0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
KMC850DSLCZQ50BU

KMC850DSLCZQ50BU

  • 厂商:

    NXP(恩智浦)

  • 封装:

    BBGA256

  • 描述:

    IC MPU MPC8XX 50MHZ 256BGA

  • 详情介绍
  • 数据手册
  • 价格&库存
KMC850DSLCZQ50BU 数据手册
Freescale Semiconductor Document Number: MPC850EC Rev. 2, 07/2005 Technical Data MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications This document contains detailed information on power considerations, AC/DC electrical characteristics, and AC timing specifications for revision A,B, and C of the MPC850 Family. 1 Overview The MPC850 is a versatile, one-chip integrated microprocessor and peripheral combination that can be used in a variety of controller applications, excelling particularly in communications and networking products. The MPC850, which includes support for Ethernet, is specifically designed for cost-sensitive, remote-access, and telecommunications applications. It is provides functions similar to the MPC860, with system enhancements such as universal serial bus (USB) support and a larger (8-Kbyte) dual-port RAM. In addition to a high-performance embedded MPC8xx core, the MPC850 integrates system functions, such as a versatile memory controller and a communications processor module (CPM) that incorporates a specialized, independent RISC communications processor (referred to as the CP). This separate processor off-loads peripheral tasks from the embedded MPC8xx core. © Freescale Semiconductor, Inc., 2005. All rights reserved. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Contents Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Electrical and Thermal Characteristics . . . . . . . . . . . . 7 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . 8 Power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 9 Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 10 IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 39 CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 41 Mechanical Data and Ordering Information . . . . . . . 63 Document Revision History . . . . . . . . . . . . . . . . . . . 68 Overview The CPM of the MPC850 supports up to seven serial channels, as follows: • One or two serial communications controllers (SCCs). The SCCs support Ethernet, ATM (MPC850SR and MPC850DSL), HDLC and a number of other protocols, along with a transparent mode of operation. • One USB channel • Two serial management controllers (SMCs) • One I2C port • One serial peripheral interface (SPI). Table 1 shows the functionality supported by the members of the MPC850 family. Table 1. MPC850 Functionality Matrix Number of Multi-channel PCMCIA Slots HDLC Supported Support Number of SCCs Supported Ethernet Support ATM Support USB Support MPC850 1 Yes - Yes - 1 MPC850DE 2 Yes - Yes - 1 MPC850SR 2 Yes Yes Yes Yes 1 MPC850DSL 2 Yes Yes Yes No 1 Part Additional documentation may be provided for parts listed in Table 1. MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 2 Freescale Semiconductor Features 2 Features Figure 1 is a block diagram of the MPC850, showing its major components and the relationships among those components: 2-Kbyte I-Cache Instruction Bus Embedded MPC8xx Core System Interface Unit Memory Controller Instruction MMU Unified Bus Bus Interface Unit 1-Kbyte D-Cache Load/Store Bus Baud Rate Generators Four Timers System Functions Real-Time Clock Data MMU Interrupt Controller PCMCIA Interface Dual-Port RAM 20 Virtual Serial DMA Channels Parallel I/O 32-Bit RISC Communications Ports Processor (CP) and Program ROM — UTOPIA (850SR & DSL) Timer Communications Processor Module and 2 Virtual IDMA Channels Peripheral Bus SCC2 TDMa SCC3 SMC1 SMC2 USB SPI I2C Time Slot Assigner Non-Multiplexed Serial Interface Figure 1. MPC850 Microprocessor Block Diagram The following list summarizes the main features of the MPC850: • Embedded single-issue, 32-bit MPC8xx core (implementing the PowerPC architecture) with thirty-two 32-bit general-purpose registers (GPRs) — Performs branch folding and branch prediction with conditional prefetch, but without conditional execution MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 3 Features • • • • • • — 2-Kbyte instruction cache and 1-Kbyte data cache (Harvard architecture) – Caches are two-way, set-associative – Physically addressed – Cache blocks can be updated with a 4-word line burst – Least-recently used (LRU) replacement algorithm – Lockable one-line granularity — Memory management units (MMUs) with 8-entry translation lookaside buffers (TLBs) and fully-associative instruction and data TLBs — MMUs support multiple page sizes of 4 Kbytes, 16 Kbytes, 256 Kbytes, 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and eight protection groups Advanced on-chip emulation debug mode Data bus dynamic bus sizing for 8, 16, and 32-bit buses — Supports traditional 68000 big-endian, traditional x86 little-endian and modified little-endian memory systems — Twenty-six external address lines Completely static design (0–80 MHz operation) System integration unit (SIU) — Hardware bus monitor — Spurious interrupt monitor — Software watchdog — Periodic interrupt timer — Low-power stop mode — Clock synthesizer — Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture — Reset controller — IEEE 1149.1 test access port (JTAG) Memory controller (eight banks) — Glueless interface to DRAM single in-line memory modules (SIMMs), synchronous DRAM (SDRAM), static random-access memory (SRAM), electrically programmable read-only memory (EPROM), flash EPROM, etc. — Memory controller programmable to support most size and speed memory interfaces — Boot chip-select available at reset (options for 8, 16, or 32-bit memory) — Variable block sizes, 32 Kbytes to 256 Mbytes — Selectable write protection — On-chip bus arbiter supports one external bus master — Special features for burst mode support General-purpose timers — Four 16-bit timers or two 32-bit timers MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 4 Freescale Semiconductor Features • • • • • — Gate mode can enable/disable counting — Interrupt can be masked on reference match and event capture Interrupts — Eight external interrupt request (IRQ) lines — Twelve port pins with interrupt capability — Fifteen internal interrupt sources — Programmable priority among SCCs and USB — Programmable highest-priority request Single socket PCMCIA-ATA interface — Master (socket) interface, release 2.1 compliant — Single PCMCIA socket — Supports eight memory or I/O windows Communications processor module (CPM) — 32-bit, Harvard architecture, scalar RISC communications processor (CP) — Protocol-specific command sets (for example, GRACEFUL STOP TRANSMIT stops transmission after the current frame is finished or immediately if no frame is being sent and CLOSE RXBD closes the receive buffer descriptor) — Supports continuous mode transmission and reception on all serial channels — Up to 8 Kbytes of dual-port RAM — Twenty serial DMA (SDMA) channels for the serial controllers, including eight for the four USB endpoints — Three parallel I/O registers with open-drain capability Four independent baud-rate generators (BRGs) — Can be connected to any SCC, SMC, or USB — Allow changes during operation — Autobaud support option Two SCCs (serial communications controllers) — Ethernet/IEEE 802.3, supporting full 10-Mbps operation — HDLC/SDLC™ (all channels supported at 2 Mbps) — HDLC bus (implements an HDLC-based local area network (LAN)) — Asynchronous HDLC to support PPP (point-to-point protocol) — AppleTalk® — Universal asynchronous receiver transmitter (UART) — Synchronous UART — Serial infrared (IrDA) — Totally transparent (bit streams) — Totally transparent (frame based with optional cyclic redundancy check (CRC)) MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 5 Features • • • • • • • QUICC multichannel controller (QMC) microcode features — Up to 64 independent communication channels on a single SCC — Arbitrary mapping of 0–31 channels to any of 0–31 TDM time slots — Supports either transparent or HDLC protocols for each channel — Independent TxBDs/Rx and event/interrupt reporting for each channel One universal serial bus controller (USB) — Supports host controller and slave modes at 1.5 Mbps and 12 Mbps Two serial management controllers (SMCs) — UART — Transparent — General circuit interface (GCI) controller — Can be connected to the time-division-multiplexed (TDM) channel One serial peripheral interface (SPI) — Supports master and slave modes — Supports multimaster operation on the same bus One I2C® (interprocessor-integrated circuit) port — Supports master and slave modes — Supports multimaster environment Time slot assigner — Allows SCCs and SMCs to run in multiplexed operation — Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined — 1- or 8-bit resolution — Allows independent transmit and receive routing, frame syncs, clocking — Allows dynamic changes — Can be internally connected to four serial channels (two SCCs and two SMCs) Low-power support — Full high: all units fully powered at high clock frequency — Full low: all units fully powered at low clock frequency — Doze: core functional units disabled except time base, decrementer, PLL, memory controller, real-time clock, and CPM in low-power standby — Sleep: all units disabled except real-time clock and periodic interrupt timer. PLL is active for fast wake-up — Deep sleep: all units disabled including PLL, except the real-time clock and periodic interrupt timer — Low-power stop: to provide lower power dissipation MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 6 Freescale Semiconductor Electrical and Thermal Characteristics • • 3 — Separate power supply input to operate internal logic at 2.2 V when operating at or below 25 MHz — Can be dynamically shifted between high frequency (3.3 V internal) and low frequency (2.2 V internal) operation Debug interface — Eight comparators: four operate on instruction address, two operate on data address, and two operate on data — The MPC850 can compare using the =, ≠, conditions to generate watchpoints — Each watchpoint can generate a breakpoint internally 3.3-V operation with 5-V TTL compatibility on all general purpose I/O pins. Electrical and Thermal Characteristics This section provides the AC and DC electrical specifications and thermal characteristics for the MPC850. Table 2 provides the maximum ratings. Table 2. Maximum Ratings (GND = 0V) Rating Supply voltage Symbol Value Unit VDDH -0.3 to 4.0 V VDDL -0.3 to 4.0 V KAPWR -0.3 to 4.0 V VDDSYN -0.3 to 4.0 V Input voltage 1 Vin GND-0.3 to VDDH + 2.5 V V Junction temperature 2 Tj 0 to 95 (standard) -40 to 95 (extended) °C Storage temperature range Tstg -55 to +150 °C 1 Functional operating conditions are provided with the DC electrical specifications in Table 5. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. CAUTION: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies to power-up and normal operation (that is, if the MPC850 is unpowered, voltage greater than 2.5 V must not be applied to its inputs). 2 The MPC850, a high-frequency device in a BGA package, does not provide a guaranteed maximum ambient temperature. Only maximum junction temperature is guaranteed. It is the responsibility of the user to consider power dissipation and thermal management. Junction temperature ratings are the same regardless of frequency rating of the device. This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or VCC). Table 3 provides the package thermal characteristics for the MPC850. MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 7 Thermal Characteristics 4 Thermal Characteristics Table 3 shows the thermal characteristics for the MPC850. Table 3. Thermal Characteristics Characteristic Thermal resistance for BGA 1 Thermal Resistance for BGA (junction-to-case) Symbol Value Unit θJA 40 2 °C/W θJA 31 3 °C/W θJA 24 4 °C/W θJC 8 °C/W 1 For more information on the design of thermal vias on multilayer boards and BGA layout considerations in general, refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office. 2 Assumes natural convection and a single layer board (no thermal vias). 3 Assumes natural convection, a multilayer board with thermal vias4, 1 watt MPC850 dissipation, and a board temperature rise of 20°C above ambient. 4 Assumes natural convection, a multilayer board with thermal vias4, 1 watt MPC850 dissipation, and a board temperature rise of 13°C above ambient. TJ = TA + (PD •θJA) PD = (VDD • IDD) + PI/O where: PI/O is the power dissipation on pins Table 4 provides power dissipation information. Table 4. Power Dissipation (PD) Characteristic Power Dissipation All Revisions (1:1) Mode 1 2 Frequency (MHz) Typical 1 Maximum 2 Unit 33 TBD 515 mW 40 TBD 590 mW 50 TBD 725 mW Typical power dissipation is measured at 3.3V Maximum power dissipation is measured at 3.65 V Table 5 provides the DC electrical characteristics for the MPC850. Table 5. DC Electrical Specifications Characteristic Symbol Min Max Unit Operating voltage at 40 MHz or less VDDH, VDDL, KAPWR, VDDSYN 3.0 3.6 V Operating voltage at 40 MHz or higher VDDH, VDDL, KAPWR, VDDSYN 3.135 3.465 V Input high voltage (address bus, data bus, EXTAL, EXTCLK, and all bus control/status signals) VIH 2.0 3.6 V Input high voltage (all general purpose I/O and peripheral pins) VIH 2.0 5.5 V MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 8 Freescale Semiconductor Power Considerations Table 5. DC Electrical Specifications (continued) Characteristic Symbol Min Max Unit VIL GND 0.8 V VIHC 0.7*(VCC) VCC+0.3 V Input leakage current, Vin = 5.5 V (Except TMS, TRST, DSCK and DSDI pins) Iin — 100 µA Input leakage current, Vin = 3.6V (Except TMS, TRST, DSCK and DSDI pins) IIn — 10 µA Input leakage current, Vin = 0V (Except TMS, TRST, DSCK and DSDI pins) IIn — 10 µA Input capacitance Cin — 20 pF Output high voltage, IOH = -2.0 mA, VDDH = 3.0V except XTAL, XFC, and open-drain pins VOH 2.4 — V Output low voltage CLKOUT 3 IOL = 3.2 mA 1 IOL = 5.3 mA 2 IOL = 7.0 mA PA[14]/USBOE, PA[12]/TXD2 IOL = 8.9 mA TS, TA, TEA, BI, BB, HRESET, SRESET VOL — 0.5 V Input low voltage EXTAL, EXTCLK input high voltage 1 A[6:31], TSIZ0/REG, TSIZ1, D[0:31], DP[0:3]/IRQ[3:6], RD/WR, BURST, RSV/IRQ2, IP_B[0:1]/IWP[0:1]/VFLS[0:1], IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, PA[15]/USBRXD, PA[13]/RXD2, PA[9]/L1TXDA/SMRXD2, PA[8]/L1RXDA/SMTXD2, PA[7]/CLK1/TIN1/L1RCLKA/BRGO1, PA[6]/CLK2/TOUT1/TIN3, PA[5]/CLK3/TIN2/L1TCLKA/BRGO2, PA[4]/CLK4/TOUT2/TIN4, PB[31]/SPISEL, PB[30]/SPICLK/TXD3, PB[29]/SPIMOSI /RXD3, PB[28]/SPIMISO/BRGO3, PB[27]/I2CSDA/BRGO1, PB[26]/I2CSCL/BRGO2, PB[25]/SMTXD1/TXD3, PB[24]/SMRXD1/RXD3, PB[23]/SMSYN1/SDACK1, PB[22]/SMSYN2/SDACK2, PB[19]/L1ST1, PB[18]/RTS2/L1ST2, PB[17]/L1ST3, PB[16]/L1RQa/L1ST4, PC[15]/DREQ0/L1ST5, PC[14]/DREQ1/RTS2/L1ST6, PC[13]/L1ST7/RTS3, PC[12]/L1RQa/L1ST8, PC[11]/USBRXP, PC[10]/TGATE1/USBRXN, PC[9]/CTS2, PC[8]/CD2/TGATE1, PC[7]/USBTXP, PC[6]/USBTXN, PC[5]/CTS3/L1TSYNCA/SDACK1, PC[4]/CD3/L1RSYNCA, PD[15], PD[14], PD[13], PD[12], PD[11], PD[10], PD[9], PD[8], PD[7], PD[6], PD[5], PD[4], PD[3] 2 BDIP/GPL_B5, BR, BG, FRZ/IRQ6, CS[0:5], CS6/CE1_B, CS7/CE2_B, WE0/BS_AB0/IORD, WE1/BS_AB1/IOWR, WE2/BS_AB2/PCOE, WE3/BS_AB3/PCWE, GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A[2:3]/GPL_B[2:3]/CS[2:3], UPWAITA/GPL_A4/AS, UPWAITB/GPL_B4, GPL_A5, ALE_B/DSCK/AT1, OP2/MODCK1/STS, OP3/MODCK2/DSDO 3 The MPC850 IBIS model must be used to accurately model the behavior of the Clkout output driver for the full and half drive setting. Due to the nature of the Clkout output buffer, IOH and IOL for Clkout should be extracted from the IBIS model at any output voltage level. 5 Power Considerations The average chip-junction temperature, TJ, in °C can be obtained from the equation: TJ = TA + (PD • θJA)(1) where TA = Ambient temperature, °C MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 9 Bus Signal Timing θJA = Package thermal resistance, junction to ambient, °C/W PD = PINT + PI/O PINT = IDD x VDD, watts—chip internal power PI/O = Power dissipation on input and output pins—user determined For most applications PI/O < 0.3 • PINT and can be neglected. If PI/O is neglected, an approximate relationship between PD and TJ is: PD = K ÷ (TJ + 273°C)(2) Solving equations (1) and (2) for K gives: 2 K = PD • (TA + 273°C) + θJA • PD (3) where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA. 5.1 Layout Practices Each VCC pin on the MPC850 should be provided with a low-impedance path to the board’s supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VCC power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip VCC and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as VCC and GND planes. All output pins on the MPC850 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VCC and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. 6 Bus Signal Timing Table 6 provides the bus operation timing for the MPC850 at 50 MHz, 66 MHz, and 80 MHz. Timing information for other bus speeds can be interpolated by equation using the MPC850 Electrical Specifications Spreadsheet found at http://www.mot.com/netcomm. The maximum bus speed supported by the MPC850 is 50 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC850 used at 66 MHz must be configured for a 33 MHz bus). The timing for the MPC850 bus shown assumes a 50-pF load. This timing can be derated by 1 ns per 10 pF. Derating calculations can also be performed using the MPC850 Electrical Specifications Spreadsheet. MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 10 Freescale Semiconductor Bus Signal Timing Table 6. Bus Operation Timing 1 50 MHz Num 66 MHz 80 MHz Characteristic FFACT Cap Load (default 50 pF) Unit Min Max Min Max Min Max 20 — 30.30 — 25 — — — ns B1 CLKOUT period B1a EXTCLK to CLKOUT phase skew (EXTCLK > 15 MHz and MF 10 MHz and MF < 10) -2.30 2.30 -2.30 2.30 -2.30 2.30 — 50.00 ns B1c CLKOUT phase jitter (EXTCLK > 15 MHz and MF 500) 2 — 3.00 — 3.00 — 3.00 — 50.00 % B1h Frequency jitter on EXTCLK 3 — 0.50 — 0.50 — 0.50 — 50.00 % B2 CLKOUT pulse width low 8.00 — 12.12 — 10.00 — — 50.00 ns B3 CLKOUT width high 8.00 — 12.12 — 10.00 — — 50.00 ns B4 CLKOUT rise time — 4.00 — 4.00 — 4.00 — 50.00 ns B5 CLKOUT fall time — 4.00 — 4.00 — 4.00 — 50.00 ns B7 CLKOUT to A[6–31], RD/WR, BURST, D[0–31], DP[0–3] invalid 5.00 — 7.58 — 6.25 — 0.250 50.00 ns B7a CLKOUT to TSIZ[0–1], REG, RSV, AT[0–3], BDIP, PTR invalid 5.00 — 7.58 — 6.25 — 0.250 50.00 ns B7b CLKOUT to BR, BG, FRZ, VFLS[0–1], VF[0–2] IWP[0–2], LWP[0–1], STS invalid 4 5.00 — 7.58 — 6.25 — 0.250 50.00 ns B8 CLKOUT to A[6–31], RD/WR, BURST, D[0–31], DP[0–3] valid 5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns B8a CLKOUT to TSIZ[0–1], REG, RSV, AT[0–3] BDIP, PTR valid 5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns B8b CLKOUT to BR, BG, VFLS[0–1], VF[0–2], IWP[0–2], FRZ, LWP[0–1], STS valid 4 5.00 11.74 7.58 14.33 6.25 13.00 0.250 50.00 ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 11 Bus Signal Timing Table 6. Bus Operation Timing 1 (continued) 50 MHz Num 66 MHz 80 MHz Characteristic Min Max Min Max Min Max FFACT Cap Load (default 50 pF) Unit B9 CLKOUT to A[6–31] RD/WR, BURST, D[0–31], DP[0–3], TSIZ[0–1], REG, RSV, AT[0–3], PTR high-Z 5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns B11 CLKOUT to TS, BB assertion 5.00 11.00 7.58 13.58 6.25 12.25 0.250 50.00 ns B11a CLKOUT to TA, BI assertion, (When driven by the memory controller or PCMCIA interface) 2.50 9.25 2.50 9.25 2.50 9.25 — 50.00 ns B12 CLKOUT to TS, BB negation 5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns B12a CLKOUT to TA, BI negation (when driven by the memory controller or PCMCIA interface) 2.50 11.00 2.50 11.00 2.50 11.00 — 50.00 ns B13 CLKOUT to TS, BB high-Z 5.00 19.00 7.58 21.58 6.25 20.25 0.250 50.00 ns B13a CLKOUT to TA, BI high-Z, (when driven by the memory controller or PCMCIA interface) 