NXP Semiconductors
Data Sheet: Technical Data
Document Number LS1046A
Rev. 4, 06/2020
LS1046A
QorIQ LS1046A, LS1026A
Data Sheet
Features
• LS1046A has four cores and LS1026A has two cores
• Four 32-bit/64-bit Arm® Cortex®-v8 A72 CPUs
– Arranged as a single cluster of four cores sharing a
single 2 MB L2 cache
– Up to 1.8 GHz operation
– Single-threaded cores with 32 KB L1 data cache and
48 KB L1 instruction cache
• Hierarchical interconnect fabric
– Up to 700 MHz operation
• One 32-bit/64-bit DDR4 SDRAM memory controller
with ECC and interleaving support
– Up to 2.1 GT/s
• Data Path Acceleration Architecture (DPAA)
incorporating acceleration for the following functions:
– Packet parsing, classification, and distribution
(FMan)
– Queue management for scheduling, packet
sequencing, and congestion management (QMan)
– Hardware buffer management for buffer allocation
and de-allocation (BMan)
– Cryptography acceleration (SEC)
– IEEE 1588™ support
• Additional peripheral interfaces
– One Quad Serial Peripheral Interface (QSPI)
controller
– One Serial Peripheral Interface (SPI) controller
– Integrated flash controller (IFC) supporting NAND
and NOR flash
– Three high-speed USB 3.0 controllers with
integrated PHY
– One Enhanced Secure Digital Host Controller
supporting SD 3.0, eMMC 4.4, and eMMC 4.5
– Four I2C controllers
– Two 16550-compliant DUARTs and six low-power
UARTs (LPUARTs)
– General purpose IO (GPIO), eight Flextimers
– One Queue Direct Memory Access Controller
(qDMA)
– One Enhanced Direct Memory Access Controller
(eDMA)
– Global programmable interrupt controller (GIC)
– Thermal monitoring unit (TMU)
• 780 FC-PBGA package, 23 mm x 23 mm
• Two RGMII interfaces
• Eight SerDes lanes for high-speed peripheral interfaces
– Three PCI Express 3.0 controllers
– One Serial ATA (SATA 6 Gbit/s) controller
– Up to two XFI (10 GbE) interfaces
– Up to five SGMII interfaces supporting 1000 Mbps
– Up to three SGMII interfaces supporting 2500 Mbps
– Up to one QSGMII interface
– Supports 10GBase-KR
– Supports 1000Base-KX
NXP reserves the right to change the production detail specifications as may be
required to permit improvements in the design of its products.
Table of Contents
1 Introduction.......................................................................................... 3
3.18 Enhanced secure digital host controller (eSDHC).....................136
2 Pin assignments.................................................................................... 4
3.19 JTAG controller.........................................................................145
2.1
780 BGA ball layout diagrams.................................................. 4
3.20 I2C interface.............................................................................. 148
2.2
Pinout list...................................................................................10
3.21 GPIO interface...........................................................................151
3 Electrical characteristics.......................................................................48
3.22 GIC interface............................................................................. 154
3.1
Overall DC electrical characteristics......................................... 48
3.23 High-speed serial interfaces (HSSI).......................................... 155
3.2
Power sequencing......................................................................55
4 Security fuse processor.........................................................................181
3.3
Power-down requirements.........................................................58
5 Hardware design considerations...........................................................181
3.4
Power characteristics................................................................. 58
5.1
Clock ranges.............................................................................. 181
3.5
I/O power dissipation................................................................ 61
5.2
Minimum platform frequency requirements for high-speed
3.6
Power-on ramp rate................................................................... 64
3.7
Input clocks............................................................................... 64
3.8
RESET initialization..................................................................71
3.9
DDR4 SDRAM controller.........................................................72
3.10 Ethernet interface, Ethernet management interface, IEEE Std
1588........................................................................................... 77
3.11 USB 3.0 interface...................................................................... 103
interfaces....................................................................................182
5.3
Minimum DPAA frequency requirements................................ 183
6 Thermal................................................................................................ 183
6.1
Recommended thermal model...................................................185
6.2
Temperature diode.....................................................................185
6.3
Thermal management information............................................ 185
7 Package information.............................................................................188
3.12 Integrated Flash Controller........................................................106
7.1
Package parameters for the FC-PBGA......................................188
3.13 LPUART interface.....................................................................126
7.2
Mechanical dimensions of the FC-PBGA................................. 188
3.14 DUART interface...................................................................... 127
8 Ordering information............................................................................190
3.15 Flextimer interface.....................................................................129
8.1
Part numbering nomenclature....................................................190
3.16 SPI interface.............................................................................. 131
8.2
Part marking ............................................................................. 191
3.17 QSPI interface........................................................................... 134
9 Revision history....................................................................................191
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
2
NXP Semiconductors
Introduction
1 Introduction
The LS1046A is a cost-effective, power-efficient, and highly integrated system-on-chip
(SoC) design that extends the reach of the NXP value-performance line of QorIQ
communications processors. Featuring power-efficient 64-bit Arm® Cortex®-A72 cores
with ECC-protected L1 and L2 cache memories for high reliability, running up to 1.8
GHz.
The LS1046A and LS1026A processors are perfectly suited for a range of embedded
applications such as enterprise routers and switches, linecard controllers, network
attached storage, security appliances, virtual customer premise equipment (vCPE),
service providers gateways, and single board computers.
This figure shows the block diagram of the chip.
Arm® Cortex®-A72
32-bit/64-bit Core
32 KB
32KB
KB
32
D-Cache
D-Cache
D-Cache
32 KB
D-Cache
32 KB
32 KB
KB
48
I-Cache
I-Cache
32 KB
I-Cache
I-Cache
64-bit
DDR4
Memory Controller
2 MB L2 - Cache
Secure Boot
CCI-400™ Coherency Fabric
Trust Zone
Power Management
SMMUs
IFC, QSPI, SPI
8x FlexTimer
3x USB3.0 w/PHY
Parse, classify,
distribute
Watchpoint
Cross
Trigger
1G 1G 1/2.5/10G
Buffer
Manager 1G 1G 1/2.5/10G
1/2.5G
1G
SATA 3.0
4x I2C, GPIO
Real Time Debug
PCIe 3.0
2x DUART
Frame Manager
PCIe 3.0
DMA
Security Queue
Engine
(SEC) Manager
PCIe 3.0
SD/SDIO/eMMC
Perf
Trace
Monitor
DPAA Hardware
4-Lane 10 GHz SerDes 4-Lane 10 GHz SerDes
6x LPUART
Core Complex
Accelerators and Memory Control
Basic Peripherals, Interconnect, and Debug
Networking Elements
Figure 1. LS1046A block diagram
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
3
Pin assignments
Arm® Cortex®-A72
32-bit/64-bit Core
32 KB
32 KB
KB
48
I-Cache
I-Cache
32 KB
I-Cache
I-Cache
32 KB
32KB
KB
32
D-Cache
D-Cache
D-Cache
32 KB
D-Cache
64-bit
DDR4
Memory Controller
2 MB L2 - Cache
Secure Boot
CCI-400™ Coherency Fabric
Trust Zone
Power Management
SMMUs
IFC, QSPI, SPI
Buffer
Manager
8x FlexTimer
1G
1/2.5/10G
1G
1/2.5/10G
1G
3x USB3.0 w/PHY
6x LPUART
1G
1G
DPAA Hardware
SATA 3.0
4x I2C, GPIO
PCIe 3.0
Parse, classify,
distribute
2x DUART
PCIe 3.0
DMA
Real Time Debug
Frame Manager
Security Queue
Engine
(SEC) Manager
PCIe 3.0
SD/SDIO/eMMC
Watchpoint
Cross
Trigger
Perf Trace
Monitor
1/2.5G
4-Lane 10 GHz SerDes 4-Lane 10 GHz SerDes
Core Complex
Accelerators and Memory Control
Basic Peripherals, Interconnect, and Debug
Networking Elements
Figure 2. LS1026A block diagram
2 Pin assignments
2.1 780 BGA ball layout diagrams
This figure shows the complete view of the LS1046A BGA ball map diagram. Figure 4,
Figure 5, Figure 6, and Figure 7 show quadrant views.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
4
NXP Semiconductors
Pin assignments
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
A
A
B
B
C
C
D
D
E
E
F
SEE DETAIL A
F
SEE DETAIL B
G
G
H
H
J
J
K
K
L
L
M
M
N
N
P
P
R
R
T
T
U
U
V
V
W
W
Y
SEE DETAIL C
Y
SEE DETAIL D
AA
AA
AB
AB
AC
AC
AD
AD
AE
AE
AF
AF
AG
AG
AH
AH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
DDRC1
IFC
DUART
I2C
eSPI
eSDHC
Interrupts
Battery Backed Trust
Trust
System Control
ASLEEP
SYSCLK
DDR Clocking
RTC
Debug
DFT
JTAG
Analog Signals
Serdes 1
Serdes 2
USB3 PHY 1
USB3 PHY 2
USB PHY 3
Ethernet MI 1
Ethernet MI 2
EC1
EC2
USB
DIFF_SYSCLK
Power
Ground
No Connects
24
25
26
27
28
Figure 3. Complete BGA Map for the LS1046A
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
5
Pin assignments
1
A
2
3
4
GND001
USB3_
RX_
P
USB3_
RX_
M
5
6
7
8
9
10
11
12
13
14
GND002
USB3_
D_
M
USB3_
VBUS
IFC_
AD01
IFC_
AD03
IFC_
AD04
IFC_
AD06
IFC_
AD08
IFC_
AD09
IFC_
AD11
A
B
USB3_
TX_
P
USB3_
TX_
M
GND004
GND005
USB3_
ID
USB3_
D_
P
GND006
IFC_
AD00
IFC_
AD02
GND007
IFC_
AD05
IFC_
AD07
GND008
IFC_
AD10
B
C
GND014
GND015
USB2_
RX_
P
USB2_
RX_
M
GND016
USB2_
D_
M
USB2_
VBUS
IFC_
A17
IFC_
A18
IFC_
A20
IFC_
A21
IFC_
A23
IFC_
A25
IFC_
A27
C
D
USB2_
TX_
P
USB2_
TX_
M
GND019
GND020
USB2_
ID
USB2_
D_
P
GND021
IFC_
A16
GND022
IFC_
A19
IFC_
A22
GND023
IFC_
A24
IFC_
A26
D
E
GND028
GND029
USB1_
RX_
P
USB1_
RX_
M
GND030
USB1_
D_
M
USB1_
VBUS
EVT2_B
ASLEEP
EVT0_B
EVT4_B
EVT3_B
EVT1_B
IFC_
TE
E
F
USB1_
TX_
P
USB1_
TX_
M
GND033
GND034
USB1_
ID
USB1_
D_
P
GND035
HRESET_
B
PORESET_
B
RESET_
REQ_B
IRQ00
NC_
F12
PROG_
MTR
GND036
F
G
GND040
GND041
USB1_
RESREF
USB2_
RESREF
USB3_
RESREF
USB_
PWRFAULT
EVT9_B
TH_
VDD
GND042
GND043
GND044
TA_BB_
VDD
TA_
PROG_
SFP
SYSCLK
G
H
UART1_
SOUT
UART1_
SIN
GND047
GND048
GND049
USB_
DRVVBUS
IRQ02
TH_
TPA
AVDD_
PLAT
AVDD_
CGA2
AVDD_
CGA1
TA_BB_
TMP_
DETECT_B
TD1_
CATHODE
GND050
H
J
UART1_
CTS_B
UART1_
RTS_B
IRQ03
IRQ04
IRQ05
GND057
GND058
GND059
GND060
GND061
GND062
GND063
TD1_
ANODE
OVDD1
J
K
UART2_
SIN
GND067
IIC2_
SCL
GND068
IRQ06
GND069
USB_
SVDD1
USB_
HVDD1
NC_
K9
NC_
K10
NC_
K11
NC_
K12
GND070
VDD01
K
L
UART2_
RTS_B
UART2_
SOUT
IIC2_
SDA
IIC3_
SCL
IRQ07
GND075
USB_
SVDD2
USB_
HVDD2
NC_
L9
GND076
VDD05
GND077
VDD06
GND078
L
M
IIC1_
SDA
UART2_
CTS_B
IIC4_
SCL
IIC3_
SDA
IRQ08
GND084
USB_
SDVDD1
USB_
SDVDD2
GND085
VDD10
GND086
VDD11
GND087
VDD12
M
N
IIC1_
SCL
GND093
IIC4_
SDA
GND094
IRQ09
GND095
DVDD1
GND096
VDD15
GND097
VDD16
GND098
VDD17
GND099
N
P
SDHC_
DAT0
SDHC_
CMD
SDHC_
CLK
IRQ10
NC_
P5
GND105
DVDD2
NC_
P8
GND106
VDD21
GND107
VDD22
GND108
VDD23
P
1
2
3
4
5
6
7
8
9
10
11
12
DDRC1
IFC
DUART
I2C
eSPI
eSDHC
Interrupts
Battery Backed Trust
Trust
System Control
ASLEEP
SYSCLK
DDR Clocking
RTC
Debug
DFT
JTAG
Analog Signals
Serdes 1
Serdes 2
USB3 PHY 1
USB3 PHY 2
USB PHY 3
Ethernet MI 1
Ethernet MI 2
EC1
EC2
USB
DIFF_SYSCLK
Power
Ground
No Connects
13
14
Figure 4. Detail A
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
6
NXP Semiconductors
Pin assignments
15
16
17
18
19
20
21
22
23
24
25
26
27
28
A
IFC_
AD13
IFC_
AD14
IFC_
AD15
IFC_
AVD
IFC_
CS1_B
IFC_
CLK0
GND003
D1_
MDQ05
D1_
MDQ01
D1_
MDQS0_B
D1_
MDQS0
D1_
MDQ07
D1_
MDQ03
B
IFC_
AD12
GND009
IFC_
NDDQS
IFC_
PAR0
GND010
IFC_
CLK1
GND011
D1_
MDQ04
D1_
MDM0
GND012
D1_
MDQ06
GND013
G1VDD01
D1_
MCKE1
B
C
IFC_
WE0_B
IFC_
RB0_B
IFC_
CS0_B
IFC_
OE_B
IFC_
CLE
IFC_
CS3_B
GND017
D1_
MDQ00
D1_
MDQS1_B
D1_
MDQ14
D1_
MDQ20
D1_
MDQ02
GND018
D1_
MCKE0
C
D
GND024
IFC_
RB1_B
IFC_
PAR1
GND025
IFC_
WP0_B
IFC_
CS2_B
GND026
D1_
MDQ09
D1_
MDQS1
GND027
D1_
MDQ21
D1_
MDQ16
G1VDD02
D1_
MACT_B
D
E
IFC_BCTL
IFC_
NDDDR_
CLK
IFC_
PERR_B
TCK
TRST_B
TDO
GND031
D1_
MDQ08
D1_
MDQ15
D1_
MDQ17
D1_
MDM2
GND032
D1_
MBG0
D1_
MBG1
E
F
IRQ01
GND037
RTC
GND038
TBSCAN_
EN_B
TEST_
SEL_B
D1_
TPA
D1_
MDQ13
D1_
MDQ10
GND039
D1_
MDQS2
D1_
MDQS2_B
G1VDD03
D1_
MALERT_B
F
G
CKSTP_
OUT_B
CLK_
OUT
TDI
TMS
SENSE
VDD
SENSE
GND
GND045
D1_
MDQ12
D1_
MDQ11
D1_
MDQ18
D1_
MDQ22
GND046
D1_
MA12
D1_
MA09
G
H
GND051
GND052
GND053
GND054
SCAN_
MODE_B
TA_
TMP_
DETECT_B
GND055
D1_
MDM1
D1_
MDQ29
GND056
D1_
MDQ19
D1_
MDQ23
G1VDD04
D1_
MA11
H
J
OVDD2
OVDD3
OVDD4
OVDD5 JTAG_BSR_VSELDDRCLK
GND064
D1_
MDQ28
GND065
D1_
MDQ25
D1_
MDM3
GND066
D1_
MA07
D1_
MA08
J
K
GND071
VDD02
GND072
VDD03
GND073
VDD04
GND074
NC_
K22
D1_
MDQ24
D1_
MDQ30
D1_
MDQS3_B
D1_
MDQS3
G1VDD05
D1_
MA06
K
L
VDD07
GND079
VDD08
GND080
VDD09
GND081
NC_
L21
G1VDD06
GND082
D1_
MDQ26
D1_
MDQ31
GND083
D1_
MA05
D1_
MA04
L
M
GND088
VDD13
GND089
VDD14
GND090
NC_
M20
GND091
G1VDD07
GND092
D1_
MDQ27
D1_
MECC4
D1_
MECC0
G1VDD08
D1_
MA03
M
N
VDD18
GND100
VDD19
GND101
VDD20
GND102
NC_
N21
G1VDD09
GND103
D1_
MECC5
D1_
MECC1
GND104
D1_
MA01
D1_
MA02
N
P
GND109
VDD24
GND110
VDD25
GND111
NC_
P20
NC_
P21
G1VDD10
GND112
D1_
MDM8
D1_
MDQS8
D1_
MDQS8_B
G1VDD11
D1_
MDIC0
P
22
23
26
27
15
16
17
18
19
20
21
24
25
DDRC1
IFC
DUART
I2C
eSPI
eSDHC
Interrupts
Battery Backed Trust
Trust
System Control
ASLEEP
SYSCLK
DDR Clocking
RTC
Debug
DFT
JTAG
Analog Signals
Serdes 1
Serdes 2
USB3 PHY 1
USB3 PHY 2
USB PHY 3
Ethernet MI 1
Ethernet MI 2
EC1
EC2
USB
DIFF_SYSCLK
Power
Ground
No Connects
A
28
Figure 5. Detail B
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
7
Pin assignments
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
1
2
3
SDHC_
DAT2
SDHC_
DAT1
SPI_
PCS1
NC_
R4
GND113
SDHC_
DAT3
GND123
SPI_
PCS2
GND124
NC_
T5
GND125
SPI_
PCS0
SPI_
SCK
SPI_
SIN
NC_
U4
NC_
U5
GND135
SPI_
PCS3
GND144
SPI_
SOUT
GND145
NC_
V5
GND146
EC1_
RX_
CLK
EC1_
RXD3
IRQ11
EC1_
GTX_
CLK
NC_
W5
TVDD
EC1_
RXD2
GND160
EC1_
TXD3
4
EC1_
TXD2
5
6
7
EVDD
OVDD6
8
GND114
9
VDD26
10
GND115
11
12
VDD27
GND116
13
VDD28
14
GND117
R
LVDD1
LVDD2
NC_
T8
GND126
GND136
VDD37
VDD32
GND127
VDD33
GND128
VDD34
T
GND137
VDD38
GND138
VDD39
GND139
U
GND161
SD_
GND01
LVDD3
NC_
W7
NC_
V8
GND147
NC_
W8
NC_
W9
VDD43
GND148
VDD44
GND149
VDD45
V
SD_
GND04
SVDD1
VDD49
GND156
SVDD2
SVDD3
SD_
GND05
SD1_
IMP_
CAL_RX
SD2_
IMP_
CAL_RX
GND162
SD_
GND11
DIFF_
SYSCLK
GND168
DIFF_
SYSCLK_B
SD_
GND17
W
SD_
GND02
SD_
GND03
SD_
GND08
SD1_
IMP_
CAL_TX
SD_
GND09
SD1_
REF_
CLK2_P
SD_
GND10
NC_
AA10
AVDD_
SD1_
PLL1
GND163
Y
EC1_
RXD1
EC1_
RXD0
EC1_
TXD1
GND167
EC1_
RX_
DV
GND171
EC1_
TXD0
EC1_
TX_
EN
SD1_
PLL2_
TPD
AVDD_
SD1_
PLL2
SD_
GND15
SD1_
REF_
CLK2_N
SD_
GND16
NC_
AB10
NC_
AB11
GND172
EC2_
RX_
CLK
EC2_
RXD3
EC1_
GTX_
CLK125
EC2_
GTX_
CLK
SD_
GND20
SD_
GND21
XVDD1
SD_
GND22
XVDD2
SD_
GND23
SD_
GND24
XVDD3
SD2_
PLL1_
TPD
XVDD4
SD_
GND29
SD1_
TX0_
P
SD_
GND30
SD1_
TX1_
P
SD_
GND31
SD1_
TX2_
P
SD1_
TX3_
P
SD_
GND32
SD2_
REF_
CLK1_P
SD_
GND33
EC2_
RXD2
GND176
EC2_
RXD1
EC2_
RX_
DV
GND184
AG
AA
AC
EC2_
TXD3
GND177
EC2_
RXD0
EC2_
TXD2
EC2_
TXD1
SD_
GND36
SD1_
TX0_
N
SD_
GND37
SD1_
TX1_
N
SD_
GND38
SD1_
TX2_
N
SD1_
TX3_
N
SD_
GND39
SD2_
REF_
CLK1_N
SD_
GND40
EMI1_
MDIO
EC2_
TXD0
GND181
SD1_
PLL2_
TPA
SD_
GND43
SD_
GND44
SD_
GND45
SD_
GND46
SD_
GND47
SD_
GND48
SD1_
PLL1_
TPA
SD1_
PLL1_
TPD
SD2_
PLL1_
TPA
EMI1_
MDC
EC2_
TX_
EN
EC2_
GTX_
CLK125
SD_
GND54
SD1_
RX0_
P
SD_
GND55
SD1_
RX1_
P
SD_
GND56
SD1_
RX2_
P
SD1_
RX3_
P
SD_
GND57
SD1_
REF_
CLK1_P
SD_
GND58
SD_
GND62
SD1_
RX1_
N
SD_
GND63
SD1_
RX2_
N
SD1_
RX3_
N
SD_
GND64
SD1_
REF_
CLK1_N
SD_
GND65
7
8
9
GND187
AH
1
2
EMI2_
MDIO
EMI2_
MDC
SD_
GND61
SD1_
RX0_
N
3
4
5
6
10
11
12
DDRC1
IFC
DUART
I2C
eSPI
eSDHC
Interrupts
Battery Backed Trust
Trust
System Control
ASLEEP
SYSCLK
DDR Clocking
RTC
Debug
DFT
JTAG
Analog Signals
Serdes 1
Serdes 2
USB3 PHY 1
USB3 PHY 2
USB PHY 3
Ethernet MI 1
Ethernet MI 2
EC1
EC2
USB
DIFF_SYSCLK
Power
Ground
No Connects
AB
13
AD
AE
AF
AG
AH
14
Figure 6. Detail C
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
8
NXP Semiconductors
Pin assignments
15
VDD29
16
GND118
17
VDD30
18
GND119
19
VDD31
20
22
23
AVDD_
D1
G1VDD12
GND121
NC_
T20
GND132
G1VDD13
GND142
NC_
U21
G1VDD14
GND153
G1VDD16
GND120
R
GND129
VDD35
GND130
VDD36
GND131
T
VDD40
GND140
VDD41
GND141
VDD42
U
GND150
VDD46
GND151
VDD47
GND152
VDD48
21
SVDD5
VDD50
GND157
Y
AA
AB
AC
AD
AE
AF
AG
AH
28
D1_
MCK0_B
D1_
MCK0
D1_
MCK1_B
D1_
MCK1
D1_
MDIC1
D1_
MECC3
D1_
MECC2
GND134
D1_
MDQ36
D1_
MDQ37
D1_
MDQ33
G1VDD15
D1_
MDQ32
D1_
MDM4
GND155
D1_
MA00
D1_
MPAR
D1_
MDQ35
D1_
MDQ38
D1_
MDQS4_B
D1_
MDQS4
G1VDD17
D1_
MBA1
D1_
MDQ44
D1_
MDQ39
GND166
D1_
MBA0
D1_
MA10
D1_
MDQ45
D1_
MDQ34
G1VDD18
D1_
MRAS_B
D1_
MCS0_B
D1_
MWE_B
D1_
MCAS_B
GND133
GND143
GND154
SVDD8
SD2_
IMP_
CAL_TX
GND164
D1_
MDQ52
GND165
GND169
D1_
MDQ48
D1_
MDQ53
GND170
W
27
GND122
GND159
GND158
26
D1_
MECC6
NC_
W21
VDD51
25
D1_
MECC7
V
SVDD4
24
SD_
GND06
SD_
GND07
NC_
AA15
AVDD_
SD2_
PLL2
SD_
GND12
SD_
GND13
SD_
GND14
SD2_
PLL2_
TPD
AVDD_
SD2_
PLL1
NC_
AB16
SD_
GND18
SD2_
REF_
CLK2_P
SD2_
REF_
CLK2_N
SD_
GND19
FA_
VL
D1_
MDQ51
D1_
MDQ49
D1_
MDQ40
D1_
MDQ41
GND173
SD_
GND25
SD_
GND26
XVDD5
SD_
GND27
SD_
GND28
XVDD6
GND174
D1_
MDQ50
D1_
MDM6
GND175
D1_
MDQS5
D1_
MDQS5_B
G1VDD19
SD2_
TX0_
P
SD2_
TX1_
P
SD_
GND34
SD2_
TX2_
P
SD2_
TX3_
P
SD_
GND35
FA_
ANALOG_
PIN
D1_
MDQ54
D1_
MDQS6_B
D1_
MDM5
D1_
MDQ46
GND178
D1_
MA13
D1_
MODT0
SD2_
TX0_
N
SD2_
TX1_
N
SD_
GND41
SD2_
TX2_
N
SD2_
TX3_
N
SD_
GND42
GND179
D1_
MDQ55
D1_
MDQS6
GND180
D1_
MDQ42
D1_
MDQ47
G1VDD20
D1_
MCS1_B
SD_
GND49
SD_
GND50
SD_
GND51
SD_
GND52
SD_
GND53
SD2_
PLL2_
TPA
GND182
D1_
MDQ59
D1_
MDQ62
D1_
MDQ57
D1_
MDQ43
GND183
D1_
MODT1
D1_
MCS3_B
SD2_
RX0_
P
SD2_
RX1_
P
SD_
GND59
SD2_
RX2_
P
SD2_
RX3_
P
SD_
GND60
FA_
ANALOG_
G_V
D1_
MDQ58
D1_
MDQS7_B
GND185
D1_
MDQ61
GND186
G1VDD21
D1_
MCS2_B
SD2_
RX0_
N
SD2_
RX1_
N
SD_
GND66
SD2_
RX2_
N
SD2_
RX3_
N
SD_
GND67
GND188
D1_
MDQ63
D1_
MDQS7
D1_
MDM7
D1_
MDQ56
D1_
MDQ60
15
16
SVDD6
SVDD7
17
18
19
20
21
22
23
24
25
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
G1VDD22
26
DDRC1
IFC
DUART
I2C
eSPI
eSDHC
Interrupts
Battery Backed Trust
Trust
System Control
ASLEEP
SYSCLK
DDR Clocking
RTC
Debug
DFT
JTAG
Analog Signals
Serdes 1
Serdes 2
USB3 PHY 1
USB3 PHY 2
USB PHY 3
Ethernet MI 1
Ethernet MI 2
EC1
EC2
USB
DIFF_SYSCLK
Power
Ground
No Connects
AH
27
28
Figure 7. Detail D
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
9
Pin assignments
2.2 Pinout list
This table provides the pinout listing for the LS1046A by bus. Primary functions are
bolded in the table.
Table 1. Pinout list by bus
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
DDR SDRAM Memory Interface 1
D1_MA00
Address
V27
O
G1VDD
---
D1_MA01
Address
N27
O
G1VDD
---
D1_MA02
Address
N28
O
G1VDD
---
D1_MA03
Address
M28
O
G1VDD
---
D1_MA04
Address
L28
O
G1VDD
---
D1_MA05
Address
L27
O
G1VDD
---
D1_MA06
Address
K28
O
G1VDD
---
D1_MA07
Address
J27
O
G1VDD
---
D1_MA08
Address
J28
O
G1VDD
---
D1_MA09
Address
G28
O
G1VDD
---
D1_MA10
Address
Y28
O
G1VDD
---
D1_MA11
Address
H28
O
G1VDD
---
D1_MA12
Address
G27
O
G1VDD
---
D1_MA13
Address
AD27
O
G1VDD
---
D1_MACT_B
Activate
D28
O
G1VDD
---
D1_MALERT_B
Alert
F28
I
G1VDD
1, 27
D1_MBA0
Bank Select
Y27
O
G1VDD
---
D1_MBA1
Bank Select
W28
O
G1VDD
---
D1_MBG0
Bank Group
E27
O
G1VDD
---
D1_MBG1
Bank Group
E28
O
G1VDD
---
D1_MCAS_B
Column Address Strobe /
MA[15]
AC28
O
G1VDD
---
D1_MCK0
Clock
R28
O
G1VDD
---
D1_MCK0_B
Clock Complement
R27
O
G1VDD
---
D1_MCK1
Clock
T28
O
G1VDD
---
D1_MCK1_B
Clock Complement
T27
O
G1VDD
---
D1_MCKE0
Clock Enable
C28
O
G1VDD
2
D1_MCKE1
Clock Enable
B28
O
G1VDD
2
D1_MCS0_B
Chip Select
AB27
O
G1VDD
---
D1_MCS1_B
Chip Select
AE28
O
G1VDD
---
D1_MCS2_B
Chip Select / MCID[0]
AG28
O
G1VDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
10
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
AF28
O
G1VDD
---
D1_MCS3_B
Chip Select / MCID[1]
D1_MDIC0
Driver Impedence Calibration
P28
IO
G1VDD
3
D1_MDIC1
Driver Impedence Calibration
U28
IO
G1VDD
3
D1_MDM0
Data Mask
B23
IO
G1VDD
---
D1_MDM1
Data Mask
H22
IO
G1VDD
---
D1_MDM2
Data Mask
E25
IO
G1VDD
---
D1_MDM3
Data Mask
J25
IO
G1VDD
---
D1_MDM4
Data Mask
V25
IO
G1VDD
---
D1_MDM5
Data Mask
AD24
IO
G1VDD
---
D1_MDM6
Data Mask
AC23
IO
G1VDD
---
D1_MDM7
Data Mask
AH24
IO
G1VDD
---
D1_MDM8
Data Mask
P24
IO
G1VDD
---
D1_MDQ00
Data
C22
IO
G1VDD
---
D1_MDQ01
Data
A23
IO
G1VDD
---
D1_MDQ02
Data
C26
IO
G1VDD
---
D1_MDQ03
Data
A27
IO
G1VDD
---
D1_MDQ04
Data
B22
IO
G1VDD
---
D1_MDQ05
Data
A22
IO
G1VDD
---
D1_MDQ06
Data
B25
IO
G1VDD
---
D1_MDQ07
Data
A26
IO
G1VDD
---
D1_MDQ08
Data
E22
IO
G1VDD
---
D1_MDQ09
Data
D22
IO
G1VDD
---
D1_MDQ10
Data
F23
IO
G1VDD
---
D1_MDQ11
Data
G23
IO
G1VDD
---
D1_MDQ12
Data
G22
IO
G1VDD
---
D1_MDQ13
Data
F22
IO
G1VDD
---
D1_MDQ14
Data
C24
IO
G1VDD
---
D1_MDQ15
Data
E23
IO
G1VDD
---
D1_MDQ16
Data
D26
IO
G1VDD
---
D1_MDQ17
Data
E24
IO
G1VDD
---
D1_MDQ18
Data
G24
IO
G1VDD
---
D1_MDQ19
Data
H25
IO
G1VDD
---
D1_MDQ20
Data
C25
IO
G1VDD
---
D1_MDQ21
Data
D25
IO
G1VDD
---
D1_MDQ22
Data
G25
IO
G1VDD
---
D1_MDQ23
Data
H26
IO
G1VDD
---
D1_MDQ24
Data
K23
IO
G1VDD
---
D1_MDQ25
Data
J24
IO
G1VDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
11
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
D1_MDQ26
Data
L24
IO
G1VDD
---
D1_MDQ27
Data
M24
IO
G1VDD
---
D1_MDQ28
Data
J22
IO
G1VDD
---
D1_MDQ29
Data
H23
IO
G1VDD
---
D1_MDQ30
Data
K24
IO
G1VDD
---
D1_MDQ31
Data
L25
IO
G1VDD
---
D1_MDQ32
Data
V24
IO
G1VDD
---
D1_MDQ33
Data
U26
IO
G1VDD
---
D1_MDQ34
Data
AA26
IO
G1VDD
---
D1_MDQ35
Data
W23
IO
G1VDD
---
D1_MDQ36
Data
U24
IO
G1VDD
---
D1_MDQ37
Data
U25
IO
G1VDD
---
D1_MDQ38
Data
W24
IO
G1VDD
---
D1_MDQ39
Data
Y25
IO
G1VDD
---
D1_MDQ40
Data
AB24
IO
G1VDD
---
D1_MDQ41
Data
AB25
IO
G1VDD
---
D1_MDQ42
Data
AE25
IO
G1VDD
---
D1_MDQ43
Data
AF25
IO
G1VDD
---
D1_MDQ44
Data
Y24
IO
G1VDD
---
D1_MDQ45
Data
AA25
IO
G1VDD
---
D1_MDQ46
Data
AD25
IO
G1VDD
---
D1_MDQ47
Data
AE26
IO
G1VDD
---
D1_MDQ48
Data
AA22
IO
G1VDD
---
D1_MDQ49
Data
AB23
IO
G1VDD
---
D1_MDQ50
Data
AC22
IO
G1VDD
---
D1_MDQ51
Data
AB22
IO
G1VDD
---
D1_MDQ52
Data
Y22
IO
G1VDD
---
D1_MDQ53
Data
AA23
IO
G1VDD
---
D1_MDQ54
Data
AD22
IO
G1VDD
---
D1_MDQ55
Data
AE22
IO
G1VDD
---
D1_MDQ56
Data
AH25
IO
G1VDD
---
D1_MDQ57
Data
AF24
IO
G1VDD
---
D1_MDQ58
Data
AG22
IO
G1VDD
---
D1_MDQ59
Data
AF22
IO
G1VDD
---
D1_MDQ60
Data
AH26
IO
G1VDD
---
D1_MDQ61
Data
AG25
IO
G1VDD
---
D1_MDQ62
Data
AF23
IO
G1VDD
---
D1_MDQ63
Data
AH22
IO
G1VDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
12
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
D1_MDQS0
Data Strobe
A25
IO
G1VDD
---
D1_MDQS0_B
Data Strobe
A24
IO
G1VDD
---
D1_MDQS1
Data Strobe
D23
IO
G1VDD
---
D1_MDQS1_B
Data Strobe
C23
IO
G1VDD
---
D1_MDQS2
Data Strobe
F25
IO
G1VDD
---
D1_MDQS2_B
Data Strobe
F26
IO
G1VDD
---
D1_MDQS3
Data Strobe
K26
IO
G1VDD
---
D1_MDQS3_B
Data Strobe
K25
IO
G1VDD
---
D1_MDQS4
Data Strobe
W26
IO
G1VDD
---
D1_MDQS4_B
Data Strobe
W25
IO
G1VDD
---
D1_MDQS5
Data Strobe
AC25
IO
G1VDD
---
D1_MDQS5_B
Data Strobe
AC26
IO
G1VDD
---
D1_MDQS6
Data Strobe
AE23
IO
G1VDD
---
D1_MDQS6_B
Data Strobe
AD23
IO
G1VDD
---
D1_MDQS7
Data Strobe
AH23
IO
G1VDD
---
D1_MDQS7_B
Data Strobe
AG23
IO
G1VDD
---
D1_MDQS8
Data Strobe
P25
IO
G1VDD
---
D1_MDQS8_B
Data Strobe
P26
IO
G1VDD
---
D1_MECC0
Error Correcting Code
M26
IO
G1VDD
---
D1_MECC1
Error Correcting Code
N25
IO
G1VDD
---
D1_MECC2
Error Correcting Code
T25
IO
G1VDD
---
D1_MECC3
Error Correcting Code
T24
IO
G1VDD
---
D1_MECC4
Error Correcting Code
M25
IO
G1VDD
---
D1_MECC5
Error Correcting Code
N24
IO
G1VDD
---
D1_MECC6
Error Correcting Code
R25
IO
G1VDD
---
D1_MECC7
Error Correcting Code
R24
IO
G1VDD
---
D1_MODT0
On Die Termination
AD28
O
G1VDD
2
D1_MODT1
On Die Termination / MCID[2]
AF27
O
G1VDD
2
D1_MPAR
Address Parity Out
V28
O
G1VDD
---
D1_MRAS_B
Row Address Strobe / MA[16]
AA28
O
G1VDD
---
D1_MWE_B
Write Enable / MA[14]
AB28
O
G1VDD
---
Integrated Flash Controller
IFC_A16/QSPI_A_CS0
IFC Address
D8
O
OVDD
1, 5
IFC_A17/QSPI_A_CS1
IFC Address
C8
O
OVDD
1, 5
IFC_A18/QSPI_A_SCK
IFC Address
C9
O
OVDD
1, 5
IFC_A19/QSPI_B_CS0
IFC Address
D10
O
OVDD
1, 5
IFC_A20/QSPI_B_CS1
IFC Address
C10
O
OVDD
1, 5
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
13
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
IFC_A21/QSPI_B_SCK/
cfg_dram_type
IFC Address
C11
O
OVDD
1, 15
IFC_A22/QSPI_A_DATA0/
IFC_WP1_B
IFC Address
D11
O
OVDD
1
IFC_A23/QSPI_A_DATA1/
IFC_WP2_B
IFC Address
C12
O
OVDD
1
IFC_A24/QSPI_A_DATA2/
IFC_WP3_B
IFC Address
D13
O
OVDD
1
IFC_A25/GPIO2_25/
QSPI_A_DATA3/FTM5_CH0/
IFC_CS4_B/IFC_RB2_B
IFC Address
C13
O
OVDD
1
IFC_A26/GPIO2_26/
FTM5_CH1/IFC_CS5_B/
IFC_RB3_B
IFC Address
D14
O
OVDD
1
IFC_A27/GPIO2_27/
FTM5_EXTCLK/IFC_CS6_B
IFC Address
C14
O
OVDD
1
IFC_AD00/cfg_gpinput0
IFC Address / Data
B8
IO
OVDD
4
IFC_AD01/cfg_gpinput1
IFC Address / Data
A8
IO
OVDD
4
IFC_AD02/cfg_gpinput2
IFC Address / Data
B9
IO
OVDD
4
IFC_AD03/cfg_gpinput3
IFC Address / Data
A9
IO
OVDD
4
IFC_AD04/cfg_gpinput4
IFC Address / Data
A10
IO
OVDD
4
IFC_AD05/cfg_gpinput5
IFC Address / Data
B11
IO
OVDD
4
IFC_AD06/cfg_gpinput6
IFC Address / Data
A11
IO
OVDD
4
IFC_AD07/cfg_gpinput7
IFC Address / Data
B12
IO
OVDD
4
IFC_AD08/cfg_rcw_src0
IFC Address / Data
A12
IO
OVDD
4
IFC_AD09/cfg_rcw_src1
IFC Address / Data
A13
IO
OVDD
4
IFC_AD10/cfg_rcw_src2
IFC Address / Data
B14
IO
OVDD
4
IFC_AD11/cfg_rcw_src3
IFC Address / Data
A14
IO
OVDD
4
IFC_AD12/cfg_rcw_src4
IFC Address / Data
B15
IO
OVDD
4
IFC_AD13/cfg_rcw_src5
IFC Address / Data
A15
IO
OVDD
4
IFC_AD14/cfg_rcw_src6
IFC Address / Data
A16
IO
OVDD
4
IFC_AD15/cfg_rcw_src7
IFC Address / Data
A17
IO
OVDD
4
IFC_AVD
IFC Address Valid
A18
O
OVDD
1, 5
IFC_BCTL
IFC Buffer control
E15
O
OVDD
---
IFC_CLE/cfg_rcw_src8
IFC Command Latch Enable /
Write Enable
C19
O
OVDD
1, 4
IFC_CLK0
IFC Clock
A20
O
OVDD
---
IFC_CLK1
IFC Clock
B20
O
OVDD
---
IFC_CS0_B
IFC Chip Select
C17
O
OVDD
1, 6
IFC_CS1_B/GPIO2_10/
FTM7_CH0
IFC Chip Select
A19
O
OVDD
1, 6
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
14
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
IFC_CS2_B/GPIO2_11/
FTM7_CH1
IFC Chip Select
D20
O
OVDD
1, 6
IFC_CS3_B/GPIO2_12/
QSPI_B_DATA3/
FTM7_EXTCLK
IFC Chip Select
C20
O
OVDD
1, 6
IFC_CS4_B/IFC_A25/
GPIO2_25/QSPI_A_DATA3/
FTM5_CH0/IFC_RB2_B
IFC Chip Select
C13
O
OVDD
1
IFC_CS5_B/IFC_A26/
GPIO2_26/FTM5_CH1/
IFC_RB3_B
IFC Chip Select
D14
O
OVDD
1
IFC_CS6_B/IFC_A27/
GPIO2_27/FTM5_EXTCLK
IFC Chip Select
C14
O
OVDD
1
IFC_NDDDR_CLK
IFC NAND DDR Clock
E16
O
OVDD
---
IFC_NDDQS
IFC DQS Strobe
B17
IO
OVDD
---
IFC_OE_B/cfg_eng_use1
IFC Output Enable
C18
O
OVDD
1, 4
IFC_PAR0/GPIO2_13/
QSPI_B_DATA0/FTM6_CH0
IFC Address & Data Parity
B18
IO
OVDD
---
IFC_PAR1/GPIO2_14/
QSPI_B_DATA1/FTM6_CH1
IFC Address & Data Parity
D17
IO
OVDD
---
IFC_PERR_B/GPIO2_15/
QSPI_B_DATA2/
FTM6_EXTCLK
IFC Parity Error
E17
I
OVDD
1
IFC_RB0_B
IFC Ready / Busy CS0
C16
I
OVDD
6
IFC_RB1_B
IFC Ready / Busy CS1
D16
I
OVDD
6
IFC_RB2_B/IFC_A25/
GPIO2_25/QSPI_A_DATA3/
FTM5_CH0/IFC_CS4_B
IFC Ready/Busy CS 2
C13
I
OVDD
1
IFC_RB3_B/IFC_A26/
GPIO2_26/FTM5_CH1/
IFC_CS5_B
IFC Ready/Busy CS 3
D14
I
OVDD
1
IFC_TE/cfg_ifc_te
IFC External Transceiver
Enable
E14
O
OVDD
1, 4
IFC_WE0_B/cfg_eng_use0
IFC Write Enable
C15
O
OVDD
1, 4, 26
IFC_WP0_B/cfg_eng_use2
IFC Write Protect
D19
O
OVDD
1, 4
IFC_WP1_B/IFC_A22/
QSPI_A_DATA0
IFC Write Protect
D11
O
OVDD
1
IFC_WP2_B/IFC_A23/
QSPI_A_DATA1
IFC Write Protect
C12
O
OVDD
1
IFC_WP3_B/IFC_A24/
QSPI_A_DATA2
IFC Write Protect
D13
O
OVDD
1
DUART
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
15
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
UART1_CTS_B/GPIO1_21/
UART3_SIN/FTM4_CH4/
LPUART2_SIN
Clear To Send
J1
I
DVDD
1
UART1_RTS_B/GPIO1_19/
UART3_SOUT/
LPUART2_SOUT/FTM4_CH2
Ready to Send
J2
O
DVDD
1
UART1_SIN/GPIO1_17
Receive Data
H2
I
DVDD
1
UART1_SOUT/GPIO1_15
Transmit Data
H1
O
DVDD
1
UART2_CTS_B/GPIO1_22/
UART4_SIN/FTM4_CH5/
LPUART1_CTS_B/
LPUART4_SIN
Clear To Send
M2
I
DVDD
1
UART2_RTS_B/GPIO1_20/
Ready to Send
UART4_SOUT/
LPUART4_SOUT/FTM4_CH3/
LPUART1_RTS_B
L1
O
DVDD
1
UART2_SIN/GPIO1_18/
FTM4_CH1/LPUART1_SIN
Receive Data
K1
I
DVDD
1
UART2_SOUT/GPIO1_16/
LPUART1_SOUT/FTM4_CH0
Transmit Data
L2
O
DVDD
1
UART3_SIN/UART1_CTS_B/
GPIO1_21/FTM4_CH4/
LPUART2_SIN
Receive Data
J1
I
DVDD
1
UART3_SOUT/
UART1_RTS_B/GPIO1_19/
LPUART2_SOUT/FTM4_CH2
Transmit Data
J2
O
DVDD
1
UART4_SIN/UART2_CTS_B/
GPIO1_22/FTM4_CH5/
LPUART1_CTS_B/
LPUART4_SIN
Receive Data
M2
I
DVDD
1
UART4_SOUT/
Transmit Data
UART2_RTS_B/GPIO1_20/
LPUART4_SOUT/FTM4_CH3/
LPUART1_RTS_B
L1
O
DVDD
1
I2C
IIC1_SCL
Serial Clock (supports PBL)
N1
IO
DVDD
7, 8
IIC1_SDA
Serial Data (supports PBL)
M1
IO
DVDD
7, 8
IIC2_SCL/GPIO4_2/
Serial Clock
SDHC_CD_B/FTM3_QD_PHA
K3
IO
DVDD
7, 8
IIC2_SDA/GPIO4_3/
SDHC_WP/FTM3_QD_PHB
L3
IO
DVDD
7, 8
IIC3_SCL/GPIO4_10/EVT5_B/ Serial Clock
USB2_DRVVBUS/FTM8_CH0
L4
IO
DVDD
7, 8
IIC3_SDA/GPIO4_11/EVT6_B/ Serial Data
USB2_PWRFAULT/
FTM8_CH1
M4
IO
DVDD
7, 8
Serial Data
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
16
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
IIC4_SCL/GPIO4_12/EVT7_B/ Serial Clock
USB3_DRVVBUS/
FTM3_FAULT
M3
IO
DVDD
7, 8
IIC4_SDA/GPIO4_13/EVT8_B/ Serial Data
USB3_PWRFAULT/
FTM3_EXTCLK
N3
IO
DVDD
7, 8
SPI Interface
SPI_PCS0/GPIO2_00/
SDHC_DAT4/SDHC_VS
SPI Chip Select
U1
O
OVDD
1
SPI_PCS1/GPIO2_01/
SDHC_DAT5/
SDHC_CMD_DIR
SPI Chip Select
R3
O
OVDD
1
SPI_PCS2/GPIO2_02/
SDHC_DAT6/
SDHC_DAT0_DIR
SPI Chip Select
T3
O
OVDD
1
SPI_PCS3/GPIO2_03/
SDHC_DAT7/
SDHC_DAT123_DIR
SPI Chip Select
V1
O
OVDD
1
SPI_SCK
SPI Clock
U2
O
OVDD
1
SPI_SIN/
SDHC_CLK_SYNC_IN
Master In Slave Out
U3
I
OVDD
1
SPI_SOUT/
SDHC_CLK_SYNC_OUT
Master Out Slave In
V3
IO
OVDD
---
eSDHC
SDHC_CD_B/IIC2_SCL/
GPIO4_2/FTM3_QD_PHA
Command
K3
I
DVDD
1
SDHC_CLK/GPIO2_09/
LPUART3_CTS_B/
LPUART6_SIN/
FTM4_QD_PHB
Host to Card Clock
P3
O
EVDD
1
SDHC_CLK_SYNC_IN/
SPI_SIN
IN
U3
I
OVDD
1
SDHC_CLK_SYNC_OUT/
SPI_SOUT
OUT
V3
O
OVDD
1
SDHC_CMD/GPIO2_04/
LPUART3_SOUT/FTM4_CH6
Command/Response
P2
IO
EVDD
---
SDHC_CMD_DIR/SPI_PCS1/
GPIO2_01/SDHC_DAT5
DIR
R3
O
OVDD
1
SDHC_DAT0/GPIO2_05/
FTM4_CH7/LPUART3_SIN
Data
P1
IO
EVDD
---
SDHC_DAT0_DIR/SPI_PCS2/ DIR
GPIO2_02/SDHC_DAT6
T3
O
OVDD
1
SDHC_DAT1/GPIO2_06/
LPUART5_SOUT/
R2
IO
EVDD
---
Data
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
17
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
FTM4_FAULT/
LPUART2_RTS_B
SDHC_DAT123_DIR/
SPI_PCS3/GPIO2_03/
SDHC_DAT7
DIR
V1
O
OVDD
1
SDHC_DAT2/GPIO2_07/
LPUART2_CTS_B/
LPUART5_SIN/
FTM4_EXTCLK
Data
R1
IO
EVDD
---
SDHC_DAT3/GPIO2_08/
LPUART6_SOUT/
FTM4_QD_PHA/
LPUART3_RTS_B
Data
T1
IO
EVDD
---
SDHC_DAT4/SPI_PCS0/
GPIO2_00/SDHC_VS
Data
U1
IO
OVDD
---
SDHC_DAT5/SPI_PCS1/
GPIO2_01/SDHC_CMD_DIR
Data
R3
IO
OVDD
---
SDHC_DAT6/SPI_PCS2/
GPIO2_02/SDHC_DAT0_DIR
Data
T3
IO
OVDD
---
SDHC_DAT7/SPI_PCS3/
GPIO2_03/
SDHC_DAT123_DIR
Data
V1
IO
OVDD
---
SDHC_VS/SPI_PCS0/
GPIO2_00/SDHC_DAT4
VS
U1
O
OVDD
1
SDHC_WP/IIC2_SDA/
GPIO4_3/FTM3_QD_PHB
Write Protect
L3
I
DVDD
1
Programmable Interrupt Controller
EVT9_B
Event 9
G7
IO
OVDD
1, 6, 7
IRQ00
External Interrupt
F11
I
OVDD
1
IRQ01
External Interrupt
F15
I
OVDD
1
IRQ02
External Interrupt
H7
I
OVDD
1
IRQ03/GPIO1_23/FTM3_CH7
External Interrupt
J3
I
DVDD
1
IRQ04/GPIO1_24/FTM3_CH0
External Interrupt
J4
I
DVDD
1
IRQ05/GPIO1_25/FTM3_CH1
External Interrupt
J5
I
DVDD
1
IRQ06/GPIO1_26/FTM3_CH2
External Interrupt
K5
I
DVDD
1
IRQ07/GPIO1_27/FTM3_CH3
External Interrupt
L5
I
DVDD
1
IRQ08/GPIO1_28/FTM3_CH4
External Interrupt
M5
I
DVDD
1
IRQ09/GPIO1_29/FTM3_CH5
External Interrupt
N5
I
DVDD
1
IRQ10/GPIO1_30/FTM3_CH6
External Interrupt
P4
I
DVDD
1
IRQ11/GPIO1_31
External Interrupt
W3
I
LVDD
1
I
TA_BB_VDD
---
Battery Backed Trust
TA_BB_TMP_DETECT_B
Battery Backed Tamper Detect
H12
Trust
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
18
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
TA_TMP_DETECT_B
Signal description
Package
pin
number
Pin
type
H20
I
OVDD
1
Tamper Detect
Power supply
Notes
System Control
HRESET_B
Hard Reset
F8
IO
OVDD
7, 28
PORESET_B
Power On Reset
F9
I
OVDD
---
RESET_REQ_B
Reset Request
F10
O
OVDD
1, 5
E9
O
OVDD
1
G14
I
OVDD
22
J20
I
OVDD
22
F17
I
OVDD
1
Power Management
ASLEEP/GPIO1_13
Asleep
SYSCLK
SYSCLK
System Clock
DDR Clocking
DDRCLK
DDR Controller Clock
RTC
RTC/GPIO1_14
Real Time Clock
Debug
CKSTP_OUT_B
RSVD
G15
-
OVDD
6, 7
CLK_OUT
Clock Out
G16
O
OVDD
---
EVT0_B
Event 0
E10
IO
OVDD
9
EVT1_B
Event 1
E13
IO
OVDD
---
EVT2_B
Event 2
E8
IO
OVDD
---
EVT3_B
Event 3
E12
IO
OVDD
---
EVT4_B
Event 4
E11
IO
OVDD
---
EVT5_B/IIC3_SCL/GPIO4_10/ Event 5
USB2_DRVVBUS/FTM8_CH0
L4
IO
DVDD
---
EVT6_B/IIC3_SDA/GPIO4_11/ Event 6
USB2_PWRFAULT/
FTM8_CH1
M4
IO
DVDD
---
EVT7_B/IIC4_SCL/GPIO4_12/ Event 7
USB3_DRVVBUS/
FTM3_FAULT
M3
IO
DVDD
---
EVT8_B/IIC4_SDA/GPIO4_13/ Event 8
USB3_PWRFAULT/
FTM3_EXTCLK
N3
IO
DVDD
---
DFT
JTAG_BSR_VSEL
An IEEE 1149.1 JTAG
Compliance Enable pin. 0:
normal operation. 1: To be
compliant to the 1149.1
specification for boundary scan
functions. The JTAG compliant
state is documented in the
BSDL.
