0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LPC12D27FBD100/301551

LPC12D27FBD100/301551

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LQFP100

  • 描述:

    IC MCU 32BIT 128KB FLASH 100LQFP

  • 数据手册
  • 价格&库存
LPC12D27FBD100/301551 数据手册
LPC12D27 32-bit ARM Cortex-M0 microcontroller; 128 kB flash and 8 kB SRAM; 40 segment x 4 LCD driver Rev. 1 — 20 September 2011 Product data sheet 1. General description The LPC12D27 are ARM Cortex-M0 based microcontrollers for embedded applications featuring a high level of integration and low power consumption. The ARM Cortex-M0 is a next generation core that offers system enhancements such as enhanced debug features and a higher level of support block integration. The LPC12D27 is a dual-chip module consisting of a LPC1227 single-chip microcontroller combined with a PCF8576D Universal LCD driver in a low-cost 100-pin package. The LCD driver provides 40 segments and supports from one to four backplanes. Display overhead is minimized by an on-chip display RAM with auto-increment addressing. The LPC12D27 operate at CPU frequencies of up to 45 MHz and include 128 kB of flash memory and 8 kB of data memory. The peripheral complement of the LPC1227 microcontroller includes a micro DMA controller, one Fast-mode Plus I2C interface, one SSP interface, two UARTs, four general purpose timers, a 10-bit ADC, two comparators, and up to 40 general purpose I/O pins. Remark: For a functional description of the LPC1227 microcontroller see the LPC122x data sheet. For a detailed description of the LCD driver see the PCF8576D data sheet. Both data sheets are available at http://www.nxp.com/microcontrollers 2. Features and benefits  LCD driver  40 segments.  One to four backplanes.  On-chip display RAM with auto-increment addressing.  Processor core  ARM Cortex-M0 processor, running at frequencies of up to 45 MHz (one wait state from flash) or 30 MHz (zero wait states from flash). The LPC12D27 have a high score of over 45 in CoreMark CPU performance benchmark testing, equivalent to 1.51/MHz.  ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).  Serial Wire Debug (SWD).  System tick timer.  Memory  8 kB SRAM.  128 kB on-chip flash programming memory. LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller        LPC12D27 Product data sheet  In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader software.  Includes ROM-based 32-bit integer division routines. Clock generation unit  Crystal oscillator with an operating range of 1 MHz to 25 MHz.  12 MHz Internal RC (IRC) oscillator trimmed to 1 % accuracy that can optionally be used as a system clock.  PLL allows CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. May be run from the system oscillator or the internal RC oscillator.  Clock output function with divider that can reflect the system oscillator clock, IRC clock, main clock, and Watchdog clock.  Real-Time Clock (RTC). Digital peripherals  Micro DMA controller with 21 channels.  CRC engine.  Two UARTs with fractional baud rate generation and internal FIFO. One UART with RS-485 and modem support and one standard UART with IrDA.  SSP/SPI controller with FIFO and multi-protocol capabilities.  I2C-bus interface supporting full I2C-bus specification and Fast-mode Plus with a data rate of 1 Mbit/s with multiple address recognition and monitor mode. I2C-bus pins have programmable glitch filter.  Up to 40 General Purpose I/O (GPIO) pins with programmable pull-up resistor, open-drain mode, programmable digital input glitch filter, and programmable input inverter.  Programmable output drive on all GPIO pins. Four pins support high-current output drivers.  All GPIO pins can be used as edge and level sensitive interrupt sources.  Four general purpose counter/timers with four capture inputs and four match outputs (32-bit timers) or two capture inputs and two match outputs (16-bit timers).  Windowed WatchDog Timer (WWDT), IEC-60335 Class B certified. Analog peripherals  One 8-channel, 10-bit ADC.  Two highly flexible analog comparators. Comparator outputs can be programmed to trigger a timer match signal or can be used to emulate 555 timer behavior. Power  Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.  Processor wake-up from Deep-sleep mode via start logic using 12 port pins.  Processor wake-up from Deep-power down and Deep-sleep modes via the RTC.  Brownout detect with three separate thresholds each for interrupt and forced reset.  Power-On Reset (POR).  Integrated PMU (Power Management Unit). Unique device serial number for identification. 3.3 V power supply. Available as 100-pin LQFP package. All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 2 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 3. Applications      White goods Portable medical devices Lighting control Thermostats Alarm systems 4. Ordering information Table 1. Ordering information Type number Package Name LPC12D27FBD100/301 LQFP100 Description Version plastic low profile quad flat package; 100 leads; body 14  14  1.4 mm SOT407-1 4.1 Ordering options Table 2. Ordering options for LPC12D27 Type number Flash Total SRAM UART RS-485 I2C/ FM+ SSP ADC channels Package LPC12D27FBD100/301 128 kB 8 kB 1 1 1 8 LQFP100 LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 3 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 5. Block diagram S[39:0] PIO0, PIO1, PIO2 BP[3:0] PCF8576D LPC1227 LCD CONTROLLER MCU VLCD Fig 1. LPC12D27 Product data sheet LCD_SCL, LCD_SDA SCL, SDA 002aaf672 LPC12D27 block diagram All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 4 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller XTALIN XTALOUT RESET SWD LPC1227 CLOCK GENERATION, POWER CONTROL, SYSTEM FUNCTIONS clocks and controls TEST/DEBUG INTERFACE ARM CORTEX-M0 MICRO DMA CONTROLLER system bus 128 kB FLASH master 8 kB SRAM slave CLKOUT ROM slave slave AHB-LITE BUS slave GPIO ports SCK SSEL MISO MOSI RXD0 TXD0 DTR0, DSR0, CTS0, DCD0, RI0, RTS0 HIGH-SPEED GPIO AHB-ABB BRIDGE CRC ENGINE ACMP0/1_I[3:0] COMPARATOR0/1 VREF_CMP UART1 WINDOWED WDT SCL SDA I2C-bus IOCONFIG 32-bit COUNTER/TIMER 0/1 REAL-TIME CLOCK 16-bit COUNTER/TIMER 0/1 SYSTEM CONTROL 4 x CAP 2 x MAT 2 x CAP ACMP0/1_O UART0 RS-485 RXD1 TXD1 4 x MAT AD[7:0] 10-bit ADC SSP/SPI RTCXOUT RTCXIN MICRO DMA REGISTERS 002aag501 Fig 2. LPC12D27 block diagram (microcontroller) LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 5 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller BP0 BP2 BP1 S0 to S39 BP3 40 VLCD DISPLAY SEGMENT OUTPUTS BACKPLANE OUTPUTS LCD VOLTAGE SELECTOR DISPLAY REGISTER OUTPUT BANK SELECT AND BLINK CONTROL DISPLAY CONTROLLER LCD BIAS GENERATOR VSS(LCD) CLK SYNC OSC CLOCK SELECT AND TIMING BLINKER TIMEBASE OSCILLATOR POWER-ON RESET INPUT FILTERS I2C-BUS CONTROLLER DISPLAY RAM 40 x 4-BIT PCF8576D COMMAND DECODER WRITE DATA CONTROL DATA POINTER AND AUTO INCREMENT VDD LCD_SCL LCD_SDA SUBADDRESS COUNTER 002aaf673 Fig 3. LCD display controller block diagram LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 6 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 6. Pinning information 77 S31 76 S30 78 S32 79 S33 80 R/PIO1_1 81 PIO1_2 82 PIO1_3 83 PIO1_4 84 PIO1_5 85 PIO1_6 86 VSS 87 VDD(3V3) 88 RTCXOUT 89 RTCXIN 90 VDD(IO) 91 VSSIO 92 XTALIN 93 XTALOUT 94 VREF_CMP 95 PIO0_19 96 PIO0_20 97 PIO0_21 98 PIO0_22 99 PIO0_23 100 PIO0_24 6.1 Pinning SWDIO/PIO0_25 1 75 S29 SWCLK/PIO0_26 2 74 S28 PIO0_27 3 73 S27 PIO0_28 4 72 S26 PIO0_29 5 71 S25 PIO0_0 6 70 S24 PIO0_1 7 69 S23 PIO0_2 8 68 S22 PIO0_3 9 67 S21 PIO0_4 10 66 S20 PIO0_5 11 65 S19 PIO0_6 12 64 S18 LPC12D27 PIO0_7 13 62 S16 PIO0_9 15 61 S15 PIO2_0 16 60 S14 PIO0_10 17 59 S13 PIO0_11 18 58 S12 PIO0_12 19 57 S11 RESET/PIO0_13 20 56 S10 PIO0_14 21 55 S9 PIO0_15 22 54 S8 S4 50 S3 49 S2 48 S1 47 S0 46 BP3 45 BP1 44 BP2 43 BP0 42 VLCD 41 VSS(LCD) 40 VDD 39 CLK 38 SYNC 37 LCD_ SCL 36 LCD_ SDA 35 S39 34 S38 33 S37 32 S36 31 51 S5 S35 30 PIO0_18 25 S34 29 52 S6 R/PIO1_0 28 53 S7 PIO0_17 24 R/PIO0_31 27 PIO0_16 23 R/PIO0_30 26 Fig 4. 