MC9S08SH32
MC9S08SH16
Data Sheet
HCS08
Microcontrollers
MC9S08SH32
Rev. 3
3/2014
freescale.com
MC9S08SH32 Series Features
8-Bit HCS08 Central Processor Unit (CPU)
• 40-MHz HCS08 CPU (central processor unit)
• HC08 instruction set with added BGND instruction
• Support for up to 32 interrupt/reset sources
On-Chip Memory
• FLASH read/program/erase over full operating
voltage and temperature
• Random-access memory (RAM)
• Security circuitry to prevent unauthorized access
to RAM and FLASH contents
Power-Saving Modes
• Two very low power stop modes
• Reduced power wait mode
• Very low power real time counter for use in run,
wait, and stop
Clock Source Options
• Oscillator (XOSC) — Loop-control Pierce
oscillator; Crystal or ceramic resonator range of
31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
• Internal Clock Source (ICS) — Internal clock
source module containing a frequency-locked
loop (FLL) controlled by internal or external
reference; precision trimming of internal reference
allows 0.2% resolution and 2% deviation over
temperature and voltage; 1.5% deviation using
internal temperature compensation.
• ICS supports bus frequencies from 2 MHz to
20 MHz.
System Protection
• Watchdog computer operating properly (COP)
reset with option to run from dedicated 1-kHz
internal clock source or bus clock
• Low-voltage detection with reset or interrupt;
selectable trip points
• Illegal opcode detection with reset
• Illegal address detection with reset
• FLASH block protect
Development Support
• Single-wire background debug interface
• Breakpoint capability to allow single breakpoint
setting during in-circuit debugging (plus two more
breakpoints in on-chip debug module)
• On-chip, in-circuit emulation (ICE) debug module
containing two comparators and nine trigger
modes. Eight deep FIFO for storing
change-of-flow address and event-only data.
Debug module supports both tag and force
breakpoints.
Peripherals
• ADC — 16-channel, 10-bit resolution, 2.5 μs
conversion time, automatic compare function,
temperature sensor, internal bandgap reference
channel; runs in stop3
• ACMP — Analog comparators with selectable
interrupt on rising, falling, or either edge of
comparator output; compare option to fixed
internal bandgap reference voltage; output can be
optionally routed to TPM module; runs in stop3
• SCI — Full duplex non-return to zero (NRZ); LIN
master extended break generation; LIN slave
extended break detection; wake up on active edge
• SPI — Full-duplex or single-wire bidirectional;
Double-buffered transmit and receive; Master or
Slave mode; MSB-first or LSB-first shifting
• IIC — Up to 100 kbps with maximum bus loading;
Multi-master operation; Programmable slave
address; Interrupt driven byte-by-byte data
transfer; supports broadcast mode and 10-bit
addressing
• MTIM — 8-bit modulo counter with 8-bit prescaler
and overflow interrupt
• TPMx — Two 2-channel timer pwm modules
(TPM1, TPM2); Selectable input capture, output
compare, or buffered edge- or center-aligned
PWM on each channel
• RTC — (Real-time counter) 8-bit modulus counter
with binary or decimal based prescaler; External
clock source for precise time base, time-of-day,
calendar or task scheduling functions; Free
running on-chip low power oscillator (1 kHz) for
cyclic wake-up without external components, runs
in all MCU modes
Input/Output
• 23 general purpose I/O pins (GPIOs) and 1
output-only pin
• 8 interrupt pins with selectable polarity
• Ganged output option for PTB[5:2] and PTC[3:0];
allows single write to change state of multiple pins
• Hysteresis and configurable pull up device on all
input pins; Configurable slew rate and drive
strength on all output pins.
Package Options
• 28-TSSOP, 28-SOIC, 20-TSSOP, 16-TSSOP
MC9S08SH32 Data Sheet
Covers MC9S08SH32
MC9S08SH16
MC9S08SH32
Rev. 3
3/2014
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
© Freescale Semiconductor, Inc., 2007-2014. All rights reserved.
Revision History
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be
the most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, refer to:
http://freescale.com/
The following revision history table summarizes changes contained in this document.
Revision
Number
Revision
Date
1
10/2007
Updated The ACMP and TPM modules to version 3 and made numerous revisions to the Electricals. Updated device numbering scheme.
2
4/2008
Updated some electricals and made some minor grammatical/formatting revisions. Corrected the SPI block module version. Removed incorrect ADC temperature sensor value from the Features section. Updated the package information
with a sample mask set identifier.
3
3/2014
Added a note to the Section 9.1, “Introduction”; updated Section 11.4.5, “Internal
Reference Clock”; updated Section A.14.1, “Radiated Emissions”; updated
Figure 4-1, Figure 4-6; updated Table 4-4; updated Table 7-2.
Description of Changes
© Freescale Semiconductor, Inc., 2007-2014. All rights reserved.
This product incorporates SuperFlash® Technology licensed from SST.
MC9S08SH32 Series Data Sheet, Rev. 3
6
Freescale Semiconductor
List of Chapters
Chapter 1
Device Overview ...................................................................... 19
Chapter 2
Pins and Connections ............................................................. 23
Chapter 3
Modes of Operation ................................................................. 31
Chapter 4
Memory ..................................................................................... 37
Chapter 5
Resets, Interrupts, and General System Control.................. 59
Chapter 6
Parallel Input/Output Control.................................................. 75
Chapter 7
Central Processor Unit (S08CPUV3) ...................................... 93
Chapter 8
Analog Comparator 5-V (S08ACMPV3)................................ 113
Chapter 9
Analog-to-Digital Converter (S08ADC10V1)........................ 121
Chapter 10
Inter-Integrated Circuit (S08IICV2) ....................................... 149
Chapter 11
Internal Clock Source (S08ICSV2)........................................ 167
Chapter 12
Modulo Timer (S08MTIMV1).................................................. 181
Chapter 13
Real-Time Counter (S08RTCV1) ........................................... 191
Chapter 14
Serial Communications Interface (S08SCIV4)..................... 201
Chapter 15
Serial Peripheral Interface (S08SPIV3) ................................ 221
Chapter 16
Timer Pulse-Width Modulator (S08TPMV3) ......................... 237
Chapter 17
Development Support ........................................................... 261
Appendix A
Electrical Characteristics...................................................... 283
Appendix B
Ordering Information and Mechanical Drawings................ 313
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
7
Contents
Section Number
1.1
1.2
1.3
2.1
2.2
3.1
3.2
3.3
3.4
3.5
3.6
4.1
4.2
4.3
4.4
4.5
Title
Page
Chapter 1
Device Overview
Devices in the MC9S08SH32 Series............................................................................................... 19
MCU Block Diagram ...................................................................................................................... 20
System Clock Distribution .............................................................................................................. 22
Chapter 2
Pins and Connections
Device Pin Assignment ................................................................................................................... 23
Recommended System Connections ............................................................................................... 25
2.2.1 Power ................................................................................................................................ 26
2.2.2 Oscillator (XOSC) ............................................................................................................ 26
2.2.3 RESET .............................................................................................................................. 27
2.2.4 Background / Mode Select (BKGD/MS).......................................................................... 27
2.2.5 General-Purpose I/O and Peripheral Ports........................................................................ 28
Chapter 3
Modes of Operation
Introduction ..................................................................................................................................... 31
Features ........................................................................................................................................... 31
Run Mode........................................................................................................................................ 31
Active Background Mode ............................................................................................................... 31
Wait Mode ....................................................................................................................................... 32
Stop Modes...................................................................................................................................... 32
3.6.1 Stop3 Mode....................................................................................................................... 33
3.6.2 Stop2 Mode....................................................................................................................... 34
3.6.3 On-Chip Peripheral Modules in Stop Modes.................................................................... 34
Chapter 4
Memory
MC9S08SH32 Series Memory Map ............................................................................................... 37
Reset and Interrupt Vector Assignments ......................................................................................... 38
Register Addresses and Bit Assignments........................................................................................ 39
RAM................................................................................................................................................ 46
FLASH ............................................................................................................................................ 46
4.5.1 Features ............................................................................................................................. 47
4.5.2 Program and Erase Times ................................................................................................. 47
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
9
Section Number
4.6
4.7
5.1
5.2
5.3
5.4
5.5
5.6
5.7
6.1
6.2
Title
Page
4.5.3 Program and Erase Command Execution ......................................................................... 48
4.5.4 Burst Program Execution.................................................................................................. 49
4.5.5 Access Errors .................................................................................................................... 51
4.5.6 FLASH Block Protection.................................................................................................. 51
4.5.7 Vector Redirection ............................................................................................................ 52
Security............................................................................................................................................ 52
FLASH Registers and Control Bits................................................................................................. 53
4.7.1 FLASH Clock Divider Register (FCDIV) ........................................................................ 54
4.7.2 FLASH Options Register (FOPT and NVOPT)................................................................ 55
4.7.3 FLASH Configuration Register (FCNFG) ....................................................................... 56
4.7.4 FLASH Protection Register (FPROT and NVPROT) ...................................................... 56
4.7.5 FLASH Status Register (FSTAT)...................................................................................... 57
4.7.6 FLASH Command Register (FCMD)............................................................................... 58
Chapter 5
Resets, Interrupts, and General System Control
Introduction ..................................................................................................................................... 59
Features ........................................................................................................................................... 59
MCU Reset...................................................................................................................................... 59
Computer Operating Properly (COP) Watchdog............................................................................. 60
Interrupts ......................................................................................................................................... 61
5.5.1 Interrupt Stack Frame ....................................................................................................... 62
5.5.2 External Interrupt Request Pin (IRQ) ............................................................................... 63
5.5.3 Interrupt Vectors, Sources, and Local Masks ................................................................... 63
Low-Voltage Detect (LVD) System ................................................................................................ 65
5.6.1 Power-On Reset Operation ............................................................................................... 65
5.6.2 Low-Voltage Detection (LVD) Reset Operation............................................................... 65
5.6.3 Low-Voltage Warning (LVW) Interrupt Operation........................................................... 65
Reset, Interrupt, and System Control Registers and Control Bits................................................... 65
5.7.1 Interrupt Pin Request Status and Control Register (IRQSC)............................................ 66
5.7.2 System Reset Status Register (SRS) ................................................................................. 67
5.7.3 System Background Debug Force Reset Register (SBDFR)............................................ 68
5.7.4 System Options Register 1 (SOPT1) ................................................................................ 69
5.7.5 System Options Register 2 (SOPT2) ................................................................................ 70
5.7.6 System Device Identification Register (SDIDH, SDIDL)................................................ 71
5.7.7 System Power Management Status and Control 1 Register (SPMSC1) ........................... 72
5.7.8 System Power Management Status and Control 2 Register (SPMSC2) ........................... 73
Chapter 6
Parallel Input/Output Control
Port Data and Data Direction .......................................................................................................... 75
Pull-up, Slew Rate, and Drive Strength .......................................................................................... 76
MC9S08SH32 Series Data Sheet, Rev. 3
10
Freescale Semiconductor
Section Number
6.3
6.4
6.5
6.6
7.1
7.2
7.3
7.4
7.5
8.1
Title
Page
Ganged Output ................................................................................................................................ 77
Pin Interrupts ................................................................................................................................... 78
6.4.1 Edge-Only Sensitivity....................................................................................................... 78
6.4.2 Edge and Level Sensitivity ............................................................................................... 79
6.4.3 Pull-up/Pull-down Resistors ............................................................................................. 79
6.4.4 Pin Interrupt Initialization................................................................................................. 79
Pin Behavior in Stop Modes............................................................................................................ 79
Parallel I/O and Pin Control Registers ............................................................................................ 80
6.6.1 Port A Registers ................................................................................................................ 81
6.6.2 Port B Registers ................................................................................................................ 86
6.6.3 Port C Registers ................................................................................................................ 90
Chapter 7
Central Processor Unit (S08CPUV3)
Introduction ..................................................................................................................................... 93
7.1.1 Features ............................................................................................................................. 93
Programmer’s Model and CPU Registers ....................................................................................... 94
7.2.1 Accumulator (A) ............................................................................................................... 94
7.2.2 Index Register (H:X) ........................................................................................................ 94
7.2.3 Stack Pointer (SP) ............................................................................................................. 95
7.2.4 Program Counter (PC) ...................................................................................................... 95
7.2.5 Condition Code Register (CCR) ....................................................................................... 95
Addressing Modes........................................................................................................................... 97
7.3.1 Inherent Addressing Mode (INH)..................................................................................... 97
7.3.2 Relative Addressing Mode (REL) .................................................................................... 97
7.3.3 Immediate Addressing Mode (IMM)................................................................................ 97
7.3.4 Direct Addressing Mode (DIR) ........................................................................................ 97
7.3.5 Extended Addressing Mode (EXT) .................................................................................. 98
7.3.6 Indexed Addressing Mode ................................................................................................ 98
Special Operations........................................................................................................................... 99
7.4.1 Reset Sequence ................................................................................................................. 99
7.4.2 Interrupt Sequence ............................................................................................................ 99
7.4.3 Wait Mode Operation...................................................................................................... 100
7.4.4 Stop Mode Operation...................................................................................................... 100
7.4.5 BGND Instruction........................................................................................................... 101
HCS08 Instruction Set Summary .................................................................................................. 102
Chapter 8
Analog Comparator 5-V (S08ACMPV3)
Introduction ................................................................................................................................... 113
8.1.1 ACMP Configuration Information.................................................................................. 113
8.1.2 ACMP/TPM Configuration Information ........................................................................ 113
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
11
Section Number
8.2
8.3
8.4
8.5
8.6
8.7
9.1
9.2
9.3
9.4
Title
Page
Features .........................................................................................................................................
Modes of Operation.......................................................................................................................
8.3.1 ACMP in Wait Mode ......................................................................................................
8.3.2 ACMP in Stop Modes.....................................................................................................
8.3.3 ACMP in Active Background Mode ..............................................................................
Block Diagram ..............................................................................................................................
External Signal Description ..........................................................................................................
Memory Map ................................................................................................................................
8.6.1 Register Descriptions ......................................................................................................
Functional Description ..................................................................................................................
