NXP Semiconductors
Technical Data
Document Number: MC34VR500
Rev. 10, 3/2020
Multi-output DC/DC regulator for
QorIQ LS1/T1 family of
communications processors
34VR500
Power Management
The 34VR500 is a high performance, highly integrated, multi-output,
SMARTMOS, DC/DC regulator solution, with integrated power MOSFETs
ideally suited for the LS1/T1 family of communication processors. Integrating
four switching and five linear regulators, the 34VR500 provides power to the
complete system, including the processor, DDR memory, and system
peripherals.
Features:
• Four buck converters:
• SW1: 4.5 A
• SW2: 2.0 A
• SW3: 2.5 A
• SW4: 1.0 A, (VTT tracking regulator)
• Five general purpose linear regulators
• DDR termination reference voltage (DDR3L and DDR4)
• Programmable low-power modes
• I2C control of all the regulators
• Power Control Logic with processor interface and event detection
Applications:
• Internet of things (IoT) gateway
• Mobile wireless router
• MFP printer
• Network attached storage
• Automatic teller machine
LS102X
VR500
SW1
POWER CONTROL LOGIC
3.3 VIN BUS
ES SUFFIX (WF-TYPE)
98ASA00589D
56 QFN-EP WF8X8
SW2
LDO2
LDO4
LDO5
SW3
SW4
REFOUT
VDD
TA_BB_VDD
VDDC
OVDD1/2
L1VDD
OVDD
GVDD
DDR3
VTT
LDO1
HDMI
LDO3
Ethernet
Figure 1. 34VR500 simplified application diagram
© NXP B.V. 2020.
Table of Contents
1
2
3
4
5
6
7
8
9
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Functional block requirements and behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 16 MHz and 32 kHz clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Bias and references block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 Control interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 34VR500 layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.1 Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
34VR500
2
NXP Semiconductors
ORDERABLE PARTS
1
Orderable parts
This section describes the part numbers available to be purchased along with their differences. Valid orderable part numbers are provided
on the web. To determine the orderable part numbers for this device, go to http://www.nxp.com and perform a part number search for the
following device numbers.
Table 1. Orderable part variations
Temperature
(TA)
Part number
Package
SW4 VTT mode
MC34VR500V1ES
Enabled
MC34VR500V2ES
Disabled
MC34VR500V3ES
Enabled
MC34VR500V4ES
Enabled
Processor
LS1020/21/22A
MC34VR500V5ES
-40 °C to +105 °C 56 QFN 8x8 mm
Enabled
Reference design
DDR memory
LS1021A IOT
Gateway
TWR-LS1021A
DDR3L (VTT = 0.675 V)
Notes
N/A
LS1043/23A
T1023/13
LS1043ARDB
T1023RDB
DDR4 (VTT = 0.6 V)
DDR3L (VTT = 0.675 V)
MC34VR500V6ES
Enabled
LS1024A
MC34VR500V7ES
Enabled
LS1020/21/22A
MC34VR500V8ES
Disabled
LS1046A
LS1046ARDB-PA
MC34VR500V9ES
Disabled
LS1028
LS1028A-RDB
MC34VR500VAES
Enabled
LS1043/23A
T1023/13
LS1043ARDB
T1023RDB
MC34VR500VBES
Disabled
LX2160
(1)(2)
DDR4 (VTT = 0.6 V)
DDR4 (VTT = 0.6 V)
N/A
Notes
1.
For tape and reel, add an R2 suffix to the part number.
2.
See Table 8 for the start-up configuration.
34VR500
NXP Semiconductors
3
INTERNAL BLOCK DIAGRAM
2
Internal block diagram
VR500
VLDOIN1
LDO1
LDO1
250 mA
LDO2
LDO2
100 mA
VLDOIN23
LDO3
LDO3
350 mA
LDO4
LDO4
100 mA
VLDOIN45
LDO5
LDO5
200 mA
Buck
Regulator
Reference
Generation
LDO
Reference
Generation
SW1 Buck
Regulator
4500 mA
FB1
SW2 Buck
Regulator
2000 mA
FB2
SW3 Buck
Regulator
2500 mA
FB3
SW4 Buck
Regulator
1000 mA
FB4
PVIN1
LX1
PVIN2
LX2
PVIN3
LX3
PVIN4
LX4
EPAD
VDIG
I C Interface
REFOUT
Main State Machine
Clocks and
Resets
REFIN
VHALF
VDIG Regulator
(Internal Use
Only)
VCC Regulator
(Internal Use
Only)
VIN
ICTEST1
EN
VCC
SGND4
2
ICTEST2
INTB
VCCI2C
SCL
SDA
Main and Standby
Bandgap
STBY
PORB
VBG
VBIAS
Figure 2. 34VR500 simplified internal block diagram
34VR500
4
NXP Semiconductors
PIN CONNECTIONS
SDA
VBG
VDIG
VIN
VCC
SGND4
ICTEST2
DNC
DNC
DNC
VBIAS
Pinout diagram
SCL
3.1
VCCI2C
Pin connections
EN
3
56
55
54
53
52
51
50
49
48
47
46
45
44
43
INTB
1
42 DNC
DNC
2
41 LDO5
PORB
3
40 VLDOIN45
STBY
4
39 LDO4
ICTEST1
5
38 FB3
DNC
6
37 PVIN3
PVIN1
7
LX1
8
LX1
9
36 LX3
EP
35 LX3
34 PVIN3
33 DNC
PVIN1 10
LX1
32 SGND3
11
31 REFOUT
PVIN1 12
30 REFIN
FB1 13
29 VHALF
21
22
23
24
25
26
27
28
PVIN2
FB2
LDO2
VLDOIN23
LDO3
LDO1
20
PVIN2
VLDOIN1
19
LX2
18
LX4
17
PVIN4
16
FB4
15
DNC
14
SGND2
SGND1
Figure 3. 34VR500 pinout diagram
3.2
Pin definitions
Table 2. 34VR500 Pin Definitions
Pin number
Pin name
Pin
function
Max. rating
Type
1
INTB
O
3.6 V
Digital
2, 6, 16, 33,
42, 44, 45, 46
DNC
—
—
Reserved
3
PORB
O
3.6 V
Digital
Open drain reset output to processor.
4
STBY
I
3.6 V
Digital
Standby input signal from processor
5
ICTEST1
I
7.5 V
Digital/
Analog
Reserved pin. Connect to GND in application.
Definition
Open drain interrupt signal to processor
Leave floating
34VR500
NXP Semiconductors
5
PIN CONNECTIONS
Table 2. 34VR500 Pin Definitions (continued)
Pin number
Pin name
Pin
function
Max. rating
Type
Definition
7, 10, 12
PVIN1 (3)
I
4.8 V
Analog
Input to SW1 regulator. Bypass with at least a 4.7 μF ceramic capacitor and
a 0.1 μF decoupling capacitor as close to the pin as possible.
8, 9, 11
LX1 (3)
O
4.8 V
Analog
SW1 switching node connection
13
FB1 (3)
I
3.6 V
Analog
Output voltage feedback for SW1. Route this trace separately from the high
current path and terminate at the output capacitance.
14
SGND1
GND
-
GND
Signal ground for SW1 regulator. Connect to ground plane directly.
15
SGND2
GND
-
GND
Signal ground for SW2 and SW4 regulators. Connect to ground plane
directly.
17
VLDOIN1
I
3.6 V
Analog
Input supply for LDO1. Bypass with a 1.0 μF decoupling capacitor as close
to the pin as possible.
18
LDO1
O
2.5 V
Analog
LDO1 regulator output, Bypass with a 4.7 μF ceramic output capacitor.
19
FB4 (3)
I
3.6 V
Analog
Output voltage feedback for SW4. Route this trace separately from the high
current path and terminate at the output capacitance.
20
PVIN4 (3)
I
4.8 V
Analog
Input to SW4 regulator. Bypass with at least a 4.7μF ceramic capacitor and
a 0.1 μF decoupling capacitor as close to the pin as possible.
21
LX4 (3)
O
4.8 V
Analog
Regulator 4 switching node connection
22
(3)
O
4.8 V
Analog
Regulator 2 switching node connection
LX2
23, 24
PVIN2 (3)
I
4.8 V
Analog
Input to SW2 regulator. Connect pins 23 and 24 together and bypass with at
least a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as close
to these pins as possible.
25
FB2 (3)
I
3.6 V
Analog
Output voltage feedback for SW2. Route this trace separately from the high
current path and terminate at the output capacitance.
26
LDO2
O
3.6 V
Analog
LDO2 regulator output. Bypass with a 2.2 μF ceramic output capacitor.
27
VLDOIN23
I
3.6 V
Analog
Input supply for LDO2 and LDO3. Bypass with a 1.0 μF decoupling capacitor
as close to the pin as possible.
28
LDO3
O
3.6 V
Analog
LDO3 regulator output, Bypass with a 4.7 μF ceramic output capacitor.
29
VHALF
I
3.6 V
Analog
Half supply reference for DDR reference.
30
REFIN
I
3.6 V
Analog
REFOUT regulator input. Bypass with at least 1.0 μF decoupling capacitor
as close to the pin as possible.
31
REFOUT
O
3.6 V
Analog
REFOUT regulator output
32
SGND3
GND
-
GND
Ground reference for the SW3 regulator. Connect directly to ground plane.
34, 37
PVIN3 (3)
I
4.8 V
Analog
Input to SW3 regulator. Bypass with at least a 4.7 μF ceramic capacitor and
a 0.1 μF decoupling capacitor as close to the pin as possible.
35, 36
LX3 (3)
O
4.8 V
Analog
Regulator SW3 switching node connection
38
FB3 (3)
I
3.6 V
Analog
Output voltage feedback for SW3. Route this trace separately from the high
current path and terminate at the output capacitance.
39
LDO4
O
3.6 V
Analog
LDO4 regulator output. Bypass with a 2.2 μF ceramic output capacitor.
40
VLDOIN45
I
4.8 V
Analog
Input supply for LDO4 and LDO5. Bypass with a 1.0 μF decoupling capacitor
as close to the pin as possible.
43
VBIAS
I
1.8 V
Analog
Bypass the pin with a 0.47 μF capacitor.
41
LDO5
O
3.6 V
Analog
LDO5 regulator output. By pass with a 2.2 μF ceramic output capacitor.
47
ICTEST2
I
7.5 V
Digital/
Analog
Reserved pin. Connect to GND in application.
48
SGND4
GND
-
GND
49
VCC
O
3.6 V
Analog
Ground for the main band gap regulator. Connect directly to ground plane.
Analog Core supply
34VR500
6
NXP Semiconductors
PIN CONNECTIONS
Table 2. 34VR500 Pin Definitions (continued)
Pin number
Pin name
Pin
function
Max. rating
Type
50
VIN
I
4.8 V
Analog
Main chip supply
51
VDIG
O
1.5 V
Analog
Digital Core supply
52
VBG
O
1.5 V
Analog
Main band gap reference. Bypass with 0.22uF capacitor.
53
SDA
I/O
3.6 V
Digital
I2C data line (Open drain)
54
SCL
I
3.6 V
Digital
I2C clock
55
VCCI2C
I
3.6 V
Analog
Supply for I2C bus. Bypass with 0.1 μF ceramic capacitor
56
EN
I
3.6 V
Digital
Enable input. Connect to the processor. Pull-up via an 8.0 kΩ to 100 kΩ to
VBIAS if required
-
EP
GND
-
GND
Expose pad. Functions as ground return for buck regulators. Tie this pad to
the inner and external ground planes through vias to allow effective thermal
dissipation.
Definition
Notes
3.
Unused switching regulators should be connected as follow: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be
connected to the VIN pin with a 0.1 μF bypass capacitor.
34VR500
NXP Semiconductors
7
GENERAL PRODUCT CHARACTERISTICS
4
General product characteristics
4.1
Absolute maximum ratings
Table 3. Absolute maximum ratings
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage
to the device. The detailed maximum voltage rating per pin can be found in the pin list section.
Symbol
Description
Value
Unit
-0.3 to 4.8
V
±2000
±500
V
Notes
Electrical ratings
VIN
Main input supply voltage
ESD Ratings
Human Body Model
Charge Device Model
VESD
(4)
Notes
4.
ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the Charge Device Model
(CDM), Robotic (CZAP = 4.0 pF).
4.2
Thermal characteristics
Table 4. Thermal ratings
Symbol
Description (rating)
Min.
Max.
Unit
Notes
Thermal ratings
TA
Ambient Operating Temperature Range
-40
105
°C
TJ
Operating Junction Temperature Range
-40
125
°C
Storage Temperature Range
-65
150
°C
–
Note 7
°C
(6) (7)
Junction to Ambient
Natural Convection
Four layer board (2s2p)
Eight layer board (2s6p)
–
–
28
15
°C/W
(8) (9) (10)
Junction to Ambient (at 200 ft/min)
Four layer board (2s2p)
–
22
°C/W
(8) (10)
Junction to Board
–
10
°C/W
(11)
Junction to Case Bottom
–
1.2
°C/W
(12)
TST
TPPRT
Peak Package Reflow Temperature
(5)
QFN56 Thermal resistance and package dissipation ratings
RθJA
RθJMA
RθJB
RΘJCBOTTOM
34VR500
8
NXP Semiconductors
GENERAL PRODUCT CHARACTERISTICS
Table 4. Thermal ratings (continued)
Symbol
ΨJT
Description (rating)
Junction to Package Top
Natural Convection
Min.