63 S17 PIO0_8 14 002aag502 Pin configuration LQFP100 package LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 7 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 6.2 Pin description All pins except the supply pins and the LCD pins can have more than one function as shown in Table 3. The pin function is selected through the pin’s IOCON register in the IOCONFIG block. The multiplexed functions include the counter/timer inputs and outputs, the UART receive, transmit, and control functions, and the serial wire debug functions. For each pin, the default function is listed first together with the pin’s reset state. Table 3. LPC12D27 LQFP100 pin description Symbol Pin Start Reset logic state input [1] Type Description I/O Port 0 — Port 0 is a 32-bit I/O port with individual direction and function controls for each bit. The operation of port 0 pins depends on the function selected through the IOCONFIG register block. I/O PIO0_0 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. O RTS0 — Request To Send output for UART0. I/O PIO0_1 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. I RXD0 — Receiver input for UART0. I CT32B0_CAP0 — Capture input, channel 0 for 32-bit timer 0. Microcontroller pins PIO0_0 to PIO0_31 PIO0_0/RTS0 6[2] PIO0_1/RXD0/ CT32B0_CAP0/ CT32B0_MAT0 7[2] PIO0_2/TXD0/ CT32B0_CAP1/ CT32B0_MAT1 PIO0_3/DTR0/ CT32B0_CAP2/ CT32B0_MAT2 PIO0_4/ CT32B0_CAP3/ CT32B0_MAT3 PIO0_5/DCD0 LPC12D27 Product data sheet 8[2] 9[2] 10[2] 11[2] yes yes yes yes yes yes I; PU I; PU I; PU I; PU I; PU I; PU O CT32B0_MAT0 — Match output, channel 0 for 32-bit timer 0. I/O PIO0_2 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. O TXD0 — Transmitter output for UART0. I CT32B0_CAP1 — Capture input, channel 1 for 32-bit timer 0. O CT32B0_MAT1 — Match output, channel 1 for 32-bit timer 0. I/O PIO0_3 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. O DTR0 — Data Terminal Ready output for UART0. I CT32B0_CAP2 — Capture input, channel 2 for 32-bit timer 0. O CT32B0_MAT2 — Match output, channel 2 for 32-bit timer 0. I/O PIO0_4 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. I DSR0 — Data Set Ready input for UART0. I CT32B0_CAP3 — Capture input, channel 3 for 32-bit timer 0. O CT32B0_MAT3 — Match output, channel 3 for 32-bit timer 0. I/O PIO0_5 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. I DCD0 — Data Carrier Detect input for UART0. All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 8 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller Table 3. LPC12D27 LQFP100 pin description …continued Symbol Pin PIO0_6/RI0/ CT32B1_CAP0/ CT32B1_MAT0 12[2] yes PIO0_7/CTS0/ CT32B1_CAP1/ CT32B1_MAT1 PIO0_8/RXD1 /CT32B1_CAP2/ CT32B1_MAT2 PIO0_9/TXD1/ CT32B1_CAP3/ CT32B1_MAT3 13[2] yes 14[2] yes 15[2] PIO0_10/SCL 17[3] PIO0_11/SDA/ CT16B0_CAP0/ CT16B0_MAT0 18[3] PIO0_12/CLKOUT/ CT16B0_CAP1/ CT16B0_MAT1 Start Reset logic state input [1] 19[7] yes yes yes no I; PU I; PU I; PU I; PU I; IA I; IA I; PU RESET/PIO0_13 20[4] no I; PU PIO0_14/SCK 21[2] no I; PU LPC12D27 Product data sheet Type Description I/O PIO0_6 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. I RI0 — Ring Indicator input for UART0. I CT32B1_CAP0 — Capture input, channel 0 for 32-bit timer 1. O CT32B1_MAT0 — Match output, channel 0 for 32-bit timer 1. I/O PIO0_7 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. I CTS0 — Clear To Send input for UART0. I CT32B1_CAP1 — Capture input, channel 1 for 32-bit timer 1. O CT32B1_MAT1 — Match output, channel 1 for 32-bit timer 1. I/O PIO0_8 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. I RXD1 — Receiver input for UART1. I CT32B1_CAP2 — Capture input, channel 2 for 32-bit timer 1. O CT32B1_MAT2 — Match output, channel 2 for 32-bit timer 1. I/O PIO0_9 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. O TXD1 — Transmitter output for UART1. I CT32B1_CAP3 — Capture input, channel 3 for 32-bit timer 1. O CT32B1_MAT3 — Match output, channel 3 for 32-bit timer 1. I/O PIO0_10 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. I/O SCL — I2C-bus clock input/output. I/O PIO0_11 — General purpose digital input/output pin. Also serves as wake-up pin from Deep-sleep mode. I/O SDA — I2C-bus data input/output. I CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0. O CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0. I/O PIO0_12 — General purpose digital input/output pin. A LOW level on this pin in during reset starts the ISP command handler. High-current output driver. O CLKOUT — Clock out pin. I CT16B0_CAP1 — Capture input, channel 0 for 16-bit timer 0. O CT16B0_MAT1 — Match output, channel 1 for 16-bit timer 0. I RESET — External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. I/O PIO0_13 — General purpose digital input/output pin. I/O PIO0_14 — General purpose digital input/output pin. I/O SCK — Serial clock for SSP. All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 9 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller Table 3. LPC12D27 LQFP100 pin description …continued Symbol Pin PIO0_15/SSEL/ CT16B1_CAP0/ CT16B1_MAT0 22[2] no PIO0_16/MISO/ CT16B1_CAP1/ CT16B1_MAT1 23[2] PIO0_17/MOSI 24[2] no I; PU PIO0_18/SWCLK/ CT32B0_CAP0/ CT32B0_MAT0 25[2] no I; PU PIO0_19/ACMP0_I0/ CT32B0_CAP1/ CT32B0_MAT1 95[5] no PIO0_20/ACMP0_I1/ CT32B0_CAP2/ CT32B0_MAT2 96[5] no PIO0_21/ACMP0_I2/ CT32B0_CAP3/ CT32B0_MAT3 97[5] no PIO0_22/ACMP0_I3 98[5] no PIO0_23/ ACMP1_I0/ CT32B1_CAP0/ CT32B1_MAT0 99[5] PIO0_24/ACMP1_I1/ CT32B1_CAP1/ CT32B1_MAT1 LPC12D27 Product data sheet 100 [5] Start Reset logic state input [1] no no no I; PU I; PU I; PU I; PU I; PU I; PU I; PU I; PU Type Description I/O PIO0_15 — General purpose digital input/output pin. I/O SSEL — Slave select for SSP. I CT16B1_CAP0 — Capture input, channel 0 for 16-bit timer 1. O CT16B1_MAT0 — Match output, channel 0 for 16-bit timer 1. I/O PIO0_16 — General purpose digital input/output pin. I/O MISO — Master In Slave Out for SSP. I CT16B1_CAP1 — Capture input, channel 1 for 16-bit timer 1. O CT16B1_MAT1 — Match output, channel 1 for 16-bit timer 1. I/O PIO0_17 — General purpose digital input/output pin. I/O MOSI — Master Out Slave In for SSP. I/O PIO0_18 — General purpose digital input/output pin. I SWCLK — Serial wire clock, alternate location. I CT32B0_CAP0 — Capture input, channel 0 for 32-bit timer 0. O CT32B0_MAT0 — Match output, channel 0 for 32-bit timer 0. I/O PIO0_19 — General purpose digital