0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
K32L2B31VMP0A

K32L2B31VMP0A

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LFBGA64

  • 描述:

    IC MCU 32BIT 256KB FLSH 64MAPBGA

  • 数据手册
  • 价格&库存
K32L2B31VMP0A 数据手册
NXP Semiconductors Data Sheet: Technical Data K32L2B3x Rev. 3, 09/2020 K32 L2B Microcontroller K32L2B31Vxx0A K32L2B21Vxx0A K32L2B11Vxx0A 48 MHz Arm® Cortex®-M0+ and 64/128/256 KB Flash The K32 L2B series is optimized for cost-sensitive and batterypowered applications requiring low-power USB connectivity and an optional segment LCD (SLCD). The product offers: • Optional low power segment LCD up to 24x8 or 28x4 • USB FS 2.0 device without requiring an external crystal • Embedded ROM with boot loader for flexible program upgrade • High accuracy internal voltage and clock reference • FlexIO to support any standard and customized serial peripheral emulation • Down to 54 uA/MHz in very low power run mode and 1.96 uA in deep sleep mode (RAM + RTC retained) Core Processor • Arm® Cortex®-M0+ core up to 48 MHz Memories • 64/128/256 KB program flash memory • 32 KB SRAM • 16 KB ROM with build-in bootloader • 32-byte backup register System • 4-channel asynchronous DMA controller • Watchdog • Low-leakage wakeup unit • Two-pin Serial Wire Debug (SWD) programming and debug interface • Micro Trace Buffer • Bit manipulation engine • Interrupt controller Clocks • 48 MHz high accuracy (up to 0.5%) internal reference clock • 8 MHz/2 MHz high accuracy (up to 3%) internal reference clock • 1 KHz reference clock active under all low-power modes (except VLLS0) • 32–40 KHz and 3–32 MHz crystal oscillator 32 QFN 5x5 mm P 0.5 mm 48 QFN 7x7 mm P 0.5 mm 64 LQFP 10x10 mm P 0.5 mm 64 BGA 5x5 mm P 0.5 mm Peripherals • SLCD supporting up to 24x8 or 28x4 segments • USB full-speed 2.0 device controller supporting crystal-less operation • One UART module supporting ISO7816, operating up to 1.5 Mbit/s • Two low-power UART modules supporting asynchronous operation in low-power modes • Two I2C modules and I2C0 supporting up to 1 Mbit/s • Two 16-bit SPI modules supporting up to 24 Mbit/s • One FlexIO module supporting emulation of additional UART, SPI, I2C, PWM and other serial modules, etc. • One 16-bit 461 ksps ADC module with high accuracy internal voltage reference (Vref) and up to 16 channels • High-speed analog comparator containing a 6-bit DAC for programmable reference input • One 12-bit DAC • 1.2 V internal voltage reference I/O • Up to 50 general-purpose input/output pins (GPIO) and 6 high-drive pad NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. Operating Characteristics • Voltage range: 1.71 to 3.6 V • Flash write voltage range: 1.71 to 3.6 V • Temperature range: –40 to 105 °C Timers • One 6-channel Timer/PWM module • Two 2-channel Timer/PWM modules • One low-power timer • Periodic interrupt timer • Real time clock Packages • 64 LQFP 10mm x 10mm, 0.5 mm pitch, 1.6 mm thickness Security and Integrity • 64 MAPBGA 5mm x 5mm, 0.5 mm pitch, 1.23 mm • 80-bit unique identification number per chip thickness • Advanced flash security • 48 QFN 7mm x 7mm, 0.5 mm pitch, 0.65 mm thickness • 32 QFN 5mm x 5mm, 0.5 mm pitch, 0.65 mm thickness Low Power • Down to 54 μA/MHz in very low power run mode • Down to 1.96 μA in VLLS3 mode (RAM + RTC retained) • Six flexible static modes Related Resources Type Description Resource Selector Guide The NXP Selector Guide is a web-based tool that features interactive application wizards and a dynamic product selector. Selector Guide Reference Manual The Reference Manual contains a comprehensive description of the structure and function (operation) of a device. K32L2B3xRM1 Data Sheet The Data Sheet includes electrical characteristics and signal connections. This document. Chip Errata The chip mask set Errata provides additional or corrective information for K32L2B_1N71K1 a particular device mask set. Package drawing Package dimensions are provided in package drawings. 64-LQFP: 98ASS23234W, 64MAPBGA: 98ASA00420D, 32QFN: 98ASA00615D, 48-QFN: 98ASA00616D1 1. To find the associated resource, go to http://www.nxp.com and perform a search using this term. 2 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Table of Contents 1 Ordering information............................................................4 2 Overview............................................................................. 4 2.1 System features........................................................... 5 2.1.1 Arm Cortex-M0+ core.................................... 5 2.1.2 NVIC.............................................................. 6 2.1.3 AWIC............................................................. 6 2.1.4 Memory..........................................................7 2.1.5 Reset and boot.............................................. 7 2.1.6 Clock options................................................. 9 2.1.7 Security..........................................................12 2.1.8 Power management.......................................12 2.1.9 LLWU.............................................................14 2.1.10 Debug controller............................................ 15 2.1.11 COP............................................................... 15 2.2 Peripheral features.......................................................16 2.2.1 Segment LCD (SLCD)................................... 16 2.2.2 BME............................................................... 16 2.2.3 DMA and DMAMUX.......................................16 2.2.4 TPM............................................................... 17 2.2.5 ADC............................................................... 18 2.2.6 VREF............................................................. 19 2.2.7 CMP...............................................................19 2.2.8 DAC............................................................... 20 2.2.9 RTC............................................................... 20 2.2.10 PIT................................................................. 20 2.2.11 LPTMR...........................................................21 2.2.12 UART............................................................. 21 2.2.13 LPUART.........................................................22 2.2.14 SPI................................................................. 23 2.2.15 I2C................................................................. 23 2.2.16 USB............................................................... 24 2.2.17 FlexIO............................................................ 24 2.2.18 Port control and GPIO................................... 25 4.4.7 Human-machine interfaces (HMI)..................42 4.5 K32 L2B LQFP and MAPBGA pinouts.........................43 4.6 K32 L2B QFN Pinouts..................................................45 4.7 Package dimensions....................................................47 5 Electrical characteristics......................................................54 5.1 Ratings.........................................................................54 5.1.1 Thermal handling ratings............................... 54 5.1.2 Moisture handling ratings...............................55 5.1.3 ESD handling ratings..................................... 55 5.1.4 Voltage and current operating ratings............55 5.2 General........................................................................ 56 5.2.1 AC electrical characteristics...........................56 5.2.2 Nonswitching electrical specifications............56 5.2.3 Switching specifications.................................71 5.2.4 Thermal specifications................................... 72 5.3 Peripheral operating requirements and behaviors....... 73 5.3.1 Core modules................................................ 73 5.3.2 System modules............................................ 75 5.3.3 Clock modules............................................... 75 5.3.4 Memories and memory interfaces................. 78 5.3.5 Security and integrity modules.......................80 5.3.6 Analog............................................................80 5.4 Timers.......................................................................... 91 5.5 Communication interfaces........................................... 91 5.5.1 USB electrical specifications..........................91 5.5.2 USB VREG electrical specifications.............. 92 5.5.3 SPI switching specifications...........................92 5.5.4 I2C................................................................. 97 5.5.5 UART............................................................. 98 5.6 Human-machine interfaces (HMI)................................ 99 5.6.1 LCD electrical characteristics........................ 99 6 Design considerations......................................................... 100 6.1 Hardware design considerations..................................100 3 Memory map....................................................................... 26 4 Pinouts................................................................................ 27 4.1 K32 L2B Signal Multiplexing and Pin Assignments (LQFP and MAPBGA)..................................................27 4.2 K32 L2B Signal Multiplexing and Pin Assignments (QFN)........................................................................... 30 4.3 Pin properties...............................................................32 4.4 Module Signal Description Tables............................... 37 4.4.1 Core modules................................................ 37 4.4.2 System modules............................................ 37 4.4.3 Clock modules............................................... 38 4.4.4 Analog............................................................38 4.4.5 Timer Modules............................................... 39 4.4.6 Communication interfaces............................. 40 6.1.1 Printed circuit board recommendations......... 100 6.1.2 Power delivery system...................................101 6.1.3 Analog design................................................ 102 6.1.4 Digital design................................................. 102 6.1.5 Crystal oscillator............................................ 105 6.2 Software considerations...............................................107 Part identification.................................................................107 7.1 Description................................................................... 107 7.2 Format..........................................................................108 7.3 Fields........................................................................... 108 7.4 Example....................................................................... 108 Small package marking....................................................... 109 Package marking information..............................................109 Revision History.................................................................. 110 K32 L2B Microcontroller, Rev. 3, 09/2020 7 8 9 10 3 NXP Semiconductors Ordering information 1 Ordering information The following chips are available for ordering. Table 1. Ordering information Product Memory Package IO and ADC channel Serial Interface Part number Flash (KB) SRAM (KB) Pin count Package GPIOs GPIOs (INT/HD)1 ADC channels (SE/DP) SLCD K32L2B31VLH0A 256 32 64 LQFP 50 31/6 16/2 Yes K32L2B31VMP0A 256 32 64 MAPBGA 50 31/6 16/2 Yes K32L2B31VFT0A 256 32 48 QFN 36 24/6 14/1 — K32L2B31VFM0A 256 32 32 QFN 23 19/6 7/0 — K32L2B21VLH0A 128 32 64 LQFP 50 31/6 16/2 Yes K32L2B21VMP0A 128 32 64 MAPBGA 50 31/6 16/2 Yes K32L2B21VFT0A 128 32 48 QFN 36 24/6 14/1 — K32L2B21VFM0A 128 32 32 QFN 23 19/6 7/0 — K32L2B11VLH0A 64 32 64 LQFP 50 31/6 16/2 Yes K32L2B11VMP0A 64 32 64 MAPBGA 50 31/6 16/2 Yes K32L2B11VFT0A 64 32 48 QFN 36 24/6 14/1 — K32L2B11VFM0A 64 32 32 QFN 23 19/6 7/0 — 1. INT: interrupt pin numbers; HD: high drive pin numbers 2 Overview The following figure shows the system diagram of this device 4 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Overview GPIOA GPIOB Slave Master Cortex M0+ GPIOC GPIOD GPIOE CM0+ core NVIC M2 DMA MUX DMA M3 FMC S0 16 KB ROM S1 32 KB RAM S2 BME USB FS Device Only ADC(16-bit 16-ch) 64/128/256 KB Flash CMP Peripheral Bridge(Bus Clock - Max 24MHZ) Debug (SWD) M0 Crossabar Switch(Platform Clcok - Max 48MHZ) IOPORT 1.2V Voltage reference TPM0(6-channel) TPM1(2-channel) TPM2(2-channel) LPTMR PIT RTC LPUART0 LPUART1 UART2 SPI0 SPI1 I2C0 I2C1 FlexIO Watchdog(COP) MCG-Lite OSC Register File(32 Bytes) HIRC48M LLWU LIRC2M/8M SMC RCM PMC SLCD Figure 1. System diagram The crossbar switch connects bus masters and slaves using a crossbar switch structure. This structure allows up to four bus masters to access different bus slaves simultaneously, while providing arbitration among the bus masters when they access the same slave. 2.1 System features The following sections describe the high-level system features. K32 L2B Microcontroller, Rev. 3, 09/2020 5 NXP Semiconductors Overview 2.1.1 Arm Cortex-M0+ core The enhanced Arm Cortex M0+ is the member of the Cortex-M series of processors targeting microcontroller cores focused on very cost sensitive, low power applications. It has a single 32-bit AMBA AHB-Lite interface and includes an NVIC component. It also has hardware debug functionality including support for simple program trace capability. The processor supports the ARMv6-M instruction set (Thumb) architecture including all but three 16-bit Thumb opcodes (52 total) plus seven 32-bit instructions. It is upward compatible with other Cortex-M profile processors. 2.1.2 NVIC The Nested Vectored Interrupt Controller supports nested interrupts and 4 priority levels for interrupts. In the NVIC, each source in the IPR registers contains two bits. It also differs in number of interrupt sources and supports 32 interrupt vectors. The Cortex-M family uses a number of methods to improve interrupt latency to up to 15 clock cycles for Cortex-M0+. It also can be used to wake the MCU core from Wait and VLPW modes. 2.1.3 AWIC The asynchronous wake-up interrupt controller (AWIC) is used to detect asynchronous wake-up events in Stop mode and signal to clock control logic to resume system clocking. After clock restarts, the NVIC observes the pending interrupt and performs the normal interrupt or event processing. The AWIC can be used to wake MCU core from Stop and VLPS modes. Wake-up sources are listed as below: Table 2. AWIC stop wake-up sources Wake-up source Description Available system resets RESET pin when LPO is its clock source Low-voltage detect Power management controller—functional in Stop mode Low-voltage warning Power management controller—functional in Stop mode Pin interrupts Port control module—any enabled pin interrupt is capable of waking the system ADC The ADC is functional when using internal clock source or external crystal clock CMP0 Interrupt in normal or trigger mode I2Cx Address match wakeup Table continues on the next page... 6 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Overview Table 2. AWIC stop wake-up sources (continued) Wake-up source Description LPUART0 , LPUART1 Any enabled interrupt can be a source as long as the module remains clocked UART2 Active edge on RXD RTC Alarm or seconds interrupt NMI NMI pin TPMx Any enabled interrupt can be a source as long as the module remains clocked LPTMR Any enabled interrupt can be a source as long as the module remains clocked SPIx Slave mode interrupt FlexIO Any enabled interrupt can be a source as long as the module remains clocked 2.1.4 Memory This device has the following features: • 32 KB of embedded RAM accessible (read/write) at CPU clock speed with 0 wait states. • The non-volatile memory is divided into two arrays • Up to 256 KB of embedded program memory • 16 KB ROM (built-in bootloader to support UART, I2C, USB, and SPI interfaces) The program flash memory contains a 16-byte flash configuration field that stores default protection settings and security information. The page size of program flash is 1 KB. The protection setting can protect 32 regions of the program flash memory from unintended erase or program operations. The security circuitry prevents unauthorized access to RAM or flash contents from debug port. • System register file This device contains a 32-byte register file that is powered in all power modes. Also, it retains contents during low power modes and is reset only during a power-on reset. K32 L2B Microcontroller, Rev. 3, 09/2020 7 NXP Semiconductors Overview 2.1.5 Reset and boot The following table lists all the reset sources supported by this device. NOTE In the following table, Y means the specific module, except for the registers, bits or conditions mentioned in the footnote, is reset by the corresponding Reset source. N means the specific module is not reset by the corresponding Reset source. Table 3. Reset source Reset sources Descriptions POR reset Power-on reset (POR) PMC SIM SMC RCM LLWU Reset pin is negated RTC Y Y Y Y Y Y Y Y Y Y1 Y Y Y Y Y N Y Y Low leakage wakeup (LLWU) reset N Y2 N Y N Y3 N N Y External pin reset (RESET) Y1 Y2 Y4 Y Y Y N N Y Computer operating properly (COP) watchdog reset Y1 Y2 Y4 Y5 Y Y N N Y Stop mode acknowledge error (SACKERR) Y1 Y2 Y4 Y5 Y Y N N Y Software reset (SW) Y1 Y2 Y4 Y5 Y Y N N Y Lockup reset (LOCKUP) Y1 Y2 Y4 Y5 Y Y N N Y MDM DAP system reset Y1 Y2 Y4 Y5 Y Y N N Y Debug reset Y1 Y2 Y4 Y5 Y Y N N Y System resets Low-voltage detect (LVD) Debug reset 1. 