Max.
Unit
Notes
–
2.0
°C/W
(12)
Notes
5.
Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Table 5 for
thermal protection features.
6.
Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a
malfunction or permanent damage to the device.
7.
NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and
Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable
parts, and review parametrics.
8.
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
9.
The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.
10.
Per JEDEC JESD51-6 with the board horizontal.
11.
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the
board near the package.
12.
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
13.
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD512. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
4.2.1
Power dissipation
During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 4. To optimize the
thermal management and to avoid overheating, the 34VR500 provides thermal protection. An internal comparator monitors the die
temperature. Interrupts THERM110I, THERM120I, THERM125I, and THERM130I will be generated when the respective thresholds
specified in Table 5 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register
INTSENSE0.
In the event of excessive power dissipation, thermal protection circuitry will shut down the 34VR500. This thermal protection will act above
the thermal protection threshold listed in Table 5. To avoid any unwanted power downs resulting from internal noise, the protection is
debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured
such that this protection is not tripped under normal conditions.
Table 5. Thermal protection thresholds
Parameter
Min.
Typ.
Max.
Units
Thermal 110 °C Threshold (THERM110)
100
110
120
°C
Thermal 120 °C Threshold (THERM120)
110
120
130
°C
Thermal 125 °C Threshold (THERM125)
115
125
135
°C
Thermal 130 °C Threshold (THERM130)
120
130
140
°C
Thermal Warning Hysteresis
2.0
–
4.0
°C
Thermal Protection Threshold
130
140
150
°C
Notes
34VR500
NXP Semiconductors
9
GENERAL PRODUCT CHARACTERISTICS
4.3
Electrical characteristics
4.3.1
I/O specifications
Table 6. General PMIC static characteristics.
TA = -40 to 105 °C, VVIN = 2.8 to 4.5 V, VVCCI2C = 1.7 to 3.6 V, VVBIAS = 1.0 V ±4.0%, typical external component values and full load
current range, unless otherwise noted.
Pin Name
EN
PORB
SCL
SDA
INTB
STBY
4.3.2
Parameter
Load Condition
Min.
Max.
Unit
VIL
–
0.0
0.2 *VVBIAS
V
VIH
–
0.8 *VVBIAS
3.6
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open Drain
0.7* VVIN
VVIN
V
VIL
–
0.0
0.2 * VVCCI2C
V
VIH
–
0.8 * VVCCI2C
3.6
V
VIL
–
0.0
0.2 * VVCCI2C
V
VIH
–
0.8 * VVCCI2C
3.6
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open Drain
0.7 * VVCCI2C
VVCCI2C
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open Drain
0.7* VVIN
VVIN
V
VIL
–
0.0
0.2 *VVBIAS
V
VIH
–
0.8 *VVBIAS
3.6
V
Notes
Current consumption
Table 7. Current consumption summary
TA = -40 to 105 °C, (See Table 3), VVIN = 3.6 V, VVCCI2C = 1.7 to 3.6 V, VVBIAS = 1.0 V ±4.0%, typical external component values, unless
otherwise noted. Typical values are characterized at VVIN = 3.6 V, VVCCI2C = 3.3 V, and 25 °C, unless otherwise noted.
Mode
34VR500 conditions
System conditions
Typ.
Max.
Unit
Notes
Off
Wake-up from EN active
32 k RC on
All other blocks off
VIN ≥ UVDET
PMIC able to wake-up
17
25
μA
(14) (15)
Sleep
Wake-up from EN active
Trimmed reference active
SW3 PFM
Trimmed 16 MHz RC off
32 k RC on
REFOUT disabled
DDR memories in self refresh
122
250
μA
(15)
34VR500
10
NXP Semiconductors
GENERAL PRODUCT CHARACTERISTICS
Table 7. Current consumption summary (continued)
TA = -40 to 105 °C, (See Table 3), VVIN = 3.6 V, VVCCI2C = 1.7 to 3.6 V, VVBIAS = 1.0 V ±4.0%, typical external component values, unless
otherwise noted. Typical values are characterized at VVIN = 3.6 V, VVCCI2C = 3.3 V, and 25 °C, unless otherwise noted.
Mode
Standby
34VR500 conditions
SW1 in PFM
SW2 in PFM
SW3 in PFM
SW4 in PFM
Trimmed 16 MHz RC enabled
Trimmed reference active
LDO1 - 5 enabled
REFOUT enabled
System conditions
Typ.
Max.
Unit
Notes
Processor enabled in low power mode. All
rails powered on except boost
(load = 0 mA)
297
550
μA
(15)
Notes
14.
When VIN is below the UVDET threshold, in the range of 1.8 V ≤ VIN < 2.65 V, the quiescent current increases by 50 μA, typically.
15.
For PFM operation (as defined in Table 23).
34VR500
NXP Semiconductors
11
GENERAL DESCRIPTION
5
General description
The 34VR500 is a high performance, highly integrated, multi-output, DC/DC regulator solution, with integrated power MOSFETs ideally
suited for the LS1/T1 family of communication processors.
5.1
Features
This section summarizes the 34VR500 features.
• Input voltage range: 2.8 V to 4.5 V
• Buck regulators
• Four independent outputs
• SW1, 4.5 A; 0.625 V to 1.875 V
• SW2, 2.0 A; 0.625 V to 3.3 V
• SW3, 2.5 A; 0.625 V to 3.3 V
• SW4, 1.0 A; operates in VTT mode for DDR termination at 50 % of SW3 for 34VR500V1, 34VR500V3, 34VR500V4,
34VR500V5, 34VR500V6, 34VR500V7, 34VR500VA and 0.625 V to 1.975 V for 34VR500V2, 34VR500V8, 34VR500V9
• Dynamic voltage scaling
• Modes: PWM, PFM, APS
• Programmable output voltage
• Programmable current limit
• Programmable soft start
• Programmable PWM switching frequency
• Programmable OCP with fault interrupt
• LDOs
• Five general purpose LDOs
• LDO1, 0.80 V to 1.55 V, 250 mA
• LDO2, 1.8 V to 3.3 V, 100 mA
• LDO3, 1.8 V to 3.3 V, 350 mA
• LDO4, 1.8 V to 3.3 V, 100 mA
• LDO5, 1.8 V to 3.3 V, 200 mA
• Soft start
• DDR memory reference voltage
• REFOUT, 10 mA
• 16 MHz internal master clock
• I2C interface
• User programmable Standby, Sleep, and OFF modes
34VR500
12
NXP Semiconductors
GENERAL DESCRIPTION
5.2
Functional block diagram
MC34VR500 Functional Block Diagram
Start-up Configuration
(Factory programmable)
Power Generation
Vo1
Vo4
SW1
(0.625 - 1.875 V)
4.5 A
SW2
(0.625 – 3.3 V)
2.0 A
SW4
(0.625 - 1.975 V)
1.0 A
VT T o ption
SW3
(0.625 – 3.3 V)
2.5 A
LDO1
(0.8 - 1.55 V)
250 mA
LDO2
(1.8 - 3.3 V)
100 mA
Vo2
Voltage
Phasing and Frequency Selection
Sequence and Timing
Vo3
Logic and Control
LDO3
(1.8 – 3.3 V)
350 mA
LDO4
(1.8 - 3.3 V)
100 mA
Parallel MCU I nterf ace
Regulat or Control
2
I C Communication & Registers
Fault Detection & Protection
LDO5
(1.8 - 3.3 V)
200 mA
Thermal
Current Limit
Short-circuit
Figure 4. 34VR500 functional block diagram
5.3
Functional description
5.3.1
Power generation
The 34VR500 PMIC features four buck regulators, five general purpose LDOs, and a DDR voltage reference to supply voltages for the
processor, memory, and peripheral devices.
Depending on the system power path configuration, the five general purpose LDO regulators can be directly supplied from the main input
supply or from the switching regulators to power peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. A specific REFOUT
voltage reference is included to provide accurate reference voltage for DDR memories operating with or without VTT termination
5.3.2
Control logic
The 34VR500 PMIC is fully programmable via the I2C interface. Additional communication is provided by direct logic interfacing including
interrupt and reset. Startup voltage and sequence are internally programed. After power up, the regulator voltages can be changed via
I2C. The 34VR500 PMIC has the interfaces for the power buttons and dedicated signaling interfacing with the processor.
34VR500
NXP Semiconductors
13
GENERAL DESCRIPTION
5.3.2.1
Interface signals
EN
EN is an input signal to the IC that generates a turn-on event. Refer to section Turn on events for more details.
STBY
STBY is an input signal to the IC. When it is asserted the part enters standby mode and when de-asserted, the part exits standby mode.
STBY can be configured as active high or active low using the STBYINV bit. Refer to the section Standby mode for more details.
PORB
PORB is an open-drain, active low output. In its default mode, it is de-asserted 2.0 to 4.0 ms after the last regulator in the start-up
sequence is enabled; refer to Figure 8 as an example. In this mode, the signal can be used to bring the processor out of reset, or as an
indicator that all supplies have been enabled; it is only asserted for a turn-off event.
INTB
INTB is an open-drain, active low output. It is asserted when any fault occurs, provided that the fault interrupt is unmasked. INTB is deasserted after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit.
34VR500
14
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6
Functional block requirements and behaviors
6.1
Start-up
The 34VR500 starts up from the internal configuration, which is hard-coded into the device. However, the 34VR500 can be controlled
through the I2C port after the Start-up sequence. It is also possible to modify the contents of the Internal Registers via the bus I2C to modify
the start up parameters (see section Start sequence creation).
6.1.1
Device start-up configuration
Table 8 shows the internal configuration for the 34VR500V1, 34VR500V2, 34VR500V3, 34VR500V4, 34VR500V5, 34VR500V6,
34VR500V7, 34VR500V8, 34VR500V9, 34VR500VA, 34VR500VB.
Table 8. Start-up configuration
Registers
34VR500V1 34VR500V2 34VR500V3 34VR500V4 34VR500V5 34VR500V6 34VR500V7 34VR500V8 34VR500V9 34VR500VA 34VR500VB
Default I2C Address
0x08
LDO2_VOLT
1.8 V
1.8 V
1.8 V
2.5 V
2.5 V
1.8 V
1.8 V
2.5 V
2.5 V
2.5 V
3.3 V
LDO2_SEQ
1
1
1
2
2
2
1
4
5
2
2
—
2.5 V
2.5 V
2.5 V
LDO3_VOLT
LDO3_SEQ
1
1
3
2
2
4
3
4
—
2
3
LDO4_VOLT
2.5 V
2.5 V
2.5 V
1.8 V
1.8 V
3.0 V
2.5 V
1.8 V
2.5 V
1.8 V
1.8 V
LDO4_SEQ
1
1
1
3
3
5
1
5
8
3
—
LDO5_VOLT
1.8 V
1.8 V
1.8 V
3.3 V
3.3 V
3.3 V
1.8 V
3.3 V
—
3.3 V
3.3 V
LDO5_SEQ
1
1
1
3
3
5
1
7
—
3
—
SW1_VOLT
1.0 V
1.0 V
1.0 V
1.5 V
1.5 V
1.2 V
1.0 V
0.85 V
1.0 V
1.8 V
1.2 V
1
5
1
3
2
SW1_SEQ
SW2_VOLT
1.0 V
1.0 V
1.0 V
1.8 V
1.8 V
1.1 V
1.0 V
1.35 V
2.5 V
1.35 V
1.8 V
SW2_SEQ
2
2
2
1
1
1
2
1
2
1
1
SW3_VOLT
1.35 V
1.35 V
1.2 V
1.2 V
1.35 V
1.5 V
1.2 V
1.8 V
1.8 V
1.2 V
0.9 V
SW3_SEQ
3
3
3
12
12
3
3
1
3
12
1
SW4_VOLT
VTT
1.8 V
VTT
VTT
VTT
VTT
VTT
1.0 V
1.35 V
VTT
VTT
SW4_SEQ
3
3
3
12
12
3
3
5
4
12
—
REFOUT_SEQ
3
3
3
12
12
3
3
—
4
12
3
LDO1_VOLT
1.2 V
1.2 V
1.2 V
1.35 V
1.35 V
1.1 V
1.35 V
—
—
1.35 V
1.35 V
LDO1_SEQ
4
4
4
1
12
1
4
—
—
1
—
PU CONFIG,
SEQ_CLK_SPEED
1.0 ms
PU CONFIG,
SWDVS_CLK
6.25 mV/μs
SW1 CONFIG
2.0 MHz
SW2 CONFIG
2.0 MHz
SW3 CONFIG
2.0 MHz
SW4 CONFIG
2.0 MHz
34VR500
NXP Semiconductors
15
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
UVDET
VIN
tD1
tR1
EN
tD2
tR2
LDO2,3,4,5
tD3
tR2
SW1,2
tD3
tR2
SW3,4
REFOUT
TD3
LDO1
tR2
tD4
tR3
PORB
Figure 5. Starting sequence: example for V1 and V2
Table 9. 34VR500V1 and V2 start-up sequence timing
Parameter
Typ.