input/output pin. I ACMP0_I0 — Input 0 for comparator 0. I CT32B0_CAP1 — Capture input, channel 1 for 32-bit timer 0. O CT32B0_MAT1 — Match output, channel 1 for 32-bit timer 0 I/O PIO0_20 — General purpose digital input/output pin. I ACMP0_I1 — Input 1 for comparator 0. I CT32B0_CAP2 — Capture input, channel 2 for 32-bit timer 0. O CT32B0_MAT2 — Match output, channel 2 for 32-bit timer 0. I/O PIO0_21 — General purpose digital input/output pin. I ACMP0_I2 — Input 2 for comparator 0. I CT32B0_CAP3 — Capture input, channel 3 for 32-bit timer 0. O CT32B0_MAT3 — Match output, channel 3 for 32-bit timer 0. I/O PIO0_22 — General purpose digital input/output pin. I ACMP0_I3 — Input 3 for comparator 0. I/O PIO0_23 — General purpose digital input/output pin. I ACMP1_I0 — Input 0 for comparator 1. I CT32B1_CAP0 — Capture input, channel 0 for 32-bit timer 1. O CT32B1_MAT0 — Match output, channel 0 for 32-bit timer 1. I/O PIO0_24 — General purpose digital input/output pin. I ACMP1_I1 — Input 1 for comparator 1. I CT32B1_CAP1 — Capture input, channel 1 for 32-bit timer 1. O CT32B1_MAT1 — Match output, channel 1 for 32-bit timer 1. All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 10 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller Table 3. LPC12D27 LQFP100 pin description …continued Symbol Pin Start Reset logic state input [1] Type Description SWDIO/ACMP1_I2/ CT32B1_CAP2/ CT32B1_MAT2/PIO0_25 1[5] no I/O SWDIO — Serial wire debug input/output, default location. I ACMP1_I2 — Input 2 for comparator 1. I CT32B1_CAP2 — Capture input, channel 2 for 32-bit timer 1. O CT32B1_MAT2 — Match output, channel 2 for 32-bit timer 1. I/O PIO0_25 — General purpose digital input/output pin. SWCLK/ ACMP1_I3/ CT32B1_CAP3/ CT32B1_MAT3/PIO0_26 2[5] PIO0_27/ACMP0_O 3[7] PIO0_28/ACMP1_O/ CT16B0_CAP0/ CT16B0_MAT0 4[7] PIO0_29/ROSC/ CT16B0_CAP1/ CT16B0_MAT1 R/PIO0_30/AD0 R/PIO0_31/AD1 5[7] 26[5] 27[5] no no no no no no I; PU I; PU I; PU I; PU I; PU I; PU I; PU PIO1_0 to PIO1_6 R/PIO1_0/AD2 LPC12D27 Product data sheet 28[5] no I; PU I SWCLK — Serial wire clock, default location. I ACMP1_I3 — Input 3 for comparator 1. I CT32B1_CAP3 — Capture input, channel 3 or 32-bit timer 1. O CT32B1_MAT3 — Match output, channel 3 for 32-bit timer 1. I/O PIO0_26 — General purpose digital input/output pin. I/O PIO0_27 — General purpose digital input/output pin (high-current output driver). O ACMP0_O — Output for comparator 0. I/O PIO0_28 — General purpose digital input/output pin (high-current output driver). O ACMPC1_O — Output for comparator 1. I CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0. O CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0. I/O PIO0_29 — General purpose digital input/output pin (high-current output driver). I/O ROSC — Relaxation oscillator for 555 timer applications. I CT16B0_CAP1 — Capture input, channel 1 for 16-bit timer 0. O CT16B0_MAT1 — Match output, channel 1 for 16-bit timer 0. I R — Reserved. Configure for an alternate function in the IOCONFIG block. I/O PIO0_30 — General purpose digital input/output pin. I AD0 — A/D converter, input 0. I R — Reserved. Configure for an alternate function in the IOCONFIG block. I/O PIO0_31 — General purpose digital input/output pin. I AD1 — A/D converter, input 1. I/O Port 1 — Port 1 is a 32-bit I/O port with individual direction and function controls for each bit. The operation of port 1 pins depends on the function selected through the IOCONFIG register block. Pins PIO1_7 through PIO1_31 are not available. O R — Reserved. Configure for an alternate function in the IOCONFIG block. I/O PIO1_0 — General purpose digital input/output pin. I AD2 — A/D converter, input 2. All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 11 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller Table 3. LPC12D27 LQFP100 pin description …continued Symbol Pin R/PIO1_1/AD3 80[5] no PIO1_2/SWDIO/AD4 PIO1_3/AD5/WAKEUP 81[5] 82[6] Start Reset logic state input [1] no no PIO1_4/AD6 83[5] no PIO1_5/AD7/ CT16B1_CAP0/ CT16B1_MAT0 84[5] PIO1_6/CT16B1_CAP1/ CT16B1_MAT1 85[2] no no I; PU I; PU I; PU I; PU I; PU I; PU PIO2_0 Type Description I R — Reserved. Configure for an alternate function in the IOCONFIG block. I/O PIO1_1 — General purpose digital input/output pin. I AD3 — A/D converter, input 3. I/O PIO1_2 — General purpose digital input/output pin. I/O SWDIO — Serial wire debug input/output, alternate location. I AD4 — A/D converter, input 4. I/O PIO1_3 — General purpose digital input/output pin. I AD5 — A/D converter, input 5. I WAKEUP — Deep power-down mode wake-up pin. I/O PIO1_4 — General purpose digital input/output pin. I AD6 — A/D converter, input 6. I/O PIO1_5 — General purpose digital input/output pin. I AD7 — A/D converter, input 7. I CT16B1_CAP0 — Capture input, channel 0 for 16-bit timer 1. O CT16B1_MAT0 — Match output, channel 0 for 16-bit timer 1. I/O PIO1_6 — General purpose digital input/output pin. I CT16B1_CAP1 — Capture input, channel 1 for 16-bit timer 1. O CT16B1_MAT1 — Match output, channel 1 for 16-bit timer 1. I/O Port 2 — Port 2 is a 32-bit I/O port with individual direction and function controls for each bit. The operation of port 2 pins depends on the function selected through the IOCONFIG register block. Pins PIO2_1 through PIO2_31 are not available. I/O PIO2_0 — General purpose digital input/output pin. I CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0. PIO2_0/CT16B0_CAP0/ CT16B0_MAT0 16[2] no O CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0. RTCXIN 89 - - - Input to the 32 kHz oscillator circuit. RTCXOUT 88 - - - Output from the 32 kHz oscillator amplifier. XTALIN 92 - - - Input to the system oscillator circuit and internal clock generator circuits. XTALOUT 93 - - - Output from the system oscillator amplifier. VREF_CMP 94 - - - Reference voltage for comparator. VDD(IO) 90 - - - Input/output supply voltage. VDD(3V3) 87 - - - 3.3 V supply voltage to the internal regulator and the ADC. Also used as the I; PU ADC reference voltage. VSSIO 91 - - - Ground. VSS 86 - - - Ground. 46 - VLCD[8] O LCD segment output. - VLCD[8] LCD segment output. LCD display pins S0 S1 LPC12D27 Product data sheet 47 O All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 12 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller Table 3. LPC12D27 LQFP100 pin description …continued Symbol Pin Start Reset logic state input [1] Type Description S2 48 - VLCD[8] O LCD segment output. S3 49 - VLCD[8] O LCD segment output. S4 50 - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. S5 S6 51 52 S7 53 - VLCD[8] O LCD segment output. S8 54 - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. S9 S10 55 56 S11 57 - VLCD[8] O LCD segment output. S12 58 - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. S13 S14 59 60 S15 61 - VLCD[8] O LCD segment output. S16 62 - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. S17 S18 63 64 S19 65 - VLCD[8] O LCD segment output. S20 66 - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. S21 S22 67 68 S23 69 - VLCD[8] O LCD segment output. S24 70 - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. S25 S26 71 72 S27 73 - VLCD[8] O LCD segment output. S28 74 - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. S29 