2. 3. 4. 5. Modules LPTMR Others Except PMC_LVDSC1[LVDV] and PMC_LVDSC2[LVWV] Except SIM_SOPT1 Only if RESET is used to wake from VLLS mode. Except SMC_PMCTRL, SMC_STOPCTRL, SMC_PMSTAT Except RCM_RPFC, RCM_RPFW, RCM_FM The CM0+ core adds support for a programmable Vector Table Offset Register (VTOR) to relocate the exception vector table after reset. This device supports booting from: • internal flash • ROM 8 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Overview The Flash Option (FOPT) register in the Flash Memory module (FTFA_FOPT) allows the user to customize the operation of the MCU at boot time. The register contains read-only bits that are loaded from the NVM's option byte in the flash configuration field. Below is boot flow chart for this device. POR or Reset N RCM[FORCEROM] =00 Y FOPT[BOOTPIN_OPT]=0 N Y BOOTCFG0 pin=0 Y N N FOPT[BOOTSRC _SEL]=10/11 Y Boot from ROM Boot from Flash Figure 2. Boot flow chart The blank chip is default to boot from ROM and remaps the vector table to ROM base address, otherwise, it remaps to flash address. 2.1.6 Clock options This chip provides a wide range of sources to generate the internal clocks. These sources include internal resistor capacitor (IRC) oscillators, external oscillators, external clock sources, and ceramic resonators. These sources can be configured to provide the required performance and optimize the power consumption. The IRC oscillators include the high-speed internal resister capacitor (HIRC) oscillator, the low-speed internal resister capacitor (LIRC) oscillator, and the low power oscillator (LPO). The HIRC oscillator generates a 48 MHz clock and synchronizes with the USB clock in full speed mode to achieve the required accuracy. The LIRC oscillator generates an 8 MHz or 2 MHz clock, and default to 8 MHz system clock on reset. The LIRC oscillator cannot be used in any VLLS modes. The LPO generates a 1 kHz clock and cannot be used in VLLS0 mode. K32 L2B Microcontroller, Rev. 3, 09/2020 9 NXP Semiconductors Overview The system oscillator supports low frequency crystals (32 kHz to 40 kHz), high frequency crystals (3 MHz to 32 MHz), and ceramic resonators (3 MHz to 32 MHz). An external clock source, DC to 48 MHz, can be used as the system clock through the EXTAL0 pin. The external oscillator also supports a low speed external clock (32.768 kHz) on the RTC_CLKIN pin for use with the RTC. For more details on the clock operations and configurations, see Reference Manual. The following figure is a high level block diagram of the clock generation. Multipurpose Clock Generator Lite IRC_TRIMs System Integration HIRC48M USB MCGPCLK USB_EN MCGIRCLK CG LIRC_DIV2 LIRC 8MHz/ 8MHz 2MHz IRC 2MHz MCGOUTCLK FCRDIV OUTDIV1 CG Core/Platform/System clock OUTDIV4 CG Bus/Flash clock IRCS CLKS System oscillator EREFS0 EXTAL0 OSCCLK XTAL_CLK OSC logic OSC32KCLK XTAL0 OSCERCLK CG ERCLK32K RTC_CKLIN OS32KSEL RTCCLKOUTSEL RTC Counter logic PMC PMC logic LPO RTC_CLKOUT 1Hz CG — Clock gate Figure 3. Clock block diagram In order to provide flexibility, many peripherals can select from multiple clock sources for operation. This enables the peripheral to select a clock that will always be available during operation in various operational modes. The following table summarizes the clocks associated with each module. Table 4. Module clocks Module Bus interface clock Internal clocks I/O interface clocks Core modules Table continues on the next page... 10 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Overview Table 4. Module clocks (continued) Module Bus interface clock Internal clocks I/O interface clocks Arm Cortex-M0+ core Platform clock Core clock — NVIC Platform clock — — DAP Platform clock — SWD_CLK System modules DMA System clock — — DMA Mux Bus clock — — Port control Bus clock — — Crossbar Switch Platform clock — — Peripheral bridges System clock Bus clock — LLWU, PMC, SIM, RCM Bus clock LPO — Mode controller Bus clock — — MCM Platform clock — — COP watchdog Bus clock LPO, Bus Clock, MCGIRCLK, OSCERCLK — Clocks MCG_Lite Bus clock MCGOUTCLK, MCGPCLK, MCGIRCLK, OSCERCLK, ERCLK32K — OSC Bus clock OSCERCLK — Memory and memory interfaces Flash Controller Platform clock Flash clock — Flash memory Flash clock — — Analog ADC Bus clock OSCERCLK — CMP Bus clock — — Internal Voltage Reference (VREF) Bus clock — — Timers TPM Bus clock TPM clock TPM_CLKIN0, TPM_CLKIN1 PIT Bus clock — — LPTMR Bus clock LPO, OSCERCLK, MCGPCLK, ERCLK32K — RTC Bus clock ERCLK32K RTC_CLKOUT, RTC_CLKIN Communication interfaces USB FS (Device Only) System clock USB FS clock — SPI0 Bus clock — SPI0_SCK SPI1 System clock — SPI1_SCK I2C0 System Clock — I2C0_SCL I2C1 System Clock — I2C1_SCL Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 11 NXP Semiconductors Overview Table 4. Module clocks (continued) Module Bus interface clock Internal clocks I/O interface clocks LPUART0, LPUART1 Bus clock LPUART0 clock — LPUART1 clock UART2 Bus clock — — FlexIO Bus clock FlexIO clock — Human-machine interfaces GPIO Platform clock — — 2.1.7 Security Security state can be enabled via programming flash configuration field (0x40e). After enabling device security, the SWD port cannot access the memory resources of the MCU, and ROM boot loader is also limited to access flash and not allowed to read out flash information via ROM boot loader commands. Access interface Secure state Unsecure operation SWD port Cannot access memory source by SWD The debugger can write to the Flash interface Mass Erase in Progress field of the MDM-AP Control register to trigger a mass erase (Erase All Blocks) command ROM boot loader Interface (UART/I2C/SPI/USB) Limit access to the flash, cannot read out flash content Send “FlashEraseAllUnsecureh" command or attempt to unlock flash security using the backdoor key This device features 80-bit unique identification number, which is programmed in factory and loaded to SIM register after power-on reset. 2.1.8 Power management The Power Management Controller (PMC) expands upon Arm’s operational modes of Run, Sleep, and Deep Sleep, to provide multiple configurable modes. These modes can be used to optimize current consumption for a wide range of applications. The WFI or WFE instruction invokes a Wait or a Stop mode, depending on the current configuration. For more information on Arm’s operational modes, See the Arm® Cortex User Guide. 12 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Overview The PMC provides Run (Run), and Very Low Power Run (VLPR) configurations in Arm’s Run operation mode. In these modes, the MCU core is active and can access all peripherals. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption. The configuration that matches the power versus performance requirements of the application can be selected. The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in Arm’s Sleep operation mode. In these modes, even though the MCU core is inactive, all of the peripherals can be enabled and operate as programmed. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption. The PMC provides Stop (Stop), Very Low Power Stop (VLPS), Low Leakage Stop (LLS), and Very Low Leakage Stop (VLLS) configurations in Arm’s Deep Sleep operational mode. In these modes, the MCU core and most of the peripherals are disabled. Depending on the requirements of the application, different portions of the analog, logic, and memory can be retained or disabled to conserve power. The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up Interrupt Controller (AWIC), and the Low Leakage Wake-Up Controller (LLWU) are used to wake up the MCU from low power states. The NVIC is used to wake up the MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU core from STOP and VLPS modes. The LLWU is used to wake up the MCU core from LLS and VLLSx modes. For additional information regarding operational modes, power management, the NVIC, AWIC, or the LLWU, please refer to the Reference Manual. The following table provides information about the state of the peripherals in the various operational modes and the modules that can wake MCU from low power modes. Table 6. Peripherals states in different operational modes Core mode Run mode Sleep mode Device mode Descriptions Run In Run mode, all device modules are operational. Very Low Power Run In VLPR mode, all device modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled. Wait In Wait mode, all peripheral modules are operational. The MCU core is placed into Sleep mode. Very Low Power Wait In VLPW mode, all peripheral modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled. The MCU core is placed into Sleep mode. Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 13 NXP Semiconductors Overview Table 6. Peripherals states in different operational modes (continued) Core mode Deep sleep Device mode Descriptions Stop In Stop mode, most peripheral clocks are disabled and placed in a static state. Stop mode retains all registers and SRAMs while maintaining Low Voltage Detection protection. In Stop mode, the ADC, CMP, LPTMR, RTC, and pin interrupts are operational. The NVIC is disabled, but the AWIC can be used to wake up from an interrupt. Very Low Power Stop In VLPS mode, the contents of the SRAM are retained. The CMP (low speed), ADC, OSC, RTC, LPTMR, TPM, FlexIO, LPUART, USB, and DMA are operational, LVD and NVIC are disabled, AWIC is used to wake up from interrupt. Low Leakage Stop In LLS mode, the contents of the SRAM and the 32-byte system register file are retained. The CMP (low speed), LLWU, LPTMR, and RTC are operational. The ADC, DMA, FlexIO, I2C, LPUART, MCG-Lite, NVIC, PIT, SPI, TPM, UART, USB, and COP are static, but retain their programming. The GPIO, and VREF are static, retain their programming, and continue to drive their previous values. Very Low Leakage Stop In VLLS modes, most peripherals are powered off and will resume operation from their reset state when the device wakes up. The LLWU, LPTMR, and RTC are operational in all VLLS modes. In VLLS3, the contents of the SRAM and the 32-byte system register file are retained. The CMP (low speed), and PMC are operational. The GPIO, and VREF are not operational but continue driving. In VLLS1, the contents of the 32-byte system register file are retained. The CMP (low speed), and PMC are operational. The GPIO, and VREF are not operational but continue driving. In VLLS0, the contents of the 32-byte system register file are retained. The PMC is operational. The GPIO is not operational but continues driving. The POR detection circuit can be enabled or disabled. 2.1.9 LLWU The LLWU module is used to wake MCU from low leakage power mode (LLS and VLLSx) and functional only on entry into a low-leakage power mode. After recovery from LLS, the LLWU is immediately disabled. After recovery from VLLSx, the LLWU continues to detect wake-up events until the user has acknowledged the wake-up event. This device uses 8 external wakeup pin inputs and 4 internal modules as wakeup sources to the LLWU module. The following is internal peripheral and external pin inputs as wakeup sources to the LLWU module. 14 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Overview Table 7. Wakeup source LLWU pin Module source or pin name LLWU_P5 PTB0 LLWU_P6 PTC1 LLWU_P7 PTC3 LLWU_P8 PTC4 LLWU_P9 PTC5 LLWU_P10 PTC6 LLWU_P14 PTD4 LLWU_P15 PTD6 LLWU_M0IF LPTMR0 LLWU_M1IF CMP0 LLWU_M2IF Reserved LLWU_M3IF Reserved LLWU_M4IF Reserved LLWU_M5IF RTC alarm LLWU_M6IF Reserved LLWU_M7IF RTC seconds 2.1.10 Debug controller This device supports standard Arm 2-pin SWD debug port. It provides register and memory accessibility from the external debugger interface, basic run/halt control plus 2 breakpoints and 2 watchpoints. It also supports trace function with the Micro Trace Buffer (MTB), which provides a simple execution trace capability for the Cortex-M0+ processor. 2.1.11 COP The COP monitors internal system operation and forces a reset in case of failure. It can run from bus clock, LPO, 8/2 MHz internal oscillator or external crystal oscillator. Optional window mode can detect deviations in program flow or system frequency. The COP has the following features: • Support multiple clock input, 1 kHz clock(LPO), bus clock, 8/2 MHz internal reference clock, external crystal oscillator • Can work in Stop/VLPS and Debug mode K32 L2B Microcontroller, Rev. 3, 09/2020 15 NXP Semiconductors Overview • Configurable for short and long timeout values, the longest timeout is up to 262 seconds • Support window mode 2.2 Peripheral features The following sections describe the features of each peripherals of the chip. 2.2.1 Segment LCD (SLCD) The SLCD module is a CMOS charge pump voltage inverter that is designed for lowvoltage and low-power operation. SLCD is designed to generate the appropriate waveforms to drive multiplexed numeric, alphanumeric, or custom segment LCD panels. SLCD also has several timing and control settings that can be software configured depending on the application's requirements. Timing and control consists of registers and control logic for: • LCD frame frequency • Duty cycle selection • Front plane/back plane selection and enabling • Blink modes and frequency • Operation in low-power modes 2.2.2 BME The Bit Manipulation Engine (BME) provides hardware support for atomic readmodify-write memory operations to the peripheral address space in Cortex-M0+ based microcontrollers. It reduces up to 30% of the code size and up to 9% of the cycles for bit-oriented operations to peripheral registers. The BME supports unsigned bit field extract, load-and-set 1-bit, load-and-clear 1-bit, bit field insert, logical AND/OR/XOR operations with byte, halfword or word-sized data type. 16 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Overview 2.2.3 DMA and DMAMUX The DMA controller module enables fast transfers of data, which provides an efficient way to move blocks of data with minimal processor interaction. The DMA controller in this device implements four channels which can be routed from up to 63 DMA request sources through DMA MUX module. Some of the peripheral request sources have asynchronous DMA capability which can be used to wake MCU from Stop mode. The peripherals which have such capability include . The DMA channel 0 and 1 can be periodically triggered by PIT via DMA MUX. Main features are listed below: • Dual-address transfers via 32-bit master connection to the system bus and data transfers in 8-, 16-, or 32-bit blocks • Supports programmable source and destination address and transfer size, optional modulo addressing from 16 bytes to 256 KB • Automatic updates of source and destination addresses • Auto-alignment feature for source or destination accesses allows block transfers to occur at the optimal size based on the address, byte count,and programmed size, which significantly improves the speed of block transfer • Automatic single or double channel linking allows the current DMA channel to automatically trigger a DMA request to the linked channels without CPU intervention For more information on asynchronous DMA, see AN4631. 