Unit
Turn-on delay
6.0
ms
tR1
Rise time of EN
(16)
ms
tD2
Turn-on delay of first regulator
2.5
ms
0.2
ms
tD1
Description
(17)
tR2
Rise time of regulators
tD3
Delay between regulators
1.0
ms
tD4
Turn-on delay of PORB
2.0
ms
tR3
Rise time of PORB
0.2
ms
Notes
16.
Depends on the external signal driving EN.
17.
Rise time is a function of slew rate of regulators and nominal voltage selected.
34VR500
16
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.1.2
Start sequence creation
The 34VR500 powers up based on the contents of the internal registers. Depending on certain bit settings, the internal registers are loaded
from different sources, as shown in Figure 6.
Figure 6. Starting sequence
The contents of the internal registers are initialized to zero when a valid VIN is first applied. The values that are then loaded into the internal
registers depend on the value of the TBB_POR (the initial value of TBB_POR is always “0”):
• If TBB_POR = 0 the values are loaded from the Default Sequence (this is the case always for first starting)
• If TBB_POR = 1 the values are loaded from the internal RAM. VIN must be valid to maintain the contents of the internal RAM.
To power on with the contents of the internal RAM, the following conditions must exist:
• VIN is valid
• TBB_POR = 1 and there is a valid turn-on event via the EN pin
To keep a regulator off during a start-up sequence is to set its sequence to 0. This corresponds to the XX_SEQ setting of 0x00.
For example, 0x01 corresponds to a sequence of 1, and so on.
34VR500
NXP Semiconductors
17
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 7 explains how to start from a new configuration.
First VIN Applied
34VR500
regulators will not
turn on
Keep EN pin in
low state
Program the new
start sequence and
set TBB_POR to 1
I2C
programming
+
TBB_POR = 1
Create a Turn On
event via the EN pin
Turn On event
EN pin to high
state
TBB_POR
TBB_POR = 1
Start from the
Internal RAM
TBB_POR = 0
Start from the
Default
Sequence
Figure 7. Modifying a starting sequence
Table 95 shows the portion of the register map concerning the programming of a new starting sequence.
6.2
16 MHz and 32 kHz clocks
There are two clocks: a trimmed 16 MHz, RC oscillator and an untrimmed 32 kHz, RC oscillator. The 16 MHz oscillator is specified within
-8.0/+8.0%. The 32 kHz untrimmed clock is only used in the following conditions:
• VIN < UVDET
• All regulators are in SLEEP mode
• All regulators are in PFM switching mode
A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions:
• During start-up, VIN > UVDET
In addition, when the 16 MHz is active in the ON mode, the debounce times in Table 20 are referenced to the 32 kHz derived from the
16 MHz clock. The exceptions are the LOWVINI and ENI interrupts, which are referenced to the 32 kHz untrimmed clock.
Table 10. 16 MHz clock specifications
TA = -40 to 105 °C (See Table 3), VVIN = 2.8 to 4.5 V, VVBIAS = 1.0 V ±4.0%, and typical external component values. Typical values are
characterized at VVIN = 3.6 V, and 25 °C, unless otherwise noted.
Symbol
VIN
Parameters
Operating Voltage from the VIN pin
Min.
Typ.
Max.
Units
2.8
–
4.5
V
Notes
34VR500
18
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 10. 16 MHz clock specifications
TA = -40 to 105 °C (See Table 3), VVIN = 2.8 to 4.5 V, VVBIAS = 1.0 V ±4.0%, and typical external component values. Typical values are
characterized at VVIN = 3.6 V, and 25 °C, unless otherwise noted.
f16MHZ
16 MHz Clock Frequency
14.7
16
17.3
MHz
f2MHZ
2.0 MHz Clock Frequency
1.84
–
2.16
MHz
(18)
Notes
18.
2.0 MHz clock is derived from the 16 MHz clock.
6.2.1
Clock adjustment
The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By
changing the factory trim values of the 16 MHz clock, the user may add an offset as small as ±3.0% of the nominal frequency. Contact a
NXP representative for detailed information on this feature.
6.3
Bias and references block description
6.3.1
Internal core voltage references
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VBG. The bandgap and the rest
of the core circuitry are supplied from VCC. Table 11 shows the main characteristics of the core circuitry.
Table 11. Core voltages electrical specifications(20)
TA = -40 to 105 °C (See Table 3), VVIN = 2.8 to 4.5 V, VVBIAS = 1.0 V ±4.0%, and typical external component values. Typical values are
characterized at VVIN = 3.6 V, and 25 °C, unless otherwise noted.
Symbol
Parameters
Min.
Typ.
Max.
Units
Notes
–
–
1.5
1.3
–
–
V
(19)
–
–
2.775
0.0
–
–
V
(19)
Output Voltage
–
1.2
–
V
(19)
VBGACC
Absolute Accuracy
–
0.5
–
%
VBGTACC
Temperature Drift
–
0.25
–
%
VDIG (digital core supply)
VDIG
Output Voltage
ON mode
OFF mode
VCC (Analog core supply)
VCC
Output Voltage
ON mode
OFF mode
VBG (bandgap / regulator reference)
VBG
Notes
19.
3.0 V < VIN < 4.5 V, no external loading on VDIG, VCC, or VBG. Extended operation down to UVDET, but no system malfunction.
20.
For information only.
6.3.1.1
External components
Table 12. External components for core voltages
Regulator
Capacitor value (μF)
VDIG
1.0
VCC
1.0
VBG
0.22
34VR500
NXP Semiconductors
19
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.3.2
REFOUT voltage reference
REFOUT is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half the input
voltage. Its typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a low frequency pole.
This divider then utilizes a voltage follower to drive the load.
REFIN
REFIN
CHALF1
100 nF
VHALF
_
CHALF2
100 nF
+
Discharge
REFOUT
REFOUT
CREFDDR
1.0 uf
Figure 8. REFOUT block diagram
6.3.2.1
REFOUT control register
The REFOUT voltage reference is controlled by a single bit in REFOUTCTRL register in Table 13.
Table 13. Register REFOUTCTRL - ADDR 0x6A
Name
UNUSED
REFOUTEN
UNUSED
Bit #
R/W
Default
Description
3:0
–
0x00
UNUSED
4
R/W
0x00
Enable or disables REFOUT output voltage
0 = REFOUT Disabled
1 = REFOUT Enabled
7:5
–
0x00
UNUSED
External components
Table 14. REFOUT external components(21)
Capacitor
Capacitance (μF)
REFIN(22) to VHALF
0.1
VHALF to GND
0.1
REFOUT
1.0
Notes
21.
Use X5R or X7R capacitors.
22.
REFIN to GND, 1.0 μF minimum capacitance is provided by buck regulator output.
34VR500
20
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
REFOUT specifications
Table 15. REFOUT electrical characteristics
TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, IREFDDR = 0.0 mA, VREFIN = 1.5 V, VVBIAS = 1.0 V ±4.0%, and typical external component
values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VREFIN = 1.5 V, and 25 °C, unless
otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
REFOUT
VREFIN
Operating Input Voltage Range
1.2
–
1.8
V
IREFDDR
Operating Load Current Range
0.0
–
10
mA
Current Limit, IREFDDR when VREFOUT is forced to VREFIN/4
10.5
15
25
mA
Quiescent Current
–
8.0
–
μA
VREFOUT
Output Voltage
1.2 V < VREFIN < 1.8 V, 0.0 mA < IREFDDR < 10 mA
–
VREFIN/2
–
V
VREFOUTTOL
Output Voltage Tolerance
1.2 V < VREFIN < 1.8 V, 0.6 mA ≤ IREFDDR ≤ 10 mA
–1.0
–
1.0
%
VREFOUTLOR
Load Regulation
1.0 mA < IREFDDR < 10 mA, 1.2 V < VREFIN < 1.8 V
–
0.40
–
mV/mA
tONREFDDR
Turn-on Time, Enable to 90% of end value
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA
–
–
100
μs
tOFFREFDDR
Turn-Off Time, Disable to 10% of initial value
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA
–
–
10
ms
VREFOUTOSH
Start-up Overshoot
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA
–
1.0
6.0
%
VREFOUTTLR
Transient Load Response
VREFIN = 1.2 V, 1.8 V
–
5.0
–
mV
IREFDDRLIM
IREFDDRQ
(23)
Active mode – DC
Active mode – AC
Notes
23.
When REFOUT is off there is a quiescent current of 1.5 μA typical.
34VR500
NXP Semiconductors
21
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4
Power generation
6.4.1
Modes of operation
The operation of the 34VR500 can be reduced to four states, or modes: ON, OFF, Sleep, and Standby. Figure 9 shows the state diagram
of the 34VR500, along with the conditions to enter and exit from each state.
Thermal shutdown
OFF
Sleep
EN = 1
& VIN > UVDET
EN = 0
Any SWxOMODE bits=1
EN = 0
All SWxOMODE bits= 0
EN = 0
Any SWxOMODE bits=1
EN = 1
& VIN > UVDET
ON
Thermal shudown
STANDBY asserted
STANDBY de-asserted
EN = 0
All SWxOMODE bits= 0
Standby
Thermal shutdown
Figure 9. State diagram
To complement the state diagram in Figure 9, a description of the states is provided in following sections. Note that VIN must exceed the
rising UVDET threshold to allow a power up. Refer to Table 22 for the UVDET thresholds. Additionally, the interrupt signal and INTB are
only active in Sleep, Standby, and ON states.
6.4.1.1
On mode
The 34VR500 enters the ON mode after a turn-on event. PORB is de-asserted, high, in this mode of operation.
6.4.1.2
Off mode
The 34VR500 enters the OFF mode after a turn-off event. A thermal shutdown event also forces the 34VR500 into the OFF mode. Only
VDIG is powered in this mode of operation. To exit the OFF mode, a valid turn-on event is required. PORB is asserted, LOW, in this mode.
34VR500
22
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.1.3
Standby mode
• Depending on STBY pin configuration, Standby is entered when the STBY pin is asserted. This is typically used for low-power mode
of operation.
• When STBY is de-asserted, Standby mode is exited.
A product may be designed to go into a Low-power mode after periods of inactivity. The STBY pin is provided for board level control of
going in and out of such deep sleep modes (DSM).
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing the
operating mode of the regulators or disabling some regulators. The configuration of the regulators in Standby are pre-programmed through
the I2C interface.
Note that the STBY pin is programmable for Active High or Active Low polarity, and that decoding of a Standby event will take into account
the programmed input polarity as shown in Table 16. When the 34VR500 is powered up first, regulator settings for the Standby mode are
mirrored from the regulator settings for the ON mode. To change the STBY pin polarity to Active Low, set the STBYINV bit via software
first, and then change the regulator settings for Standby mode as required. For simplicity, STBY will generally be referred to as active high
throughout this document.
Table 16. STBY pin and polarity control
STBY (Pin)(25)
STBYINV (I2C bit)(26)
STBY Control (24)
0
0
0
0
1
1
1
0
1
1
1
0
Notes
24.
STBY = 0: System is not in Standby, STBY = 1: System is in Standby
25.
The state of the STBY pin only has influence in On mode.
26.
Bit 6 in Power Control Register (ADDR - 0x1B)
Since STBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond to the
pin level changes. A programmable delay is provided to hold off the system response to a Standby event. This allows the processor and
peripherals some time after a standby instruction has been received to terminate processes to facilitate seamless entering into Standby
mode.
When enabled (STBYDLY = 01, 10, or 11) per Table 17, STBYDLY will delay the Standby initiated response for the entire IC, until the
STBYDLY counter expires.
An allowance should be made for three additional 32 k cycles required to synchronize the Standby event.
Table 17. STBY delay - initiated response
STBYDLY[1:0](27)
Function
00
No Delay
01
One 32 k period (default)
10
Two 32 k periods
11
Three 32 k periods
Notes
27.
Bits [5:4] in Power Control Register (ADDR - 0x1B)
34VR500
NXP Semiconductors
23
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.1.4
Sleep mode
• Depending on EN pin configuration, Sleep mode is entered when EN is de-asserted and SWxOMODE bit is set.
• To exit Sleep mode, assert the EN pin.
In the Sleep mode, the regulator will use the set point as programmed by SW1OFF[5:0] for SW1, SW2, SW3, and SW4. The activated
regulators will maintain settings for this mode and voltage until the next turn-on event. Table 18 shows the control bits in Sleep mode.
During Sleep mode, interrupts are active and the INTB pin will report any unmasked fault event.
Table 18. Regulator mode control
SWxOMODE
Off operational mode (sleep) (28)
0
Off
1
PFM
Notes
28.
For sleep mode, an activated switching regulator, should use the off mode set
point as programmed by SW1OFF[5:0] for SW1, SW2, SW3, and SW4.