115
115
115
115
115
115
117
117
117
119
Chapter 9
Analog-to-Digital Converter (S08ADC10V1)
Introduction ................................................................................................................................... 121
9.1.1 Channel Assignments ..................................................................................................... 121
9.1.2 Analog Power and Ground Signal Names ...................................................................... 122
9.1.3 Alternate Clock ............................................................................................................... 122
9.1.4 Hardware Trigger............................................................................................................ 122
9.1.5 Temperature Sensor ........................................................................................................ 122
9.1.6 Features ........................................................................................................................... 125
9.1.7 Block Diagram ................................................................................................................ 125
External Signal Description .......................................................................................................... 126
9.2.1 Analog Power (VDDAD).................................................................................................. 127
9.2.2 Analog Ground (VSSAD)................................................................................................. 127
9.2.3 Voltage Reference High (VREFH) ................................................................................... 127
9.2.4 Voltage Reference Low (VREFL) .................................................................................... 127
9.2.5 Analog Channel Inputs (ADx) ........................................................................................ 127
Register Definition ........................................................................................................................ 127
9.3.1 Status and Control Register 1 (ADCSC1) ...................................................................... 127
9.3.2 Status and Control Register 2 (ADCSC2) ...................................................................... 129
9.3.3 Data Result High Register (ADCRH)............................................................................. 130
9.3.4 Data Result Low Register (ADCRL).............................................................................. 130
9.3.5 Compare Value High Register (ADCCVH).................................................................... 131
9.3.6 Compare Value Low Register (ADCCVL) ..................................................................... 131
9.3.7 Configuration Register (ADCCFG)................................................................................ 131
9.3.8 Pin Control 1 Register (APCTL1) .................................................................................. 133
9.3.9 Pin Control 2 Register (APCTL2) .................................................................................. 134
9.3.10 Pin Control 3 Register (APCTL3) .................................................................................. 135
Functional Description .................................................................................................................. 136
9.4.1 Clock Select and Divide Control .................................................................................... 136
9.4.2 Input Select and Pin Control ........................................................................................... 137
9.4.3 Hardware Trigger............................................................................................................ 137
MC9S08SH32 Series Data Sheet, Rev. 3
12
Freescale Semiconductor
Section Number
9.5
9.6
Title
Page
9.4.4 Conversion Control......................................................................................................... 137
9.4.5 Automatic Compare Function......................................................................................... 140
9.4.6 MCU Wait Mode Operation............................................................................................ 140
9.4.7 MCU Stop3 Mode Operation.......................................................................................... 140
9.4.8 MCU Stop1 and Stop2 Mode Operation......................................................................... 141
Initialization Information .............................................................................................................. 141
9.5.1 ADC Module Initialization Example ............................................................................. 141
Application Information................................................................................................................ 143
9.6.1 External Pins and Routing .............................................................................................. 143
9.6.2 Sources of Error .............................................................................................................. 145
Chapter 10
Inter-Integrated Circuit (S08IICV2)
10.1 Introduction ................................................................................................................................... 149
10.1.1 Module Configuration..................................................................................................... 149
10.1.2 Features ........................................................................................................................... 151
10.1.3 Modes of Operation ........................................................................................................ 151
10.1.4 Block Diagram ................................................................................................................ 151
10.2 External Signal Description .......................................................................................................... 152
10.2.1 SCL — Serial Clock Line ............................................................................................... 152
10.2.2 SDA — Serial Data Line ................................................................................................ 152
10.3 Register Definition ........................................................................................................................ 152
10.3.1 IIC Address Register (IICA)........................................................................................... 153
10.3.2 IIC Frequency Divider Register (IICF) .......................................................................... 153
10.3.3 IIC Control Register (IICC1) .......................................................................................... 156
10.3.4 IIC Status Register (IICS)............................................................................................... 156
10.3.5 IIC Data I/O Register (IICD) .......................................................................................... 157
10.3.6 IIC Control Register 2 (IICC2) ....................................................................................... 158
10.4 Functional Description .................................................................................................................. 159
10.4.1 IIC Protocol..................................................................................................................... 159
10.4.2 10-bit Address................................................................................................................. 162
10.4.3 General Call Address ...................................................................................................... 163
10.5 Resets ............................................................................................................................................ 163
10.6 Interrupts ....................................................................................................................................... 163
10.6.1 Byte Transfer Interrupt.................................................................................................... 163
10.6.2 Address Detect Interrupt ................................................................................................. 164
10.6.3 Arbitration Lost Interrupt................................................................................................ 164
10.7 Initialization/Application Information .......................................................................................... 165
Chapter 11
Internal Clock Source (S08ICSV2)
11.1 Introduction ................................................................................................................................... 167
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
13
Section Number
Title
Page
11.1.1 Module Configuration..................................................................................................... 167
11.1.2 Features ........................................................................................................................... 169
11.1.3 Block Diagram ................................................................................................................ 169
11.1.4 Modes of Operation ........................................................................................................ 170
11.2 External Signal Description .......................................................................................................... 171
11.3 Register Definition ........................................................................................................................ 171
11.3.1 ICS Control Register 1 (ICSC1) ..................................................................................... 172
11.3.2 ICS Control Register 2 (ICSC2) ..................................................................................... 173
11.3.3 ICS Trim Register (ICSTRM)......................................................................................... 174
11.3.4 ICS Status and Control (ICSSC)..................................................................................... 174
11.4 Functional Description .................................................................................................................. 175
11.4.1 Operational Modes.......................................................................................................... 175
11.4.2 Mode Switching .............................................................................................................. 177
11.4.3 Bus Frequency Divider ................................................................................................... 178
11.4.4 Low Power Bit Usage ..................................................................................................... 178
11.4.5 Internal Reference Clock ................................................................................................ 178
11.4.6 Optional External Reference Clock ................................................................................ 178
11.4.7 Fixed Frequency Clock ................................................................................................... 179
Chapter 12
Modulo Timer (S08MTIMV1)
12.1 Introduction ................................................................................................................................... 181
12.1.1 MTIM Configuration Information .................................................................................. 181
12.1.2 Features ........................................................................................................................... 183
12.1.3 Modes of Operation ........................................................................................................ 183
12.1.4 Block Diagram ................................................................................................................ 184
12.2 External Signal Description .......................................................................................................... 184
12.3 Register Definition ........................................................................................................................ 185
12.3.1 MTIM Status and Control Register (MTIMSC) ............................................................. 186
12.3.2 MTIM Clock Configuration Register (MTIMCLK)....................................................... 187
12.3.3 MTIM Counter Register (MTIMCNT)........................................................................... 188
12.3.4 MTIM Modulo Register (MTIMMOD).......................................................................... 188
12.4 Functional Description .................................................................................................................. 189
12.4.1 MTIM Operation Example ............................................................................................. 190
Chapter 13
Real-Time Counter (S08RTCV1)
13.1 Introduction ................................................................................................................................... 191
13.1.1 Features ........................................................................................................................... 193
13.1.2 Modes of Operation ........................................................................................................ 193
13.1.3 Block Diagram ................................................................................................................ 194
13.2 External Signal Description .......................................................................................................... 194
MC9S08SH32 Series Data Sheet, Rev. 3
14
Freescale Semiconductor
Section Number
Title
Page
13.3 Register Definition ........................................................................................................................ 194
13.3.1 RTC Status and Control Register (RTCSC).................................................................... 195
13.3.2 RTC Counter Register (RTCCNT).................................................................................. 196
13.3.3 RTC Modulo Register (RTCMOD) ................................................................................ 196
13.4 Functional Description .................................................................................................................. 196
13.4.1 RTC Operation Example................................................................................................. 197
13.5 Initialization/Application Information .......................................................................................... 198
Chapter 14
Serial Communications Interface (S08SCIV4)
14.1 Introduction ................................................................................................................................... 201
14.1.1 Features ........................................................................................................................... 203
14.1.2 Modes of Operation ........................................................................................................ 203
14.1.3 Block Diagram ................................................................................................................ 204
14.2 Register Definition ........................................................................................................................ 206
14.2.1 SCI Baud Rate Registers (SCIxBDH, SCIxBDL) .......................................................... 206
14.2.2 SCI Control Register 1 (SCIxC1) ................................................................................... 207
14.2.3 SCI Control Register 2 (SCIxC2) ................................................................................... 208
14.2.4 SCI Status Register 1 (SCIxS1) ...................................................................................... 209
14.2.5 SCI Status Register 2 (SCIxS2) ...................................................................................... 211
14.2.6 SCI Control Register 3 (SCIxC3) ................................................................................... 212
14.2.7 SCI Data Register (SCIxD)............................................................................................. 213
14.3 Functional Description .................................................................................................................. 213
14.3.1 Baud Rate Generation ..................................................................................................... 213
14.3.2 Transmitter Functional Description ................................................................................ 214
14.3.3 Receiver Functional Description .................................................................................... 215
14.3.4 Interrupts and Status Flags.............................................................................................. 217
14.3.5 Additional SCI Functions ............................................................................................... 218
Chapter 15
Serial Peripheral Interface (S08SPIV3)
15.1 Introduction ................................................................................................................................... 221
15.1.1 Features ........................................................................................................................... 223
15.1.2 Block Diagrams .............................................................................................................. 223
15.1.3 SPI Baud Rate Generation .............................................................................................. 225
15.2 External Signal Description .......................................................................................................... 226
15.2.1 SPSCK — SPI Serial Clock............................................................................................ 226
15.2.2 MOSI — Master Data Out, Slave Data In ...................................................................... 226
15.2.3 MISO — Master Data In, Slave Data Out ...................................................................... 226
15.2.4 SS — Slave Select .......................................................................................................... 226
15.3 Modes of Operation....................................................................................................................... 227
15.3.1 SPI in Stop Modes .......................................................................................................... 227
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
15
Section Number
Title
Page
15.4 Register Definition ........................................................................................................................ 227
15.4.1 SPI Control Register 1 (SPIxC1) .................................................................................... 227
15.4.2 SPI Control Register 2 (SPIxC2) .................................................................................... 228
15.4.3 SPI Baud Rate Register (SPIxBR).................................................................................. 229
15.4.4 SPI Status Register (SPIxS) ............................................................................................ 230
15.4.5 SPI Data Register (SPIxD) ............................................................................................. 231
15.5 Functional Description .................................................................................................................. 232
15.5.1 SPI Clock Formats .......................................................................................................... 232
15.5.2 SPI Interrupts .................................................................................................................. 235
15.5.3 Mode Fault Detection ..................................................................................................... 235
Chapter 16
Timer Pulse-Width Modulator (S08TPMV3)
16.1 Introduction ................................................................................................................................... 237
16.1.1 TPM Configuration Information..................................................................................... 237
16.1.2 TPM Pin Repositioning .................................................................................................. 237
16.1.3 Features ........................................................................................................................... 239
16.1.4 Modes of Operation ........................................................................................................ 239
16.1.5 Block Diagram ................................................................................................................ 240
16.2 Signal Description ......................................................................................................................... 242
16.2.1 Detailed Signal Descriptions .......................................................................................... 242
16.3 Register Definition ........................................................................................................................ 246
16.3.1 TPM Status and Control Register (TPMxSC) ................................................................ 246
16.3.2 TPM-Counter Registers (TPMxCNTH:TPMxCNTL).................................................... 247
16.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL).................................... 248
16.3.4 TPM Channel n Status and Control Register (TPMxCnSC) .......................................... 249
16.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL) .......................................... 251
16.4 Functional Description .................................................................................................................. 252
16.4.1 Counter............................................................................................................................ 253
16.4.2 Channel Mode Selection ................................................................................................. 255
16.5 Reset Overview ............................................................................................................................. 258
16.5.1 General............................................................................................................................ 258
16.5.2 Description of Reset Operation....................................................................................... 258
16.6 Interrupts ....................................................................................................................................... 258
16.6.1 General............................................................................................................................ 258
16.6.2 Description of Interrupt Operation ................................................................................. 259
Chapter 17
Development Support
17.1 Introduction ................................................................................................................................... 261
17.1.1 Forcing Active Background............................................................................................ 261
17.1.2 Features ........................................................................................................................... 262
MC9S08SH32 Series Data Sheet, Rev. 3
16
Freescale Semiconductor
Section Number
Title
Page
17.2 Background Debug Controller (BDC) .......................................................................................... 262
17.2.1 BKGD Pin Description ................................................................................................... 263
17.2.2 Communication Details .................................................................................................. 264
17.2.3 BDC Commands ............................................................................................................. 268
17.2.4 BDC Hardware Breakpoint............................................................................................. 270
17.3 On-Chip Debug System (DBG) .................................................................................................... 271
17.3.1 Comparators A and B ..................................................................................................... 271
17.3.2 Bus Capture Information and FIFO Operation ............................................................... 271
17.3.3 Change-of-Flow Information .......................................................................................... 272
17.3.4 Tag vs. Force Breakpoints and Triggers ......................................................................... 272
17.3.5 Trigger Modes................................................................................................................. 273
17.3.6 Hardware Breakpoints .................................................................................................... 275
17.4 Register Definition ........................................................................................................................ 275
17.4.1 BDC Registers and Control Bits ..................................................................................... 275
17.4.2 System Background Debug Force Reset Register (SBDFR).......................................... 277
17.4.3 DBG Registers and Control Bits..................................................................................... 278
Appendix A
Electrical Characteristics
A.1
A.2
A.3
A.4
A.5
A.6
A.7
A.8
A.9
A.10
A.11
A.12
Introduction ....................................................................................................................................283
Parameter Classification.................................................................................................................283
Absolute Maximum Ratings...........................................................................................................283
Thermal Characteristics..................................................................................................................285
ESD Protection and Latch-Up Immunity .......................................................................................287
DC Characteristics..........................................................................................................................288
Supply Current Characteristics.......................................................................................................292
External Oscillator (XOSC) Characteristics ..................................................................................296
Internal Clock Source (ICS) Characteristics ..................................................................................298
Analog Comparator (ACMP) Electricals .......................................................................................299
ADC Characteristics.......................................................................................................................300
AC Characteristics..........................................................................................................................304
A.12.1 Control Timing ................................................................................................................304
A.12.2 TPM/MTIM Module Timing ...........................................................................................306
A.12.3 SPI....................................................................................................................................307
A.13 Flash Specifications........................................................................................................................310
A.14 EMC Performance..........................................................................................................................311
A.14.1 Radiated Emissions..........................................................................................................311
Appendix B
Ordering Information and Mechanical Drawings
B.1 Ordering Information .....................................................................................................................313
B.1.1 Device Numbering Scheme .............................................................................................313
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
17
B.2 Package Information and Mechanical Drawings ...........................................................................314
Chapter 1
Device Overview
The MC9S08SH32 members of the low-cost, high-performance HCS08 Family of 8-bit microcontroller
units (MCUs). All MCUs in the family use the enhanced HCS08 core and are available with a variety of
modules, memory sizes, memory types, and package types.
1.1
Devices in the MC9S08SH32 Series
Table 1-1 summarizes the feature set available in the MC9S08SH32 series of MCUs.
Table 1-1. MC9S08SH32 Series Features by MCU and Package
t
Feature
FLASH size (bytes)
9S08SH32
9S08SH16
32768
16384
RAM size (bytes)
Pin quantity
1024
28
20
16
16
12
8
ACMP
DBG
yes
ICS
yes
IIC
yes
IRQ
yes
MTIM
yes
Pin Interrupts
1
16
16
12
8
23
17
13
8
23
17
13
RTC
yes
SCI
yes
SPI
yes
TPM1 channels
2
TPM2 channels
2
XOSC
1
20
yes
ADC channels
Pin I/O
28
yes
Port I/O count does not include the output-only PTA4/ACMPO/BKGD/MS.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
19
Chapter 1 Device Overview
1.2
MCU Block Diagram
The block diagram in Figure 1-1 shows the structure of the MC9S08SH32 Series MCU.
BKGD/MS
HCS08 CORE
DEBUG MODULE (DBG)
PTA6/TPM2CH0
HCS08 SYSTEM CONTROL
RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT
IRQ
SCL
IRQ
IIC MODULE (IIC)
LVD
SERIAL PERIPHERAL
INTERFACE MODULE (SPI)
USER FLASH
(MC9S08SH32 = 32,768 BYTES)
(MC9S08SH16 = 16,384 BYTES)
SERIAL COMMUNICATIONS
INTERFACE MODULE (SCI)
USER RAM
(MC9S08SH32/16 = 1024 BYTES)
16-BIT TIMER/PWM
MODULE (TPM1)
REAL-TIME COUNTER (RTC)
40-MHz INTERNAL CLOCK
SOURCE (ICS)
LOW-POWER OSCILLATOR
31.25 kHz to 38.4 kHz
1 MHz to 16 MHz
(XOSC)
TCLK
16-BIT TIMER/PWM
MODULE (TPM2)
EXTAL
XTAL
ANALOG COMPARATOR
(ACMP)
PTA5/IRQ/TCLK/RESET
PORT A
8-BIT MODULO TIMER
MODULE (MTIM)
SDA
VSSA/VREFL
VDDA
VSSA
PTA2/PIA2/SD/ADP2
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
TCLK
TPM1CH0
PTB4/TPM2CH1/MISO
PTB3/PIB3/MOSI/ADP7
TPM1CH1
PTB5/TPM1CH1/SS
PTB2/PIB2/SPSCK/ADP6
PTB1/PIB1/TxD/ADP5
TCLK
TPM2CH0
PTB0/PIB0/RxD/ADP4
TPM2CH1
ACMPO
ACMP–
ACMP+
PTC7/ADP15
PTC6/ADP14
PTC5/ADP13
10-BIT
ANALOG-TO-DIGITAL
CONVERTER (ADC)
ADP15-ADP0
PORT C
VDDA/VREFH
VOLTAGE REGULATOR
PTA3/PIA3/SCL/ADP3
RxD
TxD
VSS
VDD
PTA4/ACMPO/BKGD/MS
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
SS
MISO
MOSI
SPSCK
PORT B
CPU
COP
PTA7/TPM2CH1
BDC
PTC4/ADP12
PTC3/ADP11
PTC2/ADP10
PTC1/TPM1CH1/ADP9
VREFH
VREFL
PTC0/TPM1CH0/ADP8
= Pin can be enabled as part of the ganged output drive feature
NOTE: PTC7-PTC0 and PTA7-PTA6 not available on 16--pin Packages
PTC7-PTC4 and PTA7-PTA6 not available on 20-pin Packages
For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL, are double bonded to VDD and VSS respectively.
When PTA4 is configured as BKGD, pin becomes bi-directional.
Figure 1-1. MC9S08SH32 Series Block Diagram
MC9S08SH32 Series Data Sheet, Rev. 3
20
Freescale Semiconductor
Chapter 1 Device Overview
Table 1-2 provides the functional version of the on-chip modules
Table 1-2. Module Versions
Module
Version
Analog Comparator (5V)
(ACMP)
3
Analog-to-Digital Converter
(ADC)
1
Central Processor Unit
(CPU)
3
Inter-Integrated Circuit
(IIC)
2
Internal Clock Source
(ICS)
2
Low Power Oscillator
(XOSC)
1
Modulo Timer
(MTIM)
1
On-Chip In-Circuit Emulator
(DBG)
2
Real-Time Counter
(RTC)
1
Serial Peripheral Interface
(SPI)
3
Serial Communications Interface
(SCI)
4
Timer Pulse Width Modulator
(TPM)
3
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
21
Chapter 1 Device Overview
1.3
System Clock Distribution
Figure 1-2 shows a simplified clock connection diagram. Some modules in the MCU have selectable clock
inputs as shown. The clock inputs to the modules indicate the clock(s) that are used to drive the module
function.
The following defines the clocks used in this MCU:
• BUSCLK — The frequency of the bus is always half of ICSOUT.
• ICSOUT — Primary output of the ICS and is twice the bus frequency.
• ICSLCLK — Development tools can select this clock source to speed up BDC communications in
systems where the bus clock is configured to run at a very slow frequency.
• ICSERCLK — External reference clock can be selected as the RTC clock source and as the
alternate clock for the ADC module.
• ICSIRCLK — Internal reference clock can be selected as the RTC clock source.
• ICSFFCLK — Fixed frequency clock can be selected as clock source for the TPM1, TPM2 and
MTIM modules.
• LPOCLK — Independent 1-kHz clock source that can be selected as the clock source for the COP
and RTC modules.
• TCLK — External input clock source for TPM1, TPM2 and MTIM and is referenced as TPMCLK
in TPM chapters.
TCLK
1 kHZ
LPO
LPOCLK
COP
RTC
TPM1
TPM2
MTIM
SCI
SPI
ICSERCLK
ICSIRCLK
ICS
ICSFFCLK
÷2
ICSOUT
÷2
FFCLK*
SYNC*
BUSCLK
ICSLCLK
XOSC
CPU
EXTAL
BDC
XTAL
* The fixed frequency clock (FFCLK) is internally
synchronized to the bus clock and must not exceed one
half of the bus clock frequency.
ADC
IIC
ADC has min and max
frequency requirements.
See the ADC chapter
and electricals appendix
for details.
FLASH
FLASH has frequency
requirements for program
and erase operation. See
the electricals appendix
for details.
Figure 1-2. System Clock Distribution Diagram
MC9S08SH32 Series Data Sheet, Rev. 3
22
Freescale Semiconductor
Chapter 2
Pins and Connections
This section describes signals that connect to package pins. It includes pinout diagrams, recommended
system connections, and detailed discussions of signals.
2.1
Device Pin Assignment
Figure 2-1 - Figure 2-3 shows the pin assignments for the MC9S08SH32 Series devices.
