C) W: 80 MHz (S32K14xW only) Y: Optional feature V: NFC Stack License F: CAN FD, FlexIO A1: CAN FD, FlexIO, Security X1: CAN FD, FlexIO, Security with NFC Stack License E: Ethernet, Serial Audio Interface (S32K148 only) J1: Ethernet, Serial Audio Interface, CAN FD, FlexIO, Security (S32K148 only) I: ISELED, FlexIO L1: ISELED, CAN FD, FlexIO, Security G1: ISELED, Ethernet, Serial Audio Interface, CAN FD, FlexIO, Security (S32K148 only) Memory size 2 4 6 S32K11x S32K14x/ S32K14xW Wafer Fab and Mask revision identifier Tx: Wafer Fab identifier x0: Mask Revision identifier 8 128K 256K 256K 512K 1M Temperature V: -40C to 105C M: -40C to 125C W: -40 to 150C Package Pins LQFP QFN BGA - 32 - FM 48 LF - MH LH - 100 LL - 144 LQ - - 176 LU - - 64 Tape and Reel T: Trays/Tubes R: Tape and Reel 2M 1. CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase. 2. Part numbers no longer offered as standard include: Ordering Option X M: 64MHz B: 48 MHz without DMA (S32K11x only) Ordering Option Y N: limited RAM. 16KB for K142, 48KB for K144, 96KB for K146, 192KB for K148 R: Basic feature set S: Security B: CAN FD, FlexIO, limited RAM (S32K14x only) C: CAN FD, FlexIO, Security, limited RAM (S32K14x only) Temperature C: -40C to 85C NOTE Not all part number combinations are available. See S32K1xx_Orderable_Part_Number_List.xlsx attached with the Datasheet for list of standard orderable parts. Figure 5. Ordering information S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 9 General 4 General 4.1 Absolute maximum ratings • • • • NOTE Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in the following table for specific conditions. Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device. All the limits defined in the datasheet specification must be honored together and any violation to any one or more will not guarantee desired operation. Unless otherwise specified, all maximum and minimum values in the datasheet are across process, voltage, and temperature. Table 1. Absolute maximum ratings for S32K1xx series Symbol Conditions1 Parameter 2 VDD 2.7 V - 5. 5V input supply voltage VREFH — Min Max -0.3 5.8 3 Unit V 5.8 3 V 3.3 V / 5.0 V ADC high reference voltage — -0.3 Continuous DC input current (positive / negative) that can be injected into an I/O pin — -3 +3 mA Continuous DC Voltage on any I/O pin with respect to VSS — -0.8 5.85 V Sum of absolute value of injected currents on all the pins (Continuous DC limit) — — 30 mA Tramp6 ECU supply ramp rate — 0.5 V/min 500 V/ms — Tramp_MCU7 4 IINJPAD_DC_ABS VIN_DC IINJSUM_DC_ABS MCU supply ramp rate — 0.5 V/min 100 V/ms — TA8 Ambient temperature — -40 125 °C TSTG Storage temperature — -55 165 °C — 9 VIN_TRANSIENT Transient overshoot voltage allowed on I/O pin beyond VIN_DC limit — 6.8 V 1. All voltages are referred to VSS unless otherwise specified. 2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details. 3. 60 seconds lifetime – No restrictions i.e. the part is not held in reset and can switch. 10 hours lifetime – The part is held in reset by an external circuit i.e. the part cannot switch. S32K1xx Data Sheet, Rev. 13, 04/2020 10 NXP Semiconductors General The supply should be kept in operating conditions and once out of operating conditions, the device should be either reset or powered off. Operation with supply between 5.5 V and 5.8 V not in reset condition is allowed for 60 seconds cumulative over lifetime, the part will operate with reduced functionality. Operation with supply between 5.5 V and 5.8 V but held in reset condition by external circuit is allowed for 10 hours cumulative over lifetime. If the given time limits or supply levels are exceeded, the device may get damaged. 4. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible. 5. While respecting the maximum current injection limit 6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions. 7. This is the MCU supply ramp rate and the ramp rate assumes that the S32K1xx HW design guidelines in AN5426 are followed. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions. 8. TJ (Junction temperature)=135 °C. Assumes TA=125 °C for RUN mode TJ (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode • Assumes maximum θJA for 2s2p board. See Thermal characteristics 9. 60 seconds lifetime; device in reset (no outputs enabled/toggling) Table 2. Absolute maximum ratings for S32K14xW series Conditions1 Min Max Unit 2.7 V - 5. 5V input supply voltage — -0.3 5.8 3 V 3.3 V / 5.0 V ADC high reference voltage — -0.3 5.8 3 V Continuous DC input current (positive / negative) that can be injected into an I/O pin — -3 +3 mA Continuous DC Voltage on any I/O pin with respect to VSS — -0.8 5.85 V Sum of absolute value of injected currents on all the pins (Continuous DC limit) — — 30 mA Tramp6 ECU supply ramp rate — 0.5 V/min 500 V/ms — Tramp_MCU7 Symbol Parameter VDD2 VREFH 4 IINJPAD_DC_ABS VIN_DC IINJSUM_DC_ABS MCU supply ramp rate — 0.5 V/min 100 V/ms — TA8 Ambient temperature — -40 150 °C TSTG Storage temperature — -55 165 °C Transient overshoot voltage allowed on I/O pin beyond VIN_DC limit — — 6.8 9 V VIN_TRANSIENT 1. All voltages are referred to VSS unless otherwise specified. 2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details. 3. 60 seconds lifetime – No restrictions i.e. the part is not held in reset and can switch. 10 hours lifetime – The part is held in reset by an external circuit i.e. the part cannot switch. The supply should be kept in operating conditions and once out of operating conditions, the device should be either reset or powered off. Operation with supply between 5.5 V and 5.8 V not in reset condition is allowed for 60 seconds cumulative over lifetime, the part will operate with reduced functionality. Operation with supply between 5.5 V and 5.8 V but held in reset condition by external circuit is allowed for 10 hours cumulative over lifetime. If the given time limits or supply levels are exceeded, the device may get damaged. 4. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible. 5. While respecting the maximum current injection limit S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 11 General 6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions. 7. This is the MCU supply ramp rate and the ramp rate assumes that the S32K1xx HW design guidelines in AN5426 are followed. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions. 8. TJ (Junction temperature)=170 °C. Assumes TA=150 °C for RUN mode • TJ is the absolute maximum rating temperature at which the product will not be damaged, guaranteed by intrinsic reliability. • Assumes maximum θJA for 2s2p board. See Thermal characteristics 9. 60 seconds lifetime; device in reset (no outputs enabled/toggling) 4.2 Voltage and current operating requirements NOTE Device functionality is guaranteed up to the LVR assert level, however electrical performance of 12-bit ADC, CMP with 8-bit DAC, IO electrical characteristics, and communication modules electrical characteristics would be degraded when voltage drops below 2.7 V Table 3. Voltage and current operating requirements for S32K1xx series 1 Symbol Description Min. Max. Unit Notes VDD2 Supply voltage 2.73 5.5 V 4 0 0.1 V VDD_OFF Voltage allowed to be developed on VDD pin when it is not powered from any external power supply source. VDDA Analog supply voltage VDD – VDDA VDD-to-VDDA differential voltage 2.7 5.5 V 4 – 0.1 0.1 V 4 5 VREFH ADC reference voltage high 2.7 VDDA + 0.1 V VREFL ADC reference voltage low -0.1 0.1 V Open drain pullup voltage level VDD VDD V VODPU 7 IINJPAD_DC_OP Continuous DC input current (positive / negative) that can be injected into an I/O pin -3 +3 mA IINJSUM_DC_OP Continuous total DC input current that can be injected across all I/O pins such that there's no degradation in accuracy of analog modules: ADC and ACMP (See section Analog Modules) — 30 mA 6 1. Typical conditions assumes VDD = VDDA = VREFH = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated. 2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details. 3. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes. 4. VDD and VDDA must be shorted to a common source on PCB. The differential voltage between VDD and VDDA is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. 5. VREFH should always be equal to or less than VDDA + 0.1 V and VDD + 0.1 V S32K1xx Data Sheet, Rev. 13, 04/2020 12 NXP Semiconductors General 6. Open drain outputs must be pulled to VDD. 7. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible. Table 4. Voltage and current operating requirements for S32K14xW series 1 Symbol Description Min. Max. Unit Notes VDD2 Supply voltage 3.13 5.5 V 3 0 0.1 V Analog supply voltage 3.13 5.5 V 3 VDD_OFF Voltage allowed to be developed on VDD pin when it is not powered from any external power supply source. VDDA VDD – VDDA VDD-to-VDDA differential voltage – 0.1 0.1 V 3 VREFH ADC reference voltage high 3.13 VDDA + 0.1 V 4 VREFL ADC reference voltage low -0.1 0.1 V Open drain pullup voltage level VDD VDD V VODPU 6 IINJPAD_DC_OP Continuous DC input current (positive / negative) that can be injected into an I/O pin -3 +3 mA IINJSUM_DC_OP Continuous total DC input current that can be injected across all I/O pins such that there's no degradation in accuracy of analog modules: ADC and ACMP (See section Analog Modules) — 30 mA 5 1. Typical conditions assumes VDD = VDDA = VREFH = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated. 2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details. 3. VDD and VDDA must be shorted to a common source on PCB. The differential voltage between VDD and VDDA is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. 4. VREFH should always be equal to or less than VDDA + 0.1 V and VDD + 0.1 V 5. Open drain outputs must be pulled to VDD. 6. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible. 4.3 Thermal operating characteristics Table 5. Thermal operating characteristics for S32K1xx series Symbol TA C-Grade Part TJ C-Grade Part Parameter Ambient temperature under bias Junction temperature under bias Value Unit Min. Typ. Max. −40 — 851 ℃ — 1051 ℃ ℃ −40 TA V-Grade Part Ambient temperature under bias −40 — 1051 TJ V-Grade Part Junction temperature under bias −40 — 1251 ℃ TA M-Grade Part Ambient temperature under bias −40 — 1252 ℃ — 1352 ℃ TJ M-Grade Part Junction temperature under bias −40 1. Values mentioned are measured at ≤ 112 MHz in HSRUN mode. 2. Values mentioned are measured at ≤ 80 MHz in RUN mode. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 13 General Table 6. Thermal operating characteristics for S32K14xW series Symbol Parameter Value Unit Min. Typ. Max. TA C-Grade Part Ambient temperature under bias −40 — 85 ℃ TJ C-Grade Part Junction temperature under bias −40 — 105 ℃ TA V-Grade Part Ambient temperature under bias −40 — 105 ℃ TJ V-Grade Part Junction temperature under bias −40 — 125 ℃ — 1251 ℃ — 1351 ℃ — 1501 ℃ — 1701 ℃ TA M-Grade Part TJ M-Grade Part TA W-Grade Part TJ W-Grade Part Ambient temperature under bias Junction temperature under bias Ambient temperature under bias Junction temperature under bias −40 −40 −40 −40 1. Values mentioned are measured at ≤ 80 MHz in RUN mode. S32K1xx Data Sheet, Rev. 13, 04/2020 14 NXP Semiconductors General VSS VDD 48 LQFP Package VREFH/VDDA VSS C DEC VDD CREF VREFL/VSSA/VSS 32 QFN Package C DEC VREFH/VDDA/VDD VDD C DEC CREF 4.4 Power and ground pins VREFL/VSSA/VSS CREF C DEC VSS C DEC VREFL/VSSA/VSS VREFH VREFL VDD 100 LQFP Package VSS VSSA/VSS VSS VDD CREF VREFH VDDA C DEC C DEC VDD 64 LQFP Package VDDA C DEC VDD VDD C DEC VSS VDD C DEC C DEC C DEC C DEC VDD C DEC VSS VDD VSS C DEC VSS VDD VSS VSS VSS VSS CREF VREFL VSSA/VSS VDD 176 LQFP Package VDD VSS VDD VSS VSS VDD VDD VREFH VDD C DEC C DEC VSS C DEC VSS VDDA DEC VDD C VREFL VSSA/VSS 144 LQFP Package C DEC VREFH VDD VDD VSS VSS CREF DEC C C DEC CDEC C DEC VDD VDDA C DEC VDD C DEC C DEC NOTE: VDD and VDDA must be shorted to a common source on PCB Figure 6. Pinout decoupling S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 15 General Table 7. Supplies decoupling capacitors 1, 2 Symbol Description Min. 3 Typ. Max. Unit CREF, 4, 5 ADC reference high decoupling capacitance 70 100 — nF CDEC5, 6, 7 Recommended decoupling capacitance 70 100 — nF 1. VDD and VDDA must be shorted to a common source on PCB. The differential voltage between VDD and VDDA is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All VSS pins should be connected to common ground at the PCB level. 2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type). 3. Minimum recommendation is after considering component aging and tolerance. 4. For improved performance, it is recommended to use 10 μF, 0.1 μF and 1 nF capacitors in parallel. 5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins. 6. Contact your local Field Applications Engineer for details on best analog routing practices. 7. The filtering used for decoupling the device supplies must comply with the following best practices rules: • The protection/decoupling capacitors must be on the path of the trace connected to that component. • No trace exceeding 1 mm from the protection to the trace or to the ground. • The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm). • The ground of the protection is connected as short as possible to the ground plane under the integrated circuit. S32K1xx Data Sheet, Rev. 13, 04/2020 16 NXP Semiconductors VREFH VREFL VSSA VDD VDDA General VOSC = 3.3 V nominal FIRC SIRC SPLL SOSC ADC CMP VCORE = 1.2 V/1.4 V nominal VFlash = 3.3 V nominal PMC LV SOG GPIO VSS Flash Pads System RAM TCD RAM I/D Cache EEE RAM *Note: VSSA and VSS are shorted at package level Figure 7. Power diagram 4.5 LVR, LVD and POR operating requirements Table 8. VDD supply LVR, LVD and POR operating requirements for S32K1xx series Symbol Description Min. Typ. Max. Unit VPOR Rising and falling VDD POR detect voltage 1.1 1.6 2.0 V VLVR LVR falling threshold (RUN, HSRUN, and STOP modes) 2.50 2.58 2.7 V — 45 — mV LVR falling threshold (VLPS/VLPR modes) 1.97 2.22 2.44 V Falling low-voltage detect threshold 2.8 2.875 3 V LVD hysteresis — 50 — mV VLVR_HYST VLVR_LP VLVD VLVD_HYST LVR hysteresis Notes 1 1 Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 17 General Table 8. VDD supply LVR, LVD and POR operating requirements for S32K1xx series (continued) Symbol VLVW VLVW_HYST VBG Description Min. Typ. Max. Unit Falling low-voltage warning threshold 4.19 4.305 4.5 V — 75 — mV 0.97 1.00 1.03 V LVW hysteresis Bandgap voltage reference Notes 1 1. Rising threshold is the sum of falling threshold and hysteresis voltage. Table 9. VDD supply LVR and POR operating requirements for S32K14xW series Symbol Description Min. Typ. Max. Unit VPOR Rising and falling VDD POR detect voltage 1.1 1.6 2.0 V VLVR LVR falling threshold (RUN and STOP modes) 1.97 2.22 2.44 V — 45 — mV LVR falling threshold (VLPS/VLPR modes) 2.06 2.26 2.46 V Falling low-voltage warning threshold 4.19 4.305 4.5 V — 75 — mV 0.97 1.00 1.03 V VLVR_HYST VLVR_LP2 VLVW VLVW_HYST VBG LVR hysteresis LVW hysteresis Bandgap voltage reference Notes 1 1 1. Rising threshold is the sum of falling threshold and hysteresis voltage. 2. An internal monitor could reset the chip at a higher supply level, but 3.13 V onward the chip is fully functional. 