2.2.4 TPM This device contains three low power TPM modules (TPM). All TPM modules are functional in Stop/VLPS mode if the clock source is enabled. The TPM features include: • TPM clock mode is selectable from external clock input, internal clock source, external crystal input clock, MCGIRCLK clock or clocking from MCGFLLCLK and MCGPLLCLK/2 • Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128 • TPM includes a 16-bit counter • Includes 6 channels that can be configured for input capture, output compare, edge-aligned PWM mode, or center-aligned PWM mode • Support the generation of an interrupt and/or DMA request per channel or counter overflow K32 L2B Microcontroller, Rev. 3, 09/2020 17 NXP Semiconductors Overview • Support selectable trigger input to optionally reset or cause the counter to start or stop incrementing • Support the generation of hardware triggers when the counter overflows and per channel 2.2.5 ADC This device contains one ADC module. This ADC module supports hardware triggers from TPM, LPTMR, PIT, RTC, external trigger pin and CMP output. It supports wakeup of MCU in low power mode when using internal clock source or external crystal clock. ADC module has the following features: • Linear successive approximation algorithm with up to 16-bit resolution • Up to four pairs of differential and 17 single-ended external analog inputs • Support selectable 16-bit, 13-bit, 11-bit, and 9-bit differential output mode, or 16bit, 12-bit, 10-bit, and 8-bit single-ended output modes • Single or continuous conversion • Configurable sample time and conversion speed/power • Selectable clock source up to four • Operation in low-power modes for lower noise • Asynchronous clock source for lower noise operation with option to output the clock • Selectable hardware conversion trigger • Automatic compare with interrupt for less-than, greater-than or equal-to, within range, or out-of-range, programmable value • Temperature sensor • Hardware average function up to 32x • Selectable voltage reference: external or alternate • Self-calibration mode 2.2.5.1 Temperature sensor This device integrates one temperature sensor internally connected to the input channel of AD26, see for details of the linearity factor. The sensor provides good linearity, but it has to be calibrated to gain good accuracy, see also AN3031. We recommend to use internal reference voltage as ADC reference with long sample time. 18 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Overview 2.2.6 VREF The Voltage Reference (VREF) can supply an accurate voltage output (1.2V typically) trimmed in 0.5 mV steps. It can be used in applications to provide a reference voltage to external devices or used internally as a reference to analog peripherals such as the ADC or CMP. The VREF supports the following programmable buffer modes: • Bandgap on only, used for stabilization and startup • High power buffer mode • Low-power buffer mode • Buffer disabled The VREF voltage output signal, bonded on VREFH for 48 QFN, 64 LQFP and 64 MAPBGA packages and on PTE30 for 32 QFN packages, can be used by both internal and external peripherals in low and high power buffer mode. A 100 nF capacitor must always be connected between this pin and VSSA if the VREF is used. This capacitor must be as close to VREF_OUT pin as possible. 2.2.7 CMP The device contains one high-speed comparator and two 8-input multiplexers for both the inverting and non-inverting inputs of the comparator. Each CMP input channel connects to both muxes. The CMP includes one 6-bit DAC, which provides a selectable voltage reference for various user application cases. Besides, the CMP also has several module-to-module interconnects in order to facilitate ADC triggering, TPM triggering, and interfaces. The CMP has the following features: • Inputs may range from rail to rail • Programmable hysteresis control • Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of the comparator output • Selectable inversion on comparator output • Capability to produce a wide range of outputs such as sampled, digitally filtered • External hysteresis can be used at the same time that the output filter is used for internal functions • Two software selectable performance levels: shorter propagation delay at the expense of higher power and Low power with longer propagation delay K32 L2B Microcontroller, Rev. 3, 09/2020 19 NXP Semiconductors Overview • • • • DMA transfer support Functional in all modes of operation except in VLLS0 mode The filter functions are not available in Stop, VLPS, LLS, or VLLSx modes Integrated 6-bit DAC with selectable supply reference source and can be power down to conserve power • Two 8-to-1 channel mux 2.2.8 DAC The 12-bit Digital-to-Analog Converter (DAC) is a low-power, general-purpose DAC. The output of the DAC can be placed on an external pin or set as one of the inputs to the analog comparator, op-amps, or ADC. The features of the DAC module include: • On-chip programmable reference generator output. The voltage output range is from 1⁄4096 Vin to Vin, and the step is 1⁄4096 Vin, where Vin is the input voltage. • Vin can be selected from two reference sources. • Static operation in Normal Stop mode. • 2-word data buffer supported with multiple operation modes. • DMA support. 2.2.9 RTC The RTC is an always powered-on block that remains active in all low power modes. The time counter within the RTC is clocked by a 32.768 kHz clock sourced from an external crystal using the oscillator or clock directly from RTC_CLKIN pin. RTC is reset on power-on reset, and a software reset bit in RTC can also initialize all RTC registers. The RTC module has the following features • 32-bit seconds counter with roll-over protection and 32-bit alarm • 16-bit prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm • Register write protection with register lock mechanism • 1 Hz square wave or second pulse output with optional interrupt 20 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Overview 2.2.10 PIT The Periodic Interrupt Timer (PIT) is used to generate periodic interrupt to the CPU. It has two independent channels and each channel has a 32-bit counter. Both channels can be chained together to form a 64-bit counter. Channel 0 can be used to periodically trigger DMA channel 0, and channel 1 can be used to periodically trigger DMA channel 1. Either channel can be programmed as an ADC trigger source, or TPM trigger source. Channel 0 can be programmed to trigger DAC. The PIT module has the following features: • Each 32-bit timers is able to generate DMA trigger • Each 32-bit timers is able to generate timeout interrupts • Two timers can be cascaded to form a 64-bit timer • Each timer can be programmed as ADC/TPM trigger source • Timer 0 is able to trigger DAC 2.2.11 LPTMR The low-power timer (LPTMR) can be configured to operate as a time counter with optional prescaler, or as a pulse counter with optional glitch filter, across all power modes, including the low-leakage modes. It can also continue operating through most system reset events, allowing it to be used as a time of day counter. The LPTMR module has the following features: • 16-bit time counter or pulse counter with compare • Optional interrupt can generate asynchronous wakeup from any low-power mode • Hardware trigger output • Counter supports free-running mode or reset on compare • Configurable clock source for prescaler/glitch filter • Configurable input source for pulse counter 2.2.12 UART This device contains a basic universal asynchronous receiver/transmitter (UART) module with DMA function supported. Generally, this module is used in RS-232, RS-485, and other communications. It also supports LIN slave operation and ISO7816. K32 L2B Microcontroller, Rev. 3, 09/2020 21 NXP Semiconductors Overview The UART module has the following features: • Full-duplex operation • 13-bit baud rate selection with /32 fractional divide, based on the module clock frequency • Programmable 8-bit or 9-bit data format • Programmable transmitter output polarity • Programmable receive input polarity • Up to 14-bit break character transmission. • 11-bit break character detection option • Two receiver wakeup methods with idle line or address mark wakeup • Address match feature in the receiver to reduce address mark wakeup ISR overhead • Ability to select MSB or LSB to be the first bit on wire • Support for ISO 7816 protocol to interface with SIM cards and smart cards • Receiver framing error detection • Hardware parity generation and checking • 1/16 bit-time noise detection • DMA interface 2.2.13 LPUART This product contains two Low-Power UART modules, both of their clock sources are selectable from IRC48M, IRC8M/2M or external crystal clock, and can work in Stop and VLPS modes. They also support 4x to 32x data oversampling rate to meet different applications. The LPUART module has the following features: • Programmable baud rates (13-bit modulo divider) with configurable oversampling ratio from 4x to 32x • Transmit and receive baud rate can operate asynchronous to the bus clock and can be configured independently of the bus clock frequency, support operation in Stop mode • Interrupt, DMA or polled operation • Hardware parity generation and checking • Programmable 8-bit, 9-bit or 10-bit character length • Programmable 1-bit or 2-bit stop bits • Three receiver wakeup methods • Idle line wakeup • Address mark wakeup • Receive data match • Automatic address matching to reduce ISR overhead: 22 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Overview • Address mark matching • Idle line address matching • Address match start, address match end • Optional 13-bit break character generation / 11-bit break character detection • Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle characters • Selectable transmitter output and receiver input polarity 2.2.14 SPI This device contains two SPI modules. SPI modules support 8-bit and 16-bit modes. FIFO function is available only on SPI1 module. The SPI modules have the following features: • Full-duplex or single-wire bidirectional mode • Programmable transmit bit rate • Double-buffered transmit and receive data register • Serial clock phase and polarity options • Slave select output • Mode fault error flag with CPU interrupt capability • Control of SPI operation during wait mode • Selectable MSB-first or LSB-first shifting • Programmable 8- or 16-bit data transmission length • Receive data buffer hardware match feature • 64-bit FIFO mode for high speed/large amounts of data transfers • Support DMA 2.2.15 I2C This device contains two I2C modules, which support up to 1 Mbits/s by dual buffer features, and address match to wake MCU from the low power mode. I2C modules support DMA transfer, and the interrupt condition can trigger DMA request when DMA function is enabled. The I2C modules have the following features: • Support for system management bus (SMBus) specification, version 2 • Software programmable for one of 64 different serial clock frequencies • Software-selectable acknowledge bit • Arbitration-lost interrupt with automatic mode switching from master to slave K32 L2B Microcontroller, Rev. 3, 09/2020 23 NXP Semiconductors Overview • • • • • • • • • • • • Calling address identification interrupt START and STOP signal generation and detection Repeated-START signal generation and detection Acknowledge bit generation and detection Bus busy detection General call recognition 10-bit address extension Programmable input glitch filter Low power mode wakeup on slave address match Range slave address support DMA support Double buffering support to achieve higher baud rate 2.2.16 USB This device contains one USB module which implements a USB2.0 full-speed compliant peripheral and interfaces to the on-chip USBFS transceiver. It implements keep-alive feature to avoid re-enumerating when exiting from low power modes and enables HIRC48M to allow crystal-less USB operation. The USBFS has the following features: • USB 1.1 and 2.0 compliant full-speed device controller • 16 bidirectional end points • DMA or FIFO data stream interfaces • Low-power consumption • HIRC48 with clock-recovery is supported to eliminate the 48 MHz crystal. It is used for USB device-only implementation. • USB keeps alive in low power mode down to VLPS and is able to wake MCU from low power mode 2.2.17 FlexIO The FlexIO is a highly configurable module providing a wide range of protocols including, but not limited to UART, I2C, SPI, Camera IF, LCD RGB, PWM/Waveform generation. The module supports programmable baud rates independent of bus clock frequency, with automatic start/stop bit generation. The FlexIO module has the following features: 24 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Overview • Functional in VLPR/VLPW/Stop/VLPS mode provided the clock it is using remains enabled • Four 32-bit double buffered shift registers with transmit, receive, and data match modes, and continuous data transfer • The timing of the shifter's shift, load and store events are controlled by the highly flexible 16-bit timer assigned to the shifter • Two or more shifters can be concatenated to support large data transfer sizes • Each 16-bit timers operates independently, supports for reset, enable and disable on a variety of internal or external trigger conditions with programmable trigger polarity • Flexible pin configuration supporting output disabled, open drain, bidirectional output data and output mode • Supports interrupt, DMA or polled transmit/receive operation 2.2.18 Port control and GPIO The Port Control and Interrupt (PORT) module provides support for port control, digital filtering, and external interrupt functions. The GPIO data direction and output data registers control the direction and output data of each pin when the pin is configured for the GPIO function. The GPIO input data register displays the logic value on each pin when the pin is configured for any digital function, provided the corresponding Port Control and Interrupt module for that pin is enabled. The PORT module has the following features: • all PIN support interrupt enable • Configurable edge (rising, falling, or both) or level sensitive interrupt type • Support DMA request • Asynchronous wake-up in low-power modes • Configurable pullup, pulldown, and pull-disable on select pins • Configurable high and low drive strength on selected pins • Configurable fast and slow slew rates on selected pins • Configurable passive filter on selected pins • Individual mux control field supporting analog or pin disabled, GPIO, and up to chip-specific digital functions • Pad configuration fields are functional in all digital pin muxing modes. The GPIO module has the following features: • Port Data Input register visible in all digital pin-multiplexing modes • Port Data Output register with corresponding set/clear/toggle registers K32 L2B Microcontroller, Rev. 3, 09/2020 25 NXP Semiconductors Memory map • Port Data Direction register • GPIO support single-cycle access via fast GPIO. 3 Memory map This device contains various memories and memory-mapped peripherals which are located in a 4 GB memory space. The following figure shows the system memory and peripheral locations 0x4000_0000 Reserved 0x4000_8000 DMA controller 0x4000_F000 0x4002_0000 0x0000_0000 0x4002_1000 Flash 0x0000_0000 0x07FF_FFFF Code space 0x07FF_FFFF 0x1C00_0000 0x1C00_0000 ROM Boot ROM 0x1C00_3FFF 0x1C00_4000 0x1FFF_E000 Data Space 0x2000_5FFF SRAM_L 0x2000_0000 Reserved SRAM_U 0x4000_0000 0x2000_5FFF Public peripheral 0x4000_0000 0x400F_F000 0x4400_0000 0x6000_0000 0xE000_0000 0xE010_0000 0x4007_FFFF Reserved AIPS peripherals 0x400F_F000 BME Reserved 0x400F_FFFF Private peripheral GPIO Reserved MTB MTBDWT Others Others ROM Table MCM 0xFFFF_FFFF Reserved IOPORT Flash memory DMA Channel Multiplexer 0x4003_7000 PIT 0x4003_8000 LPTPM0 0x4003_9000 LPTPM1 0x4003_A000 LPTPM2 0x4003_B000 ADC0 0x4003_D000 RTC 0x4003_F000 DAC 0x4004_0000 LPTMR 0x4004_1000 0x4004_7000 0x1FFF_E000 GPIO Controller (alias to 0x400F_F000) System register file SIM low power logic 0x4004_8000 SIM 0x4004_9000 PORTA 0x4004_A000 PORTB 0x4004_B000 PORTC 0x4004_C000 PORTD 0x4004_D000 PORTE 0x4005_3000 SLCD 0x4005_4000 LPUART0 0x4005_5000 LPUART1 0x4005_F000 FlexIO 0x4006_4000 MCG Lite 0x4006_5000 OSC 0x4006_6000 I2C0 0x4006_7000 I2C1 0x4006_C000 UART2 0x4007_2000 USB 0x4007_3000 CMP 0x4007_4000 VREF 0x4007_6000 SPI0 0x4007_7000 SPI1 0x4007_C000 LLWU 0x4007_D000 PMC 0x4007_E000 SMC 0x4007_F000 RCM GPIO 0x400F_F000 Figure 4. Memory map 26 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Pinouts 4 Pinouts 4.1 K32 L2B Signal Multiplexing and Pin Assignments (LQFP and MAPBGA) The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. NOTE VREFH can act as VREF_OUT when VREFV1 module is enabled. NOTE When FTFA_FOPT[RESET_PIN_CONFIG]=0, the PTA20 pin acts as RESET_B function only during the POR. After POR, this pin cannot be used as the RESET function. Then, writing to PORTA_PCR20[MUX]=0x1, the PTA20 pin will act as GPIO function (with setting value of ALT1). When FTFA_FOPT[RESET_PIN_CONFIG]=1, the PTA20 pin acts as RESET_B and cannot switch to GPIO function regardless of PORTA_PCR20[MUX]'s setting value. 