6.4.2
State machine flow summary
Table 19 provides a summary matrix of the 34VR500 flow diagram to show the conditions needed to transition from one state to another.
Table 19. State machine flow summary
Next state
Initial state
STATE
OFF
Sleep
Standby
ON
OFF
X
X
X
EN = 1 & VIN > UVDET
Sleep
Thermal Shutdown
X
X
EN = 1 & VIN > UVDET
EN = 0, Any SWxOMODE = 1
X
Standby de-asserted
EN = 0, Any SWxOMODE = 1
Standby asserted
X
Standby
Thermal Shutdown
EN = 0, All SWxOMODE = 0
ON
Thermal Shutdown
EN = 0, All SWxOMODE = 0
6.4.2.1
Turn on events
From OFF and Sleep modes, the PMIC is powered on by a turn ON event. VIN must be greater than UVDET for the PMIC to turn-on. When
VIN is greater than UVDET, a logic high on the EN pin is a turn ON event, when EN is high before VIN is valid, a VIN transition, from 0.0 V
to a voltage greater than UVDET, also a Turn ON event. See the State diagram, Figure 9, and the Table 19 for more details. Any regulator
enabled in the Sleep mode will remain enabled when transitioning from Sleep to ON, i.e., the regulator will not be turned OFF and then
ON again to match the start-up sequence. The following is a more detailed description of the EN configuration:
• The EN signal is high and VIN > UVDET, the PMIC will turn ON; the interrupt and sense bits, ENI and ENS respectively, will be set.
The sense bit will show the real time status of the EN pin. In this configuration, the EN input can be a mechanical switch debounced
through a programmable debouncer, ENDBNC[1:0], to avoid a response to a very short (i.e., unintentional) key press. The interrupt is
generated for both the falling and the rising edge of the EN pin. By default, a 30 ms interrupt debounce is applied to both falling and rising
edges. The falling edge debounce timing can be extended with ENDBNC[1:0] as defined in the table below. The interrupt is cleared by
software, or when cycling through the OFF mode.
34VR500
24
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 20. EN hardware debounce bit settings
Bits
ENDBNC[1:0]
State
Turn on
debounce (ms)
Falling edge INT
debounce (ms)
Rising edge INT
debounce (ms)
00
0.0
31.25
31.25
01
31.25
31.25
31.25
10
125
125
31.25
11
750
750
31.25
Notes
29.
The sense bit, ENS, is not debounced and follows the state of the EN pin.
6.4.2.2
Turn off events
EN pin
The EN pin is used to power off the 34VR500. The Off mode is entered when the EN pin is low and SWxOMODE = 0.
Thermal protection
If the die temperature surpasses a given threshold, the thermal protection circuit will power off the 34VR500 to avoid damage. A turn-on
event will not power on the PMIC while it is in thermal protection. The part will remain in Off mode until the die temperature decreases
below a given threshold. There are no specific interrupts related to this other than the warning interrupt. See Power dissipation section for
more detailed information.
Undervoltage detection
The state machine will transition to the OFF mode when the voltage at the VIN pin drops below the UVDET undervoltage falling threshold.
6.4.3
Power tree
The 34VR500 features four buck regulators, five general purpose LDOs, and a DDR voltage reference, to supply voltages for the
application and peripheral devices. The buck regulators are supplied directly from the main input supply (VIN). The inputs to all of the buck
regulators must be tied to VIN, whether they are powered ON or OFF. The five general use LDO regulators are directly supplied from the
main input supply or from the switching regulators depending on the application requirements. Since REFOUT is intended to provide DDR
memory reference voltage, it should be supplied by any rail supplying voltage to DDR memories; the typical application recommends the
use of SW3 as the input supply for REFOUT. Refer to Table 21 for a summary of all power supplies provided by the 34VR500.
Table 21. Power tree summary
Supply
Output voltage (V)
Step size (mV)
Maximum load current (mA)
SW1
0.625 - 1.875
25
4500
SW2
0.625 - 1.975 / 0.8 - 3.3
25 / 50
2000
SW3
0.625 - 1.975 / 0.8 - 3.3
25 / 50
2500
SW4
0.5*SW3_OUT (VTT for V1, V3,
V4, V5), 0.625 - 1.975 (for V2)
LDO1
0.80 – 1.55
50
250
LDO2
1.8 – 3.3
100
100
LDO3
1.8 – 3.3
100
350
LDO4
1.8 – 3.3
100
100
LDO5
1.8 – 3.3
100
200
REFOUT
0.5*SW3_OUT
NA
10
1000
34VR500
NXP Semiconductors
25
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
The minimum operating voltage for the main VIN supply is 2.8 V, for lower voltages proper operation is not guaranteed. However at initial
power up, the input voltage must surpass the rising UVDET threshold before proper operation is guaranteed. Refer to the representative
tables and text specifying each supply for information on performance metrics and operating ranges. Table 22 summarizes the UVDET
thresholds.
Table 22. UVDET threshold
UVDET threshold
VIN
Rising
3.1 V
Falling
2.65 V
VR500
LS102x
SW1
VDDCORE
(0.625 to 1.875 V), 4.5 A
SW2
VDDC
(0.625 to 3.3 V),
2.0 A
VIN
3.3 V
VDDCORE
VDDC
LDO2
(1.8 to 3.3 V),
100 mA
OVDD1/2
LDO4
(1.8 to 3.3 V),
100 mA
L1VDD
LDO5
(1.8 to 3.3 V),
200 mA
OVDD
SW3
DDR CORE
(0.625 to 3.3 V),
2.5 A
SW4
System/VTT
(0.625 to 1.975 V)
(0.5*VDDR)
1.0 A
SW3
VIN
3.3 V
REFOUT
0.5*VDDR, 10 mA
LDO1
(0.80 to 1.55 V),
250 mA
DDR3
VTT
Peripherals
LDO3
(1.8 to 3.3 V),
350 mA
Figure 10. 34VR500 typical power map
34VR500
26
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4
Buck regulators
Each buck regulator is capable of operating in PFM, APS, and PWM switching modes.
6.4.4.1
Current limit
Each buck regulator has a programmable current limit. In an overcurrent condition, the current is limited cycle-by-cycle. If the current limit
condition persists for more than 8.0 ms, a fault interrupt is generated.
6.4.4.2
General control
To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes can occur
by any of the following means: I2C programming, exiting/entering the Standby mode, exiting/entering Sleep mode, and load current
variation. Available switching modes for buck regulators are presented in Table 23.
Table 23. Switching mode description
Mode
Description
OFF
The regulator is switched off and the output voltage is discharged.
PFM
In this mode, the regulator is always in PFM mode, which is useful at light loads for
optimized efficiency.
PWM
In this mode, the regulator is always in PWM mode operation regardless of load conditions.
APS
In this mode, the regulator moves automatically between pulse skipping mode and PWM
mode depending on load conditions.
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms (typical) after
the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching
mode selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes.
Table 24 summarizes the Buck regulator programmability for Normal and Standby modes.
Table 24. Regulator mode control
SWxMODE[3:0]
Normal Mode
Standby Mode
SWxMODE[3:0]
Normal Mode
Standby Mode
0000
Off
Off
1000
APS
APS
0001
PWM
Off
1001
Reserved
Reserved
0010
Reserved
Reserved
1010
Reserved
Reserved
0011
PFM
Off
1011
Reserved
Reserved
0100
APS
Off
1100
APS
PFM
0101
PWM
PWM
1101
PWM
PFM
0110
PWM
APS
1110
Reserved
Reserved
0111
Reserved
Reserved
1111
Reserved
Reserved
Transitioning between Normal and Standby modes can affect a change in switching modes as well as output voltage. The rate of the
output voltage change is controlled by the Dynamic Voltage Scaling (DVS), explained in Dynamic voltage scaling. For each regulator, the
output voltage options are the same for Normal and Standby modes.
When in Standby mode, the regulator outputs the voltage programmed in its standby voltage register and will operate in the mode selected
by the SWxMODE[3:0] bits. Upon exiting Standby mode, the regulator will return to its normal switching mode and its output voltage
programmed in its voltage register.
34VR500
NXP Semiconductors
27
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Any regulators whose SWxOMODE bit is set to “1” will enter Sleep mode if a EN turn-off event occurs, and any regulator whose
SWxOMODE bit is set to “0” will be turned off. In Sleep mode, the regulator outputs the voltage programmed in its off (Sleep) voltage
register and operates in the PFM mode. The regulator will exit the Sleep mode when a turn-on event occurs. Any regulator whose
SWxOMODE bit is set to “1” will remain on and change to its normal configuration settings when exiting the Sleep state to the ON state.
Any regulator whose SWxOMODE bit is set to “0” will be powered up with the same delay in the start-up sequence as when powering On
from Off. At this point, the regulator returns to its default ON state output voltage and switch mode settings.
Table 18 shows the control bits in Sleep mode. When Sleep mode is activated by the SWxOMODE bit, the regulator will use the set point
as programmed by SWxOFF[5:0] for SW1, SW2, SW3, and SW4.
6.4.4.3
Dynamic voltage scaling
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor.
1. Normal operation: The output voltage is selected by I2C bits SWx[5:0] for SW1, SW2, SW3, and SW4. A voltage transition initiated
by I2C is governed by the DVS stepping rates shown in Table 26.
2. Standby Mode: The output voltage can be higher, or lower than in normal operation, but is typically selected to be the lowest state
retention voltage of a given processor; it is selected by I2C bits SWxSTBY[5:0] for SW1, SW2, SW3, and SW4. Voltage transitions
initiated by a Standby event are governed by the SWxDVSSPEED[1:0] and I2C bits shown in Table 26.
3. Sleep Mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state
retention voltage of a given processor; it is selected by I2C bits SWxOFF[5:0] for SW1, SW2, SW3, and SW4. Voltage transitions
initiated by a turn-off event are governed by the SWxDVSSPEED[1:0] I2C bits shown in Table 26.
Table 25, Table 26, summarize the set point control and DVS time stepping applied to all regulators.
Table 25. DVS control logic for SW1, SW2, SW3, and SW4
STBY
Set Point Selected by
0
SWx[5:0]
1
SWxSTBY[5:0]
Table 26. DVS speed selection for SW1, SW2, SW3, and SW4
SWxDVSSPEED[1:0]
Function
00
25 mV step each 2.0 μs
01 (default)
25 mV step each 4.0 μs
10
25 mV step each 8.0 μs
11
25 mV step each 16 μs
The regulators have a strong sourcing capability and sinking capability in PWM mode, therefore the fastest rising and falling slopes are
determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the
falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in
PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.
The following diagram shows the general behavior for the regulators when initiated with I2C programming, or standby control.
During the DVS period the overcurrent condition on the regulator should be masked.
34VR500
28
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Requested
Set Point
Internally
Controlled Steps
Example
Actual Output
Voltage
Output
Voltage
Initial
Set Point
Actual
Output Voltage
Internally
Controlled Steps
Voltage
Change
Request
Output Voltage
with light Load
Request for
Higher Voltage
Possible
Output Voltage
Window
Request for
Lower Voltage
Initiated by I2C Programming, Standby Control
Figure 11. Voltage stepping with DVS
6.4.4.4
Regulator phase clock
The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 27. By default, each regulator is initialized at 90 ° out
of phase with respect to each other. For example, SW1 is set to 0 °, SW2 is set to 90 °, SW3 is set to 180 °, and SW4 is set to 270 ° by
default at power up.
Table 27. Regulator phase clock selection
SWxPHASE[1:0]
Phase of Clock Sent to Regulator (degrees)
00
0
01
90
10
180
11
270
The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 29 shows the
selectable options for SWxFREQ[1:0]. For each frequency, all phases will be available, this allows regulators operating at different
frequencies to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and
4.0 MHz, 180 ° are the same in terms of phasing. Table 28 shows the optimum phasing when using more than one switching frequency.
Table 28. Optimum phasing
Frequencies
Optimum phasing
1.0 MHz
2.0 MHz
0°
180 °
1.0 MHz
4.0 MHz
0°
180 °
2.0 MHz
4.0 MHz
0°
180 °
1.0 MHz
2.0 MHz
4.0 MHz
0°
90 °
90 °
34VR500
NXP Semiconductors
29
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 29. Regulator frequency configuration
6.4.4.5
SWxFREQ[1:0]
Frequency
00
1.0 MHz
01
2.0 MHz
10
4.0 MHz
11
Reserved
SW1 regulator
The SW1 is a 4.5 A regulator capable of providing an output from 0.625 to 1.875 V. Figure 12 shows a high level block diagram of the
SW1 regulator.
PVIN1
PVIN1
SW1
LX1
LSW1
COSW1
SW1MODE
ISENSE
CINSW1
Controller
Driver
SW1FAULT
EP
Internal
Compensation
FB1
I2C
Interface
I2C
Z2
Z1
VREF
EA
DAC
Figure 12. SW1 regulator block diagram
6.4.4.6
SW1 setup and control registers
SW1 output voltage is programmable from 0.625 to 1.875 V in steps of 25 mV. After power up in the default voltage, the output voltage
can be changed in the Normal, Standby and Sleep mode by writing to the SW1[5:0], SW1STBY[5:0], and SW1OFF[5:0] respectively.