J19
I
OVDD
24, 25
SCAN_MODE_B
Reserved
H19
I
OVDD
10, 25
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
19
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
TBSCAN_EN_B
An IEEE 1149.1 JTAG
Compliance Enable pin. 0: To
be compliant to the 1149.1
specification for boundary scan
functions. The JTAG compliant
state is documented in the
BSDL. 1: JTAG connects to
DAP controller for the Arm core
debug.
F19
I
OVDD
20, 25
TEST_SEL_B
Reserved
F20
I
OVDD
19, 25
TCK
Test Clock
E18
I
OVDD
---
TDI
Test Data In
G17
I
OVDD
9
TDO
Test Data Out
E20
O
OVDD
2
TMS
Test Mode Select
G18
I
OVDD
9
TRST_B
Test Reset
E19
I
OVDD
9
F21
IO
12
JTAG
Analog Signals
D1_TPA
DDR Controller 1 Test Point
Analog
FA_ANALOG_G_V
Reserved
AG21
IO
15
FA_ANALOG_PIN
Reserved
AD21
IO
15
TD1_ANODE
Thermal diode anode
J13
IO
17
TD1_CATHODE
Thermal diode cathode
H13
IO
17
TH_TPA
Thermal Test Point Analog
H8
-
-
12
SerDes 1
SD1_IMP_CAL_RX
SerDes Receive Impedence
Calibration
Y11
I
SVDD
11
SD1_IMP_CAL_TX
SerDes Transmit Impedance
Calibration
AA6
I
XVDD
16
SD1_PLL1_TPA
SerDes PLL 1 Test Point
Analog
AF12
O
AVDD_SD1_PLL1
12
SD1_PLL1_TPD
SerDes Test Point Digital
AF13
O
XVDD
12
SD1_PLL2_TPA
SerDes PLL 2 Test Point
Analog
AF5
O
AVDD_SD1_PLL2
12
SD1_PLL2_TPD
SerDes Test Point Digital
AB5
O
XVDD
12
SD1_REF_CLK1_N
SerDes PLL 1 Reference Clock
Complement
AH13
I
SVDD
---
SD1_REF_CLK1_P
SerDes PLL 1 Reference Clock
AG13
I
SVDD
---
SD1_REF_CLK2_N
SerDes PLL 2 Reference Clock
Complement
AB8
I
SVDD
---
SD1_REF_CLK2_P
SerDes PLL 2 Reference Clock
AA8
I
SVDD
---
SD1_RX0_N
SerDes Receive Data
(negative)
AH6
I
SVDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
20
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
SD1_RX0_P
SerDes Receive Data
(positive)
AG6
I
SVDD
---
SD1_RX1_N
SerDes Receive Data
(negative)
AH8
I
SVDD
---
SD1_RX1_P
SerDes Receive Data
(positive)
AG8
I
SVDD
---
SD1_RX2_N
SerDes Receive Data
(negative)
AH10
I
SVDD
---
SD1_RX2_P
SerDes Receive Data
(positive)
AG10
I
SVDD
---
SD1_RX3_N
SerDes Receive Data
(negative)
AH11
I
SVDD
---
SD1_RX3_P
SerDes Receive Data
(positive)
AG11
I
SVDD
---
SD1_TX0_N
SerDes Transmit Data
(negative)
AE6
O
XVDD
---
SD1_TX0_P
SerDes Transmit Data
(positive)
AD6
O
XVDD
---
SD1_TX1_N
SerDes Transmit Data
(negative)
AE8
O
XVDD
---
SD1_TX1_P
SerDes Transmit Data
(positive)
AD8
O
XVDD
---
SD1_TX2_N
SerDes Transmit Data
(negative)
AE10
O
XVDD
---
SD1_TX2_P
SerDes Transmit Data
(positive)
AD10
O
XVDD
---
SD1_TX3_N
SerDes Transmit Data
(negative)
AE11
O
XVDD
---
SD1_TX3_P
SerDes Transmit Data
(positive)
AD11
O
XVDD
---
SerDes 2
SD2_IMP_CAL_RX
SerDes Receive Impedence
Calibration
Y12
I
SVDD
11
SD2_IMP_CAL_TX
SerDes Transmit Impedance
Calibration
Y20
I
XVDD
16
SD2_PLL1_TPA
SerDes PLL 1 Test Point
Analog
AF14
O
AVDD_SD2_PLL1
12
SD2_PLL1_TPD
SerDes Test Point Digital
AC13
O
XVDD
12
SD2_PLL2_TPA
SerDes PLL 2 Test Point
Analog
AF20
O
AVDD_SD2_PLL2
12
SD2_PLL2_TPD
SerDes Test Point Digital
AA20
O
XVDD
12
SD2_REF_CLK1_N
SerDes PLL 1 Reference Clock
Complement
AE13
I
SVDD
---
SD2_REF_CLK1_P
SerDes PLL 1 Reference Clock
AD13
I
SVDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
21
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
SD2_REF_CLK2_N
SerDes PLL 2 Reference Clock
Complement
AB19
I
SVDD
---
SD2_REF_CLK2_P
SerDes PLL 2 Reference Clock
AB18
I
SVDD
---
SD2_RX0_N
SerDes Receive Data
(negative)
AH15
I
SVDD
---
SD2_RX0_P
SerDes Receive Data
(positive)
AG15
I
SVDD
---
SD2_RX1_N
SerDes Receive Data
(negative)
AH16
I
SVDD
---
SD2_RX1_P
SerDes Receive Data
(positive)
AG16
I
SVDD
---
SD2_RX2_N
SerDes Receive Data
(negative)
AH18
I
SVDD
---
SD2_RX2_P
SerDes Receive Data
(positive)
AG18
I
SVDD
---
SD2_RX3_N
SerDes Receive Data
(negative)
AH19
I
SVDD
---
SD2_RX3_P
SerDes Receive Data
(positive)
AG19
I
SVDD
---
SD2_TX0_N
SerDes Transmit Data
(negative)
AE15
O
XVDD
---
SD2_TX0_P
SerDes Transmit Data
(positive)
AD15
O
XVDD
---
SD2_TX1_N
SerDes Transmit Data
(negative)
AE16
O
XVDD
---
SD2_TX1_P
SerDes Transmit Data
(positive)
AD16
O
XVDD
---
SD2_TX2_N
SerDes Transmit Data
(negative)
AE18
O
XVDD
---
SD2_TX2_P
SerDes Transmit Data
(positive)
AD18
O
XVDD
---
SD2_TX3_N
SerDes Transmit Data
(negative)
AE19
O
XVDD
---
SD2_TX3_P
SerDes Transmit Data
(positive)
AD19
O
XVDD
---
USB3 PHY #1
USB1_D_M
USB PHY HS Data (-)
E6
IO
-
---
USB1_D_P
USB PHY HS Data (+)
F6
IO
-
---
USB1_ID
USB PHY ID Detect
F5
I
-
---
USB1_RESREF
USB PHY Impedance
Calibration
G3
IO
-
18
USB1_RX_M
USB PHY SS Receive Data (-)
E4
I
-
---
USB1_RX_P
USB PHY SS Receive Data (+)
E3
I
-
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
22
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
USB1_TX_M
USB PHY SS Transmit Data (-)
F2
O
-
---
USB1_TX_P
USB PHY SS Transmit Data
(+)
F1
O
-
---
USB1_VBUS
USB PHY VBUS
E7
I
-
---
USB3 PHY #2
USB2_D_M
USB PHY HS Data (-)
C6
IO
-
---
USB2_D_P
USB PHY HS Data (+)
D6
IO
-
---
USB2_ID
USB PHY ID Detect
D5
I
-
---
USB2_RESREF
USB PHY Impedance
Calibration
G4
IO
-
18
USB2_RX_M
USB PHY SS Receive Data (-)
C4
I
-
---
USB2_RX_P
USB PHY SS Receive Data (+)
C3
I
-
---
USB2_TX_M
USB PHY SS Transmit Data (-)
D2
O
-
---
USB2_TX_P
USB PHY SS Transmit Data
(+)
D1
O
-
---
USB2_VBUS
USB PHY VBUS
C7
I
-
---
USB PHY #3
USB3_D_M
USB PHY HS Data (-)
A6
IO
-
---
USB3_D_P
USB PHY HS Data (+)
B6
IO
-
---
USB3_ID
USB PHY ID Detect
B5
I
-
---
USB3_RESREF
USB PHY Impedance
Calibration
G5
IO
-
18
USB3_RX_M
USB PHY SS Receive Data (-)
A4
I
-
---
USB3_RX_P
USB PHY SS Receive Data (+)
A3
I
-
---
USB3_TX_M
USB PHY SS Transmit Data (-)
B2
O
-
---
USB3_TX_P
USB PHY SS Transmit Data
(+)
B1
O
-
---
USB3_VBUS
USB PHY VBUS
A7
I
-
---
Ethernet Management Interface 1
EMI1_MDC/GPIO3_00
Management Data Clock
AG2
O
LVDD
1
EMI1_MDIO/GPIO3_01
Management Data In/Out
AF2
IO
LVDD
---
Ethernet Management Interface 2
EMI2_MDC/GPIO4_00
Management Data Clock
AH4
O
TVDD
1
EMI2_MDIO/GPIO4_01
Management Data In/Out
AH3
IO
TVDD
---
W4
O
LVDD
1
EC1_GTX_CLK125/GPIO3_08 Reference Clock
AC3
I
LVDD
1
EC1_RXD0/GPIO3_12/
FTM1_CH0
AA2
I
LVDD
1
Ethernet Controller 1
EC1_GTX_CLK/GPIO3_07/
FTM1_EXTCLK
Transmit Clock Out
Receive Data
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
23
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
EC1_RXD1/GPIO3_11/
FTM1_CH1
Receive Data
AA1
I
LVDD
1
EC1_RXD2/GPIO3_10/
FTM1_CH6
Receive Data
Y1
I
LVDD
1
EC1_RXD3/GPIO3_09/
FTM1_CH4
Receive Data
W2
I
LVDD
1
EC1_RX_CLK/GPIO3_13/
FTM1_QD_PHA
Receive Clock
W1
I
LVDD
1
EC1_RX_DV/GPIO3_14/
FTM1_QD_PHB
Receive Data Valid
AB1
I
LVDD
1
EC1_TXD0/GPIO3_05/
FTM1_CH2
Transmit Data
AB3
O
LVDD
1
EC1_TXD1/GPIO3_04/
FTM1_CH3
Transmit Data
AA3
O
LVDD
1
EC1_TXD2/GPIO3_03/
FTM1_CH7
Transmit Data
Y4
O
LVDD
1
EC1_TXD3/GPIO3_02/
FTM1_CH5
Transmit Data
Y3
O
LVDD
1
EC1_TX_EN/GPIO3_06/
FTM1_FAULT
Transmit Enable
AB4
O
LVDD
1, 14
AC4
O
LVDD
1
EC2_GTX_CLK125/GPIO3_21 Reference Clock
AG4
I
LVDD
1
EC2_RXD0/GPIO3_25/
TSEC_1588_TRIG_IN2/
FTM2_CH0
Receive Data
AE2
I
LVDD
1
EC2_RXD1/GPIO3_24/
TSEC_1588_PULSE_OUT1/
FTM2_CH1
Receive Data
AE1
I
LVDD
1
EC2_RXD2/GPIO3_23/
FTM2_CH6
Receive Data
AD1
I
LVDD
1
EC2_RXD3/GPIO3_22/
FTM2_CH4
Receive Data
AC2
I
LVDD
1
EC2_RX_CLK/GPIO3_26/
TSEC_1588_CLK_IN/
FTM2_QD_PHA
Receive Clock
AC1
I
LVDD
1
EC2_RX_DV/GPIO3_27/
TSEC_1588_TRIG_IN1/
FTM2_QD_PHB
Receive Data Valid
AF1
I
LVDD
1
EC2_TXD0/GPIO3_18/
TSEC_1588_PULSE_OUT2/
FTM2_CH2
Transmit Data
AF3
O
LVDD
1
Ethernet Controller 2
EC2_GTX_CLK/GPIO3_20/
FTM2_EXTCLK
Transmit Clock Out
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
24
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
EC2_TXD1/GPIO3_17/
TSEC_1588_CLK_OUT/
FTM2_CH3
Transmit Data
AE4
O
LVDD
1
EC2_TXD2/GPIO3_16/
TSEC_1588_ALARM_OUT1/
FTM2_CH7
Transmit Data
AE3
O
LVDD
1
EC2_TXD3/GPIO3_15/
TSEC_1588_ALARM_OUT2/
FTM2_CH5
Transmit Data
AD3
O
LVDD
1
EC2_TX_EN/GPIO3_19/
FTM2_FAULT
Transmit Enable
AG3
O
LVDD
1, 14
DRV VBus
L4
O
DVDD
1
USB2_PWRFAULT/IIC3_SDA/ PWR Fault
GPIO4_11/EVT6_B/
FTM8_CH1
M4
I
DVDD
1
USB3_DRVVBUS/IIC4_SCL/
GPIO4_12/EVT7_B/
FTM3_FAULT
M3
O
DVDD
1
USB3_PWRFAULT/IIC4_SDA/ PWR Fault
GPIO4_13/EVT8_B/
FTM3_EXTCLK
N3
I
DVDD
1
USB_DRVVBUS/GPIO4_29
USB_DRVVBUS
H6
O
DVDD
1
USB_PWRFAULT/GPIO4_30
USB_PWRFAULT
G6
I
DVDD
1
USB
USB2_DRVVBUS/IIC3_SCL/
GPIO4_10/EVT5_B/
FTM8_CH0
DRV Bus
DSYSCLK
DIFF_SYSCLK
Single Source System Clock
Differential (positive)
AA13
I
OVDD
21
DIFF_SYSCLK_B
Single Source System Clock
Differential (negative)
AB13
I
OVDD
21
Power-On-Reset Configuration
cfg_dram_type/IFC_A21/
QSPI_B_SCK
Power-on-Reset Configuration
C11
I
OVDD
1, 15
cfg_eng_use0/IFC_WE0_B
Power-on-Reset Configuration
C15
I
OVDD
1, 4, 26
cfg_eng_use1/IFC_OE_B
Power-on-Reset Configuration
C18
I
OVDD
1, 4
cfg_eng_use2/IFC_WP0_B
Power-on-Reset Configuration
D19
I
OVDD
1, 4
cfg_gpinput0/IFC_AD00
Power-on-Reset Configuration
B8
I
OVDD
1, 4
cfg_gpinput1/IFC_AD01
Power-on-Reset Configuration
A8
I
OVDD
1, 4
cfg_gpinput2/IFC_AD02
Power-on-Reset Configuration
B9
I
OVDD
1, 4
cfg_gpinput3/IFC_AD03
Power-on-Reset Configuration
A9
I
OVDD
1, 4
cfg_gpinput4/IFC_AD04
Power-on-Reset Configuration
A10
I
OVDD
1, 4
cfg_gpinput5/IFC_AD05
Power-on-Reset Configuration
B11
I
OVDD
1, 4
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
25
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
cfg_gpinput6/IFC_AD06
Power-on-Reset Configuration
A11
I
OVDD
1, 4
cfg_gpinput7/IFC_AD07
Power-on-Reset Configuration
B12
I
OVDD
1, 4
cfg_ifc_te/IFC_TE
Power-on-Reset Configuration
E14
I
OVDD
1, 4
cfg_rcw_src0/IFC_AD08
Power-on-Reset Configuration
A12
I
OVDD
1, 4
cfg_rcw_src1/IFC_AD09
Power-on-Reset Configuration
A13
I
OVDD
1, 4
cfg_rcw_src2/IFC_AD10
Power-on-Reset Configuration
B14
I
OVDD
1, 4
cfg_rcw_src3/IFC_AD11
Power-on-Reset Configuration
A14
I
OVDD
1, 4
cfg_rcw_src4/IFC_AD12
Power-on-Reset Configuration
B15
I
OVDD
1, 4
cfg_rcw_src5/IFC_AD13
Power-on-Reset Configuration
A15
I
OVDD
1, 4
cfg_rcw_src6/IFC_AD14
Power-on-Reset Configuration
A16
I
OVDD
1, 4
cfg_rcw_src7/IFC_AD15
Power-on-Reset Configuration
A17
I
OVDD
1, 4
cfg_rcw_src8/IFC_CLE
Power-on-Reset Configuration
C19
I
OVDD
1, 4
QSPI
QSPI_A_CS0/IFC_A16
Chip Select
D8
O
OVDD
1, 5
QSPI_A_CS1/IFC_A17
CS1
C8
O
OVDD
1, 5
QSPI_A_DATA0/IFC_A22/
IFC_WP1_B
DATA0
D11
IO
OVDD
---
QSPI_A_DATA1/IFC_A23/
IFC_WP2_B
DATA1
C12
IO
OVDD
---
QSPI_A_DATA2/IFC_A24/
IFC_WP3_B
DATA2
D13
IO
OVDD
---
QSPI_A_DATA3/IFC_A25/
GPIO2_25/FTM5_CH0/
IFC_CS4_B/IFC_RB2_B
DATA3
C13
IO
OVDD
---
QSPI_A_SCK/IFC_A18
SCK
C9
O
OVDD
1, 5
QSPI_B_CS0/IFC_A19
Chip Select
D10
O
OVDD
1, 5
QSPI_B_CS1/IFC_A20
CS1
C10
O
OVDD
1, 5
QSPI_B_DATA0/IFC_PAR0/
GPIO2_13/FTM6_CH0
DATA0
B18
IO
OVDD
---
QSPI_B_DATA1/IFC_PAR1/
GPIO2_14/FTM6_CH1
DATA1
D17
IO
OVDD
---
QSPI_B_DATA2/
IFC_PERR_B/GPIO2_15/
FTM6_EXTCLK
DATA2
E17
IO
OVDD
---
QSPI_B_DATA3/IFC_CS3_B/
GPIO2_12/FTM7_EXTCLK
DATA3
C20
IO
OVDD
---
QSPI_B_SCK/IFC_A21/
cfg_dram_type
SCK
C11
O
OVDD
1, 15
General Purpose Input/Output
GPIO1_13/ASLEEP
General Purpose Input/Output
E9
O
OVDD
1
GPIO1_14/RTC
General Purpose Input/Output
F17
IO
OVDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
26
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
GPIO1_15/UART1_SOUT
General Purpose Input/Output
H1
IO
DVDD
---
GPIO1_16/UART2_SOUT/
LPUART1_SOUT/FTM4_CH0
General Purpose Input/Output
L2
IO
DVDD
---
GPIO1_17/UART1_SIN
General Purpose Input/Output
H2
IO
DVDD
---
GPIO1_18/UART2_SIN/
FTM4_CH1/LPUART1_SIN
General Purpose Input/Output
K1
IO
DVDD
---
GPIO1_19/UART1_RTS_B/
UART3_SOUT/
LPUART2_SOUT/FTM4_CH2
General Purpose Input/Output
J2
IO
DVDD
---
GPIO1_20/UART2_RTS_B/
General Purpose Input/Output
UART4_SOUT/
LPUART4_SOUT/FTM4_CH3/
LPUART1_RTS_B
L1
IO
DVDD
---
GPIO1_21/UART1_CTS_B/
UART3_SIN/FTM4_CH4/
LPUART2_SIN
General Purpose Input/Output
J1
IO
DVDD
---
GPIO1_22/UART2_CTS_B/
UART4_SIN/FTM4_CH5/
LPUART1_CTS_B/
LPUART4_SIN
General Purpose Input/Output
M2
IO
DVDD
---
GPIO1_23/IRQ03/FTM3_CH7
General Purpose Input/Output
J3
IO
DVDD
---
GPIO1_24/IRQ04/FTM3_CH0
General Purpose Input/Output
J4
IO
DVDD
---
GPIO1_25/IRQ05/FTM3_CH1
General Purpose Input/Output
J5
IO
DVDD
---
GPIO1_26/IRQ06/FTM3_CH2
General Purpose Input/Output
K5
IO
DVDD
---
GPIO1_27/IRQ07/FTM3_CH3
General Purpose Input/Output
L5
IO
DVDD
---
GPIO1_28/IRQ08/FTM3_CH4
General Purpose Input/Output
M5
IO
DVDD
---
GPIO1_29/IRQ09/FTM3_CH5
General Purpose Input/Output
N5
IO
DVDD
---
GPIO1_30/IRQ10/FTM3_CH6
General Purpose Input/Output
P4
IO
DVDD
---
GPIO1_31/IRQ11
General Purpose Input/Output
W3
IO
LVDD
---
GPIO2_00/SPI_PCS0/
SDHC_DAT4/SDHC_VS
General Purpose Input/Output
U1
IO
OVDD
---
GPIO2_01/SPI_PCS1/
SDHC_DAT5/
SDHC_CMD_DIR
General Purpose Input/Output
R3
IO
OVDD
---
GPIO2_02/SPI_PCS2/
SDHC_DAT6/
SDHC_DAT0_DIR
General Purpose Input/Output
T3
IO
OVDD
---
GPIO2_03/SPI_PCS3/
SDHC_DAT7/
SDHC_DAT123_DIR
General Purpose Input/Output
V1
IO
OVDD
---
GPIO2_04/SDHC_CMD/
LPUART3_SOUT/FTM4_CH6
General Purpose Input/Output
P2
IO
EVDD
---
GPIO2_05/SDHC_DAT0/
FTM4_CH7/LPUART3_SIN
General Purpose Input/Output
P1
IO
EVDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
27
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
GPIO2_06/SDHC_DAT1/
LPUART5_SOUT/
FTM4_FAULT/
LPUART2_RTS_B
General Purpose Input/Output
R2
IO
EVDD
---
GPIO2_07/SDHC_DAT2/
LPUART2_CTS_B/
LPUART5_SIN/
FTM4_EXTCLK
General Purpose Input/Output
R1
IO
EVDD
---
GPIO2_08/SDHC_DAT3/
LPUART6_SOUT/
FTM4_QD_PHA/
LPUART3_RTS_B
General Purpose Input/Output
T1
IO
EVDD
---
GPIO2_09/SDHC_CLK/
LPUART3_CTS_B/
LPUART6_SIN/
FTM4_QD_PHB
General Purpose Input/Output
P3
IO
EVDD
---
GPIO2_10/IFC_CS1_B/
FTM7_CH0
General Purpose Input/Output
A19
IO
OVDD
---
GPIO2_11/IFC_CS2_B/
FTM7_CH1
General Purpose Input/Output
D20
IO
OVDD
---
GPIO2_12/IFC_CS3_B/
QSPI_B_DATA3/
FTM7_EXTCLK
General Purpose Input/Output
C20
IO
OVDD
---
GPIO2_13/IFC_PAR0/
QSPI_B_DATA0/FTM6_CH0
General Purpose Input/Output
B18
IO
OVDD
---
GPIO2_14/IFC_PAR1/
QSPI_B_DATA1/FTM6_CH1
General Purpose Input/Output
D17
IO
OVDD
---
GPIO2_15/IFC_PERR_B/
QSPI_B_DATA2/
FTM6_EXTCLK
General Purpose Input/Output
E17
IO
OVDD
---
GPIO2_25/IFC_A25/
QSPI_A_DATA3/FTM5_CH0/
IFC_CS4_B/IFC_RB2_B
General Purpose Input/Output
C13
IO
OVDD
---
GPIO2_26/IFC_A26/
FTM5_CH1/IFC_CS5_B/
IFC_RB3_B
General Purpose Input/Output
D14
IO
OVDD
---
GPIO2_27/IFC_A27/
FTM5_EXTCLK/IFC_CS6_B
General Purpose Input/Output
C14
IO
OVDD
---
GPIO3_00/EMI1_MDC
General Purpose Input/Output
AG2
IO
LVDD
---
GPIO3_01/EMI1_MDIO
General Purpose Input/Output
AF2
IO
LVDD
---
GPIO3_02/EC1_TXD3/
FTM1_CH5
General Purpose Input/Output
Y3
IO
LVDD
---
GPIO3_03/EC1_TXD2/
FTM1_CH7
General Purpose Input/Output
Y4
IO
LVDD
---
GPIO3_04/EC1_TXD1/
FTM1_CH3
General Purpose Input/Output
AA3
IO
LVDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
28
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
GPIO3_05/EC1_TXD0/
FTM1_CH2
General Purpose Input/Output
AB3
IO
LVDD
---
GPIO3_06/EC1_TX_EN/
FTM1_FAULT
General Purpose Input/Output
AB4
IO
LVDD
---
GPIO3_07/EC1_GTX_CLK/
FTM1_EXTCLK
General Purpose Input/Output
W4
IO
LVDD
---
GPIO3_08/EC1_GTX_CLK125 General Purpose Input/Output
AC3
IO
LVDD
---
GPIO3_09/EC1_RXD3/
FTM1_CH4
General Purpose Input/Output
W2
IO
LVDD
---
GPIO3_10/EC1_RXD2/
FTM1_CH6
General Purpose Input/Output
Y1
IO
LVDD
---
GPIO3_11/EC1_RXD1/
FTM1_CH1
General Purpose Input/Output
AA1
IO
LVDD
---
GPIO3_12/EC1_RXD0/
FTM1_CH0
General Purpose Input/Output
AA2
IO
LVDD
---
GPIO3_13/EC1_RX_CLK/
FTM1_QD_PHA
General Purpose Input/Output
W1
IO
LVDD
---
GPIO3_14/EC1_RX_DV/
FTM1_QD_PHB
General Purpose Input/Output
AB1
IO
LVDD
---
GPIO3_15/EC2_TXD3/
TSEC_1588_ALARM_OUT2/
FTM2_CH5
General Purpose Input/Output
AD3
IO
LVDD
---
GPIO3_16/EC2_TXD2/
TSEC_1588_ALARM_OUT1/
FTM2_CH7
General Purpose Input/Output
AE3
IO
LVDD
---
GPIO3_17/EC2_TXD1/
TSEC_1588_CLK_OUT/
FTM2_CH3
General Purpose Input/Output
AE4
IO
LVDD
---
GPIO3_18/EC2_TXD0/
TSEC_1588_PULSE_OUT2/
FTM2_CH2
General Purpose Input/Output
AF3
IO
LVDD
---
GPIO3_19/EC2_TX_EN/
FTM2_FAULT
General Purpose Input/Output
AG3
IO
LVDD
---
GPIO3_20/EC2_GTX_CLK/
FTM2_EXTCLK
General Purpose Input/Output
AC4
IO
LVDD
---
GPIO3_21/EC2_GTX_CLK125 General Purpose Input/Output
AG4
IO
LVDD
---
GPIO3_22/EC2_RXD3/
FTM2_CH4
General Purpose Input/Output
AC2
IO
LVDD
---
GPIO3_23/EC2_RXD2/
FTM2_CH6
General Purpose Input/Output
AD1
IO
LVDD
---
GPIO3_24/EC2_RXD1/
TSEC_1588_PULSE_OUT1/
FTM2_CH1
General Purpose Input/Output
AE1
IO
LVDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
29
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
GPIO3_25/EC2_RXD0/
TSEC_1588_TRIG_IN2/
FTM2_CH0
General Purpose Input/Output
AE2
IO
LVDD
---
GPIO3_26/EC2_RX_CLK/
TSEC_1588_CLK_IN/
FTM2_QD_PHA
General Purpose Input/Output
AC1
IO
LVDD
---
GPIO3_27/EC2_RX_DV/
TSEC_1588_TRIG_IN1/
FTM2_QD_PHB
General Purpose Input/Output
AF1
IO
LVDD
---
GPIO4_00/EMI2_MDC
General Purpose Input/Output
AH4
IO
TVDD
---
GPIO4_01/EMI2_MDIO
General Purpose Input/Output
AH3
IO
TVDD
---
GPIO4_10/IIC3_SCL/EVT5_B/ General Purpose Input/Output
USB2_DRVVBUS/FTM8_CH0
L4
IO
DVDD
---
GPIO4_11/IIC3_SDA/EVT6_B/ General Purpose Input/Output
USB2_PWRFAULT/
FTM8_CH1
M4
IO
DVDD
---
GPIO4_12/IIC4_SCL/EVT7_B/ General Purpose Input/Output
USB3_DRVVBUS/
FTM3_FAULT
M3
IO
DVDD
---
GPIO4_13/IIC4_SDA/EVT8_B/ General Purpose Input/Output
USB3_PWRFAULT/
FTM3_EXTCLK
N3
IO
DVDD
---
GPIO4_2/IIC2_SCL/
General Purpose Input/Output
SDHC_CD_B/FTM3_QD_PHA
K3
IO
DVDD
---
GPIO4_29/USB_DRVVBUS
General Purpose Input/Output
H6
IO
DVDD
---
GPIO4_3/IIC2_SDA/
SDHC_WP/FTM3_QD_PHB
General Purpose Input/Output
L3
IO
DVDD
---
GPIO4_30/USB_PWRFAULT
General Purpose Input/Output
G6
IO
DVDD
---
FTM1_CH0/EC1_RXD0/
GPIO3_12
Channel 0
AA2
IO
LVDD
---
FTM1_CH1/EC1_RXD1/
GPIO3_11
Channel 1
AA1
IO
LVDD
---
FTM1_CH2/EC1_TXD0/
GPIO3_05
Channel 2
AB3
IO
LVDD
---
FTM1_CH3/EC1_TXD1/
GPIO3_04
Channel 3
AA3
IO
LVDD
---
FTM1_CH4/EC1_RXD3/
GPIO3_09
Channel 4
W2
IO
LVDD
---
FTM1_CH5/EC1_TXD3/
GPIO3_02
Channel 5
Y3
IO
LVDD
---
FTM1_CH6/EC1_RXD2/
GPIO3_10
Channel 6
Y1
IO
LVDD
---
FTM1_CH7/EC1_TXD2/
GPIO3_03
Channel 7
Y4
IO
LVDD
---
Frequency Timer Module
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
30
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
FTM1_EXTCLK/
EC1_GTX_CLK/GPIO3_07
External Clock
W4
I
LVDD
1
FTM1_FAULT/EC1_TX_EN/
GPIO3_06
Fault
AB4
I
LVDD
1
FTM1_QD_PHA/
EC1_RX_CLK/GPIO3_13
Phase A
W1
I
LVDD
1
FTM1_QD_PHB/EC1_RX_DV/ Phase B
GPIO3_14
AB1
I
LVDD
1
FTM2_CH0/EC2_RXD0/
GPIO3_25/
TSEC_1588_TRIG_IN2
Channel 0
AE2
IO
LVDD
---
FTM2_CH1/EC2_RXD1/
GPIO3_24/
TSEC_1588_PULSE_OUT1
Channel 1
AE1
IO
LVDD
---
FTM2_CH2/EC2_TXD0/
GPIO3_18/
TSEC_1588_PULSE_OUT2
Channel 2
AF3
IO
LVDD
---
FTM2_CH3/EC2_TXD1/
GPIO3_17/
TSEC_1588_CLK_OUT
Channel 3
AE4
IO
LVDD
---
FTM2_CH4/EC2_RXD3/
GPIO3_22
Channel 4
AC2
IO
LVDD
---
FTM2_CH5/EC2_TXD3/
GPIO3_15/
TSEC_1588_ALARM_OUT2
Channel 5
AD3
IO
LVDD
---
FTM2_CH6/EC2_RXD2/
GPIO3_23
Channel 6
AD1
IO
LVDD
---
FTM2_CH7/EC2_TXD2/
GPIO3_16/
TSEC_1588_ALARM_OUT1
Channel 7
AE3
IO
LVDD
---
FTM2_EXTCLK/
EC2_GTX_CLK/GPIO3_20
External Clock
AC4
I
LVDD
1
FTM2_FAULT/EC2_TX_EN/
GPIO3_19
Fault
AG3
I
LVDD
1
FTM2_QD_PHA/
EC2_RX_CLK/GPIO3_26/
TSEC_1588_CLK_IN
Phase A
AC1
I
LVDD
1
FTM2_QD_PHB/EC2_RX_DV/ Phase B
GPIO3_27/
TSEC_1588_TRIG_IN1
AF1
I
LVDD
1
FTM3_CH0/IRQ04/GPIO1_24
Channel 0
J4
IO
DVDD
---
FTM3_CH1/IRQ05/GPIO1_25
Channel 1
J5
IO
DVDD
---
FTM3_CH2/IRQ06/GPIO1_26
Channel 2
K5
IO
DVDD
---
FTM3_CH3/IRQ07/GPIO1_27
Channel 3
L5
IO
DVDD
---
FTM3_CH4/IRQ08/GPIO1_28
Channel 4
M5
IO
DVDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
31
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
FTM3_CH5/IRQ09/GPIO1_29
Channel 5
N5
IO
DVDD
---
FTM3_CH6/IRQ10/GPIO1_30
Channel 6
P4
IO
DVDD
---
FTM3_CH7/IRQ03/GPIO1_23
Channel 7
J3
IO
DVDD
---
FTM3_EXTCLK/IIC4_SDA/
GPIO4_13/EVT8_B/
USB3_PWRFAULT
External Clock
N3
I
DVDD
1
FTM3_FAULT/IIC4_SCL/
GPIO4_12/EVT7_B/
USB3_DRVVBUS
Fault
M3
I
DVDD
1
FTM3_QD_PHA/IIC2_SCL/
GPIO4_2/SDHC_CD_B
Phase A
K3
I
DVDD
1
FTM3_QD_PHB/IIC2_SDA/
GPIO4_3/SDHC_WP
Phase B
L3
I
DVDD
1
FTM4_CH0/UART2_SOUT/
GPIO1_16/LPUART1_SOUT
Channel 0
L2
IO
DVDD
---
FTM4_CH1/UART2_SIN/
GPIO1_18/LPUART1_SIN
Channel 1
K1
IO
DVDD
---
FTM4_CH2/UART1_RTS_B/
GPIO1_19/UART3_SOUT/
LPUART2_SOUT
Channel 2
J2
IO
DVDD
---
FTM4_CH3/UART2_RTS_B/
GPIO1_20/UART4_SOUT/
LPUART4_SOUT/
LPUART1_RTS_B
Channel 3
L1
IO
DVDD
---
FTM4_CH4/UART1_CTS_B/
GPIO1_21/UART3_SIN/
LPUART2_SIN
Channel 4
J1
IO
DVDD
---
FTM4_CH5/UART2_CTS_B/
GPIO1_22/UART4_SIN/
LPUART1_CTS_B/
LPUART4_SIN
Channel 5
M2
IO
DVDD
---
FTM4_CH6/SDHC_CMD/
GPIO2_04/LPUART3_SOUT
Channel 6
P2
IO
EVDD
---
FTM4_CH7/SDHC_DAT0/
GPIO2_05/LPUART3_SIN
Channel 7
P1
IO
EVDD
---
FTM4_EXTCLK/SDHC_DAT2/ External Clock
GPIO2_07/LPUART2_CTS_B/
LPUART5_SIN
R1
I
EVDD
1
FTM4_FAULT/SDHC_DAT1/
GPIO2_06/LPUART5_SOUT/
LPUART2_RTS_B
R2
I
EVDD
1
T1
I
EVDD
1
Fault
FTM4_QD_PHA/SDHC_DAT3/ Phase A
GPIO2_08/LPUART6_SOUT/
LPUART3_RTS_B
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
32
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
FTM4_QD_PHB/SDHC_CLK/ Phase B
GPIO2_09/LPUART3_CTS_B/
LPUART6_SIN
Package
pin
number
Pin
type
Power supply
Notes
P3
I
EVDD
1
FTM5_CH0/IFC_A25/
GPIO2_25/QSPI_A_DATA3/
IFC_CS4_B/IFC_RB2_B
Channel 0
C13
IO
OVDD
---
FTM5_CH1/IFC_A26/
GPIO2_26/IFC_CS5_B/
IFC_RB3_B
Channel 1
D14
IO
OVDD
---
FTM5_EXTCLK/IFC_A27/
GPIO2_27/IFC_CS6_B
External Clock
C14
I
OVDD
1
FTM6_CH0/IFC_PAR0/
GPIO2_13/QSPI_B_DATA0
Channel 0
B18
IO
OVDD
---
FTM6_CH1/IFC_PAR1/
GPIO2_14/QSPI_B_DATA1
Channel 1
D17
IO
OVDD
---
FTM6_EXTCLK/IFC_PERR_B/ External Clock
GPIO2_15/QSPI_B_DATA2
E17
I
OVDD
1
FTM7_CH0/IFC_CS1_B/
GPIO2_10
Channel 0
A19
IO
OVDD
---
FTM7_CH1/IFC_CS2_B/
GPIO2_11
Channel 1
D20
IO
OVDD
---
FTM7_EXTCLK/IFC_CS3_B/
GPIO2_12/QSPI_B_DATA3
External Clock
C20
I
OVDD
1
FTM8_CH0/IIC3_SCL/
GPIO4_10/EVT5_B/
USB2_DRVVBUS
Channel 0
L4
IO
DVDD
---
FTM8_CH1/IIC3_SDA/
GPIO4_11/EVT6_B/
USB2_PWRFAULT
Channel 1
M4
IO
DVDD
---
LPUART
LPUART1_CTS_B/
UART2_CTS_B/GPIO1_22/
UART4_SIN/FTM4_CH5/
LPUART4_SIN
Clear to send
M2
I
DVDD
1
LPUART1_RTS_B/
UART2_RTS_B/GPIO1_20/
UART4_SOUT/
LPUART4_SOUT/FTM4_CH3
Request to send
L1
O
DVDD
1
LPUART1_SIN/UART2_SIN/
GPIO1_18/FTM4_CH1
Receive data
K1
I
DVDD
1
LPUART1_SOUT/
UART2_SOUT/GPIO1_16/
FTM4_CH0
Transmit data
L2
IO
DVDD
---
LPUART2_CTS_B/
SDHC_DAT2/GPIO2_07/
Clear to send
R1
I
EVDD
1
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
33
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
LPUART5_SIN/
FTM4_EXTCLK
LPUART2_RTS_B/
SDHC_DAT1/GPIO2_06/
LPUART5_SOUT/
FTM4_FAULT
Request to send
R2
O
EVDD
1
LPUART2_SIN/
UART1_CTS_B/GPIO1_21/
UART3_SIN/FTM4_CH4
Receive data
J1
I
DVDD
1
LPUART2_SOUT/
UART1_RTS_B/GPIO1_19/
UART3_SOUT/FTM4_CH2
Transmit data
J2
IO
DVDD
---
LPUART3_CTS_B/
SDHC_CLK/GPIO2_09/
LPUART6_SIN/
FTM4_QD_PHB
Clear to send
P3
I
EVDD
1
LPUART3_RTS_B/
SDHC_DAT3/GPIO2_08/
LPUART6_SOUT/
FTM4_QD_PHA
Request to send
T1
O
EVDD
1
LPUART3_SIN/SDHC_DAT0/
GPIO2_05/FTM4_CH7
Receive data
P1
I
EVDD
1
LPUART3_SOUT/
SDHC_CMD/GPIO2_04/
FTM4_CH6
Transmit data
P2
IO
EVDD
---
LPUART4_SIN/
UART2_CTS_B/GPIO1_22/
UART4_SIN/FTM4_CH5/
LPUART1_CTS_B
Receive data
M2
I
DVDD
1
LPUART4_SOUT/
UART2_RTS_B/GPIO1_20/
UART4_SOUT/FTM4_CH3/
LPUART1_RTS_B
Transmit data
L1
IO
DVDD
---
LPUART5_SIN/SDHC_DAT2/ Receive data
GPIO2_07/LPUART2_CTS_B/
FTM4_EXTCLK
R1
I
EVDD
1
LPUART5_SOUT/
SDHC_DAT1/GPIO2_06/
FTM4_FAULT/
LPUART2_RTS_B
Transmit data
R2
IO
EVDD
---
LPUART6_SIN/SDHC_CLK/
Receive data
GPIO2_09/LPUART3_CTS_B/
FTM4_QD_PHB
P3
I
EVDD
1
LPUART6_SOUT/
SDHC_DAT3/GPIO2_08/
FTM4_QD_PHA/
LPUART3_RTS_B
T1
IO
EVDD
---
Transmit data
TSEC_1588
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
34
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
TSEC_1588_ALARM_OUT1/
EC2_TXD2/GPIO3_16/
FTM2_CH7
Alarm Out
AE3
O
LVDD
1
TSEC_1588_ALARM_OUT2/
EC2_TXD3/GPIO3_15/
FTM2_CH5
Alarm Out
AD3
O
LVDD
1
TSEC_1588_CLK_IN/
EC2_RX_CLK/GPIO3_26/
FTM2_QD_PHA
Clock In
AC1
I
LVDD
1
TSEC_1588_CLK_OUT/
EC2_TXD1/GPIO3_17/
FTM2_CH3
Clock Out
AE4
O
LVDD
1
TSEC_1588_PULSE_OUT1/
EC2_RXD1/GPIO3_24/
FTM2_CH1
Pulse Out
AE1
O
LVDD
1
TSEC_1588_PULSE_OUT2/
EC2_TXD0/GPIO3_18/
FTM2_CH2
Pulse Out
AF3
O
LVDD
1
TSEC_1588_TRIG_IN1/
EC2_RX_DV/GPIO3_27/
FTM2_QD_PHB
Trigger In
AF1
I
LVDD
1
TSEC_1588_TRIG_IN2/
EC2_RXD0/GPIO3_25/
FTM2_CH0
Trigger In
AE2
I
LVDD
1
Power and Ground Signals
GND001
GND
A2
---
---
---
GND002
GND
A5
---
---
---
GND003
GND
A21
---
---
---
GND004
GND
B3
---
---
---
GND005
GND
B4
---
---
---
GND006
GND
B7
---
---
---
GND007
GND
B10
---
---
---
GND008
GND
B13
---
---
---
GND009
GND
B16
---
---
---
GND010
GND
B19
---
---
---
GND011
GND
B21
---
---
---
GND012
GND
B24
---
---
---
GND013
GND
B26
---
---
---
GND014
GND
C1
---
---
---
GND015
GND
C2
---
---
---
GND016
GND
C5
---
---
---
GND017
GND
C21
---
---
---
GND018
GND
C27
---
---
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
35
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
GND019
GND
D3
---
---
---
GND020
GND
D4
---
---
---
GND021
GND
D7
---
---
---
GND022
GND
D9
---
---
---
GND023
GND
D12
---
---
---
GND024
GND
D15
---
---
---
GND025
GND
D18
---
---
---
GND026
GND
D21
---
---
---
GND027
GND
D24
---
---
---
GND028
GND
E1
---
---
---
GND029
GND
E2
---
---
---
GND030
GND
E5
---
---
---
GND031
GND
E21
---
---
---
GND032
GND
E26
---
---
---
GND033
GND
F3
---
---
---
GND034
GND
F4
---
---
---
GND035
GND
F7
---
---
---
GND036
GND
F14
---
---
---
GND037
GND
F16
---
---
---
GND038
GND
F18
---
---
---
GND039
GND
F24
---
---
---
GND040
GND
G1
---
---
---
GND041
GND
G2
---
---
---
GND042
GND
G9
---
---
---
GND043
GND
G10
---
---
---
GND044
GND
G11
---
---
---
GND045
GND
G21
---
---
---
GND046
GND
G26
---
---
---
GND047
GND
H3
---
---
---
GND048
GND
H4
---
---
---
GND049
GND
H5
---
---
---
GND050
GND
H14
---
---
---
GND051
GND
H15
---
---
---
GND052
GND
H16
---
---
---
GND053
GND
H17
---
---
---
GND054
GND
H18
---
---
---
GND055
GND
H21
---
---
---
GND056
GND
H24
---
---
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
36
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
GND057
GND
J6
---
---
---
GND058
GND
J7
---
---
---
GND059
GND
J8
---
---
---
GND060
GND
J9
---
---
---
GND061
GND
J10
---
---
---
GND062
GND
J11
---
---
---
GND063
GND
J12
---
---
---
GND064
GND
J21
---
---
---
GND065
GND
J23
---
---
---
GND066
GND
J26
---
---
---
GND067
GND
K2
---
---
---
GND068
GND
K4
---
---
---
GND069
GND
K6
---
---
---
GND070
GND
K13
---
---
---
GND071
GND
K15
---
---
---
GND072
GND
K17
---
---
---
GND073
GND
K19
---
---
---
GND074
GND
K21
---
---
---
GND075
GND
L6
---
---
---
GND076
GND
L10
---
---
---
GND077
GND
L12
---
---
---
GND078
GND
L14
---
---
---
GND079
GND
L16
---
---
---
GND080
GND
L18
---
---
---
GND081
GND
L20
---
---
---
GND082
GND
L23
---
---
---
GND083
GND
L26
---
---
---
GND084
GND
M6
---
---
---
GND085
GND
M9
---
---
---
GND086
GND
M11
---
---
---
GND087
GND
M13
---
---
---
GND088
GND
M15
---
---
---
GND089
GND
M17
---
---
---
GND090
GND
M19
---
---
---
GND091
GND
M21
---
---
---
GND092
GND
M23
---
---
---
GND093
GND
N2
---
---
---
GND094
GND
N4
---
---
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
37
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
GND095
GND
N6
---
---
---
GND096
GND
N8
---
---
---
GND097
GND
N10
---
---
---
GND098
GND
N12
---
---
---
GND099
GND
N14
---
---
---
GND100
GND
N16
---
---
---
GND101
GND
N18
---
---
---
GND102
GND
N20
---
---
---
GND103
GND
N23
---
---
---
GND104
GND
N26
---
---
---
GND105
GND
P6
---
---
---
GND106
GND
P9
---
---
---
GND107
GND
P11
---
---
---
GND108
GND
P13
---
---
---
GND109
GND
P15
---
---
---
GND110
GND
P17
---
---
---
GND111
GND
P19
---
---
---
GND112
GND
P23
---
---
---
GND113
GND
R5
---
---
---
GND114
GND
R8
---
---
---
GND115
GND
R10
---
---
---
GND116
GND
R12
---
---
---
GND117
GND
R14
---
---
---
GND118
GND
R16
---
---
---
GND119
GND
R18
---
---
---
GND120
GND
R20
---
---
---
GND121
GND
R23
---
---
---
GND122
GND
R26
---
---
---
GND123
GND
T2
---
---
---
GND124
GND
T4
---
---
---
GND125
GND
T6
---
---
---
GND126
GND
T9
---
---
---
GND127
GND
T11
---
---
---
GND128
GND
T13
---
---
---
GND129
GND
T15
---
---
---
GND130
GND
T17
---
---
---
GND131
GND
T19
---
---
---
GND132
GND
T21
---
---
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
38
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
GND133
GND
T23
---
---
---
GND134
GND
T26
---
---
---
GND135
GND
U6
---
---
---
GND136
GND
U8
---
---
---
GND137
GND
U10
---
---
---
GND138
GND
U12
---
---
---
GND139
GND
U14
---
---
---
GND140
GND
U16
---
---
---
GND141
GND
U18
---
---
---
GND142
GND
U20
---
---
---
GND143
GND
U23
---
---
---
GND144
GND
V2
---
---
---
GND145
GND
V4
---
---
---
GND146
GND
V6
---
---
---
GND147
GND
V9
---
---
---
GND148
GND
V11
---
---
---
GND149
GND
V13
---
---
---
GND150
GND
V15
---
---
---
GND151
GND
V17
---
---
---
GND152
GND
V19
---
---
---
GND153
GND
V21
---
---
---
GND154
GND
V23
---
---
---
GND155
GND
V26
---
---
---
GND156
GND
W12
---
---
---
GND157
GND
W18
---
---
---
GND158
GND
W20
---
---
---
GND159
GND
W22
---
---
---
GND160
GND
Y2
---
---
---
GND161
GND
Y5
---
---
---
GND162
GND
Y13
---
---
---
GND163
GND
Y14
---
---
---
GND164
GND
Y21
---
---
---
GND165
GND
Y23
---
---
---
GND166
GND
Y26
---
---
---
GND167
GND
AA4
---
---
---
GND168
GND
AA14
---
---
---
GND169
GND
AA21
---
---
---
GND170
GND
AA24
---
---
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
39
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
GND171
GND
AB2
---
---
---
GND172
GND
AB12
---
---
---
GND173
GND
AB26
---
---
---
GND174
GND
AC21
---
---
---
GND175
GND
AC24
---
---
---
GND176
GND
AD2
---
---
---
GND177
GND
AD4
---
---
---
GND178
GND
AD26
---
---
---
GND179
GND
AE21
---
---
---
GND180
GND
AE24
---
---
---
GND181
GND
AF4
---
---
---
GND182
GND
AF21
---
---
---
GND183
GND
AF26
---
---
---
GND184
GND
AG1
---
---
---
GND185
GND
AG24
---
---
---
GND186
GND
AG26
---
---
---
GND187
GND
AH2
---
---
---
GND188
GND
AH21
---
---
---
SD_GND01
Serdes core logic GND
Y6
---
---
23
SD_GND02