64 64 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 A1 1 PTE0 LCD_P48 LCD_P48 PTE0/ CLKOUT32K SPI1_MISO LPUART1_TX RTC_CLKOUT CMP0_OUT I2C1_SDA LCD_P48 B1 2 PTE1 LCD_P49 LCD_P49 PTE1 SPI1_MOSI LPUART1_RX I2C1_SCL LCD_P49 — 3 VDD VDD VDD C4 4 VSS VSS VSS E1 5 USB0_DP USB0_DP USB0_DP D1 6 USB0_DM USB0_DM USB0_DM E2 7 VOUT33 VOUT33 VOUT33 D2 8 VREGIN VREGIN VREGIN G1 9 PTE20 LCD_P59/ ADC0_DP0/ ADC0_SE0 LCD_P59/ ADC0_DP0/ ADC0_SE0 FXIO0_D4 LCD_P59 K32 L2B Microcontroller, Rev. 3, 09/2020 PTE20 TPM1_CH0 SPI1_MISO LPUART0_TX 27 NXP Semiconductors Pinouts 64 64 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 LCD_P60 F1 10 PTE21 LCD_P60/ ADC0_DM0/ ADC0_SE4a LCD_P60/ ADC0_DM0/ ADC0_SE4a PTE21 TPM1_CH1 LPUART0_RX FXIO0_D5 G2 11 PTE22 ADC0_DP3/ ADC0_SE3 ADC0_DP3/ ADC0_SE3 PTE22 TPM2_CH0 UART2_TX FXIO0_D6 F2 12 PTE23 ADC0_DM3/ ADC0_SE7a ADC0_DM3/ ADC0_SE7a PTE23 TPM2_CH1 UART2_RX FXIO0_D7 F4 13 VDDA VDDA VDDA G4 14 VREFH VREFH VREFH G3 15 VREFL VREFL VREFL F3 16 VSSA VSSA VSSA H1 17 PTE29 CMP0_IN5/ ADC0_SE4b CMP0_IN5/ ADC0_SE4b PTE29 TPM0_CH2 TPM_CLKIN0 H2 18 PTE30 DAC0_OUT/ ADC0_SE23/ CMP0_IN4 DAC0_OUT/ ADC0_SE23/ CMP0_IN4 PTE30 TPM0_CH3 TPM_CLKIN1 H3 19 PTE31 DISABLED PTE31 TPM0_CH4 H4 20 PTE24 DISABLED PTE24 TPM0_CH0 I2C0_SCL H5 21 PTE25 DISABLED PTE25 TPM0_CH1 I2C0_SDA D3 22 PTA0 SWD_CLK PTA0 TPM0_CH5 D4 23 PTA1 DISABLED PTA1 LPUART0_RX TPM2_CH0 E5 24 PTA2 DISABLED PTA2 LPUART0_TX TPM2_CH1 D5 25 PTA3 SWD_DIO PTA3 I2C1_SCL TPM0_CH0 SWD_DIO G5 26 PTA4 NMI_b PTA4 I2C1_SDA TPM0_CH1 NMI_b USB_CLKIN TPM0_CH2 LPUART1_TX LPTMR0_ ALT1 SWD_CLK F5 27 PTA5 DISABLED PTA5 H6 28 PTA12 DISABLED PTA12 TPM1_CH0 G6 29 PTA13 DISABLED PTA13 TPM1_CH1 G7 30 VDD VDD VDD H7 31 VSS VSS VSS H8 32 PTA18 EXTAL0 EXTAL0 PTA18 LPUART1_RX TPM_CLKIN0 G8 33 PTA19 XTAL0 XTAL0 PTA19 LPUART1_TX TPM_CLKIN1 F8 34 PTA20 RESET_b F7 35 PTB0/ LLWU_P5 LCD_P0/ ADC0_SE8 LCD_P0/ ADC0_SE8 PTB0/ LLWU_P5 I2C0_SCL TPM1_CH0 LCD_P0 F6 36 PTB1 LCD_P1/ ADC0_SE9 LCD_P1/ ADC0_SE9 PTB1 I2C0_SDA TPM1_CH1 LCD_P1 E7 37 PTB2 LCD_P2/ ADC0_SE12 LCD_P2/ ADC0_SE12 PTB2 I2C0_SCL TPM2_CH0 LCD_P2 E8 38 PTB3 LCD_P3/ ADC0_SE13 LCD_P3/ ADC0_SE13 PTB3 I2C0_SDA TPM2_CH1 LCD_P3 E6 39 PTB16 LCD_P12 LCD_P12 PTB16 SPI1_MOSI LPUART0_RX TPM_CLKIN0 28 NXP Semiconductors LPTMR0_ ALT1 SPI1_MISO LCD_P12 K32 L2B Microcontroller, Rev. 3, 09/2020 Pinouts 64 64 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT4 LPUART0_TX TPM_CLKIN1 ALT5 ALT6 40 PTB17 LCD_P13 LCD_P13 PTB17 D6 41 PTB18 LCD_P14 LCD_P14 PTB18 TPM2_CH0 LCD_P14 C7 42 PTB19 LCD_P15 LCD_P15 PTB19 TPM2_CH1 LCD_P15 D8 43 PTC0 LCD_P20/ ADC0_SE14 LCD_P20/ ADC0_SE14 PTC0 EXTRG_IN C6 44 PTC1/ LLWU_P6/ RTC_CLKIN LCD_P21/ ADC0_SE15 LCD_P21/ ADC0_SE15 PTC1/ LLWU_P6/ RTC_CLKIN I2C1_SCL TPM0_CH0 LCD_P21 B7 45 PTC2 LCD_P22/ ADC0_SE11 LCD_P22/ ADC0_SE11 PTC2 I2C1_SDA TPM0_CH1 LCD_P22 C8 46 PTC3/ LLWU_P7 LCD_P23 LCD_P23 PTC3/ LLWU_P7 SPI1_SCK LPUART1_RX TPM0_CH2 E3 47 VSS VSS VSS E4 — VDD VDD VDD C5 48 VLL3 VLL3 VLL3 A6 49 VLL2 VLL2/ LCD_P4 VLL2/ LCD_P4 PTC20 LCD_P4 B5 50 VLL1 VLL1/ LCD_P5 VLL1/ LCD_P5 PTC21 LCD_P5 B4 51 VCAP2 VCAP2/ LCD_P6 VCAP2/ LCD_P6 PTC22 LCD_P6 A5 52 VCAP1 VCAP1/ LCD_P39 VCAP1/ LCD_P39 PTC23 LCD_P39 B8 53 PTC4/ LLWU_P8 LCD_P24 LCD_P24 PTC4/ LLWU_P8 SPI0_SS LPUART1_TX TPM0_CH3 A8 54 PTC5/ LLWU_P9 LCD_P25 LCD_P25 PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ ALT2 A7 55 PTC6/ LLWU_P10 LCD_P26/ CMP0_IN0 LCD_P26/ CMP0_IN0 PTC6/ LLWU_P10 SPI0_MOSI EXTRG_IN SPI0_MISO LCD_P26 B6 56 PTC7 LCD_P27/ CMP0_IN1 LCD_P27/ CMP0_IN1 PTC7 SPI0_MISO audioUSB_ SOF_OUT SPI0_MOSI LCD_P27 C3 57 PTD0 LCD_P40 LCD_P40 PTD0 SPI0_SS TPM0_CH0 FXIO0_D0 LCD_P40 A4 58 PTD1 LCD_P41/ ADC0_SE5b LCD_P41/ ADC0_SE5b PTD1 SPI0_SCK TPM0_CH1 FXIO0_D1 LCD_P41 C2 59 PTD2 LCD_P42 LCD_P42 PTD2 SPI0_MOSI UART2_RX TPM0_CH2 SPI0_MISO FXIO0_D2 LCD_P42 B3 60 PTD3 LCD_P43 LCD_P43 PTD3 SPI0_MISO UART2_TX TPM0_CH3 SPI0_MOSI FXIO0_D3 LCD_P43 A3 61 PTD4/ LLWU_P14 LCD_P44 LCD_P44 PTD4/ LLWU_P14 SPI1_SS UART2_RX TPM0_CH4 FXIO0_D4 LCD_P44 C1 62 PTD5 LCD_P45/ ADC0_SE6b LCD_P45/ ADC0_SE6b PTD5 SPI1_SCK UART2_TX TPM0_CH5 FXIO0_D5 LCD_P45 B2 63 PTD6/ LLWU_P15 LCD_P46/ ADC0_SE7b LCD_P46/ ADC0_SE7b PTD6/ LLWU_P15 SPI1_MOSI LPUART0_RX SPI1_MISO FXIO0_D6 LCD_P46 A2 64 PTD7 LCD_P47 LCD_P47 PTD7 SPI1_MISO LPUART0_TX SPI1_MOSI FXIO0_D7 LCD_P47 audioUSB_ SOF_OUT SPI1_MOSI ALT7 D7 K32 L2B Microcontroller, Rev. 3, 09/2020 SPI1_MISO ALT3 LCD_P13 CMP0_OUT LCD_P20 CLKOUT LCD_P23 LCD_P24 CMP0_OUT LCD_P25 29 NXP Semiconductors Pinouts 4.2 K32 L2B Signal Multiplexing and Pin Assignments (QFN) The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. NOTE When FTFA_FOPT[RESET_PIN_CONFIG]=0, the PTA20 pin acts as RESET_B function only during the POR. After POR, this pin cannot be used as the RESET function. Then, writing to PORTA_PCR20[MUX]=0x1, the PTA20 pin will act as GPIO function (with setting value of ALT1). When FTFA_FOPT[RESET_PIN_CONFIG]=1, the PTA20 pin acts as RESET_B and cannot switch to GPIO function regardless of PORTA_PCR20[MUX]'s setting value. 32 QFN 48 QFN Pin Name Default ALT0 — 1 VDD VDD VDD — 7 PTE20 ADC0_DP0/ ADC0_SE0 ADC0_DP0/ ADC0_SE0 PTE20 TPM1_CH0 LPUART0_TX FXIO0_D4 — 8 PTE21 ADC0_DM0/ ADC0_SE4a ADC0_DM0/ ADC0_SE4a PTE21 TPM1_CH1 LPUART0_RX FXIO0_D5 — 10 VREFH VREFH VREFH — 11 VREFL VREFL VREFL — 13 PTE29 CMP0_IN5/ ADC0_SE4b CMP0_IN5/ ADC0_SE4b PTE29 TPM0_CH2 TPM_CLKIN0 — 15 PTE24 DISABLED PTE24 TPM0_CH0 I2C0_SCL — 16 PTE25 DISABLED PTE25 TPM0_CH1 I2C0_SDA — 29 PTB2 ADC0_SE12 ADC0_SE12 PTB2 I2C0_SCL TPM2_CH0 — 30 PTB3 ADC0_SE13 ADC0_SE13 PTB3 I2C0_SDA TPM2_CH1 — 31 PTB16 DISABLED PTB16 SPI1_MOSI LPUART0_RX TPM_CLKIN0 SPI1_MISO — 32 PTB17 DISABLED PTB17 SPI1_MISO LPUART0_TX TPM_CLKIN1 SPI1_MOSI — 33 PTC0 ADC0_SE14 EXTRG_IN audioUSB_ SOF_OUT CMP0_OUT — 41 PTD0 DISABLED — 42 PTD1 ADC0_SE5b — 43 PTD2 — 44 1 2 ADC0_SE14 ALT1 ALT2 PTC0 ALT3 ALT4 ALT5 ALT6 PTD0 SPI0_SS TPM0_CH0 FXIO0_D0 PTD1 SPI0_SCK TPM0_CH1 FXIO0_D1 DISABLED PTD2 SPI0_MOSI UART2_RX TPM0_CH2 SPI0_MISO FXIO0_D2 PTD3 DISABLED PTD3 SPI0_MISO UART2_TX TPM0_CH3 SPI0_MOSI FXIO0_D3 — PTE0 DISABLED PTE0/ CLKOUT32K SPI1_MISO LPUART1_TX RTC_CLKOUT CMP0_OUT I2C1_SDA 2 VSS VSS 30 NXP Semiconductors ADC0_SE5b ALT7 VSS K32 L2B Microcontroller, Rev. 3, 09/2020 Pinouts 32 QFN 48 QFN Pin Name Default ALT0 3 3 USB0_DP USB0_DP USB0_DP 4 4 USB0_DM USB0_DM USB0_DM 5 5 VOUT33 VOUT33 VOUT33 6 6 VREGIN VREGIN VREGIN 7 9 VDDA VDDA VDDA 8 12 VSSA VSSA VSSA 9 14 PTE30 DAC0_OUT/ ADC0_SE23/ CMP0_IN4 DAC0_OUT/ ADC0_SE23/ CMP0_IN4 10 17 PTA0 11 18 12 ALT1 ALT2 ALT3 ALT4 ALT5 TPM_CLKIN1 LPUART1_TX ALT6 ALT7 PTE30 TPM0_CH3 SWD_CLK PTA0 TPM0_CH5 PTA1 DISABLED PTA1 LPUART0_RX TPM2_CH0 19 PTA2 DISABLED PTA2 LPUART0_TX TPM2_CH1 13 20 PTA3 SWD_DIO PTA3 I2C1_SCL TPM0_CH0 SWD_DIO 14 21 PTA4 NMI_b PTA4 I2C1_SDA TPM0_CH1 NMI_b 15 22 VDD VDD VDD 16 23 VSS VSS VSS 17 24 PTA18 EXTAL0 EXTAL0 PTA18 LPUART1_RX TPM_CLKIN0 18 25 PTA19 XTAL0 XTAL0 PTA19 LPUART1_TX 19 26 PTA20 RESET_b 20 27 PTB0/ LLWU_P5 ADC0_SE8 ADC0_SE8 PTB0/ LLWU_P5 I2C0_SCL TPM1_CH0 21 28 PTB1 ADC0_SE9 ADC0_SE9 PTB1 I2C0_SDA TPM1_CH1 22 34 PTC1/ LLWU_P6/ RTC_CLKIN ADC0_SE15 ADC0_SE15 PTC1/ LLWU_P6/ RTC_CLKIN I2C1_SCL TPM0_CH0 23 35 PTC2 ADC0_SE11 ADC0_SE11 PTC2 I2C1_SDA TPM0_CH1 24 36 PTC3/ LLWU_P7 DISABLED PTC3/ LLWU_P7 SPI1_SCK LPUART1_RX TPM0_CH2 25 37 PTC4/ LLWU_P8 DISABLED PTC4/ LLWU_P8 SPI0_SS LPUART1_TX 26 38 PTC5/ LLWU_P9 DISABLED PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ ALT2 27 39 PTC6/ LLWU_P10 CMP0_IN0 CMP0_IN0 PTC6/ LLWU_P10 SPI0_MOSI EXTRG_IN SPI0_MISO 28 40 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_MISO audioUSB_ SOF_OUT SPI0_MOSI 29 45 PTD4/ LLWU_P14 DISABLED PTD4/ LLWU_P14 SPI1_SS UART2_RX TPM0_CH4 FXIO0_D4 30 46 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI1_SCK UART2_TX TPM0_CH5 FXIO0_D5 31 47 PTD6/ LLWU_P15 ADC0_SE7b ADC0_SE7b PTD6/ LLWU_P15 SPI1_MOSI LPUART0_RX SPI1_MISO FXIO0_D6 32 48 PTD7 DISABLED PTD7 SPI1_MISO LPUART0_TX SPI1_MOSI FXIO0_D7 K32 L2B Microcontroller, Rev. 3, 09/2020 LPTMR0_ ALT1 SWD_CLK TPM_CLKIN1 LPTMR0_ ALT1 CLKOUT TPM0_CH3 CMP0_OUT 31 NXP Semiconductors Pinouts 4.3 Pin properties Pin interrupt Open drain Passive pin filter after POR Slew rate after POR Pullup/ pulldown setting after POR Default status after POR Driver strength Pin name 64 LQFP 64 MAPBGA The following table lists the pin properties of 64 LQFP/MAPBGA package. 1 A1 PTE0 ND Hi-Z — SS N N N 2 B1 PTE1 ND Hi-Z — SS N N N 3 — VDD — — — — — — — 4 C4 VSS — — — — — — — 5 E1 USB0_DP — — — — — — — 6 D1 USB0_DM — — — — — — — 7 E2 VOUT33 — — — — — — — 8 D2 VREGIN — — — — — — — 9 G1 PTE20 ND Hi-Z — SS N N N 10 F1 PTE21 ND Hi-Z — SS N N N 11 G2 PTE22 ND Hi-Z — SS N N N 12 F2 PTE23 ND Hi-Z — SS N N N 13 F4 VDDA — — — — — — — 14 G4 VREFH — — — — — — — 15 G3 VREFL — — — — — — — 16 F3 VSSA — — — — — — — 17 H1 PTE29 ND Hi-Z — SS N N N 18 H2 PTE30 ND Hi-Z — SS N N N 19 H3 PTE31 ND Hi-Z — SS N N N 20 H4 PTE24 ND Hi-Z — SS N N N 21 H5 PTE25 ND Hi-Z — SS N N N 22 D3 PTA0 ND L PD SS N N Y 23 D4 PTA1 ND Hi-Z — SS N N Y 24 E5 PTA2 ND Hi-Z — SS N N Y Table continues on the next page... 32 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Pin interrupt Open drain Passive pin filter after POR Slew rate after POR Pullup/ pulldown setting after POR Default status after POR Driver strength Pin name 64 LQFP 64 MAPBGA Pinouts 25 D5 PTA3 ND H PU FS N N Y 26 G5 PTA4 ND H PU SS N N Y 27 F5 PTA5 ND Hi-Z — SS N N Y 28 H6 PTA12 ND Hi-Z — SS N N Y 29 G6 PTA13 ND Hi-Z — SS N N Y 30 G7 VDD — — — — — — — 31 H7 VSS — — — — — — — 32 H8 PTA18 ND Hi-Z — SS N N Y 33 G8 PTA19 ND Hi-Z — SS N N Y 34 F8 PTA20 ND H PU SS Y Y Y 35 F7 PTB0/LLWU_P5 HD Hi-Z — SS N N N 36 F6 PTB1 HD Hi-Z — SS N N N 37 E7 PTB2 ND Hi-Z — SS N N N 38 E8 PTB3 ND Hi-Z — SS N N N 39 E6 PTB16 ND Hi-Z — FS N N N 40 D7 PTB17 ND Hi-Z — FS N N N 41 D6 PTB18 ND Hi-Z — SS N N N 42 C7 PTB19 ND Hi-Z — SS N N N 43 D8 PTC0 ND Hi-Z — SS N N Y 44 C6 PTC1/LLWU_P6/ RTC_CLKIN ND Hi-Z — SS N N Y 45 B7 PTC2 ND Hi-Z — SS N N Y 46 C8 PTC3/LLWU_P7 HD Hi-Z — FS N N Y 47 E3 VSS — — — — — — — — E4 VDD — — — — — — — 48 C5 VLL3 — — — — — — — 49 A6 VLL2 — — — — — — — 50 B5 VLL1 — — — — — — — 51 B4 VCAP2 — — — — — — — Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 33 NXP Semiconductors Pin interrupt Open drain Passive pin filter after POR Slew rate after POR Pullup/ pulldown setting after POR Default status after POR Driver strength Pin name 64 LQFP 64 MAPBGA Pinouts 52 A5 VCAP1 — — — — — — — 53 B8 PTC4/LLWU_P8 HD Hi-Z — FS N N Y 54 A8 PTC5/LLWU_P9 ND Hi-Z — FS N N Y 55 A7 PTC6/LLWU_P10 ND Hi-Z — FS N N Y 56 B6 PTC7 ND Hi-Z — FS N N Y 57 C3 PTD0 ND Hi-Z — SS N N Y 58 A4 PTD1 ND Hi-Z — SS N N Y 59 C2 PTD2 ND Hi-Z — SS N N Y 60 B3 PTD3 ND Hi-Z — SS N N Y 61 A3 PTD4/LLWU_P14 ND Hi-Z — FS N N Y 62 C1 PTD5 ND Hi-Z — FS N N Y 63 B2 PTD6/LLWU_P15 HD Hi-Z — FS N N Y 64 A2 PTD7 HD Hi-Z — FS N N Y — 1 VDD — — — — Pin interrupt Open drain Passive pin filter after POR Slew rate after POR Pullup/ pulldown setting after POR Default status after POR Driver strength Pin name 48 QFN 32 QFN The following table lists the pin properties of 32/48 QFN package. — — — Table continues on the next page... 34 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Pin interrupt Open drain Passive pin filter after POR Slew rate after POR Pullup/ pulldown setting after POR Default status after POR Driver strength Pin name 48 QFN 32 QFN Pinouts — 7 PTE20 ND Hi-Z — SS N N N — 8 PTE21 ND Hi-Z — SS N N N — 10 VREFH — — — — — — — — 11 VREFL — — — — — — — — 13 PTE29 ND Hi-Z — SS N N N — 15 PTE24 ND Hi-Z — SS N N N — 16 PTE25 ND Hi-Z — SS N N N — 29 PTB2 ND Hi-Z — SS N N N — 30 PTB3 ND Hi-Z — SS N N S — 31 PTB16 ND Hi-Z — FS N N N — 32 PTB17 ND Hi-Z — FS N N N — 33 PTC0 ND Hi-Z — SS N N Y — 41 PTD0 ND Hi-Z — SS N N Y — 42 PTD1 ND Hi-Z — SS N N Y — 43 PTD2 ND Hi-Z — SS N N Y — 44 PTD3 ND Hi-Z — SS N N Y 1 — PTE0 ND Hi-Z — SS N N N 2 2 VSS — — — — — — — 3 3 USB0_DP — — — — — — — 4 4 USB0_DM — — — — — — — 5 5 VOUT33 — — — — — — — 6 6 VREGIN — — — — — — — 7 9 VDDA — — — — — — — 8 12 VSSA — — — — — — — 9 14 PTE30 ND Hi-Z — SS N N N 10 17 PTA0 ND L PD SS N N Y 11 18 PTA1 ND Hi-Z — SS N N Y 12 19 PTA2 ND Hi-Z — SS N N Y 13 20 PTA3 ND H PU FS N N Y Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 35 NXP Semiconductors Pin interrupt Open drain Passive pin filter after POR Slew rate after POR Pullup/ pulldown setting after POR Default status after POR Driver strength Pin name 48 QFN 32 QFN Pinouts 14 21 PTA4 ND H PU SS N N Y 15 22 VDD — — — — — — — 16 23 VSS — — — — — — — 17 24 PTA18 ND Hi-Z — SS N N Y 18 25 PTA19 ND Hi-Z — SS N N Y 19 26 PTA20 ND H PU SS Y Y Y 20 27 PTB0/LLWU_P5 HD Hi-Z — SS N N N 21 28 PTB1 HD Hi-Z — SS N N N 22 34 PTC1/LLWU_P6/ RTC_CLKIN ND Hi-Z — SS N N Y 23 35 PTC2 ND Hi-Z — SS N N Y 24 36 PTC3/LLWU_P7 HD Hi-Z — FS N N Y 25 37 PTC4/LLWU_P8 HD Hi-Z — FS N N Y 26 38 PTC5/LLWU_P9 ND Hi-Z — FS N N Y 27 39 PTC6/LLWU_P10 ND Hi-Z — FS N N Y 28 40 PTC7 ND Hi-Z — FS N N Y 29 45 PTD4/LLWU_P14 ND Hi-Z — FS N N Y 30 46 PTD5 ND Hi-Z — FS N N Y 31 47 PTD6/LLWU_P15 HD Hi-Z — FS N N Y 32 48 PTD7 HD Hi-Z — FS N N Y Abbreviation Descriptions Properties Driver strength Default status after POR Pullup/ pulldown setting after POR ND Normal drive HD High drive Hi-Z High impendence H High level L Low level PD Pulldown PU Pullup Table continues on the next page... 36 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Pinouts Properties Abbreviation Descriptions FS Fast slew rate SS Slow slew rate Slew rate after POR Passive Pin Filter after POR N Disabled Y Enabled Open drain N Disabled1 Y Enabled2 Y Yes Pin interrupt 1. When I2C module is enabled and a pin is functional for I2C, this pin is (pseudo-) open drain enabled. When UART or LPUART module is enabled and a pin is functional for UART or LPUART, this pin is (pseudo-) open drain configurable. 2. PTA20 is a true open drain pin that must never be pulled above VDD. 4.4 Module Signal Description Tables The following sections correlate the chip-level signal name with the signal name used in the module's chapter. They also briefly describe the signal function and direction. 