2.50 15.00 2.50 15.00 2.50 15.00 — 50.00 ns B14 CLKOUT to TEA assertion 2.50 10.00 2.50 10.00 2.50 10.00 — 50.00 ns B15 CLKOUT to TEA high-Z 2.50 15.00 2.50 15.00 2.50 15.00 — 50.00 ns B16 TA, BI valid to CLKOUT(setup time) 5 9.75 — 9.75 — 9.75 — — 50.00 ns B16a TEA, KR, RETRY, valid to CLKOUT (setup time) 5 10.00 — 10.00 — 10.00 — — 50.00 ns B16b BB, BG, BR valid to CLKOUT (setup time) 6 8.50 — 8.50 — 8.50 — — 50.00 ns B17 CLKOUT to TA, TEA, BI, BB, BG, BR valid (Hold time).5 1.00 — 1.00 — 1.00 — — 50.00 ns B17a CLKOUT to KR, RETRY, except TEA valid (hold time) 2.00 — 2.00 — 2.00 — — 50.00 ns B18 D[0–31], DP[0–3] valid to CLKOUT rising edge (setup time) 7 6.00 — 6.00 — 6.00 — — 50.00 ns B19 CLKOUT rising edge to D[0–31], DP[0–3] valid (hold time) 7 1.00 — 1.00 — 1.00 — — 50.00 ns B20 D[0–31], DP[0–3] valid to CLKOUT falling edge (setup time) 8 4.00 — 4.00 — 4.00 — — 50.00 ns B21 CLKOUT falling edge to D[0–31], DP[0–3] valid (hold time) 8 2.00 — 2.00 — 2.00 — — — — MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 12 Freescale Semiconductor Bus Signal Timing Table 6. Bus Operation Timing 1 (continued) 50 MHz Num 66 MHz 80 MHz Characteristic Min Max Min Max Min Max FFACT Cap Load (default 50 pF) Unit B22 CLKOUT rising edge to CS asserted GPCM ACS = 00 5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns B22a CLKOUT falling edge to CS asserted GPCM ACS = 10, TRLX = 0,1 — 8.00 — 8.00 — 8.00 — 50.00 ns B22b CLKOUT falling edge to CS asserted GPCM ACS = 11, TRLX = 0, EBDF = 0 5.00 11.75 7.58 14.33 6.25 13.00 0.250 50.00 ns B22c CLKOUT falling edge to CS asserted GPCM ACS = 11, TRLX = 0, EBDF = 1 7.00 14.00 11.00 18.00 9.00 16.00 0.375 50.00 ns B23 CLKOUT rising edge to CS negated GPCM read access, GPCM write access ACS = 00, TRLX = 0 & CSNT = 0 2.00 8.00 2.00 8.00 2.00 8.00 — 50.00 ns B24 A[6–31] to CS asserted GPCM ACS = 10, TRLX = 0. 3.00 — 6.00 — 4.00 — 0.250 50.00 ns B24a A[6–31] to CS asserted GPCM ACS = 11, TRLX = 0 8.00 — 13.00 — 11.00 — 0.500 50.00 ns B25 CLKOUT rising edge to OE, WE[0–3] asserted — 9.00 — 9.00 — 9.00 — 50.00 ns B26 CLKOUT rising edge to OE negated 2.00 9.00 2.00 9.00 2.00 9.00 — 50.00 ns B27 A[6–31] to CS asserted GPCM ACS = 10, TRLX = 1 23.00 — 36.00 — 29.00 — 1.250 50.00 ns B27a A[6–31] to CS asserted GPCM ACS = 11, TRLX = 1 28.00 — 43.00 — 36.00 — 1.500 50.00 ns B28 CLKOUT rising edge to WE[0–3] negated GPCM write access CSNT = 0 — 9.00 — 9.00 — 9.00 — 50.00 ns B28a CLKOUT falling edge to WE[0–3] negated GPCM write access TRLX = 0,1 CSNT = 1, EBDF = 0 5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns B28b CLKOUT falling edge to CS negated GPCM write access TRLX = 0,1 CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 — 12.00 — 14.00 — 13.00 0.250 50.00 ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 13 Bus Signal Timing Table 6. Bus Operation Timing 1 (continued) 50 MHz Num 66 MHz 80 MHz Characteristic Min FFACT Cap Load (default 50 pF) Unit Min Max Max Min Max 14.00 11.00 18.00 9.00 16.00 0.375 50.00 ns B28c CLKOUT falling edge to WE[0–3] negated GPCM write access TRLX = 0,1 CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1 7.00 B28d CLKOUT falling edge to CS negated GPCM write access TRLX = 0,1 CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 — 14.00 — 18.00 — 16.00 0.375 50.00 ns B29 WE[0–3] negated to D[0–31], DP[0–3] high-Z GPCM write access, CSNT = 0 3.00 — 6.00 — 4.00 — 0.250 50.00 ns B29a WE[0–3] negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 0 CSNT = 1, EBDF = 0 8.00 — 13.00 — 11.00 — 0.500 50.00 ns B29b CS negated to D[0–31], DP[0–3], high-Z GPCM write access, ACS = 00, TRLX = 0 & CSNT = 0 3.00 — 6.00 — 4.00 — 0.250 50.00 ns B29c CS negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 8.00 — 13.00 — 11.00 — 0.500 50.00 ns B29d WE[0–3] negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0 28.00 — 43.00 — 36.00 — 1.500 50.00 ns B29e CS negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 28.00 — 43.00 — 36.00 — 1.500 50.00 ns B29f WE[0–3] negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1 5.00 — 9.00 — 7.00 — 0.375 50.00 ns B29g CS negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 5.00 — 9.00 — 7.00 — 0.375 50.00 ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 14 Freescale Semiconductor Bus Signal Timing Table 6. Bus Operation Timing 1 (continued) 50 MHz Num 66 MHz 80 MHz Characteristic Min Max Min Max Min Max FFACT Cap Load (default 50 pF) Unit B29h WE[0–3] negated to D[0–31], DP[0–3] high-Z GPCM write access TRLX = 0, CSNT = 1, EBDF = 1 25.00 — 39.00 — 31.00 — 1.375 50.00 ns B29i CS negated to D[0–31], DP[0–3] high-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 25.00 — 39.00 — 31.00 — 1.375 50.00 ns B30 CS, WE[0–3] negated to A[6–31] invalid GPCM write access 9 3.00 — 6.00 — 4.00 — 0.250 50.00 ns B30a WE[0–3] negated to A[6–31] invalid GPCM write access, TRLX = 0, CSNT = 1, CS negated to A[6–31] invalid GPCM write access TRLX = 0, CSNT =1, ACS = 10 or ACS = 11, EBDF = 0 8.00 — 13.00 — 11.00 — 0.500 50.00 ns B30b WE[0–3] negated to A[6–31] invalid GPCM write access, TRLX = 1, CSNT = 1. CS negated to A[6–31] Invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 0 28.00 — 43.00 — 36.00 — 1.500 50.00 ns B30c WE[0–3] negated to A[6–31] invalid GPCM write access, TRLX = 0, CSNT = 1. CS negated to A[6–31] invalid GPCM write access, TRLX = 0, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 5.00 — 8.00 — 6.00 — 0.375 50.00 ns B30d WE[0–3] negated to A[6–31] invalid GPCM write access TRLX = 1, CSNT =1, CS negated to A[6–31] invalid GPCM write access TRLX = 1, CSNT = 1, ACS = 10 or ACS = 11, EBDF = 1 25.00 — 39.00 — 31.00 — 1.375 50.00 ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 15 Bus Signal Timing Table 6. Bus Operation Timing 1 (continued) 50 MHz Num 66 MHz 80 MHz Characteristic Min Max Min Max Min Max FFACT Cap Load (default 50 pF) Unit B31 CLKOUT falling edge to CS valid - as requested by control bit CST4 in the corresponding word in the UPM 1.50 6.00 1.50 6.00 1.50 6.00 — 50.00 ns B31a CLKOUT falling edge to CS valid - as requested by control bit CST1 in the corresponding word in the UPM 5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns B31b CLKOUT rising edge to CS valid - as requested by control bit CST2 in the corresponding word in the UPM 1.50 8.00 1.50 8.00 1.50 8.00 — 50.00 ns B31c CLKOUT rising edge to CS valid - as requested by control bit CST3 in the corresponding word in the UPM 5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns B31d CLKOUT falling edge to CS valid - as requested by control bit CST1 in the corresponding word in the UPM EBDF = 1 9.00 14.00 13.00 18.00 11.00 16.00 0.375 50.00 ns B32 CLKOUT falling edge to BS valid - as requested by control bit BST4 in the corresponding word in the UPM 1.50 6.00 1.50 6.00 1.50 6.00 — 50.00 ns B32a CLKOUT falling edge to BS valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns B32b CLKOUT rising edge to BS valid - as requested by control bit BST2 in the corresponding word in the UPM 1.50 8.00 1.50 8.00 1.50 8.00 — 50.00 ns B32c CLKOUT rising edge to BS valid - as requested by control bit BST3 in the corresponding word in the UPM 5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns B32d CLKOUT falling edge to BS valid - as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 9.00 14.00 13.00 18.00 11.00 16.00 0.375 50.00 ns B33 CLKOUT falling edge to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM 1.50 6.00 — 50.00 ns 1.50 6.00 1.50 6.00 MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 16 Freescale Semiconductor Bus Signal Timing Table 6. Bus Operation Timing 1 (continued) 50 MHz Num 66 MHz 80 MHz Characteristic Min Max Min Max Min Max FFACT Cap Load (default 50 pF) Unit B33a CLKOUT rising edge to GPL valid - as requested by control bit GxT3 in the corresponding word in the UPM 5.00 12.00 8.00 14.00 6.00 13.00 0.250 50.00 ns B34 A[6–31] and D[0–31] to CS valid - as requested by control bit CST4 in the corresponding word in the UPM 3.00 — 6.00 — 4.00 — 0.250 50.00 ns B34a A[6–31] and D[0–31] to CS valid - as requested by control bit CST1 in the corresponding word in the UPM 8.00 — 13.00 — 11.00 — 0.500 50.00 ns B34b A[6–31] and D[0–31] to CS valid 13.00 - as requested by CST2 in the corresponding word in UPM — 21.00 — 17.00 — 0.750 50.00 ns B35 A[6–31] to CS valid - as requested by control bit BST4 in the corresponding word in UPM 3.00 — 6.00 — 4.00 — 0.250 50.00 ns B35a A[6–31] and D[0–31] to BS valid - as requested by BST1 in the corresponding word in the UPM 8.00 — 13.00 — 11.00 — 0.500 50.00 ns B35b A[6–31] and D[0–31] to BS valid 13.00 - as requested by control bit BST2 in the corresponding word in the UPM — 21.00 — 17.00 — 0.750 50.00 ns B36 A[6–31] and D[0–31] to GPL valid - as requested by control bit GxT4 in the corresponding word in the UPM 3.00 — 6.00 — 4.00 — 0.250 50.00 ns B37 UPWAIT valid to CLKOUT falling edge 10 6.00 — 6.00 — 6.00 — — 50.00 ns B38 CLKOUT falling edge to UPWAIT valid 10 1.00 — 1.00 — 1.00 — — 50.00 ns B39 AS valid to CLKOUT rising edge 7.00 — 7.00 — 7.00 — — 50.00 ns 11 B40 A[6–31], TSIZ[0–1], RD/WR, BURST, valid to CLKOUT rising edge. 7.00 — 7.00 — 7.00 — — 50.00 ns B41 TS valid to CLKOUT rising edge (setup time) 7.00 — 7.00 — 7.00 — — 50.00 ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 17 Bus Signal Timing Table 6. Bus Operation Timing 1 (continued) 50 MHz Num 66 MHz 80 MHz Characteristic B42 CLKOUT rising edge to TS valid (hold time) B43 AS negation to memory controller signals negation FFACT Cap Load (default 50 pF) Unit Min Max Min Max Min Max 2.00 — 2.00 — 2.00 — — 50.00 ns — TBD — TBD TBD — — 50.00 ns 1 The minima provided assume a 0 pF load, whereas maxima assume a 50pF load. For frequencies not marked on the part, new bus timing must be calculated for all frequency-dependent AC parameters. Frequency-dependent AC parameters are those with an entry in the FFactor column. AC parameters without an FFactor entry do not need to be calculated and can be taken directly from the frequency column corresponding to the frequency marked on the part. The following equations should be used in these calculations. For a frequency F, the following equations should be applied to each one of the above parameters: For minima: FFACTOR x 1000 (D50 - 20 x FFACTOR) D= + F For maxima: FFACTOR x 1000 (D50 -20 x FFACTOR) D= + F 1ns(CAP LOAD - 50) / 10 + where: D is the parameter value to the frequency required in ns F is the operation frequency in MHz D50 is the parameter value defined for 50 MHz CAP LOAD is the capacitance load on the signal in question. FFACTOR is the one defined for each of the parameters in the table. 