Figure 30 shows the output voltage coding for these registers.
Table 30. SW1 output voltage configuration
Set point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 output (V)
Set point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 output (V)
13
001101
0.6250
39
100111
1.2750
14
001110
0.6500
40
101000
1.3000
15
001111
0.6750
41
101001
1.3250
16
010000
0.7000
42
101010
1.3500
17
010001
0.7250
43
101011
1.3750
18
010010
0.7500
44
101100
1.4000
19
010011
0.7750
45
101101
1.4250
20
010100
0.8000
46
101110
1.4500
21
010101
0.8250
47
101111
1.4750
34VR500
30
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 30. SW1 output voltage configuration (continued)
Set point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 output (V)
Set point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 output (V)
22
010110
0.8500
48
110000
1.5000
23
010111
0.8750
49
110001
1.5250
24
011000
0.9000
50
110010
1.5500
25
011001
0.9250
51
110011
1.5750
26
011010
0.9500
52
110100
1.6000
27
011011
0.9750
53
110101
1.6250
28
011100
1.0000
54
110110
1.6500
29
011101
1.0250
55
110111
1.6750
30
011110
1.0500
56
111000
1.7000
31
011111
1.0750
57
111001
1.7250
32
100000
1.1000
58
111010
1.7500
33
100001
1.1250
59
111011
1.7750
34
100010
1.1500
60
111100
1.8000
35
100011
1.1750
61
111101
1.8250
36
100100
1.2000
62
111110
1.8500
37
100101
1.2250
63
111111
1.8750
38
100110
1.2500
Table 31 provides a list of registers used to configure and operate SW1 and a detailed description on each one of these register is provided
in Table 31 through Table 36.
Table 31. SW1 register summary
Register
Address
Output
SW1VOLT
0x2E
SW1 Output voltage set point in normal operation
SW1STBY
0x2F
SW1 Output voltage set point in Standby
SW1OFF
0x30
SW1 Output voltage set point in Sleep
SW1MODE
0x31
SW1 Switching Mode selector register
SW1CONF
0x32
SW1 DVS, Phase, Frequency and ILIM configuration
Table 32. Register SW1VOLT - ADDR 0x2E
Name
Bit #
R/W
Default
Description
SW1
5:0
R/W
0x00
Sets the SW1 output voltage during normal operation mode. See Table 30
for all possible configurations.
UNUSED
7:6
–
0x00
UNUSED
Table 33. Register SW1STBY - ADDR 0x2F
Name
Bit #
R/W
Default
Description
SW1STBY
5:0
R/W
0x00
Sets the SW1 output voltage during Standby mode. See Table 30 for all
possible configurations.
UNUSED
7:6
–
0x00
UNUSED
34VR500
NXP Semiconductors
31
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 34. Register SW1OFF - ADDR 0x30
Name
Bit #
R/W
Default
Description
SW1OFF
5:0
R/W
0x00
Sets the SW1 output voltage during Sleep mode. See Table 30 for all
possible configurations.
UNUSED
7:6
–
0x00
UNUSED
Table 35. Register SW1MODE - ADDR 0x31
Name
Bit #
R/W
Default
3:0
R/W
0x08
Sets the SW1 switching operation mode. See Table 23 for all possible
configurations.
UNUSED
4
–
0x00
UNUSED
SW1OMODE
5
R/W
0x00
Set status of SW1 when in Sleep mode
0 = OFF
1 = PFM
7:6
–
0x00
UNUSED
SW1MODE
UNUSED
Description
Table 36. Register SW1CONF - ADDR 0x32
Name
6.4.4.7
Bit #
R/W
Default
Description
SW1ILIM
0
R/W
0x00
SW1 current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED
1
R/W
0x00
Unused
SW1FREQ
3:2
R/W
0x00
SW1 switching frequency selector. See Table 29.
SW1PHASE
5:4
R/W
0x00
SW1 Phase clock selection. See Table 27.
SW1DVSSPEED
7:6
R/W
0x00
SW1 DVS speed selection. See Table 26.
SW1 external components
Table 37. SW1 external component recommendations
Components
Description
Component
CINSW1 (30)
SW1input capacitor
3 x 4.7 μF
CIN1HF (30)
SW1decoupling input capacitor
3 x 0.1 μF
COSW1(30)
SW1 output capacitor
7 x 22 μF
LSW1
SW1 inductor
0.68 μH, DCR = 10 mΩ, ISAT = 9.0 A
Notes
30.
Use X5R or X7R capacitors.
34VR500
32
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.8
SW1 specifications
Table 38. SW1 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW1 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
Switch mode supply SW1
VPVIN1
Operating Input Voltage
2.8
–
4.5
V
VSW1
Nominal Output Voltage
–
Table 30
–
V
-25
-3.0
–
–
25
3.0
mV
%
-65
-45
-3.0
–
–
–
65
45
3.0
mV
mV
%
–
–
4500
mA
7.1
5.3
10.5
7.9
13.7
10.3
A
VSW1ACC
Output Voltage Accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1 < 4.5 A
0.625 V ≤ VSW1 ≤ 1.450 V
1.475 V ≤ VSW1 ≤ 1.875 V
•
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1 < 150 mA
0.625 V < VSW1 < 0.675 V
0.7 V < VSW1 < 0.85 V
0.875 V < VSW1 < 1.875 V
ISW1
ISW1LIM
Rated Output Load Current,
2.8 V < VIN < 4.5 V, 0.625 V < VSW1 < 1.875 V
Current Limiter Peak Current Detection
• Current through Inductor
SW1ILIM = 0
SW1ILIM = 1
VSW1
Start-up Overshoot
ISW1 = 0 mA
DVS clk = 25 mV/4 μs, VIN = VPVIN1 = 4.5 V, VSW1 = 1.875 V
–
–
66
mV
tONSW1
Turn-on Time, Enable to 90% of end value
ISW1 = 0 mA, DVS clk = 25 mV/4.0 μs, VIN = VPVIN1 = 4.5 V,
VSW1 = 1.875 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
–
–
–
–
–
–
77
82
86
84
80
68
–
–
–
–
–
–
Output Ripple
–
5.0
–
mV
VSW1LIR
Line Regulation (APS, PWM)
–
–
20
mV
VSW1LOR
DC Load Regulation (APS, PWM)
–
–
20
mV
VSW1LOTR
Transient Load Regulation
• Transient load = 0 to 2.25 A, di/dt = 100 mA/μs
Overshoot
Undershoot
–
–
–
–
50
50
fSW1
Switching Frequency
SW1FREQ[1:0] = 00
SW1FREQ[1:0] = 01
SW1FREQ[1:0] = 10
MHz
Efficiency
• VIN = 3.6 V, fSW1 = 2.0 MHz, LSW1 = 1.0 μH
PFM, 0.9 V, 1.0 mA
PFM, 1.2 V, 50 mA
APS, PWM, 1.2 V, 850 mA
APS, PWM, 1.2 V, 1275 mA
APS, PWM, 1.2 V, 2125 mA
APS, PWM, 1.2 V, 4500 mA
ηSW1
ΔVSW1
%
mV
34VR500
NXP Semiconductors
33
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 38. SW1 electrical characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW1 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Quiescent Current
PFM Mode
APS Mode
–
–
18
145
–
–
µA
RSW1DIS
Discharge Resistance
–
600
–
Ω
RONSW1P
SW1 P-MOSFET RDS(on)
VPVIN1 = 3.3 V
–
60
77
mΩ
RONSW1N
SW1 N-MOSFET RDS(on)
VPVIN1 = 3.3 V
–
80
101
mΩ
Notes
Switch mode supply SW1 (continued)
Efficiency (%)
ISW1Q
100
90
80
70
60
50
40
30
20
10
0
2MHz, 1.8V, PWM
1MHz, 1.8V, PWM
100
1000
Load Current (mA)
10000
SW1 Efficiency Waveform: VIN = 3.3 V; VOUT = 1.8 V
SW1 Efficiency Waveform: VIN = 3.6 V; VOUT = 1.2 V
SW1 Efficiency Waveform: VIN = 3.6 V; VOUT = 1.2 V
Figure 13. SW1 efficiency waveforms
34VR500
34
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 14. Load transient response – SW1 (APS)
6.4.4.9
SW2
SW2 is a 2.0 A rated buck regulator. Table 23 describes the modes, and Table 24 show the options for the SWxMODE[3:0] bits.
Figure 15 shows the block diagram and the external component connections for SW2 regulator.
PVIN2
PVIN2
SW2
LX2
LSW2
COSW2
SW2MODE
ISENSE
CINSW2
Controller
Driver
SW2FAULT
EP
Internal
Compensation
FB2
I2C
Interface
I2C
Z2
Z1
EA
VREF
DAC
Figure 15. SW2 block diagram
34VR500
NXP Semiconductors
35
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.10
SW2 setup and control registers
SW2 output voltage is programmable from 0.625 V to 3.300 V; however, bit SW2[6] in register SW2VOLT is read-only during normal
operation. Its value is determined by the default configuration. Therefore, once SW2[6] is set to "0", the output is limited to the lower output
voltages from 0.625 V to 1.975 V with 25 mV increments, as determined by bits SW2[5:0]. Likewise, once bit SW2[6] is set to "1", the
output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by bits
SW2[5:0].
In order to optimize the performance of the regulator, it is recommended only voltages from 2.000 V to 3.300 V be used in the high range,
and the lower range be used for voltages from 0.625 V to 1.975 V.
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW2[5:0], SW2STBY[5:0]
and SW2OFF[5:0] bits, respectively. However, the initial state of bit SW2[6] are copied into bits SW2STBY[6], and SW2OFF[6] bits.
Therefore, the output voltage range remains the same in all three operating modes. Table 39 shows the output voltage coding valid for
SW2.
Table 39. SW2 output voltage configuration
Low output voltage range(31)
High output voltage range
Set Point
SW2[6:0]
SW2 Output
Set Point
SW2[6:0]
SW2 Output
0
0000000
Reserved
64
1000000
0.8000
1
0000001
Reserved
65
1000001
0.8500
2
0000010
Reserved
66
1000010
0.9000
3
0000011
Reserved
67
1000011
0.9500
4
0000100
Reserved
68
1000100
1.0000
5
0000101
Reserved
69
1000101
1.0500
6
0000110
Reserved
70
1000110
1.1000
7
0000111
Reserved
71
1000111
1.1500
8
0001000
Reserved
72
1001000
1.2000
9
0001001
0.6250
73
1001001
1.2500
10
0001010
0.6500
74
1001010
1.3000
11
0001011
0.6750
75
1001011
1.3500
12
0001100
0.7000
76
1001100
1.4000
13
0001101
0.7250
77
1001101
1.4500
14
0001110
0.7500
78
1001110
1.5000
15
0001111
0.7750
79
1001111
1.5500
16
0010000
0.8000
80
1010000
1.6000
17
0010001
0.8250
81
1010001
1.6500
18
0010010
0.8500
82
1010010
1.7000
19
0010011
0.8750
83
1010011
1.7500
20
0010100
0.9000
84
1010100
1.8000
21
0010101
0.9250
85
1010101
1.8500
22
0010110
0.9500
86
1010110
1.9000
23
0010111
0.9750
87
1010111
1.9500
24
0011000
1.0000
88
1011000
2.0000
25
0011001
1.0250
89
1011001
2.0500
26
0011010
1.0500
90
1011010
2.1000
27
0011011
1.0750
91
1011011
2.1500
28
0011100
1.1000
92
1011100
2.2000
29
0011101
1.1250
93
1011101
2.2500
34VR500
36
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 39. SW2 output voltage configuration(continued)
30
0011110
1.1500
94
1011110
2.3000
31
0011111
1.1750
95
1011111
2.3500
32
0100000
1.2000
96
1100000
2.4000
33
0100001
1.2250
97
1100001
2.4500
34
0100010
1.2500
98
1100010
2.5000
35
0100011
1.2750
99
1100011
2.5500
36
0100100
1.3000
100
1100100
2.6000
37
0100101
1.3250
101
1100101
2.6500
38
0100110
1.3500
102
1100110
2.7000
39
0100111
1.3750
103
1100111
2.7500
40
0101000
1.4000
104
1101000
2.8000
41
0101001
1.4250
105
1101001
2.8500
42
0101010
1.4500
106
1101010
2.9000
43
0101011
1.4750
107
1101011
2.9500
44
0101100
1.5000
108
1101100
3.0000
45
0101101
1.5250
109
1101101
3.0500
46
0101110
1.5500
110
1101110
3.1000
47
0101111
1.5750
111
1101111
3.1500
48
0110000
1.6000
112
1110000
3.2000
49
0110001
1.6250
113
1110001
3.2500
50
0110010
1.6500
114
1110010
3.3000
51
0110011
1.6750
115
1110011
Reserved
52
0110100
1.7000
116
1110100
Reserved
53
0110101
1.7250
117
1110101
Reserved
54
0110110
1.7500
118
1110110
Reserved
55
0110111
1.7750
119
1110111
Reserved
56
0111000
1.8000
120
1111000
Reserved
57
0111001
1.8250
121
1111001
Reserved
58
0111010
1.8500
122
1111010
Reserved
59
0111011
1.8750
123
1111011
Reserved
60
0111100
1.9000
124
1111100
Reserved
61
0111101
1.9250
125
1111101
Reserved
62
0111110
1.9500
126
1111110
Reserved
63
0111111
1.9750
127
1111111
Reserved
Notes
31.