4.4.1 Core modules Table 9. SWD signal descriptions Chip signal name Module signal name SWD_DIO SWD_DIO Description I/O Serial Wire Debug Data Input/Output The SWD_DIO pin is used by an external debug tool for communication and device control. This pin is pulled up internally. SWD_CLK SWD_CLK Serial Wire Clock Input / Output Input This pin is the clock for debug logic when in the Serial Wire Debug mode. This pin is pulled down internally. 4.4.2 System modules Table 10. System signal descriptions Chip signal name Module signal name NMI — Description Non-maskable interrupt I/O I Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 37 NXP Semiconductors Pinouts Table 10. System signal descriptions (continued) Chip signal name Module signal name Description I/O NOTE: Driving the NMI signal low forces a non-maskable interrupt, if the NMI function is selected on the corresponding pin. RESET — Reset bidirectional signal VDD — MCU power I/O I VSS — MCU ground I Table 11. LLWU signal descriptions Chip signal name Module signal name LLWU_Pn LLWU_Pn Description I/O Wakeup inputs I 4.4.3 Clock modules Table 12. OSC signal descriptions Chip signal name Module signal name EXTAL0 EXTAL XTAL0 XTAL Description I/O External clock/Oscillator input I Oscillator output O 4.4.4 Analog This table presents the signal descriptions of the ADC0 module. Table 13. ADC0 signal descriptions Chip signal name Module signal name Description I/O ADC0_DPn DADP3–DADP0 Differential Analog Channel Inputs I ADC0_DMn DADM3–DADM0 Differential Analog Channel Inputs I ADC0_SEn ADn Single-Ended Analog Channel Inputs I VREFH VREFSH Voltage Reference Select High I VREFL VREFSL Voltage Reference Select Low I VDDA VDDA Analog Power Supply I VSSA VSSA Analog Ground I Table continues on the next page... 38 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Pinouts Table 13. ADC0 signal descriptions (continued) Chip signal name Module signal name EXTRG_IN ADHWT Description I/O Hardware trigger I This table presents the signal descriptions of the CMP0 module. Table 14. CMP0 signal descriptions Chip signal name Module signal name Description I/O CMP0_IN[5:0] IN[5:0] Analog voltage inputs I CMP0_OUT CMPO Comparator output O Table 15. VREF signal descriptions Chip signal name Module signal name Description I/O VREF_OUT VREF_OUT Internally-generated voltage reference output O 4.4.5 Timer Modules Table 16. TPM0 signal descriptions Chip signal name Module signal name Description I/O TPM_CLKIN[1:0] TPM_EXTCLK External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock. I TPM0_CH[5:0] TPM_CHn TPM channel (n = 5 to 0). A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input. I/O EXTRG_IN ADHWT Hardware trigger I Table 17. TPM1 signal descriptions Chip signal name Module signal name Description I/O TPM_CLKIN[1:0] TPM_EXTCLK External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock. I Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 39 NXP Semiconductors Pinouts Table 17. TPM1 signal descriptions (continued) Chip signal name Module signal name TPM1_CH[1:0] TPM_CHn EXTRG_IN ADHWT Description I/O TPM channel (n = 1 to 0). A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input. I/O Hardware trigger I Table 18. TPM2 signal descriptions Chip signal name Module signal name Description I/O TPM_CLKIN[1:0] TPM_EXTCLK External clock. TPM external clock can be selected to increment the TPM counter on every rising edge synchronized to the counter clock. I TPM2_CH[1:0] TPM_CHn TPM channel (n = 1 to 0). A TPM channel pin is configured as output when configured in an output compare or PWM mode and the TPM counter is enabled, otherwise the TPM channel pin is an input. I/O EXTRG_IN ADHWT Hardware trigger I Table 19. LPTMR0 signal descriptions Chip signal name Module signal name Description LPTMR0_ALT[3:1] LPTMR0_ALTn Pulse Counter Input pin I/O I Table 20. RTC signal descriptions Chip signal name Module signal name Description I/O RTC_CLKOUT1 RTC_CLKOUT 1 Hz square-wave output or OSCERCLK O 1. RTC_CLKOUT can also be driven with OSCERCLK via SIM control bit SIM_SOPT[RCTCLKOUTSEL] 4.4.6 Communication interfaces Table 21. USB FS Signal Descriptions Chip signal name Module signal name Description I/O USB0_DM usb_dm USB D- analog data signal on the USB bus. I/O USB0_DP usb_dp USB D+ analog data signal on the USB bus. I/O USB_CLKIN — 40 NXP Semiconductors Alternate USB clock input I K32 L2B Microcontroller, Rev. 3, 09/2020 Pinouts Table 22. SPI0 signal descriptions Chip signal name Module signal name Description I/O SPI0_MISO MISO Master Data In, Slave Data Out I/O Master Data Out, Slave Data In I/O SPI Serial Clock I/O Slave Select I/O SPI0_MOSI MOSI SPI0_SCLK SPSCK SPI0_PCS0 SS Table 23. SPI1 signal descriptions Chip signal name Module signal name Description I/O SPI1_MISO MISO Master Data In, Slave Data Out I/O Master Data Out, Slave Data In I/O SPI Serial Clock I/O Slave Select I/O SPI1_MOSI MOSI SPI1_SCLK SPSCK SPI1_PCS0 SS Table 24. I2C0 signal descriptions Chip signal name Module signal name I2C0_SCL SCL I2C0_SDA Description I/O Bidirectional serial clock line of the I2C system. SDA Bidirectional serial data line of the I2C system. I/O I/O Table 25. I2C1 signal descriptions Chip signal name Module signal name I2C1_SCL SCL I2C1_SDA SDA Description I/O Bidirectional serial clock line of the I2C system. Bidirectional serial data line of the I2C system. I/O I/O Table 26. LPUART0 signal descriptions Chip signal name Module signal name Description I/O LPUART0_TX TxD Transmit data I/O LPUART0_RX RxD Receive data I K32 L2B Microcontroller, Rev. 3, 09/2020 41 NXP Semiconductors Pinouts Table 27. LPUART1 signal descriptions Chip signal name Module signal name Description I/O LPUART1_TX TxD Transmit data I/O LPUART1_RX RxD Receive data I Table 28. UART2 signal descriptions Chip signal name Module signal name Description I/O UART2_TX TxD Transmit data O UART2_RX RxD Receive data I Table 29. FlexIO signal descriptions Chip signal name Module signal name Description I/O FXIO0_Dx FXIO_Dn (n=0...7) Bidirectional FlexIO Shifter and Timer pin inputs/outputs I/O EXTRG_IN ADHWT Hardware trigger I 4.4.7 Human-machine interfaces (HMI) Table 30. GPIO Signal Descriptions Chip signal name Module signal name Description I/O PTA[20:0] PORTA20–PORTA0 General-purpose input/output I/O PTB[19:0] PORTB19–PORTB0 General-purpose input/output I/O PTD[7:0] PORTD7–PORTD0 General-purpose input/output I/O PTE[31:0] PORTE31–PORTE0 General-purpose input/output I/O Table 31. LCD Signal Descriptions Chip signal name LCD_Pn VLL1, VLL2, VLL3 Module signal name Description I/O LCD_P[63:0] . 64 Configurable front plane/back plane driver that connects directly to LCD front plane/back the display. LCD_P[63:0] can operate as GPIO pins plane O VLL1, VLL2, VLL3. LCD LCD bias voltages (requires external capacitors when charge bias voltages pump is used). I/O Table continues on the next page... 42 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Pinouts Table 31. LCD Signal Descriptions (continued) Chip signal name Module signal name Vcap1, Vcap2 Vcap1, Vcap2. LCD charge pump capacitance. Description I/O Charge pump capacitor pins. O 4.5 K32 L2B LQFP and MAPBGA pinouts Figure below shows the 64 LQFP pinouts K32 L2B Microcontroller, Rev. 3, 09/2020 43 NXP Semiconductors PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTD3 PTD2 PTD1 PTD0 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 VCAP1 VCAP2 VLL1 VLL2 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Pinouts PTE20 9 40 PTB17 PTE21 10 39 PTB16 PTE22 11 38 PTB3 PTE23 12 37 PTB2 VDDA 13 36 PTB1 VREFH 14 35 PTB0/LLWU_P5 VREFL 15 34 PTA20 VSSA 16 33 PTA19 32 PTB18 PTA18 41 31 8 VSS VREGIN 30 PTB19 VDD 42 29 7 PTA13 VOUT33 28 PTC0 PTA12 43 27 6 PTA5 USB0_DM 26 PTC1/LLWU_P6/RTC_CLKIN PTA4 44 25 5 PTA3 USB0_DP 24 PTC2 PTA2 45 23 4 PTA1 VSS 22 PTC3/LLWU_P7 PTA0 46 21 3 PTE25 VDD 20 VSS PTE24 47 19 2 PTE31 PTE1 18 VLL3 PTE30 48 17 1 PTE29 PTE0 Figure 5. 64 LQFP Pinout diagram Figure below shows the 64 MAPBGA pinouts 44 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Pinouts 1 2 3 4 5 6 A PTE0 PTD7 PTD4/ LLWU_P14 PTD1 VCAP1 VLL2 B PTE1 PTD6/ LLWU_P15 PTD3 VCAP2 VLL1 PTC7 C PTD5 PTD2 PTD0 VSS VLL3 D USB0_DM VREGIN PTA0 PTA1 E USB0_DP VOUT33 VSS F PTE21 PTE23 G PTE20 H 7 8 PTC6/ PTC5/ LLWU_P10 LLWU_P9 A PTC2 PTC4/ LLWU_P8 B PTC1/ LLWU_P6/ RTC_CLKIN PTB19 PTC3/ LLWU_P7 C PTA3 PTB18 PTB17 PTC0 D VDD PTA2 PTB16 PTB2 PTB3 E VSSA VDDA PTA5 PTB1 PTB0/ LLWU_P5 PTA20 F PTE22 VREFL VREFH PTA4 PTA13 VDD PTA19 G PTE29 PTE30 PTE31 PTE24 PTE25 PTA12 VSS PTA18 H 1 2 3 4 5 6 7 8 Figure 6. 64 MAPBGA Pinout diagram 4.6 K32 L2B QFN Pinouts The figure below shows the 32 QFN pinouts. K32 L2B Microcontroller, Rev. 3, 09/2020 45 NXP Semiconductors PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 32 31 30 29 28 27 26 25 Pinouts 21 PTB1 VOUT33 5 20 PTB0/LLWU_P5 VREGIN 6 19 PTA20 VDDA 7 18 PTA19 VSSA 8 17 PTA18 PTA0 PTE30 16 4 VSS USB0_DM 15 PTC1/LLWU_P6/RTC_CLKIN VDD 22 14 3 PTA4 USB0_DP 13 PTC2 PTA3 23 12 2 PTA2 VSS 11 PTC3/LLWU_P7 PTA1 24 10 1 9 PTE0 Figure 7. 32 QFN Pinout diagram (transparent top view) The figure below shows the 48 QFN pinouts. 46 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTD3 PTD2 PTD1 PTD0 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 48 47 46 45 44 43 42 41 40 39 38 37 Pinouts VDD 1 36 PTC3/LLWU_P7 VSS 2 35 PTC2 USB0_DP 3 34 PTC1/LLWU_P6/RTC_CLKIN USB0_DM 4 33 PTC0 VOUT33 5 32 PTB17 VREGIN 6 31 PTB16 PTE20 7 30 PTB3 PTE21 8 29 PTB2 VDDA 18 19 20 21 22 23 24 PTA2 PTA3 PTA4 VDD VSS PTA18 PTA19 PTA1 25 17 12 PTA0 VSSA 16 PTA20 PTE25 26 15 PTB0/LLWU_P5 PTE24 27 11 14 10 VREFL PTE30 PTB1 13 28 PTE29 9 VREFH Figure 8. 48 QFN Pinout diagram (transparent top view) 4.7 Package dimensions The following figures show the dimensions of the package options for the devices supported by this document. K32 L2B Microcontroller, Rev. 3, 09/2020 47 NXP Semiconductors Pinouts Figure 9. 64-pin LQFP package dimensions 1 48 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Pinouts 8 (0.22) B BASE METAL B 0.20 0.09 0.16 0.09 8 60X 0.5 0.23 0.17 0.25 X X=A, B OR D 8 PLATING 8 SECTION B-B DETAIL Y (0.2) 0° MIN 1.45 1.35 0.05 2X R0.2 0.1 0.25 GAUGE PLANE 0.15 0.05 (1.00) (0.5) 0.75 0.45 7° 0° DETAIL AA NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. 3. DATUMS A, B AND D TO BE DETERMINDE AT DATUM PLANE H. 4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C. 5. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 MM AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 MM. 6. THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH. 7. EXACT SHAPE OF EACH CORNER IS OPTIONAL. 8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 MM AND 0.25 MM FROM THE LEAD TIP. Figure 10. 64-pin LQFP package dimensions 2 K32 L2B Microcontroller, Rev. 3, 09/2020 49 NXP Semiconductors Pinouts 5 A1 INDEX AREA B 64X C 0.08 A D 5 A // 0.2 A SEATING PLANE 4 5 0.15 4X TOP VIEW D 0.25 7X 0.5 H G F E D C B A 7X 0.5 0.25 1 2 3 4 5 6 7 8 64X 0.25 0.15 Ø 0.35 0.25 3 Ø0.15 M A B C Ø0.05 M A 1.23 MAX A1 INDEX AREA BOTTOM VIEW VIEW D-D NOTES: 1. ALL DIMENSIONS IN MILLIMETERS. 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. 3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A. 4. DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE. Figure 11. 64-pin MAPBGA package dimension 50 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Pinouts Figure 12. 48-pin QFN package dimension 1 K32 L2B Microcontroller, Rev. 3, 09/2020 51 NXP Semiconductors Pinouts 45° 0.25 (0.05) 0.95 1.13 DETAIL F // 0.1 C 48X 0.65 0.50 0.08 C 0.05 0.00 (0.2) 4 C SEATING PLANE (0.5) DETAIL G VIEW ROTATED 90℃W NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. 3. THIS IS A NON-JEDEC REGISTERED PACKAGE. 4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG. 5. MIN. METAL GAP SHOULD BE 0.2 MM. Figure 13. 48-pin QFN package dimension 2 52 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Pinouts Figure 14. 32-pin QFN package dimension 1 K32 L2B Microcontroller, Rev. 3, 09/2020 53 NXP Semiconductors Electrical characteristics // 0.1 C 32X 0.65 0.50 0.05 0.00 0.08 C (0.2) C SEATING PLANE (0.5) DETAIL G VIEW ROTATED 90℃W NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. 3. THIS IS A NON-JEDEC REGISTERED PACKAGE. 4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG. 5. MIN. METAL GAP SHOULD BE 0.2 MM. Figure 15. 32-pin QFN package dimension 2 5 Electrical characteristics 5.1 Ratings 54 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics 5.1.1 Thermal handling ratings Table 32. Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 5.1.2 Moisture handling ratings Table 33. Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 5.1.3 ESD handling ratings Table 34. ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model –2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model –500 +500 V 2 Latch-up current at ambient temperature of 105 °C –100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 5.1.4 Voltage and current operating ratings Table 35. Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 120 mA Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 55 NXP Semiconductors Electrical characteristics Table 35. Voltage and current operating ratings (continued) Symbol VIO ID Description Min. Max. Unit IO pin input voltage –0.3 VDD + 0.3 V Instantaneous maximum current single pin limit (applies to all port pins) –25 25 mA VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V VUSB_DP USB_DP input voltage –0.3 3.63 V VUSB_DM USB_DM input voltage –0.3 3.63 V USB regulator input –0.3 6.0 V VREGIN 5.2 General 5.2.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. VIH Input Signal Low High 80% 50% 20% Midpoint1 Fall Time VIL Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 16. Input signal measurement reference All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics. • CL=30 pF loads • Slew rate disabled • Normal drive strength 5.2.2 Nonswitching electrical specifications 56 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics 5.2.2.1 Voltage and current operating requirements Table 36. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V -3 — mA -25 — mA VIH VIL Input high voltage Input low voltage VHYS Input hysteresis IICIO IO pin negative DC injection current — single pin 1 • VIN < VSS-0.3V IICcont Notes Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins • Negative current injection VODPU Open drain pullup voltage level VDD VDD V VRAM VDD voltage required to retain RAM 1.2 — V 2 1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|. 2. Open drain outputs must be pulled to VDD. 5.2.2.2 Symbol LVD and POR operating requirements Table 37. VDD supply LVD and POR operating requirements Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV = 01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range VLVW1H • Level 1 falling (LVWV = 00) VLVW2H • Level 2 falling (LVWV = 01) VLVW3H Notes 1 2.62 2.70 2.78 V 2.72 2.80 2.88 V 2.82 2.90 2.98 V Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 57 NXP Semiconductors Electrical characteristics Table 37. VDD supply LVD and POR operating requirements (continued) Symbol VLVW4H Description • Level 3 falling (LVWV = 10) Min. Typ. Max. Unit 2.92 3.00 3.08 V — ±60 — mV 1.54 1.60 1.66 V Notes • Level 4 falling (LVWV = 11) VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range VLVW1L • Level 1 falling (LVWV = 00) VLVW2L • Level 2 falling (LVWV = 01) VLVW3L • Level 3 falling (LVWV = 10) VLVW4L • Level 4 falling (LVWV = 11) VHYSL Low-voltage inhibit reset/recover hysteresis — low range 1 1.74 1.80 1.86 V 1.84 1.90 1.96 V 1.94 2.00 2.06 V 2.04 2.10 2.16 V — ±40 — mV VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low-power oscillator period — factory trimmed 900 1000 1100 μs 1. Rising thresholds are falling threshold + hysteresis voltage 5.2.2.3 Symbol VOH VOH Voltage and current operating behaviors Table 38. Voltage and current operating behaviors Description Min. VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = –1.5 mA VDD – 0.5 — V Output high voltage — high drive pad 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOH = –18 mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = –6 mA VDD – 0.5 — V — 100 mA — 0.5 V — 0.5 V VOL Output low voltage — normal drive pad • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA Output low voltage — high drive pad 1 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 18 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 6 mA — 0.5 V — 100 mA Output low current total for all ports Notes 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA Output high current total for all ports IOLT Unit Output high voltage — normal drive pad IOHT VOL Max. Table continues on the next page... 58 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics Table 38. Voltage and current operating behaviors (continued) Symbol Description Min. Max. Unit Notes IIN Input leakage current (per pin) for full temperature range — 1 μA 2 IIN Input leakage current (per pin) at 25 °C — 0.025 μA 2 IIN Input leakage current (total all pins) for full temperature range — 64 μA 2 IOZ Hi-Z (off-state) leakage current (per pin) — 1 μA RPU Internal pullup resistors 20 50 kΩ 3 1. PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. 