Serdes core logic GND
Y7
---
---
23
SD_GND03
Serdes core logic GND
Y8
---
---
23
SD_GND04
Serdes core logic GND
Y9
---
---
23
SD_GND05
Serdes core logic GND
Y10
---
---
23
SD_GND06
Serdes core logic GND
Y15
---
---
23
SD_GND07
Serdes core logic GND
Y16
---
---
23
SD_GND08
Serdes core logic GND
AA5
---
---
23
SD_GND09
Serdes core logic GND
AA7
---
---
23
SD_GND10
Serdes core logic GND
AA9
---
---
23
SD_GND11
Serdes core logic GND
AA12
---
---
23
SD_GND12
Serdes core logic GND
AA17
---
---
23
SD_GND13
Serdes core logic GND
AA18
---
---
23
SD_GND14
Serdes core logic GND
AA19
---
---
23
SD_GND15
Serdes core logic GND
AB7
---
---
23
SD_GND16
Serdes core logic GND
AB9
---
---
23
SD_GND17
Serdes core logic GND
AB14
---
---
23
SD_GND18
Serdes core logic GND
AB17
---
---
23
SD_GND19
Serdes core logic GND
AB20
---
---
23
SD_GND20
Serdes core logic GND
AC5
---
---
23
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
40
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
SD_GND21
Serdes core logic GND
AC6
---
---
23
SD_GND22
Serdes core logic GND
AC8
---
---
23
SD_GND23
Serdes core logic GND
AC10
---
---
23
SD_GND24
Serdes core logic GND
AC11
---
---
23
SD_GND25
Serdes core logic GND
AC15
---
---
23
SD_GND26
Serdes core logic GND
AC16
---
---
23
SD_GND27
Serdes core logic GND
AC18
---
---
23
SD_GND28
Serdes core logic GND
AC19
---
---
23
SD_GND29
Serdes core logic GND
AD5
---
---
23
SD_GND30
Serdes core logic GND
AD7
---
---
23
SD_GND31
Serdes core logic GND
AD9
---
---
23
SD_GND32
Serdes core logic GND
AD12
---
---
23
SD_GND33
Serdes core logic GND
AD14
---
---
23
SD_GND34
Serdes core logic GND
AD17
---
---
23
SD_GND35
Serdes core logic GND
AD20
---
---
23
SD_GND36
Serdes core logic GND
AE5
---
---
23
SD_GND37
Serdes core logic GND
AE7
---
---
23
SD_GND38
Serdes core logic GND
AE9
---
---
23
SD_GND39
Serdes core logic GND
AE12
---
---
23
SD_GND40
Serdes core logic GND
AE14
---
---
23
SD_GND41
Serdes core logic GND
AE17
---
---
23
SD_GND42
Serdes core logic GND
AE20
---
---
23
SD_GND43
Serdes core logic GND
AF6
---
---
23
SD_GND44
Serdes core logic GND
AF7
---
---
23
SD_GND45
Serdes core logic GND
AF8
---
---
23
SD_GND46
Serdes core logic GND
AF9
---
---
23
SD_GND47
Serdes core logic GND
AF10
---
---
23
SD_GND48
Serdes core logic GND
AF11
---
---
23
SD_GND49
Serdes core logic GND
AF15
---
---
23
SD_GND50
Serdes core logic GND
AF16
---
---
23
SD_GND51
Serdes core logic GND
AF17
---
---
23
SD_GND52
Serdes core logic GND
AF18
---
---
23
SD_GND53
Serdes core logic GND
AF19
---
---
23
SD_GND54
Serdes core logic GND
AG5
---
---
23
SD_GND55
Serdes core logic GND
AG7
---
---
23
SD_GND56
Serdes core logic GND
AG9
---
---
23
SD_GND57
Serdes core logic GND
AG12
---
---
23
SD_GND58
Serdes core logic GND
AG14
---
---
23
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
41
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
SD_GND59
Serdes core logic GND
AG17
---
---
23
SD_GND60
Serdes core logic GND
AG20
---
---
23
SD_GND61
Serdes core logic GND
AH5
---
---
23
SD_GND62
Serdes core logic GND
AH7
---
---
23
SD_GND63
Serdes core logic GND
AH9
---
---
23
SD_GND64
Serdes core logic GND
AH12
---
---
23
SD_GND65
Serdes core logic GND
AH14
---
---
23
SD_GND66
Serdes core logic GND
AH17
---
---
23
SD_GND67
Serdes core logic GND
AH20
---
---
23
SENSEGND
GND Sense pin
G20
---
---
---
OVDD1
General I/O supply
J14
---
OVDD
---
OVDD2
General I/O supply
J15
---
OVDD
---
OVDD3
General I/O supply
J16
---
OVDD
---
OVDD4
General I/O supply
J17
---
OVDD
---
OVDD5
General I/O supply
J18
---
OVDD
---
OVDD6
General I/O supply
R7
---
OVDD
---
DVDD1
UART/I2C supply
N7
---
DVDD
---
DVDD2
UART/I2C supply
P7
---
DVDD
---
EVDD
eSDHC supply
R6
---
EVDD
---
LVDD1
Ethernet controller 1 & 2
supply
T7
---
LVDD
---
LVDD2
Ethernet controller 1 & 2
supply
U7
---
LVDD
---
LVDD3
Ethernet controller 1 & 2
supply
V7
---
LVDD
---
TVDD
1.2 V / LVDD supply for MDIO
interface for 10G Fman (EC2)
W6
---
TVDD
---
G1VDD01
DDR supply
B27
---
G1VDD
---
G1VDD02
DDR supply
D27
---
G1VDD
---
G1VDD03
DDR supply
F27
---
G1VDD
---
G1VDD04
DDR supply
H27
---
G1VDD
---
G1VDD05
DDR supply
K27
---
G1VDD
---
G1VDD06
DDR supply
L22
---
G1VDD
---
G1VDD07
DDR supply
M22
---
G1VDD
---
G1VDD08
DDR supply
M27
---
G1VDD
---
G1VDD09
DDR supply
N22
---
G1VDD
---
G1VDD10
DDR supply
P22
---
G1VDD
---
G1VDD11
DDR supply
P27
---
G1VDD
---
G1VDD12
DDR supply
R22
---
G1VDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
42
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
G1VDD13
DDR supply
T22
---
G1VDD
---
G1VDD14
DDR supply
U22
---
G1VDD
---
G1VDD15
DDR supply
U27
---
G1VDD
---
G1VDD16
DDR supply
V22
---
G1VDD
---
G1VDD17
DDR supply
W27
---
G1VDD
---
G1VDD18
DDR supply
AA27
---
G1VDD
---
G1VDD19
DDR supply
AC27
---
G1VDD
---
G1VDD20
DDR supply
AE27
---
G1VDD
---
G1VDD21
DDR supply
AG27
---
G1VDD
---
G1VDD22
DDR supply
AH27
---
G1VDD
---
SVDD1
SerDes1 core logic supply
W10
---
SVDD
---
SVDD2
SerDes1 core logic supply
W13
---
SVDD
---
SVDD3
SerDes1 core logic supply
W14
---
SVDD
---
SVDD4
SerDes1 core logic supply
W15
---
SVDD
---
SVDD5
SerDes1 core logic supply
W16
---
SVDD
---
SVDD6
SerDes1 core logic supply
Y17
---
SVDD
---
SVDD7
SerDes1 core logic supply
Y18
---
SVDD
---
SVDD8
SerDes1 core logic supply
Y19
---
SVDD
---
XVDD1
SerDes1 transceiver supply
AC7
---
XVDD
---
XVDD2
SerDes1 transceiver supply
AC9
---
XVDD
---
XVDD3
SerDes1 transceiver supply
AC12
---
XVDD
---
XVDD4
SerDes1 transceiver supply
AC14
---
XVDD
---
XVDD5
SerDes1 transceiver supply
AC17
---
XVDD
---
XVDD6
SerDes1 transceiver supply
AC20
---
XVDD
---
FA_VL
Reserved
AB21
---
FA_VL
15
PROG_MTR
Reserved
F13
---
PROG_MTR
15
TA_PROG_SFP
SFP Fuse Programming
Override supply
G13
---
TA_PROG_SFP
---
TH_VDD
Thermal Monitor Unit supply
G8
---
TH_VDD
---
VDD01
Supply for cores and platform
K14
---
VDD
---
VDD02
Supply for cores and platform
K16
---
VDD
---
VDD03
Supply for cores and platform
K18
---
VDD
---
VDD04
Supply for cores and platform
K20
---
VDD
---
VDD05
Supply for cores and platform
L11
---
VDD
---
VDD06
Supply for cores and platform
L13
---
VDD
---
VDD07
Supply for cores and platform
L15
---
VDD
---
VDD08
Supply for cores and platform
L17
---
VDD
---
VDD09
Supply for cores and platform
L19
---
VDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
43
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
VDD10
Supply for cores and platform
M10
---
VDD
---
VDD11
Supply for cores and platform
M12
---
VDD
---
VDD12
Supply for cores and platform
M14
---
VDD
---
VDD13
Supply for cores and platform
M16
---
VDD
---
VDD14
Supply for cores and platform
M18
---
VDD
---
VDD15
Supply for cores and platform
N9
---
VDD
---
VDD16
Supply for cores and platform
N11
---
VDD
---
VDD17
Supply for cores and platform
N13
---
VDD
---
VDD18
Supply for cores and platform
N15
---
VDD
---
VDD19
Supply for cores and platform
N17
---
VDD
---
VDD20
Supply for cores and platform
N19
---
VDD
---
VDD21
Supply for cores and platform
P10
---
VDD
---
VDD22
Supply for cores and platform
P12
---
VDD
---
VDD23
Supply for cores and platform
P14
---
VDD
---
VDD24
Supply for cores and platform
P16
---
VDD
---
VDD25
Supply for cores and platform
P18
---
VDD
---
VDD26
Supply for cores and platform
R9
---
VDD
---
VDD27
Supply for cores and platform
R11
---
VDD
---
VDD28
Supply for cores and platform
R13
---
VDD
---
VDD29
Supply for cores and platform
R15
---
VDD
---
VDD30
Supply for cores and platform
R17
---
VDD
---
VDD31
Supply for cores and platform
R19
---
VDD
---
VDD32
Supply for cores and platform
T10
---
VDD
---
VDD33
Supply for cores and platform
T12
---
VDD
---
VDD34
Supply for cores and platform
T14
---
VDD
---
VDD35
Supply for cores and platform
T16
---
VDD
---
VDD36
Supply for cores and platform
T18
---
VDD
---
VDD37
Supply for cores and platform
U9
---
VDD
---
VDD38
Supply for cores and platform
U11
---
VDD
---
VDD39
Supply for cores and platform
U13
---
VDD
---
VDD40
Supply for cores and platform
U15
---
VDD
---
VDD41
Supply for cores and platform
U17
---
VDD
---
VDD42
Supply for cores and platform
U19
---
VDD
---
VDD43
Supply for cores and platform
V10
---
VDD
---
VDD44
Supply for cores and platform
V12
---
VDD
---
VDD45
Supply for cores and platform
V14
---
VDD
---
VDD46
Supply for cores and platform
V16
---
VDD
---
VDD47
Supply for cores and platform
V18
---
VDD
---
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
44
NXP Semiconductors
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
VDD48
Supply for cores and platform
V20
---
VDD
---
VDD49
Supply for cores and platform
W11
---
VDD
---
VDD50
Supply for cores and platform
W17
---
VDD
---
VDD51
Supply for cores and platform
W19
---
VDD
---
TA_BB_VDD
Battery Backed Security
Monitor supply
G12
---
TA_BB_VDD
---
AVDD_CGA1
CPU Cluster Group A PLL1
supply
H11
---
AVDD_CGA1
---
AVDD_CGA2
CPU Cluster Group A PLL2
supply
H10
---
AVDD_CGA2
---
AVDD_PLAT
Platform PLL supply
H9
---
AVDD_PLAT
---
AVDD_D1
DDR1 PLL supply
R21
---
AVDD_D1
---
AVDD_SD1_PLL1
SerDes1 PLL 1 supply
AA11
---
AVDD_SD1_PLL1
---
AVDD_SD1_PLL2
SerDes1 PLL 2 supply
AB6
---
AVDD_SD1_PLL2
---
AVDD_SD2_PLL1
SerDes2 PLL 1 supply
AB15
---
AVDD_SD2_PLL1
---
AVDD_SD2_PLL2
SerDes2 PLL 2 supply
AA16
---
AVDD_SD2_PLL2
---
SENSEVDD
Vdd Sense pin
G19
---
SENSEVDD
---
USB_HVDD1
3.3 V High Supply
K8
---
USB_HVDD
---
USB_HVDD2
3.3 V High Supply
L8
---
USB_HVDD
---
USB_SDVDD1
1.0 V Analog and digital HS
supply
M7
---
USB_SDVDD
---
USB_SDVDD2
1.0 V Analog and digital HS
supply
M8
---
USB_SDVDD
---
USB_SVDD1
1.0 V Analog and digital SS
supply
K7
---
USB_SVDD
---
USB_SVDD2
1.0 V Analog and digital SS
supply
L7
---
USB_SVDD
---
NC_AA10
No Connection
AA10
---
---
12
NC_AA15
No Connection
AA15
---
---
12
NC_AB10
No Connection
AB10
---
---
12
NC_AB11
No Connection
AB11
---
---
12
NC_AB16
No Connection
AB16
---
---
12
NC_F12
No Connection
F12
---
---
12
NC_K10
No Connection
K10
---
---
12
NC_K11
No Connection
K11
---
---
12
NC_K12
No Connection
K12
---
---
12
NC_K22
No Connection
K22
---
---
12
NC_K9
No Connection
K9
---
---
12
NC_L21
No Connection
L21
---
---
12
No Connection Pins
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
45
Pin assignments
Table 1. Pinout list by bus (continued)
Signal
Signal description
Package
pin
number
Pin
type
Power supply
Notes
NC_L9
No Connection
L9
---
---
12
NC_M20
No Connection
M20
---
---
12
NC_N21
No Connection
N21
---
---
12
NC_P20
No Connection
P20
---
---
12
NC_P21
No Connection
P21
---
---
12
NC_P5
No Connection
P5
---
---
12
NC_P8
No Connection
P8
---
---
12
NC_R4
No Connection
R4
---
---
12
NC_T20
No Connection
T20
---
---
12
NC_T5
No Connection
T5
---
---
12
NC_T8
No Connection
T8
---
---
12
NC_U21
No Connection
U21
---
---
12
NC_U4
No Connection
U4
---
---
12
NC_U5
No Connection
U5
---
---
12
NC_V5
No Connection
V5
---
---
12
NC_V8
No Connection
V8
---
---
12
NC_W21
No Connection
W21
---
---
12
NC_W5
No Connection
W5
---
---
12
NC_W7
No Connection
W7
---
---
12
NC_W8
No Connection
W8
---
---
12
NC_W9
No Connection
W9
---
---
12
1. Functionally, this pin is an output or an input, but structurally it is an I/O because it
either sample configuration input during reset, is a muxed pin, or has other manufacturing
test functions. This pin will therefore be described as an I/O for boundary scan.
2. This output is actively driven during reset rather than being tri-stated during reset.
3. MDIC[0] is grounded through a 162 Ω precision 1% resistor and MDIC[1] is
connected to GVDD through a 162 Ω precision 1% resistor. For either full or half driver
strength calibration of DDR IOs, use the same MDIC resistor value of 162 Ω. The
memory controller register setting can be used to determine automatic calibration is done
to full or half drive strength. These pins are used for automatic calibration of the DDR4
IOs.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
46
NXP Semiconductors
Pin assignments
4. This pin is a reset configuration pin. It has a weak (~20 kΩ) internal pull-up P-FET that
is enabled only when the processor is in its reset state. This pull-up is designed such that
it can be overpowered by an external 4.7 kΩ resistor. However, if the signal is intended to
be high after reset, and if there is any device on the net that might pull down the value of
the net at reset, a pull-up or active driver is needed.
5. Pin must NOT be pulled down during power-on reset. This pin may be pulled up,
driven high, or if there are any externally connected devices, left in tristate. If this pin is
connected to a device that pulls down during reset, an external pull-up is required to drive
this pin to a safe state during reset.
6. Recommend that a weak pull-up resistor (2-10 kΩ) be placed on this pin to the
respective power supply.
7. This pin is an open-drain signal.
8. Recommend that a weak pull-up resistor (1 kΩ) be placed on this pin to the respective
power supply.
9. This pin has a weak (~20 kΩ) internal pull-up P-FET that is always enabled.
10. These are test signals for factory use only and must be pulled up (100Ω to 1-kΩ) to
the respective power supply for normal operation.
11. This pin requires a 200Ω ± 1% pull-up to respective power-supply.
12. Do not connect. These pins should be left floating.
14. This pin requires an external 1-kΩ pull-down resistor to prevent PHY from seeing a
valid Transmit Enable before it is actively driven.
15. These pins must be pulled to ground (GND).
16. This pin requires a 698Ω ± 1% pull-up to respective power-supply.
17. These pins should be tied to ground if the diode is not utilized for temperature
monitoring.
18. This pin should be grounded through a 200Ω +/-1% 100ppm/°C precision resistor.
19. This pin must be pulled to OVDD through a 100-Ω to 1kΩ resistor for a four core
LS1046A device and tied to ground for a two core LS1026A device.
20. In normal operation, this pin must be pulled high to OVDD with 4.7 kΩ.
21. DIFF_SYSCLK and DIFF_SYSCLK_B is tied to cfg_eng_use0, the configuration is
described in section "Reset configuration word (RCW)" of QorIQ LS1046A Reference
Manual.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
47
Electrical characteristics
22. This pin should be connected to ground through 2-10 kΩ resistor when not used.
23. SD_GND must be directly connected to GND.
24. This pin must be pulled down to GND with a pull down resistor of value 1 KΩ
25. This pin will not be tested using JTAG Boundary scan operation.
26. For proper clock selection, terminate cfg_eng_use0 with a pull up or pull down of 4.7
kΩ to ensure that the signal will have a valid state as soon as the IO voltage reach its
operating condition.
27. When using discrete DRAM, or RDIMM, the MALERT_B pin needs a 50 ohm to
100 ohm pull-up resistor to G1VDD.
28. This pin requires a pull-up to the respective power supply so as to meet the timing
requirements in Table 23
Warning
See "Connection Recommendations in QorIQ LS1046A
Design Checklist (AN5252)" for additional details on properly
connecting these pins for specific applications.
3 Electrical characteristics
This section describes the DC and AC electrical specifications for the chip. The chip is
currently targeted to these specifications, some of which are independent of the I/O cell
but are included for a more complete reference. These are not purely I/O buffer design
specifications.
3.1 Overall DC electrical characteristics
This section describes the ratings, conditions, and other characteristics.
3.1.1 Absolute maximum ratings
This table provides the absolute maximum ratings.
Table 2. Absolute maximum ratings1,5
Characteristic
Core and platform supply voltage
Symbol
VDD
Max Value
-0.3 to 1.08
Unit
V
Notes
4
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
48
NXP Semiconductors
Electrical characteristics
Table 2. Absolute maximum ratings1,5 (continued)
Characteristic
PLL supply voltage (core PLL, platform, DDR)
Symbol
AVDD_CGA1
Max Value
Unit
Notes
-0.3 to 1.98
V
—
-0.3 to 1.48
V
—
AVDD_CGA2
AVDD_D1
AVDD_PLAT
PLL supply voltage (SerDes, filtered from XnVDD)
AVDD_SDn_PLL1
AVDD_SDn_PLL2
SFP Fuse Programming
TA_PROG_SFP
-0.3 to 1.98
V
—
Thermal Unit Monitor supply
TH_VDD
-0.3 to 1.98
V
—
Battery Backed Security Monitor supply
TA_BB_VDD
-0.3 to 1.08
V
—
IFC, SPI, IRQ[0:2], Tamper Detect, System Control,
SYSCLK, DDRCLK, RTC, EVT[0:4], DFT, JTAG,
DIFF_SYSCLK, CLK_OUT, QSPI, FTM[5:7],
eSDHC_DAT[4:7], eSDHC_CMD/DAT0_DIR,
eSDHC_DAT123_DIR, eSDHC_SYNC_IN/OUT,
SDHC_VS
OVDD
-0.3 to 1.98
V
—
DUART, I2C, IRQ[3:10], USB2/3_PWRFAULT,
USB2/3_DRVVBUS, EVT_B[5:8], LPUART[1:2],
LPUART4, FTM3_CH[1:7], FTM4_CH[1:5], FTM8,
eSDHC_CD/WP
DVDD
-0.3 to 3.63
V
—
eSDHC_DAT[0:3], eSDHC_CMD, eSDHC_CLK,
FTM4_CH[6:7], LPUART[3:6]
EVDD
V
—
DDR4 DRAM I/O voltage
G1VDD
-0.3 to 1.32
V
—
Main power supply for internal circuitry of SerDes and
pad power supply for SerDes receivers
SVDD
-0.3 to 1.08
V
—
Pad power supply for SerDes transmitter
XVDD
-0.3 to 1.48
V
—
Ethernet interface, Ethernet management interface 1
(EMI1), 1588, IRQ11, FTM1, FTM2,
LVDD
-0.3 to 2.75
V
—
Ethernet management interface 2 (EMI2), GPIO2
TVDD
V
—
-0.3 to 1.98
-0.3 to 3.63
-0.3 to 1.98
-0.3 to 1.98
-0.3 to 2.75
-0.3 to 1.98
-0.3 to 1.32
USB PHY Transceiver supply voltage
Storage temperature range
USB_HVDD
-0.3 to 3.63
V
-
USB_SDVDD
-0.3 to 1.08
V
3
USB_SVDD
-0.3 to 1.08
V
2
TSTG
-55 to 150
°C
--
Notes:
1. Functional operating conditions are given in Table 4. Absolute maximum ratings are stress ratings only, and functional
operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent
damage to the device.
2. Analog and Digital SS supply for USBPHY.
3. Analog and Digital HS supply for USBPHY.
4. Supply voltage specified at the voltage sense pin. Voltage input pins should be regulated to provide specified voltage at the
sense pin.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
49
Electrical characteristics
Table 2. Absolute maximum ratings1,5
Characteristic
Symbol
Max Value
Unit
Notes
5. Exposing device to Absolute Maximum Ratings conditions for long periods of time may affect reliability or cause permanent
damage.
This table provides the absolute maximum ratings for input signal voltage levels.
Table 3. Absolute maximum ratings for input signal voltage levels1
Interface Input signals
Symbol
DDR4 DRAM signals
G1VIN
Max DC V_input range
Max undershoot and
Uni
overshoot voltage range
t
Note
s
GND to (G1VDD x 1.05)
-0.3 to (G1VDD x 1.1)
V
2, 3, 5
Ethernet interface, Ethernet
LVIN
management interface 1 (EMI1),
1588, IRQ11, FTM1, FTM2
GND to (LVDD x 1.1)
-0.3 to (LVDD x 1.15)
V
2, 3
IFC, SPI, IRQ[0:2], Tamper
Detect, System Control,
SYSCLK, DDRCLK, RTC,
EVT[0:4], DFT, JTAG,
DIFF_SYSCLK, CLK_OUT,
QSPI, FTM[5:7],
eSDHC_DAT[4:7],
eSDHC_CMD/DAT0_DIR,
eSDHC_DAT123_DIR,
eSDHC_SYNC_IN/OUT,
SDHC_VS
OVIN
GND to (OVDD x 1.1)
-0.3 to (OVDD x 1.15)
V
2, 3
DUART, I2C, IRQ[3:10],
USB2/3_PWRFAULT,
USB2/3_DRVVBUS,
EVT_B[5:8], LPUART[1:2],
LPUART4, FTM3_CH[1:7],
FTM4_CH[1:5], FTM8,
eSDHC_CD/WP
DVIN
GND to (DVDD x 1.1)
-0.3 to (DVDD x 1.15)
eSDHC_DAT[0:3],
eSDHC_CMD, eSDHC_CLK,
FTM4_CH[6:7], LPUART[3:6]
EVIN
GND to (EVDD x 1.1)
-0.3 to (EVDD x 1.15)
V
2, 3
Main power supply for internal
circuitry of SerDes
SnVIN
GND to (SVDD x 1.05)
-0.3 to (SnVDD x 1.1)
V
2, 3
Ethernet management interface
2 (EMI2), GPIO2
TVIN
GND to (TVDD x 1.05)
-0.3 to (TVDD x 1.15)
V
2, 3
USB PHY Transceiver signals
USB_HVIN
GND to (USB_HVDD x 1.05)
-0.3 to (USB_HVDD x 1.15) V
2, 3
USB_SVIN
GND to (USB_SVDD x 1.1)
-0.3 to (USB_SVDD x 1.15) V
2, 3
Notes:
1. Functional operating conditions are given in Table 4. Absolute maximum ratings are stress ratings only, and functional
operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent
damage to the device.
2. Caution: The input voltage level of the signals must not exceed corresponding Max DC V_input range. For example DDR4
must not exceed 5% of G1VDD.
3. Caution: (S, G, L, O, D, E, T) VIN, USB_HVIN, USB_SVIN may overshoot/undershoot to a voltage and for a maximum
duration as shown in Figure 8.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
50
NXP Semiconductors
Electrical characteristics
Table 3. Absolute maximum ratings for input signal voltage levels1
Interface Input signals
Symbol
Max DC V_input range
Max undershoot and
Uni
overshoot voltage range
t
Note
s
5. Typical DDR interface uses ODT enabled mode. For tests purposes with ODT off mode, simulation should be done first so
as to make sure that the overshoot signal level at the input pin does not exceed GVDD by more than 10%. The Overshoot/
Undershoot period should comply with JEDEC standards.
3.1.2 Recommended operating conditions
This table provides the recommended operating conditions for this chip.
NOTE
The values shown are the recommended operating conditions
and proper device operation outside these conditions is not
guaranteed.
Table 4. Recommended operating conditions
Characteristic
Symbol
Core and platform supply voltage
VDD
0.9 V core and platform supply voltage
Recommended
value
1.0 V ± 30 mV
Unit
Notes
V
3, 4, 5, 8
1.8 V ± 90 mV
V
9
1.35 V ± 67 mV
V
—
0.9 V ± 30 mV
PLL supply voltage (core PLL, platform, DDR)
AVDD_CGA1
AVDD_CGA2
AVDD_D1
AVDD_PLAT
PLL supply voltage (SerDes, filtered from XnVDD)
AVDD_SD1_PLL1
AVDD_SD1_PLL2
AVDD_SD2_PLL1
AVDD_SD2_PLL2
SFP fuse programming
TA_PROG_SFP
1.8 V ± 90 mV
V
2
Thermal monitor unit supply
TH_VDD
1.8 V ± 90 mV
V
—
Battery Backed Security Monitor supply
TA_BB_VDD
1.0 V ± 30 mV
V
8
IFC, IRQ[0:2], Tamper Detect, System Control, SYSCLK,
DDRCLK, RTC, EVT[0:4], DFT, JTAG, DIFF_SYSCLK,
CLK_OUT, QSPI, FTM[5:7], SPI, SDHC_DAT[4:7],
SDHC_CMD_DIR, SDHC_DAT0_DIR,
SDHC_DAT123_DIR, SDHC_SYNC_IN/OUT, SDHC_VS
OVDD
1.8 V ± 90 mV
V
—
DUART, I2C, IRQ[3:10], USB2/3_PWRFAULT,
DVDD
USB2/3_DRVVBUS, EVT_B[5:8], LPUART[1:2], LPUART4,
FTM3_CH[1:7], FTM4_CH[1:5], FTM8, SDHC_CD/WP
3.3 V ± 165 mV
V
—
SDHC_DAT[0:3], SDHC_CMD, SDHC_CLK,
FTM4_CH[6:7], LPUART3, LPUART5, LPUART6
3.3 V ±165 mV
V
—
0.9 V ± 30 mV
EVDD
1.8 V ± 90 mV
1.8 V ± 90 mV
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
51
Electrical characteristics
Table 4. Recommended operating conditions (continued)
Characteristic
Symbol
Recommended
value
Unit
Notes
DDR4 DRAM I/O voltage
G1VDD
1.2 V ± 60 mV
V
—
Main power supply for internal circuitry of SerDes and pad
power supply for SerDes receivers
SVDD
1.0 V ± 50 mV
V
—
0.9 V + 50 mV
0.9 V - 30 mV
Pad power supply for SerDes transmitters
XVDD
1.35 V ± 67 mV
V
—
Ethernet interface 1/2, Ethernet management interface 1
(EMI1), 1588, IRQ11, FTM1, FTM2
LVDD
2.5 V ± 125 mV
V
1
Ethernet management interface 2 (EMI2), GPIO2
TVDD
1.8 V ± 90 mV
2.5 V ± 125 mV
V
1.8 V ± 90 mV
1.2V ± 60 mV
USB PHY 3.3 V high supply voltage
USB_HVDD
3.3 V ± 165 mV
V
USB PHY analog and digital HS supply
USB_SDVDD
1.0 V ± 50 mV
V
7, 8
V
6, 8
GND to G1VDD
V
—
Ethernet interface, Ethernet LVIN
management interface 1
(EMI1), 1588, IRQ11, FTM1,
FTM2
GND to LVDD
V
—
IFC, SPI, IRQ[0:2], Tamper
Detect, System Control,
SYSCLK, DDRCLK, RTC,
EVT[0:4], DFT, JTAG,
DIFF_SYSCLK, CLK_OUT,
QSPI, FTM[5:7],
SDHC_DAT[4:7],
SDHC_CMD_DIR/
DAT0_DIR,
SDHC_DAT123_DIR,
SDHC_SYNC_IN/OUT,
SDHC_VS
OVIN
GND to OVDD
V
—
DUART, I2C, IRQ[3:10],
USB2/3_PWRFAULT,
USB2/3_DRVVBUS,
EVT_B[5:8], LPUART[1:2],
LPUART4, FTM3_CH[1:7],
FTM4_CH[1:5], FTM8,
SDHC_CD/WP
DVIN
GND to DVDD
V
—
SDHC_DAT[0:3],
EVIN
SDHC_CMD, SDHC_CLK,
FTM4_CH[6:7], LPUART[3:6]
GND to EVDD
V
—
0.9 V + 50 mV
0.9 V - 30 mV
USB PHY analog and digital SS supply
USB_SVDD
1.0 V ± 50 mV
0.9 V + 50 mV
0.9 V - 30 mV
Input voltage
DDR4 DRAM signals
G1VIN
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
52
NXP Semiconductors
Electrical characteristics
Table 4. Recommended operating conditions (continued)
Characteristic
PHY transceiver signals
Symbol
Recommended
value
Unit
Notes
Main power supply for
internal circuitry of SerDes
SVIN
GND to SVDD
V
—
Ethernet management
interface 2 (EMI2), GPIO2
TVIN
GND to TVDD
V
—
USB transceiver supply for
USB PHY
USB_HVIN
GND to
USBn_HVDD
V
—
GND to
USB_SVDD
V
—
TA,
TA = 0°C (min) to
°C
10
TJ
TJ = 105°C (max)
TA,
TA = -40°C (min) to °C
10
TJ
TJ = 105°C (max)
TA,
TA = 0°C (min) to
TJ
TJ = 105°C (max)
Analog and digital HS supply USB_SVIN
for USB PHY
Operating temperature range Normal operation
Extended temperature
Secure boot fuse
programming
°C
2
Notes:
1. RGMII is supported at 2.5 V or 1.8 V.
2. TA_PROG_SFP must be supplied 1.8 V and the chip must operate in the specified fuse programming temperature range
only during secure boot fuse programming, subject to the power sequencing constraints shown in Power sequencing. For all
other operating conditions, TA_PROG_SFP must be tied to GND.
3. For additional information, see the core and platform supply voltage filtering section in the chip design checklist.
4. Supply voltage specified at the voltage sense pin. Voltage input pins should be regulated to provide specified voltage at the
sense pin.
5. Operation at 1.08 V is allowable for up to 25 ms at initial power on.
6. Analog and Digital SS supply for USB PHY.
7. Analog and Digital HS supply for USB PHY.
8. For supported voltage requirement for a given part number, see Table 144.
9. AVDD_PLAT, AVDD_CGA1, AVDD_CGA2, and AVDD_D1 are measured at the input to the filter and not at the pin of the
device.
10. For supported temperature range for a given part number, see Table 144.
This figure shows the undershoot and overshoot voltages at the interfaces of the chip.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
53
Electrical characteristics
Maximum overshoot
D/E/S1/G1/L/O/T/USB*VDD
VIH
GND
VIL
Minimum undershoot
Overshoot/undershoot period
Notes:
The overshoot/undershoot period should be less than 10% of shortest possible toggling period of the input signal
or per input signal specific protocol requirement. For GPIO input signal overshoot/undershoot period, it should be
less than 10% of the SYSCLK period.
Figure 8. Overshoot/undershoot voltage for G1VDD/OVDD/SVDD/TVDD/ LVDD/EVDD/DVDD/
USB_HVDD/USB_SVDD
See Table 4 for actual recommended core voltage. Voltage to the processor interface I/Os
are provided through separate sets of supply pins and must be provided at the voltages
shown in Table 4. The input voltage threshold scales with respect to the associated I/O
supply voltage. OVDD, EVDD, DVDD, TVDD, and LVDD based receivers are simple
CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR
SDRAM interface uses differential receivers referenced by the internally supplied
reference signal as is appropriate for the JEDEC DDR4 electrical signaling standard. The
DDR DQS receivers cannot be operated in single-ended fashion. The complement signal
must be properly driven and cannot be grounded.
3.1.3 Output driver characteristics
This chip provides information on the characteristics of the output driver strengths.
NOTE
These values are preliminary estimates.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
54
NXP Semiconductors
Electrical characteristics
Table 5. Output drive capability
Driver type
Output impedance (Ω)
Minimum2
DDR4 signal
-
Notes
Maximum3
Typical
18(fullstrength
mode)
Supply Voltage
-
G1VDD = 1.2 V
1
27(halfstrength
mode)
Ethernet interface, Ethernet
management interface 1 (EMI1), 1588,
FTM1, FTM2
30
50
70
LVDD = 2.5V
-
30
45
60
LVDD = 1.8V
-
MDC of Ethernet management interface 45
2 (EMI 2)
40
65
100
TVDD = 1.2 V
-
55
75
TVDD = 1.8V
-
40
60
90
TVDD = 2.5V
-
MDIO of Ethernet management interface 30
2 (EMI 2)
25
40
60
TVDD = 1.2 V
-
33
44
TVDD = 1.8V
-
25
40
57
TVDD = 2.5V
-
IFC, SPI, EVT[0:4], JTAG, CLK_OUT,
QSPI, FTM[5:7], eSDHC_DAT[4:7],
eSDHC_CMD/DAT0_DIR,
eSDHC_DAT123_DIR,
eSDHC_SYNC_OUT, SDHC_VS
30
45
60
OVDD = 1.8 V
-
eSDHC_DAT[0:3], eSDHC_CMD,
eSDHC_CLK, FTM4_CH[6:7],
LPUART[3:6]
45
65
90
EVDD = 3.3V
-
40
55
75
EVDD = 1.8V
DUART, I2C, USB2/3_DRVVBUS,
EVT_B[5:8], LPUART[1:2], LPUART4,
FTM3_CH[1:7], FTM4_CH[1:5], FTM8
40
55
75
DVDD = 1.8V
45
65
90
DVDD = 3.3V
-
1. The drive strength of the DDR4 in half-strength mode is at Tj = 105°C and at G1VDD (min).
2. Estimated number based on best case processed device.
3. Estimated number based on worst case processed device.
3.2 Power sequencing
The chip requires that its power rails be applied in a specific sequence in order to ensure
proper device operation. For power up, these requirements are as follows:
1. OVDD, DVDD, LVDD, EVDD, TVDD, XVDD, AVDD_CGAn, AVDD_PLAT,
AVDD_D1, AVDD_SDn_PLL1, AVDD_SDn_PLL2, USB_HVDD. Drive
TA_PROG_SFP = GND.
• PORESET_B input must be driven asserted and held during this step.
2. VDD, SVDD, TA_BB_VDD, USB_SDVDD, USB_SVDD
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
55
Electrical characteristics
• The 3.3 V (USB_HVDD) in Step 1 and 1.0 V (USB_SDVDD, USB_SVDD) in
Step 2 supplies can power up in any sequence provided all these USB supplies
ramp up within 95 ms with respect to each other.
3. G1VDD
Items on the same line have no ordering requirement with respect to one another. Items
on separate lines must be ordered sequentially such that voltage rails on a previous step
must reach 90% of their value before the voltage rails on the current step reach 10% of
their value.
All supplies must be at their stable values within 400 ms.
Negate PORESET_B input when the required assertion/hold time has been met per Table
23.
•
•
•
•
NOTE
While VDD is ramping up, current may be supplied from
VDD through LS1046A to G1VDD.
If using Trust Architecture Security Monitor battery backed
features, prior to VDD ramping up to the 0.5 V level,
ensure that OVDD is ramped to recommended operational
voltage and SYSCLK or DIFF_SYSCLK/
DIFF_SYSCLK_B is running. These clocks should have a
minimum frequency of 800 Hz and a maximum frequency
not greater than the supported system clock frequency for
the device.