4.6 Power mode transition operating behaviors All specifications in the following table assume this clock configuration: Table 10. Clock configuration S32K1xx S32K14xW RUN mode Clock source FIRC FIRC SYS_CLK/CORE_CLK 48 MHz 48 MHz BUS_CLK 48 MHz 48 MHz FLASH_CLK 24 MHz 16 MHz Clock source SPLL NA SYS_CLK/CORE_CLK 112 MHz NA BUS_CLK 56 MHz NA FLASH_CLK 28 MHz NA SIRC SIRC HRUN mode VLPR mode Clock source Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 18 NXP Semiconductors General Table 10. Clock configuration (continued) S32K1xx S32K14xW SYS_CLK/CORE_CLK 4 MHz 1 MHz BUS_CLK 4 MHz 1 MHz FLASH_CLK 1 MHz 0.25 Clock source FIRC FIRC SYS_CLK/CORE_CLK 48 MHz 48 MHz BUS_CLK 48 MHz 48 MHz FLASH_CLK 24 MHz 16 MHz STOP1/STOP2 mode VLPS mode All clock source disabled 1 1. • For S32K11x – FIRC/SOSC • For S32K14x, S32K14xW – FIRC/SOSC/SPLL Table 11. Power mode transition operating behaviors for S32K1xx series Symbol tPOR Description Min. Typ. Max. Unit After a POR event, amount of time from the point VDD reaches 2.7 V to execution of the first instruction across the operating temperature range of the chip. — 325 — μs VLPS → RUN 8 — 17 μs STOP1 → RUN 0.07 0.075 0.08 μs STOP2 → RUN 0.07 0.075 0.08 μs VLPR → RUN 19 — 26 μs VLPR → VLPS 5.1 5.7 6.5 μs VLPS → VLPR 18.8 23 27.75 μs RUN → Compute operation 0.72 0.75 0.77 μs HSRUN → Compute operation 0.3 0.31 0.35 μs RUN → STOP1 0.35 0.38 0.4 μs RUN → STOP2 0.2 0.23 0.25 μs RUN → VLPS 0.3 0.35 0.4 μs RUN → VLPR 3.5 3.8 5 μs VLPS → Asynchronous DMA Wakeup 105 110 125 μs STOP1 → Asynchronous DMA Wakeup 1 1.1 1.3 μs STOP2 → Asynchronous DMA Wakeup 1 1.1 1.3 μs Pin reset → Code execution — 214 — μs NOTE HSRUN should only be used when frequencies in excess of 80 MHz are required. When using 80 MHz and below, RUN mode is the recommended operating mode. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 19 General Table 12. Power mode transition operating behaviors for S32K14xW series Symbol tPOR Description Min. Typ. Max. Unit — TBD — μs VLPS → RUN TBD — TBD μs STOP1 → RUN TBD TBD TBD μs STOP2 → RUN TBD TBD TBD μs VLPR → RUN TBD — TBD μs VLPR → VLPS TBD TBD TBD μs VLPS → VLPR TBD TBD TBD μs RUN → Compute operation TBD TBD TBD μs RUN → STOP1 TBD TBD TBD μs RUN → STOP2 TBD TBD TBD μs RUN → VLPS TBD TBD TBD μs RUN → VLPR TBD TBD TBD μs VLPS → Asynchronous DMA Wakeup TBD TBD TBD μs STOP1 → Asynchronous DMA Wakeup TBD TBD TBD μs STOP2 → Asynchronous DMA Wakeup TBD TBD TBD μs — TBD — μs After a POR event, amount of time from the point VDD reaches 3.13 V to execution of the first instruction across the operating temperature range of the chip. Pin reset → Code execution 4.7 Power consumption The following table shows the power consumption targets for the device in various mode of operations. Attached S32K1xx_Power_Modes _Configuration.xlsx details the modes used in gathering the power consumption data stated in the following table Table 13. For full functionality refer to table: Module operation in available power modes of the Reference Manual. S32K1xx Data Sheet, Rev. 13, 04/2020 20 NXP Semiconductors 26 40 1.05 1.07 1.70 6.3 7.2 11.8 20.3 85 Typ 76 93 1.1 1.11 1.77 6.6 7.5 12 20.6 251 Max 287 300 1.39 1.4 NA 8 8.9 13.4 22.1 279 Typ 139 164 1.15 1.16 1.81 6.8 7.7 12.3 20.8 255 Max 590 603 1.68 1.69 NA 9.2 10.1 14.5 23.1 302 Typ NA NA NA NA 1.96 NA NA NA NA NA Max 891 904 2.02 2.04 NA 10.4 11.3 15.6 24.1 325 25 Typ 27 40 1.15 1.16 1.76 6.4 7.3 12.8 21.5 85 Typ 81 100 1.20 1.21 1.82 6.7 7.6 13.2 21.8 274 Max 304 323 1.46 1.47 NA 8 9 14.5 23.4 301 Typ 149 175 1.27 1.28 1.89 6.9 7.9 13.4 22.1 279 Max 606 637 1.76 1.77 NA 9.3 10.4 15.4 24.2 320 Typ NA NA NA NA 2.03 NA NA NA NA NA Max 1111 1126 2.32 2.33 NA 11.0 11.9 17.1 25.9 357 105 125 NA IDD/MHz (μA/MHz) 4 Peripherals enabled HSRUN@112 MHz (mA) 3 Peripherals disabled Peripherals enabled Peripherals disabled Peripherals enabled RUN@64 MHz RUN@80 MHz (mA) (mA) Peripherals disabled Peripherals disabled RUN@48 MHz (mA) Peripherals enabled STOP2 (mA) Peripherals enabled use case 27 Peripherals disabled 6 LPTMR enabled STOP1 (mA) Typ 125 S32K142 VLPR (mA) 25 105 S32K118 Peripherals disabled 5 S32K1xx Data Sheet, Rev. 13, 04/2020 S32K116 Ambient Temperature (°C) Chip/Device VLPS (μA) 2 Peripherals enabled use case 16 NXP Semiconductors Table 13. Power consumption (Typicals unless stated otherwise) 1 245 NA 268 Typ 29 40 1.17 1.21 2.19 6.4 7.4 17.3 24.6 24.5 31.3 28.8 37.5 40.5 52.2 360 85 Typ 128 137 1.48 1.51 2.31 7 8 17.6 24.9 25 31.6 29.1 37.7 41.1 52.5 364 Max 335 360 1.87 1.89 NA 8.6 9.4 22 28.2 26.9 33.5 32 40 44 55.6 400 Table continues on the next page... 21 General 25 105 125 S32K144 25 85 IDD/MHz (μA/MHz) 4 Peripherals enabled HSRUN@112 MHz (mA) 3 Peripherals disabled Peripherals enabled Peripherals disabled RUN@64 MHz RUN@80 MHz (mA) (mA) Peripherals enabled Peripherals disabled RUN@48 MHz (mA) Peripherals disabled STOP2 (mA) Peripherals enabled STOP1 (mA) Peripherals enabled use case 27 Peripherals enabled use case 16 Peripherals disabled 6 LPTMR enabled VLPR (mA) Typ 240 257 1.58 1.61 2.44 7.6 8.3 18.3 25.7 25.5 31.9 29.8 38 41.5 53.1 373 Max 740 791 2.32 2.34 NA 9.9 10.9 23.1 30.2 27.8 35.3 33.8 40.7 44.9 57.4 423 Typ NA NA NA NA 2.84 NA NA NA NA NA NA NA NA NA NA Max 1637 1694 3.1 3.21 NA 12.7 13.7 25 32.9 30.7 38.8 36 43.8 NA 450 Typ 29.8 42 1.48 1.50 2.91 7 7.7 19.7 26.9 25.1 33.3 30.2 39.6 43.3 55.6 378 Typ 150 159 1.72 1.85 3.08 7.2 8.1 20.4 27.1 26.1 33.5 30.5 40 43.9 56.1 381 Max 359 384 2.60 2.65 NA 9.2 9.9 23.2 29.6 29.3 36.2 34.8 42.1 46.3 59.7 435 Typ 256 273 1.80 2.10 3.23 7.8 8.5 20.6 27.4 26.6 33.8 31.2 40.5 44.8 57.1 390 Max 850 900 2.65 2.70 NA 10.3 11.1 23.9 30.6 30.3 37.3 35.6 43.5 47.9 61.3 445 Typ NA NA NA NA 3.65 NA NA NA NA NA NA NA NA NA NA Max 1960 1998 3.18 3.25 NA 12.9 13.8 26.9 33.6 35 40.3 38.7 46.8 NA 484 25 Typ 35 48 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD NA TBD 85 Typ TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD NA TBD Max TBD TBD TBD TBD NA TBD TBD TBD TBD TBD TBD TBD TBD NA TBD 105 125 S32K14xW Peripherals disabled 5 S32K1xx Data Sheet, Rev. 13, 04/2020 Ambient Temperature (°C) Chip/Device VLPS (μA) 2 General 22 Table 13. Power consumption (Typicals unless stated otherwise) 1 (continued) NXP Semiconductors 105 125 Typ TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD NA TBD Max TBD TBD TBD TBD NA TBD TBD TBD TBD TBD TBD TBD TBD NA TBD Typ NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Table continues on the next page... IDD/MHz (μA/MHz) 4 Peripherals disabled HSRUN@112 MHz (mA) 3 NA TBD TBD TBD TBD TBD TBD TBD TBD NA TBD Typ TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD NA NA NA Max TBD TBD TBD 8 NA TBD TBD TBD TBD TBD TBD TBD 70 NA TBD 25 Typ 37 47 1.57 1.61 3.3 8 9.2 23.4 31.4 30.5 40.2 36.2 47.6 52 68.3 452 85 Typ 207 209 1.79 1.83 3.54 8.9 10.1 24.4 32.4 31.5 41.3 37.2 48.7 53.3 69.8 465 Max 974 981 3.32 3.38 NA 12.7 13.9 29.3 37.9 36.7 47 42.4 54.4 60.3 78 530 Peripherals enabled TBD Peripherals enabled TBD Peripherals enabled TBD LPTMR enabled Peripherals enabled Peripherals disabled RUN@64 MHz RUN@80 MHz (mA) (mA) Peripherals disabled RUN@48 MHz (mA) Peripherals disabled STOP2 (mA) Peripherals enabled use case 27 Peripherals disabled 6 STOP1 (mA) TBD 105 Typ 419 422 1.99 2.04 3.78 9.8 11 25.3 33.4 32.5 42.2 38.1 49.6 54.4 70.8 477 Max 2004 2017 4.06 4.13 NA 17.1 18.3 34.1 42.6 41.3 51.4 46.9 58.8 65.7 82.8 587 Typ NA NA NA NA 4.44 NA NA NA NA NA NA NA NA NA NA Max 3358 3380 5.28 5.38 NA 22.6 23.7 40.2 48.8 47.3 57.4 52.8 64.8 NA 660 25 Typ 38 54 2.17 2.20 3.45 8.5 9.6 27.6 34.9 35.5 45.3 42.1 57.7 60.3 83.3 526 85 Typ 336 357 2.30 2.35 3.74 10.1 11.1 29.1 37.0 36.8 46.6 43.4 59.9 62.9 88.7 543 Max 1660 1736 3.48 3.55 NA 14.5 15.6 34.8 43.6 41.9 53.9 48.7 65.1 70.4 96.1 609 Typ 560 577 2.49 2.54 4.03 10.9 11.9 29.8 37.8 37.6 47.5 45.2 61.5 63.8 89.1 565 Max 2945 2970 4.40 4.47 NA 18.0 19.0 38.4 46.8 44.9 55.3 51.6 66.8 73.6 97.4 645 125 S32K1488 VLPR (mA) Max 150 S32K146 Peripherals disabled 5 S32K1xx Data Sheet, Rev. 13, 04/2020 Ambient Temperature (°C) Chip/Device VLPS (μA) 2 Peripherals enabled use case 16 NXP Semiconductors Table 13. Power consumption (Typicals unless stated otherwise) 1 (continued) 105 125 NA NA NA NA 4.85 NA NA NA NA NA NA NA NA NA NA 3990 4166 6.00 6.08 NA 23.4 24.5 44.3 52.5 50.9 61.3 57.5 71.6 NA 719 23 General Typ Max 2. 3. 4. 5. 6. 7. 8. Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes VDD = VDDA = VREFH = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated. All output pins are floating and On-chip pulldown is enabled for all unused input pins. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C. Values mentioned for S32K14x devices are measured at RUN@80 MHz with peripherals disabled and values mentioned for S32K11x devices are measured at RUN@48 MHz with peripherals disabled. With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details. Data collected using RAM Numbers on limited samples size and data collected with Flash The S32K148 data points assume that ENET/QuadSPI/SAI etc. are inactive. General 24 1. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors NXP Semiconductors Table 14. VLPS additional use-case power consumption at typical conditions 1, 2, 3 Use-case VLPS and RTC VLPS and LPUART TX/RX S32K1xx Data Sheet, Rev. 13, 04/2020 VLPS and LPUART wake-up VLPS and LPI2C master VLPS and LPI2C slave wake-up VLPS and LPSPI master 4 VLPS and LPIT Description • Clock source: LPO or RTC_CLKIN • Clock source: SIRC • Transmiting or receiving continuously using DMA • Baudrate: 19.2 kbps • Clock source: SIRC • Wake-up address feature enabled • Baudrate: 19.2 kbps • Clock Source: SIRC • Transmit/receive using DMA • Baudrate: 100 kHz • Clock source: SIRC • Wake-up address feature enabled • Baudrate: 100 kHz • Clock source: SIRC • Transmit/receive using DMA • Baudrate: 500 kHz • Clock source: SIRC • 1 channel enable • Mode: 32-bit periodic counter Temp. Device Unit S32K116 S32K118 S32K142 S32K144 S32K14x W S32K146 S32K148 25 30 30 30 31 TBD 38 40 μA 85 96 102 148 170 TBD 227 356 μA 105 179 189 280 290 TBD 460 600 μA 125 281 327 570 680 TBD 810 1250 μA 25 179 187 230 230 TBD 250 250 μA 85 235 244 320 400 TBD 410 490 μA 105 304 325 490 550 TBD 600 850 μA 125 499 551 890 1070 TBD 1250 1960 μA 25 107 107 135 138 TBD 146 146 μA 85 149 157 170 240 TBD 280 350 μA 105 199 223 260 400 TBD 480 600 μA 125 347 405 530 580 TBD 1000 1280 μA 25 600 600 670 690 TBD 820 900 μA 85 696 712 880 960 TBD 1220 1370 μA 105 815 852 1080 1250 TBD 1660 2060 μA 125 1152 1251 1970 1980 TBD 2860 3690 μA 25 260 260 260 260 TBD 270 280 μA 85 293 308 340 340 TBD 410 510 μA 105 339 367 430 430 TBD 610 810 μA 125 478 543 740 760 TBD 1170 1540 μA 25 2.51 2.94 2.99 3.19 TBD 3.75 4.11 mA 2.67 3.09 3.26 3.7 TBD 4.35 4.93 mA 2.83 3.21 3.5 4.2 TBD 4.93 5.74 mA 125 3.34 3.53 3.93 4.63 TBD 5.97 7.38 mA 25 114 114 114 114 TBD 120 130 μA 85 158 164 190 250 TBD 260 320 μA 105 210 223 310 410 TBD 440 570 μA 125 371 408 640 750 TBD 910 1280 μA 25 General 85 105 4. All power numbers listed in this table are typical power numbers Current numbers are quoted for a certain application code and may vary on user configuration and silicon process variation. The power numbers are not strictly for the VLPS mode operation alone, but also includes power due to periodic wakeup. The power therefore includes wakeup plus VLPS mode activity. This leads to greater dependence of power numbers on application code. The single LPSPI used is LPSPI1 in S32K14X devices but LPSPI0 in S32K11x devices. General 26 1. 2. 3. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors General The following table shows the power consumption targets for S32K148 in various mode of operations measure at 3.3 V. Table 15. Power consumption at 3.3 V Chip/Device Ambient Temperature (°C) S32K148 HSRUN@112 MHz (mA)1 RUN@80 MHz (mA) Peripherals enabled + QSPI Peripherals enabled + ENET + SAI Peripherals enabled + QSPI Peripherals enabled + ENET + SAI 25 Typ 67.3 79.1 89.8 105.5 85 Typ 67.4 79.2 95.6 105.9 Max 82.5 88.2 109.7 117.4 Typ 68.0 79.8 96.6 106.7 Max 80.3 89.1 109.0 119.0 Max 83.5 94.7 105 125 NA 1. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C. 4.8 ESD handling ratings Symbol Description VHBM Electrostatic discharge voltage, human body model VCDM Electrostatic discharge voltage, charged-device model ILAT Min. Max. Unit Notes − 4000 4000 V 1 2 All pins except the corner pins − 500 500 V Corner pins only − 750 750 V Latch-up current at ambient temperature of 125 °C − 100 100 mA 3 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 4.9 EMC radiated emissions operating behaviors EMC measurements to IC-level IEC standards are available from NXP on request. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 27 I/O parameters 5 I/O parameters 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Figure 8. Input signal measurement reference 5.2 General AC specifications These general purpose specifications apply to all signals configured for GPIO, UART, and timers. Table 16. General switching specifications Symbol WFRST WNFRST Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1, 2 GPIO pin interrupt pulse width (digital glitch filter disabled, passive filter disabled) — Asynchronous path 50 — ns 3 RESET input filtered pulse — 10 ns 4 Maximum of (100 ns, bus clock period) — ns 5 RESET input not filtered pulse 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be recognized in that case. 2. The greater of synchronous and asynchronous timing must be met. 3. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized. 4. Maximum length of RESET pulse which will be the filtered by internal filter only if PCR_PTA5[PFE] is at its reset value of 1'b1. 5. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter only if PCR_PTA5[PFE] is at its reset value of 1'b1. This number depends on the bus clock period also. In this case, minimum pulse width which will cause reset is 250 ns. For faster clock frequencies which have clock period less than 100 ns, the minimum pulse width not filtered will S32K1xx Data Sheet, Rev. 13, 04/2020 28 NXP Semiconductors I/O parameters be 100 ns. After this filtering mechanism, the software has an option to put additional filtering in addition to this, by means of PCM_RPC register and/or PORT_DFER register for PTA5. 5.3 DC electrical specifications at 3.3 V Range NOTE For details on the pad types defined in Table 17 and Table 19, see Reference Manual section IO Signal Table and IO Signal Description Input Multiplexing sheet(s) attached with Reference Manual. Table 17. DC electrical specifications at 3.3 V Range for S32K1xx series Symbol Parameter Value Unit Notes Min. Typ. Max. 2.7 3.3 4 V 1 VDD I/O Supply Voltage Vih Input Buffer High Voltage 0.7 × VDD — VDD + 0.3 V 2 Vil Input Buffer Low Voltage VSS − 0.3 — 0.3 × VDD V 3 0.06 × VDD — — V 3.5 — — mA I/O current sink capability measured when pad Vol = 0.8 V 3 — — mA IohGPIO-HD_DSE_1 I/O current source capability measured when pad Voh = (VDD − 0.8 V) 14 — — mA 4 IolGPIO-HD_DSE_1 I/O current sink capability measured when pad Vol = 0.8 V 12 — — mA 4 IohGPIO-FAST_DSE_0 I/O current sink capability measured when pad Voh=VDD-0.8 V 9.5 — — mA 5 IolGPIO-FAST_DSE_0 I/O current sink capability measured when pad Vol = 0.8 V 10 — — mA 5 IohGPIO-FAST_DSE_1 I/O current sink capability measured when pad Voh=VDD-0.8 V 16 — — mA 5 IolGPIO-FAST_DSE_1 I/O current sink capability measured when pad Vol = 0.8 V 15.5 — — mA 5 — — 100 mA Vhys IohGPIO IohGPIO-HD_DSE_0 IolGPIO IolGPIO-HD_DSE_0 IOHT IIN Input Buffer Hysteresis I/O current source capability measured when pad Voh = (VDD − 0.8 V) Output high current total for all ports Input leakage current (per pin) for full temperature range at VDD = 3.3 V All pins other than high drive port pins High drive port pins 7 6 0.005 0.5 μA 0.010 0.5 μA RPU Internal pullup resistors 20 60 kΩ 8 RPD Internal pulldown resistors 20 60 kΩ 9 1. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes. 2. For reset pads, same Vih levels are applicable 3. For reset pads, same Vil levels are applicable S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 29 I/O parameters 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the Ioh_Standard value given above. 5. For refernce only. Run simulations with the IBIS model and custom board for accurate results. 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the Reference Manual. 7. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive. 8. Measured at input V = VSS 9. Measured at input V = VDD Table 18. DC electrical specifications at 3.3 V Range for S32K14xW series Symbol Parameter Value Unit Min. Typ. Max. 3.13 3.3 4 V Notes VDD I/O Supply Voltage Vih Input Buffer High Voltage 0.7 × VDD — VDD + 0.3 V 1 Vil Input Buffer Low Voltage VSS − 0.3 — 0.3 × VDD V 2 0.06 × VDD — — V 3.5 — — mA I/O current sink capability measured when pad Vol = 0.8 V 3 — — mA IohGPIO-HD_DSE_1 I/O current source capability measured when pad Voh = (VDD − 0.8 V) 14 — — mA 3 IolGPIO-HD_DSE_1 I/O current sink capability measured when pad Vol = 0.8 V 12 — — mA 3 Output high current total for all ports — — 100 mA Vhys IohGPIO IohGPIO-HD_DSE_0 IolGPIO IolGPIO-HD_DSE_0 IOHT IIN Input Buffer Hysteresis I/O current source capability measured when pad Voh = (VDD − 0.8 V) Input leakage current (per pin) for full temperature range at VDD = 3.3 V 4 All pins other than high drive port pins 0.005 0.5 μA High drive port pins 0.010 0.5 μA RPU Internal pullup resistors 20 60 kΩ 5 RPD Internal pulldown resistors 20 60 kΩ 6 1. For reset pads, same Vih levels are applicable 2. For reset pads, same Vil levels are applicable 3. The value given is measured at high drive strength mode. For value at low drive strength mode see the Ioh_Standard value given above. 4. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the Reference Manual. 5. Measured at input V = VSS 6. Measured at input V = VDD S32K1xx Data Sheet, Rev. 13, 04/2020 30 NXP Semiconductors I/O parameters 5.4 DC electrical specifications at 5.0 V Range Table 19. DC electrical specifications at 5.0 V Range for S32K1xx series Symbol Parameter Value Unit Min. Typ. Max. 4 — 5.5 V Notes VDD I/O Supply Voltage Vih Input Buffer High Voltage 0.65 x VDD — VDD + 0.3 V 1 Vil Input Buffer Low Voltage VSS − 0.3 — 0.35 x VDD V 2 0.06 x VDD — — V I/O current source capability measured when pad Voh= (VDD - 0.8 V) 5 — — mA I/O current sink capability measured when pad Vol= 0.8 V 5 — — mA IohGPIO-HD_DSE_1 I/O current source capability measured when pad Voh = VDD - 0.8 V 20 — — mA 3 IolGPIO-HD_DSE_1 I/O current sink capability measured when pad Vol = 0.8 V 20 — — mA 3 IohGPIO-FAST_DSE_0 I/O current sink capability measured when pad Voh = VDD - 0.8 V 14.0 — — mA 4 IolGPIO-FAST_DSE_0 I/O current sink capability measured when pad Vol= 0.8 V 14.5 — — mA 4 IohGPIO-FAST_DSE_1 I/O current sink capability measured when pad Voh = VDD - 0.8 V 21 — — mA 4 IolGPIO-FAST_DSE_1 I/O current sink capability measured when pad Vol= 0.8 V 20.5 — — mA 4 IOHT Output high current total for all ports — — 100 mA Vhys IohGPIO IohGPIO-HD_DSE_0 IolGPIO IolGPIO-HD_DSE_0 IIN Input Buffer Hysteresis Input leakage current (per pin) for full temperature range at VDD = 5.5 V 5 All pins other than high drive port pins 0.005 0.5 μA High drive port pins 0.010 0.5 μA RPU Internal pullup resistors 20 50 kΩ 6 RPD Internal pulldown resistors 20 50 kΩ 7 1. 2. 3. 4. 5. For reset pads, same Vih levels are applicable For reset pads, same Vil levels are applicable The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz. For refernce only. Run simulations with the IBIS model and custom board for accurate results. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the Reference Manual. 6. Measured at input V = VSS 7. Measured at input V = VDD S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 31 I/O parameters Table 20. DC electrical specifications at 5.0 V Range for S32K14xW series Symbol Parameter Value Unit Min. Typ. Max. 4 — 5.5 V Notes VDD I/O Supply Voltage Vih Input Buffer High Voltage 0.65 x VDD — VDD + 0.3 V -1 Vil Input Buffer Low Voltage VSS − 0.3 — 0.35 x VDD V 1 0.06 x VDD — — V I/O current source capability measured when pad Voh= (VDD - 0.8 V) 5 — — mA I/O current sink capability measured when pad Vol= 0.8 V 5 — — mA IohGPIO-HD_DSE_1 I/O current source capability measured when pad Voh = VDD - 0.8 V 20 — — mA 2 IolGPIO-HD_DSE_1 I/O current sink capability measured when pad Vol = 0.8 V 20 — — mA 2 IOHT Output high current total for all ports — — 100 mA Vhys Input Buffer Hysteresis IohGPIO IohGPIO-HD_DSE_0 IolGPIO IolGPIO-HD_DSE_0 IIN Input leakage current (per pin) for full temperature range at VDD = 5.5 V 3 All pins other than high drive port pins 0.005 0.5 μA High drive port pins 0.010 0.5 μA RPU Internal pullup resistors 20 50 kΩ 4 RPD Internal pulldown resistors 20 50 kΩ 5 1. For reset pads, same Vil levels are applicable 2. The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz. 3. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the Reference Manual 4. Measured at input V = VSS 5. Measured at input V = VDD 5.5 AC electrical specifications at 3.3 V range Table 21. AC electrical specifications at 3.3 V Range for S32K1xx series Symbol tRFGPIO tRFGPIO-HD DSE NA 0 Rise time (nS) 1 Fall time (nS) 1 Capacitance (pF) 2 Min. Max. Min. Max. 3.2 14.5 3.4 15.7 25 5.7 23.7 6.0 26.2 50 20.0 80.0 20.8 88.4 200 3.2 14.5 3.4 15.7 25 5.7 23.7 6.0 26.2 50 20.0 80.0 20.8 88.4 200 Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 32 NXP Semiconductors I/O parameters Table 21. AC electrical specifications at 3.3 V Range for S32K1xx series (continued) Symbol DSE 1 tRFGPIO-FAST 0 1 Rise time (nS) 1 Fall time (nS) 1 Capacitance (pF) 2 Min. Max. Min. Max. 1.5 5.8 1.7 6.1 25 2.4 8.0 2.6 8.3 50 6.3 22.0 6.0 23.8 200 0.6 2.8 0.5 2.8 25 3.0 7.1 2.6 7.5 50 12.0 27.0 10.3 26.8 200 0.4 1.3 0.38 1.3 25 1.5 3.8 1.4 3.9 50 7.4 14.9 7.0 15.3 200 1. For reference only. Run simulations with the IBIS model and your custom board for accurate results. 2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections. Table 22. AC electrical specifications at 3.3 V Range for S32K14xW series Symbol tRFGPIO tRFGPIO-HD DSE NA 0 1 Rise time (nS) 1 Fall time (nS) 1 Capacitance (pF) 2 Min. Max. Min. Max. 3.2 14.5 3.4 15.7 25 5.7 23.7 6.0 26.2 50 20.0 80.0 20.8 88.4 200 3.2 14.5 3.4 15.7 25 5.7 23.7 6.0 26.2 50 20.0 80.0 20.8 88.4 200 1.5 5.8 1.7 6.1 25 2.4 8.0 2.6 8.3 50 6.3 22.0 6.0 23.8 200 1. For reference only. Run simulations with the IBIS model and your custom board for accurate results. 2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different. For protocol specific AC specifications, see respective sections. 5.6 AC electrical specifications at 5 V range Table 23. AC electrical specifications at 5 V Range for S32K1xx series Symbol tRFGPIO DSE NA Rise time (nS)1 Fall time (nS) 1 Capacitance (pF) 2 Min. Max . Min. Max. 2.8 9.4 2.9 10.7 25 5.0 15.7 5.1 17.4 50 17.3 54.8 17.6 59.7 200 Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 33 I/O parameters Table 23. AC electrical specifications at 5 V Range for S32K1xx series (continued) Symbol tRFGPIO-HD DSE 0 1 tRFGPIO-FAST 0 1 Rise time (nS)1 Fall time (nS) 1 Capacitance (pF) 2 Min. Max . Min. Max. 2.8 9.4 2.9 10.7 25 5.0 15.7 5.1 17.4 50 17.3 54.8 17.6 59.7 200 1.1 4.6 1.1 5.0 25 2.0 5.7 2.0 5.8 50 5.4 16.0 5.0 16.0 200 0.42 2.2 0.37 2.2 25 2.0 5.0 1.9 5.2 50 9.3 18.8 8.5 19.3 200 0.37 0.9 0.35 0.9 25 1.2 2.7 1.2 2.9 50 6.0 11.8 6.0 12.3 200 1. For reference only. Run simulations with the IBIS model and your custom board for accurate results. 2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections. Table 24. AC electrical specifications at 5 V Range for S32K14xW series Symbol tRFGPIO tRFGPIO-HD DSE NA 0 1 Rise time (nS)1 Fall time (nS) 1 Capacitance (pF) 2 Min. Max . Min. Max. 2.8 9.4 2.9 10.7 25 5.0 15.7 5.1 17.4 50 17.3 54.8 17.6 59.7 200 2.8 9.4 2.9 10.7 25 5.0 15.7 5.1 17.4 50 17.3 54.8 17.6 59.7 200 1.1 4.6 1.1 5.0 25 2.0 5.7 2.0 5.8 50 5.4 16.0 5.0 16.0 200 1. For reference only. Run simulations with the IBIS model and your custom board for accurate results. 2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different. For protocol specific AC specifications, see respective sections. 5.7 Standard input pin capacitance Table 25. Standard input pin capacitance Symbol CIN_D Description Min. Max. Unit — 7 pF Input capacitance: digital pins S32K1xx Data Sheet, Rev. 13, 04/2020 34 NXP Semiconductors I/O parameters NOTE Please refer to External System Oscillator electrical specifications for EXTAL/XTAL pins. 5.8 Device clock specifications Table 26. Device clock specifications 1 Symbol Description High Speed run Min. Max. Unit mode2 fSYS System and core clock — 112 MHz fBUS Bus clock — 56 MHz Flash clock — 28 MHz fFLASH Normal run mode (S32K11x series) fSYS System and core clock — 48 MHz fBUS Bus clock — 48 MHz — 24 MHz — 80 MHz Bus clock — 404 MHz Flash clock — 26.67 MHz — 80 MHz — 404 MHz — 20 MHz fFLASH Flash clock Normal run mode (S32K14x series) fSYS fBUS fFLASH 3 System and core clock Normal run mode (S32K14xW series) 5 fSYS fBUS fFLASH System and core clock Bus clock Flash clock VLPR mode (S32K1xx series)6 fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz fFLASH Flash clock — 1 MHz fERCLK External reference clock — 16 MHz VLPR mode (S32K14xW 1. 2. 3. 4. 5. 6. series)6 fSYS System and core clock — 1 MHz fBUS Bus clock — 1 MHz fFLASH Flash clock — 0.25 MHz fERCLK External reference clock — TBD MHz Refer to the section Feature comparison for the availability of modes and other specifications. Only available on some devices. See section Feature comparison. With SPLL as system clock source. 48 MHz when fSYS is 48 MHz With SPLL as system clock source. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 35 Peripheral operating requirements and behaviors 6 Peripheral operating requirements and behaviors 6.1 System modules There are no electrical specifications necessary for the device's system modules. 6.2 Clock interface modules 6.2.1 External System Oscillator electrical specifications S32K1xx Data Sheet, Rev. 13, 04/2020 36 NXP Semiconductors Clock interface modules Single input comparator (EXTAL WAVE) ref_clk Mux Differential input comparator (HG/LP mode) Peak detector LP mode Driver (HG/LP mode) Pull down resistor (OFF) ESD PAD 280 ohms ESD PAD 40 ohms XTAL pin EXTAL pin Series resistor for current limitation 1M ohms Feedback Resistor Crystal or resonator C1 C2 Figure 9. Oscillator connections scheme Table 27. External System Oscillator electrical specifications Symbol Description Min. Typ. Max. Unit gmXOSC Crystal oscillator transconductance SCG_SOSCCFG[RANGE]=2'b10 for 4-8 MHz 2.2 — 13.7 mA/V SCG_SOSCCFG[RANGE]=2'b11 for 8-40 MHz 16 — 47 mA/V VIL Input low voltage — EXTAL pin in external clock mode VIH Input high voltage — EXTAL pin in external clock mode C1 Notes VSS — 1.15 V 0.7 * VDD — VDD V EXTAL load capacitance — — — 1 C2 XTAL load capacitance — — — 1 RF Feedback resistor Low-gain mode (HGO=0) 2 — — — MΩ Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 37 Clock interface modules Table 27. External System Oscillator electrical specifications (continued) Symbol Description Min. Typ. Max. Unit — 1 — MΩ Low-gain mode (HGO=0) — 0 — kΩ High-gain mode (HGO=1) — 0 — kΩ High-gain mode (HGO=1) ,3 RS Notes Series resistor Vpp_XTAL Peak-to-peak amplitude of oscillation (oscillator mode) at XTAL 4 Low-gain mode (HGO=0) — 1.0 — V High-gain mode (HGO=1) — 3.3 — V Vpp_EXTAL Peak-to-peak amplitude of oscillation (oscillator mode) at EXTAL VSOSCOP 4, 5 Low-gain mode (HGO=0) 0.8 — — V High-gain mode (HGO=1), VDD= 4.0 V to 5.5 V 1.7 — — V Oscillation operating point 4 High-gain mode (HGO=1) 1.15 — — V 1. Crystal oscillator circuit provides stable oscillations when gmXOSC > 5 * gm_crit. The gm_crit is defined as: gm_crit = 4 * (ESR + RS) * (2πF)2 * (C0 + CL)2 where: • • • • • • • • gmXOSC is the transconductance of the internal oscillator circuit ESR is the equivalent series resistance of the external crystal RS is the series resistance connected between XTAL pin and external crystal for current limitation F is the external crystal oscillation frequency C0 is the shunt capacitance of the external crystal CL is the external crystal total load capacitance. CL = Cs+ [C1*C2/(C1+C2)] Cs is stray or parasitic capacitance on the pin due to any PCB traces C1, C2 external load capacitances on EXTAL and XTAL pins See manufacture datasheet for external crystal component values • When low-gain is selected, internal RF will be selected and external RF should not be attached. • When high-gain is selected, external RF (1 M Ohm) needs to be connected for proper operation of the crystal. For external resistor, up to 5% tolerance is allowed. 3. RS should be selected carefully to have appropriate oscillation amplitude for both protecting crystal or resonator device and satisfying proper oscillation startup condition. 4. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 5. Minimum value is shown as a reference only, however the HW design needs to ensure it reaches the maximum value by following the guidelines given in above notes (notes 1, 2, and 3) and performs the required robustness testing at the application level. During testing, a low capacitance probe (< 5 pF ) must be used to avoid any decrease in the Vpp_EXTAL value. 2. 6.2.2 External System Oscillator frequency specifications S32K1xx Data Sheet, Rev. 13, 04/2020 38 NXP Semiconductors NXP Semiconductors Table 28. External System Oscillator frequency specifications Symbol Description Min. S32K14x/ S32K14xW fosc_hi S32K1xx Data Sheet, Rev. 13, 04/2020 4. S32K11x S32K14x/ S32K14xW Max. S32K11x Oscillator crystal or resonator frequency 4 — fec_extal Input clock frequency (external clock mode) — — tdc_extal Input clock duty cycle (external clock mode) 48 50 8 MHz low-gain mode (HGO=0) — 8 MHz high-gain mode (HGO=1) tcst 1. 2. 