2. Measured at VDD = 3.6 V 3. Measured at VDD supply voltage = VDD min and Vinput = VSS 5.2.2.4 Power mode transition operating behaviors All specifications except tPOR and VLLSx→RUN recovery times in the following table assume this clock configuration: • CPU and system clocks = 48 MHz • Bus and flash clock = 24 MHz • HIRC clock mode Table 39. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip. Min. Typ. Max. Unit Notes — — 300 μs 1 — 152 166 μs — 152 166 μs — 93 104 μs — 7.5 8 μs — 7.5 8 μs — 7.5 8 μs • VLLS0 → RUN • VLLS1 → RUN • VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN 1. Normal boot (FTFA_FOPT[LPBOOT]=11) K32 L2B Microcontroller, Rev. 3, 09/2020 59 NXP Semiconductors Electrical characteristics 5.2.2.5 Power consumption operating behaviors The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma). NOTE The while (1) test is executed with flash cache enabled. Table 40. Power consumption operating behaviors Symbol IDDA Description Analog supply current IDD_RUNCO Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUNCO Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C Min. Typ. Max. Unit Notes — — See note mA 1 2 — 5.76 6.40 — 6.04 6.68 — 3.21 3.85 — 3.49 4.13 mA mA 2 — 6.45 7.09 — 6.75 7.39 mA 2 — 3.95 4.59 — 4.23 4.87 mA 2 — 2.68 3.32 — 2.96 3.60 mA 2 — 8.08 8.72 — 8.39 9.03 mA Table continues on the next page... 60 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics Table 40. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit IDD_RUN Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, VDD = 3.0 V • at 25 °C — 3.90 4.54 mA — 4.21 4.85 — 2.66 3.30 — 2.94 3.58 — 2.03 2.67 — 2.31 2.95 — 5.52 6.16 — 5.83 6.47 — 5.29 5.93 — 5.56 6.20 — 6.91 7.55 — 7.19 7.91 IDD_VLPRCO Very Low Power Run Core Mark in Flash in Compute Operation mode: Core@4 MHz, Flash @1 MHz, VDD = 3.0 V • at 25 °C — 826 907 μA IDD_VLPRCO Very-low-power-run While(1) loop in SRAM in compute operation mode— 8 MHz LIRC mode, 4 MHz core / 1 MHz flash, VDD = 3.0 V • at 25 °C — 405 486 μA IDD_VLPRCO Very-low-power run While(1) loop in SRAM in compute operation mode:—2 MHz LIRC mode, 2 MHz core / 0.5 MHz flash, VDD = 3.0 V • at 25 °C — 154 235 μA • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C Notes mA mA mA mA mA Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 61 NXP Semiconductors Electrical characteristics Table 40. Power consumption operating behaviors (continued) Symbol Description IDD_VLPR Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 2 MHz core / 0.5 MHz flash, VDD = 3.0 V • at 25 °C IDD_VLPR IDD_VLPR IDD_VLPR IDD_VLPR IDD_VLPR IDD_VLPR IDD_VLPR IDD_VLPR IDD_WAIT IDD_WAIT Min. Typ. Max. Unit — 108 189 μA — 39 120 μA Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 4 MHz core / 1 MHz flash, VDD = 3.0 V • at 25 °C — 249 330 μA Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock enable, 4 MHz core / 1 MHz flash, VDD = 3.0 V • at 25 °C — 337 418 μA — 416 497 μA — 494 575 μA — 166 247 μA — 50 131 μA Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 2 MHz core / 0.5 MHz flash, VDD = 3.0 V • at 25 °C — 208 289 μA Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, VDD = 3.0 V — 1.81 1.89 mA Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, VDD = 3.0 V — 1.22 1.39 mA Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 125 kHz core / 31.25 kHz flash, VDD = 3.0 V • at 25 °C Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 4 MHz core / 1 MHz flash, VDD = 3.0 V • at 25 °C Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 4 MHz core / 1 MHz flash, VDD = 3.0 V • at 25 °C Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 2 MHz core / 0.5 MHz flash, VDD = 3.0 V • at 25 °C Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock disable, 125 kHz core / 31.25 kHz flash, VDD = 3.0 V • at 25 °C Notes Table continues on the next page... 62 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics Table 40. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit IDD_VLPW Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, VDD = 3.0 V — 172 182 μA IDD_VLPW Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, VDD = 3.0 V — 69 76 μA IDD_VLPW Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, VDD = 3.0 V — 36 40 μA — 1.81 2.06 mA — 1.00 1.25 mA — 161.93 171.82 — 181.45 191.96 — 236.29 271.17 — 390.33 465.58 — 3.31 5.14 — 10.43 17.68 — 34.14 61.06 — 104.38 164.44 — 3.21 5.22 — 10.26 17.62 — 33.49 60.19 — 102.92 162.20 — 2.06 3.33 — 4.72 6.85 — 8.13 13.30 — 13.34 24.70 — 41.08 52.43 — 2.46 3.73 Notes IDD_PSTOP2 Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, VDD = 3.0 V IDD_PSTOP2 Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, VDD = 3.0 V IDD_STOP Stop mode current at 3.0 V • at 25 °C and below • at 50 °C • at 85 °C • at 105 °C IDD_VLPS Very-low-power stop mode current at 3.0 V • at 25 °C and below • at 50 °C • at 85 °C • at 105 °C IDD_VLPS Very-low-power stop mode current at 1.8 V • at 25 °C and below • at 50 °C • at 85 °C • at 105 °C IDD_LLS Low-leakage stop mode current, all peripheral disable, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_LLS Low-leakage stop mode current with RTC current, at 3.0 V μA μA μA μA μA Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 63 NXP Semiconductors Electrical characteristics Table 40. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. • at 25 °C and below — 5.12 7.25 • at 50 °C — 8.53 11.78 • at 70 °C — 13.74 18.91 • at 85 °C — 41.48 52.83 Unit Notes • at 105 °C IDD_LLS Low-leakage stop mode current with RTC current, at 1.8 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS3 Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC current, at 1.8 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS1 Very-low-leakage stop mode 1 current all peripheral disabled at 3.0 V • at 25 °C and below • at 50°C • at 70°C 3 — 2.35 2.70 — 4.91 6.75 — 8.32 11.78 — 13.44 18.21 — 40.47 51.85 — 1.45 1.85 — 3.37 4.39 — 5.76 8.48 — 9.72 14.30 — 30.41 37.50 μA μA 3 — 2.05 2.45 — 3.97 4.99 — 6.36 9.08 — 10.32 14.73 — 31.01 38.10 μA 3 — 1.96 2.36 — 3.86 5.67 — 6.23 8.53 — 10.21 13.37 — 30.25 37.02 — 0.66 0.80 — 1.78 3.87 — 2.55 4.26 μA μA Table continues on the next page... 64 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics Table 40. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. • at 85°C — 4.83 6.64 • at 105 °C — 16.42 20.49 IDD_VLLS1 Very-low-leakage stop mode 1 current RTC enabled at 3.0 V • at 25 °C and below • at 50°C • at 70°C • at 85°C • at 105 °C IDD_VLLS1 Very-low-leakage stop mode 1 current RTC enabled at 1.8 V • at 25 °C and below — 1.26 1.40 — 2.38 4.47 — 3.15 4.86 — 5.43 7.24 — 17.02 21.09 1.30 — 1.96 2.28 — 2.78 3.37 — 4.85 6.88 — 15.78 18.81 — 0.35 0.47 • at 50 °C — 1.25 1.44 • at 70 °C — 2.53 3.24 • at 85 °C — 4.40 5.24 • at 105 °C — 16.09 19.29 — 0.18 0.28 • at 50 °C — 1.09 1.31 • at 70 °C — 2.25 2.94 • at 85 °C — 4.25 5.10 • at 105 °C — 15.95 19.10 • at 85°C • at 105 °C IDD_VLLS0 Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO] = 0) at 3.0 V • at 25 °C and below IDD_VLLS0 Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO] = 1) at 3 V • at 25 °C and below μA 3 1.16 • at 70°C Notes 3 — • at 50°C Unit μA μA μA 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced. 3. RTC uses external 32 kHz crystal as clock source, and the current includes ERCLK32K power consumption. K32 L2B Microcontroller, Rev. 3, 09/2020 65 NXP Semiconductors Electrical characteristics Table 41. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 IIRC8MHz 8 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 8 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b. 93 93 93 93 93 93 µA IIRC2MHz 2 MHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 2 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b. 29 29 29 29 29 29 µA IEREFSTEN4MHz External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled. 206 224 230 238 245 253 µA IEREFSTEN32KHz External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled. • VLLS1 440 490 540 560 570 580 440 490 540 560 570 580 490 490 540 560 570 680 510 560 560 560 610 680 510 560 560 560 610 680 30 30 30 85 100 200 • VLLS3 • LLS • VLPS • STOP ILPTMR nA LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO. nA ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. IUART UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. • IRC8M (8 MHz internal reference clock) • IRC2M (2 MHz internal reference clock) 22 22 22 22 22 22 µA 114 114 114 114 114 114 µA 34 34 34 34 34 34 Table continues on the next page... 66 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics Table 41. Low power mode peripheral adders — typical value (continued) Symbol ITPM Description TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. • IRC8M (8 MHz internal reference clock) • IRC2M (2 MHz internal reference clock) Temperature (°C) Unit -40 25 50 70 85 105 147 147 147 147 147 147 42 42 42 42 42 42 µA IBG Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode. 45 45 45 45 45 45 µA IADC ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions. 330 330 330 330 330 330 µA ILCD LCD peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the OSC0_CR[EREFSTEN, EREFSTEN] bits. VIREG disabled, resistor bias network enabled, 1/8 duty cycle, 8 x 36 configuration for driving 288 Segments, 32 Hz frame rate, no LCD glass connected. Includes ERCLK32K (32 kHz external crystal) power consumption. 4.5 4.5 4.5 4.5 4.5 4.5 µA 5.2.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • • • • • MCG-Lite in HIRC for run mode, and LIRC for VLPR mode USB regulator disabled No GPIOs toggled Code execution from flash For the ALLOFF curve, all peripheral clocks are disabled except FTFA K32 L2B Microcontroller, Rev. 3, 09/2020 67 NXP Semiconductors Electrical characteristics Figure 17. Run mode supply current vs. core frequency 68 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics K32 L2B Microcontroller, Rev. 3, 09/2020 69 NXP Semiconductors Current ionon onVDD VDD (A) CurrentC Consumpt onsumption (A) Electrical characteristics Figure 18. VLPR mode current vs. core frequency 5.2.2.6 EMC performance Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components, and MCU software operation play a significant role in the EMC performance. The system designer can consult the following NXP applications notes, available on nxp.com for advice and guidance specifically targeted at optimizing EMC performance. • AN2321: Designing for Board Level Electromagnetic Compatibility • AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers • AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers 70 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics • AN2764: Improving the Transient Immunity Performance of MicrocontrollerBased Applications • AN1259: System Design and Layout Techniques for Noise Reduction in MCUBased Systems 5.2.2.7 Symbol CIN Capacitance attributes Table 42. Capacitance attributes Description Input capacitance Min. Max. Unit — 7 pF Min. Max. Unit 5.2.3 Switching specifications 5.2.3.1 Symbol Device clock specifications Table 43. Device clock specifications Description Normal run mode fSYS System and core clock1 — 48 MHz fBUS Bus clock1 — 24 MHz — 24 MHz System and core clock when Full Speed USB in operation 20 — MHz LPTMR clock — 24 MHz fFLASH fSYS_USB fLPTMR Flash clock1 VLPR and VLPS modes2 fSYS System and core clock — 4 MHz fBUS Bus clock — 1 MHz fFLASH Flash clock — 1 MHz fLPTMR LPTMR clock3 — 24 MHz — 16 MHz Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) — 16 MHz TPM asynchronous clock — 8 MHz LPUART0/1 asynchronous clock — 8 MHz fLPTMR_ERCLK LPTMR external reference clock fosc_hi_2 fTPM fLPUART0/1 1. The maximum value of system clock, core clock, bus clock, and flash clock under normal run mode can be 3% higher than the specified maximum frequency when IRC 48 MHz is used as the clock source. 2. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR. 3. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin. K32 L2B Microcontroller, Rev. 3, 09/2020 71 NXP Semiconductors Electrical characteristics 5.2.3.2 General switching specifications These general-purpose specifications apply to all signals configured for GPIO and UART signals. Table 44. General switching specifications Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1 External RESET and NMI pin interrupt pulse width — Asynchronous path 100 — ns 2 GPIO pin interrupt pulse width — Asynchronous path 16 — ns 2 Port rise and fall time — 36 ns 3 1. The synchronous and asynchronous timing must be met. 2. This is the shortest pulse that is guaranteed to be recognized. 3. 75 pF load 5.2.4 Thermal specifications 5.2.4.1 Symbol Thermal operating requirements Table 45. Thermal operating requirements Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C Notes 1 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to determine TJ is: TJ = TA + RθJA × chip power dissipation. 5.2.4.2 Thermal attributes Table 46. Thermal attributes Board type Symbol Single-layer (1S) RθJA Four-layer (2s2p) RθJA Description 48 QFN 32 QFN 64 LQFP 64 MAPBG A Unit Notes Thermal resistance, junction to ambient (natural convection) 86 101 70 50.3 °C/W 1 Thermal resistance, junction to ambient (natural convection) 29 33 51 42.9 °C/W Table continues on the next page... 72 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics Table 46. Thermal attributes (continued) Board type Symbol Single-layer (1S) RθJMA Four-layer (2s2p) Description 48 QFN 32 QFN 64 LQFP 64 MAPBG A Unit Notes Thermal resistance, junction to ambient (200 ft./min. air speed) 71 84 58 41.4 °C/W RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 24 28 45 38.0 °C/W — RθJB Thermal resistance, junction to board 12 13 33 39.6 °C/W 2 — RθJC Thermal resistance, junction to case 1.7 1.7 20 27.3 °C/W 3 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) 2 3 4 0.4 °C/W 4 — ΨJB Thermal characterization parameter, junction to package bottom (natural convection) - - - 12.6 °C/W 5 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 5. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB. 5.3 Peripheral operating requirements and behaviors 5.3.1 Core modules 5.3.1.1 Symbol SWD electricals Table 47. SWD full voltage range electricals Description Min. Max. Unit Operating voltage 1.71 3.6 V Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 73 NXP Semiconductors Electrical characteristics Table 47. SWD full voltage range electricals (continued) Symbol J1 Description Min. Max. Unit 0 25 MHz 1/J1 — ns 20 — ns SWD_CLK frequency of operation • Serial wire debug J2 SWD_CLK cycle period J3 SWD_CLK clock pulse width • Serial wire debug J4 SWD_CLK rise and fall times — 3 ns J9 SWD_DIO input data setup time to SWD_CLK rise 10 — ns J10 SWD_DIO input data hold time after SWD_CLK rise 0 — ns J11 SWD_CLK high to SWD_DIO data valid — 32 ns J12 SWD_CLK high to SWD_DIO high-Z 5 — ns J2 J3 J3 SWD_CLK (input) J4 J4 Figure 19. Serial wire clock input timing SWD_CLK J9 SWD_DIO J10 Input data valid J11 SWD_DIO Output data valid J12 SWD_DIO J11 SWD_DIO Output data valid Figure 20. Serial wire data timing 74 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics 5.3.2 System modules There are no specifications necessary for the device's system modules. 