S30 75 76 S31 77 - VLCD[8] O LCD segment output. S32 78 - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. S33 S34 79 29 S35 30 - VLCD[8] O LCD segment output. S36 31 - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. - VLCD[8] O LCD segment output. O S37 S38 32 33 S39 34 - VLCD[8] BP0 42 - VLCD[8] O LPC12D27 Product data sheet LCD segment output. LCD backplane output. All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 13 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller Table 3. LPC12D27 LQFP100 pin description …continued Symbol Pin Start Reset logic state input [1] Type Description BP1 44 - VLCD[8] O LCD backplane output. BP2 43 - VLCD[8] O LCD backplane output. BP3 45 - VLCD[8] O LCD backplane output. I/O I2C-bus serial data input/output. I2C-bus serial clock input. LCD_SDA 35 - [8] LCD_SCL 36 - [8] I/O SYNC 37 - [8] I/O Cascade synchronization input/output. CLK 38 - [8] I/O External clock input/output. VDD 39 - - - 1.8 V to 5.5 V power supply: Power supply voltage for the PCF8576D. VSS(LCD) 40 - - - LCD ground. VLCD 41 - - - LCD power supply: LCD voltage. [1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled. [2] Digital I/O pin; default: pull-up enabled, no hysteresis. [3] I2C-bus pins; 5 V tolerant; open-drain; default: no pull-up/pull-down, no hysteresis. [4] Digital I/O pin with RESET function; default: pull-up enabled, no hysteresis. [5] Digital I/O pin with analog function; default: pull-up enabled, no hysteresis. [6] Digital I/O pin with analog function and WAKEUP function; default: pull-up enabled, no hysteresis. [7] High-drive digital I/O pin; default: pull-up enabled, no hysteresis. [8] See Section 7.2.3. 7. Functional description 7.1 LPC1227 microcontroller See the LPC122x data sheet for a detailed functional description of the LPC1227 microcontroller. 7.2 LCD driver See the PCF8576 data sheet for a detailed functional description of the PCF8576D LCD driver. 7.2.1 General description The PCF8576D is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD) with low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 40 segments. It can be easily cascaded for larger LCD applications. The PCF8576D communicates via the two-line bidirectional I2C-bus. Communication overheads are minimized by a display RAM with auto-incremented addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes). Please refer to PCF8576D data sheet for electrical data. LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 14 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 7.2.2 Functional description The PCF8576D is a versatile peripheral device interfacing the LPC1227 microcontroller with a wide variety of LCDs. It can directly drive any static or multiplexed LCD containing up to four backplanes and up to 40 segments. The possible display configurations of the PCF8576D depend on the number of active backplane outputs required. A selection of display configurations is shown in Table 4. The integration of the LPC1227 microcontroller with the PCF8576D is shown in Figure 1. Table 4. Selection of display configurations Number of Digits/Characters Backplanes Segments 7-segment 14-segment Dot matrix/Elements 4 160 20 10 160 (4  40) 3 120 15 7 120 (3  40) 2 80 10 5 64 (2  40) 1 40 5 2 40 (1  40) 7.2.3 Reset state of the LCD controller and pins After power-on, the LCD controller resets to the following starting conditions: • • • • • • • All backplane and segment outputs are set to VLCD. The selected drive mode is 1:4 multiplex with 1/3 bias. Blinking is switched off. Input and output bank selectors are reset. The I2C-bus interface is initialized. The data pointer and the subaddress counter are cleared (set to logic 0). The display is disabled. Remark: Do not transfer data on the I2C-bus for at least 1 ms after a power-on to allow the reset action to complete. 7.2.4 LCD bias generator Fractional LCD biasing voltages are obtained from an internal voltage divider consisting of three impedances connected in series between VLCD and VSS(LCD). The middle resistor can be bypassed to provide a 1/2 bias voltage level for the 1:2 multiplex configuration. The LCD voltage can be temperature compensated externally using the supply to pin VLCD. 7.2.5 Oscillator 7.2.5.1 Internal clock The internal logic of the PCF8576D and its LCD drive signals are timed either by its internal oscillator or by an external clock. The internal oscillator is enabled by connecting pin OSC to pin VSS(LCD). If the internal oscillator is used, the output from pin CLK can be used as the clock signal for several PCF8576Ds in the system that are connected in cascade. LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 15 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 7.2.6 Timing The PCF8576D timing controls the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. In cascaded applications, the correct timing relationship between each PCF8576D in the system is maintained by the synchronization signal at pin SYNC. The timing also generates the LCD frame signal whose frequency is derived from the clock frequency. The frame signal frequency (ffr) is a fixed division of the clock frequency (fclk) from either the internal or an external clock: ffr = fclk/24. 7.2.7 Display register A display latch holds the display data while the corresponding multiplex signals are generated. There is a one-to-one relationship between the data in the display latch, the LCD segment outputs, and each column of the display RAM. 7.2.8 Segment outputs The LCD drive section includes 40 segment outputs S0 to S39 which should be connected directly to the LCD. The segment output signals are generated in accordance with the multiplexed backplane signals and with data residing in the display latch. When less than 40 segment outputs are required, the unused segment outputs should be left open-circuit. 7.2.9 Backplane outputs The LCD drive section includes four backplane outputs BP0 to BP3 which must be connected directly to the LCD. The backplane output signals are generated in accordance with the selected LCD drive mode. If less than four backplane outputs are required, the unused outputs can be left open-circuit. In the 1:3 multiplex drive mode, BP3 carries the same signal as BP1, therefore these two adjacent outputs can be tied together to give enhanced drive capabilities. In the 1:2 multiplex drive mode, BP0 and BP2, BP1 and BP3 all carry the same signals and may also be paired to increase the drive capabilities. In the static drive mode the same signal is carried by all four backplane outputs and they can be connected in parallel for very high drive requirements. 7.2.10 Display RAM The display RAM is a static 40  4-bit RAM which stores LCD data. There is a one-to-one correspondence between the RAM addresses and the segment outputs, and between the individual bits of a RAM word and the backplane outputs. For details, see PCF8576D data sheet. LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 16 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 8. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).