Ramp rate requirements should be met per Table 12.
While XVDD is ramping, current may be supplied from
XVDD through chip to SVDD.
Warning
Only 300,000 POR cycles are permitted per lifetime of a
device. Note that this value is based on design estimates and is
preliminary.
For secure boot fuse programming, use the following steps:
1. After negation of PORESET_B, drive TA_PROG_SFP = 1.8 V after a required
minimum delay per Table 6.
2. After fuse programming is complete, it is required to return TA_PROG_SFP = GND
before the system is power cycled or powered down (VDD ramp down) per the
required timing specified in Table 6. See Security fuse processor for additional
details.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
56
NXP Semiconductors
Electrical characteristics
Warning
No activity other than that required for secure boot fuse
programming is permitted while TA_PROG_SFP is driven
to any voltage above GND, including the reading of the
fuse block. The reading of the fuse block may only occur
while TA_PROG_SFP = GND.
This figure shows the TA_PROG_SFP timing diagram.
Fuse programming
10% TA_PROG_SFP
10% TA_PROG_SFP
TA_PROG_SFP
90% VDD
tTA_PROG_SFP_VDD
VDD
90% OVDD
tTA_PROG_SFP_PROG
90% OVDD
PORESET_B
tTA_PROG_SFP_RST
tTA_PROG_SFP_DELAY
NOTE: TA_PROG_SFP must be stable at 1.8 V prior to initiating fuse programming.
Figure 9. TA_PROG_SFP timing diagram
This table provides information on the power-down and power-up sequence parameters
for TA_PROG_SFP.
Table 6. TA_PROG_SFP timing 5
Driver type
Min
Max
Unit
Notes
tTA_PROG_SFP_DELAY
100
—
SYSCLKs
1
tTA_PROG_SFP_PROG
0
—
us
2
tTA_PROG_SFP_VDD
0
—
us
3
tTA_PROG_SFP_RST
0
—
us
4
Notes:
1. Delay required from the deassertion of PORESET_B to driving TA_PROG_SFP ramp up. Delay measured from
PORESET_B deassertion at 90% OVDD to 10% TA_PROG_SFP ramp up.
2. Delay required from fuse programming completion to TA_PROG_SFP ramp down start. Fuse programming must complete
while TA_PROG_SFP is stable at 1.8 V. No activity other than that required for secure boot fuse programming is permitted
while TA_PROG_SFP is driven to any voltage above GND, including the reading of the fuse block. The reading of the fuse
block may only occur while TA_PROG_SFP = GND. After fuse programming is complete, it is required to return
TA_PROG_SFP = GND.
3. Delay required from TA_PROG_SFP ramp-down complete to VDD ramp-down start. TA_PROG_SFP must be grounded to
minimum 10% TA_PROG_SFP before VDD reaches 90% VDD.
4. Delay required from TA_PROG_SFP ramp-down complete to PORESET_B assertion. TA_PROG_SFP must be grounded
to minimum 10% TA_PROG_SFP before PORESET_B assertion reaches 90% OVDD.
5. Only six secure boot fuse programming events are permitted per lifetime of a device.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
57
Electrical characteristics
3.3 Power-down requirements
The power-down cycle must complete such that power supply values are below 0.4 V
before a new power-up cycle can be started.
If performing secure boot fuse programming per the requirements in Power sequencing, it
is required that TA_PROG_SFP = GND before the system is power cycled
(PORESET_B assertion) or powered down (VDD ramp down) per the required timing
specified in Power sequencing.
3.4 Power characteristics
This table provides the power dissipations of the VDD supply and SerDes supply (SVDD)
for various operating platform clock frequencies versus the core and DDR clock
frequencies.
Table 7. LS1046A core power dissipation9
Core
freque
ncy
(MHz)
Platform/
FMan
frequency
(MHz)
DDR
frequen
cy
(MHz)
VDD (V)
SVDD
(V)
Junction
temperatu
re (ºC)
Power
mode
Power (W)
VDD
8
SVDD
Total Core
and
platform
power
Notes
(W)1
1800
700/800
2100
1.0
1.0
65
Typical
8.5
0.9
9.4
2, 3
85
Thermal
11.4
0.9
12.3
4, 7
Maximum 14.3
0.9
15.2
5, 6, 7
Thermal
14.4
0.9
15.3
4, 7
105
1600
700/800
2100
1.0
1.0
Maximum 17.3
0.9
18.2
5, 6, 7
65
Typical
7.7
0.9
8.7
2, 3
85
Thermal
10.7
0.9
11.6
4, 7
Maximum 13.2
0.9
14.2
5, 6, 7
Thermal
13.7
0.9
14.6
4, 7
Maximum 16.3
0.9
17.2
5, 6, 7
65
Typical
7.3
0.9
8.2
2, 3
85
Thermal
8.7
0.9
9.6
4, 7
Maximum 11.1
0.9
12.0
5, 6, 7
Thermal
10.5
0.9
11.5
4, 7
Maximum 12.9
0.9
13.8
5, 6, 7
65
Typical
6.4
0.9
7.3
2, 3, 10
85
Thermal
7.7
0.9
8.6
4, 7, 10
Maximum 9.8
0.9
10.7
5, 6, 7, 10
105
1400
600/600
2100
1.0
1.0
105
1200
400/600
1600
1.0
1.0
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
58
NXP Semiconductors
Electrical characteristics
Table 7. LS1046A core power dissipation9 (continued)
Core
freque
ncy
(MHz)
Platform/
FMan
frequency
(MHz)
DDR
frequen
cy
(MHz)
VDD (V)
SVDD
(V)
Junction
temperatu
re (ºC)
Power
mode
Power (W)
VDD
SVDD8
Total Core
and
platform
power
Notes
(W)1
105
1200
400/600
1600
0.9
0.9
0.9
10.5
4, 7, 10
Maximum 11.6
0.9
12.5
5, 6, 7, 10
65
Typical
4.9
0.7
5.6
2, 3
85
Thermal
105
Thermal
9.6
5.9
0.7
6.6
4, 7
Maximum 7.4
0.7
8.2
5, 6, 7
Thermal
7.2
0.7
8.0
4, 7
Maximum 8.8
0.7
9.5
5, 6, 7
1. Combined power of VDD and SVDD with DDR controller and all SerDes banks active. Does not include I/O power.
2. Typical power assumes Dhrystone running with activity factor of 70% (on all cores) and executing DMA on the platform
with 100% activity factor.
3. Typical power based on nominal, processed device.
4. Thermal power assumes Dhrystone running with activity factor of 70% (on all cores) and executing DMA on the
platform at 100% activity factor.
5. Maximum power assumes Dhrystone running with activity factor at 100% (on all cores) and executing DMA on the
platform at 115% activity factor.
6. Maximum power is provided for power supply design sizing.
7. Thermal and maximum power are based on worst case processed device.
8. Total SVDD Power conditions:
a. SerDes 1 : XFI x2, 10 Gbaud
b. SerDes 1 : SGMII x2, 1.25 Gbaud
c. SerDes 2 : PEX x2, 5 Gbaud
9. Power numbers are only applicable to part numbering offering from Table 144. For example: A 1.8GHz offering part
when runs at 1.4GHz will have power numbers higher than listed for 1.4GHz.
10. These power numbers are valid when purchasing the 1400MHz device and running the clocks at these conditions.
Table 8. LS1026A core power dissipation9
Core
freque
ncy
(MHz)
Platform/
FMan
frequency
(MHz)
DDR
frequen
cy
(MHz)
VDD (V)
SVDD
(V)
Junction
tempera
ture (ºC)
Power
mode
Power (W)
VDD
SVDD
8
Total Core
and
platform
power
Notes
(W)1
1800
700/800
2100
1.0
1.0
65
Typical
6.7
0.9
7.6
2, 3
85
Thermal
9.3
0.9
10.2
4, 7
Maximum 11.5
0.9
12.4
5, 6, 7
Thermal
12.3
0.9
13.2
4, 7
Maximum 14.5
0.9
15.4
5, 6, 7
65
Typical
6.2
0.9
7.1
2, 3
85
Thermal
8.7
0.9
9.6
4, 7
Maximum 10.7
0.9
11.6
5, 6, 7
Thermal
11.7
0.9
12.6
4, 7
Maximum 13.7
0.9
14.6
5, 6, 7
105
1600
700/800
2100
1.0
1.0
105
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
59
Electrical characteristics
Table 8. LS1026A core power dissipation9 (continued)
Core
freque
ncy
(MHz)
Platform/
FMan
frequency
(MHz)
DDR
frequen
cy
(MHz)
VDD (V)
SVDD
(V)
Junction
tempera
ture (ºC)
Power
mode
Power (W)
VDD
SVDD8
Total Core
and
platform
power
Notes
(W)1
1400
600/600
2100
1.0
1.0
65
Typical
6.0
0.9
6.9
2, 3
85
Thermal
7.2
0.9
8.1
4, 7
Maximum 9.1
0.9
10.0
5, 6, 7
Thermal
0.9
10.0
4, 7
Maximum 10.9
0.9
11.8
5, 6, 7
65
Typical
5.2
0.9
6.2
2, 3, 10
85
Thermal
6.4
0.9
7.3
4, 7, 10
Maximum 8.0
0.9
9.0
5, 6, 7, 10
Thermal
8.3
0.9
9.2
4, 7, 10
Maximum 9.9
0.9
10.8
5, 6, 7, 10
65
Typical
3.9
0.7
4.7
2, 3
85
Thermal
4.7
0.7
5.5
4, 7
Maximum 6.0
0.7
6.7
5, 6, 7
Thermal
6.1
0.7
6.9
4, 7
Maximum 7.3
0.7
8.1
5, 6, 7
105
1200
400/600
1600
1.0
1.0
105
1200
400/600
1600
0.9
0.9
105
9.0
1. Combined power of VDD and SVDD with DDR controller and all SerDes banks active. Does not include I/O power.
2. Typical power assumes Dhrystone running with activity factor of 80% (on all cores) and executing DMA on the platform
with 100% activity factor.
3. Typical power based on nominal, processed device.
4. Thermal power assumes Dhrystone running with activity factor of 80% (on all cores) and executing DMA on the
platform at 100% activity factor.
5. Maximum power assumes Dhrystone running with activity factor at 100% (on all cores) and executing DMA on the
platform at 115% activity factor.
6. Maximum power is provided for power supply design sizing.
7. Thermal and maximum power are based on worst case processed device.
8. Total SVDD power conditions:
a. SerDes 1 : XFI x2, 10 Gbaud
b. SerDes 1 : SGMII x2, 1.25 Gbaud
c. SerDes 2 : PEX x2, 5 Gbaud
9. Power numbers are only applicable to part numbering offering from Table 144. For example: A 1.8GHz offering part
when runs at 1.4GHz will have power numbers higher than listed for 1.4GHz.
10. These power numbers are valid when purchasing the 1400MHz device and running the clocks at these conditions.
3.4.1 Low-power mode saving estimation
See this table for low-power mode savings.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
60
NXP Semiconductors
Electrical characteristics
Table 9. Low-power mode savings, 65C1, 2, 3
Mode
Core
Core
Core
Core
Core
Units Comments
Frequency = Frequency = Frequency = Frequency = Frequency =
1.2 GHz
1.2 GHz
1.4 GHz
1.6 GHz
1.8 GHz
Note
s
(VDD =0.9V) (VDD =1.0V) (VDD =1.0V) (VDD =1.0V) (VDD =1.0V)
PW15
0.71
0.74
0.77
0.88
0.99
Watts Saving realized moving
from run to PW15 state,
single core. Arm in
STANDBYWFI/WFE
PH20
0.05
0.17
0.21
0.24
0.26
Watts Saving realized moving
from PW15 to PH20 state,
single core. Arm in
STANDBYWFI/ WFEretain
LPM20
1.02
1.46
1.70
1.94
2.18
Watts Saving realized moving
from PW15 to LPM20 per
device
4
5
Notes:
1. Power for VDD only
2. Typical power assumes Dhrystone running with activity factor of 70%
3. Typical power based on nominal process distribution for this device.
4. PW15 power savings with 1 core. Maximum savings would be N times, where N is the number of used cores.
5. LPM20 has all platform clocks disabled.
3.5 I/O power dissipation
This table provides the estimated I/O power numbers for each block: DDR, PCI Express,
IFC, Ethernet controller, SGMII, eSDHC, USB, SPI, DUART, IIC, SATA, and GPIO.
Note that these numbers are based on design estimates only.
Table 10. IO power supply estimated values
Interface
Parameter
Symbol
Typical
Unit
Notes
DDR4
x64 2100 MT/s
data rate
G1VDD (1.2 V)
990
mW
1, 2
mW
1, 7
mW
1, 2
x64 1600 MT/s
data rate
860
x64 2100 MT/s
data rate
761
x64 1600 MT/s
data rate
660
x32 2100 MT/s
data rate
740
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
61
Electrical characteristics
Table 10. IO power supply estimated values (continued)
PCI Express
SGMII
x32 1600 MT/s
data rate
637
x32 2100 MT/s
data rate
518
x32 1600 MT/s
data rate
490
mW
1, 7
79
mW
1, 3
x2, 2.5 Gbaud
132
mW
x4, 2.5 Gbaud
237
mW
x1, 5 Gbaud
80
mW
x2, 5 Gbaud
133
mW
x4, 5 Gbaud
239
mW
x1, 8 Gbaud
81
mW
x2, 8 Gbaud
136
mW
x4, 8 Gbaud
245
mW
77
mW
x2, 1.25 Gbaud
127
mW
x3, 1.25 Gbaud
177
mW
x4, 1.25 Gbaud
227
mW
x1, 3.125 Gbaud
79
mW
x2, 3.125 Gbaud
132
mW
x3, 3.125 Gbaud
184
mW
x1, 2.5 Gbaud
x1, 1.25 Gbaud
XVDD (1.35 V)
XVDD (1.35 V)
1, 3
QSGMII
x1, 5 Gbaud
XVDD (1.35 V)
80
mW
1, 3
XFI
x1, 10 Gbaud
XVDD (1.35 V)
81
mW
1, 3
136
mW
73
mW
74
mW
USB_HVDD (3.3 V) 46
mW
USB_SVDD (1 V)
mW
x2, 10 Gbaud
SATA (per port)
3.0 Gbaud
XVDD (1.35 V)
6.0 Gbaud
USB1/USB2/USB3 x1 Super speed
(per PHY)
mode
USB1/USB2/USB3 x1 High speed
(per PHY)
mode
37
USB_SDVDD (1 V) 4
mW
USB_HVDD (3.3 V) 79
mW
USB_SVDD (1 V)
mW
0.31
USB_SDVDD (1 V) 4.9
mW
1, 3
1, 5
1, 5
IFC
16-bit, 100 MHz
OVDD (1.8 V)
60
mW
1
DUART
.
DVDD (3.3 V)
18
mW
1
DVDD (1.8 V)
9
mW
DVDD (3.3 V)
17
mW
DVDD (1.8 V)
9
mW
I2C
.
1
SPI
.
OVDD (1.8 V)
8
mW
1, 9
eSDHC
.
EVDD (3.3 V)
19
mW
1, 9
.
EVDD (1.8V)
21
mW
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
62
NXP Semiconductors
Electrical characteristics
Table 10. IO power supply estimated values (continued)
System control
.
OVDD (1.8 V)
16
mW
1, 9
EC1
RGMII
LVDD (2.5 V)
24
mW
1, 9
LVDD (1.8 V)
17
mW
LVDD (2.5 V)
24
mW
LVDD (1.8 V)
17
mW
EC2
RGMII
QSPI
.
OVDD (1.8V)
17
mW
1, 9
IEEE1588
.
LVDD (2.5 V)
14
mW
1, 9
LVDD (1.8 V)
10
mW
JTAG + DFT
.
OVDD (1.8V)
10
mW
1, 9
GPIO
x8
3.3 V
5
mW
1, 4, 9
2.5 V
4
mW
1.8 V
3
mW
PLL core and
system (per PLL)
.
AVDD_CGA1,
AVDD_CGA2,
AVDD_PLAT (1.8
V)
30
mW
1, 9
PLL DDR
.
AVDD_D1 (1.8 V)
30
mW
1, 9
PLL SerDes
.
AVDD_SD1_PLL1, 100
AVDD_SD1_PLL2,
AVDD_SD2_PLL1,
AVDD_SD2_PLL2
(1.35 V)
mW
1, 9
Interrupts (IRQ)
.
OVDD (1.8 V)
4
mW
1
DVDD (1.8 V)
9
mW
DVDD (3.3 V)
18
mW
LVDD (2.5 V)
2
mW
LVDD (1.8 V)
1
mW
LVDD (2.5 V)
3
mW
LVDD (1.8 V)
2
mW
TVDD (2.5 V)
3
mW
TVDD (1.8 V)
2
mW
TVDD (1.2 V)
2
mW
Ethernet
management
interface 1
.
Ethernet
management
interface 2
.
TA_PROG_SFP
.
TA_PROG_SFP
(1.8 V)
173
mW
TH_VDD
.
TH_VDD (1.8 V)
18
mW
1
1
6
1. The typical values are estimates and based on simulations at nominal recommended voltage for the I/O power supply and
assuming 105°C junction temperature.
2. Typical DDR4 power numbers are based on two Rank DIMM with 40% utilization.
3. The total power numbers of XVDD is dependent on customer application use case. This table lists all the SerDes
configurations possible for the device. To get the X1VDD power numbers, the user should add the combined lanes to match
to the total SerDes Lanes used, not simply multiply the power numbers by the number of lanes.
4. GPIOs are supported on OVDD, LVDD, DVDD, TVDD and EVDD power rails.
5. USB power supply pins are shared between three USB controllers.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
63
Electrical characteristics
Table 10. IO power supply estimated values
6. The maximum power requirement is during programming. No active power beyond leakage levels should be drawn and the
supply must be grounded when not programming.
7. Typical DDR4 power numbers are based on single Rank DIMM with 40% utilization.
9. Assuming 15 pF total capacitance load per pin.
Table 11. TA_BB_VDD power dissipation
Supply
Maximum
Unit
Notes
TA_BB_VDD (SoC off, 40°C)
40
μW
1
TA_BB_VDD (SoC off, 70°C)
55
μW
1
Note: 1. When SoC is off, TA_BB_VDD may be supplied by battery power to retain the Zeroizable Master Key and other trust
architecture state. Board should implement a PMIC, which switches TA_BB_VDD to battery when SoC is powered down. See
the Device reference manual trust architecture chapter for more information.
3.6 Power-on ramp rate
This section describes the AC electrical specifications for the power-on ramp rate
requirements. Controlling the maximum power-on ramp rate is required to avoid excess
in-rush current.
This table provides the power supply ramp rate specifications.
Table 12. Power supply ramp rate
Parameter
Min
Max
Unit
Notes
Required ramp rate for all voltage supplies (including OVDD/DVDD/G1VDD/
SVDD/XVDD/LVDD/EVDD/TVDD all core and platform VDD supplies,
TA_PROG_SFP, and all AVDD supplies.)
—
25
V/ms
1, 2
Required ramp rate for TA_PROG_SFP
---
25
V/ms
1,2
Required ramp rate for USB_HVDD
---
26.7
V/ms
1,2
Notes:
1. Ramp rate is specified as a linear ramp from 10% to 90%. If non-linear (for example, exponential), the maximum rate of
change from 200 mV to 500 mV is the most critical as this range might falsely trigger the ESD circuitry.
2. Over full recommended operating temperature range. See Table 4.
3.7 Input clocks
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
64
NXP Semiconductors
Electrical characteristics
3.7.1 System clock (SYSCLK)
This section describes the system clock DC electrical characteristics and AC timing
specifications.
3.7.1.1
SYSCLK DC electrical characteristics
This table provides the SYSCLK DC characteristics.
Table 13. SYSCLK DC electrical characteristics
Parameter
Symbol
Min
Typical
Max
Unit
Notes
Input high voltage
VIH
0.7 x OVDD
—
—
V
1
Input low voltage
VIL
—
—
0.3 x OVDD
V
1
Input capacitance
CIN
—
7
12
pF
—
Input current (VIN= 0 V or VIN =
OVDD)
IIN
—
—
± 50
µA
2
Notes:
1. The min VIL and max VIH values are based on the respective min and max OVIN values found in Table 4.
2. At recommended operating conditions with OVDD= 1.8 V. See Table 4.
3.7.1.2
SYSCLK AC timing specifications
This table provides the SYSCLK AC timing specifications.
Table 14. SYSCLK AC timing specifications1, 5
Parameter/condition
Symbol
Min
Typ
Max
Unit
Notes
SYSCLK frequency
fSYSCLK
100.0
MHz
1
SYSCLK cycle time
tSYSCLK
10.0
ns
1
SYSCLK duty cycle
tKHK/tSYSCLK
40
—
60
%
1
SYSCLK slew rate
—
1
—
4
V/ns
2
SYSCLK peak period jitter
—
—
—
± 150
ps
—
SYSCLK jitter phase noise at -56 dBc —
—
—
500
kHz
3
AC Input Swing Limits at 1.8 V OVDD ΔVAC
1.08
—
1.8
V
—
Notes:
1. Measured at the rising edge and/or the falling edge at OVDD/2.
2. Slew rate as measured from 0.35 x OVDD to 0.65 x OVDD.
3. Phase noise is calculated as FFT of TIE jitter.
4. At recommended operating conditions with OVDD = 1.8 V. See Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
65
Electrical characteristics
3.7.1.3
USB 3.0 reference clock requirements
This table summarizes the requirements of the reference clock provided to the USB 3.0
SSPHY. There are two options for the reference clock of USB PHY: SYSCLK or
DIFF_SYSCLK/DIFF_SYSCLK_B. The following table provides the additional
requirements when SYSCLK or DIFF_SYSCLK/DIFF_SYSCLK_B is used as USB
REFCLK. This table can also be used for 100 MHz reference clock requirements.
Table 15. Reference clock requirements
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Reference clock frequency offset
FREF_OFFSET
-300
—
300
ppm
—
Reference clock random jitter (RMS)
RMSJREF_CLK
—
—
3
ps
1, 2
Reference clock deterministic jitter
DJREF_CLK
—
—
150
ps
3
Duty cycle
DCREF_CLK
40
—
60
%
—
Notes:
1. 1.5 MHz to Nyquist frequency. For example, for 100 MHz reference clock, the Nyquist frequency is 50 MHz.
2. The peak-to-peak Rj specification is calculated as 14.069 times the RMS Rj for 10-12 BER.
3. DJ across all frequencies.
3.7.2 Spread-spectrum sources
Spread-spectrum clock sources are an increasingly popular way to control
electromagnetic interference emissions (EMI) by spreading the emitted noise to a wider
spectrum and reducing the peak noise magnitude in order to meet industry and
government requirements. These clock sources intentionally add long-term jitter to
diffuse the EMI spectral content.
The jitter specification given in this table considers short-term (cycle-to-cycle) jitter only.
The clock generator's cycle-to-cycle output jitter should meet the chip's input cycle-tocycle jitter requirement.
Frequency modulation and spread are separate concerns; the chip is compatible with
spread-spectrum sources if the recommendations listed in this table are observed.
Table 16. Spread-spectrum clock source recommendations1
Parameter
Min
Max
Unit
Notes
Frequency modulation
—
60
kHz
—
Frequency spread
—
1.0
%
—
Notes:
1. At recommended operating conditions with OVDD = 1.8 V. See Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
66
NXP Semiconductors
Electrical characteristics
CAUTION
The processor's minimum and maximum SYSCLK and core/
platform/DDR frequencies must not be exceeded, regardless of
the type of clock source. Therefore, systems in which the
processor is operated at its maximum rated core/platform/DDR
frequency should use only down-spreading to avoid violating
the stated limits.
3.7.3 Real-time clock timing (RTC)
The real-time clock timing (RTC) input is sampled by the platform clock. The output of
the sampling latch is then used as an input to the Watchdog, Flextimer, 1588 Timer and
snvs unit; there is no need for jitter specification. The minimum period of the RTC signal
should be greater than or equal to 16x the period of the platform clock with a 50% duty
cycle. There is no minimum RTC frequency; RTC may be pulled to ground, if not
needed.
3.7.4 Gigabit Ethernet reference clock timing
This table provides the Ethernet gigabit reference clock DC electrical characteristics with
LVDD = 2.5 V / 1.8 V.
Table 17. ECn_GTX_CLK125 DC electrical characteristics (LVDD = 2.5 V / 1.8 V)1
Parameter
Symbol
Min
Typical
Max
Unit
Notes
Input high voltage
VIH
0.7 x
LVDD
—
—
V
2
Input low voltage
VIL
—
—
0.2 x
LVDD
V
2
Input capacitance
CIN
—
—
6
pF
—
Input current (VIN = 0 V or VIN = LVDD)
IIN
—
—
± 50
µA
3
Notes:
1. For recommended operating conditions, see Table 4.
2. The min VIL and max VIH values are based on the respective min and max VIN values found in Table 4.
3. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 4.
This table provides the Ethernet gigabit reference clock AC timing specifications.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
67
Electrical characteristics
Table 18. ECn_GTX_CLK125 AC timing specifications 1
Parameter/Condition
Symbol
Min
Typical
Max
Unit
Notes
ECn_GTX_CLK125 frequency
fG125
125 - 100 ppm 125
125 + 100 ppm MHz
—
ECn_GTX_CLK125 cycle time
tG125
--
8
--
ns
—
ECn_GTX_CLK125 rise and fall time
tG125R/tG125F
—
—
ns
2
ECn_GTX_CLK125 duty cycle
tG125H/tG125
40
—
%
3
0.75
60
1000Base-T for RGMII
Notes:
1. At recommended operating conditions with LVDD = 1.8 V ± 90mV / 2.5 V ± 125 mV. See Table 4.
2. Rise times are measured from 20% of LVDD to 80% of LVDD. Fall times are measured from 80% of LVDD to 20% of LVDD.
3. ECn_GTX_CLK125 is used to generate the GTX clock for the Ethernet transmitter. See RGMII AC timing specifications for
duty cycle for the 10Base-T and 100Base-T reference clocks.
3.7.5 DDR clock (DDRCLK)
This section provides the DDRCLK DC electrical characteristics and AC timing
specifications.
3.7.5.1
DDRCLK DC electrical characteristics
This table provides the DDRCLK DC electrical characteristics.
Table 19. DDRCLK DC electrical characteristics3
Parameter
Symbol
Min
Typical
Max
Unit
Notes
Input high voltage
VIH
0.7 x OVDD
—
—
V
1
Input low voltage
VIL
—
—
0.3 x OVDD
V
1
Input capacitance
CIN
—
7
12
pF
—
Input current (VIN= 0V or VIN = OVDD)
IIN
—
—
± 50
μA
2
Notes:
1. The min VIL and max VIH values are based on the respective min and max OVIN values found in Table 4.
2. The symbol OVIN, in this case, represents the OVIN symbol referenced in Table 4.
3. At recommended operating conditions with OVDD = 1.8 V. See Table 4.
3.7.5.2
DDRCLK AC timing specifications
This table provides the DDRCLK AC timing specifications.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
68
NXP Semiconductors
Electrical characteristics
Table 20. DDRCLK AC timing specifications5
Parameter/Condition
Symbol
Min
Typ
Max
Unit
Notes
DDRCLK frequency
fDDRCLK
100.0
MHz
1, 2
DDRCLK cycle time
tDDRCLK
10.0
ns
1, 2
DDRCLK duty cycle
tKHK/tDDRCLK
40
—
60
%
2
DDRCLK slew rate
—
1
—
4
V/ns
3
DDRCLK peak period jitter
—
—
—
± 150
ps
—
DDRCLK jitter phase noise at -56 dBc —
—
—
500
kHz
4
AC Input Swing Limits at 1.8 V OVDD ΔVAC
1.08
—
1.8
V
—
Notes:
1. Caution: The relevant clock ratio settings must be chosen such that the resulting DDRCLK frequencies do not exceed
their respective maximum or minimum operating frequencies.
2. Measured at the rising edge and/or the falling edge at OVDD/2.
3. Slew rate as measured from 0.35 x OVDD to 0.65 x OVDD.
4. Phase noise is calculated as FFT of TIE jitter.
5. At recommended operating conditions with OVDD = 1.8V. See Table 4.
3.7.6 Differential system clock (DIFF_SYSCLK/DIFF_SYSCLK_B)
timing specifications
Single Source clocking mode requires single onboard oscillator to provide reference
clock input to Differential System clock pair (DIFF_SYSCLK/DIFF_SYSCLK_B).
This Differential clock pair input provides clock to Core, Platform, DDR and USB PLL's
This figure shows a receiver reference diagram of the Differential System clock.
DIFF_SYSCLK
100 Ohm
LVDS
RX
DIFF_SYSCLK_B
Figure 10. LVDS receiver
This section provides the differential system clock DC and AC timing specifications.
3.7.6.1
Differential system clock DC electrical characteristics
The differential system clock receiver voltage requirements are as specified in the
Recommended operating conditions table.
The differential system clock can also be single-ended. For this, DIFF_SYSCLK_B
should be connected to OVDD/2.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
69
Electrical characteristics
This table provides the differential system clock (DIFF_SYSCLK/DIFF_SYSCLK_B)
DC specifications.
Table 21. Differential system clock DC electrical characteristics1
Parameter
Symbol
Min
Typical
Max
Unit
Notes
Input differential voltage swing
Vid
100
-
600
mV
2
Input common mode voltage
Vicm
50
-
1570
mV
-
Power supply current
Icc
-
-
5
mA
-
Input capacitance
Cin
1.45
1.5
1.55
pF
-
Note:
1. At recommended operating conditions with OVDD = 1.8 V, see Table 4 for details.
2. Input differential voltage swing (Vid) specified is equal to |VDIFF_SYSCLK_P - VDIFF_SYSCLK_N|
This figure shows the differential system clock (DIFF_SYSCLK) input DC
specifications.
100 mV < Input amplitude or differential peak < 600 mV
(Vid)
VDIFF_SYSCLK_P
Vmax < 1870 mV
50 mV < Vcm < 1570 mV
Vmin > -250 mV
VDIFF_SYSCLK_N
Figure 11. DIFF_SYSCLK input DC requirements (external DC-coupled)
3.7.6.2
Differential system clock AC timing specifications
Spread spectrum clocking is not supported on differential system clock pair input.
This table provides the differential system clock (DIFF_SYSCLK/DIFF_SYSCLK_B)
AC specifications.
Table 22. Differential system clock AC electrical characteristics1
Parameter
Symbol
Min
Typical
Max
Unit
Notes
DIFF_SYSCLK/DIFF_SYSCLK_B
frequency range
tDIFF_SYSCLK
-
100
-
MHz
-
DIFF_SYSCLK/DIFF_SYSCLK_B
frequency tolerance
tDIFF_TOL
-300
-
+300
ppm
-
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
70
NXP Semiconductors
Electrical characteristics
Table 22. Differential system clock AC electrical characteristics1 (continued)
Parameter
Symbol
Duty cycle
tDIFF_DUTY
Min
Typical
40
Max
50
Unit
60
%
Notes
-
Note:
1. This is evaluated with supply noise profile at +/- 5% sine wave
2. At recommended operating conditions with OVDD = 1.8 V, see Table 4
3.7.7 Other input clocks
A description of the overall clocking of this device is available in the chip reference
manual in the form of a clock subsystem block diagram. For information about the input
clock requirements of functional sourced external of the chip, such as SerDes, Ethernet
management, eSDHC, and IFC, see the specific interface section.
3.8 RESET initialization
This table provides the AC timing specifications for the RESET initialization timing.
Table 23. RESET Initialization timing specifications
Parameter/Condition
Min
Max
Unit
Notes
Required assertion time of PORESET_B after all power rails are stable 1
—
ms
1
Required input assertion time of HRESET_B
32
—
SYSCLKs
2, 3
Maximum rise/fall time of HRESET_B
—
10
SYSCLK
4, 6
Maximum rise/fall time of PORESET_B
—
1
SYSCLK
4, 7
Input setup time for POR configs (other than cfg_eng_use0) with
respect to negation of PORESET_B
4
—
SYSCLKs
2, 5
Input hold time for all POR configs with respect to negation of
PORESET_B
2
—
SYSCLKs
2
Maximum valid-to-high impedance time for actively driven POR
configs with respect to negation of PORESET_B
—
5
SYSCLKs
2
Notes:
1. PORESET_B must be driven asserted before the core and platform power supplies are powered up.
2. SYSCLK is the primary clock input for the chip.
3. The device asserts HRESET_B as an output when PORESET_B is asserted to initiate the power-on reset process. The
device releases HRESET_B sometime after PORESET_B is deasserted. The exact sequencing of HRESET_B deassertion is
documented in the reference manual's "Power-on Reset Sequence" section.
4. The system/board must be designed to ensure the input requirement to the device is achieved. Proper device operation is
guaranteed for inputs meeting this requirement by design, simulation, characterization, or functional testing.
5. For proper clock selection, terminate cfg_eng_use0 with a pull up or pull down of 4.7 kΩ to ensure that the signal will have
a valid state as soon as the IO voltage reach its operating condition.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
71
Electrical characteristics
Table 23. RESET Initialization timing specifications
Parameter/Condition
Min
Max
Unit
Notes
6. For HRESET_B the rise/fall time should not exceed 10 SYSCLKs. Rise time refers to signal transitions from 20% to 70% of
O1VDD. Fall time refers to transitions from 70% to 20% of O1VDD.
7. For PORESET_B the rise/fall time should not exceed 1 SYSCLK. Rise time refers to signal transitions from 20% to 70% of
OVDD. Fall time refers to transitions from 70% to 20% of OVDD.
3.9 DDR4 SDRAM controller
This section describes the DC and AC electrical specifications for the DDR4 SDRAM
controller interface. Note that the required G1VDD(typ) voltage is 1.2 V when interfacing
to DDR4 SDRAM.
3.9.1 DDR4 SDRAM interface DC electrical characteristics
This table provides the recommended operating conditions for the DDR SDRAM
controller when interfacing to DDR4 SDRAM.
Table 24. DDR4 SDRAM interface DC electrical characteristics (G1VDD = 1.2 V)1
Parameter
Symbol
Min
Max
Unit
Notes
Input low
VIL
—
0.7 x G1VDD - 0.175 V
3
Input high
VIH
0.7 x G1VDD +
0.175
—
V
3
I/O leakage current
IOZ
-200
200
μA
Notes:
1. G1VDD is expected to be within 60 mV of the DRAM's voltage supply at all times. The DRAM's and memory controller's
voltage supply may or may not be from the same source.
2. VTT and VREFCA are applied directly to the DRAM device. Both VTT and VREFCA voltages must track G1VDD/2.
3. Input capacitance load for DQ, DQS, and DQS_B are available in the IBIS models.
4. See the IBIS model for the complete output IV curve characteristics.
5. Output leakage is measured with all outputs disabled, 0V ≤ VOUT ≤ G1VDD
6. For recommended operating conditions, see Table 4.
3.9.2 DDR4 SDRAM interface AC timing specifications
This section provides the AC timing specifications for the DDR SDRAM controller
interface. The DDR controller supports DDR4 memories. Note that the required
GVDD(typ) voltage is 1.2 V when interfacing to DDR4 SDRAM.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
72
NXP Semiconductors
Electrical characteristics
3.9.2.1
DDR4 SDRAM interface input AC timing specifications
This table provides the input AC timing specifications for the DDR controller when
interfacing to DDR4 SDRAM.
Table 25. DDR4 SDRAM interface input AC timing specifications 1
Parameter
Symbol
AC input low voltage
Min
Max
Unit
Notes
VILAC
—
0.7 x G1VDD - 0.175 V
—
VIHAC
0.7 x G1VDD +
0.175
—
—
≤ 2100 MT/s data rate
AC input high voltage
≤ 2100 MT/s data rate
V
Note:
1. For recommended operating conditions, see Table 4.
This table provides the input AC timing specifications for the DDR controller when
interfacing to DDR4 SDRAM.
Table 26. DDR4 SDRAM interface input AC timing specifications 3
Parameter
Symbol
Controller skew for MDQS-MDQ/MECC
Max
—
—
2100 MT/s data rate
-80
80
1800 MT/s data rate
-93
93
1600 MT/s data rate
-112
112
1300 MT/s data rate
-125
125
—
—
2100 MT/s data rate
-154
154
1800 MT/s data rate
-175
175
1600 MT/s data rate
-200
200
1300 MT/s data rate
-250
250
Tolerated Skew for MDQS-MDQ/MECC
tCISKEW
Min
tDISKEW
Unit
Notes
ps
1
ps
2
Notes:
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that
is captured with MDQS[n]. This must be subtracted from the total timing budget.
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW. This can be
determined by the following equation: tDISKEW = ±(T ÷ 4 - abs (tCISKEW)) where T is the clock period and abs(tCISKEW) is the
absolute value of tCISKEW.
3. For recommended operating conditions, see Table 4.
This figure shows the DDR4 SDRAM interface input timing diagram.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
73
Electrical characteristics
MCK[n]_B
MCK[n]
tMCK
MDQS[n]
tDISKEW
D0
MDQ[x]
D1
tDISKEW
tDISKEW
Figure 12. DDR4 SDRAM interface input timing diagram
3.9.2.2
DDR4 SDRAM interface output AC timing specifications
This table contains the output AC timing targets for the DDR4 SDRAM interface.
Table 27. DDR4 SDRAM interface output AC timing specifications (G1VDD = 1.2 V)7
Symbol1
Parameter
Min
Max
Unit
Notes
MCK[n] cycle time
tMCK
952
1538
ps
2
ADDR/CMD/CNTL output setup with respect
to MCK
tDDKHAS
—
—
ps
3
2100 MT/s data rate
350
—
1800 MT/s data rate
410
—
1600 MT/s data rate
495
—
1300 MT/s data rate
606
—
ADDR/CMD/CNTL output hold with respect to tDDKHAX
MCK
—
—
ps
3
2100 MT/s data rate
350
—
1800 MT/s data rate
390
—
1600 MT/s data rate
495
—
1300 MT/s data rate
606
—
MCK to MDQS Skew
tDDKHMH
-150
150
ps
4,7
MDQ/MECC/MDM output data eye
tDDKXDEYE
—
—
ps
5
2100 MT/s data rate
320
—
1800 MT/s data rate
350
—
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
74
NXP Semiconductors
Electrical characteristics
Table 27. DDR4 SDRAM interface output AC timing specifications (G1VDD = 1.2 V)7
(continued)
Parameter
Symbol1
Min
Max
1600 MT/s data rate
400
—
1300 MT/s data rate
500
—
Unit
Notes
MDQS preamble
tDDKHMP
0.9 x tMCK
—
ps
—
MDQS postamble
tDDKHME
0.4 x tMCK
0.6 x tMCK
ps
—
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD)
from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, tDDKHAS
symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs (A) are
setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes
low (L) until data outputs (D) are invalid (X) or data output hold time.
2. All MCK/MCK_B and MDQS/MDQS_B referenced measurements are made from the crossing of the two signals.
3. ADDR/CMD/CNTL includes all DDR SDRAM output signals except MCK/MCK_B, MCS_B, and MDQ/MECC/MDM/MDQS.
4. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing
(DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through
control of the MDQS override bits (called WR_DATA_DELAY) in the TIMING_CFG_2 register. This is typically set to the
same delay as in DDR_SDRAM_CLK_CNTL[CLK_ADJUST]. The timing parameters listed in the table assume that these two
parameters have been set to the same adjustment value. See the chip reference manual for a description and explanation of
the timing modifications enabled by the use of these bits.
5. Available eye for data (MDQ), ECC (MECC), and data mask (MDM) outputs at the pin of the processor. Memory controller
will center the strobe (MDQS) in the available data eye at the DRAM (end point) during the initialization.
6. Note that this is required to program the start value of the DQS adjust for write leveling.
7. For recommended operating conditions, see Table 4.
NOTE
For the ADDR/CMD/CNTL setup and hold specifications in
Table 27, it is assumed that the clock control register is set to
adjust the memory clocks by ½ applied cycle.
This figure shows the DDR4 SDRAM interface output timing for the MCK to MDQS
skew measurement (tDDKHMH).
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
75
Electrical characteristics
MCK_B[n]
MCK[n]
tMCK
tDDKHMH(max)
MDQS
tDDKHMH(min)
MDQS
Figure 13. tDDKHMH timing diagram
This figure shows the DDR4 SDRAM output timing diagram.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
76
NXP Semiconductors
Electrical characteristics
MCK_B
MCK
tMCK
tDDKHAS
tDDKHAX
ADDR/CMD
Write A0
NOOP
tDDKHMP
tDDKHMH
MDQS[n]
tDDKHME
D0
MDQ[x]
tDDKXDEYE
D1
tDDKXDEYE
Figure 14. DDR4 output timing diagram
3.10 Ethernet interface, Ethernet management interface, IEEE
Std 1588™
This section describes the DC and AC electrical characteristics for the Ethernet
controller, Ethernet management, and IEEE Std 1588 interfaces.
3.10.1 SGMII interface
Each SGMII port features a 4-wire AC-coupled serial link from the SerDes interface of
the chip, as shown in Figure 15, where CTX is the external (on board) AC-coupled
capacitor. Each SerDes transmitter differential pair features 100-Ω output impedance.
Each input of the SerDes receiver differential pair features 50-Ω on-die termination to
GNDn. The reference circuit of the SerDes transmitter and receiver is shown in Figure
85.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
77
Electrical characteristics
3.10.1.1
SGMII clocking requirements for SDn_REF_CLK1_P and
SDn_REF_CLK1_N
When operating in SGMII mode, the ECn_GTX_CLK125 clock is not required for this
port. Instead, a SerDes reference clock is required on SDn_REF_CLK[1:2]_P and
SDn_REF_CLK[1:2]_N pins. SerDes lanes may be used for SerDes SGMII
configurations based on the RCW Configuration field SRDS_PRTCL.
For more information on these specifications, see SerDes reference clocks.
3.10.1.2
SGMII DC electrical characteristics
This section describes the electrical characteristics for the SGMII interface.
3.10.1.2.1
SGMII and SGMII 2.5G transmit DC specifications
This table describes the SGMII SerDes transmitter AC-coupled DC electrical
characteristics. Transmitter DC characteristics are measured at the transmitter outputs
(SDn_TXn_P and SDn_TXn_N) as shown in Figure 16.
Table 28. SGMII DC transmitter electrical characteristics (XnVDD = 1.35 V)4
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Output high voltage
VOH
-
-
1.5 x │VOD│-max
mV
1
Output low voltage
VOL
│VOD│-min/2
-
-
mV
1
│VOD│
320
500.0
725.0
mV
TECR0[AMP_RED]=0b00
0000
293.8
459.0
665.6
TECR0[AMP_RED]=0b00
0001
266.9
417.0
604.7
TECR0[AMP_RED]=0b00
0011
240.6
376.0
545.2
TECR0[AMP_RED]=0b00
0010
213.1
333.0
482.9
TECR0[AMP_RED]=0b00
0110
186.9
292.0
423.4
TECR0[AMP_RED]=0b00
0111
160.0
250.0
362.5
TECR0[AMP_RED]=0b01
0000
80
100
120
Output differential
voltage2, 3,
5
(XVDD-Typ at 1.35 V)
Output impedance
(differential)
RO
Ω
-
Notes:
1. This does not align to DC-coupled SGMII.
2. │VOD│ = │VSD_TXn_P - VSD_TXn_N│. │VOD│ is also referred to as output differential peak voltage. VTX-DIFFp-p = 2 x │VOD│.
3. The │VOD│ value shown in the Typ column is based on the condition of XVDD_SRDSn-Typ = 1.35 V, no common mode
offset variation. SerDes transmitter is terminated with 100-Ω differential load between SDn _TXn_P and SDn_TXn_N.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
78
NXP Semiconductors
Electrical characteristics
Table 28. SGMII DC transmitter electrical characteristics (XnVDD = 1.35 V)4
Parameter
Symbol
Min
Typ
Max
Unit
Notes
4. For recommended operating conditions, see Table 4.
5. Example amplitude reduction setting for SGMII on SerDes1 lane A: LNATECR0[AMP_RED] = 0b000001 for an output
differential voltage of 459 mV typical.
This figure shows an example of a 4-wire AC-coupled SGMII serial link connection.
SDn_TXn_P
SDn_RXn_P
CTX
50 Ω
Transmitter
Receiver
100 Ω
SDn_TXn_N
CTX
SDn_RXn_N
50 Ω
SGMII
SerDes Interface
SDn_RXn_P
CTX
SDn_TXn_P
50 Ω
Receiver
100 Ω
50 Ω
SDn_RXn_N
CTX
Transmitter
SDn_TXn_N
Figure 15. 4-wire AC-coupled SGMII serial link connection example
This figure shows the SGMII transmitter DC measurement circuit.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
79
Electrical characteristics
SGMII
SerDes Interface
SDn_TXn_P
50 Ω
Transmitter
VOD
100 Ω
50 Ω
SDn_TXn_N
Figure 16. SGMII transmitter DC measurement circuit
This table defines the SGMII 2.5G transmitter DC electrical characteristics for 3.125
GBaud.
Table 29. SGMII 2.5G transmitter DC electrical characteristics (XnVDD = 1.35 V)1
Parameter
Symbol
Min
Typical
Max
Unit
Output differential voltage
│VOD│
400
-
600
mV
Output impedance (differential)
RO
80
100
120
Ω
Notes
-
Notes:
1. For recommended operating conditions, see Table 4.
3.10.1.2.2
SGMII and SGMII 2.5G DC receiver electrical characteristics
This table lists the SGMII DC receiver electrical characteristics. Source synchronous
clocking is not supported. Clock is recovered from the data.
Table 30. SGMII DC receiver electrical characteristics 4
Parameter
Symbol
DC input voltage range
Input differential voltage
REIDL_TH = 001
REIDL_TH = 001
REIDL_TH = 100
Typ
-
N/A
VRX_DIFFp-p
100
-
175
-
30
65
REIDL_TH = 100
Loss of signal threshold
Min
VLOS
Max
Unit
Notes
-
1
1200
mV
2, 5
-
100
mV
3, 5
-
175
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
80
NXP Semiconductors
Electrical characteristics
Table 30. SGMII DC receiver electrical characteristics 4 (continued)
Parameter
Symbol
Receiver differential input impedance
Min
ZRX_DIFF
80
Typ
-
Max
120
Unit
Ω
Notes
-
Notes:
1. Input must be externally AC coupled.
2. VRX_DIFFp-p is also referred to as peak-to-peak input differential voltage.
3. The concept of this parameter is equivalent to the electrical idle detect threshold parameter in PCI Express. See PCI
Express DC physical layer receiver specifications, and PCI Express AC physical layer receiver specifications, for further
explanation.