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
PTC5/ADP13
PTC4/ADP12
PTA5/IRQ/TCLK/RESET
PTA4/ACMPO/BKGD/MS
VDD
VDDA/VREFH
VSSA/VREFL
VSS
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
PTB5/TPM1CH1/SS
PTB4/TPM2CH1/MISO
PTC3/ADP11
PTC2/ADP10
PTC6/ADP14
PTC7/ADP15
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA2/PIA2/SDA/ADP2
PTA3/PIA3/SCL/ADP3
PTA6/TPM2CH0
PTA7/TPM2CH1
PTB0/PIB0/RxD/ADP4
PTB1/PIB1/TxD/ADP5
PTB2/PIB2/SPSCK/ADP6
PTB3/PIB3/MOSI/ADP7
PTC0/TPM1CH0/ADP8
PTC1/TPM1CH1/ADP9
Figure 2-1. 28-Pin SOIC and TSSOP
PTA5/IRQ/TCLK/RESET
PTA4/ACMPO/BKGD/MS
VDD
VSS
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
PTB5/TPM1CH1/SS
PTB4/TPM2CH1/MISO
PTC3/ADP11
PTC2/ADP10
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA2/PIA2/SDA/ADP2
PTA3/PIA3/SCL/ADP3
PTB0/PIB0/RxD/ADP4
PTB1/PIB1/TxD/ADP5
PTB2/PIB2/SPSCK/ADP6
PTB3/PIB3/MOSI/ADP7
PTC0/TPM1CH0/ADP8
PTC1/TPM1CH1/ADP9
Figure 2-2. 20-Pin TSSOP
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
23
Chapter 2 Pins and Connections
PTA5/IRQ/TCLK/RESET
PTA4/ACMPO/BKGD/MS
VDD
VSS
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
PTB5/TPM1CH1/SS
PTB4/TPM2CH1/MISO
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA2/PIA2/SDA/ADP2
PTA3/PIA3/SCL/ADP3
PTB0/PIB0/RxD/ADP4
PTB1/PIB1/TxD/ADP5
PTB2/PIB2/SPSCK/ADP6
PTB3/PIB3/MOSI/ADP7
Figure 2-3. 16-Pin TSSOP
MC9S08SH32 Series Data Sheet, Rev. 3
24
Freescale Semiconductor
Chapter 2 Pins and Connections
2.2
Recommended System Connections
Figure 2-4 shows pin connections that are common to MC9S08SH32 Series application systems.
MC9S08SH32
BACKGROUND HEADER
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
BKGD/MS
VDD
VDD
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA2/PIA2/SDA/ADP2
PORT
A
4.7 kΩ–10 kΩ
PTA3/PIA3/SCL/ADP3
PTA4/ACMPO/BKGD/MS
PTA5/IRQ/TCLK/RESET
PTA6/TPM2CH0
PTA7/TPM2CH1
RESET
OPTIONAL
MANUAL
RESET
0.1 μF
PTB0/PIB0/RxD/ADP4
PTB1/PIB1/TxD/ADP5
PTC0/TPM1CH0/ADP8
PTB2/PIB2/SPSCK/ADP6
PTC1/TPM1CH1/ADP9
PORT
B
PTC2/ADP10
PTC3/ADP11
PTC4/ADP12
PTB3/PIB3/MOSI/ADP7
PTB4/TPM2CH1/MISO
PORT
C
PTB5/TPM1CH1/SS
PTB6/SDA/XTAL
PTC5/ADP13
PTB7/SCL/EXTAL
PTC6/ADP14
PTC7/ADP15
RF
+
5V
RS
VDD
CBLK +
10 μF
CBY
0.1 μF
C1
VSS
SYSTEM
POWER
X1
C2
NOTE 1
VDDA\VREFH
CBY
0.1 μF
VSSA\VREFL
NOTES:
1. External crystal circuit not required if using the internal clock option.
2. RESET pin can only be used to reset into user mode, you can not enter BDM using RESET pin. BDM can be entered
by holding MS low during POR or writing a 1 to BDFR in SBDFR with MS low after issuing BDM command.
3. RC filter on RESET pin recommended for noisy environments.
4. For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL are double bonded to VDD and VSS respectively.
5. When PTA4 is configured as BKGD, pin becomes bi-directional.
Figure 2-4. Basic System Connections
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
25
Chapter 2 Pins and Connections
2.2.1
Power
VDD and VSS are the primary power supply pins for the MCU. This voltage source supplies power to all
I/O buffer circuitry and to an internal voltage regulator. The internal voltage regulator provides regulated
lower-voltage source to the CPU and other internal circuitry of the MCU.
Typically, application systems have two separate capacitors across the power pins. In this case, there
should be a bulk electrolytic capacitor, such as a 10-μF tantalum capacitor, to provide bulk charge storage
for the overall system and a 0.1-μF ceramic bypass capacitor located as near to the MCU power pins as
practical to suppress high-frequency noise. Each pin must have a bypass capacitor for best noise
suppression.
VDDA and VSSA are the analog power supply pins for MCU. This voltage source supplies power to the
ADC module. A 0.1uF ceramic bypass capacitor should be located as near to the MCU power pins as
practical to suppress high-frequency noise. The VREFH and VREFL pins are the voltage reference high and
voltage reference low inputs, respectively for the ADC module. For this MCU, VDDA shares the VREFH
pin and these pins are available only in the 28-pin packages. In the 16-pin and 20-pin packages they are
double bonded to the VDD pin. For this MCU, VSSA shares the VREFL pin and these pins are available only
in the 28-pin packages. In the 16-pin and 20-pin packages they are double bonded to the VSS pin.
2.2.2
Oscillator (XOSC)
Immediately after reset, the MCU uses an internally generated clock provided by the clock source
generator (ICS) module. For more information on the ICS, see Chapter 11, “Internal Clock Source
(S08ICSV2).”
The oscillator (XOSC) in this MCU is a Pierce oscillator that can accommodate a crystal or ceramic
resonator. Rather than a crystal or ceramic resonator, an external oscillator can be connected to the EXTAL
input pin.
Refer to Figure 2-4 for the following discussion. RS (when used) and RF should be low-inductance
resistors such as carbon composition resistors. Wire-wound resistors, and some metal film resistors, have
too much inductance. C1 and C2 normally should be high-quality ceramic capacitors that are specifically
designed for high-frequency applications.
RF is used to provide a bias path to keep the EXTAL input in its linear range during crystal startup; its value
is not generally critical. Typical systems use 1 MΩ to 10 MΩ. Higher values are sensitive to humidity and
lower values reduce gain and (in extreme cases) could prevent startup.
C1 and C2 are typically in the 5-pF to 25-pF range and are chosen to match the requirements of a specific
crystal or resonator. Be sure to take into account printed circuit board (PCB) capacitance and MCU pin
capacitance when selecting C1 and C2. The crystal manufacturer typically specifies a load capacitance
which is the series combination of C1 and C2 (which are usually the same size). As a first-order
approximation, use 10 pF as an estimate of combined pin and PCB capacitance for each oscillator pin
(EXTAL and XTAL).
MC9S08SH32 Series Data Sheet, Rev. 3
26
Freescale Semiconductor
Chapter 2 Pins and Connections
2.2.3
RESET
After a power-on reset (POR), the PTA5/IRQ/TCLK/RESET pin defaults to a general-purpose I/O port pin,
PTA5. Setting RSTPE in SOPT1 configures the pin to be the RESET pin with an open-drain drive
containing an internal pull-up device. After configured as RESET, the pin will remain RESET until the
next POR. The RESET pin when enabled can be used to reset the MCU from an external source when the
pin is driven low.
Internal power-on reset and low-voltage reset circuitry typically make external reset circuitry unnecessary.
This pin is normally connected to the standard 6-pin background debug connector so a development
system can directly reset the MCU system. If desired, a manual external reset can be added by supplying
a simple switch to ground (pull reset pin low to force a reset).
Whenever any non-POR reset is initiated (whether from an external signal or from an internal system), the
RESET pin if enabled is driven low for about 66 bus cycles. The reset circuitry decodes the cause of reset
and records it by setting a corresponding bit in the system reset status register (SRS).
NOTE
This pin does not contain a clamp diode to VDD and should not be driven
above VDD.
The voltage measured on the internally pulled up RESET pin will not be
pulled to VDD. The internal gates connected to this pin are pulled to VDD. If
the RESET pin is required to drive to a VDD level an external pullup should
be used.
NOTE
In EMC-sensitive applications, an external RC filter is recommended on the
RESET pin. See Figure 2-4 for an example.
2.2.4
Background / Mode Select (BKGD/MS)
During a power-on-reset (POR) or background debug force reset (see Section 5.7.3, “System Background
Debug Force Reset Register (SBDFR),” for more information), the PTA4/ACMPO/BKGD/MS pin
functions as a mode select pin. Immediately after any reset, the pin functions as the background pin and
can be used for background debug communication. When enabled as the BKGD/MS pin (BKGDPE = 1),
an internal pullup device is automatically enabled.
The background debug communication function is enabled when BKGDPE in SOPT1 is set. BKGDPE is
set following any reset of the MCU and must be cleared to use the PTA4/ACMPO/BKGD/MS pin’s
alternative pin function.
If nothing is connected to this pin, the MCU will enter normal operating mode at the rising edge of the
internal reset after a POR or force BDC reset. If a debug system is connected to the 6-pin standard
background debug header, it can hold BKGD/MS low during a POR or immediately after issuing a
background debug force reset, which will force the MCU to active background mode.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
27
Chapter 2 Pins and Connections
The BKGD pin is used primarily for background debug controller (BDC) communications using a custom
protocol that uses 16 clock cycles of the target MCU’s BDC clock per bit time. The target MCU’s BDC
clock could be as fast as the maximum bus clock rate, so there must never be any significant capacitance
connected to the BKGD/MS pin that could interfere with background serial communications.
Although the BKGD pin is a pseudo open-drain pin, the background debug communication protocol
provides brief, actively driven, high speedup pulses to ensure fast rise times. Small capacitances from
cables and the absolute value of the internal pullup device play almost no role in determining rise and fall
times on the BKGD pin.
2.2.5
General-Purpose I/O and Peripheral Ports
The MC9S08SH32 Series series of MCUs support up to 23 general-purpose I/O pins and 1 output-only
pin, which are shared with on-chip peripheral functions (timers, serial I/O, ADC, etc.).
When a port pin is configured as a general-purpose output or a peripheral uses the port pin as an output,
software can select one of two drive strengths and enable or disable slew rate control. When a port pin is
configured as a general-purpose input or a peripheral uses the port pin as an input, software can enable a
pull-up device. Immediately after reset, all of these pins are configured as high-impedance
general-purpose inputs with internal pull-up devices disabled.
When an on-chip peripheral system is controlling a pin, data direction control bits still determine what is
read from port data registers even though the peripheral module controls the pin direction by controlling
the enable for the pin’s output buffer. For information about controlling these pins as general-purpose I/O
pins, see Chapter 6, “Parallel Input/Output Control.”
The MC9S08SH32 Series devices contain a ganged output drive feature that allows a safe and reliable
method of allowing pins to be tied together externally to produce a higher output current drive. See Section
6.3, “Ganged Output” for more information for configuring the port pins for ganged output drive.
NOTE
To avoid extra current drain from floating input pins, the reset initialization
routine in the application program should either enable on-chip pull-up
devices or change the direction of unused pins to outputs so they do not
float.
When using the 20-pin devices, the user must either enable on-chip pullup
devices or change the direction of non-bonded PTC7-PTC4 and PTA7-PTA6
pins to outputs so the pins do not float.
When using the 16-pin devices, the user must either enable on-chip pullup
devices or change the direction of non-bonded out PTC7-PTC0 and
PTA7-PTA6 pins to outputs so the pins do not float.
MC9S08SH32 Series Data Sheet, Rev. 3
28
Freescale Semiconductor
Chapter 2 Pins and Connections
Table 2-1. Pin Availability by Package Pin-Count
Priority
Pin Number
Lowest
Port Pin
Highest
28-pin
20-pin
16-pin
Alt 1
Alt 2
Alt 3
Alt 4
1
—
—
PTC5
ADP13
2
—
—
PTC4
ADP12
3
1
1
PTA5
IRQ
4
2
2
PTA4
ACMPO
3
3
4
4
RESET1
TCLK
BKGD
5
6
VDDA
VREFH
VSSA
VREFL
VSS
9
5
5
PTB7
SCL2
10
6
6
PTB6
SDA2
EXTAL
XTAL
11
7
7
PTB5
TPM1CH1
SS
PTC04
12
8
8
PTB4
TPM2CH15
MISO
PTC04
13
9
—
PTC3
PTC04
ADP11
14
10
—
PTC2
PTC04
ADP10
3
PTC04
ADP9
3
PTC04
ADP8
4
ADP7
ADP6
15
16
11
12
—
—
PTC1
PTC0
3
TPM1CH1
TPM1CH0
17
13
9
PTB3
PIB3
MOSI
PTC0
18
14
10
PTB2
PIB2
SPSCK
PTC04
19
15
11
PTB1
PIB1
TxD
ADP5
20
16
12
PTB0
PIB0
RxD
ADP4
5
21
—
—
PTA7
TPM2CH1
22
—
—
PTA6
TPM2CH05
23
17
13
PTA3
PIA3
SCL2
PIA2
2
24
MS
VDD
7
8
Alt5
18
14
PTA2
SDA
ADP3
ADP2
5
25
19
15
PTA1
PIA1
TPM2CH0
ADP16
ACMP-6
26
20
16
PTA0
PIA0
TPM1CH03
ADP06
ACMP+6
27
—
—
PTC7
ADP15
28
—
—
PTC6
ADP14
1
Pin does not contain a clamp diode to VDD and should not be driven above VDD. The voltage measured on
the internally pulled up RESET in will not be pulled to VDD. The internal gates connected to this pin are
pulled to VDD.
2 IIC pins can be repositioned using IICPS in SOPT2, default reset locations are PTA2, PTA3.
3
TPM1CHx pins can be repositioned using T1CHxPS bits in SOPT2, default reset locations are PTA0, PTB5.
This port pin is part of the ganged output feature. When pin is enabled for ganged output, it will have priority
over all digital modules. The output data, drive strength and slew-rate control of this port pin will follow the
configuration for the PTC0 pin, even in 16-pin packages where PTC0 doesn’t bond out.
5 TPM2CHx pins can be repositioned using T2CHxPS bits in SOPT2, default reset locations are PTA1, PTB4.
6 If ACMP and ADC are both enabled, both will have access to the pin.
4
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
29
Chapter 2 Pins and Connections
MC9S08SH32 Series Data Sheet, Rev. 3
30
Freescale Semiconductor
Chapter 3
Modes of Operation
3.1
Introduction
The operating modes of the MC9S08SH32 Series are described in this chapter. Entry into each mode, exit
from each mode, and functionality while in each of the modes are described.
3.2
•
•
•
3.3
Features
Active background mode for code development
Wait mode — CPU shuts down to conserve power; system clocks are running and full regulation
is maintained
Stop modes — System clocks are stopped and voltage regulator is in standby
— Stop3 — All internal circuits are powered for fast recovery
— Stop2 — Partial power down of internal circuits, RAM content is retained
Run Mode
This is the normal operating mode for the MC9S08SH32 Series. This mode is selected upon the MCU
exiting reset if the BKGD/MS pin is high. In this mode, the CPU executes code from internal memory with
execution beginning at the address fetched from memory at 0xFFFE–0xFFFF after reset.
3.4
Active Background Mode
The active background mode functions are managed through the background debug controller (BDC) in
the HCS08 core. The BDC, together with the on-chip debug module (DBG), provide the means for
analyzing MCU operation during software development.
Active background mode is entered in any of the following ways:
• When the BKGD/MS pin is low during POR or immediately after issuing a background debug
force reset (see Section 5.7.3, “System Background Debug Force Reset Register (SBDFR)”)
• When a BACKGROUND command is received through the BKGD/MS pin
• When a BGND instruction is executed
• When encountering a BDC breakpoint
• When encountering a DBG breakpoint
After entering active background mode, the CPU is held in a suspended state waiting for serial background
commands rather than executing instructions from the user application program.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
31
Chapter 3 Modes of Operation
Background commands are of two types:
• Non-intrusive commands, defined as commands that can be issued while the user program is
running. Non-intrusive commands can be issued through the BKGD/MS pin while the MCU is in
run mode; non-intrusive commands can also be executed when the MCU is in the active
background mode. Non-intrusive commands include:
— Memory access commands
— Memory-access-with-status commands
— BDC register access commands
— The BACKGROUND command
• Active background commands, which can only be executed while the MCU is in active background
mode. Active background commands include commands to:
— Read or write CPU registers
— Trace one user program instruction at a time
— Leave active background mode to return to the user application program (GO)
The active background mode is used to program a bootloader or user application program into the FLASH
program memory before the MCU is operated in run mode for the first time. When the MC9S08SH32
Series is shipped from the Freescale Semiconductor factory, the FLASH program memory is erased by
default unless specifically noted so there is no program that could be executed in run mode until the
FLASH memory is initially programmed. The active background mode can also be used to erase and
reprogram the FLASH memory after it has been previously programmed.
For additional information about the active background mode, refer to Chapter 17, “Development
Support.”
3.5
Wait Mode
Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU
enters a low-power state in which it is not clocked. The I bit in CCR is cleared when the CPU enters the
wait mode, enabling interrupts. When an interrupt request occurs, the CPU exits the wait mode and
resumes processing, beginning with the stacking operations leading to the interrupt service routine.
While the MCU is in wait mode, there are some restrictions on which background debug commands can
be used. Only the BACKGROUND command and memory-access-with-status commands are available
when the MCU is in wait mode. The memory-access-with-status commands do not allow memory access,
but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND
command can be used to wake the MCU from wait mode and enter active background mode.
3.6
Stop Modes
One of two stop modes is entered upon execution of a STOP instruction when STOPE in SOPT1. In any
stop mode, the bus and CPU clocks are halted. The ICS module can be configured to leave the reference
clocks running. See Chapter 11, “Internal Clock Source (S08ICSV2),” for more information.