3. Typ. S32K14x/ S32K14xW Unit Notes S32K11x 40 1, 2 50 MHz 48 MHz 3 52 % 3 1.5 — ms 4 — 2.5 — 40 MHz low-gain mode (HGO=0) — 2 — 40 MHz high-gain mode (HGO=1) — 2 — Crystal Start-up Time For an ideal clock of 40 MHz, if permitted by application requirements, an error of +/- 5% is supported with 50% duty cycle. In S32K14xW, when sourcing ADC clock from oscillator, a better duty cycle is expected. Frequencies below 40 MHz can be used for degraded duty cycle upto 40-60%. In S32K14xW, when sourcing ADC clock from oscillator, a better duty cycle is expected. To cater for the duty cycle requirement or to limit the ADC clock to ≤ fADCK, the divider ADCn.ADC_CFG1[ADICLK] for the specific ADC instance can be used. Proper PC board layout procedures must be followed to achieve specifications. Clock interface modules 39 System Clock Generation (SCG) specifications 6.2.3 System Clock Generation (SCG) specifications 6.2.3.1 Fast internal RC Oscillator (FIRC) electrical specifications Table 29. Fast internal RC Oscillator electrical specifications for S32K1xx series Parameter1 Symbol Value Unit Min. Typ. Max. FIRC target frequency — 48 — MHz ΔF Frequency deviation across process, voltage, and temperature < 105°C — ±0.5 ±1 %FFIRC ΔF125 Frequency deviation across process, voltage, and temperature < 125°C — ±0.5 ±1.1 %FFIRC TStartup Startup time 3.4 5 µs2 TJIT, 3 Cycle-to-Cycle jitter — 300 500 ps Long term jitter over 1000 cycles — 0.04 0.1 %FFIRC FFIRC 3 TJIT 1. With FIRC regulator enable 2. Startup time is defined as the time between clock enablement and clock availability for system use. 3. FIRC as system clock Table 30. Fast internal RC Oscillator electrical specifications for S32K14xW series Parameter1 Symbol FFIRC ΔF Value Unit Min. Typ. Max. FIRC target frequency — 48 — MHz Frequency deviation across process, voltage, and temperature — ±0.5 ±1.4 %FFIRC 3.4 5 µs2 TStartup Startup time TJIT, 3 Cycle-to-Cycle jitter — 300 500 ps Long term jitter over 1000 cycles — 0.04 0.1 %FFIRC 3 TJIT 1. With FIRC regulator enable 2. Startup time is defined as the time between clock enablement and clock availability for system use. 3. FIRC as system clock NOTE Fast internal RC oscillator is compliant with LIN when device is used as a slave node. S32K1xx Data Sheet, Rev. 13, 04/2020 40 NXP Semiconductors System Clock Generation (SCG) specifications 6.2.3.2 Slow internal RC oscillator (SIRC) electrical specifications Table 31. Slow internal RC oscillator (SIRC) electrical specifications for S32K1xx series Symbol Parameter Value Unit Min. Typ. Max. SIRC target frequency — 8 — MHz ΔF Frequency deviation across process, voltage, and temperature < 105°C — — ±3 %FSIRC ΔF125 Frequency deviation across process, voltage, and temperature < 125°C — — ±3.3 %FSIRC TStartup Startup time — 9 12.5 µs1 FSIRC 1. Startup time is defined as the time between clock enablement and clock availability for system use. Table 32. Slow internal RC oscillator (SIRC) electrical specifications for S32K14xW series Symbol Parameter FSIRC ΔF TStartup Value Unit Min. Typ. Max. SIRC target frequency — 8 — MHz Frequency deviation across process, voltage, and temperature — — ±3.3 %FSIRC Startup time — 9 12.5 µs1 1. Startup time is defined as the time between clock enablement and clock availability for system use. 6.2.4 Low Power Oscillator (LPO) electrical specifications Table 33. Low Power Oscillator (LPO) electrical specifications Symbol FLPO Tstartup Parameter Internal low power oscillator frequency Startup Time Value Unit Min. Typ. Max. S32K1xx/ S32K14xW S32K1xx/ S32K14xW S32K1xx S32K14xW 113 128 139 141 — — 20 kHz µs S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 41 Memory and memory interfaces 6.2.5 SPLL electrical specifications Table 34. SPLL electrical specifications Symbol Parameter FSPLL_REF1 2 FSPLL_Input Min. Typ. Max. S32K1xx/ S32K14xW S32K1xx/ S32K14xW PLL Reference Frequency Range 8 — PLL Input Frequency 8 — S32K1xx Unit S32K14xW 16 MHz 40 48 MHz FVCO_CLK VCO output frequency 180 — 320 MHz FSPLL_CLK PLL output frequency 90 — 160 MHz at FVCO_CLK 180 MHz — 120 — ps at FVCO_CLK 320 MHz — 75 — ps at FVCO_CLK 180 MHz — 1350 — ps at FVCO_CLK 320 MHz — 600 — ps ± 4.47 — ± 5.97 % JCYC_SPLL JACC_SPLL DUNL TSPLL_LOCK PLL Period Jitter (RMS)3 PLL accumulated jitter over 1µs (RMS)3 Lock exit frequency tolerance Lock detector detection time4 — — 150 × 10-6 + 1075(1/FSPLL_REF) s 1. FSPLL_REF is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG register of Reference Manual. 2. FSPLL_Input is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass mode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual. 3. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary 4. Lock detector detection time is defined as the time between PLL enablement and clock availability for system use. 6.3 Memory and memory interfaces 6.3.1 Flash memory module (FTFC/FTFM) electrical specifications This section describes the electrical characteristics of the flash memory module. 6.3.1.1 Symbol Flash timing specifications — commands Table 35. Flash command timing specifications for S32K14x series Description1 S32K142 Typ trd1blk Read 1 Block execution time Max S32K144 Typ S32K146 Max Typ Max S32K148 Typ Max 32 KB flash — — — — — — — — 64 KB flash — 0.5 — 0.5 — 0.5 — — Unit Notes ms Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 42 NXP Semiconductors Memory and memory interfaces Table 35. Flash command timing specifications for S32K14x series (continued) Description1 Symbol S32K142 Typ S32K144 Max Typ S32K146 Max Typ S32K148 Max Typ Max Unit Notes 128 KB flash — — — — — — — — 256 KB flash — 2 — — — — — — 512 KB flash — — — 1.8 — 2 — 2 Read 1 Section execution time 2 KB flash — 75 — 75 — 75 — 75 4 KB flash — 100 — 100 — 100 — 100 tpgmchk Program Check execution time — — 95 — 95 — 95 — 100 µs tpgm8 Program Phrase — execution time 90 225 90 225 90 225 90 225 µs tersblk Erase Flash Block execution time 32 KB flash — — — — — — — — ms 2 64 KB flash 30 550 30 550 30 550 — — 128 KB flash — — — — — — — — 256 KB flash 250 2125 — — — — — — 512 KB flash — 2 trd1sec µs — 250 4250 250 4250 250 4250 tersscr Erase Flash — Sector execution time 12 130 12 130 12 130 12 130 ms tpgmsec1k Program Section — execution time (1KB flash) 5 — 5 — 5 — 5 — ms trd1all Read 1s All Block execution time — — 2.8 — 2.3 — 5.2 — 8.2 ms trdonce Read Once execution time — — 30 — 30 — 30 — 30 µs tpgmonce Program Once execution time — 90 — 90 — 90 — 90 — µs tersall Erase All Blocks — execution time 250 2800 400 4900 700 10000 1400 17000 ms tvfykey Verify Backdoor Access Key execution time — 35 — 35 — 35 35 µs tersallu Erase All Blocks — Unsecure execution time 250 2800 400 4900 700 10000 1400 17000 ms 2 tpgmpart Program Partition for EEPROM execution time 32 KB EEPROM backup 70 — 70 — 70 — — — ms 3 64 KB EEPROM backup 71 — 71 — 71 — 150 — Control Code 0xFF 0.08 — 0.08 — 0.08 — 0.08 — ms 3 tsetram Set FlexRAM Function execution time — — 2 Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 43 Memory and memory interfaces Table 35. Flash command timing specifications for S32K14x series (continued) Symbol Description1 S32K142 Typ teewr8b teewr16b Byte write to FlexRAM execution time 16-bit write to FlexRAM execution time S32K144 Max Typ S32K146 Max Typ Max S32K148 Typ Max 32 KB EEPROM backup 0.8 1.2 0.8 1.2 0.8 1.2 — — 48 KB EEPROM backup 1 1.5 1 1.5 1 1.5 — — 64 KB EEPROM backup 1.3 1.9 1.3 1.9 1.3 1.9 1.3 1.9 32 KB EEPROM backup 385 1700 385 1700 385 1700 — — 48 KB EEPROM backup 430 1850 430 1850 430 1850 — — 64 KB EEPROM backup 475 2000 475 2000 475 2000 475 4000 32 KB EEPROM backup 385 1700 385 1700 385 1700 — — 48 KB EEPROM backup 430 1850 430 1850 430 1850 — — 64 KB EEPROM backup 475 2000 475 2000 475 2000 475 4000 Unit Notes µs 3,4 µs 3,4 teewr32bers 32-bit write to — erased FlexRAM location execution time 360 2000 360 2000 360 2000 360 2000 µs teewr32b 32-bit write to FlexRAM execution time 32 KB EEPROM backup 630 2000 630 2000 630 2000 — — µs 3,4 48 KB EEPROM backup 720 2125 720 2125 720 2125 — — 64 KB EEPROM backup 810 2250 810 2250 810 2250 810 4500 1st 32-bit write 200 550 200 550 200 550 200 1100 µs 4,5,6 2nd through 150 Next to Last (Nth-1) 32bit write 550 150 550 150 550 150 550 tquickwr 32-bit Quick Write execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 44 NXP Semiconductors Memory and memory interfaces Table 35. Flash command timing specifications for S32K14x series (continued) Description1 Symbol S32K142 Typ write complete, ready for next 32-bit write) tquickwrClnup Quick Write Cleanup execution time Max S32K144 Typ Last (Nth) 200 32-bit write (time for write only, not cleanup) 550 — (# of — Quick Writes ) * 2.0 — 200 S32K146 Max Typ Max S32K148 Typ 550 200 550 200 (# of Quick Writes ) * 2.0 — (# of — Quick Writes ) * 2.0 Max Unit Notes 550 (# of Quick Writes ) * 2.0 ms 7 1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks). 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected. 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2× the times shown. 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded. 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries. 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point. Table 36. Flash command timing specifications for S32K14xW series S32K142W Description-1 Symbol trd1blk Max Typ Max Unit Notes 64 KB flash — 0.5 — 0.5 256 KB flash — 2.5 — — 512 KB flash — — — 2.5 Read 1 Section execution time 2 KB flash — 95 — 95 4 KB flash — 125 — 125 tpgmchk Program Check execution time — — 125 — 125 µs tpgm8 Program Phrase execution time — 100 250 100 250 µs tersblk Erase Flash Block execution time 64 KB flash 35 610 35 610 ms -1 256 KB flash 140 2340 — — 512 KB flash — — 280 4675 -1 trd1sec Read 1 Block execution time Typ S32K144W ms µs tersscr Erase Flash Sector execution time — 15 150 15 150 ms tpgmsec Program Section execution time 1 KB flash 5.5 — 5.5 — ms trd1all Read 1s All Block execution time — — 3.5 — 4.5 ms Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 45 Memory and memory interfaces Table 36. Flash command timing specifications for S32K14xW series (continued) S32K142W Symbol Description-1 Typ S32K144W Max Typ Max Unit Notes trdonce Read Once execution time — — 38 — 38 µs tpgmonce Program Once execution time — 100 — 100 — µs tersall Erase All Blocks execution time — 160 2700 310 5300 ms tvfykey Verify Backdoor Access Key execution time — — 45 — 45 µs tersallu Erase All Blocks — Unsecure execution time 160 2700 310 5300 ms -1 tpgmpart Program Partition for 32 KB EEPROM EEPROM execution backup time 64 KB EEPROM backup 77 — 77 — ms -1 78 — 78 — Control Code 0xFF 0.10 — 0.10 — ms -1 32 KB EEPROM backup 1.0 1.5 1.0 1.5 48 KB EEPROM backup 1.2 1.8 1.2 1.8 64 KB EEPROM backup 1.4 2.1 1.4 2.1 32 KB EEPROM backup 690 2200 690 2200 µs -1,-1 48 KB EEPROM backup 790 2350 790 2350 64 KB EEPROM backup 890 2500 890 2500 1st 32-bit write 220 600 220 600 µs -1,-1,-1 2nd through Next 165 to Last (Nth-1) 32bit write 600 165 600 Last (Nth) 32-bit 220 write (time for write only, not cleanup) 600 220 600 tsetram teewr32b tquickwr tquickwrClnup Set FlexRAM Function execution time 32-bit write to FlexRAM execution time 32-bit Quick Write execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit write complete, ready for next 32-bit write) Quick Write Cleanup — execution time — (# of — Quick Writes ) * 2.0 (# of ms Quick Writes ) * 2.0 -1 -1 S32K1xx Data Sheet, Rev. 13, 04/2020 46 NXP Semiconductors Memory and memory interfaces Table 37. Flash command timing specifications for S32K11x series Description1 Symbol S32K116 Typ trd1blk Read 1 Block execution time S32K118 Max Typ Max 32 KB flash — 0.36 — 0.36 64 KB flash — — — — 128 KB flash — 1.2 — — 256 KB flash — — — 2 512 KB flash — — — — Unit Notes ms trd1sec Read 1 Section execution time 2 KB flash — 75 — 75 4 KB flash — 100 — 100 tpgmchk Program Check execution time — — 100 — 100 µs tpgm8 Program Phrase execution time — 90 225 90 225 µs tersblk Erase Flash Block execution time 32 KB flash 15 300 15 300 ms 2 2 64 KB flash — — — — 128 KB flash 120 1100 — — 256 KB flash — — 250 2125 512 KB flash — — — — µs tersscr Erase Flash Sector execution time — 12 130 12 130 ms tpgmsec1k Program Section execution time (1 KB flash) — 5 — 5 — ms trd1all Read 1s All Block execution time — — 1.7 — 2.8 ms trdonce Read Once execution time — — 30 — 30 µs tpgmonce Program Once execution — time 90 — 90 — µs tersall Erase All Blocks execution time — 150 1500 230 2500 ms tvfykey Verify Backdoor Access Key execution time — — 35 — 35 µs tersallu Erase All Blocks — Unsecure execution time 150 1500 230 2500 ms 2 tpgmpart Program Partition for 32 KB EEPROM 71 EEPROM execution time backup — 71 — ms 3 64 KB EEPROM — backup — — — Control Code 0xFF — 0.08 — ms 3 1.2 0.8 1.2 tsetram Set FlexRAM Function execution time 0.08 32 KB EEPROM 0.8 backup 2 Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 47 Memory and memory interfaces Table 37. Flash command timing specifications for S32K11x series (continued) Symbol Description1 S32K116 Typ teewr8b teewr16b Byte write to FlexRAM execution time 16-bit write to FlexRAM execution time S32K118 Max Typ Max 48 KB EEPROM — backup — — — 64 KB EEPROM — backup — — — 32 KB EEPROM 385 backup 1700 385 1700 48 KB EEPROM — backup — — — 64 KB EEPROM — backup — — — 32 KB EEPROM 385 backup 1700 385 1700 48 KB EEPROM — backup — — — 64 KB EEPROM — backup — — — Unit Notes µs 3,4 µs 3,4 teewr32bers 32-bit write to erased FlexRAM location execution time — 360 2000 360 2000 µs teewr32b 32-bit write to FlexRAM execution time 32 KB EEPROM 630 backup 2000 630 2000 µs 3,4 48 KB EEPROM — backup — — — 64 KB EEPROM — backup — — — 32-bit Quick Write execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit write complete, ready for next 32-bit write) 1st 32-bit write 200 550 200 550 µs 4,5,6 2nd through Next 150 to Last (Nth-1) 32-bit write 550 150 550 Last (Nth) 32-bit write (time for write only, not cleanup) 200 550 200 550 Quick Write Cleanup execution time — — (# of — Quick Writes ) * 2.0 tquickwr tquickwrClnup (# of Quick ms Writes ) * 2.0 7 1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks). 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected. 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the times shown. 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded. S32K1xx Data Sheet, Rev. 13, 04/2020 48 NXP Semiconductors Memory and memory interfaces 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries. 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point. NOTE Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC/FTFM macro to stop the operation. 6.3.1.2 Symbol Reliability specifications Table 38. NVM reliability specifications Description Min. Typ. Max. Unit Notes When using as Program and Data Flash tnvmretp1k Data retention after up to 1 K cycles 20 — — years 1 nnvmcycp Cycling endurance 1K — — cycles 2, 3 When using FlexMemory feature : FlexRAM as Emulated EEPROM tnvmretee100 Data retention up to 100% of write endurance 5 — — years 1, 4 tnvmretee10 20 — — years 1 100 K — — writes 1.6 M — — writes nnvmwree16 nnvmwree256 Data retention up to 10% of write endurance Write endurance • EEPROM backup to FlexRAM ratio = 16 • EEPROM backup to FlexRAM ratio = 256 5, 6, 7 1. Data retention period per block begins upon initial user factory programming or after each subsequent erase. 2. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not supported in HSRUN mode). 3. Cycling endurance is per DFlash or PFlash Sector. 4. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years. 5. FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved with larger ratios of EEPROM backup to FlexRAM. 6. For usage of any EEE driver other than the FlexMemory feature, the endurance spec will fall back to the specified endurance value of the D-Flash specification (1K). 7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievable at specific EEPROM/FlexRAM ratios. The “In Spec” portions of the online calculator refer to the NVM reliability specifications section of data sheet. This calculator is only applies to the FlexMemory feature. 6.3.2 QuadSPI AC specifications The following table describes the QuadSPI electrical characteristics. • Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1). • I/O operating voltage ranges from 2.97 V to 3.6 V • While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the interface should be OFF. • Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop back reflection when using in Internal DQS (PAD Loopback) mode. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 49 Memory and memory interfaces • QuadSPI trace length should be 3 inches. • For non-Quad mode of operation if external device doesn’t have pull-up feature, external pull-up needs to be added at board level for non-used pads. • With external pull-up, performance of the interface may degrade based on load associated with external pull-up. S32K1xx Data Sheet, Rev. 13, 04/2020 50 NXP Semiconductors NXP Semiconductors Table 39. QuadSPI electrical specifications FLASH PORT Sym Unit FLASH A QuadSPI Mode RUN1 HSRUN1 SDR SDR Internal Sampling N1 Min Max FLASH B Internal DQS Internal Sampling PAD Loopback Internal Loopback Min Min Max Max Internal DQS N1 Min Max RUN/HSRUN2 PAD Loopback Internal Loopback Min Min Max Max SDR DDR3 Internal Sampling External DQS N1 External DQS Min Max Min Max Register Settings S32K1xx Data Sheet, Rev. 13, 04/2020 MCR[DDR_EN] - 0 0 0 0 0 0 0 1 MCR[DQS_EN] - 0 1 1 0 1 1 0 1 MCR[SCLKCFG[0]] - - 1 0 - 1 0 - - MCR[SCLKCFG[1]] - - 1 0 - 1 0 - - MCR[SCLKCFG[2]] - - - - - - - - 0 MCR[SCLKCFG[3]] - - - - - - - - 0 MCR[SCLKCFG[5]] - 0 0 0 0 0 0 0 1 SMPR[FSPHS] - 0 1 0 0 1 0 0 0 SMPR[FSDLY] - 0 0 0 0 0 0 0 0 - 0 23 - 0 30 - - SOCCR [SOCCFG[7:0]] SOCCR[SOCCFG[15:8]] - - - - - - - - 30 FLSHCR[TDH] - 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 Timing Parameters - - 48 - - 40 - Table continues on the next page... - 80 - 1/fSCK - 64 1/fSCK ns - 1/fSCK tSCK 38 1/fSCK SCK Clock Period - 1/fSCK MHz 1/fSCK fSCK 50 - 20 - 204 - 50.0 - 50.04 - 51 Memory and memory interfaces SCK Clock Frequency FLASH PORT Sym Unit FLASH A RUN1 HSRUN1 SDR SDR QuadSPI Mode Internal Sampling N1 Min Max FLASH B Internal DQS Internal Sampling PAD Loopback Internal Loopback Min Min Max Max Internal DQS N1 Min Max RUN/HSRUN2 PAD Loopback Internal Loopback Min Min Max Max SDR DDR3 Internal Sampling External DQS N1 External DQS Min Max Min Max 2.5 - 10 - 14 - 1.6 - 9 - 25 - 2 - Data Input Hold Time tIH ns 0 - 1 - 1 - 0 - 1 - 1 - 0 - 20 - Data Output Valid Time tOV ns - 4.5 - 4.5 - 4.5 - 4 - 4 - 4 - 10 - 10 - 5 - 5 5 - tSCK/2 - 2.5 tSCK/2 - 2.5 tSCK/2 - 1.5 tSCK/2 - 0.750 tSCK/2 - 0.750 tSCK/2 - 1.5 tSCK/2 - 1.5 tSCK/2 - 1.5 Data Output In-Valid Time tIV ns - 5 - 5 - 5 - 5 - 35 CS to SCK Time 6 tCSSCK ns 5 - 5 - 5 - 5 - 5 - 5 - 10 - 10 - SCK to CS Time 7 tSCKCS ns 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - Output Load NXP Semiconductors 1. 2. 3. 4. 5. 6. 7. tSCK/2 + 2.5 - tSCK/2 + 2.5 15 tSCK/2 + 1.5 ns tSCK/2 + 1.5 tIS tSCK/2 + 1.5 Data Input Setup Time tSCK/2 + 1.5 ns tSCK/2 + 1.5 tSDC tSCK/2 - 1.5 S32K1xx Data Sheet, Rev. 13, 04/2020 SCK Duty Cycle pf 25 25 See Reference Manual for details on mode settings See Reference Manual for details on mode settings Valid for HyperRAM only RWDS(External DQS CLK) frequency For operating frequency ≤ 64 Mhz,Output invalid time is 5 ns. Program register value QuadSPI_FLSHCR[TCSS] = 4`h2 Program register value QuadSPI_FLSHCR[TCSH] = 4`h1 25 25 25 25 25 25 Memory and memory interfaces 52 Table 39. QuadSPI electrical specifications (continued) Memory and memory interfaces 1 2 Clock 3 tSCK tSDC tSDC SCK CS tIS tIH Data in Figure 10. QuadSPI input timing (SDR mode) diagram 1 2 3 Clock tSCK tSDC tSDC SCK tSCKCS tCSSCK CS tIV tOV Data out Invalid Figure 11. QuadSPI output timing (SDR mode) diagram TIS TIS TIH TIH D1 invalid D2 invalid D3 invalid D4 invalid D5 TIS– Setup Time TIH – Hold Time Figure 12. QuadSPI input timing (HyperRAM mode) diagram S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 53 Analog modules SCK tIV tOV Output Invalid Data Figure 13. QuadSPI output timing (HyperRAM mode) diagram 6.4 Analog modules 6.4.1 ADC electrical specifications 6.4.1.1 12-bit ADC operating conditions S32K1xx Data Sheet, Rev. 13, 04/2020 54 NXP Semiconductors NXP Semiconductors Table 40. 12-bit ADC operating conditions Symbol S32K1xx/ S32K14xW S32K1xx S32K14xW Unit Notes S32K1xx Data Sheet, Rev. 13, 04/2020 See Voltage and current operating requirements for values VDDA See Voltage and current operating requirements for values V 2 VREFL ADC reference voltage low See Voltage and current operating requirements for values 0 See Voltage and current operating requirements for values mV 2 VADIN Input voltage VREFL — VREFH V — — 5 kΩ 0.75 1.2 kΩ Source impedendance fADCK < 4 MHz Channel Selection Switch Impedance — RAD Sampling Switch Impedance — 2 5 kΩ CP1 Pin Capacitance — 10 — pF CP2 Analog Bus Capacitance — — 4 pF CS Sampling capacitance — 4 5 pF 2 40 No ADC hardware Continuous conversions enabled, subsequent conversion time 46.4 928 ADC hardware averaging set to 32. 5 Continuous conversions enabled, subsequent conversion time 1.45 29 ADC conversion clock frequency ADC conversion frequency Normal usage averaging.5 50 40 MHz 3, 4 1160 Ksps 6, 7 36.25 Ksps 6, 7 55 Typical values assume VDDA = 5 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF unless otherwise stated. Typical values are for reference only, and are not tested in production. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to VSS. To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 for details. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual . ADC conversion will become less reliable above maximum frequency. When using ADC hardware averaging, see the Reference Manual to determine the most appropriate setting for AVGS. ADC electrical specifications RSW1 fCONV 3. 4. 5. S32K1xx/ S32K14xW Max. ADC reference voltage high fADCK 2. Conditions Typ.1 VREFH RS 1. Description Min. Numbers based on the minimum sampling time of 275 ns. For guidelines and examples of conversion rate calculation, see the Reference Manual section 'Calibration function' ADC electrical specifications 56 6. 7. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors ADC electrical specifications Figure 14. ADC input impedance equivalency diagram 6.4.1.2 12-bit ADC electrical characteristics NOTE • ADC performance specifications are documented using a single ADC. For parallel/simultaneous operation of both ADCs, either for sampling the same channel by both ADCs or for sampling different channels by each ADC, some amount of decrease in performance can be expected. Care must be taken to stagger the two ADC conversions, in particular the sample phase, to minimize the impact of simultaneous conversions. • On reduced pin packages where ADC reference pins are shared with supply pins, ADC analog performance characteristics may be impacted. The amount of variation will be directly impacted by the external PCB layout and hence care must be taken with PCB routing. See AN5426 for details • All accuracy numbers assume the ADC is calibrated with VREFH=VDDA=VDD, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 57 ADC electrical specifications Table 41. 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS) 1 Symbol Description Min. Typ.2 Max. Unit VDDA Supply voltage 2.7 — 3 V IDDA_ADC Supply current per ADC — 0.6 — mA SMPLTS Sample Time 275 — Refer to the Reference Manual ns Notes 3 TUE4 Total unadjusted error — ±4 ±8 LSB5 6, 7, 8, 9 DNL Differential non-linearity — ±1.0 — LSB5 6, 7, 8, 9 INL Integral non-linearity — ±2.0 — LSB5 6, 7, 8, 9 1. 2. 3. 4. 5. 6. This table is not applicable to S32K14xW. Typical values assume VDDA = 3 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF. The ADC supply current depends on the ADC conversion rate. Represents total static error, which includes offset and full scale error. 1 LSB = (VREFH - VREFL)/2N The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the Reference Manual to determine the most appropriate settings for AVGS. 7. For ADC signals adjacent to VDD/VSS or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed. 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation. 9. All the parameters in the table are given assuming system clock as the clocking source for ADC. Table 42. 12-bit ADC characteristics (3 V to 5.5 V)(VREFH = VDDA, VREFL = VSS) Symbol VDDA Description Supply voltage IDDA_ADC Supply current per ADC SMPLTS Sample Time Min. Typ.1 Max. Unit S32K1xx S32K14xW S32K1xx/ S32K14xW S32K1xx/ S32K14xW 3 3.13 — 5.5 V — 1 — mA 275 — Refer to the Reference Manual ns Notes 2 TUE3 Total unadjusted error — ±4 ±8 LSB4 5, 6, 7, 8 DNL Differential non-linearity — ±0.7 — LSB4 5, 6, 7, 8 INL Integral non-linearity — ±1.0 — LSB4 5, 6, 7, 8 1. 2. 3. 4. 5. Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF unless otherwise stated. The ADC supply current depends on the ADC conversion rate. Represents total static error, which includes offset and full scale error. 1 LSB = (VREFH - VREFL)/2N The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the Reference Manual to determine the most appropriate settings for AVGS. 6. For ADC signals adjacent to VDD/VSS or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed. 7. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation. 8. All the parameters in the table are given assuming system clock as the clocking source for ADC. S32K1xx Data Sheet, Rev. 13, 04/2020 58 NXP Semiconductors ADC electrical specifications NOTE • Due to triple bonding in lower pin packages like 32-QFN, 48-LQFP, and 64-LQFP degradation might be seen in ADC parameters. • When using high speed interfaces such as the QuadSPI, SAI0, SAI1 or ENET there may be some ADC degradation on the adjacent analog input paths. See following table for details. Pin name TGATE purpose PTE8 CMP0_IN3 PTC3 ADC0_SE11/CMP0_IN4 PTC2 ADC0_SE10/CMP0_IN5 PTD7 CMP0_IN6 PTD6 CMP0_IN7 PTD28 ADC1_SE22 PTD27 ADC1_SE21 6.4.2 CMP with 8-bit DAC electrical specifications Table 44. Comparator with 8-bit DAC electrical specifications for S32K1xx series Symbol IDDHS Description Min. Supply current, High-speed -40 - 125 ℃ IDDLS Supply current, Low-speed VAIN Analog input voltage VAIO Analog input offset voltage, High-speed mode — 230 300 — 6 11 6 13 0 - VDDA VDDA μA 0 -40 - 125 ℃ mV -40 ±4 40 — 35 200 35 300 ns -40 - 125 ℃ mode2 Propagation delay, Low-speed -40 - 105 ℃ -40 - 125 ℃ tDHSS 25 mode2 -40 - 105 ℃ tDLSB ±1 Analog input offset voltage, Low-speed mode Propagation delay, High-speed Propagation delay, High-speed -40 - 105 ℃ V mV -25 -40 - 125 ℃ Unit μA -40 - 125 ℃ tDHSB Max. mode1 -40 - 105 ℃ VAIO Typ. mode1 µs — 0.5 2 — 0.5 3 mode3 ns — 70 400 Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 59 ADC electrical specifications Table 44. Comparator with 8-bit DAC electrical specifications for S32K1xx series (continued) Symbol Description -40 - 125 ℃ tDLSS Propagation delay, Low-speed 500 — 1 5 — 1 5 — 1.5 3 Initialization delay, Low-speed mode4 μs — 10 30 Analog comparator hysteresis, Hyst0 mV -40 - 125 ℃ VHYST1 70 Unit μs -40 - 125 ℃ VHYST0 — mode4 -40 - 125 ℃ tIDLS Max. µs -40 - 125 ℃ Initialization delay, High-speed Typ. mode3 -40 - 105 ℃ tIDHS Min. — 0 — Analog comparator hysteresis, Hyst1, High-speed mode mV -40 - 125 ℃ — 19 66 — 15 40 Analog comparator hysteresis, Hyst1, Low-speed mode -40 - 125 ℃ VHYST2 Analog comparator hysteresis, Hyst2, High-speed mode mV -40 - 125 ℃ — 34 133 — 23 80 Analog comparator hysteresis, Hyst2, Low-speed mode -40 - 125 ℃ VHYST3 Analog comparator hysteresis, Hyst3, High-speed mode mV -40 - 125 ℃ — 46 200 — 32 120 — 6 9 Analog comparator hysteresis, Hyst3, Low-speed mode -40 - 125 ℃ IDAC8b 8-bit DAC current adder (enabled) 3.3V Reference Voltage 5V Reference Voltage 1. 2. 3. 4. 5. 6. μA — 10 16 μA INL5 8-bit DAC integral non-linearity –0.75 — 0.75 LSB6 DNL 8-bit DAC differential non-linearity –0.5 — 0.5 LSB6 tDDAC Initialization and switching settling time — — 30 μs Difference at input > 200mV Applied ± (100 mV + VHYST0/1/2/3+ max. of VAIO) around switch point. Applied ± (30 mV + 2 × VHYST0/1/2/3+ max. of VAIO) around switch point. Applied ± (100 mV + VHYST0/1/2/3). Calculation method used: Linear Regression Least Square Method 1 LSB = Vreference/256 S32K1xx Data Sheet, Rev. 13, 04/2020 60 NXP Semiconductors ADC electrical specifications Table 45. Comparator with 8-bit DAC electrical specifications for S32K14xW series Symbol IDDHS Description Min. — Supply current, Low-speed — -40 - 150 ℃ VAIN Analog input voltage VAIO Analog input offset voltage, High-speed mode 0 13 6 13 0 - VDDA VDDA -40 - 150 ℃ -50 ±1 50 Analog input offset voltage, Low-speed mode Propagation delay, High-speed -40 ±4 40 -50 ±4 50 — 35 200 35 300 35 400 ns mode2 Propagation delay, Low-speed µs -40 - 105 ℃ — 0.5 2 -40 - 125 ℃ — 0.5 3 — 0.5 3 -40 - 105 ℃ — 70 400 -40 - 125 ℃ — 70 500 — 70 600 Propagation delay, High-speed mode3 -40 - 150 ℃ Propagation delay, Low-speed ns mode3 µs -40 - 105 ℃ — 1 5 -40 - 125 ℃ — 1 5 — 1 5 — 1.5 3 — 1.5 3 -40 - 150 ℃ Initialization delay, High-speed mode4 -40 - 125 ℃ -40 - 150 ℃ Initialization delay, Low-speed V mV mode2 -40 - 150 ℃ VHYST0 6 25 -40 - 150 ℃ tIDLS 11 mV -40 - 125 ℃ tIDHS 6 ±1 -40 - 105 ℃ tDLSS 300 -25 -40 - 150 ℃ tDHSS 230 -40 - 125 ℃ -40 - 125 ℃ tDLSB 300 μA -40 - 125 ℃ tDHSB 230 mode-1 -40 - 105 ℃ Unit μA -40 - 150 ℃ VAIO Max. Supply current, High-speed mode1 -40 - 125 ℃ IDDLS Typ. μs mode4 μs -40 - 125 ℃ — 10 30 -40 - 150 ℃ — 10 30 Analog comparator hysteresis, Hyst0 mV -40 - 125 ℃ — 0 — -40 - 150 ℃ — 0 — Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 61 ADC electrical specifications Table 45. Comparator with 8-bit DAC electrical specifications for S32K14xW series (continued) Symbol Description Min. VHYST1 Analog comparator hysteresis, Hyst1, High-speed mode Typ. Max. Unit mV -40 - 125 ℃ — 19 66 -40 - 150 ℃ — 19 90 -40 - 125 ℃ — 15 40 -40 - 150 ℃ — 15 40 Analog comparator hysteresis, Hyst1, Low-speed mode VHYST2 Analog comparator hysteresis, Hyst2, High-speed mode mV -40 - 125 ℃ — 34 133 -40 - 150 ℃ — 34 186 -40 - 125 ℃ — 23 80 -40 - 150 ℃ — 23 80 Analog comparator hysteresis, Hyst2, Low-speed mode VHYST3 Analog comparator hysteresis, Hyst3, High-speed mode mV -40 - 125 ℃ — 46 200 -40 - 150 ℃ — 46 280 -40 - 125 ℃ — 32 120 -40 - 150 ℃ — 32 120 3.3V Reference Voltage — 6 9 μA 5V Reference Voltage — 10 16 μA Analog comparator hysteresis, Hyst3, Low-speed mode IDAC8b INL5 8-bit DAC current adder (enabled) LSB6 8-bit DAC integral non-linearity -40 - 125 ℃ –0.75 — -40 - 150 ℃ 1. 2. 3. 4. 5. 6. DNL 8-bit DAC differential non-linearity tDDAC Initialization and switching settling time 0.75 -2 — 2 –0.5 — 0.5 LSB-1 — — 30 μs Difference at input > 200mV Applied ± (100 mV + VHYST0/1/2/3+ max. of VAIO) around switch point. Applied ± (30 mV + 2 × VHYST0/1/2/3+ max. of VAIO) around switch point. Applied ± (100 mV + VHYST0/1/2/3). Calculation method used: Linear Regression Least Square Method 1 LSB = Vreference/256 NOTE For comparator IN signals adjacent to VDD/VSS or XTAL/ EXTAL or switching pins cross coupling may happen and S32K1xx Data Sheet, Rev. 13, 04/2020 62 NXP Semiconductors ADC electrical specifications hence hysteresis settings can be used to obtain the desired comparator performance. Additionally, an external capacitor (1nF) should be used to filter noise on input signal. Also, source drive should not be weak (Signal with < 50 K pull up/down is recommended). Figure 15. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 0) Figure 16. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 1) S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 63 ADC electrical specifications Figure 17. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0) Figure 18. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1) S32K1xx Data Sheet, Rev. 13, 04/2020 64 NXP Semiconductors Communication modules 6.5 Communication modules 6.5.1 LPUART electrical specifications Refer to General AC specifications for LPUART specifications. 6.5.1.1 Supported baud rate Baud rate = Baud clock / ((OSR+1) * SBR). For details, see section: 'Baud rate generation' of the Reference Manual. 6.5.2 LPSPI electrical specifications The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes. • All timing is shown with respect to 20% VDD and 80% VDD thresholds. • All measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew setting (DSE = 1). S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 65 Symbo l Num Descripti on Run Mode2 Conditions S32K1xx Data Sheet, Rev. 13, 04/2020 fop 3 tLead8 Enable lead time (PCS to SPSCK delay) 3.3 V IO 5.0 V IO 5.0 V IO 3.3 V IO Min Max Min Max 3.3 V IO Min Max Min Max Min Max Min Max Min Max - 40 - 40 - 56 - 56 - 4 - 4 - 1 - 1 - 40 - 40 - 56 - 56 - 4 - 4 - 1 - 1 Master Loopback5 - 40 - 48 - 48 - 48 - 4 - 4 - 1 - 1 Master Loopback(sl ow)6 - 48 - 48 - 48 - 48 - 4 - 4 - 1 - 1 - 10 - 10 - 14 - 14 7 - 2 - 2 - 0.5 - 0.5 7 - 2 - 2 - 0.5 - 0.5 Frequency Slave of Master operation Master Loopback5 tSPSCK SPSCK period 5.0 V IO VLPR Mode (S32K14xW) Max - 10 - 10 - 14 - - 20 - 12 - 24 - 12 - 2 - 2 - 0.5 - 0.5 - 12 - 12 - 12 - 12 - 2 - 2 - 0.5 - 0.5 Slave 100 - 100 - 72 - 72 - 500 - 500 - - 2000 - 2000 Master 100 - 100 - 72 - 72 - 500 - 500 - - 2000 - 2000 Master Loopback5 50 - 83 - 42 - 83 - 500 - 500 - - 2000 - 2000 Master Loopback(sl ow)6 83 - 83 - 83 - 83 - 500 - 500 - - 2000 - 2000 - - - - - - - - - - - - - - - - Master Loopback(sl ow)6 2 3.3 V IO VLPR Mode (S32K1xx) Min fperiph, Peripheral Slave 3, 4 Frequency Master 1 5.0 V IO HSRUN Mode2 Slave 14 NXP Semiconductors Table continues on the next page... Un it MH z MH z ns ns Communication modules 66 Table 46. LPSPI electrical specifications1 Min Min Max - - Max - - - - - - - - 38 - 3 26 - - - - 18 - 18 - 55 - 55 - - 3711 - 72 - 78 - 145 - 145 - 32 tSPSCK/2-5 tSPSCK/2-5 Table continues on the next page... tSPSCK/2+5 5 tSPSCK/2+5 - 12 ns - SPSCK/2+12 - 5 - SPSCK/2-12 29 - - - SPSCK/2+12 3 - Max SPSCK/2-12 Data setup Slave time(input Master s) tSPSCK/2+3 Master Loopback5 tSPSCK/2-3 Master Max (PCSSCK+1)*tperiph-115 (PCSSCK+1)*tperiph-50 (PCSSCK+1)*tperiph-50 (PCSSCK+1)*tperiph-25 - Min Un it (PCSSCK+1)*tperiph-115 Min - - - 3.3 V IO ns ns 67 Communication modules tSU - 5.0 V IO 3.3 V IO Slave Master Loopback(sl ow)6 6 (PCSSCK+1)*tperiph-25 (PCSSCK+1)*tperiph-25 - - tSPSCK/2+3 tWSPSC Clock(SPS 10 CK) high K or low time (SPSCK duty cycle) - Max - tSPSCK/2-3 5 - Min 5.0 V IO (PCSSCK+1)*tperiph-115 Master Loopback(sl ow)6 - Max 3.3 V IO VLPR Mode (S32K14xW) (PCSSCK+1)*tperiph-115 Enable lag Slave time (After Master SPSCK Master delay) Loopback5 Min - tSPSCK/2+3 tLag9 tSPSCK/2-3 S32K1xx Data Sheet, Rev. 13, 04/2020 4 Max (SCKPCS+1)*tperiph- 25 Master Loopback(sl ow)6 (SCKPCS+1)*tperiph- 25 Master Loopback5 Min (PCSSCK+1)*tperiph-25 Master Max 5.0 V IO (SCKPCS+1)*tperiph- 25 Min 3.3 V IO VLPR Mode (S32K1xx) (SCKPCS+1)*tperiph- 50 5.0 V IO (SCKPCS+1)*tperiph- 25 Conditions HSRUN Mode2 (SCKPCS+1)*tperiph- 50 Run Mode2 tSPSCK/2-3 Descripti on tSPSCK/2+3 Symbo l Num NXP Semiconductors Table 46. LPSPI electrical specifications1 (continued) Symbo l Num 7 tHI Descripti on Run Mode2 Conditions 5.0 V IO HSRUN Mode2 3.3 V IO 5.0 V IO 3.3 V IO VLPR Mode (S32K1xx) VLPR Mode (S32K14xW) 5.0 V IO 5.0 V IO 3.3 V IO Min Max Min Max 3.3 V IO S32K1xx Data Sheet, Rev. 13, 04/2020 Min Max Min Max Min Max Min Max Min Max Min Max Master Loopback5 7 - 8 - 5 - 7 - 20 - 20 - 60 - 60 - Master Loopback(sl ow)6 8 - 10 - 7 - 9 - 20 - 20 - 61 - 61 - 3 - 3 - 3 - 3 - 14 - 14 - 27 - 27 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 3 - 3 - 2 - 3 - 11 - 11 - 26 - 26 - Master Loopback(sl ow)6 3 - 3 - 3 - 3 - 12 - 12 - 20 - 20 - Data hold Slave time(input Master s) Master Loopback5 Un it ns 8 ta Slave access time Slave - 50 - 50 - 50 - 50 - 100 - 100 - 180 - 180 ns 9 tdis Slave MISO (SOUT) disable time Slave - 50 - 50 - 50 - 50 - 100 - 100 - 180 - 180 ns 10 tv Data valid Slave (after SPSCK Master edge) - 30 - 39 - 26 - 36 11 - 92 - 96 - 190 - 190 ns NXP Semiconductors 11 tHO 31 12 - 12 - 16 - 11 - 15 - 47 - 48 - 113 - 113 Master Loopback5 - 12 - 16 - 11 - 15 - 47 - 48 - 112 - 112 Master Loopback(sl ow)6 - 8 - 10 - 7 - 9 - 44 - 44 - 99 - 99 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - -15 - -22 - -15 - -23 - -22 - -29 - -30 - -30 - Data hold Slave time(outpu Master ts) Table continues on the next page... ns Communication modules 68 Table 46. LPSPI electrical specifications1 (continued) 12 S32K1xx Data Sheet, Rev. 13, 04/2020 13 Symbo l Num NXP Semiconductors Table 46. LPSPI electrical specifications1 (continued) tRI/FI Descripti on Rise/Fall time input tRO/FO Rise/Fall time output Run Mode2 Conditions 5.0 V IO HSRUN Mode2 3.3 V IO 5.0 V IO 3.3 V IO VLPR Mode (S32K1xx) VLPR Mode (S32K14xW) 5.0 V IO 5.0 V IO 3.3 V IO Min Max Min Max 3.3 V IO Un it Min Max Min Max Min Max Min Max Min Max Min Max Master Loopback5 -10 - -14 - -10 - -14 - -14 - -19 - -19 - -19 - Master Loopback(sl ow)6 -15 - -22 - -15 - -22 - -21 - -27 - -30 - -30 - Slave - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 ns Master - - - - - - - - Master Loopback5 - - - - - - - - Master Loopback(sl ow)6 - - - - - - - - Slave - 25 ns Master - - - - - - - - Master Loopback 5 - - - - - - - - Master Loopback(sl ow) 6 - - - - - - - - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 1. 2. 3. 4. 5. 69 Communication modules Trace length should not exceed 11 inches for SCK pad when used in Master loopback mode. While transitioning from HSRUN mode to RUN mode, LPSPI output clock should not be more than 14 MHz. fperiph = LPSPI peripheral clock tperiph = 1/fperiph Master Loopback mode - In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1. Clock pads used are PTD15 and PTE0. Applicable only for LPSPI0. 6. Master Loopback (slow) - In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1. Clock pad used is PTB2. Applicable only for LPSPI0. 7. This is the maximum operating frequency (fop) for LPSPI0 with GPIO-HD PAD type only. Otherwise, the maximum operating frequency (fop) is 12 Mhz. 8. Set the PCSSCK configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where PCSSCK ranges from 0 to 255. 9. Set the SCKPCS configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where SCKPCS ranges from 0 to 255. 10. While selecting odd dividers, ensure Duty Cycle is meeting this parameter. 11. Maximum operating frequency (fop ) is 12 MHz irrespective of PAD type and LPSPI instance. 12. Applicable for LPSPI0 only with GPIO-HD PAD type, with maximum operating frequency (fop) as 14 MHz. Communication modules SS1 (OUTPUT) 3 2 SPSCK (CPOL=0) (OUTPUT) 12 13 12 13 4 5 5 SPSCK (CPOL=1) (OUTPUT) 6 MISO (INPUT) 7 MSB IN2 BIT 6 . . . 1 LSB IN 10 MOSI (OUTPUT) MSB OUT2 11 BIT 6 . . . 1 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 19. LPSPI master mode timing (CPHA = 0) SS1 (OUTPUT) 2 3 SPSCK (CPOL=0) (OUTPUT) 5 SPSCK (CPOL=1) (OUTPUT) 6 MISO (INPUT) 5 13 12 13 4 7 MSB IN2 BIT 6 . . . 1 LSB IN 11 10 MOSI (OUTPUT) 12 PORT DATA MASTER MSB OUT2 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 20. LPSPI master mode timing (CPHA = 1) S32K1xx Data Sheet, Rev. 13, 04/2020 70 NXP Semiconductors Communication modules SS (INPUT) 2 12 13 12 13 4 SPSCK (CPOL=0) (INPUT) 5 3 SPSCK (CPOL=1) (INPUT) 5 9 8 MISO (OUTPUT) CFGR1[OUTCFG]=1 MISO (OUTPUT) CFGR1[OUTCFG]=0 See note1 See note1 10 11 SLAVE MSB BIT 6 . . . 1 SLAVE LSB OUT See note 1 SLAVE MSB BIT 6 . . . 1 SLAVE LSB OUT See note 1 6 MOSI (INPUT) 11 7 MSB IN BIT 6 . . . 1 LSB IN Notes: 1.The bus is driven but may not be equal to the valid serial data being sent. Figure 21. LPSPI slave mode timing (CPHA = 0) Figure 22. LPSPI slave mode timing (CPHA = 1) 6.5.3 LPI2C electrical specifications See General AC specifications for LPI2C specifications. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 71 Communication modules For supported baud rate see section 'Chip-specific LPI2C information' of the Reference Manual. 6.5.4 FlexCAN electical specifications For supported baud rate, see section 'Protocol timing' of the Reference Manual. 6.5.5 SAI electrical specifications The following table describes the SAI electrical characteristics. • Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1). • I/O operating voltage ranges from 2.97 V to 3.6 V • While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the interface should be OFF. Table 47. Master mode timing specifications Symbol Description Min. Max. Unit 2.97 3.6 V 40 — ns 45% 55% MCLK period 80 — ns 45% 55% BCLK period — Operating voltage S1 SAI_MCLK cycle time S2 SAI_MCLK pulse width high/low S3 SAI_BCLK cycle time S4 SAI_BCLK pulse width high/low S5 SAI_RXD input setup before SAI_BCLK 28 — ns S6 SAI_RXD input hold after SAI_BCLK 0 — ns S7 SAI_BCLK to SAI_TXD output valid — 8 ns S8 SAI_BCLK to SAI_TXD output invalid -2 — ns S9 SAI_FS input setup before SAI_BCLK 28 — ns S10 SAI_FS input hold after SAI_BCLK 0 — ns S11 SAI_BCLK to SAI_FS output valid — 8 ns S12 SAI_BCLK to SAI_FS output invalid -2 — ns S32K1xx Data Sheet, Rev. 13, 04/2020 72 NXP Semiconductors Communication modules S1 S2 S2 SAI_MCLK (output) S3 SAI_BCLK (output) S4 S4 S12 S11 SAI_FS (output) S10 S9 SAI_FS (input) S7 S8 S7 S8 SAI_TXD S5 S6 SAI_RXD Figure 23. SAI Timing — Master modes Table 48. Slave mode timing specifications Symbol — Description Operating voltage Min. Max. Unit 2.97 3.6 V 80 — ns 45% 55% BCLK period S13 SAI_BCLK cycle time (input) S141 SAI_BCLK pulse width high/low (input) S15 SAI_RXD input setup before SAI_BCLK 8 — ns S16 SAI_RXD input hold after SAI_BCLK 2 — ns S17 SAI_BCLK to SAI_TXD output valid — 28 ns S18 SAI_BCLK to SAI_TXD output invalid 0 — ns S19 SAI_FS input setup before SAI_BCLK 8 — ns S20 SAI_FS input hold after SAI_BCLK 2 — ns S21 SAI_BCLK to SAI_FS output valid — 28 ns S22 SAI_BCLK to SAI_FS output invalid 0 — ns 1. The slave mode parameters (S15 - S22) assume 50% duty cycle on SAI_BCLK input. Any change in SAI_BCLK duty cycle input must be taken care during the board design or by the master timing. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 73 Communication modules S13 S14 SAI_BCLK (input) S14 S21 S22 SAI_FS (output) S19 S20 SAI_FS (input) S17 S18 S17 S18 SAI_TXD S15 S16 SAI_RXD Figure 24. SAI Timing — Slave modes 6.5.6 Ethernet AC specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. The following table describes the MII electrical characteristics. • Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1). • I/O operating voltage ranges from 2.97 V to 3.6 V • While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the interface should be OFF. Table 49. MII signal switching specifications Symbol — Description RXCLK frequency Min. Max. Unit — 25 MHz MII1 RXCLK pulse width high 35% 65% RXCLK period MII2 RXCLK pulse width low 35% 65% RXCLK period MII3 RXD[3:0], RXDV, RXER to RXCLK setup 5 — ns MII4 RXCLK to RXD[3:0], RXDV, RXER hold 5 — ns TXCLK frequency — 25 MHz — MII5 TXCLK pulse width high 35% 65% TXCLK period MII6 TXCLK pulse width low 35% 65% TXCLK period MII7 TXCLK to TXD[3:0], TXEN, TXER invalid 2 — ns MII8 TXCLK to TXD[3:0], TXEN, TXER valid — 25 ns S32K1xx Data Sheet, Rev. 13, 04/2020 74 NXP Semiconductors Communication modules MII2 MII1 MII3 MII4 RXCLK (input) RXD[n:0] Valid data RXDV Valid data RXER Valid data Figure 25. MII receive diagram MII6 MII5 TXCLK (input) MII8 MII7 TXD[n:0] Valid data TXEN Valid data TXER Valid data Figure 26. MII transmit signal diagram The following table describes the RMII electrical characteristics. • Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1). • I/O operating voltage ranges from 2.97 V to 3.6 V • While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the interface should be OFF. Table 50. RMII signal switching specifications Symbol Min. Max. Unit — 50 MHz RMII1, RMII5 RMII_CLK pulse width high 35% 65% RMII_CLK period RMII2, RMII6 RMII_CLK pulse width low 35% 65% RMII_CLK period — Description RMII input clock RMII_CLK Frequency RMII3 RXD[1:0], CRS_DV, RXER to RMII_CLK setup 4 — ns RMII4 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 — ns Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 75 Communication modules Table 50. RMII signal switching specifications (continued) Symbol Description Min. Max. Unit RMII7 RMII_CLK to TXD[1:0], TXEN invalid 2 — ns RMII8 RMII_CLK to TXD[1:0], TXEN valid — 15 ns RMII2 RMII1 RMII3 RMII4 RMII_CLK(input) RXD[n:0] Valid data CRS_DV Valid data RXER Valid data Figure 27. RMII receive diagram RMII6 RMII5 RMII_CLK (input) RMII8 RMII7 TXD[n:0] Valid data TXEN Valid data Figure 28. RMII transmit diagram The following table describes the MDIO electrical characteristics. • Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1). • I/O operating voltage ranges from 2.97 V to 3.6 V • While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the interface should be OFF. • MDIO pin must have external Pull-up. Table 51. MDIO timing specifications Symbol — Description MDC Clock Frequency Min. Max. Unit — 2.5 MHz Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 76 NXP Semiconductors Debug modules Table 51. MDIO timing specifications (continued) Symbol Description Min. Max. Unit MDC1 MDC pulse width high 40% 60% MDC period MDC2 MDC pulse width low 40% 60% MDC period MDC3 MDIO (input) to MDC rising edge setup 25 — ns MDC4 MDIO (input) to MDC rising edge hold 0 — ns MDC5 MDC falling edge to MDIO output valid (maximum propagation delay) — 25 ns MDC6 MDC falling edge to MDIO output invalid (minimum propagation delay) -10 — ns MDC1 MDC2 MDC (output) MDC6 MDIO (output) MDC5 MDIO (input) MDC3 MDC4 Figure 29. MII/RMII serial management channel timing diagram 6.5.7 Clockout frequency Maximum supported clock out frequency for this device is 20 MHz 6.6 Debug modules 6.6.1 SWD electrical specofications S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 77 Symbo l Description Run Mode 5.0 V IO HSRUN Mode 3.3 V IO 5.0 V IO VLPR Mode (S32K1xx) 3.3 V IO 5.0 V IO Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 3.3 V IO VLPR Mode (S32K14xW) 5.0 V IO Unit 3.3 V IO Min. Max. Min. Max. Min. Max. - 10 - 10 - 1 - 1 MHz S2 SWD_CLK cycle period 1/S1 - 1/S1 - 1/S1 - 1/S1 - 1/S1 - 1/S1 - 1/S1 - 1/S1 - ns S3 SWD_CLK clock pulse width S4 SWD_CLK rise and fall times - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 ns S9 SWD_DIO input data setup time to SWD_CLK rise 4 - 4 - 4 - 4 - 16 - 16 - 30 - 30 - ns S10 SWD_DIO input data hold time after SWD_CLK rise 3 - 3 - 3 - 3 - 10 - 10 - 19 - 19 - ns S11 SWD_CLK high to SWD_DIO data valid - 28 - 38 - 28 - 38 - 70 - 77 - 180 - 180 ns S12 SWD_CLK high to SWD_DIO high-Z - 28 - 38 - 28 - 38 - 70 - 77 - 180 - 180 ns S13 SWD_CLK high to SWD_DIO data invalid 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - ns ns S2/2+5 S2/2 - 5 S2/2 - 5 S2/2 - 5 S2/2 - 5 S2/2 - 5 S2/2-5 25 S2/2+5 - S2/2-5 25 S2/2 + 5 - S2/2 + 5 25 S2/2 + 5 - S2/2 + 5 25 S2/2 + 5 - S2/2 + 5 SWD_CLK frequency of operation S2/2 - 5 S32K1xx Data Sheet, Rev. 13, 04/2020 S1 Debug modules 78 Table 52. SWD electrical specifications NXP Semiconductors Debug modules S2 S3 S3 SWD_CLK (input) S4 S4 Figure 30. Serial wire clock input timing SWD_CLK S9 SWD_DIO S10 Input data valid S11 S13 SWD_DIO Output data valid S12 SWD_DIO Figure 31. Serial wire data timing 6.6.2 Trace electrical specifications The following table describes the ETM Trace electrical characteristics. • Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1). • While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the interface should be OFF. NOTE ETM trace is supported only on S32K148. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 79 Debug modules Table 53. ETM Trace specifications Symbol — Fsys Trace on fast pads fTRACE RUN Mode HSRUN Mode VLPR Mode Unit System frequency 80 48 40 112 80 4 MHz Max Trace frequency 80 48 40 74.667 80 4 MHz tDVO Data Output Valid 4 4 4 4 4 20 ns tDIV Data Output Invalid -2 -2 -2 -2 -2 -10 ns 24 20 22.4 22.86 4 MHz fTRACE Trace on slow pads Description Max Trace frequency 22.86 tDVO Data Output Valid 8 8 8 8 8 20 ns tDIV Data Output Invalid -4 -4 -4 -4 -4 -10 ns Figure 32. TRACE CLKOUT specifications 6.6.3 JTAG electrical specifications S32K1xx Data Sheet, Rev. 13, 04/2020 80 NXP Semiconductors Symb ol Description Run Mode 5.0 V IO Min. HSRUN Mode 3.3 V IO Min. Max. 5.0 V IO Min. Max. VLPR Mode (S32K1xx) 3.3 V IO Min. Max. 5.0 V IO Min. Max. VLPR Mode (S32K14xW) 3.3 V IO Min. Max. 5.0 V IO Min Max Min Max MHz Boundary Scan - 20 - 20 - 20 - 20 - 10 - 10 - 1 - 1 JTAG - 20 - 20 - 20 - 20 - 10 - 10 - 1 - 1 - 1/JI - 1/JI - 1/JI - 1/JI - 1/JI - 1/J1 - 1/J1 - J2/2 + 5 J2/2 - 5 J2/2 + 5 J2/2 - 5 J2/2 + 5 J2/2 - 5 J2/2 + 5 J2/2 - 5 J2/2 + 5 S32K1xx Data Sheet, Rev. 13, 04/2020 JTAG J2/2 - 5 Boundary Scan ns ns J2/2 + 5 TCLK clock pulse width J2/2 - 5 J3 1/JI J2/2 + 5 TCLK cycle period J2/2 - 5 J2 Unit 5.0 V IO TCLK frequency of operation J2/2 - 5 JI Max. J2/2 + 5 NXP Semiconductors Table 54. JTAG electrical specifications TCLK rise and fall times - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 ns J5 Boundary scan input data setup time to TCLK rise 5 - 5 - 5 - 5 - 15 - 15 - 23 - 23 - ns J6 Boundary scan input data hold time after TCLK rise 5 - 5 - 5 - 5 - 8 - 8 - 20 - 20 - ns J7 TCLK low to boundary scan output data valid - 28 - 32 - 28 - 32 - 80 - 80 - 184 - 184 ns J8 TCLK low to boundary scan output data invalid 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - J9 TCLK low to boundary scan output high-Z - 28 - 32 - 28 - 32 - 80 - 80 - 184 - 184 ns J10 TMS, TDI input data setup time to TCLK rise 3 - 3 - 3 - 3 - 15 - 15 - 23 - 23 - ns J11 TMS, TDI input data hold time after TCLK rise 2 - 2 - 2 - 2 - 8 - 8 - 20 - 20 - ns J12 TCLK low to TDO data valid - 28 - 32 - 28 - 32 - 80 - 80 - 184 - 184 ns J13 TCLK low to TDO data invalid 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - ns 81 Table continues on the next page... Debug modules J4 Symb ol J14 Description Run Mode 5.0 V IO TCLK low to TDO highZ HSRUN Mode 3.3 V IO 5.0 V IO VLPR Mode (S32K1xx) 3.3 V IO 5.0 V IO 3.3 V IO VLPR Mode (S32K14xW) 5.0 V IO Unit 5.0 V IO Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min Max Min Max - 28 - 32 - 28 - 32 - 80 - 80 - 184 - 184 ns Debug modules 82 Table 54. JTAG electrical specifications (continued) S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors Debug modules J2 J3 J3 TCLK (input) J4 J4 Figure 33. Test clock input timing TCLK J5 Data inputs J6 Input data valid J7 J8 Data outputs Output data valid J9 Data outputs Figure 34. Boundary scan (JTAG) timing S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 83 Thermal attributes TCLK J10 TDI/TMS J11 Input data valid J12 J13 TDO Output data valid J14 TDO Figure 35. Test Access Port timing 7 Thermal attributes 7.1 Description The tables in the following sections describe the thermal characteristics of the device. NOTE Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance. 7.2 Thermal characteristics S32K1xx Data Sheet, Rev. 13, 04/2020 84 NXP Semiconductors NXP Semiconductors Table 55. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package Rating Conditions Symbol Package Values (in °C/W) S32K116 S32K118 S32K142 Thermal resistance, Junction to Single layer Ambient (Natural Convection)1, 2 board (1s) S32K1xx Data Sheet, Rev. 13, 04/2020 Thermal resistance, Junction to Ambient (Natural Convection)1 Thermal resistance, Junction to Ambient (Natural Convection)1, 2 Thermal resistance, Junction to Ambient (@200 ft/min)1, 3 Four layer board (2s2p) Single layer board (1s) Two layer board (1s1p) RθJA RθJA RθJMA RθJMA S32K144 S32K144 W S32K146 S32K148 32 93 NA NA NA NA NA NA NA 48 79 71 70 69 69 69 NA NA 64 NA 62 61 60 61 60 59 NA 100 NA NA 53 NA 52 NA 51 46 144 NA NA NA NA NA NA 51 44 176 NA NA NA NA NA NA NA 42 32 50 NA NA NA NA NA NA NA 48 58 50 49 48 48 48 NA NA 64 NA 46 45 45 45 45 44 NA 100 NA NA 42 NA 42 NA 40 36 144 NA NA NA NA NA NA 44 37 176 NA NA NA NA NA NA NA 36 32 32 NA NA NA NA NA NA NA 48 55 47 46 45 45 45 NA NA 64 NA 44 43 42 43 42 41 NA 100 NA NA 40 NA 40 NA 39 34 144 NA NA NA NA NA NA 42 36 176 NA NA NA NA NA NA NA 35 32 77 NA NA NA NA NA NA NA 48 66 58 57 56 57 56 NA NA 64 NA 50 49 49 49 49 48 NA 100 NA NA 43 NA 42 NA 41 37 144 NA NA NA NA NA NA 42 36 176 NA NA NA NA NA NA NA 34 32 43 NA NA NA NA NA NA NA 48 51 43 42 41 41 41 NA NA 64 NA 39 38 38 38 38 37 NA 85 Table continues on the next page... Thermal attributes Thermal resistance, Junction to Ambient (@200 ft/min)1 Two layer board (1s1p) RθJA S32K142 W Rating Conditions Symbol Package Values (in °C/W) S32K116 S32K118 S32K142 Thermal resistance, Junction to Ambient (@200 ft/min)1, 3 S32K1xx Data Sheet, Rev. 13, 04/2020 Thermal resistance, Junction to Board4 Thermal resistance, Junction to Case 5 NXP Semiconductors Thermal resistance, Junction to Case (Bottom) 6 Four layer board (2s2p) — — — RθJMA RθJB RθJC RθJCBottom S32K142 W S32K144 S32K144 W S32K146 S32K148 100 NA NA 35 NA 35 NA 34 30 144 NA NA NA NA NA NA 37 31 176 NA NA NA NA NA NA NA 30 32 26 NA NA NA NA NA NA NA 48 48 41 40 39 39 39 NA NA 64 NA 37 36 36 36 36 35 NA 100 NA NA 34 NA 34 NA 33 28 144 NA NA NA NA NA NA 36 30 176 NA NA NA NA NA NA NA 29 32 11 NA NA NA NA NA NA NA 48 33 24 23 22 23 22 NA NA 64 NA 26 25 24 25 24 23 NA 100 NA NA 25 NA 25 NA 24 19 144 NA NA NA NA NA NA 30 24 176 NA NA NA NA NA NA NA 24 32 NA NA NA NA NA NA NA NA 48 23 19 17 16 17 16 NA NA 64 NA 14 13 12 12 12 11 NA 100 NA NA 13 NA 12 NA 11 9 144 NA NA NA NA NA NA 12 9 176 NA NA NA NA NA NA NA 9 32 1 48 64 100 144 Table continues on the next page... NA NA Thermal attributes 86 Table 55. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package (continued) NXP Semiconductors Table 55. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package (continued) Rating Conditions Symbol Package Values (in °C/W) S32K116 S32K118 S32K142 S32K142 W S32K144 S32K144 W S32K146 S32K148 176 Thermal resistance, Junction to Package Top7 S32K1xx Data Sheet, Rev. 13, 04/2020 1. 2. 3. 4. 5. 6. 7. Natural Convection ψJT 32 1 NA NA NA NA NA NA NA 48 4 2 2 2 2 2 NA NA 64 NA 2 2 2 2 2 2 NA 100 NA NA 2 NA 2 NA 2 1 144 NA NA NA NA NA NA 2 1 176 NA NA NA NA NA NA NA 1 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. Thermal attributes 87 Rating Conditions Symbol Values Unit S32K146 S32K144 S32K148 Thermal resistance, Junction to Ambient (Natural Convection) 1, 2 Single layer board (1s) RθJA 57.2 61.0 52.5 °C/W Thermal resistance, Junction to Ambient (Natural Convection) 1, 2, 3 Four layer board (2s2p) RθJA 32.1 35.6 27.5 °C/W RθJMA 44.1 46.6 39.0 °C/W RθJMA 27.2 30.9 22.8 °C/W Thermal resistance, Junction to Ambient (@200 ft/min) 1, 2, 3 Single layer board (1s) Thermal resistance, Junction to Ambient (@200 ft/min)1, 3 Two layer board (2s2p) S32K1xx Data Sheet, Rev. 13, 04/2020 Thermal resistance, Junction to Board4 — RθJB 15.3 18.9 11.2 °C/W 5 — RθJC 10.2 14.2 7.5 °C/W Thermal resistance, Junction to Package Top outside center6 — ψJT 0.2 0.4 0.2 °C/W Thermal resistance, Junction to Package Bottom outside center7 — ψJB 12.2 15.9 18.3 °C/W Thermal resistance, Junction to Case 1. 2. 3. 4. 5. 6. 7. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB. Thermal attributes 88 Table 56. Thermal characteristics for the 100 MAPBGA package NXP Semiconductors Thermal attributes 7.3 General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from this equation: where: • TA = ambient temperature for the package (°C) • RθJA = junction to ambient thermal resistance (°C/W) • PD = power dissipation in the package (W) The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance: where: • RθJA = junction to ambient thermal resistance (°C/W) • RθJC = junction to case thermal resistance (°C/W) • RθCA = case to ambient thermal resistance (°C/W) RθJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, RθCA. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 89 Dimensions To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation: where: • TT = thermocouple temperature on top of the package (°C) • ΨJT = thermal characterization parameter (°C/W) • PD = power dissipation in the package (W) The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. 8 Dimensions 8.1 Obtaining package dimensions Package dimensions are provided in the package drawings. To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing’s document number: Package option Document Number 32-pin QFN SOT617-3 1 48-pin LQFP 98ASH00962A 64-pin LQFP 98ASS23234W 100-pin LQFP 98ASS23308W 100-pin MAPBGA 98ASA00802D 144-pin LQFP 98ASS23177W 176-pin LQFP 98ASS23479W 1. 5x5 mm package S32K1xx Data Sheet, Rev. 13, 04/2020 90 NXP Semiconductors Pinouts 9 Pinouts 9.1 Package pinouts and signal descriptions For package pinouts and signal descriptions, refer to the Reference Manual. 10 Revision History The following table provides a revision history for this document. Table 57. Revision History Rev. No. Date 1 12 Aug 2016 2 03 March 2017 Substantial Changes Initial release • • • • • • • • • • • • • Updated descpition of QSPI and Clock interfaces in Key Features section Updated figure: High-level architecture diagram for the S32K1xx family Updated figure: S32K1xx product series comparison Added note in section Selecting orderable part number Updated figure: Ordering information In table: Absolute maximum ratings : • Added footnote to IINJPAD_DC • Updated min and max value of IINJPAD_DC • Updated description, max and min values for IINJSUM • Updated VIN_TRANSIENT In table: Voltage and current operating requirements : • Renamed VSUP_OFF • Updated max value of VDD_OFF • Removed VINA and VIN • Added VREFH and VREFL • Updated footnote "Typical conditions assumes VDD = VDDA = VREFH = 5 V ... • Removed INJSUM_AF Updated footnotes in table Table 7 Updated section Power mode transition operating behaviors In table: Power consumption • Added footnote "With PMC_REGSC[CLKBIASDIS] ... " • Updated conditions for VLPR • Removed Idd/MHz for S32K144 • Updated numbers for S32K142 and S32K148 • Removed use case footnotes In section Modes configuration : • Replaced table "Modes configuration" with spreadsheet attachment: 'S32K1xx_Power_Modes _Master_configuration_sheet' In table: DC electrical specifications at 3.3 V Range : • Added footnotes to Vih Input Buffer High Voltage and Vih Input Buffer Low Voltage • Added footnote to High drive port pins In table: DC electrical specifications at 5.0 V Range : Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 91 Revision History Table 57. Revision History Rev. No. Date Substantial Changes • • • • • • • • • • • • • • • Added footnotes Vih Input Buffer High Voltage and Vih Input Buffer Low Voltage Updated table: AC electrical specifications at 3.3 V range Updated table: AC electrical specifications at 5 V range In table: Standard input pin capacitance • Added footnote to Normal run mode (S32K14x series) Removed note from 1M ohms Feedback Resistor in figure Oscillator connections scheme In table: External System Oscillator electrical specifications • Updated typical of IDDOSC Supply current — low-gain mode (low-power mode) (HGO=0) 1 for 4 and 8 MHz • Removed rows for Ilk_ext EXTAL/XTAL impedence High-frequency, lowgain mode (low-power mode) and high-frequency, high-gain mode and VEXTAL • Updated Typ. of RS low-gain mode • Updated description of RF, RS, and VPP • Removed footnote from RF Feedback resistor • Updated footnote for C1 C2 and RF In table: Table 28 • Removed mention of high-frequency • Added HGO 0, 1 information In table: Fast internal RC Oscillator electrical specifications • Updated FFIRC • Updated description of ΔF • Updated typ and max values of TJIT cycle-to-cycle jitter and TJIT Long term jitter over 1000 cycles • Added footnotes to TJIT cycle-to-cycle jitter and TJIT Long term jitter over 1000 cycles • Updated naming convention of IDDFIRC Supply current • Added footnote to IDDFIRC Supply current • Added footnote to column Parameter In table: Slow internal RC oscillator (SIRC) electrical specifications • Removed VDD Supply current in 2 MHz Mode • Removed footnote and updated description of ΔF • Updated footnote to FSIRC and IDDSIRC In table: SPLL electrical specifications • Added row for FSPLL_REF PLL Reference • Updated naming convention throughout the table • Updated the max value of TSPLL_LOCK Lock detector detection time In table: Flash timing specifications — commands • Added footnotes: • All command times assumes ... • For all EEPROM Emulation terms ... • 'First time' EERAM writes after a POR ... • Removed footnote 'Assumes 25 MHz or ...' • Updated Max of teewr32bers • Added parameters tquickwr and tquickwrClnup In table: Reliability specifications • Removed Typ. values for all parameters • Removed footnote 'Typical values represent ... ' • Added footnote 'Any other EEE driver usage ... ' Updated QuadSPI AC specifications Removed topic: Reliability, Safety and Security modules In table: 12-bit ADC operating conditions • Updated VDDA Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 92 NXP Semiconductors Revision History Table 57. Revision History (continued) Rev. No. Date Substantial Changes • • • • • • • • • • • 3 14 March 2017 4 02 June 2017 • Updated values for VREFH and VREFL to add refernce to the section "voltage and current operating requirments" for Min and Max valaues • Updated footnote to Typ. • Removed footnote from RAS Analog source resistance • Updated figure: ADC input impedance equivalency diagram In table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS) • Removed rows for VTEMP_S and VTEMP25 • Updated footnote to Typ. In table: 12-bit ADC characteristics (3 V to 5.5 V)(VREFH = VDDA, VREFL = VSS) • Removed rows for VTEMP_S and VTEMP25 • Removed number for TUE • Updated footnote to Typ. In table: Comparator with 8-bit DAC electrical specifications • Updated Typ. of IDDLS Supply current, Low-speed mode • Updated Typ. of tDLSB Propagation delay, Low-speed mode • Updated Typ. of tDHSS Propagation delay, High-speed mode • Updated tDLSS Propagation delay • Added row for tDDAC Initialization and switching settling time • Updated footnote Updated section LPSPI electrical specifications Added section: SAI electrical specifications Updated section: Ethernet AC specifications Added section: Clockout frequency Added section: Trace electrical specifications Updated table: Table 55 : Updated numbers for S32K142 and S32K148 Updated table: Table 56 : Updated numbers for S32K148 Updated Document number for 32-pin QFN in topic Obtaining package dimensions • In