4. For recommended operating conditions, see Table 4.
5. The REIDL_TH shown in the table refers to the chip's SRDSxLNmGCR1[REIDL_TH] bit field.
This table defines the SGMII 2.5G receiver DC electrical characteristics for 3.125
GBaud.
Table 31. SGMII 2.5G receiver DC timing specifications 1
Parameter
Symbol
Min
Typical
Max
Unit
Notes
Input differential voltage
VRX_DIFFp-p
200
-
1200
mV
-
Loss of signal threshold
VLOS
75
-
200
mV
-
Receiver differential input impedance
ZRX_DIFF
80
-
120
Ω
-
Notes:
1. For recommended operating conditions, see Table 4.
3.10.1.3
SGMII AC timing specifications
This section describes the AC timing specifications for the SGMII interface.
3.10.1.3.1
SGMII and SGMII 2.5G transmit AC timing specifications
This table provides the SGMII and SGMII 2.5G transmit AC timing specifications. A
source synchronous clock is not supported. The AC timing specifications do not include
RefClk jitter.
Table 32. SGMII transmit AC timing specifications4
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Deterministic jitter
JD
-
-
0.17
UI p-p
-
Total jitter
JT
-
-
0.35
UI p-p
2
Unit Interval: 1.25 GBaud (SGMII)
UI
800 - 100 ppm 800
800 + 100 ppm ps
1
Unit Interval: 3.125 GBaud (2.5G SGMII]) UI
320 - 100 ppm 320
320 + 100 ppm ps
1
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
81
Electrical characteristics
Table 32. SGMII transmit AC timing specifications4 (continued)
Parameter
Symbol
AC coupling capacitor
Min
CTX
10
Typ
Max
-
Unit
200
nF
Notes
3
Notes:
1. Each UI is 800 ps ± 100 ppm or 320 ps ± 100 ppm.
2. See Figure 18 for single frequency sinusoidal jitter measurements.
3. The external AC coupling capacitor is required. It is recommended that it be placed near the device transmitter output.
4. For recommended operating conditions, see Table 4.
3.10.1.3.2
SGMII AC measurement details
Transmitter and receiver AC characteristics are measured at the transmitter outputs
(SDn_TXn_P and SDn_TXn_N) or at the receiver inputs (SDn_RXn_P and
SDn_RXn_N) respectively, as shown in this figure.
D + package pin
C = CTX
Transmitter
silicon
+ package
C = CTX
D - package pin
R = 50 Ω
R = 50 Ω
Figure 17. SGMII AC test/measurement load
3.10.1.3.3
SGMII and SGMII 2.5G receiver AC timing specifications
This table provides the SGMII and SGMII 2.5G receiver AC timing specifications. The
AC timing specifications do not include RefClk jitter. Source synchronous clocking is not
supported. Clock is recovered from the data.
Table 33. SGMII receiver AC timing specifications3
Parameter
Deterministic jitter tolerance
Symbol
JD
Combined deterministic and random jitter tolerance JDR
Min
Typ
Max
Unit
Notes
-
-
0.37
UI p-p
1
-
-
0.55
UI p-p
1
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
82
NXP Semiconductors
Electrical characteristics
Table 33. SGMII receiver AC timing specifications3 (continued)
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Total jitter tolerance
JT
-
-
0.65
UI p-p
1, 2
Bit error ratio
BER
-
-
10-12
-
-
Unit Interval: 1.25 GBaud (SGMII)
UI
800 - 100 ppm 800
800 + 100 ppm ps
1
Unit Interval: 3.125 GBaud (2.5G SGMII])
UI
320 - 100 ppm 320
320 + 100 ppm ps
1
Notes:
1. Measured at receiver
2.Total jitter is composed of three components: deterministic jitter, random jitter, and single frequency sinusoidal jitter. The
sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 18. The sinusoidal jitter component
is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
3. For recommended operating conditions, see Table 4.
The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in
the unshaded region of this figure.
8.5 UI p-p
Sinuosidal
Jitter
Amplitude
20 dB/dec
0.10 UI p-p
baud/142000
Frequency
baud/1667
20 MHz
Figure 18. Single-frequency sinusoidal jitter limits
3.10.2 QSGMII interface
This section describes the QSGMII clocking and its DC and AC electrical characteristics.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
83
Electrical characteristics
3.10.2.1
QSGMII clocking requirements for SDn_REF_CLKn and
SDn_REF_CLKn_B
For more information on these specifications, see SerDes reference clocks.
3.10.2.2
QSGMII DC electrical characteristics
This section discusses the electrical characteristics for the QSGMII interface.
3.10.2.2.1
QSGMII transmitter DC specifications
This table describes the QSGMII SerDes transmitter AC-coupled DC electrical
characteristics. Transmitter DC characteristics are measured at the transmitter outputs
(SDn_TXn and SDn_TXn_B).
Table 34. QSGMII DC transmitter electrical characteristics (XnVDD = 1.35V)1
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Output differential voltage
VDIFF
400
-
900
mV
-
Differential resistance
TRD
80
100
120
Ω
-
Notes:
1. For recommended operating conditions, see Table 4.
3.10.2.2.2
QSGMII DC receiver electrical characteristics
This table defines the QSGMII receiver DC electrical characteristics.
Table 35. QSGMII receiver DC timing specifications 1
Parameter
Symbol
Min
Typical
Max
Unit
Notes
Input differential voltage
VDIFF
100
-
900
mV
-
Differential resistance
RRDIN
80
100
120
Ω
-
Notes:
1. For recommended operating conditions, see Table 4.
3.10.2.3
QSGMII AC timing specifications
This section discusses the AC timing specifications for the QSGMII interface.
3.10.2.3.1
QSGMII transmit AC timing specifications
This table provides the QSGMII transmitter AC timing specifications.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
84
NXP Semiconductors
Electrical characteristics
Table 36. QSGMII transmit AC timing specifications1
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Transmitter baud rate
TBAUD
5.000 - 100 ppm 5.000
5.000 + 100 ppm
Gb/s
-
Uncorrelated high probability jitter
TUHPJ
-
-
0.15
UI p-p
-
Total jitter tolerance
JT
-
-
0.30
UI p-p
-
Notes:
1. For recommended operating conditions, see Table 4.
3.10.2.3.2
QSGMII receiver AC timing Specification
This table provides the QSGMII receiver AC timing specifications.
Table 37. QSGMII receive AC timing specifications2
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Receiver baud rate
RBAUD
5.000 - 100 ppm 5.000
5.000 + 100 ppm Gb/s
-
Uncorrelated bounded high probability jitter
RDJ
-
-
0.15
UI p-p
-
Correlated bounded high probability jitter
RCBHPJ
-
-
0.30
UI p-p
1
Bounded high probability jitter
RBHPJ
-
-
0.45
UI p-p
-
Sinusoidal jitter, maximum
RSJ-max
-
-
5.00
UI p-p
-
Sinusoidal jitter, high frequency
RSJ-hf
-
-
0.05
UI p-p
-
Total jitter (does not include sinusoidal jitter)
RTj
-
-
0.60
UI p-p
-
Notes:
1. The jitter (RCBHPJ) and amplitude have to be correlated, for example, by a PCB trace.
2. For recommended operating conditions, see Table 4.
The sinusoidal jitter may have any amplitude and frequency in the unshaded region of
this figure.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
85
Electrical characteristics
5 UI p-p
Sinuosidal
Jitter
Amplitude
0.05 UI p-p
35.2 kHz
Frequency
3 MHz
20 MHz
Figure 19. QSGMII single-frequency sinusoidal jitter limits
3.10.3 XFI interface
This section describes the XFI clocking requirements and its DC and AC electrical
characteristics.
3.10.3.1
XFI clocking requirements for SDn_REF_CLKn_P and
SDn_REF_CLKn_N
Only SerDes 1 (SD1_REF_CLK[1:2]_P and SD1_REF_CLK[1:2]_N) may be used for
SerDes XFI configurations based on the RCW configuration field SRDS_PRTCL.
For more information on these specifications, see SerDes reference clocks.
3.10.3.2
XFI DC electrical characteristics
This section describes the DC electrical characteristics for XFI.
3.10.3.2.1
XFI transmitter DC electrical characteristics
This table defines the XFI transmitter DC electrical characteristics.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
86
NXP Semiconductors
Electrical characteristics
Table 38. XFI transmitter DC electrical characteristics (XVDD = 1.35 V)1
Parameter
Symbol
Output differential voltage
Min
VTX-DIFF
360
Typical
-
Max
770
Unit
mV
Notes
LNmTECR
0[AMP_RE
D]=
0b000111
De-emphasized differential output
VTX-DE-
voltage (ratio)
RATIO-1.14dB
De-emphasized differential output
VTX-DE-
voltage (ratio)
RATIO-3.5dB
De-emphasized differential output
VTX-DE-
voltage (ratio)
RATIO-4.66dB
De-emphasized differential output
VTX-DE-
voltage (ratio)
RATIO-6.0dB
De-emphasized differential output
VTX-DE-
voltage (ratio)
RATIO-9.5dB
Differential resistance
TRD
0.6
1.1
1.6
dB
LNmTECR
0[RATIO_P
ST1Q]=0b0
0011
3
3.5
4
dB
LNmTECR
0[RATIO_P
ST1Q]=0b0
1000
4.1
4.6
5.1
dB
LNmTECR
0[RATIO_P
ST1Q]=0b0
1010
5.5
6.0
6.5
dB
LNmTECR
0[RATIO_P
ST1Q]=0b0
1100
9
9.5
10
dB
LNmTECR
0[RATIO_P
ST1Q]=0b1
0000
80
100
120
Ω
-
Notes:
1. For recommended operating conditions, see Table 4.
3.10.3.2.2
XFI receiver DC electrical characteristics
This table defines the XFI receiver DC electrical characteristics.
Table 39. XFI receiver DC electrical characteristics 2
Parameter
Symbol
Min
Typical
Max
Unit
Notes
Input differential voltage
VRX-DIFF
110
-
1050
mV
1
Differential resistance
RRD
80
100
120
Ω
-
1. Measured at receiver
2. For recommended operating conditions, see Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
87
Electrical characteristics
3.10.3.3
XFI AC timing specifications
This section describes the AC timing specifications for XFI.
3.10.3.3.1
XFI transmitter AC timing specifications
This table defines the XFI transmitter AC timing specifications. RefClk jitter is not
included.
Table 40. XFI transmitter AC timing specifications1
Parameter
Symbol
Min
Typical
Max
Unit
Transmitter baud rate
TBAUD
10.3125 - 100ppm 10.3125
10.3125 +
100ppm
Gb/s
Unit Interval
UI
-
96.96
-
ps
Deterministic jitter
DJ
-
-
0.15
UI p-p
Total jitter
TJ
-
-
0.30
UI p-p
Notes:
1. For recommended operating conditions, see Table 4.
3.10.3.3.2
XFI receiver AC timing specifications
This table defines the XFI receiver AC timing specifications. RefClk jitter is not
included.
Table 41. XFI receiver AC timing specifications3
Parameter
Symbol
Min
Typical
Max
Unit
Notes
Receiver baud rate
RBAUD
10.3125 100ppm
10.3125
10.3125 +
100ppm
Gb/s
-
Unit Interval
UI
-
96.96
-
ps
-
Total non-EQJ jitter
TNON-EQJ
-
-
0.45
UI p-p
1
Total jitter tolerance
TJ
-
-
0.65
UI p-p
1, 2
1. The total jitter (TJ) consists of Random Jitter (RJ), Duty Cycle Distortion (DCD), Periodic Jitter (PJ), and Inter symbol
Interference (ISI). Non-EQJ jitter can include duty cycle distortion (DCD), random jitter (RJ), and periodic jitter (PJ). Non-EQJ
jitter is uncorrelated to the primary data stream with exception of the DCD and so cannot be equalized by the receiver under
test. It can exhibit a wide spectrum. Non - EQJ = TJ - ISI = RJ + DCD + PJ
2. The XFI channel has a loss budget of 9.6 dB @5.5GHz. The channel loss including connector @ 5.5GHz is 6dB. The
channel crosstalk and reflection margin is 3.6dB. Manual tuning of TX Equalization and amplitude will be required for
performance optimization.
3. For recommended operating conditions, see Table 4.
This figure shows the sinusoidal jitter tolerance of XFI receiver.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
88
NXP Semiconductors
Electrical characteristics
Sinuosidal Jitter Tolerance (UIp-p)
1.13x 0.2 + 0.1 , f in MHz
f
-20 dB/Dec
0.17
0.05
0.04
4
8
27.2
80
Frequency (MHz)
Figure 20. XFI host receiver input sinusoidal jitter tolerance
3.10.4 10GBase-KR interface
This section describes the 10GBase-KR clocking requirements and its DC and AC
electrical characteristics.
3.10.4.1
10GBase-KR clocking requirements for SDn_REF_CLKn_P and
SDn_REF_CLKn_N
Only SerDes 1 (SD1_REF_CLK1_P and SD1_REF_CLK1_N) may be used for SerDes
10GBase-KR configurations based on the RCW Configuration field SRDS_PRTCL.
For more information on these specifications, see SerDes reference clocks.
3.10.4.2
10GBase-KR DC electrical characteristics
This section describes the DC electrical characteristics for 10GBase-KR.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
89
Electrical characteristics
3.10.4.2.1
10GBase-KR transmitter DC electrical characteristics
This table defines the 10GBase-KR transmitter DC electrical characteristics.
Table 42. 10GBaseKR transmitter DC electrical characteristics (XVDD = 1.35 V)1
Parameter
Symbol
Min
Typical
Max
Unit
Notes
Output differential voltage
VTX-DIFF
800
-
1200
mV
LNmTECR
0[AMP_RE
D]=
0b000000
De-emphasized differential output
VTX-DE-
0.6
1.1
1.6
dB
-
voltage (ratio)
RATIO-1.14dB
De-emphasized differential output
VTX-DE-
voltage (ratio)
RATIO-3.5dB
De-emphasized differential output
VTX-DE-
voltage (ratio)
RATIO-4.66dB
De-emphasized differential output
VTX-DE-
voltage (ratio)
RATIO-6.0dB
De-emphasized differential output
VTX-DE-
voltage (ratio)
RATIO-9.5dB
Differential resistance
TRD
LNmTECR
0[RATIO_P
ST1Q]=0b0
0011
3
3.5
4
dB
LNmTECR
0[RATIO_P
ST1Q]=0b0
1000
4.1
4.6
5.1
dB
LNmTECR
0[RATIO_P
ST1Q]=0b0
1010
5.5
6.0
6.5
dB
LNmTECR
0[RATIO_P
ST1Q]=0b0
1100
9
9.5
10
dB
LNmTECR
0[RATIO_P
ST1Q]=0b1
0000
80
100
120
Ω
-
1. For recommended operating conditions, see Table 4.
3.10.4.2.2
10GBase-KR receiver DC electrical characteristics
This table defines the 10GBase-KR receiver DC electrical characteristics.
Table 43. 10GBase-KR receiver DC electrical characteristics1
Parameter
Input differential voltage
Symbol
VRX-DIFF
Min
-
Typical
-
Max
1200
Unit
mV
Notes
-
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
90
NXP Semiconductors
Electrical characteristics
Table 43. 10GBase-KR receiver DC electrical characteristics1 (continued)
Parameter
Differential resistance
Symbol
RRD
Min
Typical
80
-
Max
120
Unit
Ω
Notes
-
1. For recommended operating conditions, see Table 4.
3.10.4.3
10GBase-KR AC timing specifications
This section describes the AC timing specifications for 10GBase-KR.
3.10.4.3.1
10GBase-KR transmitter AC timing specifications
This table defines the 10GBase-KR transmitter AC timing specifications. RefClk jitter is
not included.
Table 44. 10GBase-KR transmitter AC timing specifications1
Parameter
Symbol
Transmitter baud rate
TBAUD
Min
Typical
Max
Unit
10.3125 - 100
ppm
10.3125
10.3125 + 100
ppm
Gb/s
Uncorrelated high probability jitter/Random UHPJ/RJ
jitter
-
-
0.15
UI p-p
Deterministic jitter
DJ
-
-
0.15
UI p-p
Total jitter
TJ
-
-
0.30
UI p-p
1. For recommended operating conditions, see Table 4.
3.10.4.3.2
10GBase-KR receiver AC timing specifications
This table defines the 10GBase-KR receiver AC timing specifications. RefClk jitter is not
included.
Table 45. 10GBase-KR receiver AC timing specifications2
Parameter
Symbol
Min
Typical
Max
Unit
Notes
Receiver baud rate
RBAUD
10.3125 - 100
ppm
10.3125
10.3125 + 100 Gb/s
ppm
-
Random jitter
RJ
-
-
0.130
UI p-p
-
Sinusodial jitter, maximum
SJ-max
-
-
0.115
UI p-p
-
Duty cycle distortion
DCD
-
-
0.035
UI p-p
-
Total jitter
TJ
-
-
See Note 1
UI p-p
1
1. The total jitter (TJ) is per Interference tolerance test IEEE Standard 802.3ap-2007 specified in Annex 69A.
2. For recommended operating conditions, see Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
91
Electrical characteristics
3.10.5 1000Base-KX interface
This section discusses the electrical characteristics for the 1000Base-KX. Only ACcoupled operation is supported.
3.10.5.1
1000Base-KX DC electrical characteristics
3.10.5.1.1
1000Base-KX Transmitter DC Specifications
This table describes the 1000Base-KX SerDes transmitter DC specification at TP1 per
IEEE Std 802.3ap-2007. Transmitter DC characteristics are measured at the transmitter
outputs (SDn_TXn_P and SDn_TXn_N).
Table 46. 1000Base-KX Transmitter DC Specifications
Parameter
Symbols
Min
Typ
Max
Units
Notes
Output differential
voltage
VTX-DIFFp-p
800
-
1600
mV
1
Differential
resistance
TRD
80
100
120
ohm
-
Notes:
1. SRDSxLNmTECR0[AMP_RED]=00_0000.
2. For recommended operating conditions, see Table 4.
3.10.5.1.2
1000Base-KX Receiver DC Specifications
This table provides the 1000Base-KX receiver DC timing specifications.
Table 47. 1000Base-KX Receiver DC Specifications
Parameter
Symbols
Min
Typical
Max
Units
Notes
Input differential
voltage
VRX-DIFFp-p
-
-
1600
mV
1
Differential
resistance
TRDIN
80
-
120
ohm
-
Notes:
1. For recommended operating conditions, see Table 4.
3.10.5.2
1000Base-KX AC electrical characteristics
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
92
NXP Semiconductors
Electrical characteristics
3.10.5.2.1
1000Base-KX Transmitter AC Specifications
This table provides the 1000Base-KX transmitter AC specification.
Table 48. 1000Base-KX Transmitter AC Specifications
Parameter
Symbols
Min
Typical
Max
Units
Notes
Baud Rate
TBAUD
1.25-100ppm
1.25
1.25+100pp Gb/s
m
-
Uncorrelated High
Probability Jitter/
Random Jitter
TUHPJTRJ
-
-
0.15
UI p-p
-
Deterministic Jitter
TDJ
-
-
0.10
UI p-p
-
Total Jitter
TTJ
-
-
0.25
UI p-p
1
Notes:
1. Total jitter is specified at a BER of 10-12.
2. For recommended operating conditions, see Table 4.
3.10.5.2.2
1000Base-KX Receiver AC Specifications
This table provides the 1000Base-KX receiver AC specification with parameters guided
by IEEE Std 802.3ap-2007.
Table 49. 1000Base-KX Receiver AC Specifications
Parameter
Symbols
Min
Typical
Max
Units
Notes
Receiver Baud Rate TBAUD
1.25-100ppm
1.25
1.25+100pp Gb/s
m
-
Random Jitter
RRJ
-
-
0.15
UI p-p
1
Sinusoidal Jitter,
maximum
RSJ-max
-
-
0.10
UI p-p
2
Total Jitter
RTJ
-
-
See Note 3
UI p-p
2
Notes:
1. Random jitter is specified at a BER of 10-12.
2. The receiver interference tolerance level of this parameter shall be measured as described in Annex 69A of the IEEE Std
802.3ap-2007.
3. Per IEEE 802.3ap-clause 70.
4. The AC specifications do not include Refclk jitter.
5. For recommended operating conditions, see Table 4.
3.10.6 RGMII electrical specifications
This section describes the electrical characteristics for the RGMII interface.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
93
Electrical characteristics
3.10.6.1
RGMII DC electrical characteristics
This table provides the DC electrical characteristics for the RGMII interface at
LVDD = 2.5 V.
Table 50. RGMII DC electrical characteristics (LVDD = 2.5 V)3
Parameters
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x LVDD
—
V
1
Input low voltage
VIL
—
0.2 x LVDD
V
1
Input current (LVIN=0 V or LVIN= LVDD)
IIH
—
±50
µA
2
Output high voltage (LVDD = min,IOH = -1.0 mA)
VOH
2.00
—
V
Output low voltage (LVDD = min, IOL = 1.0 mA)
VOL
—
0.4
V
Notes:
1. The min VIL and max VIH values are based on the respective min and max LVIN values found in Table 4.
2. The symbol LVIN, in this case, represents the LVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
This table provides the DC electrical characteristics for the RGMII interface at
LVDD = 1.8 V.
Table 51. RGMII DC electrical characteristics (LVDD = 1.8 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x LVDD
—
V
1
Input low voltage
VIL
—
0.2 x LVDD V
1
Input current (LVIN = 0 V or LVIN= LVDD)
IIN
—
±50
µA
2
Output high voltage (LVDD = min, IOH = -0.5 mA)
VOH
1.35
—
V
Output low voltage (LVDD = min, IOL = 0.5 mA)
VOL
—
0.4
V
Notes:
1. The min VIL and max VIH values are based on the min and max LVIN values found in Table 4.
2. The symbol LVIN, in this case, represents the LVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
3.10.6.2
RGMII AC timing specifications
This table provides the RGMII AC timing specifications.
Table 52. RGMII AC timing specifications (LVDD = 2.5 /1.8 V)8
Parameter/Condition
Data to clock output skew (at transmitter)
Symbol1
tSKRGT_TX
Min
-500
Typ
0
Max
500
Unit
ps
Notes
7
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
94
NXP Semiconductors
Electrical characteristics
Table 52. RGMII AC timing specifications (LVDD = 2.5 /1.8 V)8 (continued)
Parameter/Condition
Symbol1
Min
Typ
Max
Unit
Notes
Data to clock input skew (at receiver)
tSKRGT_RX
1.0
—
2.6
ns
2, 9
Clock period duration
tRGT
7.2
8.0
8.8
ns
3
Duty cycle for 10BASE-T and 100BASE-TX
tRGTH/tRGT
40
50
60
%
3, 4
Duty cycle for Gigabit
tRGTH/tRGT
45
50
55
%
—
Rise time (20%-80%)
tRGTR
—
—
0.75
ns
5, 6
Fall time (20%-80%)
tRGTF
—
—
0.75
ns
5, 6
Notes:
1. In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII
timing. Note that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols
representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).
2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns
is added to the associated clock signal. Many PHY vendors already incorporate the necessary delay inside their device. If so,
additional PCB delay is probably not needed.
3. For 10 Mbps and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as
long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed
transitioned between.
5. Applies to inputs and outputs.
6. The system/board must be designed to ensure this input requirement to the chip is achieved. Proper device operation is
guaranteed for inputs meeting this requirement by design, simulation, characterization, or functional testing.
7. The frequency of ECn_RX_CLK (input) should not exceed the frequency of ECn_GTX_CLK (output) by more than
300 ppm.
8. For recommended operating conditions, see Table 4.
9. For 10 Mbps and 100 Mbps, the max value is unspecified.
This figure shows the RGMII AC timing and multiplexing diagrams.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
95
Electrical characteristics
tRGTH
tRGT
GTX_CLK
(At MAC, output)
tSKRGT_TX
TXD
S [8:5][3:0]
TXD[7:4][3:0]
(At MAC, output)
TX_CTL
(At MAC, output)
tSKRGT_TX
TXD[8:5]
TXD[3:0] TXD[7:4]
TXD[4]
TXEN
TXD[9]
TXERR
PHY equivalent to tSKRGT_RX
PHY equivalent to tSKRGT_RX
TX_CLK
(At PHY, input)
tRGTH
tRGT
RX_CLK
(At PHY, output)
RXD[8:5][3:0]
RXD[7:4][3:0]
(At PHY, output)
RX_CTL
(At PHY, output)
RXD[8:5]
RXD[3:0] RXD[7:4]
PHY equivalent to tSKRGT_TX
RXD[4]
RXDV
PHY equivalent to tSKRGT_TX
RXD[9]
RXERR
tSKRGT_RX
tSKRGT_RX
RX_CLK
(At MAC, input)
Figure 21. RGMII AC timing and multiplexing diagrams
Warning
NXP guarantees timings generated from the MAC. Board
designers must ensure delays needed at the PHY or the MAC.
3.10.7 Ethernet management interface (EMI)
This section describes the electrical characteristics for the Ethernet Management Interface
(EMI) interface.
Both the interfaces (EMI1 and EMI2) interface timing is compatible with IEEE Std
802.3™ clause 22.
3.10.7.1
Ethernet management interface 1 (EMI1)
This section describes the electrical characteristics for the EMI1 interface.
The EMI1 interface timing is compatible with IEEE Std 802.3™ clause 22.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
96
NXP Semiconductors
Electrical characteristics
3.10.7.1.1
EMI1 DC electrical characteristics
This section describes the DC electrical characteristics for EMI1_MDIO and
EMI1_MDC. The pins are available on LVDD. See Table 4 for operating voltages.
This table provides the EMI1 DC electrical characteristics when LVDD = 2.5 V.
Table 53. EMI1 DC electrical characteristics (LVDD = 2.5 V)3
Parameters
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x LVDD
—
V
1
Input low voltage
VIL
—
0.2 x LVDD
V
1
Input current (LVIN = 0 or LVIN = LVDD)
IIN
—
±50
µA
2
Output high voltage (LVDD = min, IOH = -1.0 mA)
VOH
2.00
—
V
—
Output low voltage (LVDD = min, IOL = 1.0 mA)
VOL
—
0.40
V
—
Notes:
1. The min VIL and max VIH values are based on the respective min and max LVIN values found in Table 4.
2. The symbol VIN, in this case, represents the LVIN symbols referenced in Table 4.
3. For recommended operating conditions, see Table 4.
This table provides the EMI1 DC electrical characteristics when LVDD = 1.8 V.
Table 54. EMI1 DC electrical characteristics (LVDD = 1.8 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x LVDD
—
V
1
Input low voltage
VIL
—
0.2 x LVDD V
1
Input current (LVIN = 0 V or LVIN = LVDD)
IIN
—
±50
µA
2
Output high voltage (LVDD = min, IOH = -0.5 mA)
VOH
1.35
—
V
Output low voltage (LVDD = min, IOL = 0.5 mA)
VOL
—
0.4
V
Notes:
1. The min VIL and max VIH values are based on the min and max LVIN respective values found in Table 4.
2. The symbol LVIN represents the LVIN symbols referenced in Table 4.
3. For recommended operating conditions, see Table 4.
3.10.7.1.2
EMI1 AC timing specifications
This table provides the EMI1 AC timing specifications.
Table 55. EMI1 AC timing specifications5
Parameter/Condition
MDC frequency
Symbol1
fMDC
Min
—
Typ
—
Max
2.5
Unit
MHz
Notes
2
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
97
Electrical characteristics
Table 55. EMI1 AC timing specifications5 (continued)
Symbol1
Parameter/Condition
Min
Typ
—
Max
—
Unit
MDC clock pulse width high
tMDCH
160
ns
MDC to MDIO delay
tMDKHDX
(Y+5) x tenet_clk - 4 —
(Y+5) x tenet_clk + 4 ns
MDIO to MDC setup time
tMDDVKH
8
—
—
ns
MDIO to MDC hold time
tMDDXKH
2.6
—
—
ns
Notes
—
3
6
Notes:
1. The symbols used for timing specifications follow these patterns: t(first two letters of functional block)(signal)(state)(reference)(state) for
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes management
data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time.
Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state
(V) relative to the tMDC clock reference (K) going to the high (H) state or setup time.
2. This parameter is dependent on the Ethernet clock frequency. The MDIO_CFG[MDIO_CLK_DIV] field determines the clock
frequency of the MgmtClk Clock EC_MDC.
3. Ethernet clock period (tenet_clk) is equal to Frame Manager Clock period (tFMAN_clk)
4. Y is the value programmed to adjust hold time by MDIO_CFG[MDIO_HOLD].
5. For recommended operating conditions, see Table 4.
6. See Ethernet A-010717 erratum.
This figure shows the Ethernet management interface 1 timing diagram
tMDC
MDC
tMDCH
MDIO
(Input)
tMDDVKH
tMDDXKH
MDIO
(Output)
tMDKHDX
Figure 22. Ethernet management interface 1 timing diagram
3.10.7.2
Ethernet management interface 2 (EMI2)
This section describes the electrical characteristics for the EMI2 interface.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
98
NXP Semiconductors
Electrical characteristics
The EMI2 interface timing is compatible with IEEE Std 802.3™ clause 45.
3.10.7.2.1
EMI2 DC electrical characteristics
This section describes the DC electrical characteristics for EMI2_MDIO and
EMI2_MDC. The pins are available on TVDD. See Table 4 for operating voltages.
This table provides the EMI2 DC electrical characteristics when TVDD = 2.5 V.
Table 56. EMI2 DC electrical characteristics (TVDD = 2.5 V)4
Parameters
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x TVDD
—
V
1
Input low voltage
VIL
—
0.2 x TVDD
V
1
Input current (TVIN = 0 or TVIN = TVDD)
IIN
—
±50
µA
2, 3
Output high voltage (TVDD = min, IOH = -1.0 mA)
VOH
2.00
—
V
—
Output low voltage (TVDD = min, IOL = 1.0 mA)
VOL
—
0.4
V
—
Notes:
1. The min VIL and max VIH values are based on the respective min and max TVIN values found in Table 4.
2. The symbol VIN, in this case, represents the TVIN symbols referenced in Recommended operating conditions.
3. The symbol TVDD, in this case, represents the TVDD symbols referenced in Recommended operating conditions.
4. For recommended operating conditions, see Table 4.
This table provides the EMI2 DC electrical characteristics when TVDD = 1.8 V.
Table 57. EMI2 DC electrical characteristics (TVDD = 1.8 V)4
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x TVDD
—
V
1
Input low voltage
VIL
—
0.2 x TVDD
V
1
Input current (TVIN = 0 V or TVIN = TVDD)
IIN
—
±50
µA
2, 3
Output high voltage (TVDD = min, IOH = -0.5 mA)
VOH
1.35
—
V
3
Output low voltage (TVDD = min, IOL = 0.5 mA)
VOL
—
0.4
V
3
Notes:
1. The min VIL and max VIH values are based on the min and max TVIN respective values found in Table 4.
2. The symbol TVIN represents the TVIN symbols referenced in Recommended operating conditions.
3. The symbol TVDD, in this case, represents the TVDD symbols referenced in Recommended operating conditions.
4. For recommended operating conditions, see Table 4.
This table provides the EMI2 DC electrical characteristics when TVDD = 1.2 V.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
99
Electrical characteristics
Table 58. EMI2 DC electrical characteristics (TVDD = 1.2 V) 1
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x TVDD
—
V
—
Input low voltage
VIL
—
0.2 x TVDD
V
—
Output low current (VOL = 0.2 V)
IOL
4
mA
—
Output high voltage (TVDD = min, IOH = -100uA)
VOH
1.0
—
V
—
Output low voltage (TVDD = min, IOL = 100 uA)
VOL
—
0.2
V
—
Input Capacitance
CIN
—
10
pF
—
Notes:
1. For recommended operating conditions, see Table 4.
3.10.7.2.2
EMI2 AC timing specifications
This table provides the EMI2 AC timing specifications.
Table 59. EMI2 AC timing specifications6
Symbol1
Parameter/Condition
Min
Typ
Max
Unit
Notes
MDC frequency
fMDC
—
—
2.5
MHz
2
MDC clock pulse width high
tMDCH
160
—
—
ns
—
MDC to MDIO delay
tMDKHDX
(Y+5) x tenet_clk 25
—
(Y+5) x tenet_clk) + ns
25
3, 4
MDIO to MDC setup time
tMDDVKH
36
—
—
ns
5
MDIO to MDC hold time
(TVDD=1.2V)
tMDDXKH
2.6
—
—
ns
7
MDIO to MDC hold time
(TVDD=1.8V / 2.5V)
tMDDXKH
1.1
—
—
ns
7
Notes:
1. The symbols used for timing specifications follow these patterns: t(first two letters of functional block)(signal)(state)(reference)(state) for
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes management
data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time.
Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state
(V) relative to the tMDC clock reference (K) going to the high (H) state or setup time.
2. This parameter is dependent on the Ethernet clock frequency. The MDIO_CFG [MDIO_CLK_DIV] field determines the
clock frequency of the MgmtClk Clock EC_MDC.
3. Ethernet clock period (tenet_clk) is equal to Frame Manager Clock period (tFMAN_clk)
4. Y is the value programmed to adjust hold time by MDIO_CFG[MDIO_HOLD].
5. The setup time tMDDVKH is measured at following load conditions
• For MDC = 65 pf and for MDIO =75 pf @1.2 V open drain configuration
6. For recommended operating conditions, see Table 4.
7. See Ethernet A-010717 erratum.
This figure shows the Ethernet management interface 2 timing diagram
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
100
NXP Semiconductors
Electrical characteristics
tMDC
MDC
tMDCH
MDIO
(Input)
tMDDVKH
tMDDXKH
MDIO
(Output)
tMDKHDX
Figure 23. Ethernet management interface 2 timing diagram
3.10.8 IEEE 1588 electrical specifications
3.10.8.1
IEEE 1588 DC electrical characteristics
This table provides the IEEE 1588 DC electrical characteristics when operating at
LVDD = 2.5 V supply.
Table 60. IEEE 1588 DC electrical characteristics(LVDD = 2.5 V)3
Parameters
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x LVDD
—
V
1
Input low voltage
VIL
—
0.2 x LVDD
V
1
Input current (LVIN= 0 V or LVIN= LVDD)
IIH
—
±50
µA
2
Output high voltage (LVDD = min, IOH = -1.0 mA)
VOH
2.00
—
V
—
Output low voltage (LVDD = min, IOL = 1.0 mA)
VOL
—
0.40
V
—
Notes:
1. The min VIL and max VIH values are based on the respective min and max LVIN values found in Table 4.
2. The symbol LVIN, in this case, represents the LVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
This table provides the IEEE 1588 DC electrical characteristics when operating at
LVDD = 1.8 V supply.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
101
Electrical characteristics
Table 61. IEEE 1588 DC electrical characteristics(LVDD = 1.8 V)3
Parameters
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x LVDD
—
V
1
Input low voltage
VIL
—
0.2 x LVDD
V
1
Input current (LVIN= 0 V or LVIN= LVDD)
IIH
—
±50
µA
2
Output high voltage (LVDD = min, IOH = -0.5 mA)
VOH
1.35
—
V
—
Output low voltage (LVDD = min, IOL = 0.5 mA)
VOL
—
0.40
V
—
Notes:
1. The min VIL and max VIH values are based on the respective min and max LVIN values found in Table 4.
2. The symbol LVIN, in this case, represents the LVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
3.10.8.2
IEEE 1588 AC timing specifications
This table provides the IEEE 1588 AC timing specifications.
Table 62. IEEE 1588 AC timing specifications5
Parameter/Condition
Symbol
Min
Typ
Max
Unit
Notes
TSEC_1588_CLK_IN clock period
tT1588CLK
5.0
—
TRX_CLK x 7
ns
1, 3
TSEC_1588_CLK_IN duty cycle
tT1588CLKH/
tT1588CLK
40
50
60
%
2
TSEC_1588_CLK_IN peak-to-peak jitter
tT1588CLKINJ
—
—
250
ps
—
Rise time TSEC_1588_CLK_IN
(20%-80%)
tT1588CLKINR
1.0
—
2.0
ns
—
Fall time TSEC_1588_CLK_IN
(80%-20%)
tT1588CLKINF
1.0
—
2.0
ns
—
TSEC_1588_CLK_OUT clock period
tT1588CLKOUT
5.0
—
—
ns
4
TSEC_1588_CLK_OUT duty cycle
tT1588CLKOTH/
tT1588CLKOUT
30
50
70
%
—
TSEC_1588_PULSE_OUT1/2,
tT1588OV
0
—
4.0
ns
—
tT1588TRIGH
2 x tT1588CLK_MAX
—
—
ns
3
TSEC_1588_ALARM_OUT1/2
TSEC_1588_TRIG_IN1/2 pulse width
Notes:
1. TRX_CLK is the maximum clock period of the ethernet receiving clock selected by TMR_CTRL[CKSEL]. See the chip
reference manual for a description of TMR_CTRL registers.
2. This needs to be at least two times the clock period of the clock selected by TMR_CTRL[CKSEL]. See the chip reference
manual for a description of TMR_CTRL registers.
3. The maximum value of tT1588CLK is not only defined by the value of TRX_CLK, but also defined by the recovered clock. For
example, for 10/100/1000 Mbps modes, the maximum value of tT1588CLK will be 2800, 280, and 56 ns, respectively.
4. There are three input clock sources for 1588: TSEC_1588_CLK_IN, RTC, and MAC clock / 2. When using
TSEC_1588_CLK_IN, the minimum clock period is 2 x tT1588CLK.
5. For recommended operating conditions, see Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
102
NXP Semiconductors
Electrical characteristics
This figure shows the data and command output AC timing diagram.
tT1588CLKOUT
tT1588CLKOUTH
TSEC_1588_CLK_OUT
tT1588OV
TSEC_1588_PULSE_OUT1/2
TSEC_1588_ALARM_OUT1/2
Note: The output delay is counted starting at the rising edge if tT1588CLKOUT is non-inverting.
Otherwise, it is counted starting at the falling edge.
Figure 24. IEEE 1588 output AC timing
This figure shows the data and command input AC timing diagram.
tT1588CLK
TSEC_1588_CLK_IN
tT1588CLKH
TSEC_1588_TRIG_IN1/2
tT1588TRIGH
Figure 25. IEEE 1588 input AC timing
3.11 USB 3.0 interface
This section describes the DC and AC electrical specifications for the USB 3.0 interface.
3.11.1 USB 3.0 PHY transceiver supply DC voltage
This table provides the DC electrical characteristics for the USB 3.0 interface when
operating at USB_HVDD = 3.3 V.
Table 63. USB 3.0 PHY transceiver supply DC voltage (USB_HVDD = 3.3 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
2.0
—
V
1
Input low voltage
VIL
—
0.8
V
1
Input current (USB_HVIN = 0 V or USB_HVIN= USB_HVDD)
IIN
—
±50
µA
2
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
103
Electrical characteristics
Table 63. USB 3.0 PHY transceiver supply DC voltage (USB_HVDD = 3.3 V)3 (continued)
Parameter
Symbol
Min
Max
Unit
Notes
Output high voltage (USB_HVDD = min, IOH = -2 mA)
VOH
2.8
—
V
—
Output low voltage (USB_HVDD = min, IOL = 2 mA)
VOL
—
0.3
V
—
Notes:
1. The min VILand max VIH values are based on the respective min and max USB_HVIN values found in Table 4.
2. The symbol USB_HVIN, in this case, represents the USB_HVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
3.11.2 USB 3.0 DC electrical characteristics
This table provides the USB 3.0 transmitter DC electrical characteristics at package pins.
Table 64. USB 3.0 transmitter DC electrical characteristics1
Characteristic
Symbol
Differential output voltage
Vtx-diff-pp
Low-power differential output voltage
Min
Max
Unit
1000
1200
mVp-p
Vtx-diff-pp-low 400
—
1200
mVp-p
Tx de-emphasis
Vtx-de-ratio
3
—
4
dB
Differential impedance
ZdiffTX
72
100
120
Ohm
Tx common mode impedance
RTX-DC
18
—
30
Ohm
TTX-CM-DC-
—
—
200
mV
0
—
10
mV
Absolute DC common mode voltage between U1 and U0
800
Nom
ACTIVEIDLEDELTA
DC electrical idle differential output voltage
VTX-IDLEDIFF-DC
Note:
1. For recommended operating conditions, see Table 4.
This table provides the USB 3.0 receiver DC electrical characteristics at the Rx package
pins.
Table 65. USB 3.0 receiver DC electrical characteristics
Characteristic
Symbol
Min
Nom
Max
Unit
Notes
Differential Rx input impedance
RRX-DIFF-DC 72
100
120
Ohm
—
Receiver DC common mode impedance
RRX-DC
—
30
Ohm
—
DC input CM input impedance for V > 0 during
reset or power down
ZRX25 K
HIGH-IMPDC
—
—
Ohm
—
18
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
104
NXP Semiconductors
Electrical characteristics
Table 65. USB 3.0 receiver DC electrical characteristics (continued)
Characteristic
LFPS detect threshold
Symbol
Min
VRX-IDLE- 100
DET-DCDIFFpp
Nom
—
Max
300
Unit
mV
Notes
1
Note:
1. Below the minimum is noise. Must wake up above the maximum.
3.11.3 USB 3.0 AC timing specifications
This table provides the USB 3.0 transmitter AC timing specifications at package pins.
Table 66. USB 3.0 transmitter AC timing specifications1
Parameter
Symbol
Min
Nom
Max
Unit
Notes
Speed
—
—
5.0
—
Gb/s
—
Transmitter eye
tTX-Eye
0.625
—
—
UI
—
Unit interval
UI
199.94
—
200.06
ps
2
AC coupling capacitor
AC
coupling
capacitor
75
—
200
nF
—
Note:
1. For recommended operating conditions, see Table 4.
2. UI does not account for SSC-caused variations.
This table provides the USB 3.0 receiver AC timing specifications at Rx package pins.
Table 67. USB 3.0 receiver AC timing specifications1
Parameter
Symbol
Unit interval
UI
Min
199.94
Nom
—
Max
200.06
Unit
ps
Notes
2
Notes:
1. For recommended operating conditions, see Table 4.
2. UI does not account for SSC-caused variations.
3.11.4 USB 3.0 reference clock requirements
There are two options for the reference clock of USB PHY: SYSCLK or
DIFF_SYSCLK/DIFF_SYSCLK_B. For more information, see USB 3.0 reference clock
requirements.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
105
Electrical characteristics
3.11.5 USB 3.0 LFPS specifications
This table provides the key LFPS electrical specifications at the transmitter.
Table 68. LFPS electrical specifications at the transmitter
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Period
tPeriod
20
—
100
ns
—
Peak-to-peak differential amplitude
VTX-DIFF-PP-LFPS
800
—
1200
mV
—
Rise/fall time
tRiseFall20-80
—
—
4
ns
1
Duty cycle
Duty cycle
40
—
60
%
1
Note:
1. Measured at compliance TP1. See Figure 26 for details.
This figure shows the transmit normative setup with reference channel as per USB 3.0
specifications.
Measurement Tool
SMP
Reference Test Channel
Reference Cable
DUT
TP1
Figure 26. Transmit normative setup
3.12 Integrated Flash Controller
This section describes the DC and AC electrical specifications for the integrated flash
controller.
3.12.1 Integrated Flash Controller DC electrical characteristics
This table provides the DC electrical characteristics for the integrated flash controller.
Table 69. Integrated Flash Controller DC electrical characteristics (1.8 V)3
Parameter
Symbol
Min
Max
Unit
Note
Input high voltage
VIH
0.7 x OVDD
-
V
1
Input low voltage
VIL
-
0.3 x OVDD
V
1
Input current
IIN
-
±50
μA
2
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
106
NXP Semiconductors
Electrical characteristics
Table 69. Integrated Flash Controller DC electrical characteristics (1.8 V)3 (continued)
Parameter
Symbol
Min
Max
Unit
Note
(VIN = 0 V or VIN = OVDD)
Output high voltage
VOH
1.6
-
V
-
VOL
-
0.32
V
-
(OVDD = min, IOH = -0.5 mA)
Output low voltage
(OVDD = min, IOL = 0.5 mA)
NOTE:
1. The min VIL and max VIH values are based on the respective min and max OVIN values found in Table 4.
2. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
3.12.2 Integrated Flash Controller AC timing specifications
This section describes the AC timing specifications for the integrated flash controller.
3.12.2.1
Test condition
The figure below provides the AC test load for the integrated flash controller.
Output
Respective
supply / 2
Z0= 50 Ω
RL = 50 Ω
Figure 27. Integrated Flash Controller AC test load
3.12.2.2
IFC AC timing specifications (GPCM/GASIC)
This table describes the input AC timing specifications for the IFC-GPCM and IFCGASIC interface.
Table 70. Integrated flash controller input timing specifications for GPCM and GASIC mode
(OVDD = 1.8 V)1
Parameter
Input setup
Symbol
tIBIVKH1
Min
4
Max
-
Unit
ns
Notes
-
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
107
Electrical characteristics
Table 70. Integrated flash controller input timing specifications for GPCM and GASIC mode
(OVDD = 1.8 V)1 (continued)
Parameter
Symbol
Input hold
tIBIXKH1
Min
1
Max
-
Unit
ns
Notes
-
NOTE:
1. For recommended operating conditions, see Table 4.
This figure shows the input AC timing diagram for the IFC-GPCM, IFC-GASIC
interface.
IFC_CLK[0]
tIBIXKH1
t IBIVKH 1
Input Signals
Figure 28. IFC-GPCM, IFC-GASIC input AC timing specifictions
This table describes the output AC timing specifications for the IFC-GPCM and IFCGASIC interfaces.