MC9S08SH32 Series Data Sheet, Rev. 3
32
Freescale Semiconductor
Chapter 3 Modes of Operation
Table 3-1 shows all of the control bits that affect stop mode selection and the mode selected under various
conditions. The selected mode is entered following the execution of a STOP instruction.
Table 3-1. Stop Mode Selection
STOPE
ENBDM 1
0
x
1
LVDE
LVDSE
PPDC
Stop Mode
x
x
Stop modes disabled; illegal opcode reset if STOP instruction executed
1
x
x
Stop3 with BDM enabled 2
1
0
Both bits must be 1
x
Stop3 with voltage regulator active
1
0
Either bit a 0
0
Stop3
1
0
Either bit a 0
1
Stop2
1
ENBDM is located in the BDCSCR, which is only accessible through BDC commands, see Section 17.4.1.1, “BDC Status and
Control Register (BDCSCR)”.
2 When in Stop3 mode with BDM enabled, The S
IDD will be near RIDD levels because internal clocks are enabled.
3.6.1
Stop3 Mode
Stop3 mode is entered by executing a STOP instruction under the conditions as shown in Table 3-1. The
states of all of the internal registers and logic, RAM contents, and I/O pin states are maintained.
Stop3 can be exited by asserting RESET if enabled, or by an interrupt from one of the following sources:
the real-time counter (RTC), LVD system, ACMP, ADC, SCI or any pin interrupts.
If stop3 is exited by means of the RESET pin, then the MCU is reset and operation will resume after taking
the reset vector. Exit by means of one of the internal interrupt sources results in the MCU taking the
appropriate interrupt vector.
3.6.1.1
LVD Enabled in Stop3 Mode
The LVD system is capable of generating either an interrupt or a reset when the supply voltage drops below
the LVD voltage. For configuring the LVD system for interrupt or reset, refer to 5.6, “Low-Voltage Detect
(LVD) System”. If the LVD is enabled in stop3 (LVDE and LVDSE bits in SPMSC1 both set) at the time
the CPU executes a STOP instruction, then the voltage regulator remains active during stop mode.
For the ADC to operate in stop mode, the LVD must be enabled when entering stop3.
For the ACMP to operate in stop mode with compare to internal bandgap option, the LVD must be enabled
when entering stop3.
3.6.1.2
Active BDM Enabled in Stop3 Mode
Entry into the active background mode from run mode is enabled if ENBDM in BDCSCR is set. This
register is described in Chapter 17, “Development Support.” If ENBDM is set when the CPU executes a
STOP instruction, the system clocks to the background debug logic remain active when the MCU enters
stop mode. Because of this, background debug communication remains possible. In addition, the voltage
regulator does not enter its low-power standby state but maintains full internal regulation.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
33
Chapter 3 Modes of Operation
Most background commands are not available in stop mode. The memory-access-with-status commands
do not allow memory access, but they report an error indicating that the MCU is in either stop or wait
mode. The BACKGROUND command can be used to wake the MCU from stop and enter active
background mode if the ENBDM bit is set. After entering background debug mode, all background
commands are available.
3.6.2
Stop2 Mode
Stop2 mode is entered by executing a STOP instruction under the conditions as shown in Table 3-1. Most
of the internal circuitry of the MCU is powered off in stop2 with the exception of the RAM. Upon entering
stop2, all I/O pin control signals are latched so that the pins retain their states during stop2.
Exit from stop2 is performed by asserting the wake-up pin (PTA5/IRQ/TCLK/RESET) on the MCU.
In addition, the real-time counter (RTC) can wake the MCU from stop2, if enabled.
Upon wake-up from stop2 mode, the MCU starts up as from a power-on reset (POR):
• All module control and status registers are reset
• The LVD reset function is enabled and the MCU remains in the reset state if VDD is below the LVD
trip point (low trip point selected due to POR)
• The CPU takes the reset vector
In addition to the above, upon waking up from stop2, the PPDF bit in SPMSC2 is set. This flag is used to
direct user code to go to a stop2 recovery routine. PPDF remains set and the I/O pin states remain latched
until a 1 is written to PPDACK in SPMSC2.
To maintain I/O states for pins that were configured as general-purpose I/O before entering stop2, the user
must restore the contents of the I/O port registers, which have been saved in RAM, to the port registers
before writing to the PPDACK bit. If the port registers are not restored from RAM before writing to
PPDACK, then the pins will switch to their reset states when PPDACK is written.
For pins that were configured as peripheral I/O, the user must reconfigure the peripheral module that
interfaces to the pin before writing to the PPDACK bit. If the peripheral module is not enabled before
writing to PPDACK, the pins will be controlled by their associated port control registers when the I/O
latches are opened.
3.6.3
On-Chip Peripheral Modules in Stop Modes
When the MCU enters any stop mode, system clocks to the internal peripheral modules are stopped. Even
in the exception case (ENBDM = 1), where clocks to the background debug logic continue to operate,
clocks to the peripheral systems are halted to reduce power consumption. Refer to Section 3.6.2, “Stop2
Mode,” and Section 3.6.1, “Stop3 Mode,” for specific information on system behavior in stop modes.
MC9S08SH32 Series Data Sheet, Rev. 3
34
Freescale Semiconductor
Chapter 3 Modes of Operation
Table 3-2. Stop Mode Behavior
Peripheral
Mode
Stop2
Stop3
CPU
Off
Standby
RAM
Standby
Standby
FLASH
Off
Standby
Parallel Port Registers
Off
Standby
ADC
Off
Optionally On1
ACMP
Off
Optionally On2
BDM
Off3
Optionally On
ICS
Off
Optionally On4
IIC
Off
Standby
5
Optionally On
LVD/LVW
Off
MTIM
Off
Standby
RTC
Optionally On
Optionally On
SCI
Off
Standby
SPI
Off
Standby
TPM
Off
Standby
Standby
Optionally On6
Off
Optionally On7
States Held
States Held
Voltage Regulator
XOSC
I/O Pins
1
2
3
4
5
6
7
Requires the asynchronous ADC clock and LVD to be enabled, else in
standby.
Requires the LVD to be enabled when compare to internal bandgap reference
option is enabled.
If ENBDM is set when entering stop2, the MCU will actually enter stop3.
IRCLKEN and IREFSTEN set in ICSC1, else in standby.
If LVDSE is set when entering stop2, the MCU will actually enter stop3.
Voltage regulator will be on if BDM is enabled or if LVD is enabled when
entering stop3.
ERCLKEN and EREFSTEN set in ICSC2, else in standby. For high frequency
range (RANGE in ICSC2 set) requires the LVD to also be enabled in stop3.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
35
Chapter 3 Modes of Operation
MC9S08SH32 Series Data Sheet, Rev. 3
36
Freescale Semiconductor
Chapter 4
Memory
4.1
MC9S08SH32 Series Memory Map
As shown in Figure 4-1, on-chip memory in the MC9S08SH32 Series series of MCUs consists of RAM,
FLASH program memory for nonvolatile data storage, and I/O and control/status registers. The registers
are divided into three groups:
• Direct-page registers (0x0000 through 0x007F)
• High-page registers (0x1800 through 0x185F)
• Nonvolatile registers (0xFFB0 through 0xFFBF)
0x0000
0x007F
0x0080
DIRECT PAGE REGISTERS
0x0000
0x007F
0x0080
RAM
1024 BYTES
RAM
1024 BYTES
0x047F
0x0480
0x17FF
0x1800
UNIMPLEMENTED
4992 BYTES
0x047F
0x0480
0x17FF
0x1800
UNIMPLEMENTED
4992 BYTES
HIGH PAGE REGISTERS
HIGH PAGE REGISTERS
0x185F
0x1860
0x185F
0x1860
UNIMPLEMENTED
0x7FFF
0x8000
DIRECT PAGE REGISTERS
26,528 BYTES
UNIMPLEMENTED
0x7FFF
0x8000
26,528 BYTES
UNIMPLEMENTED
16,384 BYTES
FLASH
32768 BYTES
0xBFFF
0xC000
FLASH
16,384 BYTES
0xFFFF
0xFFFF
9S08SH32
9S08SH16
Figure 4-1. MC9S08SH32/16 Memory Map
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
37
Chapter 4 Memory
4.2
Reset and Interrupt Vector Assignments
Table 4-1 shows address assignments for reset and interrupt vectors. The vector names shown in this table
are the labels used in the Freescale Semiconductor provided equate file for the MC9S08SH32 Series.
Table 4-1. Reset and Interrupt Vectors
Address
(High/Low)
Vector
Vector Name
0xFFC0:0xFFC1
Reserved
—
0xFFC2:0xFFC3
ACMP
Vacmp
0xFFC4:0xFFC5
Reserved
—
0xFFC6:0xFFC7
Reserved
—
0xFFC8:0xFFC9
Reserved
—
0xFFCA:0xFFCB
MTIM Overflow
Vmtim
0xFFCC:0xFFCD
RTC
Vrtc
0xFFCE:0xFFCF
IIC
Viic
0xFFD0:0xFFD1
ADC Conversion
Vadc
0xFFD2:0xFFD3
Reserved
—
0xFFD4:0xFFD5
Port B Pin Interrupt
Vportb
0xFFD6:0xFFD7
Port A Pin Interrupt
Vporta
0xFFD8:0xFFD9
Reserved
—
0xFFDA:0xFFDB
SCI Transmit
Vscitx
0xFFDC:0xFFDD
SCI Receive
Vscirx
0xFFDE:0xFFDF
SCI Error
Vsc1err
0xFFE0:0xFFE1
SPI
Vspi
0xFFE2:0xFFE3
TPM2 Overflow
Vtpm2ovf
0xFFE4:0xFFE5
TPM2 Channel 1
Vtpm2ch1
0xFFE6:0xFFE7
TPM2 Channel 0
Vtpm2ch0
0xFFE8:0xFFE9
TPM1 Overflow
Vtpm1ovf
0xFFEA:0xFFEB
Reserved
—
0xFFEC:0xFFED
Reserved
—
0xFFEE:0xFFEF
Reserved
—
0xFFF0:0xFFF1
Reserved
—
0xFFF2:0xFFF3
TPM1 Channel 1
Vtpm1ch1
0xFFF4:0xFFF5
TPM1 Channel 0
Vtpm1ch0
0xFFF6:0xFFF7
Reserved
—
0xFFF8:0xFFF9
Low Voltage Detect
Vlvd
0xFFFA:0xFFFB
IRQ
Virq
0xFFFC:0xFFFD
SWI
Vswi
0xFFFE:0xFFFF
Reset
Vreset
MC9S08SH32 Series Data Sheet, Rev. 3
38
Freescale Semiconductor
Chapter 4 Memory
4.3
Register Addresses and Bit Assignments
The registers in the MC9S08SH32 Series are divided into these groups:
• Direct-page registers are located in the first 128 locations in the memory map; these are accessible
with efficient direct addressing mode instructions.
• High-page registers are used much less often, so they are located above 0x1800 in the memory
map. This leaves more room in the direct page for more frequently used registers and RAM.
• The nonvolatile register area consists of a block of 16 locations in FLASH memory at
0xFFB0–0xFFBF. Nonvolatile register locations include:
— NVPROT and NVOPT are loaded into working registers at reset
— An 8-byte backdoor comparison key that optionally allows a user to gain controlled access to
secure memory
Because the nonvolatile register locations are FLASH memory, they must be erased and
programmed like other FLASH memory locations.
Direct-page registers can be accessed with efficient direct addressing mode instructions. Bit manipulation
instructions can be used to access any bit in any direct-page register. Table 4-2 is a summary of all
user-accessible direct-page registers and control bits.
The direct page registers in Table 4-2 can use the more efficient direct addressing mode, which requires
only the lower byte of the address. Because of this, the lower byte of the address in column one is shown
in bold text. In Table 4-3 and Table 4-4, the whole address in column one is shown in bold. In Table 4-2,
Table 4-3, and Table 4-4, the register names in column two are shown in bold to set them apart from the
bit names to the right. Cells that are not associated with named bits are shaded. A shaded cell with a 0
indicates this unused bit always reads as a 0. Shaded cells with dashes indicate unused or reserved bit
locations that could read as 1s or 0s.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
39
Chapter 4 Memory
Table 4-2. Direct-Page Register Summary (Sheet 1 of 3)
Address
0x0000
Register
Name
PTAD
0x0001
PTADD
0x0002
PTBD
0x0003
PTBDD
0x0004
PTCD
Bit 7
6
5
4
3
2
1
Bit 0
PTAD7
PTAD6
PTAD5
PTAD4
PTAD3
PTAD2
PTAD1
PTAD0
PTADD7
PTADD6
PTADD5
PTADD4
PTADD3
PTADD2
PTADD1
PTADD0
PTBD7
PTBD6
PTBD5
PTBD4
PTBD3
PTBD2
PTBD1
PTBD0
PTBDD7
PTBDD6
PTBDD5
PTBDD4
PTBDD3
PTBDD2
PTBDD1
PTBDD0
PTCD7
PTCD6
PTCD5
PTCD4
PTCD3
PTCD2
PTCD1
PTCD0
0x0005
PTCDD
PTCDD7
PTCDD6
PTCDD5
PTCDD4
PTCDD3
PTCDD2
PTCDD1
PTCDD0
0x0006
Reserved
—
—
—
—
—
—
—
—
0x0007
Reserved
—
—
—
—
—
0
0
0
0x0008–
Reserved
0x000D
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0x000E
ACMPSC
ACME
ACBGS
ACF
ACIE
ACO
ACOPE
ACMOD1
ACMOD0
0x000F
Reserved
—
—
—
—
—
—
—
—
0x0010
ADCSC1
COCO
AIEN
ADCO
0x0011
ADCSC2
ADACT
ADTRG
ACFE
—
—
0x0012
ADCRH
0
0
0
0
0
0
ADR9
ADR8
0x0013
ADCRL
ADR7
ADR6
ADR5
ADR4
ADR3
ADR2
ADR1
ADR0
0x0014
ADCVH
0
0
0
0
0
0
ADCV9
ADCV8
0x0015
ADCVL
ADCV7
ADCV6
ADCV5
ADCV4
ADCV3
ADCV2
ADCV1
ADCV0
0x0016
ADCCFG
ADLPC
0x0017
APCTL1
ADPC7
ADPC6
ADPC5
ADPC4
ADPC3
ADPC2
ADPC1
ADPC0
0x0018
APCTL2
ADPC15
ADPC14
ADPC13
ADPC12
ADPC11
ADPC10
ADPC9
ADPC8
0x0019
Reserved
—
—
—
—
—
—
—
—
ADCH
ACFGT
ADIV
—
ADLSMP
—
MODE
ADICLK
0x001A
IRQSC
0
IRQPDD
IRQEDG
IRQPE
IRQF
IRQACK
IRQIE
IRQMOD
0x001B
Reserved
—
—
—
—
—
—
—
—
0x001C
MTIMSC
TOF
TOIE
TRST
TSTP
0
0
0
0
0x001D
MTIMCLK
0
0
CLKS
PS
0x001E
MTIMCNT
CNT
0x001F
MTIMMOD
MOD
0x0020
TPM1SC
TOF
TOIE
CPWMS
CLKSB
CLKSA
PS2
PS1
PS0
0x0021
TPM1CNTH
Bit 15
14
13
12
11
10
9
Bit 8
0x0022
TPM1CNTL
Bit 7
6
5
4
3
2
1
Bit 0
0x0023
TPM1MODH
Bit 15
14
13
12
11
10
9
Bit 8
0x0024
TPM1MODL
Bit 7
6
5
4
3
2
1
Bit 0
0x0025
TPM1C0SC
CH0F
CH0IE
MS0B
MS0A
ELS0B
ELS0A
0
0
0x0026
TPM1C0VH
Bit 15
14
13
12
11
10
9
Bit 8
0x0027
TPM1C0VL
Bit 7
6
5
4
3
2
1
Bit 0
0x0028
TPM1C1SC
CH1F
CH1IE
MS1B
MS1A
ELS1B
ELS1A
0
0
0x0029
TPM1C1VH
Bit 15
14
13
12
11
10
9
Bit 8
0x002A
TPM1C1VL
Bit 7
6
5
4
3
2
1
Bit 0
MC9S08SH32 Series Data Sheet, Rev. 3
40
Freescale Semiconductor
Chapter 4 Memory
Table 4-2. Direct-Page Register Summary (Sheet 2 of 3)
Address
Register
Name
0x002B–
Reserved
0x0037
Bit 7
6
5
4
3
2
1
Bit 0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0x0038
SCIBDH
LBKDIE
RXEDGIE
0
SBR12
SBR11
SBR10
SBR9
SBR8
0x0039
SCIBDL
SBR7
SBR6
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
0x003A
SCIC1
LOOPS
SCISWAI
RSRC
M
WAKE
ILT
PE
PT
0x003B
SCIC2
TIE
TCIE
RIE
ILIE
TE
RE
RWU
SBK
0x003C
SCIS1
TDRE
TC
RDRF
IDLE
OR
NF
FE
PF
0x003D
SCIS2
LBKDIF
RXEDGIF
0
RXINV
RWUID
BRK13
LBKDE
RAF
0x003E
SCIC3
R8
T8
TXDIR
TXINV
ORIE
NEIE
FEIE
PEIE
0x003F
SCID
Bit 7
6
5
4
3
2
1
Bit 0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
IREFS
IRCLKEN
IREFSTEN
EREFS
ERCLKEN EREFSTEN
0x0040–
Reserved
0x0047
0x0048
ICSC1
CLKS
0x0049
ICSC2
BDIV
0x004A
ICSTRM
0x004B
ICSSC
0x004C–
Reserved
0x004F
RDIV
RANGE
HGO
LP
TRIM
0
0
0
IREFST
OSCINIT
FTRIM
—
—
—
—
—
—
—
—
—
—
CLKST
—
—
—
—
—
—
0x0050
SPIC1
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0x0051
SPIC2
0
0
0
MODFEN
BIDIROE
0
SPISWAI
SPC0
0x0052
SPIBR
0x0053
SPIS
0x0054
Reserved
0x0055
SPID
0x0056–
Reserved
0x0057
0
SPPR2
SPPR1
SPPR0
0
SPR2
SPR1
SPR0
SPRF
0
SPTEF
MODF
0
0
0
0
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
AD7
AD6
AD5
AD4
AD3
AD2
AD1
0
TXAK
RSTA
0
0
0
SRW
IICIF
RXAK
0x0058
IICA
0x0059
IICF
0x005A
IICC1
IICEN
IICIE
MST
TX
0x005B
IICS
TCF
IAAS
BUSY
ARBL
0x005C
IICD
0x005D
IICC2
0x005E–
Reserved
0x005F
MULT
ICR
DATA
GCAEN
ADEXT
0
0
0
AD10
AD9
AD8
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0x0060
TPM2SC
TOF
TOIE
CPWMS
CLKSB
CLKSA
PS2
PS1
PS0
0x0061
TPM2CNTH
Bit 15
14
13
12
11
10
9
Bit 8
0x0062
TPM2CNTL
Bit 7
6
5
4
3
2
1
Bit 0
0x0063
TPM2MODH
Bit 15
14
13
12
11
10
9
Bit 8
0x0064
TPM2MODL
Bit 7
6
5
4
3
2
1
Bit 0
0x0065
TPM2C0SC
CH0F
CH0IE
MS0B
MS0A
ELS0B
ELS0A
0
0
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
41
Chapter 4 Memory
Table 4-2. Direct-Page Register Summary (Sheet 3 of 3)
Address
Register
Name
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
0x0066
TPM2C0VH
0x0067
TPM2C0VL
Bit 7
6
5
4
3
2
1
Bit 0
0x0068
TPM2C1SC
CH1F
CH1IE
MS1B
MS1A
ELS1B
ELS1A
0
0
0x0069
TPM2C1VH
Bit 15
14
13
12
11
10
9
Bit 8
0x006A
TPM2C1VL
Bit 7
6
5
4
3
2
1
Bit 0
0x006B
Reserved
—
—
—
—
—
—
—
0x006C
RTCSC
0x006D
RTCCNT
RTCCNT
0x006E
RTCMOD
RTCMOD
—
—
—
—
0x006F Reserved
0x007F
RTIF
—
—
—
RTCLKS
—
—
RTIE
—
—
—
—
RTCPS
—
—
—
—
MC9S08SH32 Series Data Sheet, Rev. 3
42
Freescale Semiconductor
Chapter 4 Memory
High-page registers, shown in Table 4-3, are accessed much less often than other I/O and control registers
so they have been located outside the direct addressable memory space, starting at 0x1800.