2 Phase and frequency jitter performance results are valid only if the input jitter is less than the prescribed value. 3 If the rate of change of the frequency of EXTAL is slow (i.e. it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time) then the maximum allowed jitter on EXTAL can be up to 2%. 4 The timing for BR output is relevant when the MPC850 is selected to work with external bus arbiter. The timing for BG output is relevant when the MPC850 is selected to work with internal bus arbiter. 5 The setup times required for TA, TEA, and BI are relevant only when they are supplied by an external device (and not when the memory controller or the PCMCIA interface drives them). 6 The timing required for BR input is relevant when the MPC850 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC850 is selected to work with the external bus arbiter. 7 The D[0–31] and DP[0–3] input timings B20 and B21 refer to the rising edge of the CLKOUT in which the TA input signal is asserted. 8 The D[0:31] and DP[0:3] input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for read accesses controlled by chip-selects controlled by the UPM in the memory controller, for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT. 9 The timing B30 refers to CS when ACS = '00' and to WE[0:3] when CSNT = '0'. 10 The signal UPWAIT is considered asynchronous to CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals. 11 The AS signal is considered asynchronous to CLKOUT. MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 18 Freescale Semiconductor Bus Signal Timing Figure 2 is the control timing diagram. 2.0 V 2.0 V CLKOUT 0.8 V 0.8 V A B 2.0 V 0.8 V Outputs 2.0 V 0.8 V A B 2.0 V 0.8 V Outputs 2.0 V 0.8 V D C 2.0 V 0.8 V Inputs 2.0 V 0.8 V D C 2.0 V 0.8 V Inputs A Maximum output delay specification B Minimum output hold time C Minimum input setup time specification D Minimum input hold time specification 2.0 V 0.8 V Figure 2. Control Timing Figure 3 provides the timing for the external clock. CLKOUT B1 B3 B1 B4 B2 B5 Figure 3. External Clock Timing MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 19 Bus Signal Timing Figure 4 provides the timing for the synchronous output signals. CLKOUT B8 B7 B9 Output Signals B8a B7a B9 Output Signals B8b B7b Output Signals Figure 4. Synchronous Output Signals Timing Figure 5 provides the timing for the synchronous active pull-up and open-drain output signals. CLKOUT B13 B11 B12 TS, BB B13a B11a B12a TA, BI B14 B15 TEA Figure 5. Synchronous Active Pullup and Open-Drain Outputs Signals Timing MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 20 Freescale Semiconductor Bus Signal Timing Figure 6 provides the timing for the synchronous input signals. CLKOUT B16 B17 TA, BI B16a B17a TEA, KR, RETRY B16b B17 BB, BG, BR Figure 6. Synchronous Input Signals Timing Figure 7 provides normal case timing for input data. CLKOUT B16 B17 TA B18 B19 D[0:31], DP[0:3] Figure 7. Input Data Timing in Normal Case MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 21 Bus Signal Timing Figure 8 provides the timing for the input data controlled by the UPM in the memory controller. CLKOUT TA B20 B21 D[0:31], DP[0:3] Figure 8. Input Data Timing when Controlled by UPM in the Memory Controller Figure 9 through Figure 12 provide the timing for the external bus read controlled by various GPCM factors. CLKOUT B11 B12 TS B8 A[6:31] B22 B23 CSx B25 B26 OE B28 WE[0:3] B19 B18 D[0:31], DP[0:3] Figure 9. External Bus Read Timing (GPCM Controlled—ACS = 00) MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 22 Freescale Semiconductor Bus Signal Timing CLKOUT B11 B12 TS B8 A[6:31] B23 B22a CSx B24 B25 B26 OE B18 B19 D[0:31], DP[0:3] Figure 10. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10) CLKOUT B11 B12 TS B8 B22b A[6:31] B22c B23 CSx B24a B25 B26 OE B18 B19 D[0:31], DP[0:3] Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11) MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 23 Bus Signal Timing CLKOUT B11 B12 TS B8 A[6:31] B23 B22a CSx B27 OE B26 B27a B22bB22c B18 B19 D[0:31], DP[0:3] Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11) MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 24 Freescale Semiconductor Bus Signal Timing Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM factors. CLKOUT B11 B12 TS B8 B30 A[6:31] B22 B23 CSx B25 B28 WE[0:3] B26 B29b OE B29a B8 B9 D[0:31], DP[0:3] Figure 13. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0) MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 25 Bus Signal Timing CLKOUT B11 B12 TS B8 B30aB30c A[6:31] B22 B23 B28bB28d CSx B25 B29c B29g WE[0:3] B26 B29a B29f OE B28a B28c B8 B9 D[0:31], DP[0:3] Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1) MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 26 Freescale Semiconductor Bus Signal Timing CLKOUT B11 B12 TS B8 B30b B30d A[6:31] B22 B23 B28b B28d CSx B25 B29e B29i WE[0:3] B26 B29d OE B29b B8 B28a B28c B9 D[0:31], DP[0:3] Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1) MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 27 Bus Signal Timing Figure 16 provides the timing for the external bus controlled by the UPM. CLKOUT B8 A[6:31] B31a B31c B31d B31 B31b CSx B34 B34a B34b B32c B32aB32d B32 B32b BS_A[0:3], BS_B[0:3] B35 B36 B35a B33a B35b B33 GPL_A[0–5], GPL_B[0–5] Figure 16. External Bus Timing (UPM Controlled Signals) MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 28 Freescale Semiconductor Bus Signal Timing Figure 17 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM. CLKOUT B37 UPWAIT B38 CSx BS_A[0:3], BS_B[0:3] GPL_A[0–5], GPL_B[0–5] Figure 17. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing Figure 18 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM. CLKOUT B37 UPWAIT B38 CSx BS_A[0:3], BS_B[0:3] GPL_A[0–5], GPL_B[0–5] Figure 18. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 29 Bus Signal Timing Figure 19 provides the timing for the synchronous external master access controlled by the GPCM. CLKOUT B41 B42 TS B40 A[6:31], TSIZ[0:1], R/W, BURST B22 CSx Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00) Figure 20 provides the timing for the asynchronous external master memory access controlled by the GPCM. CLKOUT B39 AS B40 A[6:31], TSIZ[0:1], R/W B22 CSx Figure 20. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00) Figure 21 provides the timing for the asynchronous external master control signals negation. AS B43 CSx, WE[0:3], OE, GPLx, BS[0:3] Figure 21. Asynchronous External Master—Control Signals Negation Timing MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 30 Freescale Semiconductor Bus Signal Timing Table 7 provides interrupt timing for the MPC850. Table 7. Interrupt Timing 50 MHz 66MHz 80 MHz Characteristic 1 Num Unit Min Max Min Max Min Max I39 IRQx valid to CLKOUT rising edge (set up time) 6.00 — 6.00 — 6.00 — ns I40 IRQx hold time after CLKOUT. 2.00 — 2.00 — 2.00 — ns I41 IRQx pulse width low 3.00 — 3.00 — 3.00 — ns I42 IRQx pulse width high 3.00 — 3.00 — 3.00 — ns I43 IRQx edge-to-edge time 80.00 — 121.0 — 100.0 — ns 1 The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT. The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC850 is able to support Figure 22 provides the interrupt detection timing for the external level-sensitive lines. CLKOUT I39 I40 IRQx Figure 22. Interrupt Detection Timing for External Level Sensitive Lines Figure 23 provides the interrupt detection timing for the external edge-sensitive lines. CLKOUT I39 I41 I42 IRQx I43 I43 Figure 23. Interrupt Detection Timing for External Edge Sensitive Lines MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 31 Bus Signal Timing Table 8 shows the PCMCIA timing for the MPC850. Table 8. PCMCIA Timing 50MHz Num 66MHz 80 MHz Characteristic FFACTOR Unit Min Max Min Max Min Max P44 A[6–31], REG valid to PCMCIA strobe asserted. 1 13.00 — 21.00 — 17.00 — 0.750 ns P45 A[6–31], REG valid to ALE negation.1 18.00 — 28.00 — 23.00 — 1.000 ns P46 CLKOUT to REG valid 5.00 13.00 8.00 16.00 6.00 14.00 0.250 ns P47 CLKOUT to REG Invalid. 6.00 — 9.00 — 7.00 — 0.250 ns P48 CLKOUT to CE1, CE2 asserted. 5.00 13.00 8.00 16.00 6.00 14.00 0.250 P49 CLKOUT to CE1, CE2 negated. 