5.3.3 Clock modules 5.3.3.1 MCG-Lite specifications Table 48. IRC48M specification Symbol Description Min. Typ. Max. Unit Notes IDD Supply current — 400 500 µA — fIRC Output frequency — 48 — MHz — Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature — ± 0.5 ± 1.5 %firc48m Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature — ± 0.5 ± 1.0 %firc48m Tj Period jitter (RMS) — 35 150 ps — Tsu Startup time — 2 3 µs — 1 1 1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard deviation (mean +/-3sigma). Table 49. IRC8M/2M specification Symbol Description Min. Typ. Max. Unit Notes IDD_2M Supply current in 2 MHz mode — 14 17 µA — IDD_8M Supply current in 8 MHz mode — 30 35 µA — fIRC_2M Output frequency — 2 — MHz — fIRC_8M Output frequency — 8 — MHz — fIRC_T_2M Output frequency range (trimmed) — — ±3 %fIRC — fIRC_T_8M Output frequency range (trimmed) — — ±3 %fIRC — Tsu_2M Startup time — — 12.5 µs — Tsu_8M Startup time — — 12.5 µs — K32 L2B Microcontroller, Rev. 3, 09/2020 75 NXP Semiconductors Electrical characteristics Figure 21. IRC8M Frequency Drift vs Temperature curve 5.3.3.2 5.3.3.2.1 Oscillator electrical specifications Oscillator DC electrical specifications Table 50. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA — 1.2 — mA Table continues on the next page... 76 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics Table 50. Oscillator DC electrical specifications (continued) Symbol Description • 24 MHz Min. Typ. Max. Unit — 1.5 — mA Notes • 32 MHz IDDOSC Supply current — high gain mode (HGO=1) 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — Cy XTAL load capacitance — — — RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V RS 2, 3 2, 3 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) 5 Vpp 1. VDD=3.3 V, Temperature =25 °C 2. See crystal or resonator manufacturer's recommendation K32 L2B Microcontroller, Rev. 3, 09/2020 77 NXP Semiconductors Electrical characteristics 3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used. 4. When low power mode is selected, RF is integrated and must not be attached externally. 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 5.3.3.2.2 Symbol Oscillator frequency specifications Table 51. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — highfrequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 48 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1, 2 3, 4 1. Other frequency limits may apply when external clock is being used as a reference for the FLL 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 3. Proper PC board layout procedures must be followed to achieve specifications. 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. 5.3.4 Memories and memory interfaces 5.3.4.1 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 78 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics 5.3.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 52. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit Notes thvpgm4 Longword Program high-voltage time — 7.5 18 μs — thversscr Sector Erase high-voltage time — 13 113 ms 1 — 52 452 ms 1 Unit Notes thversblk128k Erase Block high-voltage time for 128 KB 1. Maximum time based on expectations at cycling end-of-life. 5.3.4.1.2 Symbol Flash timing specifications — commands Table 53. Flash command timing specifications Description Min. Typ. Max. Read 1s Block execution time trd1blk128k 1 • 128 KB program flash — — 1.7 ms trd1sec1k Read 1s Section execution time (flash sector) — — 60 μs 1 tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs — Erase Flash Block execution time tersblk128k • 128 KB program flash 2 — 88 600 ms tersscr Erase Flash Sector execution time — 14 114 ms 2 trd1all Read 1s All Blocks execution time — — 1.8 ms 1 trdonce Read Once execution time — — 25 μs 1 tpgmonce Program Once execution time — 65 — μs — tersall Erase All Blocks execution time — 175 1300 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 tersallu Erase All Blocks Unsecure execution time — 175 1300 ms 2 1. Assumes 25 MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 5.3.4.1.3 Flash high voltage current behaviors Table 54. Flash high voltage current behaviors Symbol Description IDD_PGM Average current adder during high voltage flash programming operation Min. Typ. Max. Unit — 2.5 6.0 mA Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 79 NXP Semiconductors Electrical characteristics Table 54. Flash high voltage current behaviors (continued) Symbol Description IDD_ERS Average current adder during high voltage flash erase operation 5.3.4.1.4 Symbol Min. Typ. Max. Unit — 1.5 4.0 mA Reliability specifications Table 55. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years — tnvmretp1k Data retention after up to 1 K cycles 20 100 — years — nnvmcycp Cycling endurance 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C. 5.3.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 5.3.6 Analog 5.3.6.1 ADC electrical specifications Using differential inputs can achieve better system accuracy than using single-end inputs. 5.3.6.1.1 16-bit ADC operating conditions Table 56. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit Notes VDDA Supply voltage Absolute 1.71 — 3.6 V — ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V 3 Table continues on the next page... 80 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics Table 56. 16-bit ADC operating conditions (continued) Symbol Description VREFL ADC reference voltage low VADIN Input voltage CADIN RADIN RAS Input capacitance Min. Typ.1 Max. Unit Notes VSSA VSSA VSSA V 3 • 16-bit differential mode VREFL — 31/32 × VREFH V — • All other modes VREFL — • 16-bit mode — 8 10 pF — • 8-bit / 10-bit / 12-bit modes — 4 5 — 2 5 kΩ — Conditions Input series resistance VREFH Analog source resistance (external) 13-bit / 12-bit modes fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion clock frequency ≤ 13-bit mode 1.0 — 24 MHz 5 fADCK ADC conversion clock frequency 16-bit mode 2.0 — 12.0 MHz 5 Crate ADC conversion rate ≤ 13-bit modes No ADC hardware averaging 4 6 20.000 — 1200 ksps Continuous conversions enabled, subsequent conversion time Crate ADC conversion rate 16-bit mode No ADC hardware averaging 6 37.037 — 461.467 ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. VREFH can act as VREF_OUT when VREFV1 module is enabled. 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns. 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. K32 L2B Microcontroller, Rev. 3, 09/2020 81 NXP Semiconductors Electrical characteristics SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage ZAS RAS ADC SAR ENGINE RADIN VADIN CAS VAS RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 22. ADC input impedance equivalency diagram 5.3.6.1.2 16-bit ADC electrical characteristics Table 57. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 IDDA_ADC Supply current ADC asynchronous clock source fADACK Sample Time TUE DNL INL See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 • 3.6 V 3 3.3 3.6 V 2.1 2.8 3.6 V Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode 2.1 — 3.6 V COUT External output capacitor 1.76 2.2 8.16 μF ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Short circuit current — 290 — mA • Run mode • Standby mode VReg33out Notes 2 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated. 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. 92 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics 5.5.3 SPI switching specifications The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins. Table 66. SPI master mode timing on slew rate disabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 Description Min. Max. Unit Note fperiph/2048 fperiph/2 Hz 1 2 x tperiph 2048 x tperiph ns 2 Enable lead time 1/2 — tSPSCK — Enable lag time 1/2 — tSPSCK — tperiph - 30 1024 x tperiph ns — Data setup time (inputs) 18 — ns — tHI Data hold time (inputs) 0 — ns — 8 tv Data valid (after SPSCK edge) — 15 ns — 9 tHO Data hold time (outputs) 0 — ns — 10 tRI Rise time input — tperiph - 25 ns — tFI Fall time input 11 tRO Rise time output — 25 ns — tFO Fall time output Frequency of operation SPSCK period Clock (SPSCK) high or low time 1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). 2. tperiph = 1/fperiph Table 67. SPI master mode timing on slew rate enabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 tHI Description Min. Max. Unit Note fperiph/2048 fperiph/2 Hz 1 2 x tperiph 2048 x tperiph ns 2 Enable lead time 1/2 — tSPSCK — Enable lag time 1/2 — tSPSCK — tperiph - 30 1024 x tperiph ns — Data setup time (inputs) 96 — ns — Data hold time (inputs) 0 — ns — Frequency of operation SPSCK period Clock (SPSCK) high or low time Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 93 NXP Semiconductors Electrical characteristics Table 67. SPI master mode timing on slew rate enabled pads (continued) Num. Symbol 8 tv 9 Description Min. Max. Unit Note Data valid (after SPSCK edge) — 52 ns — tHO Data hold time (outputs) 0 — ns — 10 tRI Rise time input — tperiph - 25 ns — tFI Fall time input 11 tRO Rise time output — 36 ns — tFO Fall time output 1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). 2. tperiph = 1/fperiph SS1 (OUTPUT) 3 2 SPSCK (CPOL=0) (OUTPUT) 11 10 11 6 7 MSB IN2 BIT 6 . . . 1 LSB IN 8 MOSI (OUTPUT) 4 5 SPSCK (CPOL=1) (OUTPUT) MISO (INPUT) 10 5 MSB OUT2 BIT 6 . . . 1 9 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 29. SPI master mode timing (CPHA = 0) 94 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics SS1 (OUTPUT) 2 3 SPSCK (CPOL=0) (OUTPUT) 5 SPSCK (CPOL=1) (OUTPUT) 5 6 MISO (INPUT) 11 10 11 4 7 MSB IN2 BIT 6 . . . 1 LSB IN 9 8 MOSI (OUTPUT) 10 PORT DATA MASTER MSB OUT2 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 30. SPI master mode timing (CPHA = 1) Table 68. SPI slave mode timing on slew rate disabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 Enable lead time 1 — tperiph — Enable lag time 1 — tperiph — tperiph - 30 — ns — Data setup time (inputs) 2.5 — ns — tHI Data hold time (inputs) 3.5 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 31 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 25 ns — tFO Fall time output 13 1. 2. 3. 4. 38 Description Frequency of operation SPSCK period Clock (SPSCK) high or low time For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state K32 L2B Microcontroller, Rev. 3, 09/2020 95 NXP Semiconductors Electrical characteristics Table 69. SPI slave mode timing on slew rate enabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead Enable lead time 4 tLag Enable lag time 5 tWSPSCK 6 tSU 7 Frequency of operation SPSCK period Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 1 — tperiph — 1 — tperiph — tperiph - 30 — ns — Data setup time (inputs) 2 — ns — tHI Data hold time (inputs) 7 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 122 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 36 ns — tFO Fall time output 13 1. 2. 3. 4. Description Clock (SPSCK) high or low time For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state SS (INPUT) 2 12 13 12 13 4 SPSCK (CPOL=0) (INPUT) 5 3 SPSCK (CPOL=1) (INPUT) 5 9 8 MISO (OUTPUT) see note SLAVE MSB 6 MOSI (INPUT) 10 11 11 BIT 6 . . . 1 SLAVE LSB OUT SEE NOTE 7 MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined Figure 31. SPI slave mode timing (CPHA = 0) 96 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics SS (INPUT) 4 2 3 SPSCK (CPOL=0) (INPUT) 5 SPSCK (CPOL=1) (INPUT) 5 see note SLAVE 8 MSB OUT 6 MOSI (INPUT) 13 12 13 11 10 MISO (OUTPUT) 12 9 BIT 6 . . . 1 SLAVE LSB OUT BIT 6 . . . 1 LSB IN 7 MSB IN NOTE: Not defined Figure 32. SPI slave mode timing (CPHA = 1) 5.5.4 I2C 5.5.4.1 Inter-Integrated Circuit Interface (I2C) timing Table 70. I2C timing Characteristic Symbol Standard Mode Fast Mode Minimum Maximum Minimum Maximum Unit SCL Clock Frequency fSCL 0 100 0 4001 kHz Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 4 — 0.6 — µs LOW period of the SCL clock tLOW 4.7 — 1.25 — µs HIGH period of the SCL clock tHIGH 4 — 0.6 — µs Set-up time for a repeated START condition tSU; STA 4.7 — 0.6 — µs Data hold time for I2C bus devices tHD; DAT 02 3.453 04 0.92 µs tSU; DAT 2505 — 1003, 6 Data set-up time Rise time of SDA and SCL signals tr — 1000 — ns 7 300 ns 6 20 +0.1Cb Fall time of SDA and SCL signals tf — 300 20 +0.1Cb 300 ns Set-up time for STOP condition tSU; STO 4 — 0.6 — µs Bus free time between STOP and START condition tBUF 4.7 — 1.3 — µs Pulse width of spikes that must be suppressed by the input filter tSP N/A N/A 0 50 ns K32 L2B Microcontroller, Rev. 3, 09/2020 97 NXP Semiconductors Electrical characteristics 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the high drive pins across the full voltage range and when using the normal drive pins and VDD ≥ 2.7 V. 2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines. 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal. 4. Input signal Slew = 10 ns and Output Load = 50 pF 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty. 6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; 2 DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification) before the SCL line is released. 7. Cb = total capacitance of the one bus line in pF. Table 71. I 2C 1Mbit/s timing Characteristic Symbol Minimum Maximum Unit MHz  µs SCL Clock Frequency fSCL 0 11 Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 0.26 — LOW period of the SCL clock tLOW 0.5 — HIGH period of the SCL clock tHIGH 0.26 — µs Set-up time for a repeated START condition tSU; STA 0.26 — µs tHD; DAT 0 — µs Data set-up time tSU; DAT 50 — ns Rise time of SDA and SCL signals tr 20 +0.1Cb 120 ns Fall time of SDA and SCL signals tf 20 +0.1Cb2 120 ns Set-up time for STOP condition tSU; STO 0.26 — µs Bus free time between STOP and START condition tBUF 0.5 — µs Pulse width of spikes that must be suppressed by the input filter tSP 0 50 ns Data hold time for I2C bus devices  µs 1. The maximum SCL clock frequency of 1 Mbit/s can support maximum bus loading when using the high drive pins across the full voltage range. 2. Cb = total capacitance of the one bus line in pF. SDA tf tLOW tSU; DAT tr tf tHD; STA tSP tr tBUF SCL S HD; STA tHD; DAT tHIGH tSU; STA SR tSU; STO P S Figure 33. Timing definition for devices on the I2C bus 98 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Electrical characteristics 5.5.5 UART See General switching specifications. 5.6 Human-machine interfaces (HMI) 5.6.1 LCD electrical characteristics Table 72. LCD electricals Symbol fFrame Description Min. Typ. Max. Unit • GCR[FFR]=0 23.3 — 73.1 Hz • GCR[FFR]=1 46.6 — 146.2 Hz Notes LCD frame frequency CLCD LCD charge pump capacitance — nominal value — 100 — nF CBYLCD LCD bypass capacitance — nominal value — 100 — nF 1 CGlass LCD glass capacitance — 2000 8000 pF 2 VIREG VIREG V 3 • RVTRIM=0000 — 0.91 — • RVTRIM=1000 — 0.92 — • RVTRIM=0100 — 0.93 — • RVTRIM=1100 — 0.94 — • RVTRIM=0010 — 0.96 — • RVTRIM=1010 — 0.97 — • RVTRIM=0110 — 0.98 — • RVTRIM=1110 — 0.99 — • RVTRIM=0001 — 1.01 — • RVTRIM=1001 — 1.02 — • RVTRIM=0101 — 1.03 — • RVTRIM=1101 — 1.05 — • RVTRIM=0011 — 1.06 — • RVTRIM=1011 — 1.07 — • RVTRIM=0111 — 1.08 — • RVTRIM=1111 — 1.09 — ΔRTRIM VIREG TRIM resolution — — 3.0 % VIREG IVIREG VIREG current adder — RVEN = 1 — 1 — µA IRBIAS RBIAS current adder Table continues on the next page... K32 L2B Microcontroller, Rev. 3, 09/2020 99 NXP Semiconductors Design considerations Table 72. LCD electricals (continued) Symbol Description • LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) • LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) RRBIAS Min. Typ. Max. Unit — 10 — µA — 1 — µA — 0.28 — MΩ — 2.98 — MΩ Notes RBIAS resistor values • LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) • LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) VLL1 VLL1 voltage — — VIREG V 4 VLL2 VLL2 voltage — — 2 x VIREG V 4 VLL3 VLL3 voltage — — 3 x VIREG V 4 VLL1 VLL1 voltage — — VDDA / 3 V 5 VLL2 VLL2 voltage — — VDDA / 1.5 V 5 VLL3 VLL3 voltage — — VDDA V 5 1. The actual value used could vary with tolerance. 