For voltages less than 2.0 V, only use set points 9 to 63.
Setup and control of SW2 is done through I2C registers listed i n Table 40, and a detailed description of each one of the registers is
provided in Tables 41 to Table 45.
34VR500
NXP Semiconductors
37
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 40. SW2 register summary
Register
Address
Description
SW2VOLT
0x35
Output voltage set point on normal operation
SW2STBY
0x36
Output voltage set point on Standby
SW2OFF
0x37
Output voltage set point on Sleep
SW2MODE
0x38
Switching Mode selector register
SW2CONF
0x39
DVS, Phase, Frequency, and ILIM configuration
Table 41. Register SW2VOLT - ADDR 0x35
Name
Bit #
R/W
Default
Description
SW2
5:0
R/W
0x00
Sets the SW2 output voltage during normal operation
mode. See Table 39 for all possible configurations.
SW2
6
R
0x00
Sets the operating output voltage range for SW2. Set
by OTP. See Table 39 for all possible configurations.
UNUSED
7
–
0X00
UNUSED
Table 42. Register SW2STBY - ADDR 0x36
Name
Bit #
R/W
Default
Description
SW2STBY
5:0
R/W
0x00
Sets the SW2 output voltage during Standby mode.
See Table 39 for all possible configurations.
SW2STBY
6
R
0x00
Sets the operating output voltage range for SW2 on
Standby mode. This bit inherits the value configured
on bit SW2[6] by OTP. See Table 39 for all possible
configurations.
UNUSED
7
–
0X00
UNUSED
Table 43. Register SW2OFF - ADDR 0x37
Name
Bit #
R/W
Default
Description
SW2OFF
5:0
R/W
0x00
Sets the SW2 output voltage during Sleep mode. See
Table 39 for all possible configurations.
SW2OFF
6
R
0x00
Sets the operating output voltage range for SW2 on
Sleep mode. This bit inherits the value configured on
bit SW2[6] by OTP. See Table 39 for all possible
configurations.
UNUSED
7
–
0X00
UNUSED
Table 44. Register SW2MODE - ADDR 0x38
Name
Bit #
R/W
Default
3:0
R/W
0x08
Sets the SW2 switching operation mode.
See Table 23 for all possible configurations.
UNUSED
4
–
0x00
UNUSED
SW2OMODE
5
R/W
0x00
Set status of SW2 when in Sleep mode
0 = OFF
1 = PFM
7:6
–
0x00
UNUSED
SW2MODE
UNUSED
Description
34VR500
38
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 45. Register SW2CONF - ADDR 0x39
Name
6.4.4.11
Bit #
R/W
Default
Description
SW2ILIM
0
R/W
0x00
SW2 current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED
1
R/W
0x00
Unused
SW2FREQ
3:2
R/W
0x00
SW2 switching frequency selector.
See Table 29.
SW2PHASE
5:4
R/W
0x00
SW2 Phase clock selection.
See Table 27.
SW2DVSSPEED
7:6
R/W
0x00
SW2 DVS speed selection.
See Table 28.
SW2 external components
Table 46. SW2 external component recommendations
Components
SW2 Input capacitor
(32)
SW2 Decoupling input capacitor
CINSW2
CIN2HF
Description
(32)
COSW2(32)
SW2 Output capacitor
LSW2
SW2 Inductor
Values
4.7 μF
0.1 μF
3 x 22 μF
1.5 μH
DCR = 50 mΩ
ISAT = 2.6 A
Notes
32.
Use X5R or X7R capacitors.
6.4.4.12
SW2 specifications
Table 47. SW2 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN2 = 3.6 V, ISW2 = 100 mA, VVBIAS = 1.0 V ±4.0%, typical
external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VPVIN2 = 3.6 V,
ISW2 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
Switch mode supply SW2
VPVIN2
Operating Input Voltage
2.8
–
4.5
V
VSW2
Nominal Output Voltage
–
Table 39
–
V
-25
-3.0
-6.0
–
–
–
25
3.0
6.0
mV
%
%
-65
-45
-3.0
-3.0
–
–
–
–
65
45
3.0
3.0
mV
mV
%
%
Output Voltage Accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW2 < 2.0 A
VSW2ACC
0.625 V < VSW2 < 0.85 V
0.875 V < VSW2 < 1.975 V
2.0 V < VSW2 < 3.3 V
•
PFM, 2.8 V < VIN < 4.5 V, 0 < ISW2 ≤ 50 mA
0.625 V < VSW2 < 0.675 V
0.7 V < VSW2 < 0.85 V
0.875 V < VSW2 < 1.975 V
2.0 V < VSW2 < 3.3 V
34VR500
NXP Semiconductors
39
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 47. SW2 electrical characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN2 = 3.6 V, ISW2 = 100 mA, VVBIAS = 1.0 V ±4.0%, typical
external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VPVIN2 = 3.6 V,
ISW2 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
ISW2
ISW2LIM
Parameter
Rated Output Load Current
2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 3.3 V
Current Limiter Peak Current Detection
• Current through Inductor
SW2ILIM = 0
SW2ILIM = 1
Min.
Typ.
Max.
–
–
2000
2.8
2.1
4.0
3.0
5.2
3.9
Unit
Notes
mA
(33)
A
VSW2OSH
Start-up Overshoot
ISW2 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN2 = 4.5 V
–
–
66
mV
tONSW2
Turn-ON Time, Enable to 90% of end value
ISW2 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN2 = 4.5 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
fSW2
Switching Frequency
SW2FREQ[1:0] = 00
SW2FREQ[1:0] = 01
SW2FREQ[1:0] = 10
MHz
Notes
33.
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:
(VINSW2 - VSW2) = ISW2* (DCR of Inductor +RONSW2P + PCB trace resistance).
34VR500
40
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 47. SW2 electrical characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN2 = 3.6 V, ISW2 = 100 mA, VVBIAS = 1.0 V ±4.0%, typical
external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VPVIN2 = 3.6 V,
ISW2 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
–
77
–
–
–
–
68
68
76
–
–
–
–
–
–
–
–
–
94
95
96
94
92
86
–
–
–
–
–
–
Output Ripple
–
5.0
–
mV
VSW2LIR
Line Regulation (APS, PWM)
–
–
20
mV
VSW2LOR
DC Load Regulation (APS, PWM)
–
–
20
mV
VSW2LOTR
Transient Load Regulation
• Transient load = 0.0 mA to 0.5 A, di/dt = 100 mA/μs
Overshoot
Undershoot
–
–
–
–
50
50
Quiescent Current
PFM Mode
APS Mode (Low output voltage settings)
APS Mode (High output voltage settings)
–
–
–
23
145
305
–
–
–
Notes
Switch mode supply SW2 (continued)
Efficiency
• VIN = 2.8 V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH
APS, PWM, 1.0 V, 1000 mA
• VIN = 4.5V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH
ηSW2
ΔVSW2
ISW2Q
•
PFM, 1.0 V, 50 mA
APS, 1.0 V, 1.0 mA
APS, 1.0 V, 1000 mA
VIN = 3.6V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH
PFM, 3.15 V, 1.0 mA
PFM, 3.15 V, 50 mA
APS, PWM, 3.15 V, 400 mA
APS, PWM, 3.15 V, 600 mA
APS, PWM, 3.15 V, 1000 mA
APS, PWM, 3.15 V, 2000 mA
%
mV
µA
RONSW2P
SW2 P-MOSFET RDS(on)
at VIN = VPVIN2 = 3.3 V
–
190
209
mΩ
RONSW2N
SW2 N-MOSFET RDS(on)
at VIN = VPVIN2 = 3.3 V
–
212
255
mΩ
RSW2DIS
Discharge Resistance
–
600
–
Ω
34VR500
NXP Semiconductors
41
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
SW2 Efficiency Waveform: VIN = 3.6V; VOUT = 1.8V
Figure 16. SW2 efficiency waveforms
Figure 17. Load transient response – SW2 (PWM)
6.4.4.13
SW3
SW3 is a 2.5 A regulator capable of providing an output from 0.625 V to 3.3 V. Figure 18 shows a high level block diagram of the SW3
regulator.
34VR500
42
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
PVIN3
PVIN3
SW3MODE
ISENSE
CINSW3
SW3
Controller
LX3
Driver
LSW3
COSW3
SW3FAULT
EP
Internal
Compensation
FB3
I2C
Interface
I2C
Z2
Z1
VREF
EA
DAC
Figure 18. SW3 regulator block diagram
6.4.4.14
SW3 setup and control registers
SW3 output voltage is programmable from 0.625 V to 3.300 V; however, bit SW3 [6] in register SW3VOLT is read-only during normal
operation. Its value is determined by the default configuration. Therefore, once SW3 [6] is set to “0”, the output is limited to the lower output
voltages from 0.625 V to 1.975 V with 25 mV increments, as determined by bits SW3[5:0]. Likewise, once bit SW3[6] is set to "1", the
output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by bits
SW3[5:0].
In order to optimize the performance of the regulator, it is recommended only voltages from 2.00 V to 3.300 V be used in the high range
and the lower range be used for voltages from 0.625 V to 1.975 V.
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW3[5:0], SW3STBY[5:0],
and SW3OFF[5:0] bits respectively; however, the initial state of the SW3[6] bit is copied into the SW3STBY[6] and SW3OFF[6] bits.
Therefore, the output voltage range remains the same on all three operating modes. Table 48 shows the output voltage coding valid for
SW3. Table 48 shows the output voltage coding valid for SW3.
Table 48. SW3 output voltage configuration
Low output voltage range(34)
High output voltage range
Set point
SW3[6:0]
SW3 output
Set point
SW3[6:0]
SW3 output
0
0000000
Reserved
64
1000000
0.8000
1
0000001
Reserved
65
1000001
0.8500
2
0000010
Reserved
66
1000010
0.9000
3
0000011
Reserved
67
1000011
0.9500
4
0000100
Reserved
68
1000100
1.0000
5
0000101
Reserved
69
1000101
1.0500
6
0000110
Reserved
70
1000110
1.1000
7
0000111
Reserved
71
1000111
1.1500
8
0001000
Reserved
72
1001000
1.2000
9
0001001
0.6250
73
1001001
1.2500
10
0001010
0.6500
74
1001010
1.3000
11
0001011
0.6750
75
1001011
1.3500
12
0001100
0.7000
76
1001100
1.4000
13
0001101
0.7250
77
1001101
1.4500
34VR500
NXP Semiconductors
43
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 48. SW3 output voltage configuration (continued)
Low output voltage range(34)
High output voltage range
Set point
SW3[6:0]
SW3 output
Set point
SW3[6:0]
SW3 output
14
0001110
0.7500
78
1001110
1.5000
15
0001111
0.7750
79
1001111
1.5500
16
0010000
0.8000
80
1010000
1.6000
17
0010001
0.8250
81
1010001
1.6500
18
0010010
0.8500
82
1010010
1.7000
19
0010011
0.8750
83
1010011
1.7500
20
0010100
0.9000
84
1010100
1.8000
21
0010101
0.9250
85
1010101
1.8500
22
0010110
0.9500
86
1010110
1.9000
23
0010111
0.9750
87
1010111
1.9500
24
0011000
1.0000
88
1011000
2.0000
25
0011001
1.0250
89
1011001
2.0500
26
0011010
1.0500
90
1011010
2.1000
27
0011011
1.0750
91
1011011
2.1500
28
0011100
1.1000
92
1011100
2.2000
29
0011101
1.1250
93
1011101
2.2500
30
0011110
1.1500
94
1011110
2.3000
31
0011111
1.1750
95
1011111
2.3500
32
0100000
1.2000
96
1100000
2.4000
33
0100001
1.2250
97
1100001
2.4500
34
0100010
1.2500
98
1100010
2.5000
35
0100011
1.2750
99
1100011
2.5500
36
0100100
1.3000
100
1100100
2.6000
37
0100101
1.3250
101
1100101
2.6500
38
0100110
1.3500
102
1100110
2.7000
39
0100111
1.3750
103
1100111
2.7500
40
0101000
1.4000
104
1101000
2.8000
41
0101001
1.4250
105
1101001
2.8500
42
0101010
1.4500
106
1101010
2.9000
43
0101011
1.4750
107
1101011
2.9500
44
0101100
1.5000
108
1101100
3.0000
45
0101101
1.5250
109
1101101
3.0500
46
0101110
1.5500
110
1101110
3.1000
47
0101111
1.5750
111
1101111
3.1500
48
0110000
1.6000
112
1110000
3.2000
49
0110001
1.6250
113
1110001
3.2500
50
0110010
1.6500
114
1110010
3.3000
51
0110011
1.6750
115
1110011
Reserved
34VR500
44
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 48. SW3 output voltage configuration (continued)
Low output voltage range(34)
High output voltage range
Set point
SW3[6:0]
SW3 output
Set point
SW3[6:0]
SW3 output
52
0110100
1.7000
116
1110100
Reserved
53
0110101
1.7250
117
1110101
Reserved
54
0110110
1.7500
118
1110110
Reserved
55
0110111
1.7750
119
1110111
Reserved
56
0111000
1.8000
120
1111000
Reserved
57
0111001
1.8250
121
1111001
Reserved
58
0111010
1.8500
122
1111010
Reserved
59
0111011
1.8750
123
1111011
Reserved
60
0111100
1.9000
124
1111100
Reserved
61
0111101
1.9250
125
1111101
Reserved
62
0111110
1.9500
126
1111110
Reserved
63
0111111
1.9750
127
1111111
Reserved
Notes
34.