5.00 13.00 8.00 16.00 6.00 14.00 0.250 ns P50 CLKOUT to PCOE, IORD, PCWE, IOWR assert time. — 11.00 — 11.00 — 11.00 — ns P51 CLKOUT to PCOE, IORD, PCWE, IOWR negate time. 2.00 11.00 2.00 11.00 2.00 11.00 — ns P52 CLKOUT to ALE assert time 5.00 13.00 8.00 16.00 6.00 14.00 0.250 ns P53 CLKOUT to ALE negate time — 13.00 — 16.00 — 14.00 0.250 ns P54 PCWE, IOWR negated to D[0–31] invalid.1 3.00 — 6.00 — 4.00 — 0.250 ns P55 WAIT_B valid to CLKOUT rising edge.1 8.00 — 8.00 — 8.00 — — ns P56 CLKOUT rising edge to WAIT_B invalid.1 2.00 — 2.00 — 2.00 — — ns 1 PSST = 1. Otherwise add PSST times cycle time. PSHT = 0. Otherwise add PSHT times cycle time. These synchronous timings define when the WAIT_B signal is detected in order to freeze (or relieve) the PCMCIA current cycle. The WAIT_B assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC850 PowerQUICC User’s Manual. MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 32 Freescale Semiconductor Bus Signal Timing Figure 24 provides the PCMCIA access cycle timing for the external bus read. CLKOUT TS P44 A[6:31] P46 P45 P47 REG P48 P49 CE1/CE2 P50 P51 P53 P52 PCOE, IORD P52 ALE B18 B19 D[0:31] Figure 24. PCMCIA Access Cycles Timing External Bus Read MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 33 Bus Signal Timing Figure 25 provides the PCMCIA access cycle timing for the external bus write. CLKOUT TS P44 A[6:31] P46 P45 P47 REG P48 P49 CE1/CE2 P50 P51 P53 P52 B8 B9 P54 PCWE, IOWR P52 ALE D[0:31] Figure 25. PCMCIA Access Cycles Timing External Bus Write Figure 26 provides the PCMCIA WAIT signals detection timing. CLKOUT P55 P56 WAIT_B Figure 26. PCMCIA WAIT Signal Detection Timing MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 34 Freescale Semiconductor Bus Signal Timing Table 9 shows the PCMCIA port timing for the MPC850. Table 9. PCMCIA Port Timing 50 MHz Num 66 MHz 80 MHz Characteristic Unit Min Max Min Max Min Max — 19.00 — 19.00 — 19.00 ns P57 CLKOUT to OPx valid P58 HRESET negated to OPx drive 1 18.00 — 26.00 — 22.00 — ns P59 IP_Xx valid to CLKOUT rising edge 5.00 — 5.00 — 5.00 — ns P60 CLKOUT rising edge to IP_Xx invalid 1.00 — 1.00 — 1.00 — ns 1 OP2 and OP3 only. Figure 27 provides the PCMCIA output port timing for the MPC850. CLKOUT P57 Output Signals HRESET P58 OP2, OP3 Figure 27. PCMCIA Output Port Timing Figure 28 provides the PCMCIA output port timing for the MPC850. CLKOUT P59 P60 Input Signals Figure 28. PCMCIA Input Port Timing MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 35 Bus Signal Timing Table 10 shows the debug port timing for the MPC850. Table 10. Debug Port Timing 50 MHz Num 66 MHz 80 MHz Characteristic Unit Min Max Min Max Min Max D61 DSCK cycle time 60.00 — 91.00 — 75.00 — ns D62 DSCK clock pulse width 25.00 — 38.00 — 31.00 — ns D63 DSCK rise and fall times 0.00 3.00 0.00 3.00 0.00 3.00 ns D64 DSDI input data setup time 8.00 — 8.00 — 8.00 — ns D65 DSDI data hold time 5.00 — 5.00 — 5.00 — ns D66 DSCK low to DSDO data valid 0.00 15.00 0.00 15.00 0.00 15.00 ns D67 DSCK low to DSDO invalid 0.00 2.00 0.00 2.00 0.00 2.00 ns Figure 29 provides the input timing for the debug port clock. DSCK D61 D62 D62 D63 D63 Figure 29. Debug Port Clock Input Timing Figure 30 provides the timing for the debug port. DSCK D64 D65 DSDI D66 D67 DSDO Figure 30. Debug Port Timings MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 36 Freescale Semiconductor Bus Signal Timing Table 11 shows the reset timing for the MPC850. Table 11. Reset Timing 50 MHz Num 66MHz 80 MHz Characteristic FFACTOR Unit Min Max Min Max Min Max R69 CLKOUT to HRESET high impedance — 20.00 — 20.00 — 20.00 — ns R70 CLKOUT to SRESET high impedance — 20.00 — 20.00 — 20.00 — ns R71 RSTCONF pulse width 340.00 — 515.00 — 425.00 — 17.000 ns — — — — — — — R72 R73 Configuration data to HRESET rising edge set up time 350.00 — 505.00 — 425.00 — 15.000 ns R74 Configuration data to RSTCONF rising edge set up time 350.00 — 350.00 — 350.00 — — ns R75 Configuration data hold time after RSTCONF negation 0.00 — 0.00 — 0.00 — — ns R76 Configuration data hold time after HRESET negation 0.00 — 0.00 — 0.00 — — ns R77 HRESET and RSTCONF asserted to data out drive — 25.00 — 25.00 — 25.00 — ns R78 RSTCONF negated to data out high impedance. — 25.00 — 25.00 — 25.00 — ns CLKOUT of last rising edge before chip tristates HRESET to data out high impedance. — 25.00 — 25.00 — 25.00 — ns R79 R80 DSDI, DSCK set up 60.00 — 90.00 — 75.00 — 3.000 ns R81 DSDI, DSCK hold time 0.00 — 0.00 — 0.00 — — ns R82 SRESET negated to CLKOUT rising edge for DSDI and DSCK sample 160.00 — 242.00 — 200.00 — 8.000 ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 37 Bus Signal Timing Figure 31 shows the reset timing for the data bus configuration. HRESET R71 R76 RSTCONF R73 R74 R75 D[0:31] (IN) Figure 31. Reset Timing—Configuration from Data Bus Figure 32 provides the reset timing for the data bus weak drive during configuration. CLKOUT R69 HRESET R79 RSTCONF R77 R78 D[0:31] (OUT) (Weak) Figure 32. Reset Timing—Data Bus Weak Drive during Configuration MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 38 Freescale Semiconductor IEEE 1149.1 Electrical Specifications Figure 33 provides the reset timing for the debug port configuration. CLKOUT R70 R82 SRESET R80 R80 R81 R81 DSCK, DSDI Figure 33. Reset Timing—Debug Port Configuration 7 IEEE 1149.1 Electrical Specifications Table 12 provides the JTAG timings for the MPC850 as shown in Figure 34 to Figure 37. Table 12. JTAG Timing 50 MHz Num 66MHz 80 MHz Characteristic Unit Min Max Min Max Min Max J82 TCK cycle time 100.00 — 100.00 — 100.00 — ns J83 TCK clock pulse width measured at 1.5 V 40.00 — 40.00 — 40.00 — ns J84 TCK rise and fall times 0.00 10.00 0.00 10.00 0.00 10.00 ns J85 TMS, TDI data setup time 5.00 — 5.00 — 5.00 — ns J86 TMS, TDI data hold time 25.00 — 25.00 — 25.00 — ns J87 TCK low to TDO data valid — 27.00 — 27.00 — 27.00 ns J88 TCK low to TDO data invalid 0.00 — 0.00 — 0.00 — ns J89 TCK low to TDO high impedance — 20.00 — 20.00 — 20.00 ns J90 TRST assert time 100.00 — 100.00 — 100.00 — ns J91 TRST setup time to TCK low 40.00 — 40.00 — 40.00 — ns J92 TCK falling edge to output valid — 50.00 — 50.00 — 50.00 ns J93 TCK falling edge to output valid out of high impedance — 50.00 — 50.00 — 50.00 ns J94 TCK falling edge to output high impedance — 50.00 — 50.00 — 50.00 ns J95 Boundary scan input valid to TCK rising edge 50.00 — 50.00 — 50.00 — ns J96 TCK rising edge to boundary scan input invalid 50.00 — 50.00 — 50.00 — ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 39 IEEE 1149.1 Electrical Specifications TCK J82 J83 J82 J83 J84 J84 Figure 34. JTAG Test Clock Input Timing TCK J85 J86 TMS, TDI J87 J88 J89 TDO Figure 35. JTAG Test Access Port Timing Diagram TCK J91 J90 TRST Figure 36. JTAG TRST Timing Diagram MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 40 Freescale Semiconductor CPM Electrical Characteristics TCK J92 J94 Output Signals J93 Output Signals J95 J96 Input Signals Figure 37. Boundary Scan (JTAG) Timing Diagram 8 CPM Electrical Characteristics This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC850. 8.1 PIO AC Electrical Specifications Table 13 provides the parallel I/O timings for the MPC850 as shown in Figure 38. Table 13. Parallel I/O Timing All Frequencies Num Characteristic Unit Min Max 29 Data-in setup time to clock high 15 — ns 30 Data-in hold time from clock high 7.5 — ns 31 Clock low to data-out valid (CPU writes data, control, or direction) — 25 ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 41 CPM Electrical Characteristics CLKOUT 29 30 DATA-IN 31 DATA-OUT Figure 38. Parallel I/O Data-In/Data-Out Timing Diagram 8.2 IDMA Controller AC Electrical Specifications Table 14 provides the IDMA controller timings as shown in Figure 39 to Figure 42. Table 14. IDMA Controller Timing All Frequencies Num Characteristic Unit Min Max 40 DREQ setup time to clock high 7.00 — ns 41 DREQ hold time from clock high 3.00 — ns 42 SDACK assertion delay from clock high — 12.00 ns 43 SDACK negation delay from clock low — 12.00 ns 44 SDACK negation delay from TA low — 20.00 ns 45 SDACK negation delay from clock high — 15.00 ns 46 TA assertion to falling edge of the clock setup time (applies to external TA) 7.00 — ns CLKOUT (Output) 41 40 DREQ (Input) Figure 39. IDMA External Requests Timing Diagram MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 42 Freescale Semiconductor CPM Electrical Characteristics CLKOUT (Output) TS (Output) R/W (Output) 42 43 DATA 46 TA (Output) SDACK Figure 40. SDACK Timing Diagram—Peripheral Write, TA Sampled Low at the Falling Edge of the Clock MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 43 CPM Electrical Characteristics CLKOUT (Output) TS (Output) R/W (Output) 42 44 DATA TA (Output) SDACK Figure 41. SDACK Timing Diagram—Peripheral Write, TA Sampled High at the Falling Edge of the Clock CLKOUT (Output) TS (Output) R/W (Output) 42 45 DATA TA (Output) SDACK Figure 42. SDACK Timing Diagram—Peripheral Read MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 44 Freescale Semiconductor CPM Electrical Characteristics 8.3 Baud Rate Generator AC Electrical Specifications Table 15 provides the baud rate generator timings as shown in Figure 43. Table 15. Baud Rate Generator Timing All Frequencies Num Characteristic Unit Min Max — 10.00 ns 50 BRGO rise and fall time 51 BRGO duty cycle 40.00 60.00 % 52 BRGO cycle 40.00 — ns 50 50 BRGOn 51 51 52 Figure 43. Baud Rate Generator Timing Diagram 8.4 Timer AC Electrical Specifications Table 16 provides the baud rate generator timings as shown in Figure 44. Table 16. Timer Timing All Frequencies Num Characteristic Unit Min Max 61 TIN/TGATE rise and fall time 10.00 — ns 62 TIN/TGATE low time 1.00 — clk 63 TIN/TGATE high time 2.00 — clk 64 TIN/TGATE cycle time 3.00 — clk 65 CLKO high to TOUT valid 3.00 25.00 ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 45 CPM Electrical Characteristics CLKOUT 61 63 62 TIN/TGATE (Input) 61 64 65 TOUT (Output) Figure 44. CPM General-Purpose Timers Timing Diagram 8.5 Serial Interface AC Electrical Specifications Table 17 provides the serial interface timings as shown in Figure 45 to Figure 49. Table 17. SI Timing All Frequencies Num Characteristic Unit 70 L1RCLK, L1TCLK frequency (DSC = 0) 1, 2 71 L1RCLK, L1TCLK width low (DSC = 0) 2 3 Min Max — SYNCCLK/2. 