[1] Symbol Parameter Conditions VDD(3V3) supply voltage (3.3 V) VDD(IO) input/output supply voltage VI input voltage on all digital pins [2] on pins PIO0_10 and PIO0_11 (I2C-bus pins) IDD supply current Min Max Unit 3.0 3.6 V 3.0 3.6 V 0.5 +3.6 V 0 5.5 V per supply pin [3] - 100 mA [3] - 100 mA - 100 mA 65 +150 C - 1.5 W 8000 +8000 V ISS ground current per ground pin Ilatch I/O latch-up current (0.5VDD) < VI < (1.5VDD); Tj < 125 C [4] Tstg storage temperature Ptot(pack) total power dissipation (per package) based on package heat transfer, not device power consumption VESD electrostatic discharge voltage human body model; all pins [1] [5] The following applies to the limiting values: a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum. b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. [2] Including voltage on outputs in 3-state mode. [3] The peak current is limited to 25 times the corresponding maximum current. [4] Dependent on package type. [5] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor. LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 17 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 9. Thermal characteristics 9.1 Thermal characteristics The average chip junction temperature, Tj (C), can be calculated using the following equation: T j = T amb +  P D  R th  j – a   (1) • Tamb = ambient temperature (C), • Rth(j-a) = the package junction-to-ambient thermal resistance (C/W) • PD = sum of internal and I/O power dissipation The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of the I/O pins is often small and many times can be negligible. However it can be significant in some applications. Table 6. Thermal characteristics VDD = 3.0 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit Rth(j-a) thermal resistance from junction to ambient JEDEC test board; no air flow - 61 - C/W 86 - C/W 19 - C/W 36 - C/W - 150 C LQFP64 package LQFP48 package Rth(j-c) thermal resistance from junction to case JEDEC test board - LQFP64 package LQFP48 package Tj(max) maximum junction temperature LPC12D27 Product data sheet - All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 18 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 10. Static characteristics Table 7. Static characteristics Tamb = 40 C to +85 C, unless otherwise specified. Symbol Parameter Conditions Min Typ[1] Max Unit VDD(IO) input/output supply voltage on pin VDD(IO) 3.0 3.3 3.6 V VDD(3V3) supply voltage (3.3 V) 3.0 3.3 3.6 V IDD supply current CCLK = 12 MHz - 4.6 - mA CCLK = 24 MHz - 9 - mA CCLK = 33 MHz - 12.2 - mA CCLK = 12 MHz - 6.6 - mA CCLK = 24 MHz - 10.9 - mA CCLK = 33 MHz - 14.1 - mA CCLK = 12 MHz - 1.8 - mA CCLK = 24 MHz - 3.3 - mA CCLK = 33 MHz - 4.4 - mA Deep-sleep mode; VDD(3V3) = 3.3 V; Tamb = 25 C - 30 - A Deep power-down mode; VDD(3V3) = 3.3 V; Tamb = 25 C - 720 - nA Active mode; VDD(3V3) = 3.3 V; Tamb = 25 C; code while(1){} executed from flash all peripherals disabled: all peripherals enabled: Sleep mode; VDD(3V3) = 3.3 V; Tamb = 25 C; all peripherals disabled Normal-drive output pins (Standard port pins, RESET) IIL LOW-level input current VI = 0 V; - - 100 nA IIH HIGH-level input current VI = VDD(IO); - - 100 nA IOZ OFF-state output current VO = 0 V; VO = VDD(IO); - - 100 nA VI input voltage pin configured to provide a digital function 0 - VDD(IO) V VO output voltage output active 0 - VDD(IO) V VIH HIGH-level input voltage 0.7VDD(IO) - - V LPC12D27 Product data sheet [2][3][4] All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 19 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller Table 7. Static characteristics …continued Tamb = 40 C to +85 C, unless otherwise specified. Symbol Parameter VIL LOW-level input voltage Vhys hysteresis voltage VOH HIGH-level output voltage VOL IOH LOW-level output voltage HIGH-level output current Conditions Min Typ[1] Max Unit - - 0.3VDD(IO) V - 0.4 - V low mode; IOH = 2 mA VDD(IO)  0.4 - - V high mode; IOH = 4 mA VDD(IO)  0.4 - - V low mode; IOL = 2 mA - - 0.4 V high mode; IOL = 4 mA 0.4 low mode; VOH = VDD(IO)  0.4 V 2 - - mA high mode; VOH = VDD(IO)  0.4 V 4 - - mA low mode; VOL = 0.4 V 2 - - mA IOL LOW-level output current 4 - - mA IOHS HIGH-level short-circuit output current VOH = 0 V [5] - - 45 mA IOLS LOW-level short-circuit output current VOL = VDDA [5] - - 50 mA Ipu pull-up current VI = 0 V 50 80 100 A high mode; VOL = 0.4 V High-drive output pins (PIO0_27, PIO0_28, PIO0_29, PIO0_12) IIL LOW-level input current VI = 0 V; - - 100 nA IIH HIGH-level input current VI = VDD(IO); - - 100 nA IOZ OFF-state output current VO = 0 V; VO = VDD(IO); - - 100 nA VI input voltage pin configured to provide a digital function 0 - VDD(IO) V 0 - VDD(IO) V 0.7VDD(IO) - - V - 0.3VDD(IO) - - - - V VO output voltage VIH HIGH-level input voltage VIL LOW-level input voltage Vhys hysteresis voltage VOH HIGH-level output voltage VOL LPC12D27 Product data sheet LOW-level output voltage [2][3] [4] output active - low mode; IOH = 20 mA VDD(IO)  0.7 - - V high mode; IOH = 28 mA VDD(IO)  0.7 - - V low mode; IOL = 12 mA - - 0.4 V high mode; IOL = 18 mA - - 0.4 V All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 20 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller Table 7. Static characteristics …continued Tamb = 40 C to +85 C, unless otherwise specified. Symbol Parameter Conditions Min Typ[1] Max Unit IOH HIGH-level output current low mode; VOH = VDD(IO)  0.7 20 - - mA high mode; VOH = VDD(IO)  0.7 28 - - mA VOL = 0.4 V 12 - - mA 18 - - mA - - 50 80 100 A LOW-level output current IOL low mode high mode IOLS LOW-level short-circuit output current VOL = VDD Ipu pull-up current VI = 0 V I2C-bus [5] mA pins (PIO0_10 and PIO0_11) VIH HIGH-level input voltage 0.7VDD(IO) - - V VIL LOW-level input voltage - - 0.3VDD(IO) V Vhys hysteresis voltage - 0.05VDD(IO) - V VOL LOW-level output voltage IOLS = 20 mA - - 0.4 V ILI input leakage current VI = VDD(IO) - 2 4 A VI = 5 V - 10 22 A capacitance for each I/O pin on pins PIO0_10 and PIO0_11 - - 8 pF Vi(xtal) crystal input voltage see Section 12.1 0 1.8 1.95 V Vo(xtal) crystal output voltage 0 1.8 1.95 V Ci [6] Oscillator pins [1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages. [2] Including voltage on outputs in 3-state mode. [3] VDD(3V3) and VDD(IO) supply voltages must be present. [4] 3-state outputs go into 3-state mode when VDD(IO) is grounded. [5] Allowed as long as the current limit does not exceed the maximum current allowed by the device. [6] To VSS. LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 21 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 10.1 Peripheral power consumption The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both registers and no code is executed. Measured on a typical sample at Tamb = 25 C and VDD(3V3) = 3.3 V. Table 8. Peripheral power consumption Peripheral Typical current consumption IDD in mA Frequency independent 24 MHz 12 MHz system oscillator + PLL IRC + PLL system oscillator IRC IRC 0.29 - - - - PLL (PLL output frequency = 24 MHz) 1.87 - - - - WDosc (WDosc output frequency = 500 kHz) 0.25 - - - - BOD 0.06 - - - - Analog comparator 0/1 - 0.05 0.05 0.03 0.02 ADC - 1.86 1.85 1.61 1.61 CRC engine - 0.04 0.04 0.02 0.02 16-bit timer 0 (CT16B0) - 0.09 0.09 0.04 0.04 16-bit timer 1 (CT16B1) - 0.09 0.09 0.04 0.04 32-bit timer 0 (CT32B0) - 0.08 