2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual. 3. VIREG maximum should never be externally driven to any level other than VDD - 0.15 V 4. VLL1, VLL2 and VLL3 are a function of VIREG only when the regulator is enabled (GCR[RVEN]=1) and the charge pump is enabled (GCR[CPSEL]=1). 5. VLL1, VLL2 and VLL3 are a function of VDDA only under either of the following conditions: • The charge pump is enabled (GCR[CPSEL]=1), the regulator is disabled (GCR[RVEN]=0), and VLL3 = VDDA through the internal power switch (GCR[VSUPPLY]=0). • The resistor bias string is enabled (GCR[CPSEL]=0), the regulator is disabled (GCR[RVEN]=0), and VLL3 is connected to VDDA externally (GCR[VSUPPLY]=1). 6 Design considerations 6.1 Hardware design considerations This device contains protective circuitry to guard against damage due to high static voltage or electric fields. However, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. 100 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Design considerations 6.1.1 Printed circuit board recommendations • Place connectors or cables on one edge of the board and do not place digital circuits between connectors. • Drivers and filters for I/O functions must be placed as close to the connectors as possible. Connect TVS devices at the connector to a good ground. Connect filter capacitors at the connector to a good ground. Consider to add ferrite bead or inductor to some sensitive lines. • Physically isolate analog circuits from digital circuits if possible. • Place input filter capacitors as close to the MCU as possible. • For best EMC performance, route signals as transmission lines; use a ground plane directly under LQFP packages; and solder the exposed pad (EP) to ground directly under QFN packages. 6.1.2 Power delivery system Consider the following items in the power delivery system: • Use a plane for ground. • Use a plane for MCU VDD supply if possible. • Always route ground first, as a plane or continuous surface, and never as sequential segments. • Always route the power net as star topology, and make each power trace loop as minimum as possible. • Route power next, as a plane or traces that are parallel to ground traces. • Place bulk capacitance, 10 μF or more, at the entrance of the power plane. • Place bypass capacitors for MCU power domain as close as possible to each VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL. • The minimum bypass requirement is to place 0.1 μF capacitors positioned as near as possible to the package supply pins. • Take special care to minimize noise levels on the VREFH/VREFL inputs. An option is to use the internal reference voltage (output 1.2 V typically) as the ADC reference. NOTE The internally-generated Voltage Reference Output (VREF_OUT) is bonded to the VREFH pin on some packages and to PTE30 on other packages. When VREF_OUT is used, a 0.1 μF capacitor is required as a filter. Do not connect any other supply voltage to the pin that has VREF_OUT activated. K32 L2B Microcontroller, Rev. 3, 09/2020 101 NXP Semiconductors  Design considerations   6.1.3 Analog design Each ADC input must have an RC filter as shown in the following figure. The maximum value of R must be RAS max if fast sampling and high resolution are   required. The value of C must be chosen to ensure that the RC time constant is very small compared to the sample period. MCU 5 Input signal 1 4 2 1 R ADCx 2 C OSCILL MCU EXTAL Figure 34. RC circuit for ADC input  1 CRY 2 1  High voltage measurement circuits require voltage division, current limiting, and overvoltage protection as shown the following figure. The1 voltage divider formed by R1 – 2 ADCx Analog input R4 must yield a voltage less than or equal to VREFH. The current must be limited to R less than the injection current limit. Since the ADC pins do notC have diodes to VDD, external clamp diodes must be included to protect against transient over-voltages. D OSCILL EXTAL 1 2 1 R2 R4 1 2 2 1 ADCx CRY 2 C 2 R3 R5 2 1 RF 1 1 High voltage input 2 1 MCU VDD 3 1 R1 BAT54SW Figure 35. High voltage measurement with an ADC input MCU SWD_DIO SWD_CLK RESET_b RESET_b RESET_b 1 0.1uF 2 HDR_5X2 10k 2 102 NXP Semiconductors 2 2 4 6 8 10 2 0.1uF 1 3 5 7 9 1 1 C 2 1 1 VDD NOTE For more details of ADC related usage, refer to AN5250: VDD How to Increase the Analog-to-Digital Converter Accuracy in 10k VDD an Application. J1 10k K32 L2B Microcontroller, Rev. 3, 09/2020 1 1 R Design considerations ADCx Cx 2 2 1 1 C 2 6.1.4 Digital design OSCILLATOR Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V). EXTAL CAUTION 1 Do not provide power to I/O pins prior to VDD, especiallyRF the RESET_b pin. 1 1 2 1 CRYSTAL The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An 2 C external RC circuit is recommended to filter noise as shown in the following figure. The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the BAT54SW recommended capacitance value is 0.1 μF. The RESET_b pin also has a selectable digital filter to reject spurious noise. 1  RS 1 1 ADCx 3 R4 Cx 2 2 2 1 2 R5 • RESET_b1 pin 2 2 2 2 EXTAL XTAL MCU VDD OSC   VDD HDR_5X2 1 1 2 RESET_b NMI_b 1 RESET_b RESET_b  10k 2 10k SWD_DIO SWD_CLK MCU VDD 0.1uF 2  2 4 6 8 10 1 J1 2 10k 10k Figure 36. Reset circuit  Active high, open drain RS 1  2 1 When an external supervisor chipVDDis connected MCU to the RESET_b pin, a series Supervisor Chip resistor must be used to avoid damaging the supervisor chip or the RESET_b pin, as shown in the following figure. The series resistor value (RS below) must be in 10k the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength. 1 2 Select the open-drain output from the supervisor chip. OUT RESET_b 0.1uF 2 1 3 5 7 9 MCU VDD 1  2 R3 Analog input 1 R2 2 CRYSTAL 2 R1 1    K32 L2B Microcontroller, Rev. 3, 09/2020 103 NXP Semiconductors 2 10k 4 Design considerations OSCILLATOR Supervisor Chip  EXTAL OSCILLATOR VDD EXTAL XTAL MCU XTAL OSCILLATOR EXTAL XTAL 1 U 3 1 CRYSTAL EXTAL 2 EXTAL XTAL OSCILLATOR XTAL 1 2 1 2 reset chip Figure 37. Reset signal connection to external RF RF RS EXTAL XTAL 1 2 RF RS RS If the NMI_b pin is used as an I/O pin, the non-maskable interrupt handler is required to disable the NMI function by remapping to another function. The NMI function is disabled by programming the FOPT[NMI_DIS] bit to zero.   MCU  MCU VDD 1 1 VDD 10k RESET_b NMI_b 1 2  2 10k 2 0.1uF  • Debug interface  Figure 38. NMI pin biasing MCU This MCU uses the standard Arm SWD interface protocol as shown in the following figure. While pull-up or pull-down resistors are not required (SWD_DIO has an internal pull-up and SWD_CLK has an internal pull-down), external 10 kΩ pull resistors are recommended for system robustness. The RESET_b pin RESET_b recommendations mentioned above must also be considered. 1 VDD 1 2 10k 0.1uF 2 2 2 2 2 1 1 2 2 Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low level  1 2 1 2 1 on this pin will trigger non-maskable interrupt. When this pin is enabled as the NMI 3 CRYSTAL CRYSTAL function, an external pull-up resistor (10 kΩ)Cxas shown in the following figure is RESONATOR Cy recommended for robustness. 2  OSCILLATOR 1 • NMI pin RESONATOR RESET_b 1 U Cy 1 OSCILLATOR 3 0.1uF 2 RS 2 2   CRYSTAL Cx 1 OUT 1 1  2 2 1 10k 1 2 2 1 104 K32 L2B Microcontroller, Rev. 3, 09/2020 NXP Semiconductors 4 1 2 C 2 2 2 1 1 R4 R3 BAT54SW Design considerations VDD 1 1 1 10k 2 SWD_DIO SWD_CLK RESET_b RESET_b RESET_b 0.1uF 1 2 0.1uF 2 4 6 8 10 1 1 3 5 7 9 C J1 2 10k VDD MCU VDD 2 HDR_5X2 2 10k Figure 39. SWD debug interface • Low leakage stop mode wakeup Supervisor Chip MCU 1 VDD OUT • Unused pin 0.1uF 2 Active high, open drain RS 1 2 Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the10k low leakage stop modes (LLS/VLLSx). See the pinout table for pin selection. 1 2 Unused GPIO pins must be left floating (no electrical connections) with the MUX field of the pin’s PORTx_PCRn register equal to 0:0:0. This disables the digital input path to the MCU. B If the USB module is not used, leave the USB data pins (USB0_DP, USB0_DM) floating. 6.1.5 Crystal oscillator When using an external crystal or ceramic resonator as the frequency reference for the MCU clock system, refer to the following table and diagrams. The feedback resistor, RF, is incorporated internally with the low power oscillators. An external feedback is required when using high gain (HGO=1) mode. Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786 kHz) mode. Use the SCxP bits in the OSC0_CR register to adjust the load capacitance for the crystal. Typically, values of 10pf to 16 pF are sufficient for 32.768 kHz crystals that have a 12.5 pF CL specification. The internal load capacitor selection must not be used for high frequency crystals and resonators. A 105 K32 L2B Microcontroller, Rev. 3, 09/2020 5 4 NXP Semiconductors RESET_b Design considerations Table 73. External crystal/resonator connections Oscillator mode Oscillator mode Low frequency (32.768 kHz), low power Diagram 1 Low 4frequency (32.768 kHz), high gain Diagram 2, Diagram 4 High frequency (3-32 MHz), low power Diagram 3 High frequency (3-32 MHz), high gain Diagram 4 EXTAL EXTAL XTAL 1 CRYSTAL CRYSTAL 1 XTAL 2 RF RF RS OSCILLATOR EXTAL 2 1 CRYSTAL 2 2 1 RF RESET_b RF Cx 1 3 2 2 2 NMI_b 1 2 CRYSTAL 2 2 RS 10k Cy RESONATOR NMI_b 1 2 0.1uF 1 2 2 2 CRYSTAL 1 1 1 SET_b RESET_b 2 10k 10k RS 2 2 RS MCU 2 1 1 XTAL 2 RF VDDEXTAL XTAL 2 1 EXTAL 2 10k VDD 42. Crystal connection – Diagram 3 MCU OSCILLATOR OSCILLATOR 1 1 RESONATOR 1 XTAL MCU EXTAL 1 VDD Figure MCU OSCILLATOR Cy 1 VDD 3 2 Cx XTAL 2 CRYSTAL EXTAL 2 1 2 1 1 Cy OSCILLATOR XTAL 1 XTAL 2 1 1 OSCILLATOR EXTAL 2 Figure 41. Crystal connection – Diagram 2 2 CRYSTAL CRYSTAL Cx Cx 3 12 1 CRYSTAL CRYSTAL 1 1 1 2 22 2 11 RS RS 2 RS ADCx 1 1 1 1 RF EXTAL 2 2 2 RF 0.1uF K32 L2B Microcontroller, Rev. 3, 09/2020 2 106 NXP Semiconductors MCU VDD MCU OSC XTAL 1 1 1 MCU EXTAL XTAL 2 1 MCU Cy OSCILLATOR EXTAL OSCILLATOR XTAL EXTAL 1 1 OSCILLATOR OSCILLATOR EXTAL Cy 2 CRYSTAL Cx Figure 40. Crystal connection – Diagram 1 EXTAL 2 ADCx XTAL 2 1 Cx Cx 2 OSC 2 1 EXTAL XTAL CRYSTAL 1 1 1 2 2 EXTAL 1 XTAL OSCILLATOR OSCILLATOR MCU OSCILLATOR 1 MCU Cx 3 OSCILLATOR 2 4 3 Cy CRYSTAL 2 1 CRYSTAL Cy RESONATOR 2 2 Cx 3 2 1 1 2 1 1 Part identification OSCILLATOR EXTAL XTAL 2 1 RF 1 RF CRYSTAL 2 Cx 2 2 1 3 1 CRYSTAL 2 RS Cy RESONATOR 2 1 1 2 2 RS 2 RS 1 XTAL 2 RF EXTAL 2 1 1 XTAL 1 EXTAL OSCILLATOR 1 OSCILLATOR Figure 43. Crystal connection – Diagram 4 6.2 Software considerations VDD MCU 2 1 All K32 L-series ultra-low power Microcontrollers (MCUs), optimized for lowleakage applications, are supported by comprehensive NXP and third-party hardware 10k and software enablement solutions, which can reduce development costs and time to market. Featured software and tools are listed below. NMI_b Evaluation and Prototyping Hardware • NXP Freedom Development Platform: http://www.nxp.com/freedom • Tower System Development Platform: http://www.nxp.com/tower IDEs for K32 L2B MCUs • MCUXpresso: https://mcuxpresso.nxp.com Run-time Software • K32 L2B SDK: http://mcuxpresso.nxp.com For all other partner-developed software and tools, visit http://www.nxp.com/partners. 7 Part identification K32 L2B Microcontroller, Rev. 3, 09/2020 107 NXP Semiconductors Part identification 7.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 7.2 Format Part numbers for this device have the following format: B PF S FS SPF T PG FR SR PT 7.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Table 74. Part number fields descriptions Field Description Values B Brand • K32 PF Product Family • L2 S Sub-family • A= Sub-family A • B= Sub-family B FS Flash size • • • • SPF Special Feature • 0 = Dual core • 1 = Single core T Temperature range (°C) • V = -40 to 105 PG Package • • • • FR Frequency (MHz) • 0 = 0 - 50 MHz SR Silicon Revision • A = Initial Mask Set • B = 1st Major Spin PT Packaging Type • R = Std Reel 108 NXP Semiconductors 1 = 64 KB 2 = 128 KB 3 = 256 KB 4 = 512 KB FM = 32 QFN FT = 48 QFN MP = 64 BGA LH = 64 LQFP K32 L2B Microcontroller, Rev. 3, 09/2020 Small package marking 7.4 Example This is an example part number: K32L2B31VLH0A 8 Small package marking In order to save space, small package devices use special marking on the chip. Q FS FF TP Field Description Values Q Qualification status K=M FS Family L2B=K32L2B family FF Program flash memory size 6=64 KB PK=P 7=128 KB 8=256 KB TP Temperature range V=-40 to 105 for all 4 packages For example: KL2B6V = K32L2B11VFM0A 9 Package marking information The K32L2B 64LQFP package has the following top-side marking: • First line: aaaaaaaa • Second line: aaaaa • Third line: mmmmm • Fourth line: xxxyywwx The K32L2B 64MAPBGA package has the following top-side marking: • First line: aaaaaa • Second line: mmmmm • Third line: xxywx The K32L2B 48QFN package has the following top-side marking: K32 L2B Microcontroller, Rev. 3, 09/2020 109 NXP Semiconductors Revision History • First line: aaaaaa • Second line: mmmmm • Third line: xxywx The K32L2B 32QFN package has the following top-side marking: • First line: aaaaaa • Second line: mmmmm • Third line: xxywx The detailed code format for these identifiers is show in the table below. Identifier Description a Part number code, refer to the "Part identification" section. m Mask set y Work year w Work week x NXP internal use 10 Revision History The following table provides a revision history for this document. Table 75. Revision History Rev. No. Date Substantial Changes 3 September 2020 • Updated value of ADC to 461 ksps from 818 in front page of the Data sheet. • Removed "RESET_b" from ALT7 column and "PTA20" from ALT1 column corresponding to PTA20 pin in K32 L2B Signal Multiplexing and Pin Assignments (LQFP and MAPBGA) and K32 L2B Signal Multiplexing and Pin Assignments (QFN). Also added the following note: When FTFA_FOPT[RESET_PIN_CONFIG]=0, PTA20 pin acts as RESET_B function only during ............of PORTA_PCR20[MUX]'s setting value. • Added Package marking information and Small package marking. • Removed "OTG/On the Go" references. 2 December 2019 • Added Related Resources table in front page of the Data sheet. • Corrected description of PD/PU in Table 8 Pin Properties section. • Updated values in "Default" column for pins 1, 2, 9, 10, 49-52 in K32 L2B Signal Multiplexing and Pin Assignments (LQFP and MAPBGA). • Added EXTRG_IN signal in TPM signal descriptions and Table 29. 1 September 2019 Initial public release. • Removed support of CRC throughout. • Replaced name of function pin VREFO with VREF_OUT. • Changed the high drive pin number to 6 for 48 QFN in Ordering information. • Updated flash and RAM in Figure 1. System diagram in the Overview section. Table continues on the next page... 110 NXP Semiconductors K32 L2B Microcontroller, Rev. 3, 09/2020 Revision History Table 75. Revision History (continued) Rev. No. Date Substantial Changes • Added DAC topic to the "Peripheral Features" section. • Updated memory addresses and peripherals in Memory map. • Updated 32 QFN and 48 QFN pinouts and diagrams to remove usage of USB_VDD pin. • Updated pin names in Pin properties. Split the table into two, each for 64 LQFP/ MAPBGA and 32/48 QFN packages. • Added thermal attributes for 32 QFN and 48 QFN packages in Thermal attributes. • Updated part number format and fields in Format and Fields. 0 July 2019 • Initial release (internal). K32 L2B Microcontroller, Rev. 3, 09/2020 111 NXP Semiconductors How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS, eIQ, Immersiv3D, EdgeLock, and EdgeScale are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2019-2020 NXP B.V. Document Number K32L2B3x Revision 3, 09/2020
K32L2B31VMP0A 价格&库存

很抱歉,暂时无法提供与“K32L2B31VMP0A”相匹配的价格&库存,您可以联系我们找货

免费人工找货
K32L2B31VMP0A

    库存:0