Table 4-3. High-Page Register Summary (Sheet 1 of 2)
Address
Register Name
0x1800
SRS
0x1801
SBDFR
0x1802
SOPT1
0x1803
SOPT2
0x1804 –
0x1805
Bit 7
6
5
4
3
2
1
POR
PIN
COP
ILOP
ILAD
0
LVD
0
0
0
0
0
0
0
0
BDFR
STOPE
0
0
IICPS
BKGDPE
RSTPE
COPT
Bit 0
COPCLKS
COPW
0
ACIC
Reserved
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0x1806
SDIDH
0
—
—
—
ID11
ID10
ID9
ID8
0x1807
SDIDL
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
0x1808
Reserved
—
—
—
—
—
—
—
—
0x1809
SPMSC1
LVWF
LVWACK
LVWIE
LVDRE
LVDSE
LVDE
0
BGBE
0x180A
SPMSC2
0
0
LVDV
LVWV
PPDF
PPDACK
—
PPDC
0x180B–
0x180F
Reserved
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0x1810
DBGCAH
Bit 15
14
13
12
11
10
9
Bit 8
0x1811
DBGCAL
Bit 7
6
5
4
3
2
1
Bit 0
0x1812
DBGCBH
Bit 15
14
13
12
11
10
9
Bit 8
0x1813
DBGCBL
Bit 7
6
5
4
3
2
1
Bit 0
0x1814
DBGFH
Bit 15
14
13
12
11
10
9
Bit 8
0x1815
DBGFL
Bit 7
6
5
4
3
2
1
Bit 0
0x1816
DBGC
DBGEN
ARM
TAG
BRKEN
RWA
RWAEN
RWB
RWBEN
0x1817
DBGT
TRGSEL
BEGIN
0
0
TRG3
TRG2
TRG1
TRG0
0x1818
DBGS
AF
BF
ARMF
0
CNT3
CNT2
CNT1
CNT0
0x1819–
0x181F
Reserved
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0x1820
FCDIV
DIVLD
PRDIV8
0x1821
FOPT
KEYEN
FNORED
0
0
0
0
0x1822
Reserved
—
—
—
—
—
—
—
0x1823
FCNFG
0
0
KEYACC
0
0
0
0
0x1824
FPROT
0x1825
FSTAT
0x1826
FCMD
0x1827–
0x183F
Reserved
0x1840
T2CH1PS T2CH0PS T1CH1PS T1CH0PS
DIV
SEC
FPS
FCBEF
FCCF
FPVIOL
—
0
FPDIS
FACCERR
0
FBLANK
0
0
FCMD
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
PTAPE
PTAPE7
PTAPE6
PTAPE5
PTAPE4
PTAPE3
PTAPE2
PTAPE1
PTAPE0
0x1841
PTASE
PTASE7
PTASE6
PTASE5
PTASE4
PTASE3
PTASE2
PTASE1
PTASE0
0x1842
PTADS
PTADS7
PTADS6
PTADS5
PTADS4
PTADS3
PTADS2
PTADS1
PTADS0
0x1843
Reserved
—
—
—
—
—
—
—
—
0x1844
PTASC
0
0
0
0
PTAIF
PTAACK
PTAIE
PTAMOD
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
43
Chapter 4 Memory
Table 4-3. High-Page Register Summary (Sheet 2 of 2)
Address
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
0x1845
PTAPS
0
0
0
0
PTAPS3
PTAPS2
PTAPS1
PTAPS0
0x1846
PTAES
0
0
0
0
PTAES3
PTAES2
PTAES1
PTAES0
0x1847
Reserved
—
—
—
—
—
—
—
—
0x1848
PTBPE
PTBPE7
PTBPE6
PTBPE5
PTBPE4
PTBPE3
PTBPE2
PTBPE1
PTBPE0
0x1849
PTBSE
PTBSE7
PTBSE6
PTBSE5
PTBSE4
PTBSE3
PTBSE2
PTBSE1
PTBSE0
0x184A
PTBDS
PTBDS7
PTBDS6
PTBDS5
PTBDS4
PTBDS3
PTBDS2
PTBDS1
PTBDS0
0x184B
Reserved
—
—
—
—
—
—
—
—
0x184C
PTBSC
0
0
0
0
PTBIF
PTBACK
PTBIE
PTBMOD
0x184D
PTBPS
0
0
0
0
PTBPS3
PTBPS2
PTBPS1
PTBPS0
0x184E
PTBES
0
0
0
0
PTBES3
PTBES2
PTBES1
PTBES0
0x184F
Reserved
—
—
—
—
—
—
—
—
0x1850
PTCPE
PTCPE7
PTCPE6
PTCPE5
PTCPE4
PTCPE3
PTCPE2
PTCPE1
PTCPE0
0x1851
PTCSE
PTCSE7
PTCSE6
PTCSE5
PTCSE4
PTCSE3
PTCSE2
PTCSE1
PTCSE0
0x1852
PTCDS
PTCDS7
PTCDS6
PTCDS5
PTCDS4
PTCDS3
PTCDS2
PTCDS1
PTCDS0
0x1853
GNGC
GNGPS7
GNGPS6
GNGPS5
GNGPS4
GNGPS3
GNGPS2
GNGPS1
GNGEN
0x1854
Reserved
—
—
—
—
—
1
1
1
0x1855
Reserved
—
—
—
—
—
1
1
1
0x1856
Reserved
—
—
—
—
—
0
0
0
0x1857–
0x185F
Reserved
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
MC9S08SH32 Series Data Sheet, Rev. 3
44
Freescale Semiconductor
Chapter 4 Memory
Nonvolatile FLASH registers, shown in Table 4-4, are located in the FLASH memory. These registers
include an 8-byte backdoor key, NVBACKKEY, which can be used to gain access to secure memory
resources. During reset events, the contents of NVPROT and NVOPT in the nonvolatile register area of
the FLASH memory are transferred into corresponding FPROT and FOPT working registers in the
high-page registers to control security and block protection options.
Table 4-4. Nonvolatile Register Summary
Address
Register Name
0xFFAE
NVFTRIM
0xFFAF
NVTRIM
Bit 7
6
5
4
3
2
1
Bit 0
—
—
—
—
—
—
—
FTRIM
—
—
—
TRIM
0xFFB0 – NVBACKKEY
0xFFB7
0xFFB8 – Reserved
0xFFBC
0xFFBD
NVPROT
0xFFBE
Reserved
0xFFBF
NVOPT
8-Byte Comparison Key
—
—
—
—
—
FPS
FPDIS
—
—
—
—
—
—
KEYEN
FNORED
—
—
—
—
—
—
SEC
Provided the key enable (KEYEN) bit is 1, the 8-byte comparison key can be used to temporarily
disengage memory security. This key mechanism can be accessed only through user code running in secure
memory. (A security key cannot be entered directly through background debug commands.) This security
key can be disabled completely by programming the KEYEN bit to 0. If the security key is disabled, the
only way to disengage security is by mass erasing the FLASH if needed (normally through the background
debug interface) and verifying that FLASH is blank. To avoid returning to secure mode after the next reset,
program the security bits (SEC) to the unsecured state (1:0).
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
45
Chapter 4 Memory
4.4
RAM
The MC9S08SH32 Series includes static RAM. The locations in RAM below 0x0100 can be accessed
using the more efficient direct addressing mode, and any single bit in this area can be accessed with the bit
manipulation instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most frequently accessed
program variables in this area of RAM is preferred.
The RAM retains data when the MCU is in low-power wait, stop2, or stop3 mode. At power-on the
contents of RAM are uninitialized. RAM data is unaffected by any reset provided that the supply voltage
does not drop below the minimum value for RAM retention (VRAM).
For compatibility with M68HC05 MCUs, the HCS08 resets the stack pointer to 0x00FF. In the
MC9S08SH32 Series, it is usually best to reinitialize the stack pointer to the top of the RAM so the direct
page RAM can be used for frequently accessed RAM variables and bit-addressable program variables.
Include the following 2-instruction sequence in your reset initialization routine (where RamLast is equated
to the highest address of the RAM in the Freescale Semiconductor-provided equate file).
LDHX
TXS
#RamLast+1
;point one past RAM
;SP fADCK
xx
0
17 ADCK cycles
Subsequent continuous 10-bit;
fBUS > fADCK
xx
0
20 ADCK cycles
Subsequent continuous 8-bit;
fBUS > fADCK/11
xx
1
37 ADCK cycles
Subsequent continuous 10-bit;
fBUS > fADCK/11
xx
1
40 ADCK cycles
The maximum total conversion time is determined by the clock source chosen and the divide ratio selected.
The clock source is selectable by the ADICLK bits, and the divide ratio is specified by the ADIV bits. For
example, in 10-bit mode, with the bus clock selected as the input clock source, the input clock divide-by-1
ratio selected, and a bus frequency of 8 MHz, then the conversion time for a single conversion is:
Conversion time =
23 ADCK cyc
8 MHz/1
+
5 bus cyc
8 MHz
= 3.5 μs
Number of bus cycles = 3.5 μs x 8 MHz = 28 cycles
NOTE
The ADCK frequency must be between fADCK minimum and fADCK
maximum to meet ADC specifications.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
139
Chapter 9 Analog-to-Digital Converter (S08ADCV1)
9.4.5
Automatic Compare Function
The compare function can be configured to check for either an upper limit or lower limit. After the input
is sampled and converted, the result is added to the two’s complement of the compare value (ADCCVH
and ADCCVL). When comparing to an upper limit (ACFGT = 1), if the result is greater-than or equal-to
the compare value, COCO is set. When comparing to a lower limit (ACFGT = 0), if the result is less than
the compare value, COCO is set. The value generated by the addition of the conversion result and the two’s
complement of the compare value is transferred to ADCRH and ADCRL.
Upon completion of a conversion while the compare function is enabled, if the compare condition is not
true, COCO is not set and no data is transferred to the result registers. An ADC interrupt is generated upon
the setting of COCO if the ADC interrupt is enabled (AIEN = 1).
NOTE
The compare function can be used to monitor the voltage on a channel while
the MCU is in either wait or stop3 mode. The ADC interrupt will wake the
MCU when the compare condition is met.
9.4.6
MCU Wait Mode Operation
The WAIT instruction puts the MCU in a lower power-consumption standby mode from which recovery
is very fast because the clock sources remain active. If a conversion is in progress when the MCU enters
wait mode, it continues until completion. Conversions can be initiated while the MCU is in wait mode by
means of the hardware trigger or if continuous conversions are enabled.
The bus clock, bus clock divided by two, and ADACK are available as conversion clock sources while in
wait mode. The use of ALTCLK as the conversion clock source in wait is dependent on the definition of
ALTCLK for this MCU. Consult the module introduction for information on ALTCLK specific to this
MCU.
A conversion complete event sets the COCO and generates an ADC interrupt to wake the MCU from wait
mode if the ADC interrupt is enabled (AIEN = 1).
9.4.7
MCU Stop3 Mode Operation
The STOP instruction is used to put the MCU in a low power-consumption standby mode during which
most or all clock sources on the MCU are disabled.
9.4.7.1
Stop3 Mode With ADACK Disabled
If the asynchronous clock, ADACK, is not selected as the conversion clock, executing a STOP instruction
aborts the current conversion and places the ADC in its idle state. The contents of ADCRH and ADCRL
are unaffected by stop3 mode.After exiting from stop3 mode, a software or hardware trigger is required to
resume conversions.
MC9S08SH32 Series Data Sheet, Rev. 3
140
Freescale Semiconductor
Chapter 9 Analog-to-Digital Converter (S08ADCV1)
9.4.7.2
Stop3 Mode With ADACK Enabled
If ADACK is selected as the conversion clock, the ADC continues operation during stop3 mode. For
guaranteed ADC operation, the MCU’s voltage regulator must remain active during stop3 mode. Consult
the module introduction for configuration information for this MCU.
If a conversion is in progress when the MCU enters stop3 mode, it continues until completion. Conversions
can be initiated while the MCU is in stop3 mode by means of the hardware trigger or if continuous
conversions are enabled.
A conversion complete event sets the COCO and generates an ADC interrupt to wake the MCU from stop3
mode if the ADC interrupt is enabled (AIEN = 1).
NOTE
It is possible for the ADC module to wake the system from low power stop
and cause the MCU to begin consuming run-level currents without
generating a system level interrupt. To prevent this scenario, software
should ensure that the data transfer blocking mechanism (discussed in
Section 9.4.4.2, “Completing Conversions) is cleared when entering stop3
and continuing ADC conversions.
9.4.8
MCU Stop1 and Stop2 Mode Operation
The ADC module is automatically disabled when the MCU enters either stop1 or stop2 mode. All module
registers contain their reset values following exit from stop1 or stop2. Therefore the module must be
re-enabled and re-configured following exit from stop1 or stop2.
9.5
Initialization Information
This section gives an example which provides some basic direction on how a user would initialize and
configure the ADC module. The user has the flexibility of choosing between configuring the module for
8-bit or 10-bit resolution, single or continuous conversion, and a polled or interrupt approach, among many
other options. Refer to Table 9-6, Table 9-7, and Table 9-8 for information used in this example.
NOTE
Hexadecimal values designated by a preceding 0x, binary values designated
by a preceding %, and decimal values have no preceding character.
9.5.1
9.5.1.1
ADC Module Initialization Example
Initialization Sequence
Before the ADC module can be used to complete conversions, an initialization procedure must be
performed. A typical sequence is as follows:
1. Update the configuration register (ADCCFG) to select the input clock source and the divide ratio
used to generate the internal clock, ADCK. This register is also used for selecting sample time and
low-power configuration.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
141
Chapter 9 Analog-to-Digital Converter (S08ADCV1)
2. Update status and control register 2 (ADCSC2) to select the conversion trigger (hardware or
software) and compare function options, if enabled.
3. Update status and control register 1 (ADCSC1) to select whether conversions will be continuous
or completed only once, and to enable or disable conversion complete interrupts. The input channel
on which conversions will be performed is also selected here.
9.5.1.2
Pseudo — Code Example
In this example, the ADC module will be set up with interrupts enabled to perform a single 10-bit
conversion at low power with a long sample time on input channel 1, where the internal ADCK clock will
be derived from the bus clock divided by 1.
ADCCFG = 0x98 (%10011000)
Bit 7
ADLPC
1
Configures for low power (lowers maximum clock speed)
Bit 6:5 ADIV
00
Sets the ADCK to the input clock ÷ 1
Bit 4
ADLSMP 1
Configures for long sample time
Bit 3:2 MODE
10
Sets mode at 10-bit conversions
Bit 1:0 ADICLK 00
Selects bus clock as input clock source
ADCSC2 = 0x00 (%00000000)
Bit 7
ADACT
0
Bit 6
ADTRG
0
Bit 5
ACFE
0
Bit 4
ACFGT
0
Bit 3:2
00
Bit 1:0
00
Flag indicates if a conversion is in progress
Software trigger selected
Compare function disabled
Not used in this example
Unimplemented or reserved, always reads zero
Reserved for Freescale’s internal use; always write zero
ADCSC1 = 0x41 (%01000001)
Bit 7
COCO
0
Bit 6
AIEN
1
Bit 5
ADCO
0
Bit 4:0 ADCH
00001
Read-only flag which is set when a conversion completes
Conversion complete interrupt enabled
One conversion only (continuous conversions disabled)
Input channel 1 selected as ADC input channel
ADCRH/L = 0xxx
Holds results of conversion. Read high byte (ADCRH) before low byte (ADCRL) so that conversion
data cannot be overwritten with data from the next conversion.