Table 71. Integrated flash controller IFC-GPCM and IFC-GASIC interface output timing
specifications (OVDD = 1.8 V)2
Parameter
Symbol
Min
Max
Unit
Notes
IFC_CLK cycle time
tIBK
10
-
ns
-
IFC_CLK duty cycle
tIBKH/ tIBK
45
55
%
-
Output delay
tIBKLOV1
-
1.5
ns
-
Output hold
tIBKLOX
-
-2
ns
1
IFC_CLK[0] to IFC_CLK[m] skew
tIBKSKEW
0
±75
ps
-
NOTE:
1. The output hold is negative. This means that output transition happens earlier than the falling edge of IFC_CLK.
2. For recommended operating conditions, see Table 4.
This figure shows the output AC timing diagram for the IFC-GPCM and IFC-GASIC
interface.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
108
NXP Semiconductors
Electrical characteristics
IFC_CLK_0
t IBKLOV1
t IBKLOX
Output Signals
Figure 29. IFC-GPCM, IFC-GASIC signals
3.12.2.3
IFC AC timing specifications (NOR)
This table describes the input timing specifications for the IFC-NOR interface.
Table 72. Integrated flash controller input timing specifications for NOR mode (OVDD = 1.8
V)2
Parameter
Symbol
Min
Max
Unit
Notes
Input setup
tIBIVKH2
(2 x tIP_CLK) + 2
-
ns
1
Input hold
tIBIXKH2
(1 x tIP_CLK) + 1
-
ns
1
Notes:
1. tIP_CLK is the period of ip clock (not the IFC_CLK) on which IFC is running.
2. For recommended operating conditions, see Table 4.
3. The NOR flash state machine will de-assert OE_B once the flash controller samples data. Hold time tIBIXKH2 given in the
datasheet is not a requirement for customer but rather an information used internally for test purpose.
The figure below shows the AC input timing diagram for input signals for the IFC-NOR
interface. Here TRAD is a programmable delay parameter. See the IFC section of the
chip reference manual for more information.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
109
Electrical characteristics
(TRAD+1) x tIP_CLK
OE_B
tIBIXKH2
tIBIVKH2
AD (Data Phase, Read)
Figure 30. IFC-NOR interface input AC timings
This table describes the output AC timing specifications of IFC-NOR interface.
Table 73. Integrated flash controller IFC-NOR interface output timing specifications (OVDD =
1.8 V)2
Parameter
Symbol
Output delay
tIBKLOV2
Min
-
Max
±1.5
Unit
ns
Notes
1
NOTE:
1. This effectively means that a signal change may appear anywhere within ±tIBKLOV2 (max) duration, from the point where it's
expected to change.
2. For recommended operating conditions, see Table 4.
The figure below shows the AC timing diagram for IFC-NOR interface output signals.
The timing specs have been illustrated here by taking timings between two signals, CS_B
and OE_B as an example. In a read operation, OE_B is supposed to change the TACO (a
programmable delay; see the IFC section of the chip reference manual for more
information) time after CS_B. Because of the skew between the signals, OE_B may
change anywhere within the window of time defined by tIBKLOV2. This concept applies
to other IFC-NOR interface output signals as well. The diagram is an example that shows
the skew between any two chronological toggling signals as per the protocol. The list of
IFC-NOR output signals is as follows: NRALE, NRAVD_B, NRWE_B, NROE_B,
CS_B, AD (Address phase).
CS_B
TACO
tIBKLOV2
OE_B
Figure 31. IFC-NOR interface output AC timings
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
110
NXP Semiconductors
Electrical characteristics
3.12.2.4
IFC AC timing specifications (NAND)
This table describes the input timing specifications of the IFC-NAND interface.
Table 74. Integrated flash controller input timing specifications for NAND mode (OVDD = 1.8
V)2
Parameter
Symbol
Min
Max
Unit
Notes
Input setup
tIBIVKH3
(2 x tIP_CLK) + 2
-
ns
1
Input hold
tIBIXKH3
1
-
ns
1
IFC_RB_B pulse width
tIBCH
2
-
tIP_CLK
1
NOTE:
1. tIP_CLK is the period of ip clock on which IFC is running.
2. For recommended operating conditions, see Table 4.
The figure below shows the AC input timing diagram for input signals of IFC-NAND
interface. Here TRAD is a programmable delay parameter. See the IFC section of the
chip reference manual for more information.
Figure 32. IFC-NAND interface input AC timings
NOTE
tIP_CLK is the period of ip clock (not the IFC_CLK) on which
IFC is running.
This table describes the output AC timing specifications for the IFC-NAND interface.
Table 75. Integrated flash controller IFC-NAND interface output timing specifications (OVDD
= 1.8 V)2
Parameter
Output delay
Symbol
tIBKLOV3
Min
-
Max
±1.5
Unit
ns
Notes
1
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
111
Electrical characteristics
Table 75. Integrated flash controller IFC-NAND interface output timing specifications (OVDD
= 1.8 V)2 (continued)
Parameter
Symbol
Min
Max
Unit
Notes
NOTE:
1. This effectively means that a signal change may appear anywhere within tIBKLOV3 (min) to tIBKLOV3 (max) duration, from the
point where it's expected to change.
2. For recommended operating conditions, see Table 4.
The figure below shows the AC timing diagram for output signals of IFC-NAND
interface.The timing specs are shown here by taking the timings between two signals,
CS_B and CLE as an example. CLE is supposed to change TCCST (a programmable
delay; see the IFC section of the chip reference manual for more information) time after
CS_B. Because of the skew between the signals, CLE may change anywhere within
window of time defined by tIBKLOV3. This concept applies to other output signals of the
IFC-NAND interface as well. The diagram is an example to show the skew between any
two chronological toggling signals as per the protocol. The list of output signals is as
follows: NDWE_B, NDRE_B, NDALE, WP_B, NDCLE, CS_B, and AD.
Figure 33. IFC-NAND interface output AC timings
3.12.2.5
IFC-NAND SDR AC timing specifications
This table describes the AC timing specifications for the IFC-NAND SDR interface.
These specifications are compliant to the SDR mode of the ONFI specification revision
3.0.
Table 76. Integrated flash controller IFC-NAND SDR interface AC timing specifications
(OVDD = 1.8 V)
Parameter
Symbol
I/O
Min
Max
Unit
Notes
Address cycle to data
loading time
tADL
O
TADLE 1500(ps)
TADLE +
1500(ps)
tIP_CLK
Figure 34
ALE hold time
tALH
O
TWCHT 1500(ps)
TWCHT +
1500(ps)
tIP_CLK
Figure 35
ALE setup time
tALS
O
TWP - 1500(ps)
TWP + 1500(ps) tIP_CLK
Figure 35
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
112
NXP Semiconductors
Electrical characteristics
Table 76. Integrated flash controller IFC-NAND SDR interface AC timing specifications
(OVDD = 1.8 V) (continued)
Parameter
Symbol
I/O
Min
Max
Unit
Notes
ALE to RE_n delay
tAR
O
TWHRE 1500(ps)
TWHRE +
1500(ps)
tIP_CLK
Figure 36
CE_n hold time
tCH
O
5 + 1500(ps)
-
ns
Figure 35
CE_n high to input hi-Z
tCHZ
I
TRHZ - 1500(ps) TRHZ +
1500(ps)
tIP_CLK
Figure 37
CLE hold time
tCLH
O
TWCHT 1500(ps)
TWCHT +
1500(ps)
tIP_CLK
Figure 35
CLE to RE_n delay
tCLR
O
TWHRE 1500(ps)
TWHRE 1500(ps)
tIP_CLK
Figure 38
CLE setup time
tCLS
O
TWP - 1500(ps)
TWP + 1500(ps) tIP_CLK
Figure 35
CE_n high to input hold
tCOH
I
150 - 1500(ps)
-
ns
Figure 37
CE_n setup time
tCS
O
TCS - 1500(ps)
TCS + 1500(ps)
tIP_CLK
Figure 35
Data hold time
tDH
O
TWCHT 1500(ps)
TWCHT +
1500(ps)
tIP_CLK
Figure 35
Data setup time
tDS
O
TWP - 1500(ps)
TWP + 1500(ps) tIP_CLK
Figure 35
Busy time for Set
Features and Get
Features
tFEAT
O
-
FTOCNT
tIP_CLK
Figure 39
Output hi-Z to RE_n low
tIR
O
TWHRE 1500(ps)
TWHRE +
1500(ps)
tIP_CLK
Figure 40
Interface and Timing
Mode Change time
tITC
O
-
FTOCNT
tIP_CLK
Figure 39
RE_n cycle time
tRC
O
TRP + TREH 1500(ps)
TRP + TREH +
1500(ps)
tIP_CLK
Figure 37
RE_n access time
tREA
I
-
(TRAD - 1) +
2(ns)
tIP_CLK
Figure 37
RE_n high hold time
tREH
I
TREH
TREH
tIP_CLK
Figure 37
RE_n high to input hold
tRHOH
I
0
-
ns
Figure 37
RE_n high to WE_n low
tRHW
O
100 + 1500(ps)
-
ns
Figure 41
RE_n high to input hi-Z
tRHZ
I
TRHZ - 1500(ps) TRHZ +
1500(ps)
tIP_CLK
Figure 37
RE_n low to input data
hold
tRLOH
I
0
-
ns
Figure 42
RE_n pulse width
tRP
O
TRP
TRP
tIP_CLK
Figure 37
Ready to data input cycle
(data only)
tRR
O
TRR - 1500(ps)
TRR + 1500(ps)
tIP_CLK
Figure 37
Device reset time,
tRST (raw NAND)
measured from the falling
edge of R/B_n to the
rising edge of R/B_n.
O
-
FTOCNT
tIP_CLK
Figure 43
Device reset time,
tRST2 (EZ NAND)
measured from the falling
edge of R/B_n to the
rising edge of R/B_n.
O
-
FTOCNT
tIP_CLK
Figure 43
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
113
Electrical characteristics
Table 76. Integrated flash controller IFC-NAND SDR interface AC timing specifications
(OVDD = 1.8 V) (continued)
Parameter
Symbol
I/O
Min
Max
Unit
Notes
(WE_n high or CLK rising tWB
edge) to SR[6] low
O
TWBE + TWH 1500(ps)
TWBE + TWH + tIP_CLK
1500(ps)
Figure 35
WE_n cycle time
tWC
O
TWP + TWH
TWP + TWH
tIP_CLK
Figure 44
WE_n high hold time
tWH
O
TWH
TWH
tIP_CLK
Figure 44
Command, address, or
data input cycle to data
output cycle
tWHR
O
TWHRE + TWH
- 1500(ps)
TWHRE + TWH
+ 1500(ps)
tIP_CLK
Figure 45
WE_n pulse width
tWP
O
TWP
TWP
tIP_CLK
Figure 35
WP_n transition to
command cycle
tWW
O
TWW - 1500(ps) TWW + 1500(ps) tIP_CLK
Figure 46
Data Input hold
tIBIXKH4
I
1
Figure 47
-
tIP_CLK
NOTE:
1. tIP_CLK is the clock period of the IP clock (on which the IFC IP is running). Note that the IFC IP clock does not come out of
the device.
This figure shows the tADL timing.
WE_B
RE_B
tADL
Cycle type
ADDR
DATA
Figure 34. tADL timing
This figure shows the command cycle.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
114
NXP Semiconductors
Electrical characteristics
tCH
tCS
CE_n
tCALS
tCALH
tCALS
tCALH
tCSD
CLE
ALE
WE_n
tWH
tWP
RE_t
DQS_t
tCAS
DQ[7:0]
tCAH
Command
Optional complementary signaling
Don't Care
Figure 35. Command cycle
This figure shows the tAR timings.
ALE
tAR
RE_n
Figure 36. tAR timings
This figure shows the data input cycle timings.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
115
Electrical characteristics
tCHZ
tCEA
CE_n
tRP
RE_n
tCOH
tRP
tRP
tRHOH
tREH
tRR
tRHZ
tRC
R/B_n
tRHZ
tREA
D0
IOx
tRHZ
tREA
tRHZ
tREA
D1
Dn
Figure 37. Data input cycle timings
This figure shows the tCLR timings.
CLE
tCLR
RE_n
Figure 38. tCLR timings
This figure shows the tWB, tFEAT, tITC, and tRR timings.
CLK
ALE
WR_B
Cycle type
CMD
DATA
ADDR
tWB
tFEAT/tITC
tRR
RB_B
Figure 39. tWB, tFEAT, tITC, and tRR timings
This figure shows the read status timings.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
116
NXP Semiconductors
Electrical characteristics
tCLR
CLE
tCLH
tCLS
tCH
tCS
tCEA
CE_n
tWP
tCHZ
WE_n
tCOH
tWHR
RE_n
tRHZ
tDS
tDH
tRHOH
70h
IO7-0
Status
tIR
tREA
Figure 40. Read status timings
This figure shows the tRHW timings.
CLK
CLE
WR_B
Cycle type
DIN
tRHW
CMD
Figure 41. tRHW timings
This figure shows the EDO mode data input cycle timings.
tCHZ
CE_n
tCOH
tRP
RE_n
tREH
tRR
tRC
tREA
R/B_n
tRHZ
tREA
tRHOH
tRLOH
D0
IOx
D1
Dn
tCEA
Figure 42. EDO mode data input cycle timings
This figure shows the tWB and tRST timings.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
117
Electrical characteristics
CLK
CLE
ALE
W/R#
DQ[7:0]
DQS
CMD
tWB
tRST
R/B#
Figure 43. tWB and tRST timings
This figure shows the address latch timings.
tCLS
CLE
tCS
CE_n
tWC
tWP
tWH
WE_n
tALS
ALE
tALH
tDH
tDS
IO0-7
Address
Figure 44. Address latch timings
This figure shows the tWHR timings.
CLE
ALE
CLK
tWHR
Cycle type
CMD
DATA
Figure 45. tWHR timings
This figure shows the tWW timings.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
118
NXP Semiconductors
Electrical characteristics
CLK
CLE
CMD
Cycle Type
tWW
WP#
Bus shall
be idle
Figure 46. tWW timings
This figure shows the tIBIXKH4 timings.
Figure 47. tIBIXKH4 timings
3.12.2.6
IFC-NAND NVDDR AC timing specification
The table below describes the AC timing specifications for the IFC-NAND NVDDR
interface. These specifications are compliant to NVDDR mode of ONFI specification
revision 3.0.
Table 77. Integrated flash controller IFC-NAND NVDDR interface AC timing specifications
(OVDD = 1.8 V)
Parameter
Symbol
I/O
Min
Max
Unit
Notes
Access window of DQ[7:0] tAC
from CLK
I
3 - 150 (ps)
20 + 150 (ps)
ns
Figure 51
Address cycle to data
loading time
I
TADL
-
tIP_CLK
Figure 52
tADL
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
119
Electrical characteristics
Table 77. Integrated flash controller IFC-NAND NVDDR interface AC timing specifications
(OVDD = 1.8 V) (continued)
Parameter
Symbol
I/O
Min
Max
Unit
Notes
Command, Address, Data tCADf
delay (command to
command, address to
address, command to
address, address to
command, command/
address to start of data)
Fast
O
TCAD - 150 (ps) TCAD + 150 (ps) tIP_CLK
Figure 48
Command, Address, Data tCADs
delay (command to
command, address to
address, command to
address, address to
command, command/
address to start of data)
slow
O
TCAD - 150 (ps) TCAD + 150 (ps) tIP_CLK
Figure 48
Command/address DQ
hold time
tCAH
O
2 + 150 (ps)
-
ns
Figure 48
CLE and ALE hold time
tCALH
O
2 + 150 (ps)
-
ns
Figure 48
CLE and ALE setup time
tCALS
O
2 + 150 (ps)
-
ns
Figure 48
Command/address DQ
setup time
tCAS
O
2 + 150 (ps)
-
ns
Figure 48
CE# hold time
tCH
O
2 + 150 (ps)
-
ns
Figure 48
Average clock cycle time, tCK(avg) or tCK
also known as tCK
O
10
-
ns
Figure 48
Absolute clock period,
measured from rising
edge to the next
consecutive rising edge
tCK(abs)
O
tCK(avg) +
tJIT(per) min
tCK(avg) +
tJIT(per) max
ns
Figure 48
Clock cycle high
tCKH(abs)
O
0.45
0.55
tCK
Figure 48
Clock cycle low
tCKL(abs)
O
0.45
0.55
tCK
Figure 48
Data input end to W/R#
high B16
tCKWR
O
TCKWR - 150
(ps)
TCKWR + 150
(ps)
tIP_CLK
Figure 51
CE# setup time
tCS
O
TCS - 150 (ps)
TCS + 150 (ps)
tIP_CLK
Figure 50
Data DQ hold time
tDH
O
1050
-
ps
Figure 50
Access window of DQS
from CLK
tDQSCK
I
-
20 + 150 (ps)
ns
Figure 51
W/R# low to DQS/DQ
driven by device
tDQSD
I
-150 (ps)
18 + 150 (ps)
ns
Figure 51
DQS output high pulse
width
tDQSH
O
0.45
0.55
tCK
Figure 50
W/R# high to DQS/DQ tri- tDQSHZ
state by device
O
RHZ - 150 (ps)
RHZ + 150 (ps)
tIP_CLK
Figure 48
DQS output low pulse
width
O
0.45
0.55
tCK
Figure 50
tDQSL
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
120
NXP Semiconductors
Electrical characteristics
Table 77. Integrated flash controller IFC-NAND NVDDR interface AC timing specifications
(OVDD = 1.8 V) (continued)
Parameter
Symbol
I/O
Min
Max
Unit
Notes
DQS-DQ skew, DQS to
last DQ valid, per access
tDQSQ
I
-
1000
ps
Figure 51
Data output to first DQS
latching transition
tDQSS
O
0.75 + 150 (ps)
1.25 - 150 (ps)
tCK
Figure 50
Data DQ setup time
tDS
O
1050
-
ps
Figure 50
DQS falling edge to CLK
rising - hold time
tDSH
O
0.2 + 150 (ps)
-
tCK
Figure 50
DQS falling edge to CLK
rising - setup time
tDSS
O
0.2 + 150 (ps)
-
tCK
Figure 50
Input data valid window
tDVW
I
tDVW = tQH tDQSQ
-
ns
Figure 51
Busy time for Set
Features and Get
Features
tFEAT
I
-
FTOCNT
tIP_CLK
Figure 53
Half-clock period
tHP
O
tHP = min(tCKL, tCKH)
ns
Figure 51
Interface and Timing
Mode Change time
tITC
I
-
FTOCNT
tIP_CLK
Figure 53
The deviation of a given
tCK(abs) from tCK(avg)
tJIT(per)
O
-0.5
0.5
ns
NA
DQ-DQS hold, DQS to
first DQ to go non-valid,
per access
tQH
I
tQH = tHP tQHS
-
tIP_CLK
Figure 51
Data input cycle to
command, address, or
data output cycle
tRHW
O
TRHW
-
tIP_CLK
Figure 54
Ready to data input cycle
(data only)
tRR
I
TRR
-
tIP_CLK
Figure 53
Device reset time,
tRST (raw NAND)
measured from the falling
edge of R/B# to the rising
edge of R/B#.
O
FTOCNT
FTOCNT
tIP_CLK
Figure 55
Device reset time,
tRST2 (EZ NAND)
measured from the falling
edge of R/B# to the rising
edge of R/B#.
O
FTOCNT
FTOCNT
tIP_CLK
Figure 55
CLK rising edge to SR[6]
low
tWB
O
TWB - 150 (ps)
TWB + 150 (ps)
tIP_CLK
Figure 55
Command, address or
data output cycle to data
input cycle
tWHR
O
TWHR
-
tIP_CLK
Figure 56
DQS write preamble
tWPRE
O
1.5
-
tCK
Figure 50
DQS write postamble
tWPST
O
1.5
-
tCK
Figure 50
W/R# low to data input
cycle
tWRCK
I
TWRCK - 150
(ps)
TWRCK + 150
(ps)
tIP_CLK
Figure 51
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
121
Electrical characteristics
Table 77. Integrated flash controller IFC-NAND NVDDR interface AC timing specifications
(OVDD = 1.8 V) (continued)
Parameter
WP# transition to
command cycle
Symbol
tWW
I/O
Min
O
Max
TWW - 150 (ps)
Unit
TWW + 150 (ps) tIP_CLK
Notes
Figure 57
NOTE:
1. tIP_CLK is the clock period of IP clock (on which IFC IP is running). Note that the IFC IP clock does not come out of device.
The following diagrams show the AC timing for the IFC-NAND NVDDR interface.
tCH
tCS
CE_n
tCALS
tCALH
tCALS
tCALH
tCSD
CLE
ALE
WE_n
tWH
tWP
RE_t
DQS_t
tCAS
DQ[7:0]
tCAH
Command
Optional complementary signaling
Don't Care
Figure 48. Command cycle
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
122
NXP Semiconductors
Electrical characteristics
tCH
tCS
CE_B
tCALS
tCALH
tCALS
tCALH
tCSD
CLE
ALE
WE_B
tWP
RE_t
DQS_t
tCAS
DQ[7:0]
tCAH
Address
Optional complementary signaling
Don't care
Figure 49. Address cycle
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
123
Electrical characteristics
tCS1 / tCS2
tCH
ODT disabled
CE_n
ODT enabled
tCALS
or tCALS2
tCALH
tCALS
or tCALS2
tCALH
tCSD
CLE
ALE
WE_n
tDBS
RE_t
tCDQSS
tDSC
tWPRE
tWPST
or tWPRE2
tWPSTH
DQS_t
tDQSH tDQSL tDQSH
DQ[7:0]
D0
tDS
D1
D2
D3
tDH
tDQSL tDQSH
DN-2
DN-1
tDS
DN
tDH
Optional complementary signaling
Don't care
Figure 50. Write cycle
Figure 51. Read cycle
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
124
NXP Semiconductors
Electrical characteristics
CLK
CLE
ALE
tADL
Cycle type
DATA
ADDR
Figure 52. tADL timings
CLK
ALE
WR_B
Cycle type
CMD
DATA
ADDR
tWB
tFEAT/tITC
tRR
RB_B
Figure 53. tWB, tFEAT, tITC, tRR timings
CLK
CLE
WR_B
Cycle type
DIN
tRHW
CMD
Figure 54. tRHW timings
CLK
CLE
ALE
W/R#
DQ[7:0]
DQS
R/B#
CMD
tWB
tRST
Figure 55. tWB and tRST timings
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
125
Electrical characteristics
CLE
ALE
CLK
tWHR
Cycle type
DATA
CMD
Figure 56. tWHR timings
CLK
CLE
CMD
Cycle Type
tWW
WP#
Bus shall
be idle
Figure 57. tWW timings
3.13 LPUART interface
This section describes the DC and AC electrical specifications for the LPUART interface.
3.13.1 LPUART DC electrical characteristics
This table provides the DC electrical characteristics for the LPUART interface when
operating at DVDD/EVDD = 3.3 V.
Table 78. LPUART DC electrical characteristics (DVDD/EVDD = 3.3 V)2
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x D/
EVDD
—
V
1
Input low voltage
VIL
—
0.2 x
D/EVDD
V
1
Input current (D/EVIN = 0 V or D/EVIN = D/EVDD)
IIN
—
±50
μA
—
Output high voltage ( IOH = -2.0 mA)
VOH
2.4
—
V
—
Output low voltage ( IOL = 2.0 mA)
VOL
—
0.4
V
—
Notes:
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
126
NXP Semiconductors
Electrical characteristics
Table 78. LPUART DC electrical characteristics (DVDD/EVDD = 3.3 V)2
Parameter
Symbol
Min
Max
Unit
Notes
1. The min VIL and max VIH values are based on the min and max D/EVDD respective values found in Table 4.
2. For recommended operating conditions, see Table 4.
This table provides the DC electrical characteristics for the LPUART interface when
operating at EVDD/ DVDD = 1.8 V.
Table 79. LPUART DC electrical characteristics (1.8 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x E/
DVDD
—
V
1
Input low voltage
VIL
—
0.2 x
E/DVDD
V
1
Input current (E/DVIN = 0 V or E/DVIN = E/DVDD)
IIN
—
±50
μA
2
Output high voltage (E/DVDD = min, IOH = -0.5 mA)
VOH
1.35
—
V
—
Output low voltage (DVDD = min, IOL = 0.5 mA)
VOL
—
0.4
V
—
Notes:
1. The min VIL and max VIH values are based on the min and max E/DVDD respective values found in Table 4.
2. The symbol E/DVIN represents the input voltage of the supply referenced in Table 4.
3. For recommended operating conditions, see Table 4.
3.13.2 LPUART AC timing specifications
This table provides the AC timing specifications for the LPUART interface.
Table 80. LPUART AC timing specifications
Parameter
Value
Unit
Notes
Minimum baud rate
fPLAT/(2 x 32 x 8192)
baud
1, 3, 4
Maximum baud rate
fPLAT/(2 x 4)
baud
1, 2, 4
Notes:
1. fPLAT refers to the internal platform clock.
2. The actual attainable baud rate is limited by the latency of interrupt processing.
3. Every bit can be over sampled with a sample clock rate of 8 and 64 times (software configurable) and each bit is the
majority of the values sampled at the sample rate divided by two, (sample rate/2)+1 and (sample rate/2)+2.
4. The 1-to-0 transition during a data word can cause a resynchronization of the sample point.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
127
Electrical characteristics
3.14 DUART interface
This section describes the DC and AC electrical specifications for the DUART interface.
3.14.1 DUART DC electrical characteristics
This table provides the DC electrical characteristics for the DUART interface at
DVDD = 3.3 V.
Table 81. DUART DC electrical characteristics (3.3 V)3
Parameter
Symbol
Min
Max
Input high voltage
VIH
0.7 x DVDD —
Input low voltage
VIL
Input current (DVIN = 0 V or DVIN = DVDD)
Unit
Notes
V
1
—
0.2 x DVDD V
1
IIN
—
±50
µA
2
Output high voltage (DVDD = min, IOH = -2.0 mA)
VOH
2.4
—
V
—
Output low voltage (DVDD = min, IOL = 2.0 mA)
VOL
—
0.4
V
—
Notes:
1. The min VIL and max VIH values are based on the respective min and max DVIN values found in Table 4.
2. The symbol DVIN represents the input voltage of the supply referenced in Table 4.
3. For recommended operating conditions, see Table 4.
This table provides the DC electrical characteristics for the DUART interface at
DVDD = 1.8 V.
Table 82. DUART DC electrical characteristics (1.8 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x DVDD —
V
1
Input low voltage
VIL
—
0.2 x DVDD V
1
Input current (DVIN = 0 V or DVIN = DVDD)
IIN
—
±50
µA
2
Output high voltage (DVDD = min, IOH = -0.5 mA)
VOH
1.35
—
V
—
Output low voltage (DVDD = min, IOL = 0.5 mA)
VOL
—
0.4
V
—
Notes:
1. The min VIL and max VIH values are based on the min and max DVIN respective values found in Table 4.
2. The symbol DVIN represents the input voltage of the supply referenced in Table 4.
3. For recommended operating conditions, see Table 4.
3.14.2 DUART AC timing specifications
This table provides the AC timing specifications for the DUART interface.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
128
NXP Semiconductors
Electrical characteristics
Table 83. DUART AC timing specifications
Parameter
Value
Unit
Notes
Minimum baud rate
fPLAT/(2 x 1,048,576)
baud
1, 3
Maximum baud rate
fPLAT/(2 x 16)
baud
1, 2
Notes:
1. fPLAT refers to the internal platform clock.
2. The actual attainable baud rate is limited by the latency of interrupt processing.
3. The middle of a start bit is detected as the eighth sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values
are sampled each 16th sample.
3.15 Flextimer interface
This section describes the DC and AC electrical characteristics for the Flextimer
interface. There are Flextimer pins on various power supplies in this device.
3.15.1 Flextimer DC electrical characteristics
This table provides the DC electrical characteristics for Flextimer pins operating at
DVDD/EVDD = 3.3 V.
Table 84. Flextimer DC electrical characteristics (DVDD/EVDD = 3.3 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x D/EVDD
—
V
1
Input low voltage
VIL
—
0.2 x D/EVDD
V
1
Input current (VIN = 0 V or VIN= D/EVDD)
IIN
—
±50
μA
2
Output high voltage
VOH
2.4
—
V
—
VOL
—
0.4
V
—
(D/EVDD = min, IOH = -2 mA)
Output low voltage
(D/EVDD = min, IOL = 2 mA)
Notes:
1. The min VIL and max VIH values are based on the respective min and max DVIN/EVIN values found in Table 4.
2. The symbol VIN, in this case, represents the DVIN/EVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
This table provides the DC electrical characteristics for Flextimer pins operating at
DVDD/EVDD/LVDD/OVDD = 1.8 V.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
129
Electrical characteristics
Table 85. Flextimer DC electrical characteristics (DVDD/EVDD/LVDD/OVDD = 1.8 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x D/E/L/
OVDD
—
V
1
Input low voltage
VIL
—
0.2 x
D/E/L/VDD
V
1
Input low voltage
VIL
—
0.3 x OVDD
V
1
Input current (VIN = 0 V or VIN = D/E/L/
OVDD)
IIN
—
±50
μA
2
Output high voltage
VOH
1.35
—
V
—
VOL
—
0.4
V
—
(D/E/L/OVDD = min, IOH = -0.5 mA)
Output low voltage
(D/E/L/OVDD = min, IOL = 0.5 mA)
Notes:
1. The min VIL and max VIH values are based on the respective min and max DVIN/EVIN/L/OVIN values found in Table 4.
2. The symbol VIN, in this case, represents the DVIN/EVIN/L/OVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
This table provides the DC electrical characteristics for Flextimer pins operating at
LVDD = 2.5 V.
Table 86. Flextimer DC electrical characteristics (LVDD= 2.5 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x LVDD
—
V
1
Input low voltage
VIL
—
0.2 x LVDD
V
1
Input current (VIN = 0 V or VIN= LVDD)
IIN
—
±50
μA
2
Output high voltage
VOH
2.0
—
V
—
VOL
—
0.4
V
—
(LVDD = min, IOH = -1 mA)
Output low voltage
(LVDD = min, IOL = 1 mA)
Notes:
1. The min VIL and max VIH values are based on the respective min and max LVIN values found in Table 4.
2. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
3.15.2 Flextimer AC timing specifications
This table provides the Flextimer AC timing specifications.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
130
NXP Semiconductors
Electrical characteristics
Table 87. Flextimer AC timing specifications2
Parameter
Symbol
Flextimer inputs—minimum pulse width
tPIWID
Min
20
Unit
ns
Notes
1
Notes:
1. Flextimer inputs and outputs are asynchronous to any visible clock. Flextimer outputs should be synchronized before use
by any external synchronous logic. Flextimer inputs are required to be valid for at least tPIWID to ensure proper operation.
2. For recommended operating conditions, see Table 4.
This figure provides the AC test load for the Flextimer.
Output
(L/O) VDD/2
Z0= 50 Ω
RL = 50 Ω
Figure 58. Flextimer AC test load
3.16 SPI interface
This section describes the DC and AC electrical characteristics for the SPI interface.
3.16.1 SPI DC electrical characteristics
This table provides the DC electrical characteristics for the SPI interface operating at
OVDD = 1.8 V.
Table 88. SPI DC electrical characteristics (1.8 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x OVDD
—
V
1
Input low voltage
VIL
—
0.3 x OVDD
V
1
Input current (VIN = 0 V or VIN = OVDD)
IIN
—
±50
μA
2
Output high voltage
VOH
1.35
—
V
—
VOL
—
0.4
V
—
(OVDD = min, IOH = -0.5 mA)
Output low voltage
(OVDD = min, IOL = 0.5 mA)
Notes:
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
131
Electrical characteristics
Table 88. SPI DC electrical characteristics (1.8 V)3
Parameter
Symbol
Min
Max
Unit
Notes
1. The min VIL and max VIH values are based on the respective min and max OVIN values found in Table 4.
2. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
3.16.2 SPI AC timing specifications
This table provides the SPI timing specifications.
Table 89. SPI AC timing specifications
Parameter
Symbol
Condition
Min
Max
Unit
Notes
SCK clock pulse width
tSDC
—
40%
60%
tSCK
—
CS to SCK delay
tCSC
Master
tp*2 - 5.0
—
ns
1, 2
After SCK delay
tASC
Master
tp*2 - 1.0
—
ns
1, 3
Data setup time for inputs
tNIIVKH
Master
9
—
ns
—
Data hold time for inputs
tNIIXKH
Master
0
—
ns
—
Data valid (after SCK edge) for Outputs tNIKHOV
Master
—
5
ns
—
Data hold time for outputs
Master
0
—
ns
—
tNIKHOX
Notes:
1. tp represents the input clock period for the SPI controller.
2. Refer the CTARx register in QorIQ LS1046ARM for more details. The tCSC = tp*(Delay Scaler Value)*CTARx[PCSSCK]
-5.0, where the Delay Scaler Value comes from Table Delay Scaler Encoding. For example, the tCSC = tp*4*3-5.0 when
CTARx[PCSSCK] = 0b01, CTARx[CSSCK]=0b0001.
3. Refer the CTARx register in QorIQ LS1046ARM for more details. The tASC = tp*(Delay Scaler Value)*CTARx[PASC] -1.0,
where the Delay Scaler Value comes from Table Delay Scaler Encoding. For example, the tASC = tp*8*3-1.0 when
CTARx[PASC] = 0b01, CTARx[ASC]=0b0010.
This figure shows the SPI timing master when CPHA = 0.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
132
NXP Semiconductors
Electrical characteristics
tCSC
tASC
CSx
t SDC
SCK Output
(CPOL = 0)
t SCK
t SDC
SCK Output
(CPOL = 1)
t NIIVKH
SIN
t NIIXKH
First Data
Data
t NIKHOX
Last Data
t NIKHOV
SOUT
First Data
Data
Last Data
Figure 59. SPI timing master, CPHA = 0
This figure shows the SPI timing master when CPHA = 1.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
133
Electrical characteristics
CSx
SCK Output
(CPOL = 0)
tNIIXKH
SCK Output
(CPOL = 1)
tNIIVKH
SIN
Data
First Data
Last Data
t NIKHOX
t NIKHOV
SOUT
Last Data
Data
First Data
Figure 60. SPI timing master, CPHA = 1
3.17 QSPI interface
This section describes the DC and AC electrical characteristics for the QSPI interface.
3.17.1 QSPI DC electrical characteristics
This table provides the DC electrical characteristics for the QSPI interface operating at
OVDD = 1.8 V.
Table 90. QSPI DC electrical characteristics (1.8 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x OVDD
—
V
1
Input low voltage
VIL
—
0.3 x OVDD
V
1
Input current (VIN = 0 V or VIN = OVDD)
IIN
—
±50
μA
2
Output high voltage
VOH
OVDD - 0.2
—
V
—
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
134
NXP Semiconductors
Electrical characteristics
Table 90. QSPI DC electrical characteristics (1.8 V)3 (continued)
Parameter
Symbol
Min
Max
Unit
Notes
(OVDD = min, IOH = -0.5 mA)
Output low voltage
VOL
—
0.4
V
—
(OVDD = min, IOL = 0.5 mA)
Notes:
1. The min VIL and max VIH values are based on the respective min and max OVIN values found in Table 4.
2. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
3.17.2 QSPI AC timing specifications
This section describes the QuadSPI timing specifications in Single data rate (SDR) mode.
All data is based on a negative edge data launch and a positive edge data capture for the
flash device. Double data rate (DDR)/Double trasfer rate (DTR) mode is not supported.
3.17.2.1
QSPI timing SDR mode
This table provides the QSPI input and output timing in SDR mode.
Table 91. SDR mode QSPI input and output timing
Parameter
Symbol
Min
Max
Unit
Clock frequency
FSCK
—
62.5
MHz
Clock rise/fall time
TRISE/TFALL
1
—
ns
CS output hold time
tNIKHOX2
-3.4 + j * T
—
ns
CS output delay
tNIKHOV2
-3.5 + k * T
—
ns
Setup time for incoming data
tNIIVKH
8.6
—
ns
Hold time requirement for incoming data
tNIIXKH
0.4
—
ns
Output data valid
tNIKHOV
—
4.5
ns
Output data hold
tNIKHOX
-4.4
—
ns
NOTE
T represents the clock period, j represents
qSPI_FLSHCR[TCSH], and k depends on
qSPI_FLSHCR[TCSS].
This figure shows the QSPI AC timing in SDR mode.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
135
Electrical characteristics
QSPI_CK_A
QSPI_CK_B
tNIIXKH
tNIIVKH
Input Signals:
tNIKHOX
tNIKHOV
Output Signals:
tNIKHOX2
tNIKHOV2
QSPI_CS_A0
QSPI_CS_A1
QSPI_CS_B0
QSPI_CS_B1
Figure 61. QSPI AC timing — SDR mode
3.18 Enhanced secure digital host controller (eSDHC)
This section describes the DC and AC electrical specifications for the eSDHC interface.
3.18.1 eSDHC DC electrical characteristics
This table provides the DC electrical characteristics for the eSDHC interface at D/EVDD
= 3.3 V.
Table 92. eSDHC interface DC electrical characteristics2
Characteristic
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x D/EVDD
-
V
1
Input low voltage
VIL
-
0.25 x D/EVDD
V
1
Output high voltage (D/EVDD = min, IOH =
-100 μA)
VOH
0.75 x D/EVDD
-
V
-
Output low voltage (D/EVDD = min, IOL =
100 μA)
VOL
-
0.125 x D/EVDD
V
-
Notes:
1. The min VIL and max VIH values are based on the respective min and max D/EVIN values found in Table 4 .
2. At recommended operating conditions with D/EVDD= 3.3 V.
This table provides the DC electrical characteristics for the eSDHC interface at D/O/
EVDD = 1.8 V.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
136
NXP Semiconductors
Electrical characteristics
Table 93. eSDHC interface DC electrical characteristics 3
Characteristic
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x D/O/EVDD
-
V
1
Input low voltage
VIL
-
0.3 x D/O/EVDD
V
1
Output high voltage (D/O/EVDD= min, IOH
= -2mA)
VOH
D/O/EVDD - 0.45
-
V
-
-
0.45
V
-
Output low voltage (D/O/EVDD= min, IOL = VOL
2mA)
Notes:
1. The min VIL and max VIH values are based on the respective min and max DVIN/OVIN/EVIN values found in Table 4 .
3. At recommended operating conditions DVDD/OVDD/EVDD= 1.8V.
3.18.2 eSDHC AC timing specifications
This section provides the AC timing specifications.
This table provides the eSDHC AC timing specifications as defined in Figure 62, Figure
63, and Figure 64.
Table 94. eSDHC AC timing specifications (full-speed/high-speed mode)6
Parameter
SDHC_CLK clock frequency:
Symbol1
fSHSCK
Min
0
• SD/SDIO (full-speed/high-speed mode)
• eMMC (full-speed/high-speed mode)
Max
25/50
Unit
Notes
MHz
2, 4
26/52
SDHC_CLK clock low time (full-speed/high-speed mode)
tSHSCKL
10/7
-
ns
4
SDHC_CLK clock high time (full-speed/high-speed mode)
tSHSCKH
10/7
-
ns
4
SDHC_CLK clock rise and fall times
tSHSCKR/
-
3
ns
4
tSHSCKF
Input setup times: SDHC_CMD, SDHC_DATx to SDHC_CLK
tSHSIVKH
2.5
-
ns
3, 4, 5
Input hold times: SDHC_CMD, SDHC_DATx to SDHC_CLK
tSHSIXKH
2.5
-
ns
4, 5
Output hold time: SDHC_CLK to SDHC_CMD, SDHC_DATx
valid
tSHSKHOX
-3
-
ns
4, 5
Output delay time: SDHC_CLK to SDHC_CMD, SDHC_DATx
valid
tSHSKHOV
-
3
ns
4, 5
Notes:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state)
for inputs and (first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tSHKHOX symbolizes eSDHC highspeed mode device timing (SH) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the
invalid state (X) or output hold time. Note that in general, the clock reference symbol is based on five letters representing the
clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F
(fall).
2. In full-speed mode, the clock frequency value can be 0-25MHz for an SD/SDIO card and 0-26MHz for an eMMC device. In
high-speed mode, the clock frequency value can be 0-50MHz for an SD/SDIO card and 0-52MHz for an eMMC device.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
137
Electrical characteristics
Table 94. eSDHC AC timing specifications (full-speed/high-speed mode)6
Symbol1
Parameter
Min
Max
Unit
Notes
3. SDHC_SYNC_OUT/IN loop back is recommended to compensate the clock delay. In case the SDHC_SYNC_OUT/IN
loopback is not used, to satisfy setup timing, one-way board-routing delay between host and card, on SDHC_CLK,
SDHC_CMD, and SDHC_DATx should not exceed 1ns for any high-speed MMC card. For any high-speed or default speed
mode SD card, the one-way board-routing delay between host and card, on SDHC_CLK, SDHC_CMD, and SDHC_DATx
should not exceed 1.5ns.
4. CCARD ≤ 10 pF, (1 card), and CL = CBUS + CHOST + CCARD ≤ 40 pF.
5. The parameter values apply to both full-speed and high-speed modes.
6. At recommended operating conditions with EVDD=1.8 V or 3.3V, see Table 4.
This figure provides the eSDHC clock input timing diagram.
eSDHC
external clock
operational mode
VM
VM
VM
tSHSCKL
tSHSCKH
tSHSCK
tSHSCKR
tSHSCKF
VM = Midpoint voltage (Respective supply/2)
Figure 62. eSDHC clock input timing diagram
This figure provides the input AC timing diagram for high-speed mode.
VM
VM
VM
VM
SDHC_CLK
t SHIVKH
t SHIXKH
SDHC_DAT/SDHC_CMD
inputs
VM = Midpoint voltage (EVDD/2)
Figure 63. eSDHC high-speed mode input AC timing diagram
This figure provides the output AC timing diagram for high-speed mode.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
138
NXP Semiconductors
Electrical characteristics
VM
VM
VM
VM
SDHC_CLK
SDHC_CMD/SDHC_CMD_DIR
SDHC_DAT/SDHC_DATn_DIR
outputs
t SHKHOV
tSHKHOX
VM = Midpoint voltage (EVDD/2)
Figure 64. eSDHC high-speed mode output AC timing diagram
This table provides the eSDHC AC timing specifications for SDR50 mode.
Table 95. eSDHC AC timing specifications (SDR 50 mode)
Parameter
Symbol
Min
Max
Unit
Notes
SDHC_CLK clock frequency:
fSHSCK
0
90
MHz
SDHC_CLK duty cycle
tSHSCKH/
tSHSCK
45
55
%
SDHC_CLK clock rise and fall times
tSHSCKR/
-
2
ns
1
tSHSCKF
Skew between SD_CLK_SYNC_OUT and SD_CLK
-
-0.1
0.1
ns
1
Input setup times: SDHC_CMD, SDHC_DATx to
SDHC_CLK_SYNC_IN
tSHSIVKH
3.21
-
ns
2,1
Input hold times: SDHC_CMD, SDHC_DATx to
SDHC_CLK_SYNC_IN
tSHSIXKH
1.1
-
ns
2,1
Output hold time: SDHC_CLK to SDHC_CMD, SDHC_DATx valid,
SDHC_DATx_DIR, SDHC_CMD_DIR
tSHSKHOX
1.7
-
ns
2,1
Output delay time: SDHC_CLK to SDHC_CMD, SDHC_DATx valid,
SDHC_DATx_DIR, SDHC_CMD_DIR
tSHSKHOV
-
7.21
ns
2,1
Notes:
1. CCARD ≤ 10 pF, (1 card), and CL = CBUS + CHOST + CCARD ≤ 30 pF
2. Without a voltage translator
3. At recommended operating conditions with EVDD=1.8 V, see Table 4.
This figure provides the eSDHC clock input timing diagram for SDR50 mode.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
139
Electrical characteristics
eSDHC
external clock
operational mode
VM
VM
VM
tSHCK
tSHCKR
tSHCKF
VM = Midpoint voltage (EVDD/2)
Figure 65. eSDHC SDR50 mode clock input timing diagram
This figure provides the eSDHC input AC timing diagram for SDR50 mode.
T CLK
SDHC_CLK_SYNC_IN
T SHIVKH
TSHIXKH
SDHC_CMD/
SDHC_DAT
input
Figure 66. eSDHC SDR50 mode input AC timing diagram
This figure provides the eSDHC output timing diagram for SDR50 mode.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
140
NXP Semiconductors
Electrical characteristics
T
CLK
SD_CLK
T
SHKHOV
SDHC_CMD/SDHC_CMD_DIR
SDHC_DAT/SDHC_DATn_DIR
output
T
SHKHOX
Figure 67. eSDHC SDR50 mode output timing diagram
This table provides the eSDHC AC timing specifications for DDR50/DDR mode.
Table 96. eSDHC AC timing specifications (DDR50/DDR)3
Parameter
Symbol
SDHC_CLK clock frequency
fSHCK
Min
-
Max
-
SD/SDIO DDR50 mode
50
eMMC DDR mode
52
Unit
MHz
SDHC_CLK duty cycle
tSHSCKH/
tSHSCK
47
53
%
Skew between SDHC_CLK_SYNC_OUT and
SDHC_CLK
-
-0.1
0.1
ns
SDHC_CLK clock rise and fall times
tSHCKR/
-
-
ns
SD/SDIO DDR50 mode tSHCKF
4
eMMC DDR mode
Input setup times: SDHC_DATx to
SDHC_CLK_SYNC_IN
1
-
-
ns
1, 4
2
1.6
eMMC DDR mode
tSHDIXKH
-
-
ns
1.1
SD/SDIO DDR50 mode
1
2
1.1
eMMC DDR mode
tSHDKHOX
-
-
ns
1.7
SD/SDIO DDR50 mode
1
2
3.4
eMMC DDR mode
Output delay time: SDHC_CLK to SDHC_DATx valid,
SDHC_DATx_DIR
-
2
2.0
SD/SDIO DDR50 mode
Output hold time: SDHC_CLK to SDHC_DATx valid,
SDHC_DATx_DIR
-
2
tSHDIVKH
Input hold times: SDHC_DATx to
SDHC_CLK_SYNC_IN
Notes
tSHDKHOV
-
6.1
ns
1
2
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
141
Electrical characteristics
Table 96. eSDHC AC timing specifications (DDR50/DDR)3 (continued)
Parameter
Symbol
Min
Max
Unit
Notes
6.2
SD/SDIO DDR50 mode
eMMC DDR mode
Input setup times: SDHC_CMD to
SDHC_CLK_SYNC_IN
tSHCIVKH
-
Input hold times: SDHC_CMD to SDHC_CLK_SYNC_IN tSHCIXKH
-
SD/SDIO DDR50 mode
1.1
eMMC DDR mode
1.1
tSHCKHOX
-
-
ns
1
2
-
ns
1
2
3.9
eMMC DDR mode
eMMC DDR mode
2
1.7
SD/SDIO DDR50 mode
SD/SDIO DDR50 mode
1
4.5
eMMC DDR mode
Output delay time: SDHC_CLK to SDHC_CMD valid,
SDHC_CMD_DIR
ns
5.3
SD/SDIO DDR50 mode
Output hold time: SDHC_CLK to SDHC_CMD valid,
SDHC_CMD_DIR
-
tSHCKHOV
-
-
ns
13.1
1
2
15.3
Notes:
1. CCARD ≤ 10 pF, (1 card).
2. CL = CBUS + CHOST + CCARD ≤ 20 pF for MMC, ≤ 25 pF for Input Data of DDR50, ≤ 30 pF for Input CMD of DDR50.
3. At recommended operating conditions with EVDD = 1.8 or 3.3 V for eMMC DDR mode, EVDD = 1.8 V for DDR50, see Table
4.