0.08 0.04 0.04 32-bit timer 1 (CT32B1) - 0.08 0.08 0.04 0.04 GPIO0 - 0.34 0.34 0.17 0.17 GPIO1 - 0.34 0.34 0.17 0.17 GPIO2 - 0.36 0.37 0.18 0.18 I2C - 0.09 0.09 0.05 0.05 IOCON - 0.09 0.10 0.05 0.05 RTC - 0.10 0.10 0.05 0.05 SSP - 0.30 0.29 0.15 0.15 UART0 - 0.52 0.51 0.26 0.26 UART1 - 0.52 0.51 0.26 0.26 DMA - 0.18 0.18 0.09 0.09 WWDT - 0.06 0.06 0.03 0.03 10.2 Power consumption Power measurements in Active, Sleep, and Deep-sleep modes were performed under the following conditions (see LPC122x user manual): • Active mode: all GPIO pins set to input with external pull-up resistors. • Sleep and Deep-sleep modes: all GPIO pins set to output driving LOW. • Deep power-down mode: all GPIO pins set to input with external pull-up resistors. LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 22 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 002aag186 16 IDD (mA) 33 MHz(2) 12 24 MHz(2) 8 12 MHz 4 (1) 4 MHz(3) (3) 1 MHz 0 3 3.2 3.4 3.6 VDD(3V3) (V) Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; internal pull-up resistors disabled; BOD disabled. (1) System oscillator and system PLL disabled; IRC enabled. (2) System oscillator and system PLL enabled; IRC disabled. (3) System oscillator enabled; IRC and system PLL disabled. Fig 5. Active mode: Typical supply current IDD versus supply voltage VDD(3V3) for different system clock frequencies (all peripherals disabled) 002aag023 16 IDD (mA) 33 MHz(2) 12 24 MHz(2) 8 12 MHz(1) 4 4 MHz(3) 1 MHz(3) 0 -40 -15 10 35 60 85 temperature (°C) Conditions: VDD(3V3) = 3.3 V; active mode entered executing code while(1){} from flash; all peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; internal pull-up resistors disabled; BOD disabled. (1) System oscillator and system PLL disabled; IRC enabled. (2) System oscillator and system PLL enabled; IRC disabled. (3) System oscillator enabled; IRC and system PLL disabled. Fig 6. LPC12D27 Product data sheet Active mode: Typical supply current IDD versus temperature for different system clock frequencies (peripherals disabled) All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 23 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 002aag187 16 33 MHz(2) IDD (mA) 12 24 MHz 8 (2) 12 MHz(1) 4 MHz(3) (3) 1 MHz 4 0 3 3.2 3.4 3.6 VDD(3V3) (V) Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all peripherals enabled in the SYSAHBCLKCTRL register. (1) System oscillator and system PLL disabled; IRC enabled. (2) System oscillator and system PLL enabled; IRC disabled. (3) System oscillator enabled with external clock input; IRC and system PLL disabled. Fig 7. Active mode: Typical supply current IDD versus supply voltage VDD(3V3) for different system clock frequencies (all peripherals enabled) 002aag024 16 33 MHz(2) IDD (mA) 24 MHz(2) 12 8 12 MHz(1) 4 MHz(3) 4 1 MHz(3) 0 -40 -15 10 35 60 85 temperature (°C) Conditions: VDD(3V3) = 3.3 V; active mode entered executing code while(1){} from flash; all peripherals enabled in the SYSAHBCLKCTRL register. (1) System oscillator and system PLL disabled; IRC enabled. (2) System oscillator and system PLL enabled; IRC disabled. (3) System oscillator enabled with external clock input; IRC and system PLL disabled. Fig 8. LPC12D27 Product data sheet Active mode: Typical supply current IDD versus temperature for different system clock frequencies (peripherals enabled) All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 24 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 002aag188 5 33 MHz IDD (mA) (2) 4 24 MHz(2) 3 2 1 12 MHz (1) 4 MHz(3) 1 MHz(3) 0 3.0 3.2 3.4 3.6 VDD(3V3) (V) Conditions: VDD(3V3) = 3.3 V; sleep mode entered from flash; all peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal pull-up resistors disabled; BOD disabled. (1) System oscillator and system PLL disabled; IRC enabled. (2) System oscillator and system PLL enabled; IRC disabled. (3) System oscillator enabled with external clock input; IRC and system PLL disabled. Fig 9. Sleep mode: Typical supply current IDD versus supply voltage VDD(3V3) for different system clock frequencies 002aag190 50 IDD (μA) 40 VDD(3V3) = 3.6 V 3.3 V 3.0 V 30 20 10 -40 -15 10 35 60 85 temperature (°C) Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register Fig 10. Deep-sleep mode: Typical supply current IDD versus temperature for different supply voltages VDD(3V3) LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 25 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 002aag189 1.0 IDD (μA) 0.9 0.8 VDD(3V3) = 3.6 V 3.3 V 3.0 V 0.7 0.6 -40 -15 10 35 60 85 temperature (°C) Fig 11. Deep power-down mode: Typical supply current IDD versus temperature for different supply voltages VDD(3V3) 10.3 Electrical pin characteristics 002aag175 3.6 VOH (V) 3.2 low mode -40 °C +25 °C +70 °C +85 °C low mode -40 °C +25 °C +70 °C +85 °C 2.8 2.4 2 0 16 32 48 IOH (mA) Conditions: VDD(IO) = 3.3 V Fig 12. High-drive pins: Typical HIGH-level output voltage VOH versus HIGH-level output current IOH LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 26 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 002aag310 1.2 VOL (V) high mode -40 °C +25 °C +70 °C +85 °C low mode -40 °C +25 °C +70 °C +85 °C 0.8 0.4 0 0 16 32 48 IOL (mA) Conditions: VDD(IO) = 3.3 V Fig 13. High-drive pins: Typical LOW-level output voltage VOL versus LOW-level output current IOL 002aag180 0.8 VOL (V) -40 °C +25 °C +70 °C +85 °C 0.6 0.4 0.2 0 0 12 24 36 48 IOL (mA) Conditions: VDD(IO) = 3.3 V. Fig 14. I2C-bus pins (high current sink): Typical LOW-level output voltage VOL versus LOW-level output current IOL LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 27 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 002aag181 1.2 VOL (V) -40 °C +25 °C +70 °C +85 °C low mode high mode -40 °C +25 °C +70 °C +85 °C 0.8 0.4 0 0 4 8 12 16 IOL (mA) Conditions: VDD(IO) = 3.3 V. Fig 15. Normal-drive pins: Typical LOW-level output voltage VOL versus LOW-level output current IOL 002aag182 3.4 high mode VOH (V) 3.0 -40 °C +25 °C +70 °C +85 °C low mode -40 °C +25 °C +70 °C +85 °C 2.6 2.2 1.8 0 4 8 12 16 IOH (mA) Conditions: VDD(IO) = 3.3 V. Fig 16. Normal-drive pins: Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 28 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 002aag185 0 Ipu (mA) -20 -40 +85 °C +70 °C +25 °C -40 °C -60 -80 -100 0 1 2 3 VI (mA) Conditions: VDD(IO) = 3.3 V. Fig 17. Typical pull-up current Ipu versus input voltage VI LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 29 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 10.4 ADC characteristics Table 9. ADC static characteristics Tamb = 40 C to +85 C unless otherwise specified; ADC frequency 9 MHz, VDD(3V3) = 3.0 V to 3.6 V. Parameter VIA analog input voltage 0 - VDD(3V3) V Cia analog input capacitance - - 1 pF ED differential linearity error [2][3][4] - - 1 LSB integral non-linearity [2][5] - -  2.5 LSB EO offset error [2][6] - - 1 LSB EG gain error [2][7] - - 3 LSB ET absolute error [2][8] - - 3 LSB fc(ADC) ADC conversion frequency - - 257 kHz - - 3.9 M EL(adj) Ri Conditions Min Typ[1] Symbol input resistance [9][10] Max Unit [1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages. [2] Conditions: VSS = 0 V, VDD(3V3) = 3.3 V. [3] The ADC is monotonic, there are