ADCCVH/L = 0xxx
Holds compare value when compare function enabled
APCTL1=0x02
AD1 pin I/O control disabled. All other AD pins remain general purpose I/O pins
APCTL2=0x00
All other AD pins remain general purpose I/O pins
MC9S08SH32 Series Data Sheet, Rev. 3
142
Freescale Semiconductor
Chapter 9 Analog-to-Digital Converter (S08ADCV1)
RESET
INITIALIZE ADC
ADCCFG = $98
ADCSC2 = $00
ADCSC1 = $41
CHECK
COCO=1?
NO
YES
READ ADCRH
THEN ADCRL TO
CLEAR COCO BIT
CONTINUE
Figure 9-14. Initialization Flowchart for Example
9.6
Application Information
This section contains information for using the ADC module in applications. The ADC has been designed
to be integrated into a microcontroller for use in embedded control applications requiring an A/D
converter.
9.6.1
External Pins and Routing
The following sections discuss the external pins associated with the ADC module and how they should be
used for best results.
9.6.1.1
Analog Supply Pins
The ADC module has analog power and ground supplies (VDDAD and VSSAD) which are available as
separate pins on some devices. On other devices, VSSAD is shared on the same pin as the MCU digital VSS,
and on others, both VSSAD and VDDAD are shared with the MCU digital supply pins. In these cases, there
are separate pads for the analog supplies which are bonded to the same pin as the corresponding digital
supply so that some degree of isolation between the supplies is maintained.
When available on a separate pin, both VDDAD and VSSAD must be connected to the same voltage potential
as their corresponding MCU digital supply (VDD and VSS) and must be routed carefully for maximum
noise immunity and bypass capacitors placed as near as possible to the package.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
143
Chapter 9 Analog-to-Digital Converter (S08ADCV1)
In cases where separate power supplies are used for analog and digital power, the ground connection
between these supplies must be at the VSSAD pin. This should be the only ground connection between these
supplies if possible. The VSSAD pin makes a good single point ground location.
9.6.1.2
Analog Reference Pins
In addition to the analog supplies, the ADC module has connections for two reference voltage inputs. The
high reference is VREFH, which may be shared on the same pin as VDDAD on some devices. The low
reference is VREFL, which may be shared on the same pin as VSSAD on some devices.
When available on a separate pin, VREFH may be connected to the same potential as VDDAD, or may be
driven by an external source that is between the minimum VDDAD spec and the VDDAD potential (VREFH
must never exceed VDDAD). When available on a separate pin, VREFL must be connected to the same
voltage potential as VSSAD. Both VREFH and VREFL must be routed carefully for maximum noise
immunity and bypass capacitors placed as near as possible to the package.
AC current in the form of current spikes required to supply charge to the capacitor array at each successive
approximation step is drawn through the VREFH and VREFL loop. The best external component to meet this
current demand is a 0.1 μF capacitor with good high frequency characteristics. This capacitor is connected
between VREFH and VREFL and must be placed as near as possible to the package pins. Resistance in the
path is not recommended because the current will cause a voltage drop which could result in conversion
errors. Inductance in this path must be minimum (parasitic only).
9.6.1.3
Analog Input Pins
The external analog inputs are typically shared with digital I/O pins on MCU devices. The pin I/O control
is disabled by setting the appropriate control bit in one of the pin control registers. Conversions can be
performed on inputs without the associated pin control register bit set. It is recommended that the pin
control register bit always be set when using a pin as an analog input. This avoids problems with contention
because the output buffer will be in its high impedance state and the pullup is disabled. Also, the input
buffer draws dc current when its input is not at either VDD or VSS. Setting the pin control register bits for
all pins used as analog inputs should be done to achieve lowest operating current.
Empirical data shows that capacitors on the analog inputs improve performance in the presence of noise
or when the source impedance is high. Use of 0.01 μF capacitors with good high-frequency characteristics
is sufficient. These capacitors are not necessary in all cases, but when used they must be placed as near as
possible to the package pins and be referenced to VSSA.
For proper conversion, the input voltage must fall between VREFH and VREFL. If the input is equal to or
exceeds VREFH, the converter circuit converts the signal to $3FF (full scale 10-bit representation) or $FF
(full scale 8-bit representation). If the input is equal to or less than VREFL, the converter circuit converts it
to $000. Input voltages between VREFH and VREFL are straight-line linear conversions. There will be a
brief current associated with VREFL when the sampling capacitor is charging. The input is sampled for
3.5 cycles of the ADCK source when ADLSMP is low, or 23.5 cycles when ADLSMP is high.
For minimal loss of accuracy due to current injection, pins adjacent to the analog input pins should not be
transitioning during conversions.
MC9S08SH32 Series Data Sheet, Rev. 3
144
Freescale Semiconductor
Chapter 9 Analog-to-Digital Converter (S08ADCV1)
9.6.2
Sources of Error
Several sources of error exist for A/D conversions. These are discussed in the following sections.
9.6.2.1
Sampling Error
For proper conversions, the input must be sampled long enough to achieve the proper accuracy. Given the
maximum input resistance of approximately 7kΩ and input capacitance of approximately 5.5 pF, sampling
to within 1/4LSB (at 10-bit resolution) can be achieved within the minimum sample window (3.5 cycles @
8 MHz maximum ADCK frequency) provided the resistance of the external analog source (RAS) is kept
below 5 kΩ.
Higher source resistances or higher-accuracy sampling is possible by setting ADLSMP (to increase the
sample window to 23.5 cycles) or decreasing ADCK frequency to increase sample time.
9.6.2.2
Pin Leakage Error
Leakage on the I/O pins can cause conversion error if the external analog source resistance (RAS) is high.
If this error cannot be tolerated by the application, keep RAS lower than VDDAD / (2N*ILEAK) for less than
1/4LSB leakage error (N = 8 in 8-bit mode or 10 in 10-bit mode).
9.6.2.3
Noise-Induced Errors
System noise which occurs during the sample or conversion process can affect the accuracy of the
conversion. The ADC accuracy numbers are guaranteed as specified only if the following conditions are
met:
• There is a 0.1 μF low-ESR capacitor from VREFH to VREFL.
• There is a 0.1 μF low-ESR capacitor from VDDAD to VSSAD.
• If inductive isolation is used from the primary supply, an additional 1 μF capacitor is placed from
VDDAD to VSSAD.
• VSSAD (and VREFL, if connected) is connected to VSS at a quiet point in the ground plane.
• Operate the MCU in wait or stop3 mode before initiating (hardware triggered conversions) or
immediately after initiating (hardware or software triggered conversions) the ADC conversion.
— For software triggered conversions, immediately follow the write to the ADCSC1 with a WAIT
instruction or STOP instruction.
— For stop3 mode operation, select ADACK as the clock source. Operation in stop3 reduces VDD
noise but increases effective conversion time due to stop recovery.
• There is no I/O switching, input or output, on the MCU during the conversion.
There are some situations where external system activity causes radiated or conducted noise emissions or
excessive VDD noise is coupled into the ADC. In these situations, or when the MCU cannot be placed in
wait or stop3 or I/O activity cannot be halted, these recommended actions may reduce the effect of noise
on the accuracy:
• Place a 0.01 μF capacitor (CAS) on the selected input channel to VREFL or VSSAD (this will
improve noise issues but will affect sample rate based on the external analog source resistance).
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
145
Chapter 9 Analog-to-Digital Converter (S08ADCV1)
•
•
Average the result by converting the analog input many times in succession and dividing the sum
of the results. Four samples are required to eliminate the effect of a 1LSB, one-time error.
Reduce the effect of synchronous noise by operating off the asynchronous clock (ADACK) and
averaging. Noise that is synchronous to ADCK cannot be averaged out.
9.6.2.4
Code Width and Quantization Error
The ADC quantizes the ideal straight-line transfer function into 1024 steps (in 10-bit mode). Each step
ideally has the same height (1 code) and width. The width is defined as the delta between the transition
points to one code and the next. The ideal code width for an N bit converter (in this case N can be 8 or 10),
defined as 1LSB, is:
1LSB = (VREFH - VREFL) / 2N
Eqn. 9-2
There is an inherent quantization error due to the digitization of the result. For 8-bit or 10-bit conversions
the code will transition when the voltage is at the midpoint between the points where the straight line
transfer function is exactly represented by the actual transfer function. Therefore, the quantization error
will be ± 1/2LSB in 8- or 10-bit mode. As a consequence, however, the code width of the first ($000)
conversion is only 1/2LSB and the code width of the last ($FF or $3FF) is 1.5LSB.
9.6.2.5
Linearity Errors
The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these
errors but the system should be aware of them because they affect overall accuracy. These errors are:
• Zero-scale error (EZS) (sometimes called offset) — This error is defined as the difference between
the actual code width of the first conversion and the ideal code width (1/2LSB). Note, if the first
conversion is $001, then the difference between the actual $001 code width and its ideal (1LSB) is
used.
• Full-scale error (EFS) — This error is defined as the difference between the actual code width of
the last conversion and the ideal code width (1.5LSB). Note, if the last conversion is $3FE, then the
difference between the actual $3FE code width and its ideal (1LSB) is used.
• Differential non-linearity (DNL) — This error is defined as the worst-case difference between the
actual code width and the ideal code width for all conversions.
• Integral non-linearity (INL) — This error is defined as the highest-value the (absolute value of the)
running sum of DNL achieves. More simply, this is the worst-case difference of the actual
transition voltage to a given code and its corresponding ideal transition voltage, for all codes.
• Total unadjusted error (TUE) — This error is defined as the difference between the actual transfer
function and the ideal straight-line transfer function, and therefore includes all forms of error.
9.6.2.6
Code Jitter, Non-Monotonicity and Missing Codes
Analog-to-digital converters are susceptible to three special forms of error. These are code jitter,
non-monotonicity, and missing codes.
Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled
repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the
MC9S08SH32 Series Data Sheet, Rev. 3
146
Freescale Semiconductor
Chapter 9 Analog-to-Digital Converter (S08ADCV1)
converter yields the lower code (and vice-versa). However, even very small amounts of system noise can
cause the converter to be indeterminate (between two codes) for a range of input voltages around the
transition voltage. This range is normally around ±1/2 LSB and will increase with noise. This error may be
reduced by repeatedly sampling the input and averaging the result. Additionally the techniques discussed
in Section 9.6.2.3 will reduce this error.
Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code for a
higher input voltage. Missing codes are those values which are never converted for any input value.
In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and to have no missing codes.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
147
Chapter 9 Analog-to-Digital Converter (S08ADCV1)
MC9S08SH32 Series Data Sheet, Rev. 3
148
Freescale Semiconductor
Chapter 10
Inter-Integrated Circuit (S08IICV2)
10.1
Introduction
The inter-integrated circuit (IIC) provides a method of communication between a number of devices. The
interface is designed to operate up to 100 kbps with maximum bus loading and timing. The device is
capable of operating at higher baud rates, up to a maximum of clock/20, with reduced bus loading. The
maximum communication length and the number of devices that can be connected are limited by a
maximum bus capacitance of 400 pF.
NOTE
The SDA and SCL should not be driven above VDD. These pins are pseudo
open-drain containing a protection diode to VDD.
10.1.1
Module Configuration
The IIC module pins, SDA and SCL can be repositioned under software control using IICPS in SOPT1 as
as shown in Table 10-1. IICPS in SOPT1 selects which general-purpose I/O ports are associated with IIC
operation.
Table 10-1. IIC Position Options
IICPS in SOPT1
Port Pin for SDA
Port Pin for SCL
0 (default)
PTA2
PTA3
1
PTB6
PTB7
Figure 10-1 shows the MC9S08SH32 Series block diagram with the IIC module highlighted.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
149
Chapter 10 Inter-Integrated Circuit (S08IICV2)
BKGD/MS
HCS08 CORE
DEBUG MODULE (DBG)
PTA6/TPM2CH0
IRQ
SCL
IRQ
IIC MODULE (IIC)
LVD
SERIAL PERIPHERAL
INTERFACE MODULE (SPI)
USER FLASH
(MC9S08SH32 = 32,768 BYTES)
(MC9S08SH16 = 16,384 BYTES)
SERIAL COMMUNICATIONS
INTERFACE MODULE (SCI)
USER RAM
(MC9S08SH32/16 = 1024 BYTES)
16-BIT TIMER/PWM
MODULE (TPM1)
REAL-TIME COUNTER (RTC)
40-MHz INTERNAL CLOCK
SOURCE (ICS)
LOW-POWER OSCILLATOR
31.25 kHz to 38.4 kHz
1 MHz to 16 MHz
(XOSC)
16-BIT TIMER/PWM
MODULE (TPM2)
EXTAL
XTAL
ANALOG COMPARATOR
(ACMP)
PTA5/IRQ/TCLK/RESET
PORT A
RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT
TCLK
SDA
VSSA/VREFL
VDDA
VSSA
PTA2/PIA2/SDA/ADP2
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
TCLK
TPM1CH0
PTB4/TPM2CH1/MISO
PTB3/PIB3/MOSI/ADP7
TPM1CH1
PTB5/TPM1CH1/SS
PTB2/PIB2/SPSCK/ADP6
PTB1/PIB1/TxD/ADP5
TCLK
TPM2CH0
PTB0/PIB0/RxD/ADP4
TPM2CH1
ACMPO
ACMP–
ACMP+
PTC7/ADP15
PTC6/ADP14
PTC5/ADP13
10-BIT
ANALOG-TO-DIGITAL
CONVERTER (ADC)
ADP15-ADP0
PORT C
VDDA/VREFH
VOLTAGE REGULATOR
PTA3/PIA3/SCL/ADP3
RxD
TxD
VSS
VDD
PTA4/ACMPO/BKGD/MS
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
SS
MISO
MOSI
SPSCK
PORT B
8-BIT MODULO TIMER
MODULE (MTIM)
HCS08 SYSTEM CONTROL
COP
PTA7/TPM2CH1
BDC
CPU
PTC4/ADP12
PTC3/ADP11
PTC2/ADP10
PTC1/TPM1CH1/ADP9
VREFH
VREFL
PTC0/TPM1CH0/ADP8
= Pin can be enabled as part of the ganged output drive feature
NOTE: - PTC7-PTC0 and PTA7-PTA6 not available on 16--pin Packages
- PTC7-PTC4 and PTA7-PTA6 not available on 20-pin Packages
- For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL , are double bonded to VDD and VSS respectively.
- When PTA4 is configured as BKGD, pin becomes bi-directional.
Figure 10-1. MC9S08SH32 Series Block Diagram Highlighting IIC Block and Pins
MC9S08SH32 Series Data Sheet, Rev. 3
150
Freescale Semiconductor
Chapter 10 Inter-Integrated Circuit (S08IICV2)
10.1.2
Features
The IIC includes these distinctive features:
• Compatible with IIC bus standard
• Multi-master operation
• Software programmable for one of 64 different serial clock frequencies
• Software selectable acknowledge bit
• Interrupt driven byte-by-byte data transfer
• Arbitration lost interrupt with automatic mode switching from master to slave
• Calling address identification interrupt
• Start and stop signal generation/detection
• Repeated start signal generation
• Acknowledge bit generation/detection
• Bus busy detection
• General call recognition
• 10-bit address extension
10.1.3
Modes of Operation
A brief description of the IIC in the various MCU modes is given here.
• Run mode — This is the basic mode of operation. To conserve power in this mode, disable the
module.
• Wait mode — The module continues to operate while the MCU is in wait mode and can provide
a wake-up interrupt.
• Stop mode — The IIC is inactive in stop3 mode for reduced power consumption. The stop
instruction does not affect IIC register states. Stop2 resets the register contents.
10.1.4
Block Diagram
Figure 10-2 is a block diagram of the IIC.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
151
Inter-Integrated Circuit (S08IICV2)
Address
Data Bus
Interrupt
ADDR_DECODE
CTRL_REG
DATA_MUX
FREQ_REG
ADDR_REG
STATUS_REG
DATA_REG
Input
Sync
Start
Stop
Arbitration
Control
Clock
Control
In/Out
Data
Shift
Register
Address
Compare
SCL
SDA
Figure 10-2. IIC Functional Block Diagram
10.2
External Signal Description
This section describes each user-accessible pin signal.
10.2.1
SCL — Serial Clock Line
The bidirectional SCL is the serial clock line of the IIC system.
10.2.2
SDA — Serial Data Line
The bidirectional SDA is the serial data line of the IIC system.
10.3
Register Definition
This section consists of the IIC register descriptions in address order.
Refer to the direct-page register summary in the memory chapter of this document for the absolute address
assignments for all IIC registers. This section refers to registers and control bits only by their names. A
MC9S08SH32 Series Data Sheet, Rev. 3
152
Freescale Semiconductor
Inter-Integrated Circuit (S08IICV2)
Freescale-provided equate or header file is used to translate these names into the appropriate absolute
addresses.
10.3.1
IIC Address Register (IICA)
7
6
5
4
3
2
1
AD7
AD6
AD5
AD4
AD3
AD2
AD1
0
0
0
0
0
0
0
R
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 10-3. IIC Address Register (IICA)
Table 10-2. IICA Field Descriptions
Field
Description
7–1
AD[7:1]
Slave Address. The AD[7:1] field contains the slave address to be used by the IIC module. This field is used on
the 7-bit address scheme and the lower seven bits of the 10-bit address scheme.
10.3.2
IIC Frequency Divider Register (IICF)
7
6
5
4
3
2
1
0
0
0
0
R
MULT
ICR
W
Reset
0
0
0
0
0
Figure 10-4. IIC Frequency Divider Register (IICF)
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
153
Inter-Integrated Circuit (S08IICV2)
Table 10-3. IICF Field Descriptions
Field
7–6
MULT
5–0
ICR
Description
IIC Multiplier Factor. The MULT bits define the multiplier factor, mul. This factor, along with the SCL divider,
generates the IIC baud rate. The multiplier factor mul as defined by the MULT bits is provided below.