This figure provides the eSDHC DDR50/DDR mode input AC timing diagram.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
142
NXP Semiconductors
Electrical characteristics
T SHCK
SDHC_CLK_SYNC_IN
T
T
SHDIVKH SHDIXKH
SDHC_DAT
input
T
SHCIVKH
T
SHCIXKH
SDHC_CMD
input
Figure 68. eSDHC DDR50/DDR mode input AC timing diagram
This figure provides the eSDHC DDR50/DDR mode output AC timing diagram.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
143
Electrical characteristics
T SHCK
SDHC_CLK
T
SHDKHOV
SDHC_DAT/
SDHC_DATn_DIR
output
T
SHDKHOX
T
SHCKHOV
SDHC_CMD/
SD_CMD_DIR
output
T
SHCKHOX
Figure 69. eSDHC DDR50/DDR mode output AC timing diagram
This table provides the eSDHC AC timing specifications for SDR104/eMMC HS200
mode.
Table 97. eSDHC AC timing specifications (SDR104/eMMC HS200)
Parameter
SDHC_CLK clock frequency
SD/SDIO SDR104 mode
Symbol1
fSHCK
Min
-
eMMC HS200 mode
Max
167
Unit
MHz
167
Notes
1
-
SDHC_CLK duty cycle
tSHSCKH/tSHSCK
40
60
%
SDHC_CLK clock rise and fall times
tSHCKR/tSHCKF
-
1
ns
1
Output hold time: SDHC_CLK
to SDHC_CMD, SDHC_DATx
valid, SDHC_CMD_DIR,
SDHC_DATx_DIR
SD/SDIO SDR104 mode
TSHKHOX
1.58
-
ns
1
Output delay time: SDHC_CLK
to SDHC_CMD, SDHC_DATx
valid, SDHC_CMD_DIR,
SDHC_DATx_DIR
SD/SDIO SDR104 mode
3.94
ns
1
Input data window (UI)
SD/SDIO SDR104 mode
Unit
Interval
1
eMMC HS200 mode
1.6
TSHKHOV
-
eMMC HS200 mode
3.92
tSHIDV
eMMC HS200 mode
0.5
0.475
-
Notes:
1. CL = CBUS + CHOST + CCARD ≤ 15pF.
2. At recommended operating conditions with EVDD =1.8 V, see Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
144
NXP Semiconductors
Electrical characteristics
This figure provides the eSDHC SDR104/HS200 mode timing diagram.
T
SHCK
SDHC_CLK
T
SHIDV
SDHC_CMD/
SDHC_DAT input
DATA
T
SDHC_CMD/SDHC_CMD_DIR
SDHC_DAT/SDHC_DATn_DIR
output
SHKHOV
DATA
DATA
T
SHKHOX
Figure 70. eSDHC SDR104/HS200 mode timing diagram
3.19 JTAG controller
This section describes the DC and AC electrical specifications for the IEEE 1149.1
(JTAG) interface.
3.19.1 JTAG DC electrical characteristics
This table provides the JTAG DC electrical characteristics.
Table 98. JTAG DC electrical characteristics (OVDD = 1.8V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x OVDD
—
V
1
Input low voltage
VIL
—
0.3 x OVDD
V
1
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
145
Electrical characteristics
Table 98. JTAG DC electrical characteristics (OVDD = 1.8V)3 (continued)
Parameter
Symbol
Min
Max
Unit
Notes
Input current (OVIN = 0 V or OVIN = OVDD)
IIN
—
-100/+50
µA
2, 4
Output high voltage (OVDD = min, IOH = -0.5 mA)
VOH
1.35
—
V
—
Output low voltage (OVDD = min, IOL= 0.5 mA)
VOL
—
0.4
V
—
Notes:
1. The min VIL and max VIH values are based on the respective min and max OVIN values found in Table 4.
2. The symbol VIN, in this case, represents the OVIN symbol found in Table 4.
3. For recommended operating conditions, see Table 4.
4. Per IEEE Std. 1149.1 specification, TDI, TMS, and TRST_B have internal pull-up.
3.19.2 JTAG AC timing specifications
This table provides the JTAG AC timing specifications as defined in Figure 71, Figure
72, Figure 73, and Figure 74.
Table 99. JTAG AC timing specifications4
Symbol1
Parameter
Min
Max
Unit
Notes
JTAG external clock frequency of operation
fJTG
0
33.3
MHz
—
JTAG external clock cycle time
tJTG
30
—
ns
—
JTAG external clock pulse width measured at 1.4 V
tJTKHKL
15
—
ns
—
JTAG external clock rise and fall times
tJTGR/tJTGF 0
2
ns
—
TRST_B assert time
tTRST
25
—
ns
2
Input setup times
tJTDVKH
4
—
ns
—
Input hold times
tJTDXKH
10
—
ns
—
tJTKLDV
—
15
ns
3
—
10
0
—
ns
3
Output valid times
Boundary-scan data
TDO
Output hold times
tJTKLDX
Notes:
1. The symbols used for timing specifications follow these patterns: t(first two letters of functional block)(signal)(state)(reference)(state) for
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG device
timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K)
going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input signals
(D) reaching the invalid state (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, the
clock reference symbol representation is based on three letters representing the clock of a particular function. For rise and fall
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
2.TRST_B is an asynchronous level sensitive signal. The setup time is for test purposes only.
3. All outputs are measured from the midpoint voltage of the falling edge of tTCLK to the midpoint of the signal in question. The
output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be
added for trace lengths, vias, and connectors in the system.
4. For recommended operating conditions, see Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
146
NXP Semiconductors
Electrical characteristics
This figure shows the AC test load for TDO and the boundary-scan outputs of the device.
Output
OVDD/2
Z0= 50 Ω
RL = 50 Ω
Figure 71. AC test load for the JTAG interface
This figure shows the JTAG clock input timing diagram.
VM
VM
VM
JTAG external clock
tJTGR
tJTKHKL
tJTGF
tJTG
VM = Midpoint voltage (OVDD/2)
Figure 72. JTAG clock input timing diagram
This figure shows the TRST_B timing diagram.
TRST_B
VM
VM
tTRST
VM = Midpoint voltage (OVDD/2)
Figure 73. TRST_B timing diagram
This figure shows the boundary-scan timing diagram.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
147
Electrical characteristics
JTAG External Clock
VM
VM
tJTDVKH
tJTDXKH
Boundary Data Inputs
Input Data Valid
tJTKLDV
tJTKLDX
Boundary Data Outputs
Output Data Valid
VM = Midpoint Voltage (OVDD/2)
Figure 74. Boundary-scan timing diagram
3.20 I2C interface
This section describes the DC and AC electrical characteristics for the I2C interfaces.
3.20.1 I2C DC electrical characteristics
This table provides the DC electrical characteristics for the I2C interfaces operating at
DVDD = 3.3 V.
Table 100. I2C DC electrical characteristics (DVDD = 3.3 V)4
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x
DVDD
—
V
1
Input low voltage
VIL
—
0.2 x
DVDD
V
1
Output low voltage
VOL
—
0.4
V
2
Pulse width of spikes which must be suppressed by the input filter
tI2KHKL
0
50
ns
3
Input current each I/O pin (input voltage is between 0.1 x DVDD and 0.9
x DVDD(max)
II
-50
50
µA
-
Capacitance for each I/O pin
CI
—
10
pF
—
(DVDD = min, IOL = 3 mA)
Notes:
1. The min VIL and max VIH values are based on the respective min and max DVIN values found in Table 4.
2. The output voltage (open drain or open collector) condition = 3 mA sink current.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
148
NXP Semiconductors
Electrical characteristics
Table 100. I2C DC electrical characteristics (DVDD = 3.3 V)4
Parameter
Symbol
Min
Max
Unit
Notes
3. See the chip reference manual for information about the digital filter used.
4. For recommended operating conditions, see Table 4.
This table provides the DC electrical characteristics for the I2C interfaces operating at
DVDD = 1.8 V.
Table 101. I2C DC electrical characteristics (DVDD = 1.8 V)5
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x
DVDD
—
V
1
Input low voltage
VIL
—
0.2 x
DVDD
V
1
Output low voltage (DVDD = min, IOL = 3 mA)
VOL
0
0.36
V
2
Pulse width of spikes which must be suppressed by the input filter
tI2KHKL
0
50
ns
3
Input current each I/O pin (input voltage is between 0.1 x DVDD and 0.9 II
x DVDD(max)
-50
50
µA
4
Capacitance for each I/O pin
—
10
pF
—
CI
Notes:
1. The min VIL and max VIH values are based on the respective min and max DVIN values found in Table 4.
2. The output voltage (open drain or open collector) condition = 3 mA sink current.
3. See the chip reference manual for information about the digital filter used.
4. I/O pins obstruct the SDA and SCL lines if DVDD is switched off.
5. For recommended operating conditions, see Table 4.
3.20.2 I2C AC timing specifications
This table provides the AC timing specifications for the I2C interfaces.
Table 102. I2C AC timing specifications5
Symbol1
Parameter
Min
Max
Unit
Notes
SCL clock frequency
fI2C
0
400
kHz
2
Low period of the SCL clock
tI2CL
1.3
—
μs
—
High period of the SCL clock
tI2CH
0.6
—
μs
—
Setup time for a repeated START condition
tI2SVKH
0.6
—
μs
—
Hold time (repeated) START condition (after this period, the
first clock pulse is generated)
tI2SXKL
0.6
—
μs
—
Data setup time
tI2DVKH
100
—
ns
—
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
149
Electrical characteristics
Table 102. I2C AC timing specifications5 (continued)
Symbol1
Parameter
Data input hold time
CBUS compatible masters
tI2DXKL
I2C bus devices
Min
Max
—
—
0
—
Unit
Notes
μs
3
Data output delay time
tI2OVKL
—
0.9
μs
4
Setup time for STOP condition
tI2PVKH
0.6
—
μs
—
Bus free time between a STOP and START condition
tI2KHDX
1.3
—
μs
—
Noise margin at the LOW level for each connected device
(including hysteresis)
VNL
0.1 x DVDD —
V
—
Noise margin at the HIGH level for each connected device
(including hysteresis)
VNH
0.2 x DVDD —
V
—
Capacitive load for each bus line
Cb
—
pF
—
400
Notes:
1. The symbols used for timing specifications herein follow these patterns: t(first two letters of functional block)(signal)(state)(reference)(state)
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH symbolizes I2C timing (I2)
with respect to the time data input signals (D) reaching the valid state (V) relative to the tI2C clock reference (K) going to the
high (H) state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that the data with respect to the START
condition (S) went invalid (X) relative to the tI2C clock reference (K) going to the low (L) state or hold time. Also, tI2PVKH
symbolizes I2C timing (I2) for the time that the data with respect to the STOP condition (P) reaches the valid state (V) relative
to the tI2C clock reference (K) going to the high (H) state or setup time.
2. The requirements for I2C frequency calculation must be followed. See Determining the I2C Frequency Divider Ratio for
SCL (AN2919).
3. As a transmitter, the chip provides a delay time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL
signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of a START or STOP
condition. When the chip acts as the I2C bus master while transmitting, it drives both SCL and SDA. As long as the load on
SCL and SDA are balanced, the chip does not generate an unintended START or STOP condition. Therefore, the 300 ns
SDA output delay time is not a concern. If, under some rare condition, the 300 ns SDA output delay time is required for the
chip as transmitter, see Determining the I2C Frequency Divider Ratio for SCL (AN2919).
4. The maximum tI2OVKL has to be met only if the device does not stretch the LOW period (tI2CL) of the SCL signal.
5. For recommended operating conditions, see Table 4.
This figure shows the AC test load for the I2C.
Output
OVDD/2
Z0= 50 Ω
RL = 50 Ω
Figure 75. I2C AC test load
This figure shows the AC timing diagram for the I2C bus.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
150
NXP Semiconductors
Electrical characteristics
SDA
tI2DVKH
tI2CL
SCL
tI2KHKL
tI2SXKL
tI2CH
tI2SXKL
tI2SVKH
tI2DXKL, tI2OVKL
S
tI2KHDX
tI2PVKH
S
P
Sr
Figure 76. I2C bus AC timing diagram
3.21 GPIO interface
This section describes the DC and AC electrical characteristics for the GPIO interface.
There are GPIO pins on various power supplies in this device.
3.21.1 GPIO DC electrical characteristics
This table provides the DC electrical characteristics for GPIO pins operating at
EVDD = 3.3 V.
Table 103. GPIO DC electrical characteristics (EVDD = 3.3 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x EVDD
—
V
1
Input low voltage
VIL
—
0.2 x EVDD
V
1
Input current (VIN = 0 V or VIN= LVDD)
IIN
—
±50
μA
2
Output high voltage
VOH
2.4
—
V
—
VOL
—
0.4
V
—
(EVDD = min, IOH = -2 mA)
Output low voltage
(EVDD = min, IOL = 2 mA)
Notes:
1. The min VIL and max VIH values are based on the respective min and max EVIN values found in Table 4.
2. The symbol VIN, in this case, represents the EVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
This table provides the DC electrical characteristics for GPIO pins operating at TVDD/
LVDD = 2.5 V.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
151
Electrical characteristics
Table 104. GPIO DC electrical characteristics (TVDD/LVDD = 2.5 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x T/LVDD
—
V
1
Input low voltage
VIL
—
0.2 x T/LVDD
V
1
Input current (VIN = 0 V or VIN= T/LVDD)
IIN
—
±50
μA
2
Output high voltage
VOH
2.0
—
V
—
VOL
—
0.4
V
—
(T/LVDD = min, IOH = -2 mA)
Output low voltage
(T/LVDD = min, IOL = 2 mA)
Notes:
1. The min VIL and max VIH values are based on the respective min and max L/TVIN values found in Table 4.
2. The symbol VIN, in this case, represents the L/TVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
This table provides the DC electrical characteristics for GPIO pins operating at LVDD/
EVDD/DVDD/TVDD/OVDD = 1.8 V.
Table 105. GPIO DC electrical characteristics (LVDD/EVDD/DVDD/TVDD/OVDD = 1.8 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x
L/E/D/T/OVDD
—
V
1
Input low voltage
VIL
—
0.2 x L/E/D/
TVDD
V
1
Input low voltage
VIL
—
0.3 x OVDD
V
1
Input current (VIN = 0 V or VIN =
L/E/D/T/OVDD)
IIN
—
±50
μA
2
Output high voltage
VOH
1.35
—
V
—
VOL
—
0.4
V
—
(L/E/D/T/OVDD = min, IOH = -0.5 mA)
Output low voltage
(L/E/D/T/OVDD = min, IOL = 0.5 mA)
Notes:
1. The min VIL and max VIH values are based on the respective min and max LVIN/EVIN/DVIN/TVIN/OVIN values found in Table
4.
2. The symbol VIN, in this case, represents the LVIN/EVIN/DVIN/TVIN/OVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
This table provides the DC electrical characteristics for GPIO pins operating at
TVDD = 1.2 V.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
152
NXP Semiconductors
Electrical characteristics
Table 106. GPIO DC electrical characteristics (TVDD = 1.2 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x TVDD
—
V
Input low voltage
VIL
—
0.2 x TVDD
V
Output low current current (VOL= 0.2 V)
IOL
4
Output high voltage
VOH
1.0
—
V
—
VOL
—
0.2
V
—
CIN
—
10
pF
—
mA
(TVDD = min, IOH = -100uA)
Output low voltage
(TVDD = min, IOL = 100uA)
Input Capacitance
Notes:
1. The min VIL and max VIH values are based on the respective min and max TVIN values found in Table 4.
2. The symbol VIN, in this case, represents the TVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
3.21.2 GPIO AC timing specifications
This table provides the GPIO input and output AC timing specifications.
Table 107. GPIO Input AC timing specifications
Parameter
GPIO inputs-minimum pulse width
Symbol
tPIWID
Min
20
Unit
ns
Notes
1
Notes:
1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any
external synchronous logic. GPIO inputs are required to be valid for at least tPIWID to ensure proper operation.
2. For recommended operating conditions, see Table 4.
This figure provides the AC test load for the GPIO.
Output
(L/O) VDD/2
Z0= 50 Ω
RL = 50 Ω
Figure 77. GPIO AC test load
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
153
Electrical characteristics
3.22 GIC interface
This section describes the DC and AC electrical characteristics for the GIC interface.
3.22.1 GIC DC electrical characteristics
This table provides the DC electrical characteristics for GIC pins operating at
DVDD = 3.3 V.
Table 108. GIC DC electrical characteristics (DVDD = 3.3 V)3
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x DVDD
—
V
1
Input low voltage
VIL
—
0.2 x DVDD
V
1
Input current (VIN = 0 V or VIN= DVDD)
IIN
—
±50
μA
2
Output high voltage
VOH
2.4
—
V
—
VOL
—
0.4
V
—
(DVDD = min, IOH = -2 mA)
Output low voltage
(DVDD = min, IOL = 2 mA)
Notes:
1. The min VIL and max VIH values are based on the respective min and max DVIN values found in Table 4.
2. The symbol VIN, in this case, represents the DVIN symbol referenced in Table 4.
3. For recommended operating conditions, see Table 4.
This table provides the GIC DC electrical characteristics when LVDD = 2.5 V.
Table 109. GIC DC electrical characteristics (LVDD = 2.5 V)4
Parameters
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x LVDD
—
V
1
Input low voltage
VIL
—
0.2 x LVDD
V
1
Input current (LVIN = 0 or LVIN = LVDD)
IIN
—
±50
µA
2, 3
Output high voltage (LVDD = min, IOH = -1.0 mA)
VOH
2.00
—
V
—
Output low voltage (LVDD = min, IOL = 1.0 mA)
VOL
—
0.40
V
—
Notes:
1. The min VILand max VIH values are based on the respective min and max LVIN values found in Table 4.
2. The symbol VIN, in this case, represents the LVIN symbols referenced in Table 4.
3. The symbol LVDD, in this case, represents the LVDD symbols referenced in Table 4.
4. For recommended operating conditions, see Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
154
NXP Semiconductors
Electrical characteristics
This table provides the GIC DC electrical characteristics when LVDD/DVDD/OVDD = 1.8
V.
Table 110. GIC DC electrical characteristics (LVDD/ DVDD/ OVDD = 1.8 V)4
Parameter
Symbol
Min
Max
Unit
Notes
Input high voltage
VIH
0.7 x L/D/OVDD
—
V
1
Input low voltage
VIL
—
0.2 x L/DVDD
V
1
Input low voltage
VIL
—
0.3 x OVDD
V
1
Input current (L/D/OVIN = 0 V or L/D/
OVIN = L/D/OVDD)
IIN
—
±50
µA
2, 3
Output high voltage (L/D/OVDD = min,
IOH = -0.5 mA)
VOH
1.35
—
V
3
—
0.4
V
3
Output low voltage (L/D/OVDD = min, IOL VOL
= 0.5 mA)
Notes:
1. The min VILand max VIH values are based on the min and max L/D/OVIN respective values found in Table 4.
2. The symbol L/D/OVIN represents the L/D/OVIN symbols referenced in Table 4.
3. The symbol L/D/OVDD, in this case, represents the L/D/OVDD symbols referenced in Table 4.
4. For recommended operating conditions, see Table 4.
3.22.2 GIC AC timing specifications
This table provides the GIC input and output AC timing specifications.
Table 111. GIC input AC timing specifications2
Characteristic
Symbol
GIC inputs-minimum pulse width
tPIWID
Min
3
Max
-
Unit
SYSCLKs
Notes
1
1. GIC inputs and outputs are asynchronous to any visible clock. GIC outputs must be synchronized before use by any
external synchronous logic. GIC inputs are required to be valid for at least tPIWID ns to ensure proper operation when working
in edge triggered mode.
2. For recommended operating conditions, see Table 4.
3.23 High-speed serial interfaces (HSSI)
The chip features a Serializer/Deserializer (SerDes) interface to be used for high-speed
serial interconnect applications. The SerDes interface can be used for PCI Express,
SGMII, and serial ATA (SATA) data transfers.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
155
Electrical characteristics
This section describes the most common portion of the SerDes DC electrical
specifications: the DC requirement for SerDes reference clocks. The SerDes data lane's
transmitter (Tx) and receiver (Rx) reference circuits are also described.
3.23.1 Signal terms definitions
The SerDes utilizes differential signaling to transfer data across the serial link. This
section defines the terms that are used in the description and specification of differential
signals.
This figure shows how the signals are defined. For illustration purposes only, one SerDes
lane is used in the description. This figure shows the waveform for either a transmitter
output (SD_TXn_P and SD_TXn_N) or a receiver input (SD_RXn_P and SD_RXn_N).
Each signal swings between A volts and B volts where A > B.
SD_TXn_P
SD_RXn_P
A Volts
or
Vcm= (A + B)/2
SD_TXn_N
SD_RXn_N
B Volts
or
Differential swing, VID orVOD = A - B
Differential peak voltage, VDIFFp = |A - B|
Differential peak-to-peak voltage, VDIFFpp =2 x VDIFFp (not shown)
Figure 78. Differential voltage definitions for transmitter or receiver
Using this waveform, the definitions are as described in the following list. To simplify
the illustration, the definitions assume that the SerDes transmitter and receiver operate in
a fully symmetrical differential signaling environment:
Single-Ended Swing
The transmitter output signals and the receiver input signals SD_TXn_P, SD_TXn_N,
SD_RXn_P and SD_RXn_N each have a peak-to-peak swing of A - B volts. This is
also referred to as each signal wire's single-ended swing.
Differential Output Voltage, VOD (or Differential Output Swing)
The differential output voltage (or swing) of the transmitter, VOD, is defined as the
difference of the two complementary output voltages: VSD_TXn_P - VSD_TXn_N. The
VOD value can be either positive or negative.
Differential Input Voltage, VID (or Differential Input Swing)
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
156
NXP Semiconductors
Electrical characteristics
The differential input voltage (or swing) of the receiver, VID, is defined as the
difference of the two complementary input voltages: VSD_RXn_P- VSD_RXn_N. The VID
value can be either positive or negative.
Differential Peak Voltage, VDIFFp
The peak value of the differential transmitter output signal or the differential receiver
input signal is defined as the differential peak voltage, VDIFFp = |A - B| volts.
Differential Peak-to-Peak, VDIFFp-p
Because the differential output signal of the transmitter and the differential input
signal of the receiver each range from A - B to -(A - B) volts, the peak-to-peak value
of the differential transmitter output signal or the differential receiver input signal is
defined as differential peak-to-peak voltage, VDIFFp-p = 2 x VDIFFp = 2 x |(A - B)| volts,
which is twice the differential swing in amplitude, or twice the differential peak. For
example, the output differential peak-to-peak voltage can also be calculated as VTXDIFFp-p = 2 x |VOD|.
Differential Waveform
The differential waveform is constructed by subtracting the inverting signal
(SD_TXn_N, for example) from the non-inverting signal (SD_TXn_P, for example)
within a differential pair. There is only one signal trace curve in a differential
waveform. The voltage represented in the differential waveform is not referenced to
ground. See Figure 83 as an example for differential waveform.
Common Mode Voltage, Vcm
The common mode voltage is equal to half of the sum of the voltages between each
conductor of a balanced interchange circuit and ground. In this example, for SerDes
output, Vcm_out = (VSD_TXn_P + VSD_TXn_N) ÷ 2 = (A + B) ÷ 2, which is the arithmetic
mean of the two complementary output voltages within a differential pair. In a system,
the common mode voltage may often differ from one component's output to the other's
input. It may be different between the receiver input and driver output circuits within
the same component. It is also referred to as the DC offset on some occasions.
To illustrate these definitions using real values, consider the example of a current mode
logic (CML) transmitter that has a common mode voltage of 2.25 V and outputs, TD and
TD_B. If these outputs have a swing from 2.0 V to 2.5 V, the peak-to-peak voltage swing
of each signal (TD or TD_B) is 500 mV p-p, which is referred to as the single-ended
swing for each signal. Because the differential signaling environment is fully symmetrical
in this example, the transmitter output's differential swing (VOD) has the same amplitude
as each signal's single-ended swing. The differential output signal ranges between 500
mV and -500 mV. In other words, VOD is 500 mV in one phase and -500 mV in the other
phase. The peak differential voltage (VDIFFp) is 500 mV. The peak-to-peak differential
voltage (VDIFFp-p) is 1000 mV p-p.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
157
Electrical characteristics
3.23.2 SerDes reference clocks
The SerDes reference clock inputs are applied to an internal phase-locked loop (PLL)
whose output creates the clock used by the corresponding SerDes lanes. The SerDes
reference clocks inputs are SDn_REF_CLK[1:2]_P and SDn_REF_CLK[1:2]_N.
SerDes may be used for various combinations of the following IP block based on the
RCW Configuration field SRDS_PRTCLn:
•
•
•
•
SGMII (1.25 Gbit/s or 3.125 Gbit/s), QSGMII (5 Gbit/s)
XFI (10 Gbit/s)
PCIe (2.5 Gbit/s, 5 Gbit/s, and 8 Gbit/s )
SATA (1.5 Gbit/s, 3.0 Gbit/s, and 6.0 Gbit/s)
The following sections describe the SerDes reference clock requirements and provide
application information.
3.23.2.1
SerDes spread-spectrum clock source recommendations
SDn_REF_CLKn_P and SDn_REF_CLKn_N are designed to work with spread-spectrum
clocking for the PCI Express protocol only with the spreading specification defined in
Table 112. When using spread-spectrum clocking for PCI Express, both ends of the link
partners should use the same reference clock. For best results, a source without
significant unintended modulation must be used.
The SerDes transmitter does not support spread-spectrum clocking for the SATA
protocol. The SerDes receiver does support spread-spectrum clocking on receive, which
means the SerDes receiver can receive data correctly from a SATA serial link partner
using spread-spectrum clocking.
Spread-spectrum clocking cannot be used if the same SerDes reference clock is shared
with other non-spread-spectrum-supported protocols. For example, if spread-spectrum
clocking is desired on a SerDes reference clock for the PCI Express protocol and the
same reference clock is used for any other protocol, such as SATA or SGMII because of
the SerDes lane usage mapping option, spread-spectrum clocking cannot be used at all.
This table provides the source recommendations for SerDes spread-spectrum clocking.
Table 112. SerDes spread-spectrum clock source recommendations 1
Parameter
Min
Max
Unit
Notes
Frequency modulation
30
33
kHz
—
Frequency spread
+0
-0.5
%
2
Notes:
1. At recommended operating conditions. See Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
158
NXP Semiconductors
Electrical characteristics
Table 112. SerDes spread-spectrum clock source recommendations 1
Parameter
Min
Max
Unit
Notes
2. Only down-spreading is allowed.
3.23.2.2
SerDes reference clock receiver characteristics
This figure shows a receiver reference diagram of the SerDes reference clocks.
50 Ω
SDn_REF_CLKn_P
Input
amp
SDn_REF_CLKn_N
50 Ω
Figure 79. Receiver of SerDes reference clocks
The characteristics of the clock signals are as follows:
• The SerDes receiver's core power supply voltage requirements (SVDDn) are as
specified in Table 4.
• The SerDes reference clock receiver reference circuit structure is as follows:
• The SDn_REF_CLKn_P and SDn_REF_CLKn_N are internally AC-coupled
differential inputs as shown in Figure 79. Each differential clock input
(SDn_REF_CLKn_P or SDn_REF_CLKn_N) has on-chip 50-Ω termination to
SGNDn followed by on-chip AC-coupling.
• The external reference clock driver must be able to drive this termination.
• The SerDes reference clock input can be either differential or single-ended. See
the differential mode and single-ended mode descriptions in Signal terms
definitions for detailed requirements.
• The maximum average current requirement also determines the common mode
voltage range.
• When the SerDes reference clock differential inputs are DC coupled externally
with the clock driver chip, the maximum average current allowed for each input
pin is 8 mA. In this case, the exact common mode input voltage is not critical as
long as it is within the range allowed by the maximum average current of 8 mA
because the input is AC-coupled on-chip.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
159
Electrical characteristics
• This current limitation sets the maximum common mode input voltage to be less
than 0.4 V (0.4 V ÷ 50 = 8 mA) while the minimum common mode input level is
0.1 V above SGNDn. For example, a clock with a 50/50 duty cycle can be
produced by a clock driver with output driven by its current source from 0 mA to
16 mA (0-0.8 V), such that each phase of the differential input has a singleended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
• If the device driving the SDn_REF_CLKn_P and SDn_REF_CLKn_N inputs
cannot drive 50 Ω to SGNDn DC or the drive strength of the clock driver chip
exceeds the maximum input current limitations, it must be AC-coupled off-chip.
• The input amplitude requirement is described in detail in the following sections.
3.23.2.3 DC-level requirements for SerDes reference clocks
The DC-level requirements for the SerDes reference clock inputs are different depending
on the signaling mode used to connect the clock driver chip and SerDes reference clock
inputs, as described below:
• Differential Mode
• The input amplitude of the differential clock must be between 400 mV and 1600
mV differential peak-to-peak (or between 200 mV and 800 mV differential
peak). In other words, each signal wire of the differential pair must have a
single-ended swing of less than 800 mV and greater than 200 mV. This
requirement is same for both external DC-coupled or AC-coupled connection.
• For an external DC-coupled connection, as described in Figure 79, the maximum
average current requirements set the requirement for average voltage (common
mode voltage) as between 100 mV and 400 mV.
• This figure shows the SerDes reference clock input requirement for a DCcoupled connection scheme.
200 mV < Input amplitude or differential peak < 800 mV
SDn_REF_CLKn_P
Vmax < 800 mV
100 mV < Vcm < 400 mV
Vmin > 0 V
SDn_REF_CLKn_N
Figure 80. Differential reference clock input DC requirements (external DC-coupled)
• For an external AC-coupled connection, there is no common mode voltage
requirement for the clock driver. Because the external AC-coupling capacitor
blocks the DC level, the clock driver and the SerDes reference clock receiver
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
160
NXP Semiconductors
Electrical characteristics
operate in different common mode voltages. The SerDes reference clock receiver
in this connection scheme has its common mode voltage set to SGNDn. Each
signal wire of the differential inputs is allowed to swing below and above the
common mode voltage (SGNDn).
• This figure shows the SerDes reference clock input requirement for an ACcoupled connection scheme.
200 mV < Input amplitude or differential peak < 800 mV
SDn_REF_CLKn_P
Vmax < Vcm + 400 mV
Vcm
Vmin > Vcm - 400 mV
SDn_REF_CLKn_N
Figure 81. Differential reference clock input DC requirements (external AC-coupled)
• Single-ended mode
• The reference clock can also be single-ended. The SDn_REF_CLKn_P input
amplitude (single-ended swing) must be between 400 mV and 800 mV peak-topeak (from VMIN to VMAX) with SDn_REF_CLKn_N either left unconnected or
tied to ground.
• To meet the input amplitude requirement, the reference clock inputs may need to
be externally DC- or AC-coupled. For the best noise performance, the reference
of the clock could be DC- or AC-coupled into the unused phase
(SDn_REF_CLKn_N) through the same source impedance as the clock input
(SDn_REF_CLKn_P) in use.
• The SDn_REF_CLKn_P input average voltage must be between 200 and 400
mV.
• This figure shows the SerDes reference clock input requirement for single-ended
signaling mode.
400 mV < SDn_REF_CLKn input amplitude < 800 mV
SDn_REF_CLKn_P
0V
SDn_REF_CLKn_N
Figure 82. Single-ended reference clock input DC requirements
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
161
Electrical characteristics
3.23.2.4
AC requirements for SerDes reference clocks
This table provides the AC requirements for SerDes reference clocks for PCI Express
protocols running at data rates up to 5 Gbit/s.
This includes PCI Express (2.5 GT/s and 5 GT/s), SGMII (1.25 Gbit/s), and SATA (1.5
Gbit/s, 3.0 Gbit/s, and 6.0 Gbit/s). SerDes reference clocks need to be verified by the
customer's application design.
Table 113. SDn_REF_CLKn_P and SDn_REF_CLKn_N input clock requirements
1
Parameter
Symbol
Min
Typ
Max
Unit
Notes
SDn_REF_CLKn_P/ SDn_REF_CLKn_N frequency
range
tCLK_REF
—
100/125/156.25
—
MHz
2
SDn_REF_CLKn_P/ SDn_REF_CLKn_N clock
frequency tolerance
tCLK_TOL
-300
—
300
ppm
3
SDn_REF_CLKn_P/ SDn_REF_CLKn_N clock
frequency tolerance
tCLK_TOL
-100
—
100
ppm
4
SDn_REF_CLKn_P/ SDn_REF_CLKn_N reference
clock duty cycle
tCLK_DUTY
40
50
60
%
5
SDn_REF_CLKn_P/ SDn_REF_CLKn_N max
deterministic peak-to-peak jitter at 10-6 BER
tCLK_DJ
—
—
42
ps
—
SDn_REF_CLKn_P/ SDn_REF_CLKn_N total
reference clock jitter at 10-6 BER (peak-to-peak jitter
at refClk input)
tCLK_TJ
—
—
86
ps
6
SDn_REF_CLKn_P/ SDn_REF_CLKn_N 10 kHz to
1.5 MHz RMS jitter
tREFCLK-LF-RMS
—
—
3
ps
RMS
7
SDn_REF_CLKn_P/ SDn_REF_CLKn_N > 1.5 MHz
to Nyquist RMS jitter
tREFCLK-HF-RMS
—
—
3.1
ps
RMS
7
SDn_REF_CLKn_P/ SDn_REF_CLKn_N RMS
reference clock jitter
tREFCLK-RMS-DC —
—
1
ps
RMS
8
SDn_REF_CLKn_P/ SDn_REF_CLKn_N rising/
falling edge rate
tCLKRR/tCLKFR
0.6
—
4
V/ns
9
Differential input high voltage
VIH
150
—
—
mV
5
Differential input low voltage
VIL
—
—
-150
mV
5
Rising edge rate (SDn_REF_CLKn_P) to falling
edge rate (SDn_REF_CLKn_N) matching
Rise-Fall
Matching
—
—
20
%
10, 11
Notes:
1. For recommended operating conditions, see Table 4.
2. Caution: Only 100 and 125 have been tested. In-between values do not work correctly with the rest of the system.
3. For PCI Express (2.5, 5 and 8 GT/s).
4. For SGMII, 2.5GSGMII and QSGMII.
5. Measurement taken from differential waveform.
6. Limits from PCI Express CEM Rev 2.0.
7. For PCI Express 5 GT/s, per PCI Express base specification Rev 3.0.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
162
NXP Semiconductors
Electrical characteristics
Table 113. SDn_REF_CLKn_P and SDn_REF_CLKn_N input clock requirements
1
Parameter
Symbol
Min
Typ
Max
Unit
Notes
8. For PCI-Express-8 GT/s, per PCI-Express base specification rev 3.0
9. Measured from -150 mV to +150 mV on the differential waveform (derived from SDn_REF_CLKn_P minus
SDn_REF_CLKn_N). The signal must be monotonic through the measurement region for rise and fall time. The 300 mV
measurement window is centered on the differential zero crossing. See Figure 83.
10. Measurement taken from single-ended waveform.
11. Matching applies to rising edge for SDn_REF_CLKn_P and falling edge rate for SDn_REF_CLKn_N. It is measured using
±75 mV window centered on the median cross point where SDn_REF_CLKn_P rising meets SDn_REF_CLKn_N falling. The
median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The
rise edge rate of SDn_REF_CLKn_P must be compared to the fall edge rate of SDn_REF_CLKn_N, the maximum allowed
difference should not exceed 20% of the slowest edge rate. See Figure 84.
This table lists the AC requirements for SerDes reference clocks for protocols running at
data rates greater than 8 GBaud.
This includes XFI (10.3125 GBaud), SerDes reference clocks to be guaranteed by the
customer's application design.
Table 114. SD1_REF_CLKn_P/ SD1_REF_CLKn_N input clock requirements 1
Parameter
Symbol
Min
Typ
Max
Unit
Notes
SD1_REF_CLKn_P/ SD1_REF_CLKn_N frequency range
tCLK_REF
-
156.25
-
MHz
2
SD1_REF_CLKn_P/ SD1_REF_CLKn_N clock frequency
tolerance
tCLK_TOL
-100
-
100
ppm
-
SD1_REF_CLKn_P/ SD1_REF_CLKn_N reference clock
duty cycle
tCLK_DUTY 40
50
60
%
3
SD1_REF_CLKn_P/ SD1_REF_CLKn_N single side band
noise
@1 kHz
-
-
-85
dBC/Hz 4
SD1_REF_CLKn_P/ SD1_REF_CLKn_N single side band
noise
@10 kHz
-
-
-108
dBC/Hz 4
SD1_REF_CLKn_P/ SD1_REF_CLKn_N single side band
noise
@100
kHz
-
-
-128
dBC/Hz 4
SD1_REF_CLKn_P/ SD1_REF_CLKn_N single side band
noise
@1 MHz
-
-
-138
dBC/Hz 4
SD1_REF_CLKn_P/ SD1_REF_CLKn_N single side band
noise
@10MHz -
-
-138
dBC/Hz 4
SD1_REF_CLKn_P/ SD1_REF_CLKn_N random jitter (1.2
MHz to 15 MHz)
tCLK_RJ
-
-
0.8
ps
-
SD1_REF_CLKn_P/ SD1_REF_CLKn_N total reference
clock jitter at 10-12 BER (1.2 MHz to 15 MHz)
tCLK_TJ
-
-
11
ps
-
-
-
-75
dBC
-
SD1_REF_CLKn_P/ SD1_REF_CLKn_N spurious noise (1.2 MHz to 15 MHz)
Notes:
1. For recommended operating conditions, see Table 4.
2. Caution: Only 156.25 have been tested. In-between values do not work correctly with the rest of the system.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
163
Electrical characteristics
Table 114. SD1_REF_CLKn_P/ SD1_REF_CLKn_N input clock requirements 1
Parameter
Symbol
Min
Typ
Max
Unit
Notes
3. Measurement taken from differential waveform.
4. Per XFP Spec. Rev 4.5, the Module Jitter Generation spec at XFI Optical Output is 10mUI (RMS) and 100 mUI (p-p). In the
CDR mode the host is contributing 7 mUI (RMS) and 50 mUI (p-p) jitter.
This figure shows the differential measurement points for rise and fall time.
Rise-edge rate
Fall-edge rate
VIH = + 150 mV
0.0 V
VIL = - 150 mV
SDn_REF_CLKn_P
SDn_REF_CLKn_N
Figure 83. Differential measurement points for rise and fall time
This figure shows the single-ended measurement points for rise and fall time matching.
SDn_REF_CLKn_N
SDn_REF_CLKn_N
TFALL
TRISE
VCROSS MEDIAN + 75 mV
VCROSS MEDIAN
VCROSS MEDIAN
VCROSS MEDIAN - 75 mV
SDn_REF_CLKn_P
SDn_REF_CLKn_P
Figure 84. Single-ended measurement points for rise and fall time matching
3.23.3 SerDes transmitter and receiver reference circuits
This figure shows the reference circuits for SerDes data lane's transmitter and receiver.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
164
NXP Semiconductors
Electrical characteristics
SDn_TXn_P
Transmitter
SDn_RXn_P
50 Ω
100 Ω
SDn_TXn_N
SDn_RXn_N
Receiver
50 Ω
Figure 85. SerDes transmitter and receiver reference circuits
The DC and AC specifications of the SerDes data lanes are defined in each interface
protocol section below based on the application usage:
•
•
•
•
PCI Express
Serial ATA (SATA) interface
SGMII interface
XFI interface
Note that an external AC-coupling capacitor is required for the above serial transmission
protocols with the capacitor value defined in the specification of each protocol section.
3.23.4 PCI Express
This section describes the clocking dependencies, as well as the DC and AC electrical
specifications for the PCI Express bus.
3.23.4.1
Clocking dependencies
The ports on the two ends of a link must transmit data at a rate that is within 600 ppm of
each other at all times. This is specified to allow bit rate clock sources with a ±300 ppm
tolerance.
The platform clock frequency must be greater than or equal to 400 MHz for PCI Express
Gen2. For more details, see Minimum platform frequency requirements for high-speed
interfaces.
3.23.4.2
PCI Express DC physical layer specifications
This section contains the DC specifications for the physical layer of PCI Express on this
chip.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
165
Electrical characteristics
3.23.4.2.1
PCI Express DC physical layer transmitter specifications
This section discusses the PCI Express DC physical layer transmitter specifications for
2.5 GT/s, 5 GT/s, and 8 GT/s.
This table defines the PCI Express 2.0 (2.5 GT/s) DC specifications for the differential
output at all transmitters. The parameters are specified at the component pins.
Table 115. PCI Express 2.0 (2.5 GT/s) differential transmitter output DC specifications (XVDD
= 1.35 V)1
Parameter
Symbol
Min
Typical
Max
Units
Notes
1000
1200
mV
VTX-DIFFp-p = 2 x │ VTX-D+ - VTX-D- │
De-emphasized differential VTX-DE-RATIO 3.0
output voltage (ratio)
3.5
4.0
dB
Ratio of the VTX-DIFFp-p of the second and
following bits after a transition divided by the VTXDIFFp-p of the first bit after a transition.
DC differential transmitter
impedance
80
100
120
Ω
Transmitter DC differential mode low Impedance
40
50
60
Ω
Required transmitter D+ as well as D- DC
Impedance during all states
Differential peak-to-peak
output voltage
VTX-DIFFp-p
ZTX-DIFF-DC
Transmitter DC impedance ZTX-DC
800
Notes:
1. For recommended operating conditions, see Table 4.
This table defines the PCI Express 2.0 (5 GT/s) DC specifications for the differential
output at all transmitters. The parameters are specified at the component pins.
Table 116. PCI Express 2.0 (5 GT/s) differential transmitter output DC specifications (XVDD =
1.35 V)1
Parameter
Symbol
Min
Typical
Max
Units
Notes
Differential peak-to-peak
output voltage
VTX-DIFFp-p
800
1000
1200
mV
VTX-DIFFp-p = 2 x │ VTX-D+ - VTX-D- │
Low-power differential
peak-to-peak output
voltage
VTX-DIFFp-p_low
400
500
1200
mV
VTX-DIFFp-p = 2 x │ VTX-D+ - VTX-D- │
De-emphasized differential VTX-DE-RATIO-3.5dB 3.0
output voltage (ratio)
3.5
4.0
dB
Ratio of the VTX-DIFFp-p of the second and
following bits after a transition divided by the
VTX-DIFFp-p of the first bit after a transition.
De-emphasized differential VTX-DE-RATIO-6.0dB 5.5
output voltage (ratio)
6.0
6.5
dB
Ratio of the VTX-DIFFp-p of the second and
following bits after a transition divided by the
VTX-DIFFp-p of the first bit after a transition.
DC differential transmitter
impedance
ZTX-DIFF-DC
80
100
120
Ω
Transmitter DC differential mode low
impedance
Transmitter DC
Impedance
ZTX-DC
40
50
60
Ω
Required transmitter D+ as well as D- DC
impedance during all states
Notes:
1. For recommended operating conditions, see Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
166
NXP Semiconductors
Electrical characteristics
This table defines the PCI Express 3.0 (8 GT/s) DC characteristics for the differential
output at all transmitters. The parameters are specified at the component pins.
Table 117. PCI Express 3.0 (8 GT/s) differential transmitter output DC characteristics (XVDD
= 1.35 V)3
Parameter
Symbol
Min
Typical
Max
Units
Notes
Full swing transmitter
voltage with no TX Eq
VTX-FS-NO-EQ
800
—
1300
mVp-p
See Note 1.
Reduced swing
transmitter voltage with
no TX Eq
VTX-RS-NO-EQ
400
—
1300
mV
See Note 1.
De-emphasized
VTX-DE-RATIO-3.5dB 3.0
differential output voltage
(ratio)
3.5
4.0
dB
—
De-emphasized
VTX-DE-RATIO-6.0dB 5.5
differential output voltage
(ratio)
6.0
6.5
dB
—
Minimum swing during
EIEOS for full swing
VTX-EIEOS-FS
250
—
—
mVp-p
See Note 2
Minimum swing during
VTX-EIEOS-RS
EIEOS for reduced swing
232
—
—
mVp-p
See Note 2
DC differential transmitter ZTX-DIFF-DC
impedance
80
100
120
Ω
Transmitter DC differential mode low
impedance
Transmitter DC
Impedance
40
50
60
Ω
Required transmitter D+ as well as D- DC
impedance during all states
ZTX-DC
Notes:
1. Voltage measurements for VTX-FS-NO-EQ and VTX-RS-NO-EQ are made using the 64-zeroes/64-ones pattern in the compliance
pattern.
2. Voltage limits comprehend both full swing and reduced swing modes. The transmitter must reject any changes that would
violate this specification. The maximum level is covered in the VTX-FS-NO-EQ measurement which represents the maximum
peak voltage the transmitter can drive. The VTX-EIEOS-FS and VTX-EIEOS-RS voltage limits are imposed to guarantee the EIEOS
threshold of 175 mVP-P at the receiver pin. This parameter is measured using the actual EIEOS pattern that is part of the
compliance pattern and then removing the ISI contribution of the breakout channel.