5 MHz P + 10 — ns P + 10 — ns — 15.00 ns 71a L1RCLK, L1TCLK width high (DSC = 0) 72 L1TXD, L1STn, L1RQ, L1xCLKO rise/fall time 73 L1RSYNC, L1TSYNC valid to L1xCLK edge Edge (SYNC setup time) 20.00 — ns 74 L1xCLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time) 35.00 — ns 75 L1RSYNC, L1TSYNC rise/fall time — 15.00 ns 76 L1RXD valid to L1xCLK edge (L1RXD setup time) 17.00 — ns 77 L1xCLK edge to L1RXD invalid (L1RXD hold time) 13.00 — ns 10.00 45.00 ns 4 78 L1xCLK edge to L1STn valid 78A L1SYNC valid to L1STn valid 10.00 45.00 ns 79 L1xCLK edge to L1STn invalid 10.00 45.00 ns 80 L1xCLK edge to L1TXD valid 10.00 55.00 ns 10.00 55.00 ns 0.00 42.00 ns 80A 81 L1TSYNC valid to L1TXD valid 4 L1xCLK edge to L1TXD high impedance MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 46 Freescale Semiconductor CPM Electrical Characteristics Table 17. SI Timing (continued) All Frequencies Num Characteristic Unit Min Max 82 L1RCLK, L1TCLK frequency (DSC =1) — 16.00 or SYNCCLK/2 MHz 83 L1RCLK, L1TCLK width low (DSC =1) P + 10 — ns 83A L1RCLK, L1TCLK width high (DSC = 1)3 P + 10 — ns 84 L1CLK edge to L1CLKO valid (DSC = 1) — 30.00 ns 85 L1RQ valid before falling edge of L1TSYNC4 1.00 — L1TCLK 42.00 — ns 42.00 — ns — 0.00 ns time2 86 L1GR setup 87 L1GR hold time 88 L1xCLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0) 1 The ratio SyncCLK/L1RCLK must be greater than 2.5/1. These specs are valid for IDL mode only. 3 Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns. 4 These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later. 2 L1RCLK (FE=0, CE=0) (Input) 71 70 71a 72 L1RCLK (FE=1, CE=1) (Input) RFSD=1 75 L1RSYNC (Input) 73 74 L1RxD (Input) 77 BIT0 76 78 79 L1STn (Output) Figure 45. SI Receive Timing Diagram with Normal Clocking (DSC = 0) MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 47 CPM Electrical Characteristics L1RCLK (FE=1, CE=1) (Input) 72 83a 82 L1RCLK (FE=0, CE=0) (Input) RFSD=1 75 L1RSYNC (Input) 73 74 L1RXD (Input) 77 BIT0 76 78 79 L1ST(4-1) (Output) 84 L1CLKO (Output) Figure 46. SI Receive Timing with Double-Speed Clocking (DSC = 1) MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 48 Freescale Semiconductor CPM Electrical Characteristics L1TCLK (FE=0, CE=0) (Input) 71 70 72 L1TCLK (FE=1, CE=1) (Input) 73 TFSD=0 75 L1TSYNC (Input) 74 80a L1TxD (Output) 81 BIT0 80 79 78 L1STn (Output) Figure 47. SI Transmit Timing Diagram MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 49 CPM Electrical Characteristics L1RCLK (FE=0, CE=0) (Input) 72 83a 82 L1RCLK (FE=1, CE=1) (Input) TFSD=0 75 L1RSYNC (Input) 73 74 L1TXD (Output) 81 BIT0 80 78a 79 L1ST(4-1) (Output) 78 84 L1CLKO (Output) Figure 48. SI Transmit Timing with Double Speed Clocking (DSC = 1) MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 50 Freescale Semiconductor Freescale Semiconductor L1GR (Input) L1RQ (Output) L1ST(4-1) (Output) L1RXD (Input) L1TXD (Output) L1RSYNC (Input) L1RCLK (Input) 80 77 74 2 3 5 72 B15 B14 B13 71 71 4 86 85 76 6 87 B17 B16 B15 B14 B13 B17 B16 73 1 78 B12 B11 B12 B11 7 8 B10 B10 9 D1 D1 10 A A 11 14 15 16 17 18 B25 B24 B23 B22 B21 B20 13 B27 B26 B25 B24 B23 B22 B21 B20 81 B27 B26 12 19 D2 D2 20 M M CPM Electrical Characteristics Figure 49. IDL Timing MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 51 CPM Electrical Characteristics 8.6 SCC in NMSI Mode Electrical Specifications Table 18 provides the NMSI external clock timing. Table 18. NMSI External Clock Timing All Frequencies Num 1 2 Characteristic Unit Min Max 1/SYNCCLK — ns 1/SYNCCLK +5 — ns — 15.00 ns 100 RCLKx and TCLKx frequency 1 (x = 2, 3 for all specs in this table) 101 RCLKx and TCLKx width low 102 RCLKx and TCLKx rise/fall time 103 TXDx active delay (from TCLKx falling edge) 0.00 50.00 ns 104 RTSx active/inactive delay (from TCLKx falling edge) 0.00 50.00 ns 105 CTSx setup time to TCLKx rising edge 5.00 — ns 106 RXDx setup time to RCLKx rising edge 5.00 — ns 107 RXDx hold time from RCLKx rising edge 2 5.00 — ns 108 CDx setup time to RCLKx rising edge 5.00 — ns The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater than or equal to 2.25/1. Also applies to CD and CTS hold time when they are used as an external sync signal. Table 19 provides the NMSI internal clock timing. Table 19. NMSI Internal Clock Timing All Frequencies Num 1 2 Characteristic Unit Min Max 0.00 SYNCCLK/3 MHz — — ns 100 RCLKx and TCLKx frequency 1 (x = 2, 3 for all specs in this table) 102 RCLKx and TCLKx rise/fall time 103 TXDx active delay (from TCLKx falling edge) 0.00 30.00 ns 104 RTSx active/inactive delay (from TCLKx falling edge) 0.00 30.00 ns 105 CTSx setup time to TCLKx rising edge 40.00 — ns 106 RXDx setup time to RCLKx rising edge 40.00 — ns 107 RXDx hold time from RCLKx rising edge 2 0.00 — ns 108 CDx setup time to RCLKx rising edge 40.00 — ns The ratios SyncCLK/RCLKx and SyncCLK/TCLK1x must be greater or equal to 3/1. Also applies to CD and CTS hold time when they are used as an external sync signals. MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 52 Freescale Semiconductor CPM Electrical Characteristics Figure 50 through Figure 52 show the NMSI timings. RCLKx 102 102 101 106 100 RXDx (Input) 107 108 CDx (Input) 107 CDx (SYNC Input) Figure 50. SCC NMSI Receive Timing Diagram TCLKx 102 102 101 100 TXDx (Output) 103 105 RTSx (Output) 104 104 CTSx (Input) 107 CTSx (SYNC Input) Figure 51. SCC NMSI Transmit Timing Diagram MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 53 CPM Electrical Characteristics TCLKx 102 102 101 100 TXDx (Output) 103 RTSx (Output) 104 107 104 105 CTSx (Echo Input) Figure 52. HDLC Bus Timing Diagram 8.7 Ethernet Electrical Specifications Table 20 provides the Ethernet timings as shown in Figure 53 to Figure 55. Table 20. Ethernet Timing All Frequencies Num Characteristic 120 CLSN width high 121 RCLKx rise/fall time (x = 2, 3 for all specs in this table) 122 RCLKx width low period 1 Unit Min Max 40.00 — ns — 15.00 ns 40.00 — ns 80.00 120.00 ns 123 RCLKx clock 124 RXDx setup time 20.00 — ns 125 RXDx hold time 5.00 — ns 126 RENA active delay (from RCLKx rising edge of the last data bit) 10.00 — ns 127 RENA width low 100.00 — ns 128 TCLKx rise/fall time — 15.00 ns 129 TCLKx width low 40.00 — ns 130 TCLKx clock period1 99.00 101.00 ns 131 TXDx active delay (from TCLKx rising edge) 10.00 50.00 ns 132 TXDx inactive delay (from TCLKx rising edge) 10.00 50.00 ns 133 TENA active delay (from TCLKx rising edge) 10.00 50.00 ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 54 Freescale Semiconductor CPM Electrical Characteristics Table 20. Ethernet Timing (continued) All Frequencies Num 134 1 2 Characteristic Unit TENA inactive delay (from TCLKx rising edge) Min Max 10.00 50.00 ns 138 CLKOUT low to SDACK asserted 2 — 20.00 ns 139 CLKOUT low to SDACK negated 2 — 20.00 ns The ratios SyncCLK/RCLKx and SyncCLK/TCLKx must be greater or equal to 2/1. SDACK is asserted whenever the SDMA writes the incoming frame destination address into memory. CLSN(CTSx) (Input) 120 Figure 53. Ethernet Collision Timing Diagram RCLKx 121 121 122 124 123 RXDx (Input) Last Bit 125 126 127 RENA(CDx) (Input) Figure 54. Ethernet Receive Timing Diagram MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 55 CPM Electrical Characteristics TCLKx 128 128 131 129 130 TxDx (Output) 132 133 134 TENA(RTSx) (Input) RENA(CDx) (Input) (NOTE 2) NOTES: 1. Transmit clock invert (TCI) bit in GSMR is set. 2. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the CSL bit is set in the buffer descriptor at the end of the frame transmission. Figure 55. Ethernet Transmit Timing Diagram 8.8 SMC Transparent AC Electrical Specifications Figure 21 provides the SMC transparent timings as shown in Figure 56. Table 21. Serial Management Controller Timing All Frequencies Num 1 Characteristic Unit Min Max 100.00 — ns 150 SMCLKx clock period 1 151 SMCLKx width low 50.00 — ns 151a SMCLKx width high 50.00 — ns 152 SMCLKx rise/fall time — 15.00 ns 153 SMTXDx active delay (from SMCLKx falling edge) 10.00 50.00 ns 154 SMRXDx/SMSYNx setup time 20.00 — ns 155 SMRXDx/SMSYNx hold time 5.00 — ns The ratio SyncCLK/SMCLKx must be greater or equal to 2/1. MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 56 Freescale Semiconductor CPM Electrical Characteristics SMCLKx 152 152 151 151a 150 SMTXDx (Output) NOTE 154 153 155 SMSYNx 154 155 SMRXDx (Input) NOTE: 1. This delay is equal to an integer number of character-length clocks. Figure 56. SMC Transparent Timing Diagram 8.9 SPI Master AC Electrical Specifications Table 22 provides the SPI master timings as shown in Figure 57 and Figure 58. Table 22. SPI Master Timing All Frequencies Num Characteristic Unit Min Max 160 MASTER cycle time 4 1024 tcyc 161 MASTER clock (SCK) high or low time 2 512 tcyc 162 MASTER data setup time (inputs) 50.00 — ns 163 Master data hold time (inputs) 0.00 — ns 164 Master data valid (after SCK edge) — 20.00 ns 165 Master data hold time (outputs) 0.00 — ns 166 Rise time output — 15.00 ns 167 Fall time output — 15.00 ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 57 CPM Electrical Characteristics SPICLK (CI=0) (Output) 161 167 166 161 160 SPICLK (CI=1) (Output) 163 167 162 SPIMISO (Input) msb 166 Data lsb 165 msb 164 167 SPIMOSI (Output) 166 msb Data lsb msb Figure 57. SPI Master (CP = 0) Timing Diagram SPICLK (CI=0) (Output) 161 167 166 161 160 SPICLK (CI=1) (Output) 163 167 162 SPIMISO (Input) 166 msb Data 165 lsb msb 164 167 SPIMOSI (Output) msb 166 Data lsb msb Figure 58. SPI Master (CP = 1) Timing Diagram MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 58 Freescale Semiconductor CPM Electrical Characteristics 8.10 SPI Slave AC Electrical Specifications Table 23 provides the SPI slave timings as shown in Figure 59 and Figure 60. Table 23. SPI Slave Timing All Frequencies Num Characteristic Unit Min Max 2 — tcyc 170 Slave cycle time 171 Slave enable lead time 15.00 — ns 172 Slave enable lag time 15.00 — ns 173 Slave clock (SPICLK) high or low time 1 — tcyc 174 Slave sequential transfer delay (does not require deselect) 1 — tcyc 175 Slave data setup time (inputs) 20.00 — ns 176 Slave data hold time (inputs) 20.00 — ns 177 Slave access time — 50.00 ns 178 Slave SPI MISO disable time — 50.00 ns 179 Slave data valid (after SPICLK edge) — 50.00 ns 180 Slave data hold time (outputs) 0.00 — ns 181 Rise time (input) — 15.00 ns 182 Fall time (input) — 15.00 ns MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 59 CPM Electrical Characteristics SPISEL (Input) 172 171 174 SPICLK (CI=0) (Input) 173 182 173 181 170 SPICLK (CI=1) (Input) 177 181 182 180 SPIMISO (Output) msb 178 Data 