For voltages less than 2.0 V, only use set points 9 to 63.
Table 49 provides a list of registers used to configure and operate SW3. A detailed description on each of these register is provided on
Tables 49 through Table 54.
Table 49. SW3 register summary
Register
Address
Output
SW3VOLT
0x3C
SW3 Output voltage set point on normal operation
SW3STBY
0x3D
SW3 Output voltage set point on Standby
SW3OFF
0x3E
SW3 Output voltage set point on Sleep
SW3MODE
0x3F
SW3 Switching mode selector register
SW3CONF
0x40
SW3 DVS, phase, frequency and ILIM configuration
Table 50. Register SW3VOLT - ADDR 0x3C
Name
Bit #
R/W
Default
Description
SW3
5:0
R/W
0x00
Sets the SW3 output voltage, during normal operation mode. See
Table 48 for all possible configurations.
SW3
6
R
0x00
Sets the operating output voltage range for SW3. Set by OTP. See
Table 48 for all possible configurations.
UNUSED
7
–
0x00
UNUSED
Table 51. Register SW3STBY - ADDR 0x3D
Name
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW3 output voltage, during Standby mode. See Table 48 for all
possible configurations.
SW3
6
R
0x00
Sets the operating output voltage range for SW3 on Standby mode. This
bit inherits the value configured on bit SW3[6] by OTP. See Table 48 for
all possible configurations.
UNUSED
7
–
0x00
UNUSED
SW3STBY
34VR500
NXP Semiconductors
45
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 52. Register SW3OFF - ADDR 0x3E
Name
Bit #
R/W
Default
5:0
R/W
0x00
Sets the SW3 output voltage during Sleep mode. See Table 48 for all
possible configurations.
SW3
6
R
0x00
Sets the operating output voltage range for SW3 on Sleep mode. This bit
inherits the value configured on bit SW3[6] by OTP. See Table 48 for all
possible configurations.
UNUSED
7
–
0x00
UNUSED
SW3OFF
Description
Table 53. Register SW3MODE - ADDR 0x3F
Name
Bit #
R/W
Default
3:0
R/W
0x08
Sets the SW3 switching operation mode.
See Table 23 for all possible configurations.
UNUSED
4
–
0x00
UNUSED
SW3OMODE
5
R/W
0x00
Set status of SW3 when in Sleep mode.
0 = OFF
1 = PFM
7:6
–
0x00
UNUSED
SW3MODE
UNUSED
Description
Table 54. Register SW3CONF - ADDR 0x40
Name
Bit #
R/W
Default
SW3ILIM
0
R/W
0x00
SW3 current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED
1
R/W
0x00
Unused
SW3FREQ
3:2
R/W
0x00
SW3 switching frequency selector. See Table 29.
SW3PHASE
5:4
R/W
0x00
SW3 Phase clock selection. See Table 27.
SW3DVSSPEED
7:6
R/W
0x00
SW3 DVS speed selection. See Table 28.
6.4.4.15
Description
SW3 external components
Table 55. SW3 external component requirements
Components
Description
SW3
CINSW3
(35)
SW3 input capacitor
2 x 4.7 μF
COSW3
(35)
SW3 output capacitor
3 x 22 μF
CIN3HF
(35)
SW3 decoupling input capacitor
2 x 0.1 μF
LSW3
SW3 inductor
1.5 μH
DCR = 25 mΩ
ISAT = 5.0 A
Notes
35.
Use X5R or X7R capacitors.
34VR500
46
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.16
SW3 specifications
Table 56. SW3 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN3 = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VPVIN3 = 3.6 V,
VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
Switch mode supply SW3
VPVIN3
Operating Input Voltage
2.8
–
4.5
V
VSW3
Nominal Output Voltage
-
Table 48
-
V
-25
-3.0
-6.0
–
–
–
25
3.0
6.0
mV
%
%
-65
-45
-45
-3.0
–
–
–
–
65
45
45
3.0
mV
mV
mV
%
–
–
2500
3.5
2.7
5.0
3.8
6.5
4.9
Start-up Overshoot
ISW3 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN3 = 4.5 V
–
–
66
mV
Turn-on Time
Enable to 90% of end value
ISW3 = 0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN3 = 4.5 V
–
–
500
µs
–
–
–
1.0
2.0
4.0
–
–
–
VSW3ACC
Output Voltage Accuracy
• PWM, APS 2.8 V < VIN < 4.5 V, 0 < ISW3 < 2.5 A
0.625 V < VSW3 < 0.85 V
0.875 V < VSW3 < 1.975 V
2.0 V < VSW3 < 3.3 V
• PFM, steady state (2.8 V < VIN < 4.5 V, 0 < ISW3 < 50 mA)
0.625 V < VSW3 < 0.675 V
0.7 V < VSW3 < 0.85 V
0.875 V < VSW3 < 1.975 V
2.0 V < VSW3 < 3.3 V
ISW3
ISW3LIM
VSW3OSH
tONSW3
fSW3
Rated Output Load Current
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW3 < 3.3 V
PWM, APS mode
Current Limiter Peak Current Detection
• Current through inductor
SW3ILIM = 0
SW3ILIM = 1
Switching Frequency
SW3FREQ[1:0] = 00
SW3FREQ[1:0] = 01
SW3FREQ[1:0] = 10
mA
(36)
A
MHz
Notes
36.
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:
(VINSW3 - VSW3) = ISW3* (DCR of inductor +RONSW3xP + PCB trace resistance).
34VR500
NXP Semiconductors
47
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 56. SW3 electrical characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN3 = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VPVIN3 = 3.6 V,
VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
Unit
Efficiency
• fSW3 = 2.0 MHz, LSW3 1.0 μH
PFM, 1.5 V, 1.0 mA
PFM, 1.5 V, 50 mA
APS, PWM 1.5 V, 500 mA
APS, PWM 1.5 V, 750 mA
APS, PWM 1.5 V, 1250 mA
APS, PWM 1.5 V, 2500 mA
–
–
–
–
–
–
84
85
85
84
80
74
–
–
–
–
–
–
Output Ripple
–
5.0
–
mV
VSW3LIR
Line Regulation (APS, PWM)
–
–
20
mV
VSW3LOR
DC Load Regulation (APS, PWM)
–
–
20
mV
VSW3LOTR
Transient Load Regulation
• Transient Load = 0.0 mA to 1.25 A, di/dt = 100 mA/μs
Overshoot
Undershoot
–
–
–
–
50
50
Quiescent Current
PFM Mode
APS Mode
–
–
22
300
–
–
108
123
129
163
600
–
Notes
Switch mode supply SW3 (continued)
ηSW3
ΔVSW3
ISW3Q
RONSW3P
SW3 P-MOSFET RDSON
at VIN = VPVIN3 = 3.3 V
–
RONSW3N
SW3 N-MOSFET RDSON
at VIN = VPVIN3 = 3.3 V
–
RSW3DIS
Discharge Resistance
–
%
mV
µA
mΩ
mΩ
Ω
100
90
80
PFM - Vout = 1.5V
20
APS - Vout = 1.5V
Efficiency (%)
70
)
%
( 60
yc
n 50
e
ic
if 40
fE
30
10
PWM - Vout = 1.5V
0
0.1
1
10
100
1000
Load Current (mA)
Figure 19. SW3 efficiency waveforms
34VR500
48
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 20. Load transient response – SW3 (PWM)
6.4.4.17
SW4
SW4 operates by default in VTT mode (for the 34VR500V1, V3, V4, V5, V6, V7) and it's not possible to change this configuration and
modify the output voltage after the Start-up sequence. SW4 operates in non VTT mode for the 34VR500V2 and it is possible to change
the output voltage by the I2C bus.
SW4 is a 1.0 A rated buck regulator capable of operating in two modes. In Regulator mode, it operates as a normal buck regulator with a
programmable output between 0.625 and 1.975 V. It is capable of operating in the three available switching modes: PFM, APS, and PWM,
described on Table 23 and configured by the SW4MODE[3:0] bits, as shown in Table 24.
If the system requires DDR memory termination, SW4 can be used in its VTT mode. In the VTT mode, its reference voltage will track the
output voltage of SW3, scaled by 0.5. Furthermore, when in VTT mode, only the PWM switching mode is allowed. The minimum output
voltage for SW4 in VTT mode is 0.6 V
Figure 21 shows the block diagram and the external component connections for the SW4 regulator.
PVIN4
PVIN4
CINSW4
SW4
LX4
LSW4
COSW4
SW4MODE
ISENSE
Controller
Driver
SW4FAULT
EP
Internal
Compensation
FB4
I2C
Interface
I2C
Z2
Z1
EA
VREF
DAC
Figure 21. SW4 block diagram
34VR500
NXP Semiconductors
49
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.18
SW4 setup and control registers
In Regulator mode, the SW4 output voltage is programmable from 0.625 to 1.975 V.
The output voltage set point is independently programmed for Normal, Standby, and Sleep mode by setting the SW4[5:0], SW4STBY[5:0],
and SW4OFF[5:0] bits, respectively. Table 57 shows the output voltage coding valid for SW4.
Table 57. SW4 output voltage configuration
Set Point
SW4[5:0]
SW4 Output
Set Point
SW4[5:0]
SW4 Output
9
001001
0.6250
37
100101
1.3250
10
001010
0.6500
38
100110
1.3500
11
001011
0.6750
39
100111
1.3750
12
001100
0.7000
40
101000
1.4000
13
001101
0.7250
41
101001
1.4250
14
001110
0.7500
42
101010
1.4500
15
001111
0.7750
43
101011
1.4750
16
010000
0.8000
44
101100
1.5000
17
010001
0.8250
45
101101
1.5250
18
010010
0.8500
46
101110
1.5500
19
010011
0.8750
47
101111
1.5750
20
010100
0.9000
48
110000
1.6000
21
010101
0.9250
49
110001
1.6250
22
010110
0.9500
50
110010
1.6500
23
010111
0.9750
51
110011
1.6750
24
011000
1.0000
52
110100
1.7000
25
011001
1.0250
53
110101
1.7250
26
011010
1.0500
54
110110
1.7500
27
011011
1.0750
55
110111
1.7750
28
011100
1.1000
56
111000
1.8000
29
011101
1.1250
57
111001
1.8250
30
011110
1.1500
58
111010
1.8500
31
011111
1.1750
59
111011
1.8750
32
100000
1.2000
60
111100
1.9000
33
100001
1.2250
61
111101
1.9250
34
100010
1.2500
62
111110
1.9500
35
100011
1.2750
63
111111
1.9750
36
100100
1.3000
Full setup and control of SW4 is done through the I2C registers listed on Table 58, and a detailed description of each one of the registers
is provided in Tables 59 to Table 63.
34VR500
50
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 58. SW4 register summary
Register
Address
Description
SW4VOLT
0x4A
Output voltage set point on normal operation
SW4STBY
0x4B
Output voltage set point on Standby
SW4OFF
0x4C
Output voltage set point on Sleep
SW4MODE
0x4D
Switching mode selector register
SW4CONF
0x4E
DVS, phase, frequency and ILIM configuration
Table 59. Register SW4VOLT - ADDR 0x4A
Name
SW4
UNUSED
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW4 output voltage during normal operation mode. See Table 57
for all possible configurations.
7
–
0x00
UNUSED
Table 60. Register SW4STBY - ADDR 0x4B
Name
Bit #
R/W
Default
Description
SW4STBY
5:0
R/W
0x00
Sets the SW4 output voltage during Standby mode. See Table 57 for all
possible configurations.
UNUSED
7
–
0x00
UNUSED
Table 61. Register SW4OFF - ADDR 0x4C
Name
Bit #
R/W
Default
Description
SW4OFF
5:0
R/W
0x00
Sets the SW4 output voltage during Sleep mode. See Table 57 for all
possible configurations.
UNUSED
7
–
0x00
UNUSED
Table 62. Register SW4MODE - ADDR 0x4D
Name
Bit #
R/W
Default
3:0
R/W
0x08
Sets the SW4 switching operation mode. See Table 23 for all possible
configurations.