Table 3 • Updated min. value of VDD_OFF • Added parameter IINJSUM_AF • Updated Power mode transition operating behaviors • Updated Power consumption • Updated footnote to TSPLL_LOCK in SPLL electrical specifications • In 12-bit ADC electrical characteristics • Updated table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS) • Added typ. value to IDDA_ADC, TUE, DNL, and INL • Added min. value to SMPLTS • Removed footnote 'All the parameters in this table ... ' • Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH = VDDA, VREFL = VSS) • Added typ. value to IDDA_ADC • Removed footnote 'All the parameters in this table ... ' • In Flash timing specifications — commands updated Max. value of tvfykey to 33 μs • In section: Block diagram, added block diagram for S32K11x series. • Updated figure: S32K1xx product series comparison. • In section: Selecting orderable part number , added reference to attachement S32K_Part_Numbers.xlsx. • In section: Ordering information • Updated figure: Ordering information. • In Table 1, Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 93 Revision History Table 57. Revision History (continued) Rev. No. Date Substantial Changes • • • • • • • • • • • • • • • • • 5 06 Dec 2017 • Updated note 'All the limits defined ... ' • Updated parameter 'IINJPAD_DC_ABS', 'VIN_DC', IINJSUM_DC_ABS. In Table 3, • Updated parameter IINJPAD_DC_OP and IINJSUM_DC_OP. In Table 8, updated TBDs for VLVR_HYST, VLVD_HYST, and VLVW_HYST In Power mode transition operating behaviors, • Added VLPR → VLPS • Added VLPS → VLPR • Updated TBDs for VLPS → Asynchronous DMA Wakeup, STOP1 → Asynchronous DMA Wakeup, and STOP2 → Asynchronous DMA Wakeup In Table 13, updated the specifications for S32K144. Updated the attachment S32K1xx_Power_Modes _Configuration.xlsx. In Table 25, removed CIN_A. In Table 27, • Updated specificatins for gmXOSC. • Removed IDDOSC In Table 29, • Added parameter ΔF125. • Removed IDDFIRC In Table 31, • Added parameter ΔF125. • Removed IDDSIRC In Table 33, removed ILPO Updated section: Flash memory module (FTFC/FTFM) electrical specifications In section: 12-bit ADC operating conditions, • Updated TBDs for IDDA_ADC and TUE in Table 41 • Updated TBDs for IDDA_ADC and TUE in Table 42 In section: QuadSPI AC specifications, updated figure 'QuadSPI output timing (HyperRAM mode) diagram'. In section: 12-bit ADC operating conditions, updated Table 40. In section: CMP with 8-bit DAC electrical specifications, added note 'For comparator IN signals adjacent ... ' In table: Table 46, minor update in footnote 6. In table: Table 55, updated specifications for S32K146. • Removed S32K148 from 'Caution' • Updated figure: S32K1xx product series comparison for • 'EEPROM emulated by FlexRAM' of S32K148 (Added content to footnote) • Added support for LIN protocol version 2.2 A • In Absolute maximum ratings : • Added note 'Unless otherwise ... ' • Added parameter 'Added note 'Tramp_MCU' • Updated footnote for 'Tramp' • In Voltage and current operating requirements : • Added footnote 'VDD and VDDA must be shorted ... ' against parameter 'VDD– VDDA' • Updated footnote 'VDD and VDDA must be shorted ...' • In Power and ground pins • Added diagrams for 32-QFN and 48-LQFP and footnote below the diagrams. • Updated footnote 'VDD and VDDA must be shorted ...' • In Power mode transition operating behaviors : Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 94 NXP Semiconductors Revision History Table 57. Revision History Rev. No. Date Substantial Changes • • • • • • • • • • • • • • • Added footnote 'For S32K11x – FIRC/SOSC/FIRC/LPO; For S32K14x – FIRC/SOSC/FIRC/LPO/SPLL' to 'VLPS Mode: All clock sources disabled' • Updated numbers for: • VLPR → VLPS • VLPS → VLPR • 'RUN → Compute operation' • RUN → VLPS • RUN → VLPR In Power consumption : • Updated specs for S32K142, S32K144, and S32K148 • Updated footnote 'Typical current numbers are indicative ...' • Updated footnote 'The S32K148 data ...' • Removed footnote 'Above S32K148 data is preliminary targets only' • Added new table 'Power consumption at 3.3 V' In General AC specifications : • Updated max value and footnote of WFRST • Updated symbol for not filtered pulse to 'WNFRST', updated min value, removed max. value, and added footnote Fixed naming conventions to align with DS in DC electrical specifications at 3.3 V Range and DC electrical specifications at 5.0 V Range Updated specs for AC electrical specifications at 3.3 V range and AC electrical specifications at 5 V range In Device clock specifications : • Updated fBUS to 48 for 11x • Added footnote to fBUS for 14x In External System Oscillator frequency specifications : • Added specs for S32K11x • Updated 'tdc_extal' for S32K14x • Added footnote 'Frequecies below ... ' to 'fec_extal' and 'tdc_extal' Splitted Flash timing specifications — commands for S32K14x and S32K11x Updated Flash timing specifications — commands for S32K14x In Reliability specifications : • Added footnote 'Data retention period ... ' for 'tnvmretp1k' and 'tnvmretee' • Minor update in footnote for 'nnvmwree16' 'nnvmwree256' In QuadSPI AC specifications : • Updated 'MCR[SCLKCFG[5]]' value to 0 • Updated 'Data Input Setup Time' HSRUN Internal DQS PAD Loopback value to 1.6 • Updated 'Data Input Setup Time' DDR External DQS min. value to 2 • Updated 'Data Input Hold Time' DDR External DQS min. value to 20 • Upadted figure 'QuadSPI output timing (SDR mode) diagram' and 'QuadSPI input timing (HyperRAM mode) diagram' In 12-bit ADC electrical characteristics : • Added note 'On reduced pin packages where ... ' • Removed max. value of 'IDDA_ADC' • Added note 'Due to triple ... ' In 12-bit ADC operating conditions, removed parameter 'ΔVDDA' In CMP with 8-bit DAC electrical specifications : • Updated Typ. and Max. values of 'IDDLS' • Upadted Typ. value of 'tDHSB' • Updated Typ. value of 'VHYST1' , 'VHYST2', and 'VHYST3' In LPSPI electrical specifications : • Updated 'fperiph' and 'fop', and 'tSPSCK' Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 95 Revision History Table 57. Revision History (continued) Rev. No. Date Substantial Changes • Updated 3.3 V numbers and added footnote against fop, tSU, ans tV in HSRUN Mode • Added footnote to 'tWSPSCK' • Updated Thermal characteristics for S32K11x 6 31 Jan 2018 • Changed the representation of ARM trademark throughout. • Removed S32K142 from 'Caution' • In 'Key features', added the following note under 'Power management', 'Memory and memory interfaces', and 'Reliability, safety and security': • No write or erase access to ... • In High-level architecture diagram for the S32K14x family, added the following footnote: • No write or erase access to ... • In High-level architecture diagram for the S32K11x family : • Minor editorial update: Fixed the placement of SRAM, under 'Flash memory controller' block • Updated figure: S32K1xx product series comparison : • Updated footnote 1, and added against 'HSRUN' in addition to 'HW security module (CSEc)' and 'EEPROM emulated by FlexRAM'. • Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148. • Updated channel count for S32K116 in row '12-bit SAR ADC (1 MSPS each)'. • Updated Ordering information • Updated Flash timing specifications — commands for S32K148, S32K142, S32K146, S32K116, and S32K118. 7 19 April 2018 • Changed Caution to Notes • Updated the wordings of Notes and removed S32K146 • Added 'Following two are the available ...' • In 'Key features' : • Editorial updates • Updated the note under Power management, Memory and memory interfaces, and Safety and security. • Updated FlexIO under Communications interfaces • Added ENET and SAI under Communications interfaces • Updated Cryptographic Services Engine (CSEc) under 'Safety and security' • In High-level architecture diagram for the S32K14x family : • Minor editorial updates • Updated note 3 • In High-level architecture diagram for the S32K11x family : • Minor editorial updates • In figure: S32K1xx product series comparison : • Editorial updates • Updated Frequency for S32K14x • Updated footnote 4 • Added footnote 5 • In Ordering information : • Renamed section, updated the starting paragraph • Updated the figure • In Voltage and current operating requirements, updated the note • In Power consumption : • Updated specs for S32K146 • Removed section 'Modes configuration', amd moved its content under the fisrt paragraph. • In 12-bit ADC operating conditions : Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 96 NXP Semiconductors Revision History Table 57. Revision History (continued) Rev. No. Date Substantial Changes • Fixed the typo in RSW1 • In LPSPI electrical specifications : • Updated tLead and tLag • Added footnote in Figure: LPSPI slave mode timing (CPHA = 0) and Figure: LPSPI slave mode timing (CPHA = 1) • In Thermal characteristics : • Updated the name of table: Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package • Deleted specs for RθJC for 32 QFN package • Added 'RθJCBottom' 8 18 June 2018 • In attachement 'S32K1xx_Power_Modes _Configuration': • Updated VLPR peripherals disabled and Peripherals Enabled use case #1, using 4 Mhz for System clock, 2 Mhz for bus clock, and 1Mhz for flash. • Removed S32K116 from Notes • In figure: S32K1xx product series comparison : • Added note 'Availability of peripherals depends on the pin availability ...' • Updated 'Ambient Operation Temperature' row • Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148 • In Ordering information : • Updated figure for 'Y: Optional feature' • Updated footnote 3 • In Power and ground pins : • In figure 'Power diagram', updtaed VFlash frequency to 3.3 V • In Power mode transition operating behaviors : • Updated footnote for 'VLPS Mode: All clock sources disabled' • In Power consumption : • Added IDDs for S32K116 • Added VLPR Peripherals enabled use case 2 at 125 °C/Typicals • Renamed VLPR 'Peripherals enabled' to 'Peripherals enabled use case 1' • Added footnote 'Data collected using RAM' to VLPR 'Peripherals disabled' and VLPR 'Peripherals enabled use case 1' • Updated VLPS Peripherals enabled at 25 °C/Typicals for S32K142 and S32K144 to 40 μA and 42 μA respectively • Added table 'VLPS additional use-case power consumption at typical conditions' • In DC electrical specifications at 3.3 V Range : • Updated naming conventions • Added specs for GPIO-FAST pad • In DC electrical specifications at 5.0 V Range : • Updated naming conventions • Added specs for GPIO-FAST pad • In AC electrical specifications at 3.3 V range : • Updated naming conventions • Added specs for GPIO-FAST pad • In AC electrical specifications at 5 V range : • Updated naming conventions • Added specs for GPIO-FAST pad • In External System Oscillator electrical specifications : • Clarified description of gmXOSC • Updated VIL max. to 1.15 V • In Fast internal RC Oscillator (FIRC) electrical specifications : Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 97 Revision History Table 57. Revision History (continued) Rev. No. Date Substantial Changes • Updated specs for TJIT Cycle-to-Cycle jitter to 300 ps • In QuadSPI AC specifications : • Updated specs for Tiv Data Output In-Valid Time • In figure 'QuadSPI output timing (SDR mode) diagram', marked Invalid area • In CMP with 8-bit DAC electrical specifications : • Removed '(VAIO)' from decription of VHYST0 • In LPSPI electrical specifications : • Added note 'Undefined' in figures 'LPSPI slave mode timing (CPHA = 0)' and 'LPSPI slave mode timing (CPHA = 1)' 9 18 Sep 2018 • In attachment 'S32K1xx_Power_Modes _Configuration': • Added separate sheet for S32K14x and S32K11x devices • Renamed VLPS (Peripherals Enabled) to VLPS (LPTMR enabled) • Removed Note "Technical information ..." • In Features: • Updated Clock interfaces for '4 – 40 MHz fast external oscillator (SOSC)' and 'Real Time Counter' • Added 'Up to 20 MHz TCLK and 25 MHz SWD_CLK' • In Absolute maximum ratings : Updated footnote 3 '60 seconds lifetime ... ' • Updated title of table Thermal operating characteristics • In Ordering information : • Updated 'Temperature' • Updated 'Wafer Fab and Mask revision identifier' • In Power consumption : • Renamed 'VLPS Peripheral enabled' to 'LPTMR enabled' • Added IDDs for S32K118 for 85 °C, 105 °C and 125 °C • Updated IDDs for S32K118 for 25 °C • Added IDDs for VLPR Peripherals enabled use case 2 for S32K116 • Updated IDDs and added footnotes in table 'VLPS additional use-case power consumption at typical conditions' • In General AC specifications : • Updated footnote of WFRST and WNFRST • In External System Oscillator electrical specifications : • Added footnote to RS • Renamed Vpp to Vpp_XTAL and updated the description accordingly • Added Vpp_EXTAL • Added VSOSCOP • Updated equation 'gm_crit = 4 ...' in footnote 1 • In External System Oscillator frequency specifications : • Added footnote "For an ideal clock of 40 MHz, if permitted ..." to fosc_hi max. • In Fast internal RC Oscillator (FIRC) electrical specifications : • Updated note "Fast internal ... " • In LPSPI electrical specifications : • Updated figures 'LPSPI slave mode timing (CPHA = 0)' and 'LPSPI slave mode timing (CPHA = 1)' 10 09 May 2019 • In Notes: Added note 'Technical information for the S32K148 ... ' • In attachment 'S32K1xx_Orderable_Part_Number_List': • Added ISELED PN • Added PN for new package offering (48-pin LQFP S32K142; 48-pin LQFP S32K144; 100-pin LQFP S32K148) • Added NFC PN • Added UA as S32K148 Standard PN • Updated Standard Base Feature Offer • In figure 'S32K1xx product series comparison' : Table continues on the next page... S32K1xx Data Sheet, Rev. 13, 04/2020 98 NXP Semiconductors Revision History Table 57. Revision History (continued) Rev. No. Date Substantial Changes • Added 48-pin LQFP for S32K142 and S32K144 • Added 100-pin LQFP for S32K148, along with footnote • In Ordering information : • Updated 'Ordering option' • Updated note 2 • In Thermal characteristics : • Added values for 48-pin LQFP for S32K142 and S32K144 • Added values for 100-pin LQFP for S32K148 11 27 June 2019 • In Notes: Removed note 'Technical information for the S32K148 ... ' 12 04 Feb 2020 • • • • In Notes: Added note: 'Technical information for ...' Added S32K14xW information throughout Removed "Under development" from the footnote number 6 in Figure 3. Updated Trace electrical specifications to clarify that the section applies only for ETM Trace and is supported only by S32K148. • In Table 28, added a new footnote from fosc_hi Max entry. • Updated Figure 21 for number 8. • In Reliability specifications, tnvmretee is changed to tnvmretee100, and added a new row for the parameter tnvmretee10. And footnotes are updated in this topic. 13 05 April 2020 • In LVR, LVD and POR operating requirements, • Updated table title for S32K14xW series • Updated values for VLVR for S32K14xW series • In Absolute maximum ratings, updated TJ for S32K14xW series • In Thermal operating characteristics, updated TJ for S32K14xW series • In External System Oscillator electrical specifications, added note 'Minimum value is shown as a reference only ... ' to Vpp_EXTAL S32K1xx Data Sheet, Rev. 13, 04/2020 NXP Semiconductors 99 How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customerʼs technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2015–2020 NXP B.V. Document Number S32K1XX Revision 13, 04/2020
FS32K142UIT0VLHT 价格&库存

很抱歉,暂时无法提供与“FS32K142UIT0VLHT”相匹配的价格&库存,您可以联系我们找货

免费人工找货