175 msb Undef msb 179 176 SPIMOSI (Input) lsb 181 182 Data lsb msb Figure 59. SPI Slave (CP = 0) Timing Diagram MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 60 Freescale Semiconductor CPM Electrical Characteristics SPISEL (Input) 172 171 174 170 SPICLK (CI=0) (Input) 173 182 181 173 181 SPICLK (CI=1) (Input) 177 182 180 SPIMISO (Output) msb Undef Data 175 msb lsb 179 176 SPIMOSI (Input) 178 msb 181 182 Data msb lsb Figure 60. SPI Slave (CP = 1) Timing Diagram 8.11 I2C AC Electrical Specifications Table 24 provides the I2C (SCL < 100 KHz) timings. Table 24. I2C Timing (SCL < 100 KHZ) All Frequencies Num 200 Characteristic SCL clock frequency (slave) (master) 1 Unit Min Max 0.00 100.00 KHz 1.50 100.00 KHz 200 SCL clock frequency 202 Bus free time between transmissions 4.70 — µs 203 Low period of SCL 4.70 — µs 204 High period of SCL 4.00 — µs 205 Start condition setup time 4.70 — µs 206 Start condition hold time 4.00 — µs 207 Data hold time 0.00 — µs 208 Data setup time 250.00 — ns 209 SDL/SCL rise time — 1.00 µs MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 61 CPM Electrical Characteristics Table 24. I2C Timing (SCL < 100 KHZ) (CONTINUED) All Frequencies Num 1 Characteristic 210 SDL/SCL fall time 211 Stop condition setup time Unit Min Max — 300.00 ns 4.70 — µs SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1. Table 25 provides the I2C (SCL > 100 KHz) timings. Table 25. I2C Timing (SCL > 100 KHZ) All Frequencies Num 1 Characteristic Expression Unit Min Max 200 SCL clock frequency (slave) fSCL 0 BRGCLK/48 Hz 200 SCL clock frequency (master) 1 fSCL BRGCLK/16512 BRGCLK/48 Hz 202 Bus free time between transmissions 1/(2.2 * fSCL) — s 203 Low period of SCL 1/(2.2 * fSCL) — s 204 High period of SCL 1/(2.2 * fSCL) — s 205 Start condition setup time 1/(2.2 * fSCL) — s 206 Start condition hold time 1/(2.2 * fSCL) — s 207 Data hold time 0 — s 208 Data setup time 1/(40 * fSCL) — s 209 SDL/SCL rise time — 1/(10 * fSCL) s 210 SDL/SCL fall time — 1/(33 * fSCL) s 211 Stop condition setup time 1/2(2.2 * fSCL) — s SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1. Figure 61 shows the I2C bus timing. SDA 202 203 205 204 208 207 SCL 206 209 210 211 Figure 61. I2C Bus Timing Diagram MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 62 Freescale Semiconductor Mechanical Data and Ordering Information 9 Mechanical Data and Ordering Information Table 26 provides information on the MPC850 derivative devices. Table 26. MPC850 Family Derivatives Ethernet Support Number of SCCs 1 32-Channel HDLC Support 64-Channel HDLC Support 2 MPC850 N/A One N/A N/A MPC850DE Yes Two N/A N/A MPC850SR Yes Two N/A Yes MPC850DSL Yes Two No No Device 1 2 Serial Communication Controller (SCC) 50 MHz version supports 64 time slots on a time division multiplexed line using one SCC Table 27 identifies the packages and operating frequencies available for the MPC850. Table 27. MPC850 Package/Frequency/Availability Package Type 256-Lead Plastic Ball Grid Array (ZT suffix) 256-Lead Plastic Ball Grid Array (CZT suffix) 9.1 Frequency (MHz) Temperature (Tj) Order Number 50 0°C to 95°C XPC850ZT50BU XPC850DEZT50BU XPC850SRZT50BU XPC850DSLZT50BU 66 0°C to 95°C XPC850ZT66BU XPC850DEZT66BU XPC850SRZT66BU 80 0°C to 95°C XPC850ZT80BU XPC850DEZT80BU XPC850SRZT80BU 50 -40°C to 95°C XPC850CZT50BU XPC850DECZT50BU XPC850SRCZT50BU XPC850DSLCZT50BU 66 XPC850CZT66BU XPC850DECZT66BU XPC850SRCZT66BU 80 XPC850CZT80B XPC850DECZT80B XPC850SRCZT80B Pin Assignments and Mechanical Dimensions of the PBGA The original pin numbering of the MPC850 conformed to a Freescale proprietary pin numbering scheme that has since been replaced by the JEDEC pin numbering standard for this package type. To support MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 63 Mechanical Data and Ordering Information customers that are currently using the non-JEDEC pin numbering scheme, two sets of pinouts, JEDEC and non-JEDEC, are presented in this document. Figure 62 shows the non-JEDEC pinout of the PBGA package as viewed from the top surface. T PC14 PB28 PB27 PC12 TCK PB24 PB23 PA8 PA7 VDDL PA5 PC7 PC4 PC15 PA14 PA13 PA12 TMS TDI PC11 PB22 PC9 PB19 PA4 PB16 PD15 PA15 PB30 PB29 PC13 PB26 TRST N/C PC10 PA6 PB18 PC5 PD13 A8 A7 PB31 N/C TDO PB25 PA9 N/C PC8 PB17 PC6 PD11 A11 A9 A12 A15 A14 A27 PD14 PD10 PD8 PD12 PD7 PD6 PD9 PD4 PD5 N/C PD3 IRQ7 IRQ1 IRQ0 A6 D12 D13 D8 D0 A13 A10 D23 D27 D4 D1 A19 A16 A17 D17 D10 D9 D11 VDDL A20 A21 N/C D15 D14 D2 D3 A29 A23 A25 A24 D22 D18 D16 D5 A28 A30 A22 A18 D25 D20 D19 A31 TSIZ0 A26 WE3 D28 D24 D21 D6 WE1 TSIZ1 N/C GPLA0 D26 D31 D29 D7 WE0 WE2 R P N M L K J GND H G VDDL F VDDH E D GPLA3 CS5 CS0 GPLA4 TS IRQ2 IPB7 IPB2 MODCK1 TEXP BG IPB5 IPB1 IPB6 BURST IPB4 ALEB IRQ4 MODCK2HRESETSRESETPORESETXFC VDDSYN IPB3 IPB0 VDDL EXTCLKEXTAL XTAL KAPWRVSSSYN1VSSSYN 9 8 DP1 DP2 D30 CLKOUT N/C RSTCONFWAITB DP0 DP3 N/C C GPLA1 GPLA2 CS6 WR GPLA5 TEA B CS4 CS7 CS2 GPLB4 BI BR N/C CS3 CS1 BDIP TA BB 16 15 14 12 11 A 13 IRQ6 10 7 6 5 4 3 2 1 Figure 62. Pin Assignments for the PBGA (Top View)—non-JEDEC Standard MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 64 Freescale Semiconductor Mechanical Data and Ordering Information Figure 63 shows the JEDEC pinout of the PBGA package as viewed from the top surface. U PC14 PB28 PB27 PC12 TCK PB24 PB23 PA8 PA7 VDDL PA5 PC7 PC4 PC15 PA14 PA13 PA12 TMS TDI PC11 PB22 PC9 PB19 PA4 PB16 PD15 PA15 PB30 PB29 PC13 PB26 TRST N/C PC10 PA6 PB18 PC5 PD13 A8 A7 PB31 N/C TDO PB25 PA9 N/C PC8 PB17 PC6 PD11 A11 A9 A12 A15 A14 A27 PD14 PD10 PD8 PD12 PD7 PD6 PD9 PD4 PD5 N/C PD3 IRQ7 IRQ1 IRQ0 A6 D12 D13 D8 D0 A13 A10 D23 D27 D4 D1 A19 A16 A17 D17 D10 D9 D11 VDDL A20 A21 N/C D15 D14 D2 D3 A29 A23 A25 A24 D22 D18 D16 D5 A28 A30 A22 A18 D25 D20 D19 A31 TSIZ0 A26 WE3 D28 D24 D21 D6 WE1 TSIZ1 N/C GPLA0 D26 D31 D29 D7 WE0 WE2 T R P N M L K GND J H VDDL G VDDH F E GPLA3 CS5 CS0 GPLA4 TS IRQ2 IPB7 IPB2 MODCK1 TEXP BG IPB5 IPB1 IPB6 BURST IPB4 ALEB IRQ4 MODCK2HRESETSRESETPORESETXFC VDDSYN IPB3 IPB0 VDDL EXTCLKEXTAL XTAL KAPWRVSSSYN1VSSSYN 10 9 DP2 D30 CLKOUT N/C RSTCONFWAITB DP0 DP3 N/C DP1 D GPLA1 GPLA2 CS6 WR GPLA5 TEA C CS4 CS7 CS2 GPLB4 BI BR N/C CS3 CS1 BDIP TA BB 17 16 15 13 12 B 14 IRQ6 11 8 7 6 5 4 3 2 Figure 63. Pin Assignments for the PBGA (Top View)—JEDEC Standard For more information on the printed circuit board layout of the PBGA package, including thermal via design and suggested pad layout, please refer to AN-1231/D, Plastic Ball Grid Array Application Note available from your local Freescale sales office. MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 65 Mechanical Data and Ordering Information Figure 64 shows the non-JEDEC package dimensions of the PBGA. NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS IN MILLIMETERS. 3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C. 4. PRIMARY DATUM C AND THE SEATING PLANE ARE D A 0.20 C 256X D2 0.35 C E DIM A A1 A2 A3 b D D1 D2 E E1 E2 e E2 4X 0.20 A2 A3 TOP VIEW MILLIMETERS MIN MAX 1.91 2.35 0.50 0.70 1.12 1.22 0.29 0.43 0.60 0.90 23.00 BSC 19.05 REF 19.00 20.00 23.00 BSC 19.05 REF 19.00 20.00 1.27 BSC B A1 A (D1) 15X C e SEATING PLANE T R P N M L K J H G F E D C B A SIDE VIEW 15X e (E1) 4X e /2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 256X BOTTOM VIEW b 0.30 M C A B 0.15 M C Figure 64. Package Dimensions for the Plastic Ball Grid Array (PBGA)—non-JEDEC Standard MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 66 Freescale Semiconductor Mechanical Data and Ordering Information Figure 65 shows the JEDEC package dimensions of the PBGA. NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS IN MILLIMETERS. 3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C. 4. PRIMARY DATUM C AND THE SEATING PLANE ARE D A 0.20 C 256X D2 0.35 C E DIM A A1 A2 A3 b D D1 D2 E E1 E2 e E2 4X 0.20 A2 A3 TOP VIEW MILLIMETERS MIN MAX 1.91 2.35 0.50 0.70 1.12 1.22 0.29 0.43 0.60 0.90 23.00 BSC 19.05 REF 19.00 20.00 23.00 BSC 19.05 REF 19.00 20.00 1.27 BSC B A1 A (D1) 15X C e SEATING PLANE U T R P N M L K J H G F E D C B SIDE VIEW 15X e (E1) 4X e /2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 256X BOTTOM VIEW b 0.30 M C A B 0.15 M C CASE 1130-01 ISSUE B Figure 65. Package Dimensions for the Plastic Ball Grid Array (PBGA)—JEDEC Standard MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 67 Document Revision History 10 Document Revision History Table 28 lists significant changes between revisions of this document. Table 28. Document Revision History Revision Date Change 2 7/2005 Added footnote 3 to Table 5 (previously Table 4.5) and deleted IOL limit. 1 10/2002 Added MPC850DSL. Corrected Figure 25 on page 34. 0.2 04/2002 Updated power numbers and added Rev. C 0.1 11/2001 Removed reference to 5 Volt tolerance capability on peripheral interface pins. Replaced SI and IDL timing diagrams with better images. Updated to new template, added this revision table. MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 68 Freescale Semiconductor Document Revision History THIS PAGE INTENTIONALLY LEFT BLANK MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 69 Document Revision History THIS PAGE INTENTIONALLY LEFT BLANK MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 70 Freescale Semiconductor Document Revision History THIS PAGE INTENTIONALLY LEFT BLANK MPC850 PowerQUICC™ Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 71 How to Reach Us: Home Page: www.freescale.com email: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com parameters, including “Typicals” must be validated for each customer application by Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com purchase or use Freescale Semiconductor products for any such unintended or For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Document Number: MPC850EC Rev. 2 07/2005 customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc., 2005.
KMC850DSLCZQ50BU
物料型号:NXP的MPC850 PowerQUICC™系列,包括MPC850、MPC850DE、MPC850SR和MPC850DSL等不同型号,具有不同的通信支持和功能。