UNUSED
4
–
0x00
UNUSED
SW4OMODE
5
R/W
0x00
Set status of SW4 when in Sleep mode
0 = OFF
1 = PFM
7:6
–
0x00
UNUSED
SW4MODE
UNUSED
Description
34VR500
NXP Semiconductors
51
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 63. Register SW4CONF - ADDR 0x4E
Name
Bit #
R/W
Default
SW4ILIM
0
R/W
0x00
SW4 current limit level selection
0 = High level Current limit
1 = Low level Current limit
UNUSED
1
R/W
0x00
Unused
SW4FREQ
3:2
R/W
0x00
SW4 switching frequency selector. See Table 29.
SW4PHASE
5:4
R/W
0x00
SW4 Phase clock selection. See Table 27.
SW4DVSSPEED
7:6
R/W
0x00
SW4 DVS speed selection. See Table 28.
6.4.4.19
Description
SW4 external components
Table 64. SW4 external component recommendations
Components
CINSW4(37)
CIN4HF
(37)
Description
Values
SW4 Input capacitor
4.7 μF
SW4 Decoupling input capacitor
0.1 μF
COSW4(37)
SW4 Output capacitor
LSW4
SW4 Inductor
3 x 22 μF
1.5 μH
DCR = 50 mΩ
ISAT = 2.6 A
Notes
37.
Use X5R or X7R capacitors.
6.4.4.20
SW4 specifications
Table 65. SW4 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW4 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
Switch mode supply SW4
VPVIN4
Operating Input Voltage
2.8
–
4.5
V
VSW4
Nominal Output Voltage
Normal operation
VTT Mode
–
–
Table 57
VSW3/2
–
–
V
-25
-3.0
–
–
25
3.0
mV
%
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 50 mA
0.625 V < VSW4 < 0.675 V
0.7 V < VSW4 < 0.85 V
0.875 V < VSW4 < 1.975 V
-65
-45
-45
–
–
–
65
45
45
mV
mV
mV
VTT Mode, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A
-40
–
40
mV
–
–
1000
mA
Output Voltage Accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A
0.625 V < VSW4 < 0.85 V
0.875 V < VSW4 < 1.975 V
VSW4ACC
•
•
ISW4
Rated Output Load Current
2.8 V < VIN < 4.5 V, 0.625 V < VSW4 < 1.975 V
34VR500
52
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 65. SW4 electrical characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW4 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
1.4
1.0
2.0
1.5
3.0
2.4
Unit
Notes
Switch mode supply SW4 (continued)
ISW4LIM
Current Limiter Peak Current Detection
Current through inductor
SW4ILIM = 0
SW4ILIM = 1
A
VSW4OSH
Start-up Overshoot
ISW4 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN4 = 4.5 V
–
–
66
mV
tONSW4
Turn-on Time
Enable to 90% of end value
ISW4 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN4 = 4.5 V
–
–
500
µs
Switching Frequency
SW4FREQ[1:0] = 00
SW4FREQ[1:0] = 01
SW4FREQ[1:0] = 10
–
–
–
1.0
2.0
4.0
–
–
–
Efficiency
• fSW4 = 2.0 MHz, LSW4 = 1.0 μH
PFM, 1.8 V, 1.0 mA
PFM, 1.8 V, 50 mA
APS, PWM 1.8 V, 200 mA
APS, PWM 1.8 V, 500 mA
APS, PWM 1.8 V, 1000 mA
–
–
–
–
–
81
78
87
88
83
–
–
–
–
–
–
–
–
78
76
66
–
–
–
Output Ripple
–
5.0
–
mV
VSW4LIR
Line Regulation (APS, PWM)
–
–
20
mV
VSW4LOR
DC Load Regulation (APS, PWM)
–
–
20
mV
VSW4LOTR
Transient Load Regulation
• Transient Load = 0.0 mA to 500 mA, di/dt = 100 mA/μs
Overshoot
Undershoot
–
–
–
–
–
–
22
145
–
–
µA
fSW4
ηSW4
PWM 0.75 V, 200 mA
PWM 0.75 V, 500 mA
PWM 0.75 V, 1000 mA
ΔVSW4
ISW4Q
Quiescent Current
PFM Mode
APS Mode
50
50
MHz
%
mV
RONSW4P
SW4 P-MOSFET RDSON
at VIN = VPVIN4 = 3.3 V
–
236
274
mΩ
RONSW4N
SW4 N-MOSFET RDSON
at VIN = VPVIN4 = 3.3 V
–
293
378
mΩ
RSW4DIS
Discharge Resistance
–
600
–
Ω
34VR500
NXP Semiconductors
53
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
100
90
Efficiency (%)
80
70
)
%
( 60
yc
n 50
ie
ci
ff 40
E
30
PFM - Vout = 1.8V
APS - Vout = 1.8V
20
PWM - Vout = 1.8 V
10
PWM - Vout = 0.7 5V
0
0.1
1
10
100
1000
Load Current (mA)
Figure 22. SW4 efficiency waveforms
Figure 23. Load transient response – SW4 (PWM)
6.4.5
LDO regulators description
This section describes the LDO regulators provided by the 34VR500. All regulators use the main bandgap as reference. Refer to Bias and
references block description section for further information on the internal reference voltages.
A Low Power mode is automatically activated by reducing bias currents when the load current is less than I_Lmax/5. However, the lowest
bias currents may be attained by forcing the part into its Low Power mode by setting the LDOxLPWR bit. The use of this bit is only
recommended when the load is expected to be less than I_Lmax/50, otherwise performance may be degraded.
When a regulator is disabled, the output will be discharged by an internal pull-down. The pull-down is also activated when PORB is low.
34VR500
54
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
VLDOINx
VLDOINx
VREF
_
+
LDOx
LDOxLPWR
LDOx
LDOx
I2C
Interface
CLDOx
LDOx
Discharge
Figure 24. General LDO block diagram
6.4.5.1
Transient response waveforms
Idealized stimulus and response waveforms for transient line and transient load tests are depicted in Figure 25. Note that the transient
line and load response refers to the overshoot, or undershoot only, excluding the DC shift.
34VR500
NXP Semiconductors
55
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
IMAX
ILOAD
IMAX/10
1.0 us
1.0 us
Transient Load Stimulus
IL = IMAX/10
IL = IMAX
Overshoot
VOUT
Undershoot
VOUT Transient Load Response
VINx_INITIAL
VINx
VINx_FINAL
10 us
10 us
Transient Line Stimulus
VINx_INITIAL
VINx_FINAL
Overshoot
VOUT
Undershoot
VOUT Transient Line Response
Figure 25. Transient waveforms
34VR500
56
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.5.2
Short-circuit protection
All general purpose LDOs have short-circuit protection capability. The Short-circuit Protection (SCP) system includes debounced fault
condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product
damage. If a short-circuit condition is detected, the LDO will be disabled by resetting its LDOxEN bit, while at the same time, an interrupt
LDOxFAULTI will be generated to flag the fault to the system processor. The LDOxFAULTI interrupt is maskable through the
LDOxFAULTM mask bit.
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the regulators will not automatically be disabled upon a
short-circuit detection. However, the current limiter will continue to limit the output current of the regulator. By default, the REGSCPEN is
not set; therefore, at start-up none of the regulators will be disabled if an overloaded condition occurs. A fault interrupt, LDOxFAULTI, will
be generated in an overload condition regardless of the state of the REGSCPEN bit. See Table 66 for SCP behavior configuration.
Table 66. Short-circuit behavior
6.4.5.3
REGSCPEN[0]
Short-circuit Behavior
0
Current limit
1
Shutdown
LDO regulator control
Each LDO is fully controlled through its respective LDOxCTL register. This register enables the user to set the LDO output voltage
according to Table 67 for LDO1 and uses the voltage set point on Table 68 for LDO2 through LDO5.
Table 67. LDO1 output voltage configuration
Set point
LDO1[3:0]
LDO1 output (V)
0
0000
0.800
1
0001
0.850
2
0010
0.900
3
0011
0.950
4
0100
1.000
5
0101
1.050
6
0110
1.100
7
0111
1.150
8
1000
1.200
9
1001
1.250
10
1010
1.300
11
1011
1.350
12
1100
1.400
13
1101
1.450
14
1110
1.500
15
1111
1.550
34VR500
NXP Semiconductors
57
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 68. LDO2/3/4/5 output voltage configuration
Set point
LDOx[3:0]
LDOx output (V)
0
0000
1.80
1
0001
1.90
2
0010
2.00
3
0011
2.10
4
0100
2.20
5
0101
2.30
6
0110
2.40
7
0111
2.50
8
1000
2.60
9
1001
2.70
10
1010
2.80
11
1011
2.90
12
1100
3.00
13
1101
3.10
14
1110
3.20
15
1111
3.30
Besides the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well as
programmed to stay “ON” or be disabled when the PMIC enters Standby mode. Each regulator has associated I2C bits for this. Table 69
presents a summary of all valid combinations of the control bits on LDOxCTL register and the expected behavior of the LDO output.
Table 69. LDO control
LDOxEN
LDOxLPWR
LDOxSTBY
STANDBY(38)
LDOxOUT
0
X
X
X
Off
1
0
0
X
On
1
1
0
X
Low Power
1
X
1
0
On
1
0
1
1
Off
1
1
1
1
Low Power
Notes
38.
STANDBY refers to a Standby event as described earlier.
For more detail information, Table 70 through Table 74 provide a description of all registers necessary to operate all five general purpose
LDO regulators.
34VR500
58
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 70. Register LDO1CTL - ADDR 0x6D
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets LDO1 output voltage. See Table 67 for all possible configurations.
LDO1EN
4
–
0x00
Enables or Disables LDO1 output
0 = OFF
1 = ON
LDO1STBY
5
R/W
0x00
Set LDO1 output state when in Standby. Refer to Table 69.
LDO1LPWR
6
R/W
0x00
Enable Low Power Mode for LDO1. Refer to Table 69.
UNUSED
7
–
0x00
UNUSED
LDO1
Description
Table 71. Register LDO2CTL - ADDR 0x6E
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets LDO2 output voltage. See Table 68 for all possible configurations.
LDO2EN
4
–
0x00
Enables or Disables LDO2 output
0 = OFF
1 = ON
LDO2STBY
5
R/W
0x00
Set LDO2 output state when in Standby. Refer to Table 69.
LDO2LPWR
6
R/W
0x00
Enable Low Power Mode for LDO2. Refer to Table 69.
UNUSED
7
–
0x00
UNUSED
LDO2
Description
Table 72. Register LDO3CTL - ADDR 0x6F
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets LDO3 output voltage. See Table 68 for all possible configurations.
LDO3EN
4
–
0x00
Enables or Disables LDO3 output
0 = OFF
1 = ON
LDO3STBY
5
R/W
0x00
Set LDO3 output state when in Standby. Refer to Table 69.
LDO3LPWR
6
R/W
0x00
Enable Low Power Mode for LDO3. Refer to Table 69.
UNUSED
7
–
0x00
UNUSED
LDO3
Description
Table 73. Register LDO4CTL - ADDR 0x70
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets LDO4 output voltage. See Table 68 for all possible configurations.
LDO4EN
4
–
0x00
Enables or Disables LDO4 output
0 = OFF
1 = ON
LDO4STBY
5
R/W
0x00
Set LDO4 output state when in Standby. Refer to Table 69.
LDO4LPWR
6
R/W
0x00
Enable Low Power Mode for LDO4. Refer to Table 69.
UNUSED
7
–
0x00
UNUSED
LDO4
Description
34VR500
NXP Semiconductors
59
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 74. Register LDO5CTL - ADDR 0x71
Name
Bit #
R/W
Default
Description
3:0
R/W
0x80
Sets LDO5 output voltage. See Table 68 for all possible configurations.
LDO5EN
4
–
0x00
Enables or Disables LDO5 output
0 = OFF
1 = ON
LDO5STBY
5
R/W
0x00
Set LDO5 output state when in Standby. Refer to Table 69.
LDO5LPWR
6
R/W
0x00
Enable Low Power Mode for LDO5. Refer to Table 69.
UNUSED
7
–
0x00
UNUSED
LDO5
6.4.5.4
External components
Table 75 lists the typical component values for the general purpose LDO regulators.
Table 75. LDO external components
Regulator
Output capacitor (μF)(39)
LDO1
4.7
LDO2
2.2
LDO3
4.7
LDO4
2.2
LDO5
2.2
Notes
39.
Use X5R/X7R ceramic capacitors.
6.4.5.5
6.4.5.5.1
LDO specifications
LDO1
Table 76. LDO1 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN1 = 3.0 V, VLDO1[3:0] = 1111, ILDO1 = 10 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN1 = 3.0 V, LDO1[3:0] = 1111, ILDO1 = 10 mA and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
LDO1
VLDOIN1
Operating Input Voltage
1.75
–
3.40
V
LDO1NOM
Nominal Output Voltage
–
Table 67
–
V
ILDO1
Operating Load Current
0.0
–
250
mA
-3.0
–
3.0
%
LDO1 active mode - DC
VLDO1TOL
Output Voltage Tolerance
1.75 V