3. For recommended operating conditions, see Table 4.
3.23.4.2.2
PCI Express DC physical layer receiver specifications
This section discusses the PCI Express DC physical layer receiver specifications for 2.5
GT/s, 5 GT/s, and 8 GT/s.
This table defines the DC specifications for the PCI Express 2.0 (2.5 GT/s) differential
input at all receivers. The parameters are specified at the component pins.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
167
Electrical characteristics
Table 118. PCI Express 2.0 (2.5 GT/s) differential receiver input DC specifications 4
Parameter
Symbol
Min
Typ
Max
Units
Notes
Differential input peak-to-peak
voltage
VRX-DIFFp-p
120
1000
1200 mV
VRX-DIFFp-p = 2 x |VRX-D+ - VRX-D-| See
Note 1.
DC differential input impedance
ZRX-DIFF-DC
80
100
120
Ω
Receiver DC differential mode
impedance. See Note 2
DC input impedance
ZRX-DC
40
50
60
Ω
Required receiver D+ as well as D- DC
Impedance (50 ± 20% tolerance). See
Notes 1 and 2.
Powered down DC input impedance ZRX-HIGH-IMP-DC
50
-
-
kΩ
Required receiver D+ as well as D- DC
Impedance when the receiver
terminations do not have power. See
Note 3.
Electrical idle detect threshold
65
-
175
mV
VRX-IDLE-DET-
VRX-IDLE-DET-DIFFp-p = 2 x |VRX-D+ -VRX-
D-|
DIFFp-p
Measured at the package pins of the
receiver
Notes:
1. Measured at the package pins with a test load of 50Ω to GND on each pin.
2. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM)
there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
3. The receiver DC common mode impedance that exists when no power is present or fundamental reset is asserted. This
helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must
be measured at 300 mV above the receiver ground.
4. For recommended operating conditions, see Table 4.
This table defines the DC specifications for the PCI Express 2.0 (5 GT/s) differential
input at all receivers. The parameters are specified at the component pins.
Table 119. PCI Express 2.0 (5 GT/s) differential receiver input DC specifications 4
Parameter
Symbol
Min
Typ
Max
Units
Notes
Differential input peak-to-peak voltage VRX-DIFFp-p
120
1000
1200 mV
VRX-DIFFp-p = 2 x |VRX-D+ - VRX-D-|
See Note 1.
DC differential input impedance
ZRX-DIFF-DC
80
100
120
Ω
Receiver DC differential mode
impedance. See Note 2
DC input impedance
ZRX-DC
40
50
60
Ω
Required receiver D+ as well as DDC Impedance (50 ± 20%
tolerance). See Notes 1 and 2.
Powered down DC input impedance
ZRX-HIGH-IMP-DC
50
-
-
kΩ
Required receiver D+ as well as DDC Impedance when the receiver
terminations do not have power.
See Note 3.
Electrical idle detect threshold
VRX-IDLE-DET-
65
-
175
mV
VRX-IDLE-DET-DIFFp-p = 2 x |VRX-D+ VRX-D-|
DIFFp-p
Measured at the package pins of
the receiver
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
168
NXP Semiconductors
Electrical characteristics
Table 119. PCI Express 2.0 (5 GT/s) differential receiver input DC specifications 4
(continued)
Parameter
Symbol
Min
Typ
Max
Units
Notes
Notes:
1. Measured at the package pins with a test load of 50 Ω to GND on each pin.
2. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM)
there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
3. The receiver DC common mode impedance that exists when no power is present or fundamental reset is asserted. This
helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must
be measured at 300 mV above the receiver ground.
4. For recommended operating conditions, see Table 4.
This table defines the DC characteristics for the PCI Express 3.0 (8 GT/s) differential
input at all receivers. The parameters are specified at the component pins.
Table 120. PCI Express 3.0 (8 GT/s) differential receiver input DC characteristics 6
Characteristic
Symbol
Min
Typ
Max
Units
Notes
DC differential input impedance
ZRX-DIFF-DC
80
100
120
Ω
Receiver DC differential mode
impedance. See Note 2
DC input impedance
ZRX-DC
40
50
60
Ω
Required receiver D+ as well as DDC Impedance (50 ± 20%
tolerance). See Notes 1 and 2.
Powered down DC input impedance
ZRX-HIGH-IMP-DC
50
—
—
kΩ
Required receiver D+ as well as DDC Impedance when the receiver
terminations do not have power.
See Note 3.
Generator launch voltage
VRX-LAUNCH-8G
—
800
—
mV
Measured at TP1 per PCI Express
base spec. rev 3.0
Eye height (-20dB Channel)
VRX-SV-8G
25
—
—
mV
Measured at TP2P per PCI Express
base spec. rev 3.0. See Notes 4, 5
Eye height (-12dB Channel)
VRX-SV-8G
50
—
—
mV
Measured at TP2P per PCI Express
base spec. rev 3.0. See Notes 4, 5
Eye height (-3dB Channel)
VRX-SV-8G
200
—
—
mV
Measured at TP2P per PCI Express
base spec. rev 3.0. See Notes 4, 5
Electrical idle detect threshold
VRX-IDLE-DET-
65
—
175
mV
VRX-IDLE-DET-DIFFp-p = 2 x |VRX-D+ VRX-D-|
DIFFp-p
Measured at the package pins of
the receiver
Notes:
1. Measured at the package pins with a test load of 50 Ω to GND on each pin.
2. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM)
there is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.
3. The receiver DC common mode impedance that exists when no power is present or fundamental reset is asserted. This
helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must
be measured at 300 mV above the receiver ground.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
169
Electrical characteristics
Table 120. PCI Express 3.0 (8 GT/s) differential receiver input DC characteristics 6
Characteristic
Symbol
Min
Typ
Max
Units
Notes
4. VRX-SV-8G is tested at three different voltages to ensure the receiver device under test is capable of equalizing over a range
of channel loss profiles. The "SV" in the parameter names refers to stressed voltage.
5. VRX-SV-8G is referenced to TP2P and is obtained after post processing data captured at TP2.
6. For recommended operating conditions, see Table 4.
3.23.4.3
PCI Express AC physical layer specifications
This section describes the AC specifications for the physical layer of PCI Express on this
device.
3.23.4.3.1
PCI Express AC physical layer transmitter specifications
This section describes the PCI Express AC physical layer transmitter specifications for
2.5 GT/s, 5 GT/s, and 8 GT/s.
This table defines the PCI Express 2.0 (2.5 GT/s) AC specifications for the differential
output at all transmitters. The parameters are specified at the component pins. The AC
timing specifications do not include RefClk jitter.
Table 121. PCI Express 2.0 (2.5 GT/s) differential transmitter output AC specifications4
Parameter
Symbol
Min
Typ
Max
Units
Notes
Unit interval
UI
399.88 400
400.12 ps
Each UI is 400 ps ± 300 ppm. UI does not
account for spread-spectrum clock dictated
variations.
Minimum transmitter eye
width
TTX-EYE
0.75
-
The maximum transmitter jitter can be
derived as TTX-MAX-JITTER = 1 - TTX-EYE =
0.25 UI. Does not include spread-spectrum
or RefCLK jitter. Includes device random
jitter at 10-12.
-
UI
See Notes 1 and 2.
Maximum time between the TTX-EYE-MEDIANjitter median and maximum to- MAX-JITTER
deviation from the median
-
-
0.125
UI
Jitter is defined as the measurement
variation of the crossing points (VTX-DIFFp-p =
0 V) in relation to a recovered transmitter
UI. A recovered transmitter UI is calculated
over 3500 consecutive unit intervals of
sample data. Jitter is measured using all
edges of the 250 consecutive UI in the
center of the 3500 UI used for calculating
the transmitter UI. See Notes 1 and 2.
AC coupling capacitor
75
-
200
nF
All transmitters must be AC coupled. The
AC coupling is required either within the
media or within the transmitting component
itself. See Note 3.
CTX
Notes:
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
170
NXP Semiconductors
Electrical characteristics
Table 121. PCI Express 2.0 (2.5 GT/s) differential transmitter output AC specifications4
Parameter
Symbol
Min
Typ
Max
Units
Notes
1. Specified at the measurement point into a timing and voltage test load as shown in Figure 87 and measured over any 250
consecutive transmitter UIs.
2. A TTX-EYE = 0.75 UI provides for a total sum of deterministic and random jitter budget of TTX-JITTER-MAX = 0.25 UI for the
transmitter collected over any 250 consecutive transmitter UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the
total transmitter jitter budget collected over any 250 consecutive transmitter UIs. It must be noted that the median is not the
same as the mean. The jitter median describes the point in time where the number of jitter points on either side is
approximately equal as opposed to the averaged time value.
3. The chip's SerDes transmitter does not have CTX built-in. An external AC coupling capacitor is required.
4. For recommended operating conditions, see Table 4.
This table defines the PCI Express 2.0 (5 GT/s) AC specifications for the differential
output at all transmitters. The parameters are specified at the component pins. The AC
timing specifications do not include RefClk jitter.
Table 122. PCI Express 2.0 (5 GT/s) differential transmitter output AC specifications3
Parameter
Unit Interval
Symbol
UI
Minimum transmitter eye width TTX-EYE
Min
Typ
Max
Units
Notes
199.94 200.00 200.06 ps
Each UI is 200 ps ± 300 ppm. UI does not
account for spread-spectrum clock dictated
variations.
0.75
The maximum transmitter jitter can be
derived as: TTX-MAX-JITTER = 1 - TTX-EYE =
0.25 UI.
-
-
UI
See Note 1.
Transmitter deterministic jitter
> 1.5 MHz
TTX-HF-DJ-DD
-
-
0.15
UI
-
Transmitter RMS jitter < 1.5
MHz
TTX-LF-RMS
-
3.0
-
ps
Reference input clock RMS jitter (< 1.5
MHz) at pin < 1 ps
AC coupling capacitor
CTX
75
-
200
nF
All transmitters must be AC coupled. The
AC coupling is required either within the
media or within the transmitting component
itself. See Note 2.
Notes:
1. Specified at the measurement point into a timing and voltage test load as shown in Figure 87 and measured over any 250
consecutive transmitter UIs.
2. The chip's SerDes transmitter does not have CTX built-in. An external AC coupling capacitor is required.
3. For recommended operating conditions, see Table 4.
This table defines the PCI Express 3.0 (8 GT/s) AC specifications for the differential
output at all transmitters. The parameters are specified at the component pins. The AC
timing specifications do not include RefClk jitter.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
171
Electrical characteristics
Table 123. PCI Express 3.0 (8 GT/s) differential transmitter output AC specifications4
Parameter
Symbol
Min
Typ
Max
Units
Notes
Unit Interval
UI
124.9625 125.00 125.0375 ps
Each UI is 125 ps ± 300 ppm. UI does
not account for spread-spectrum clock
dictated variations.
Transmitter uncorrelated total
jitter
TTX-UTJ
—
—
31.25
ps p-p —
Transmitter uncorrelated
deterministic jitter
TTX-UDJ-DD
—
—
12
ps p-p —
Total uncorrelated pulse width TTX-UPW-TJ
jitter (PWJ)
—
—
24
ps p-p See Note 1, 2
Deterministic data dependent
jitter (DjDD) uncorrelated
pulse width jitter (PWJ)
TTX-UPW-DJDD
—
—
10
ps p-p See Note 1, 2
Data dependent jitter
TTX-DDJ
—
—
18
ps p-p See Note 2
AC coupling capacitor
CTX
176
—
265
nF
All transmitters must be AC coupled.
The AC coupling is required either
within the media or within the
transmitting component itself. See
Note 3.
Notes:
1. PWJ parameters shall be measured after data dependent jitter (DDJ) separation.
2. Measured with optimized preset value after de-embedding to transmitter pin.
3. The chip's SerDes transmitter does not have CTX built-in. An external AC coupling capacitor is required.
4. For recommended operating conditions, see Table 4.
3.23.4.3.2
PCI Express AC physical layer receiver specifications
This section discusses the PCI Express AC physical layer receiver specifications for 2.5
GT/s, 5 GT/s, and 8 GT/s.
This table defines the AC specifications for the PCI Express 2.0 (2.5 GT/s) differential
input at all receivers. The parameters are specified at the component pins. The AC timing
specifications do not include RefClk jitter.
Table 124. PCI Express 2.0 (2.5 GT/s) differential receiver input AC specifications4
Parameter
Unit Interval
Symbol
UI
Minimum receiver eye width TRX-EYE
Min
Typ
Max
Units
Notes
399.88
400.00
400.12
ps
Each UI is 400 ps ± 300 ppm. UI does not
account for spread-spectrum clock
dictated variations.
0.4
-
-
UI
The maximum interconnect media and
transmitter jitter that can be tolerated by
the receiver can be derived as TRX-MAXJITTER = 1 - TRX-EYE= 0.6 UI.
See Notes 1 and 2.
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
172
NXP Semiconductors
Electrical characteristics
Table 124. PCI Express 2.0 (2.5 GT/s) differential receiver input AC specifications4
(continued)
Parameter
Symbol
Min
Maximum time between the TRX-EYE-MEDIAN- jitter median and maximum to-MAX-JITTER
deviation from the median.
Typ
-
Max
0.3
Units
UI
Notes
Jitter is defined as the measurement
variation of the crossing points (VRX-DIFFp-p
= 0 V) in relation to a recovered
transmitter UI. A recovered transmitter UI
is calculated over 3500 consecutive unit
intervals of sample data. Jitter is
measured using all edges of the 250
consecutive UI in the center of the 3500
UI used for calculating the transmitter UI.
See Notes 1, 2 and 3.
Notes:
1. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 87 must be used
as the receiver device when taking measurements. If the clocks to the receiver and transmitter are not derived from the same
reference clock, the transmitter UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.
2. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and
interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter
distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget
collected over any 250 consecutive transmitter UIs. It must be noted that the median is not the same as the mean. The jitter
median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the
averaged time value. If the clocks to the receiver and transmitter are not derived from the same reference clock, the
transmitter UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.
3. It is recommended that the recovered transmitter UI is calculated using all edges in the 3500 consecutive UI interval with a
fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental
and simulated data.
4. For recommended operating conditions, see Table 4.
This table defines the AC specifications for the PCI Express 2.0 (5 GT/s) differential
input at all receivers. The parameters are specified at the component pins. The AC timing
specifications do not include RefClk jitter.
Table 125. PCI Express 2.0 (5 GT/s) differential receiver input AC specifications1
Parameter
Min
Typ
Max
199.94
200.00
200.06
ps
Each UI is 200 ps ± 300 ppm. UI does
not account for spread-spectrum clock
dictated variations.
Max receiver inherent timing TRX-TJ-CC
error
-
-
0.4
UI
The maximum inherent total timing error
for common RefClk receiver architecture
Max receiver inherent
deterministic timing error
-
-
0.30
UI
The maximum inherent deterministic
timing error for common RefClk receiver
architecture
Unit Interval
Symbol
UI
TRX-DJ-DD-CC
Units
Notes
Note:
1. For recommended operating conditions, see Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
173
Electrical characteristics
This table defines the AC specifications for the PCI Express 3.0 (8 GT/s) differential
input at all receivers. The parameters are specified at the component pins. The AC timing
specifications do not include RefClk jitter.
Table 126. PCI Express 3.0 (8 GT/s) differential receiver input AC specifications5
Parameter
Symbol
Min
Typ
Max
Units
Notes
Unit Interval
UI
124.9625 125.00
125.0375 ps
Each UI is 125 ps ± 300 ppm. UI
does not account for spreadspectrum clock dictated variations.
See Note 1.
Eye Width at TP2P
TRX-SV-8G
0.3
—
0.35
UI
See Note 1
Differential mode interference VRX-SV-DIFF-8G
14
—
—
mV
Frequency = 2.1GHz. See Note 2.
Sinusoidal Jitter at 100 MHz
TRX-SV-SJ-8G
—
—
0.1
UI p-p Fixed at 100 MHz. See Note 3.
Random Jitter
TRX-SV-RJ-8G
—
—
2.0
ps
RMS
Random jitter spectrally flat before
filtering. See Note 4.
Note:
1. TRX-SV-8G is referenced to TP2P and obtained after post processing data captured at TP2. TRX-SV-8G includes the effects of
applying the behavioral receiver model and receiver behavioral equalization.
2. VRX-SV-DIFF-8G voltage may need to be adjusted over a wide range for the different loss calibration channels.
3. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency as shown in Figure 86.
4. Random jitter (Rj) is applied over the following range: The low frequency limit may be between 1.5 and 10 MHz, and the
upper limit is 1.0 GHz. See Figure 86 for details. Rj may be adjusted to meet the 0.3 UI value for TRX-SV-8G.
5. For recommended operating conditions, see Table 4.
0.03 MHz
100 MHz
Sj sweep range
Rj (ps RMS)
Sj (UI PP)
1.0 UI
20 dB
decade
Sj
0.1 UI
Rj
~ 3.0 ps RMS
0.01 MHz
0.1 MHz
1.0 MHz
10 MHz
100 MHz
1000 MHz
Figure 86. Swept sinusoidal jitter mask
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
174
NXP Semiconductors
Electrical characteristics
3.23.4.4
Test and measurement load
The AC timing and voltage parameters must be verified at the measurement point. The
package pins of the device must be connected to the test/measurement load within 0.2
inches of that load, as shown in the following figure.
NOTE
The allowance of the measurement point to be within 0.2 inches
of the package pins is meant to acknowledge that package/
board routing may benefit from D+ and D- not being exactly
matched in length at the package pin boundary. If the vendor
does not explicitly state where the measurement point is
located, the measurement point is assumed to be the D+ and Dpackage pins.
D + package pin
C = CTX
Transmitter
silicon
+ package
C = CTX
D - package pin
R = 50 Ω
R = 50 Ω
Figure 87. Test and measurement load
3.23.5 Serial ATA (SATA) interface
This section describes the DC and AC electrical specifications for the SATA interface.
3.23.5.1
SATA DC electrical characteristics
This section describes the DC electrical characteristics for SATA.
3.23.5.1.1
SATA DC transmitter output characteristics
This table provides the differential transmitter output DC characteristics for the SATA
interface at Gen1i/1m or 1.5 Gbit/s transmission.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
175
Electrical characteristics
Table 127. Gen1i/1m 1.5 G transmitter DC specifications (XVDD = 1.35 V)3
Parameter
Symbol
Min
Typ
Max
Units
Notes
Tx differential output voltage
VSATA_TXDIFF
400
500
600
mV p-p
1
Tx differential pair impedance
ZSATA_TXDIFFIM
85
100
115
Ω
2
Notes:
1. Terminated by 50 Ω load.
2. DC impedance.
3. For recommended operating conditions, see Table 4.
This table provides the differential transmitter output DC characteristics for the SATA
interface at Gen2i/2m or 3.0 Gbit/s transmission.
Table 128. Gen 2i/2m 3 G transmitter DC specifications (XVDD = 1.35 V)2
Parameter
Symbol
Min
Typ
Max
Units
Notes
Transmitter differential output voltage
VSATA_TXDIFF
400
—
700
mV p-p
1
Transmitter differential pair impedance
ZSATA_TXDIFFIM
85
100
115
Ω
—
Notes:
1. Terminated by 50 Ω load.
2. For recommended operating conditions, see Table 4.
This table provides the differential transmitter output DC characteristics for the SATA
interface at Gen 3i transmission.
Table 129. Gen 3i transmitter DC specifications (XVDD = 1.35 V)2
Parameter
Symbol
Min
Typ
Max
Units
Notes
Transmitter differential output voltage
VSATA_TXDIFF
240
—
900
mV p-p
1
Transmitter differential pair impedance
ZSATA_TXDIFFIM
85
100
115
Ω
—
Notes:
1. Terminated by 50 Ω load.
2. For recommended operating conditions, see Table 4.
3.23.5.1.2
SATA DC receiver input characteristics
This table provides the Gen1i/1m or 1.5 Gbit/s differential receiver input DC
characteristics for the SATA interface.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
176
NXP Semiconductors
Electrical characteristics
Table 130. Gen1i/1m 1.5 G receiver input DC specifications 3
Parameter
Symbol
Differential input voltage
VSATA_RXDIFF
Min
Typical
Max
Units
Notes
240
500
600
mV p-p
1
Differential receiver input impedance ZSATA_RXSEIM
85
100
115
Ω
2
OOB signal detection threshold
50
120
240
mV p-p
—
VSATA_OOB
Notes:
1. Voltage relative to common of either signal comprising a differential pair.
2. DC impedance.
3. For recommended operating conditions, see Table 4.
This table provides the Gen2i/2m or 3 Gbit/s differential receiver input DC characteristics
for the SATA interface.
Table 131. Gen2i/2m 3 G receiver input DC specifications 3
Parameter
Symbol
Min
Typical
Max
Units
Notes
Differential input voltage
VSATA_RXDIFF
240
—
750
mV p-p
1
Differential receiver input impedance
ZSATA_RXSEIM
85
100
115
Ω
2
OOB signal detection threshold
VSATA_OOB
75
120
240
mV p-p
2
Notes:
1. Voltage relative to common of either signal comprising a differential pair.
2. DC impedance.
3. For recommended operating conditions, see Table 4.
This table provides the Gen 3i differential receiver input DC characteristics for the SATA
interface.
Table 132. Gen 3i receiver input DC specifications 3
Parameter
Symbol
Differential input voltage
VSATA_RXDIFF
Min
Typical
Max
Units
Notes
240
—
1000
mV p-p
1
Differential receiver input impedance ZSATA_RXSEIM
85
100
115
Ω
2
OOB signal detection threshold
75
120
200
mV p-p
—
—
Notes:
1. Voltage relative to common of either signal comprising a differential pair.
2. DC impedance.
3. For recommended operating conditions, see Table 4.
3.23.5.2
SATA AC timing specifications
This section describes the SATA AC timing specifications.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
177
Electrical characteristics
3.23.5.2.1
AC requirements for SATA REF_CLK
This table provides the AC requirements for the SATA reference clock. These
requirements must be guaranteed by the customer's application design.
Table 133. SATA reference clock input requirements6
Parameter
Symbol
Min
Typ
Max
Unit
Notes
SDn_REF_CLK1_P/SDn_REF_CLK1_N
frequency range
tCLK_REF
—
100/125
—
MHz
1
SDn_REF_CLK1_P/SDn_REF_CLK1_N clock
frequency tolerance
tCLK_TOL
-350
—
+350
ppm
—
SDn_REF_CLK1_P/SDn_REF_CLK1_N
reference clock duty cycle
tCLK_DUTY
40
50
60
%
5
SDn_REF_CLK1_P/SDn_REF_CLK1_N cycle- tCLK_CJ
to-cycle clock jitter (period jitter)
—
—
100
ps
2
SDn_REF_CLK1_P/SDn_REF_CLK1_N total
tCLK_PJ
reference clock jitter, phase jitter (peak-to-peak)
-50
—
+50
ps
2, 3, 4
Notes:
1. Caution: Only 100 and 125 MHz have been tested. In-between values do not work correctly with the rest of the system.
2. At RefClk input.
3. In a frequency band from 150 kHz to 15 MHz at BER of 10-12.
4. Total peak-to-peak deterministic jitter must be less than or equal to 50 ps.
5. Measurement taken from differential waveform.
6. For recommended operating conditions, see Table 4.
3.23.5.2.2
AC transmitter output characteristics
This table provides the differential transmitter output AC characteristics for the SATA
interface at Gen 1i/1m or 1.5 Gbit/s transmission. The AC timing specifications do not
include RefClk jitter.
Table 134. Gen 1i/1m 1.5 G transmitter AC specifications2
Parameter
Symbol
Min
Typ
Max
Units
Notes
Channel speed
tCH_SPEED
—
1.5
—
Gbit/s
—
Unit interval
TUI
666.4333
666.6667
670.2333
ps
—
Total jitter data-data 5 UI
USATA_TXTJ5UI
—
—
0.355
UI p-p
1
Total jitter, data-data 250 UI
USATA_TXTJ250UI
—
—
0.47
UI p-p
1
Deterministic jitter, data-data 5 UI
USATA_TXDJ5UI
—
—
0.175
UI p-p
1
Deterministic jitter, data-data 250 UI
USATA_TXDJ250UI
—
—
0.22
UI p-p
1
Notes:
1. Measured at transmitter output pins peak-to-peak phase variation; random data pattern.
2. For recommended operating conditions, see Table 4.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
178
NXP Semiconductors
Electrical characteristics
This table provides the differential transmitter output AC characteristics for the SATA
interface at Gen 2i/2m or 3.0 Gbit/s transmission. The AC timing specifications do not
include RefClk jitter.
Table 135. Gen 2i/2m 3 G transmitter AC specifications2
Parameter
Symbol
Min
Typ
Max
Units
Notes
Channel speed
tCH_SPEED
—
3.0
—
Gbit/s
—
Unit Interval
TUI
333.2167
333.3333
335.1167
ps
—
Total jitter fC3dB = fBAUD ÷ 500
USATA_TXTJfB/500
—
—
0.37
UI p-p
1
Total jitter fC3dB = fBAUD ÷ 1667
USATA_TXTJfB/1667
—
—
0.55
UI p-p
1
Deterministic jitter, fC3dB = fBAUD ÷ 500 USATA_TXDJfB/500
—
—
0.19
UI p-p
1
Deterministic jitter, fC3dB = fBAUD ÷
1667
—
—
0.35
UI p-p
1
USATA_TXDJfB/1667
Notes:
1. Measured at transmitter output pins peak-to-peak phase variation; random data pattern.
2. For recommended operating conditions, see Table 4.
This table provides the differential transmitter output AC characteristics for the SATA
interface at Gen 3i transmission. The AC timing specifications do not include RefClk
jitter.
Table 136. Gen 3i transmitter AC specifications 1
Parameter
Symbol
Min
Typ
Max
Units
Speed
—
—
6.0
—
Gbit/s
Total jitter before and after compliance interconnect channel
JT
—
—
0.52
UI p-p
Random jitter before compliance interconnect channel
JR
—
—
0.18
UI p-p
Unit interval
UI
166.6083
166.6667
167.5583
ps
Notes:
1. For recommended operating conditions, see Table 4.
3.23.5.2.3
AC differential receiver input characteristics
This table provides the Gen1i/1m or 1.5 Gbit/s differential receiver input AC
characteristics for the SATA interface. The AC timing specifications do not include
RefClk jitter.
Table 137. Gen 1i/1m 1.5 G receiver AC specifications2
Parameter
Unit Interval
Symbol
TUI
Min
666.4333
Typical
666.6667
Max
670.2333
Units
ps
Notes
—
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
179
Electrical characteristics
Table 137. Gen 1i/1m 1.5 G receiver AC specifications2 (continued)
Parameter
Symbol
Min
Typical
Max
Units
Notes
Total jitter data-data 5 UI
USATA_RXTJ5UI
—
—
0.43
UI p-p
1
Total jitter, data-data 250 UI
USATA_RXTJ250UI
—
—
0.60
UI p-p
1
Deterministic jitter, data-data 5 UI
USATA_RXDJ5UI
—
—
0.25
UI p-p
1
Deterministic jitter, data-data 250 UI
USATA_RXDJ250UI
—
—
0.35
UI p-p
1
Notes:
1. Measured at the receiver.
2. For recommended operating conditions, see Table 4.
This table provides the differential receiver input AC characteristics for the SATA
interface at Gen2i/2m or 3.0 Gbit/s transmission. The AC timing specifications do not
include RefClk jitter.
Table 138. Gen 2i/2m 3 G receiver AC specifications2
Parameter
Symbol
Min
Typical
Max
Units
Notes
Unit Interval
TUI
333.2167
333.3333
335.1167
ps
—
Total jitter fC3dB = fBAUD ÷ 500
USATA_RXTJfB/500
—
—
0.60
UI p-p
1
Total jitter fC3dB = fBAUD ÷ 1667
USATA_RXTJfB/1667
—
—
0.65
UI p-p
1
Deterministic jitter, fC3dB = fBAUD ÷ 500
USATA_RXDJfB/500
—
—
0.42
UI p-p
1
—
—
0.35
UI p-p
1
Deterministic jitter, fC3dB = fBAUD ÷ 1667 USATA_RXDJfB/1667
Notes:
1. Measured at the receiver.
2. For recommended operating conditions, see Table 4.
This table provides the differential receiver input AC characteristics for the SATA
interface at Gen 3i transmission. The AC timing specifications do not include RefClk
jitter.
Table 139. Gen 3i receiver AC specifications2
Parameter
Symbol
Min
Typical
Max
Units
Notes
Total jitter after compliance
interconnect channel
JT
—
—
0.60
UI p-p
1
Random jitter before compliance
interconnect channel
JR
—
—
0.18
UI p-p
1
Unit interval: 6.0 Gb/s
UI
166.6083
166.6667
167.5583
ps
—
Notes:
1. Measured at the receiver.
2. The AC specifications do not include RefClk jitter.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
180
NXP Semiconductors
Security fuse processor
4 Security fuse processor
This chip implements the QorIQ platform's trust architecture, supporting capabilities such
as secure boot. Use of the trust architecture feature is dependent on programming fuses in
the Security Fuse Processor (SFP). The details of the trust architecture and SFP can be
found in the chip reference manual.
To program SFP fuses, the user is required to supply 1.8 V to the TA_PROG_SFP pin per
Power sequencing. TA_PROG_SFP should only be powered for the duration of the fuse
programming cycle, with a per device limit of six fuse programming cycles. All other
times, TA_PROG_SFP should be connected to GND. The sequencing requirements for
raising and lowering TA_PROG_SFP are shown in Figure 9. To ensure device reliability,
fuse programming must be performed within the recommended fuse programming
temperature range per Table 4.
NOTE
Users not implementing the QorIQ platform's trust architecture
features should connect TA_PROG_SFP to GND.
5 Hardware design considerations
5.1 Clock ranges
This table provides the clocking specifications for the processor core, platform, memory,
and integrated flash controller.
Table 140. Processor, platform, and memory clocking specifications
Characteristic
Maximum processor core frequency
1200 MHz
Min
1400 MHz
Max
Min
1600 MHz
Max
Min
Unit
Notes
1800 MHz
Max
Min
Max
Core cluster group PLL frequency
1000
1200
1000
1400
1000
1600
1000
1800
MHz
1, 2
Platform clock frequency
400
400
400
600
400
700
400
700
MHz
1, 3
Memory Bus Clock Frequency (DDR4) 650
800
650
1050
650
1050
650
1050
MHz
1, 4, 5
IFC clock frequency
-
100
-
100
-
100
-
100
MHz
FMan
400
600
400
600
400
800
400
800
MHz
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
181
Hardware design considerations
Table 140. Processor, platform, and memory clocking specifications (continued)
Characteristic
Maximum processor core frequency
1200 MHz
Min
Max
1400 MHz
Min
1600 MHz
Max
Min
Max
Unit
Notes
1800 MHz
Min
Max
1. Caution:The platform clock to SYSCLK ratio and core to SYSCLK ratio settings must be chosen such that the resulting
SYSCLK frequency, core frequency, and platform clock frequency do not exceed their respective maximum or
minimum operating frequencies.
2. The memory bus clock speed is half the DDR4 data rate. The DDR4 memory bus clock frequency is limited to min =
650 MHz.
3. The memory bus clock speed is dictated by its own PLL.
4. The integrated flash controller (IFC) clock speed on IFC_CLK[0:1] is determined by the IFC module input clock
(platform clock / 2) divided by the IFC ratio programmed in CCR[CLKDIV]. See the chip reference manual for more
information.
5. The minimum platform frequency should meet the requirements in Minimum platform frequency requirements for highspeed interfaces.
6. For supported voltage/frequency options, see the orderable part list of QorIQ LS1046A and LS1026A Multicore
Communications Processors at www.nxp.com.
5.1.1 DDR clock ranges
The DDR memory controller can run only in asynchronous mode, where the memory bus
is clocked with the clock provided on the DDRCLK input pin, which has its own
dedicated PLL.
This table provides the clocking specifications for the memory bus.
Table 141. Memory bus clocking specifications
Characteristic
Memory bus clock frequency
and data rate for DDR4
Min Freq.(MHz)
650
Max Freq.(MHz)
1050
Min Data Rate
(MT/s)
1300
Max Data Rate
(MT/s)
2100
Notes
1, 2, 3
Notes:
1. Caution: The platform clock to SYSCLK ratio, core to SYSCLK ratio and DDR to SYSCLK (or DDRCLK) ratio settings
must be chosen such that the resulting platform frequency, core frequency and DDRCLK frequency do not exceed their
respective maximum or minimum operating frequencies.
2. The memory bus clock refers to the chip's memory controllers' Dn_MCK[0:1] and Dn_MCK[0:1] output clocks, running
at half of the DDR data rate.
3. The memory bus clock speed is dictated by its own PLL.
4. For supported voltage/frequency options, see the orderable part list of QorIQ LS1046A and LS1026A Multicore
Communications Processors at www.nxp.com.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
182
NXP Semiconductors
Thermal
5.2 Minimum platform frequency requirements for high-speed
interfaces
The platform clock frequency must be considered for proper operation of high-speed
interfaces as described below. For proper PCI Express operation, the platform clock
frequency must be greater than or equal to:
527 MHz x (PCI Express link width)
16
Figure 88. Gen 1 PEX minimum platform frequency
527 MHz x (PCI Express link width)
8
Figure 89. Gen 2 PEX minimum platform frequency
527 MHz x (PCI Express link width)
4
Figure 90. Gen 3 PEX minimum platform frequency
See section "Link Width," in the chip reference manual for PCI Express interface width
details. Note that "PCI Express link width" in the above equation refers to the negotiated
link width as the result of PCI Express link training, which may or may not be the same
as the link width POR selection. It refers to the widest port in use, not the combined
width of the number ports in use.
5.3 Minimum DPAA frequency requirements
The minimum DPAA frequency of 533 MHz is required for 10 G operations.
6 Thermal
This table shows the thermal characteristics for the chip. Note that these numbers are
based on design estimates and are preliminary.
Table 142. Package thermal characteristics
Rating
Board
Symbol
Value
Unit
Notes
Junction-to-ambient, natural convection
Single-layer board (1s)
RΘJA
25.18
°C/W
1
Junction-to-ambient, natural convection
Four-layer board (2s2p) RΘJA
14.35
°C/W
1
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
183
Thermal
Table 142. Package thermal characteristics (continued)
Rating
Board
Junction-to-ambient, moving air (1 m/s)
Single-layer board (1s)
Junction-to-ambient, moving air (1 m/s)
Symbol
RΘJMA
Value
Unit
Notes
15.47
°C/W
1
Four-layer board (2s2p) RΘJMA
9.35
°C/W
1
Junction-to-board
-
RΘJB
4.66
°C/W
2
Junction-to-case (top)
-
RΘJC
0.71
°C/W
3
Junction-to-lid top
-
RΘJLT
0.36
°C/W
4
1. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-2A and JESD51-6 (moving air). Thermal test
board meets JEDEC specification for this package (JESD51-9).
2. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification
for the specified package.
3. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer.
4. Junction-to-lid-top thermal resistance is determined using the MIL-STD 883 Method 1012.1. However, instead of the cold
plate, the lid top temperature is used here for the reference case temperature. Reported value does not include the thermal
resistance layer between the package and cold plate.
5. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a
specific standardized environment. It is not meant to predict the performance of a package in an application-specific
environment
Table 143. Thermal resistance with heat sink in open flow
Heat sink with thermal grease
Air flow
Thermal resistance (°C/W)
Wakefield 53 x 53 x 25 mm Pin Fin
Natural Convection
6.5
0.5 m/s
4.0
1 m/s
2.9
2 m/s
2.4
4 m/s
2.1
Natural Convection
8.8
0.5 m/s
5.3
1 m/s
4.2
2 m/s
3.9
4 m/s
3.3
Natural Convection
12.5
0.5 m/s
8.9
1 m/s
6.7
2 m/s
5.1
4 m/s
4.1
Natural Convection
9.0
0.5 m/s
5.8
1 m/s
4.3
2 m/s
3.2
4 m/s
2.7
Wk698
Aavid 35x31x23 mm Pin Fin
av10563
Aavid 30x30x9.4 mm Pin Fin
Av 3358
Aavid 43x41x16.5 mm Pin Fin
Av 2332
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
184
NXP Semiconductors
Thermal
Table 143. Thermal resistance with heat sink in open flow (continued)
1. Simulations with heat sinks were done with the package mounted on the 2s2p thermal test board.
2. The thermal interface material was a typical thermal grease such as Dow Corning 340 or Wakefield 120 grease.
3. See Thermal management information, for additional details.
6.1 Recommended thermal model
Information about Flotherm models of the package or thermal data not available in this
document can be obtained from your local NXP sales office.
6.2 Temperature diode
The chip has temperature diodes that can be used to monitor its temperature by using
some external temperature monitoring devices (such as ADT7481A™).
The following are the specifications of the chip temperature diodes:
• Operating range: 10 - 230 μA
• Ideality factor over temperature range 85°C - 105°C, n = 1.006 ± 0.003, with
approximate error ± 1°C and error under ± 3°C for temperature range 0°C - 85°C.
6.3 Thermal management information
This section provides thermal management information for the flip-chip, plastic-ball, grid
array (FC-PBGA) package for air-cooled applications. Proper thermal control design is
primarily dependent on the system-level design-the heat sink, airflow, and thermal
interface material.
The recommended attachment method to the heat sink is illustrated in Figure 91. The heat
sink should be attached to the printed-circuit board with the spring force centered over
the die. This spring force should not exceed 15 pounds force (65 N).
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
185
Thermal
Heat sink
FC-PBGA package (with lid)
Heat sink clip
Adhesive or
thermal interface material
Die lid
Die
Lid adhesive
Printed circuit-board
Figure 91. Package exploded, cross-sectional view-FC-PBGA
The system board designer can choose between several types of heat sinks to place on the
device. There are several commercially available thermal interfaces to choose from in the
industry. Ultimately, the final selection of an appropriate heat sink depends on many
factors, such as thermal performance at a given air velocity, spatial volume, mass,
attachment method, assembly, and cost.
6.3.1 Internal package conduction resistance
For the package, the intrinsic internal conduction thermal resistance paths are as follows:
• The die junction-to-case thermal resistance
• The die junction-to-lid-top thermal resistance
• The die junction-to-board thermal resistance
This figure shows the primary heat transfer path for a package with an attached heat sink
mounted to a printed-circuit board.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
186
NXP Semiconductors
Thermal
External resistance
Radiation
Convection
Junction to case top
Heat sink
Thermal interface material
Junction to lid top
Die/Package
Internal resistance
Die junction
Package/Solder balls
Printed-circuit board
External resistance
Radiation
Convection
(Note the internal versus external package resistance)
Figure 92. Package with heat sink mounted to a printed-circuit board
The heat sink removes most of the heat from the device. Heat generated on the active side
of the chip is conducted through the silicon and through the heat sink attach material (or
thermal interface material), and finally to the heat sink. The junction-to-case thermal
resistance is low enough that the heat sink attach material and heat sink thermal
resistance are the dominant terms.
6.3.2 Thermal interface materials
A thermal interface material is required at the package-to-heat sink interface to minimize
the thermal contact resistance. The performance of thermal interface materials improves
with increasing contact pressure; this performance characteristic chart is generally
provided by the thermal interface vendor. The recommended method of mounting heat
sinks on the package is by means of a spring clip attachment to the printed-circuit board
(see Figure 91).
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
187
Package information
The system board designer can choose among several types of commercially available
thermal interface materials.
7 Package information
7.1 Package parameters for the FC-PBGA
The package parameters are as provided in the following list. The package type is 23 mm
x 23 mm, 780 flip-chip, plastic-ball, grid array.
•
•
•
•
•
•
•
Package outline - 23 mm x 23 mm
Interconnects - 780
Ball Pitch - 0.8 mm
Ball Diameter (nominal) - 0.45 mm
Ball Height (nominal) - 0.3 mm
Solder Balls Composition - 96.5% Sn, 3% Ag, and 0.5% Cu
Module height (typical) - 2.31 (minimum), 2.46 mm (typical), and 2.61 mm
(maximum)
7.2 Mechanical dimensions of the FC-PBGA
This figure shows the mechanical dimensions and bottom surface nomenclature of the
chip.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
188
NXP Semiconductors
Package information
Figure 93. Mechanical dimensions of the FC-PBGA
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
189
Ordering information
1.
2.
3.
4.
5.
6.
All dimensions are in millimeters.
Dimensions and tolerances per ASME Y14.5M-1994.
Maximum solder ball diameter measured parallel to datum A.
Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
Parallelism measurement shall exclude any effect of mark on top surface of package.
All dimensions are symmetric across the package center lines, unless dimensioned
otherwise.
7. Pin 1 thru hole shall be centered within foot area.
8. 23.2 mm maximum package assembly (lid + laminate) X and Y.
8 Ordering information
This table provides the NXP QorIQ platform part numbering nomenclature.
8.1 Part numbering nomenclature
This table provides the NXP QorIQ platform part numbering nomenclature.
Table 144. Part numbering nomenclature
X = Extended
(-40 - 1050C)
n
c
d
r
E=
8 = LCFC
Encryption 780 balls
M = 1200
MHz
N = NonEncryption
P = 1400
MHz
Q=
1600
MHz
A=
Rev
1.0
Package Type
A = Arm S = Standard
( 0 - 1050C)
Encryption
6
e
Die Revision
t
DDR Data Rate
02 =
Two
Cores
x
CPU Speed1,2
04 =
Four
Cores
n
Temperature Range
Number of Virtual cores
Performance Level
1
nn
Core Type
LS =
Layersc
Blank="Qualifie
ape
d"
n
Unique ID
P="Pre-qual"
ls
Generation
Qual status
p
Q = 1600
MHz
1 = 2100
MHz
T = 1800
MHz
1. For the LS1046A family of devices, parts marked with "M" require 0.9 V operating voltage.
2. For the LS1046A family of devices, only parts marked with "P", "Q", and "T" support extended temperature range.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
190
NXP Semiconductors
Revision history
8.2 Part marking
Parts are marked as in the example shown in this figure.
LS10X6XXXXXXX
ATWLYYWW
MMMMM CCCCC
YWWLAZ
Legend:
LS10X6XXXXXXX is the orderable part number
ATWLYYWW is the test traceability code
MMMMM is the mask number
CCCCC is the country code
YWWLAZ is the assembly traceability code
Figure 94. Part marking for FC-PBGA chip LS1046A
9 Revision history
This table summarizes revisions to this document.
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
191
Revision history
Table 145. Revision history
Revision
Date
Description
4
06/2020
• In Table 4
• Updated recommended value of USB_SVIN from "0.3 to USB_SVDD" to "GND to
USB_SVDD"
• Added note 10 for available temperature range for part numbers
• Removed input signals from Table 5 as they are irrelevant for output drive capability
• Removed typo "PORESET_B assertion" from step2 of secure boot fuse programming in
Power sequencing
• In Table 7 and Table 8
• Added note 9 regarding power numbers applicability
• Added power numbers for 1200MHz at 1.0V
• Added note 10 regarding power numbers applicability for 1200MHz at 1.0V
• In Table 9
• Added column for Core Frequency = 1.2 GHz (VDD =1.0V)
• For PH20 mode, corrected "run to PH20 state" as "PW15 to PH20 state"
• For LPM20, corrected "PH20 to LPM20" as "PW15 to LPM20"
• Added note 2 regarding extended temperature range in Table 144
3
07/2019
• Updated Figure 80
2
05/2019
• In Pinout list,
• added note 27, 28
• changed the note reference of "D1_MALERT_B" signal from 6 to 27
• changed the note reference of "HRESET_B" signal from 6 to 28
• Removed switchable from I2C/DUART and EVDD
• updated Warning
• Removed section "General AC timing specifications"
• Removed note 1 "Caution: The relevant clock ratio settings must be chosen such that the
resulting SYSCLK frequencies do not exceed their respective maximum or minimum operating
frequencies." from Table 14
• Removed note 1 and 2 from Table 16
• Added Figure 11
• Added notes 6 and 7 in Table 23
• Added note 3 in Table 72
• In Table 89,
• added a new column Notes
• updated "CS to SCK delay" and "After SCK delay" parameters
• removed "SCK cycle time" parameter
• Updated section QSPI AC timing specifications
• In section QSPI timing SDR mode,
• updated "CS output hold time" and "CS output delay" parameters in Table 91
• added a note below the table
• Updated Figure 61
• Updated section Temperature diode
• Removed jitter specs of GTX_CLK125 from Table 18
• Added note in Power sequencing
1
03/2018
•
•
•
•
•
•
•
•
•
•
•
In Features, updated two to three for SGMII interfaces supporting 2500 Mbps
Updated Figure 92
In Power sequencing, updated 10 ms to 95 ms in second bullet point
In Table 9, updated PW20 to PH20 and PCL10 to PH20
In Table 10, updated X1VDD to XVDD and PROG_SFP to TA_PROG_SFP
Updated Figure 1 and Figure 2 to show 8 MACs
In Table 12, updated PROG_SFP to TA_PROG_SFP
Updated Real-time clock timing (RTC)
Updated rise/fall time spec to 0.75ns and removed 0.54ns from Table 18 and Table 52
Removed Clock period jitter (peak to peak) row from Table 22
Updated first row of Table 23
Table continues on the next page...
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
192
NXP Semiconductors
Revision history
Table 145. Revision history (continued)
Revision
Date
Description
•
•
•
•
•
•
•
•
•
0
02/2017
Removed table "PLL lock times"
Removed note reference 7 from Table 24
In SGMII interface, updated XGNDn to GNDn
Updated note for USB_SDVDD for HS and USB_SVDD for SS in Table 2
Updated eSDHC to SDHC and corrected signal name eSDHC_CMD/DAT0_DIR to
SDHC_CMD_DIR/DAT0_DIR in Table 4
Updated TA_BB_VDD power dissipation numbers in Table 11
Added note 9 in Table 52
Added rms clock jitter for PCIe- 8GT/s in Table 113
Added notes to Table 38 and Table 42
initial public release
QorIQ LS1046A, LS1026A Data Sheet, Rev. 4, 06/2020
NXP Semiconductors
193
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does NXP assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets
and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.
While NXP has implemented advanced security features, all products may be subject to unidentified
vulnerabilities. Customers are responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer's applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks associated with their applications
and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,
ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and service marks licensed by
Power.org.
© 2017–2020 NXP B.V.
Document Number LS1046A
Revision 4, 06/2020