器件简介:MPC850是一款多功能的单芯片微处理器和外设组合,适用于多种控制器应用,特别擅长于通信和网络产品。它专为成本敏感、远程访问和电信应用而设计,支持以太网,并具有USB支持和更大的双端口RAM。

引脚分配:文档中包含了不同型号的MPC850的引脚分配和功能支持矩阵,例如MPC850支持一个或两个串行通信控制器(SCCs),支持以太网、ATM等。

参数特性:MPC850包括高性能的嵌入式MPC8xx核心,具有2-Kbyte指令缓存和1-Kbyte数据缓存,支持多种内存管理单元(MMUs),具有丰富的中断和定时器资源。

功能详解:MPC850集成了多种系统功能,如内存控制器、通信处理器模块(CPM),以及支持多种通信协议的串行通信接口。它还支持低功耗模式,以适应不同的应用需求。

应用信息:MPC850适用于需要高性能通信处理的应用,如远程访问、电信和网络设备。

封装信息:文档提供了MPC850的不同封装类型和工作频率,包括256-Lead Plastic Ball Grid Array (PBGA),以及它们的工作温度范围和订单编号。
KMC850DSLCZQ50BU 价格&库存

很抱歉,暂时无法提供与“KMC850DSLCZQ50BU”相匹配的价格&库存,您可以联系我们找货

免费人工找货