00 mul = 01
01 mul = 02
10 mul = 04
11 Reserved
IIC Clock Rate. The ICR bits are used to prescale the bus clock for bit rate selection. These bits and the MULT
bits determine the IIC baud rate, the SDA hold time, the SCL Start hold time, and the SCL Stop hold time.
Table 10-5 provides the SCL divider and hold values for corresponding values of the ICR.
The SCL divider multiplied by multiplier factor mul generates IIC baud rate.
bus speed (Hz)
IIC baud rate = --------------------------------------------mul × SCLdivider
Eqn. 10-1
SDA hold time is the delay from the falling edge of SCL (IIC clock) to the changing of SDA (IIC data).
SDA hold time = bus period (s) × mul × SDA hold value
Eqn. 10-2
SCL start hold time is the delay from the falling edge of SDA (IIC data) while SCL is high (Start condition) to the
falling edge of SCL (IIC clock).
SCL Start hold time = bus period (s) × mul × SCL Start hold value
Eqn. 10-3
SCL stop hold time is the delay from the rising edge of SCL (IIC clock) to the rising edge of SDA
SDA (IIC data) while SCL is high (Stop condition).
SCL Stop hold time = bus period (s) × mul × SCL Stop hold value
Eqn. 10-4
For example, if the bus speed is 8 MHz, the table below shows the possible hold time values with different
ICR and MULT selections to achieve an IIC baud rate of 100 kbps.
Table 10-4. Hold Time Values for 8 MHz Bus Speed
Hold Times (μs)
MULT
ICR
SDA
SCL Start
SCL Stop
0x2
0x00
3.500
3.000
5.500
0x1
0x07
2.500
4.000
5.250
0x1
0x0B
2.250
4.000
5.250
0x0
0x14
2.125
4.250
5.125
0x0
0x18
1.125
4.750
5.125
MC9S08SH32 Series Data Sheet, Rev. 3
154
Freescale Semiconductor
Inter-Integrated Circuit (S08IICV2)
Table 10-5. IIC Divider and Hold Values
ICR
(hex)
SCL
Divider
SDA Hold
Value
SCL Hold
(Start)
Value
SCL Hold
(Stop)
Value
ICR
(hex)
SCL
Divider
SDA
Hold
Value
SCL Hold
(Start)
Value
SCL Hold
(Stop)
Value
00
20
7
6
11
20
160
17
78
81
01
22
7
7
12
21
192
17
94
97
02
24
8
8
13
22
224
33
110
113
03
26
8
9
14
23
256
33
126
129
04
28
9
10
15
24
288
49
142
145
05
30
9
11
16
25
320
49
158
161
06
34
10
13
18
26
384
65
190
193
07
40
10
16
21
27
480
65
238
241
08
28
7
10
15
28
320
33
158
161
09
32
7
12
17
29
384
33
190
193
0A
36
9
14
19
2A
448
65
222
225
0B
40
9
16
21
2B
512
65
254
257
0C
44
11
18
23
2C
576
97
286
289
0D
48
11
20
25
2D
640
97
318
321
0E
56
13
24
29
2E
768
129
382
385
0F
68
13
30
35
2F
960
129
478
481
10
48
9
18
25
30
640
65
318
321
11
56
9
22
29
31
768
65
382
385
12
64
13
26
33
32
896
129
446
449
13
72
13
30
37
33
1024
129
510
513
14
80
17
34
41
34
1152
193
574
577
15
88
17
38
45
35
1280
193
638
641
16
104
21
46
53
36
1536
257
766
769
17
128
21
58
65
37
1920
257
958
961
18
80
9
38
41
38
1280
129
638
641
19
96
9
46
49
39
1536
129
766
769
1A
112
17
54
57
3A
1792
257
894
897
1B
128
17
62
65
3B
2048
257
1022
1025
1C
144
25
70
73
3C
2304
385
1150
1153
1D
160
25
78
81
3D
2560
385
1278
1281
1E
192
33
94
97
3E
3072
513
1534
1537
1F
240
33
118
121
3F
3840
513
1918
1921
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
155
Inter-Integrated Circuit (S08IICV2)
10.3.3
IIC Control Register (IICC1)
7
6
5
4
3
IICEN
IICIE
MST
TX
TXAK
R
W
Reset
2
1
0
0
0
0
0
0
RSTA
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 10-5. IIC Control Register (IICC1)
Table 10-6. IICC1 Field Descriptions
Field
Description
7
IICEN
IIC Enable. The IICEN bit determines whether the IIC module is enabled.
0 IIC is not enabled
1 IIC is enabled
6
IICIE
IIC Interrupt Enable. The IICIE bit determines whether an IIC interrupt is requested.
0 IIC interrupt request not enabled
1 IIC interrupt request enabled
5
MST
Master Mode Select. The MST bit changes from a 0 to a 1 when a start signal is generated on the bus and
master mode is selected. When this bit changes from a 1 to a 0 a stop signal is generated and the mode of
operation changes from master to slave.
0 Slave mode
1 Master mode
4
TX
Transmit Mode Select. The TX bit selects the direction of master and slave transfers. In master mode, this bit
should be set according to the type of transfer required. Therefore, for address cycles, this bit is always high.
When addressed as a slave, this bit should be set by software according to the SRW bit in the status register.
0 Receive
1 Transmit
3
TXAK
Transmit Acknowledge Enable. This bit specifies the value driven onto the SDA during data acknowledge
cycles for master and slave receivers.
0 An acknowledge signal is sent out to the bus after receiving one data byte
1 No acknowledge signal response is sent
2
RSTA
Repeat start. Writing a 1 to this bit generates a repeated start condition provided it is the current master. This
bit is always read as cleared. Attempting a repeat at the wrong time results in loss of arbitration.
10.3.4
IIC Status Register (IICS)
7
R
6
TCF
5
4
BUSY
IAAS
3
2
0
SRW
ARBL
1
0
RXAK
IICIF
W
Reset
1
0
0
0
0
0
0
0
= Unimplemented or Reserved
Figure 10-6. IIC Status Register (IICS)
MC9S08SH32 Series Data Sheet, Rev. 3
156
Freescale Semiconductor
Inter-Integrated Circuit (S08IICV2)
Table 10-7. IICS Field Descriptions
Field
Description
7
TCF
Transfer Complete Flag. This bit is set on the completion of a byte transfer. This bit is only valid during or
immediately following a transfer to the IIC module or from the IIC module.The TCF bit is cleared by reading the
IICD register in receive mode or writing to the IICD in transmit mode.
0 Transfer in progress
1 Transfer complete
6
IAAS
Addressed as a Slave. The IAAS bit is set when the calling address matches the programmed slave address or
when the GCAEN bit is set and a general call is received. Writing the IICC register clears this bit.
0 Not addressed
1 Addressed as a slave
5
BUSY
Bus Busy. The BUSY bit indicates the status of the bus regardless of slave or master mode. The BUSY bit is
set when a start signal is detected and cleared when a stop signal is detected.
0 Bus is idle
1 Bus is busy
4
ARBL
Arbitration Lost. This bit is set by hardware when the arbitration procedure is lost. The ARBL bit must be cleared
by software by writing a 1 to it.
0 Standard bus operation
1 Loss of arbitration
2
SRW
Slave Read/Write. When addressed as a slave, the SRW bit indicates the value of the R/W command bit of the
calling address sent to the master.
0 Slave receive, master writing to slave
1 Slave transmit, master reading from slave
1
IICIF
IIC Interrupt Flag. The IICIF bit is set when an interrupt is pending. This bit must be cleared by software, by
writing a 1 to it in the interrupt routine. One of the following events can set the IICIF bit:
• One byte transfer completes
• Match of slave address to calling address
• Arbitration lost
0 No interrupt pending
1 Interrupt pending
0
RXAK
Receive Acknowledge. When the RXAK bit is low, it indicates an acknowledge signal has been received after
the completion of one byte of data transmission on the bus. If the RXAK bit is high it means that no acknowledge
signal is detected.
0 Acknowledge received
1 No acknowledge received
10.3.5
IIC Data I/O Register (IICD)
7
6
5
4
3
2
1
0
0
0
0
0
R
DATA
W
Reset
0
0
0
0
Figure 10-7. IIC Data I/O Register (IICD)
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
157
Inter-Integrated Circuit (S08IICV2)
Table 10-8. IICD Field Descriptions
Field
Description
7–0
DATA
Data — In master transmit mode, when data is written to the IICD, a data transfer is initiated. The most significant
bit is sent first. In master receive mode, reading this register initiates receiving of the next byte of data.
NOTE
When transitioning out of master receive mode, the IIC mode should be
switched before reading the IICD register to prevent an inadvertent
initiation of a master receive data transfer.
In slave mode, the same functions are available after an address match has occurred.
The TX bit in IICC must correctly reflect the desired direction of transfer in master and slave modes for
the transmission to begin. For instance, if the IIC is configured for master transmit but a master receive is
desired, reading the IICD does not initiate the receive.
Reading the IICD returns the last byte received while the IIC is configured in master receive or slave
receive modes. The IICD does not reflect every byte transmitted on the IIC bus, nor can software verify
that a byte has been written to the IICD correctly by reading it back.
In master transmit mode, the first byte of data written to IICD following assertion of MST is used for the
address transfer and should comprise of the calling address (in bit 7 to bit 1) concatenated with the required
R/W bit (in position bit 0).
10.3.6
IIC Control Register 2 (IICC2)
7
6
GCAEN
ADEXT
0
0
R
5
4
3
0
0
0
2
1
0
AD10
AD9
AD8
0
0
0
W
Reset
0
0
0
= Unimplemented or Reserved
Figure 10-8. IIC Control Register (IICC2)
Table 10-9. IICC2 Field Descriptions
Field
Description
7
GCAEN
General Call Address Enable. The GCAEN bit enables or disables general call address.
0 General call address is disabled
1 General call address is enabled
6
ADEXT
Address Extension. The ADEXT bit controls the number of bits used for the slave address.
0 7-bit address scheme
1 10-bit address scheme
2–0
AD[10:8]
Slave Address. The AD[10:8] field contains the upper three bits of the slave address in the 10-bit address
scheme. This field is only valid when the ADEXT bit is set.
MC9S08SH32 Series Data Sheet, Rev. 3
158
Freescale Semiconductor
Inter-Integrated Circuit (S08IICV2)
10.4
Functional Description
This section provides a complete functional description of the IIC module.
10.4.1
IIC Protocol
The IIC bus system uses a serial data line (SDA) and a serial clock line (SCL) for data transfer. All devices
connected to it must have open drain or open collector outputs. A logic AND function is exercised on both
lines with external pullup resistors. The value of these resistors is system dependent.
Normally, a standard communication is composed of four parts:
• Start signal
• Slave address transmission
• Data transfer
• Stop signal
The stop signal should not be confused with the CPU stop instruction. The IIC bus system communication
is described briefly in the following sections and illustrated in Figure 10-9.
msb
SCL
1
lsb
2
3
4
5
6
7
8
msb
9
AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W
SDA
Calling Address
Start
Signal
1
SDA
3
4
5
Calling Address
4
5
6
7
8
D7
D6
D5
D4
D3
D2
D1
D0
6
7
8
9
Read/ Ack
Write Bit
1
XX
Repeated
Start
Signal
9
No
Ack
Bit
msb
AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W
Start
Signal
3
Data Byte
lsb
2
2
Read/ Ack
Write Bit
msb
SCL
XXX
lsb
1
Stop
Signal
lsb
2
3
4
5
6
7
8
9
AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W
New Calling Address
Read/
Write
No
Ack
Bit
Stop
Signal
Figure 10-9. IIC Bus Transmission Signals
10.4.1.1
Start Signal
When the bus is free, no master device is engaging the bus (SCL and SDA lines are at logical high), a
master may initiate communication by sending a start signal. As shown in Figure 10-9, a start signal is
defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of a new
data transfer (each data transfer may contain several bytes of data) and brings all slaves out of their idle
states.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
159
Inter-Integrated Circuit (S08IICV2)
10.4.1.2
Slave Address Transmission
The first byte of data transferred immediately after the start signal is the slave address transmitted by the
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired
direction of data transfer.
1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.
Only the slave with a calling address that matches the one transmitted by the master responds by sending
back an acknowledge bit. This is done by pulling the SDA low at the ninth clock (see Figure 10-9).
No two slaves in the system may have the same address. If the IIC module is the master, it must not
transmit an address equal to its own slave address. The IIC cannot be master and slave at the same time.
However, if arbitration is lost during an address cycle, the IIC reverts to slave mode and operates correctly
even if it is being addressed by another master.
10.4.1.3
Data Transfer
Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction
specified by the R/W bit sent by the calling master.
All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address
information for the slave device
Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while
SCL is high as shown in Figure 10-9. There is one clock pulse on SCL for each data bit, the msb being
transferred first. Each data byte is followed by a 9th (acknowledge) bit, which is signalled from the
receiving device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one
complete data transfer needs nine clock pulses.
If the slave receiver does not acknowledge the master in the ninth bit time, the SDA line must be left high
by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.
If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave
interprets this as an end of data transfer and releases the SDA line.
In either case, the data transfer is aborted and the master does one of two things:
• Relinquishes the bus by generating a stop signal.
• Commences a new calling by generating a repeated start signal.
10.4.1.4
Stop Signal
The master can terminate the communication by generating a stop signal to free the bus. However, the
master may generate a start signal followed by a calling command without generating a stop signal first.
This is called repeated start. A stop signal is defined as a low-to-high transition of SDA while SCL at
logical 1 (see Figure 10-9).
The master can generate a stop even if the slave has generated an acknowledge at which point the slave
must release the bus.
MC9S08SH32 Series Data Sheet, Rev. 3
160
Freescale Semiconductor
Inter-Integrated Circuit (S08IICV2)
10.4.1.5
Repeated Start Signal
As shown in Figure 10-9, a repeated start signal is a start signal generated without first generating a stop
signal to terminate the communication. This is used by the master to communicate with another slave or
with the same slave in different mode (transmit/receive mode) without releasing the bus.
10.4.1.6
Arbitration Procedure
The IIC bus is a true multi-master bus that allows more than one master to be connected on it. If two or
more masters try to control the bus at the same time, a clock synchronization procedure determines the bus
clock, for which the low period is equal to the longest clock low period and the high is equal to the shortest
one among the masters. The relative priority of the contending masters is determined by a data arbitration
procedure, a bus master loses arbitration if it transmits logic 1 while another master transmits logic 0. The
losing masters immediately switch over to slave receive mode and stop driving SDA output. In this case,
the transition from master to slave mode does not generate a stop condition. Meanwhile, a status bit is set
by hardware to indicate loss of arbitration.
10.4.1.7
Clock Synchronization
Because wire-AND logic is performed on the SCL line, a high-to-low transition on the SCL line affects all
the devices connected on the bus. The devices start counting their low period and after a device’s clock has
gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to
high in this device clock may not change the state of the SCL line if another device clock is still within its
low period. Therefore, synchronized clock SCL is held low by the device with the longest low period.
Devices with shorter low periods enter a high wait state during this time (see Figure 10-10). When all
devices concerned have counted off their low period, the synchronized clock SCL line is released and
pulled high. There is then no difference between the device clocks and the state of the SCL line and all the
devices start counting their high periods. The first device to complete its high period pulls the SCL line
low again.
Delay
Start Counting High Period
SCL1
SCL2
SCL
Internal Counter Reset
Figure 10-10. IIC Clock Synchronization
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
161
Inter-Integrated Circuit (S08IICV2)
10.4.1.8
Handshaking
The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such a case, it halts the bus clock and forces
the master clock into wait states until the slave releases the SCL line.
10.4.1.9
Clock Stretching
The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After
the master has driven SCL low the slave can drive SCL low for the required period and then release it. If
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.
10.4.2
10-bit Address
For 10-bit addressing, 0x11110 is used for the first 5 bits of the first address byte. Various combinations of
read/write formats are possible within a transfer that includes 10-bit addressing.
10.4.2.1
Master-Transmitter Addresses a Slave-Receiver
The transfer direction is not changed (see Table 10-10). When a 10-bit address follows a start condition,
each slave compares the first seven bits of the first byte of the slave address (11110XX) with its own
address and tests whether the eighth bit (R/W direction bit) is 0. More than one device can find a match
and generate an acknowledge (A1). Then, each slave that finds a match compares the eight bits of the
second byte of the slave address with its own address. Only one slave finds a match and generates an
acknowledge (A2). The matching slave remains addressed by the master until it receives a stop condition
(P) or a repeated start condition (Sr) followed by a different slave address.
Slave Address 1st 7 bits
R/W
Slave Address 2nd byte
A1
S
11110 + AD10 + AD9
0
A2
Data
A
...
Data
A/A
P
AD[8:1]
Table 10-10. Master-Transmitter Addresses Slave-Receiver with a 10-bit Address
After the master-transmitter has sent the first byte of the 10-bit address, the slave-receiver sees an IIC
interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this
interrupt.
10.4.2.2
Master-Receiver Addresses a Slave-Transmitter
The transfer direction is changed after the second R/W bit (see Table 10-11). Up to and including
acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a
slave-receiver. After the repeated start condition (Sr), a matching slave remembers that it was addressed
before. This slave then checks whether the first seven bits of the first byte of the slave address following
Sr are the same as they were after the start condition (S) and tests whether the eighth (R/W) bit is 1. If there
is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3.
The slave-transmitter remains addressed until it receives a stop condition (P) or a repeated start condition
(Sr) followed by a different slave address.
MC9S08SH32 Series Data Sheet, Rev. 3
162
Freescale Semiconductor
Inter-Integrated Circuit (S08IICV2)
After a repeated start condition (Sr), all other slave devices also compare the first seven bits of the first
byte of the slave address with their own addresses and test the eighth (R/W) bit. However, none of them
are addressed because R/W = 1 (for 10-bit devices) or the 11110XX slave address (for 7-bit devices) does
not match.