no missing codes. [4] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 18. [5] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 18. [6] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 18. [7] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See Figure 18. [8] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See Figure 18. [9] Tamb = 25 C; maximum sampling frequency fs = 257 kHz and analog input capacitance Cia = 1 pF. [10] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs  Cia). LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 30 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller offset error EO gain error EG 1023 1022 1021 1020 1019 1018 (2) 7 code out (1) 6 5 (5) 4 (4) 3 (3) 2 1 LSB (ideal) 1 0 1 2 3 4 5 6 7 1018 1019 1020 1021 1022 1023 1024 VIA (LSBideal) offset error EO 1 LSB = VDD(3V3) − VSS 1024 002aae787 (1) Example of an actual transfer curve. (2) The ideal transfer curve. (3) Differential linearity error (ED). (4) Integral non-linearity (EL(adj)). (5) Center of a step of the actual transfer curve. Fig 18. ADC characteristics LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 31 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 10.5 BOD static characteristics Table 10. BOD static characteristics[1] Tamb = 25 C. Symbol Parameter Conditions Vth threshold voltage interrupt level 1 Min Typ Max Unit assertion - 2.25 - V de-assertion - 2.39 - V assertion - 2.54 - V de-assertion - 2.67 - V assertion - 2.83 - V de-assertion - 2.93 - V assertion - 2.04 - V de-assertion - 2.18 - V interrupt level 2 interrupt level 3 reset level 1 reset level 2 assertion - 2.34 - V de-assertion - 2.47 - V assertion - 2.62 - V de-assertion - 2.76 - V reset level 3 [1] LPC12D27 Product data sheet Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC122x user manual. All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 32 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 11. Dynamic characteristics 11.1 Power-up ramp conditions Table 11. Power-up characteristics Tamb = 40 C to +85 C. Symbol Parameter tr rise time twait wait time VI input voltage Conditions Min at t = t1: 0 < VI 400 mV [1] [1][2] at t = t1 on pin VDD Typ Max Unit 0 - 500 ms 12 - - s 0 - 400 mV [1] See Figure 19. [2] The wait time specifies the time the power supply must be at levels below 400 mV before ramping up. tr VDD 400 mV 0 twait t = t1 002aag001 Condition: 0 < VI 400 mV at start of power-up (t = t1) Fig 19. Power-up ramp LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 33 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 11.2 Flash memory Table 12. Dynamic characteristics: flash memory Tamb = 40 C to +85 C; VDD(3V3) over specified ranges. Symbol Parameter erase time ter programming time tprog Nendu endurance tret retention time Conditions for one page (512 byte) [1] Min Max Unit - 20 ms for one sector (4 kB) [1] 162 ms for all sectors; mass erase [1] - 20 ms one word (4 bytes) [1] - 49 s four sequential words [1] - 194 s 128 bytes (one row of 32 words) [1] - 765 s [2] 20000 - cycles 10 - years [1] Erase and programming times are valid over the lifetime of the device (minimum 20000 cycles). [2] Number of program/erase cycles. 11.3 External clock Table 13. Dynamic characteristics: external clock Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.[1] Min Typ[2] Max Unit oscillator frequency 1 - 25 MHz Tcy(clk) clock cycle time 40 - 1000 ns tCHCX clock HIGH time Tcy(clk)  0.4 - - ns tCLCX clock LOW time Tcy(clk)  0.4 - - ns tCLCH clock rise time - - 5 ns tCHCL clock fall time - - 5 ns Symbol Parameter fosc Conditions [1] Parameters are valid over operating temperature range unless otherwise specified. [2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages. tCHCL tCHCX tCLCH tCLCX Tcy(clk) 002aaa907 Fig 20. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV) LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 34 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 11.4 Internal oscillators Table 14. Dynamic characteristics: internal oscillators Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.[1] Symbol Parameter Conditions Min Typ[2] Max Unit fosc(RC) internal RC oscillator frequency - 11.88 12 12.12 MHz [1] Parameters are valid over operating temperature range unless otherwise specified. [2] Typical ratings are not guaranteed. The values listed are at nominal supply voltages. 002aag020 12.15 12 MHz + 1% fosc(RC) (MHz) VDD = 3.6 V 3.3 V 3.0 V 12.05 11.95 12 MHz − 1% 11.85 −40 −15 10 35 60 85 temperature (°C) Fig 21. Internal RC oscillator frequency versus temperature Table 15. Dynamic characteristics: Watchdog oscillator Min Typ[1] Max Unit internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1 frequency in the WDTOSCCTRL register; [2][3] - 7.8 - kHz DIVSEL = 0x00, FREQSEL = 0xF in the WDTOSCCTRL register [2][3] - 1700 - kHz Symbol Parameter fosc(int) LPC12D27 Product data sheet Conditions [1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages. [2] The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40 %. [3] See the LPC122x user manual. All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 35 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 11.5 I2C-bus Table 16. Dynamic characteristics: I2C-bus pins Tamb = 40 C to +85 C.[1] Symbol Parameter Conditions Min Max Unit fSCL SCL clock frequency Standard-mode 0 100 kHz Fast-mode 0 fall time tf [2][3][4][5] 400 kHz Fast-mode Plus 0 1 MHz of both SDA and SCL signals - 300 ns Fast-mode 20 + 0.1  Cb 300 ns Fast-mode Plus - 120 ns Standard-mode 4.7 - s Fast-mode Standard-mo de tLOW tHIGH tHD;DAT tSU;DAT LOW period of the SCL clock HIGH period of the SCL clock data hold time data set-up time [6][2][7] [8][9] 1.3 - s Fast-mode Plus 0.5 - s Standard-mode 4.0 - s Fast-mode 0.6 - s Fast-mode Plus 0.26 - s Standard-mode 0 - s Fast-mode 0 - s Fast-mode Plus 0 - s Standard-mode 250 - ns Fast-mode 100 - ns - ns Fast-mode Plus 50 [1] Parameters are valid over operating temperature range unless otherwise specified. [2] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL. [3] Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed. [4] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf. [5] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing. [6] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge. [7] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock. [8] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge. [9] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time. LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 36 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller tf SDA tSU;DAT 70 % 30 % 70 % 30 % tHD;DAT tf 70 % 30 % SCL tVD;DAT tHIGH 70 % 30 % 70 % 30 % 70 % 30 % tLOW S 1 / fSCL 002aaf425 Fig 22. I2C-bus pins clock timing LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 37 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 12. Application information 12.1 XTAL input The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with Ci = 100 pF. To limit the input voltage to the specified range, choose an additional capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave mode, a minimum of 200 mV(RMS) is needed. LPC1xxx XTALIN Ci 100 pF Cg 002aae788 Fig 23. Slave mode operation of the on-chip oscillator 12.2 XTAL Printed Circuit Board (PCB) layout guidelines The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors Cx1,Cx2, and Cx3 in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in order to keep the noise coupled in via the PCB as small as possible. Also parasitics should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller accordingly to the increase in parasitics of the PCB layout. LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 38 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 12.3 ElectroMagnetic Compatibility (EMC) Radiated emission measurements according to the IEC61967-2 standard using the TEM-cell method are shown for the LPC1227FBD64/301 in Table 17. Table 17. ElectroMagnetic Compatibility (EMC) for part LPC1227FBD64/301 (TEM-cell method) VDD = 3.3 V; Tamb = 25 C. Parameter Frequency band System clock = Unit 12 MHz 24 MHz 33 MHz 150 kHz - 30 MHz 4.2 3.8 6.4 dBV 30 MHz - 150 MHz 7.3 5.4 9 dBV 150 MHz - 1 GHz 16.4 20.1 23.4 dBV - M L L - 4 6.6 dBV Input clock: IRC (12 MHz) maximum peak level IEC level[1] Input clock: crystal oscillator (12 MHz) maximum peak level IEC level[1] [1] LPC12D27 Product data sheet 150 kHz - 30 MHz 4.8 30 MHz - 150 MHz 6.9 5.6 10 dBV 150 MHz - 1 GHz 16.3 20.3 22.3 dBV - M L L - IEC levels refer to Appendix D in the IEC61967-2 Specification. All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 39 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 13. Package outline LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm SOT407-1 c y X A 51 75 50 76 ZE e E HE A A2 (A 3) A1 w M θ bp Lp pin 1 index L 100 detail X 26 1 25 ZD e v M A w M bp D B HD v M B 0 5 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e mm 1.6 0.15 0.05 1.45 1.35 0.25 0.27 0.17 0.20 0.09 14.1 13.9 14.1 13.9 0.5 HD HE 16.25 16.25 15.75 15.75 L Lp v w y 1 0.75 0.45 0.2 0.08 0.08 Z D (1) Z E (1) 1.15 0.85 1.15 0.85 θ 7o o 0 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT407-1 136E20 MS-026 JEITA EUROPEAN PROJECTION ISSUE DATE 00-02-01 03-02-20 Fig 24. Package outline LQFP100 LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 40 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 14. Soldering Footprint information for reflow soldering of LQFP100 package SOT407-1 Hx Gx P2 Hy (0.125) P1 Gy By Ay C D2 (8×) D1 Bx Ax Generic footprint pattern Refer to the package outline drawing for actual layout solder land occupied area DIMENSIONS in mm P1 0.500 P2 Ax Ay Bx By 0.560 17.300 17.300 14.300 14.300 C D1 D2 1.500 0.280 0.400 Gx Gy Hx Hy 14.500 14.500 17.550 17.550 sot407-1 Fig 25. Reflow soldering of the LQFP100 package LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 41 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 15. References LPC12D27 Product data sheet [1] LPC122x data sheet, http://www.nxp.com/microcontrollers [2] PCF8576D data sheet, http://www.nxp.com/microcontrollers All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 42 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 16. Revision history Table 18. Revision history Document ID Release date Data sheet status Change notice Supersedes LPC12D27 v.1 20110920 Product data sheet - - LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 43 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 17. Legal information 17.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 17.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 17.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 44 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. 17.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. I2C-bus — logo is a trademark of NXP B.V. 18. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com LPC12D27 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 20 September 2011 © NXP B.V. 2011. All rights reserved. 45 of 46 LPC12D27 NXP Semiconductors 32-bit ARM Cortex-M0 microcontroller 19. Contents 1 2 3 4 4.1 5 6 6.1 6.2 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.5.1 7.2.6 7.2.7 7.2.8 7.2.9 7.2.10 8 9 9.1 10 10.1 10.2 10.3 10.4 10.5 11 11.1 11.2 11.3 11.4 11.5 12 12.1 12.2 12.3 13 14 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ordering information . . . . . . . . . . . . . . . . . . . . . 3 Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pinning information . . . . . . . . . . . . . . . . . . . . . . 7 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional description . . . . . . . . . . . . . . . . . . 14 LPC1227 microcontroller . . . . . . . . . . . . . . . . 14 LCD driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 General description . . . . . . . . . . . . . . . . . . . . 14 Functional description. . . . . . . . . . . . . . . . . . . 15 Reset state of the LCD controller and pins . . . 15 LCD bias generator . . . . . . . . . . . . . . . . . . . . 15 Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Internal clock . . . . . . . . . . . . . . . . . . . . . . . . . 15 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Display register . . . . . . . . . . . . . . . . . . . . . . . . 16 Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 16 Backplane outputs . . . . . . . . . . . . . . . . . . . . . 16 Display RAM . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 17 Thermal characteristics . . . . . . . . . . . . . . . . . 18 Thermal characteristics. . . . . . . . . . . . . . . . . . 18 Static characteristics. . . . . . . . . . . . . . . . . . . . 19 Peripheral power consumption . . . . . . . . . . . . 22 Power consumption . . . . . . . . . . . . . . . . . . . . 22 Electrical pin characteristics . . . . . . . . . . . . . . 26 ADC characteristics . . . . . . . . . . . . . . . . . . . . 30 BOD static characteristics. . . . . . . . . . . . . . . . 32 Dynamic characteristics . . . . . . . . . . . . . . . . . 33 Power-up ramp conditions . . . . . . . . . . . . . . . 33 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . 34 External clock . . . . . . . . . . . . . . . . . . . . . . . . . 34 Internal oscillators. . . . . . . . . . . . . . . . . . . . . . 35 I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Application information. . . . . . . . . . . . . . . . . . 38 XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 XTAL Printed Circuit Board (PCB) layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ElectroMagnetic Compatibility (EMC) . . . . . . . 39 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 40 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 15 16 17 17.1 17.2 17.3 17.4 18 19 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision history . . . . . . . . . . . . . . . . . . . . . . . Legal information . . . . . . . . . . . . . . . . . . . . . . Data sheet status . . . . . . . . . . . . . . . . . . . . . . Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . Contact information . . . . . . . . . . . . . . . . . . . . Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 43 44 44 44 44 45 45 46 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2011. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 20 September 2011 Document identifier: LPC12D27
LPC12D27FBD100/301551 价格&库存

很抱歉,暂时无法提供与“LPC12D27FBD100/301551”相匹配的价格&库存,您可以联系我们找货

免费人工找货