S
Slave Address
1st 7 bits
R/W
11110 + AD10 + AD9
0
A1
Slave Address
2nd byte
A2
AD[8:1]
Sr
Slave Address
1st 7 bits
R/W
11110 + AD10 + AD9
1
A3
Data
A
...
Data
A
P
Table 10-11. Master-Receiver Addresses a Slave-Transmitter with a 10-bit Address
After the master-receiver has sent the first byte of the 10-bit address, the slave-transmitter sees an IIC
interrupt. Software must ensure the contents of IICD are ignored and not treated as valid data for this
interrupt.
10.4.3
General Call Address
General calls can be requested in 7-bit address or 10-bit address. If the GCAEN bit is set, the IIC matches
the general call address as well as its own slave address. When the IIC responds to a general call, it acts as
a slave-receiver and the IAAS bit is set after the address cycle. Software must read the IICD register after
the first byte transfer to determine whether the address matches is its own slave address or a general call.
If the value is 00, the match is a general call. If the GCAEN bit is clear, the IIC ignores any data supplied
from a general call address by not issuing an acknowledgement.
10.5
Resets
The IIC is disabled after reset. The IIC cannot cause an MCU reset.
10.6
Interrupts
The IIC generates a single interrupt.
An interrupt from the IIC is generated when any of the events in Table 10-12 occur, provided the IICIE bit
is set. The interrupt is driven by bit IICIF (of the IIC status register) and masked with bit IICIE (of the IIC
control register). The IICIF bit must be cleared by software by writing a 1 to it in the interrupt routine. You
can determine the interrupt type by reading the status register.
Table 10-12. Interrupt Summary
10.6.1
Interrupt Source
Status
Flag
Local Enable
Complete 1-byte transfer
TCF
IICIF
IICIE
Match of received calling address
IAAS
IICIF
IICIE
Arbitration Lost
ARBL
IICIF
IICIE
Byte Transfer Interrupt
The TCF (transfer complete flag) bit is set at the falling edge of the ninth clock to indicate the completion
of byte transfer.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
163
Inter-Integrated Circuit (S08IICV2)
10.6.2
Address Detect Interrupt
When the calling address matches the programmed slave address (IIC address register) or when the
GCAEN bit is set and a general call is received, the IAAS bit in the status register is set. The CPU is
interrupted, provided the IICIE is set. The CPU must check the SRW bit and set its Tx mode accordingly.
10.6.3
Arbitration Lost Interrupt
The IIC is a true multi-master bus that allows more than one master to be connected on it. If two or more
masters try to control the bus at the same time, the relative priority of the contending masters is determined
by a data arbitration procedure. The IIC module asserts this interrupt when it loses the data arbitration
process and the ARBL bit in the status register is set.
Arbitration is lost in the following circumstances:
• SDA sampled as a low when the master drives a high during an address or data transmit cycle.
• SDA sampled as a low when the master drives a high during the acknowledge bit of a data receive
cycle.
• A start cycle is attempted when the bus is busy.
• A repeated start cycle is requested in slave mode.
• A stop condition is detected when the master did not request it.
This bit must be cleared by software writing a 1 to it.
MC9S08SH32 Series Data Sheet, Rev. 3
164
Freescale Semiconductor
Inter-Integrated Circuit (S08IICV2)
10.7
Initialization/Application Information
Module Initialization (Slave)
1. Write: IICC2
— to enable or disable general call
— to select 10-bit or 7-bit addressing mode
2. Write: IICA
— to set the slave address
3. Write: IICC1
— to enable IIC and interrupts
4. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
5. Initialize RAM variables used to achieve the routine shown in Figure 10-12
Module Initialization (Master)
1. Write: IICF
— to set the IIC baud rate (example provided in this chapter)
2. Write: IICC1
— to enable IIC and interrupts
3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
4. Initialize RAM variables used to achieve the routine shown in Figure 10-12
5. Write: IICC1
— to enable TX
Register Model
AD[7:1]
IICA
0
When addressed as a slave (in slave mode), the module responds to this address
MULT
IICF
ICR
Baud rate = BUSCLK / (2 x MULT x (SCL DIVIDER))
IICC1
IICEN
IICIE
MST
TX
TXAK
RSTA
0
0
BUSY
ARBL
0
SRW
IICIF
RXAK
AD9
AD8
Module configuration
IICS
TCF
IAAS
Module status flags
DATA
IICD
Data register; Write to transmit IIC data read to read IIC data
IICC2 GCAEN ADEXT
0
0
0
AD10
Address configuration
Figure 10-11. IIC Module Quick Start
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
165
Inter-Integrated Circuit (S08IICV2)
Clear
IICIF
Master
Mode
?
Y
TX
N
Arbitration
Lost
?
Y
RX
Tx/Rx
?
N
Last Byte
Transmitted
?
N
Clear ARBL
Y
RXAK=0
?
Last
Byte to Be Read
?
N
N
N
Y
Y
IAAS=1
?
Y
IAAS=1
?
Y
Address Transfer
See Note 1
Y
End of
Addr Cycle
(Master Rx)
?
Y
Y
(Read)
2nd Last
Byte to Be Read
?
N
SRW=1
?
Write Next
Byte to IICD
Set TXACK =1
TX/RX
?
Generate
Stop Signal
(MST = 0)
Y
Set TX
Mode
RX
TX
N (Write)
N
N
Data Transfer
See Note 2
ACK from
Receiver
?
N
Switch to
Rx Mode
Dummy Read
from IICD
Generate
Stop Signal
(MST = 0)
Read Data
from IICD
and Store
Read Data
from IICD
and Store
Tx Next
Byte
Write Data
to IICD
Set RX
Mode
Switch to
Rx Mode
Dummy Read
from IICD
Dummy Read
from IICD
RTI
NOTES:
1
If general call is enabled, a check must be done to determine whether the received address was a general call address (0x00).
If the received address was a general call address, then the general call must be handled by user software.
2
When 10-bit addressing is used to address a slave, the slave sees an interrupt following the first byte of the extended address.
User software must ensure that for this interrupt, the contents of IICD are ignored and not treated as a valid data transfer.
Figure 10-12. Typical IIC Interrupt Routine
MC9S08SH32 Series Data Sheet, Rev. 3
166
Freescale Semiconductor
Chapter 11
Internal Clock Source (S08ICSV2)
11.1
Introduction
The internal clock source (ICS) module provides clock source choices for the MCU. The module contains
a frequency-locked loop (FLL) as a clock source that is controllable by either an internal or an external
reference clock. The module can provide this FLL clock or either of the internal or external reference
clocks as a source for the MCU system clock. There are also signals provided to control a low power
oscillator (XOSC) module to allow the use of an external crystal/resonator as the external reference clock.
Whichever clock source is chosen, it is passed through a reduced bus divider (BDIV) which allows a lower
final output clock frequency to be derived.
The bus frequency will be one-half of the ICSOUT frequency. After reset, the ICS is configured for FEI
mode and BDIV is reset to 0:1 to introduce an extra divide-by-two before ICSOUT so the bus frequency
is fdco/4. At POR, the TRIM and FTRIM settings are reset to 0x80 and 0 respectively so the dco frequency
is fdco_ut. For other resets, the trim settings keep the value that was present before the reset.
NOTE
Refer to Section 1.3, “System Clock Distribution for a detailed view of the
distribution of clock sources throughout the MCU.
11.1.1
Module Configuration
When the internal reference is enabled in stop mode (IREFSTEN = 1), the voltage regulator must also be
enabled in stop mode by setting the LVDE and LVDSE bits in the SPMSC1 register.
Figure 11-1 shows the MC9S08SH32 block diagram with the ICS highlighted.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
167
Chapter 11 Internal Clock Source (S08ICSV2)
BKGD/MS
HCS08 CORE
DEBUG MODULE (DBG)
PTA6/TPM2CH0
IRQ
SCL
IRQ
IIC MODULE (IIC)
LVD
SERIAL PERIPHERAL
INTERFACE MODULE (SPI)
USER FLASH
(MC9S08SH32 = 32,768 BYTES)
(MC9S08SH16 = 16,384 BYTES)
SERIAL COMMUNICATIONS
INTERFACE MODULE (SCI)
USER RAM
(MC9S08SH32/16 = 1024 BYTES)
16-BIT TIMER/PWM
MODULE (TPM1)
REAL-TIME COUNTER (RTC)
40-MHz INTERNAL CLOCK
SOURCE (ICS)
LOW-POWER OSCILLATOR
31.25 kHz to 38.4 kHz
1 MHz to 16 MHz
(XOSC)
16-BIT TIMER/PWM
MODULE (TPM2)
EXTAL
XTAL
ANALOG COMPARATOR
(ACMP)
PTA5/IRQ/TCLK/RESET
PORT A
RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT
TCLK
SDA
SS
MISO
MOSI
SPSCK
VDDA/VREFH
VSSA/VREFL
VDDA
VSSA
PTA2/PIA2/SD/ADP2
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
TCLK
TPM1CH0
PTB4/TPM2CH1/MISO
PTB3/PIB3/MOSI/ADP7
TPM1CH1
PTB5/TPM1CH1/SS
PTB2/PIB2/SPSCK/ADP6
PTB1/PIB1/TxD/ADP5
TCLK
TPM2CH0
PTB0/PIB0/RxD/ADP4
TPM2CH1
ACMPO
ACMP–
ACMP+
PTC7/ADP15
PTC6/ADP14
PTC5/ADP13
10-BIT
ANALOG-TO-DIGITAL
CONVERTER (ADC)
ADP15-ADP0
PORT C
VDD
PTA3/PIA3/SCL/ADP3
RxD
TxD
VSS
VOLTAGE REGULATOR
PTA4/ACMPO/BKGD/MS
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
PORT B
8-BIT MODULO TIMER
MODULE (MTIM)
HCS08 SYSTEM CONTROL
COP
PTA7/TPM2CH1
BDC
CPU
PTC4/ADP12
PTC3/ADP11
PTC2/ADP10
PTC1/TPM1CH1/ADP9
VREFH
VREFL
PTC0/TPM1CH0/ADP8
= Pin can be enabled as part of the ganged output drive feature
NOTE: - PTC7-PTC0 and PTA7-PTA6 not available on 16--pin Packages
- PTC7-PTC4 and PTA7-PTA6 not available on 20-pin Packages
- For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL , are double bonded to VDD and VSS respectively.
- When PTA4 is configured as BKGD, pin becomes bi-directional.
Figure 11-1. MC9S08SH32 Series Block Diagram Highlighting ICS Block and Pins
MC9S08SH32 Series Data Sheet, Rev. 3
168
Freescale Semiconductor
Chapter 11 Internal Clock Source (S08ICSV2)
11.1.2
Features
Key features of the ICS module follow. For device specific information, refer to the ICS Characteristics in
the Electricals section of the documentation.
• Frequency-locked loop (FLL) is trimmable for accuracy
— 0.1% resolution using internal 32kHz reference
— 2% deviation over voltage and temperature using internal 32kHz reference
• Internal or external reference clocks up to 5MHz can be used to control the FLL
— 3 bit select for reference divider is provided
• Internal reference clock has 9 trim bits available
• Internal or external reference clocks can be selected as the clock source for the MCU
• Whichever clock is selected as the source can be divided down
— 2 bit select for clock divider is provided
– Allowable dividers are: 1, 2, 4, 8
– BDC clock is provided as a constant divide by 2 of the DCO output
• Control signals for a low power oscillator as the external reference clock are provided
— HGO, RANGE, EREFS, ERCLKEN, EREFSTEN
• FLL Engaged Internal mode is automatically selected out of reset
11.1.3
Block Diagram
Figure 11-2 is the ICS block diagram.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
169
Chapter 11 Internal Clock Source (S08ICSV2)
Optional
External Reference
Clock Source
Block
RANGE
HGO
EREFS
ERCLKEN
EREFSTEN
IRCLKEN
IREFSTEN
ICSERCLK
ICSIRCLK
CLKS
BDIV
/ 2n
Internal
Reference
Clock
9
IREFS
ICSOUT
n=0-3
LP
DCO
DCOOUT
/2
ICSLCLK
TRIM
ICSFFCLK
9
/ 2n
RDIV_CLK
Filter
n=0-7
FLL
RDIV
Internal Clock Source Block
Figure 11-2. Internal Clock Source (ICS) Block Diagram
11.1.4
Modes of Operation
There are seven modes of operation for the ICS: FEI, FEE, FBI, FBILP, FBE, FBELP, and stop.
11.1.4.1
FLL Engaged Internal (FEI)
In FLL engaged internal mode, which is the default mode, the ICS supplies a clock derived from the FLL
which is controlled by the internal reference clock. The BDC clock is supplied from the FLL.
11.1.4.2
FLL Engaged External (FEE)
In FLL engaged external mode, the ICS supplies a clock derived from the FLL which is controlled by an
external reference clock. The BDC clock is supplied from the FLL.
11.1.4.3
FLL Bypassed Internal (FBI)
In FLL bypassed internal mode, the FLL is enabled and controlled by the internal reference clock, but is
bypassed. The ICS supplies a clock derived from the internal reference clock. The BDC clock is supplied
from the FLL.
MC9S08SH32 Series Data Sheet, Rev. 3
170
Freescale Semiconductor
Chapter 11 Internal Clock Source (S08ICSV2)
11.1.4.4
FLL Bypassed Internal Low Power (FBILP)
In FLL bypassed internal low power mode, the FLL is disabled and bypassed, and the ICS supplies a clock
derived from the internal reference clock. The BDC clock is not available.
11.1.4.5
FLL Bypassed External (FBE)
In FLL bypassed external mode, the FLL is enabled and controlled by an external reference clock, but is
bypassed. The ICS supplies a clock derived from the external reference clock. The external reference clock
can be an external crystal/resonator supplied by an OSC controlled by the ICS, or it can be another external
clock source. The BDC clock is supplied from the FLL.
11.1.4.6
FLL Bypassed External Low Power (FBELP)
In FLL bypassed external low power mode, the FLL is disabled and bypassed, and the ICS supplies a clock
derived from the external reference clock. The external reference clock can be an external crystal/resonator
supplied by an OSC controlled by the ICS, or it can be another external clock source. The BDC clock is
not available.
11.1.4.7
Stop (STOP)
In stop mode the FLL is disabled and the internal or external reference clocks can be selected to be enabled
or disabled. The BDC clock is not available and the ICS does not provide an MCU clock source.
11.2
External Signal Description
There are no ICS signals that connect off chip.
11.3
Register Definition
Figure 11-1 is a summary of ICS registers.
Table 11-1. ICS Register Summary
Name
7
6
5
4
3
2
1
0
IREFS
IRCLKEN
IREFSTEN
EREFS
ERCLKEN
EREFSTEN
R
ICSC1
CLKS
RDIV
W
R
ICSC2
BDIV
RANGE
HGO
LP
W
R
ICSTRM
TRIM
W
R
0
0
0
IREFST
CLKST
ICSSC
OSCINIT
FTRIM
W
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
171
Chapter 11 Internal Clock Source (S08ICSV2)
11.3.1
ICS Control Register 1 (ICSC1)
7
6
5
4
3
2
1
0
IREFS
IRCLKEN
IREFSTEN
1
0
0
R
CLKS
RDIV
W
Reset:
0
0
0
0
0
Figure 11-3. ICS Control Register 1 (ICSC1)
Table 11-2. ICS Control Register 1 Field Descriptions
Field
Description
7:6
CLKS
Clock Source Select — Selects the clock source that controls the bus frequency. The actual bus frequency
depends on the value of the BDIV bits.
00 Output of FLL is selected.
01 Internal reference clock is selected.
10 External reference clock is selected.
11 Reserved, defaults to 00.
5:3
RDIV
Reference Divider — Selects the amount to divide down the FLL reference clock selected by the IREFS bits.
Resulting frequency must be in the range 31.25 kHz to 39.0625 kHz.
000 Encoding 0 — Divides reference clock by 1 (reset default)
001 Encoding 1 — Divides reference clock by 2
010 Encoding 2 — Divides reference clock by 4
011 Encoding 3 — Divides reference clock by 8
100 Encoding 4 — Divides reference clock by 16
101 Encoding 5 — Divides reference clock by 32
110 Encoding 6 — Divides reference clock by 64
111 Encoding 7 — Divides reference clock by 128
2
IREFS
Internal Reference Select — The IREFS bit selects the reference clock source for the FLL.
1 Internal reference clock selected
0 External reference clock selected
1
IRCLKEN
0
IREFSTEN
Internal Reference Clock Enable — The IRCLKEN bit enables the internal reference clock for use as
ICSIRCLK.
1 ICSIRCLK active
0 ICSIRCLK inactive
Internal Reference Stop Enable — The IREFSTEN bit controls whether or not the internal reference clock
remains enabled when the ICS enters stop mode.
1 Internal reference clock stays enabled in stop if IRCLKEN is set or if ICS is in FEI, FBI, or FBILP mode before
entering stop
0 Internal reference clock is disabled in stop
MC9S08SH32 Series Data Sheet, Rev. 3
172
Freescale Semiconductor
Chapter 11 Internal Clock Source (S08ICSV2)
11.3.2
ICS Control Register 2 (ICSC2)
7
6
5
4
3
2
RANGE
HGO
LP
EREFS
0
0
0
0
1
0
R
BDIV
ERCLKEN EREFSTEN
W
Reset:
0
1
0
0
Figure 11-4. ICS Control Register 2 (ICSC2)
Table 11-3. ICS Control Register 2 Field Descriptions
Field
Description
7:6
BDIV
Bus Frequency Divider — Selects the amount to divide down the clock source selected by the CLKS bits. This
controls the bus frequency.
00 Encoding 0 — Divides selected clock by 1
01 Encoding 1 — Divides selected clock by 2 (reset default)
10 Encoding 2 — Divides selected clock by 4
11 Encoding 3 — Divides selected clock by 8
5
RANGE
Frequency Range Select — Selects the frequency range for the external oscillator.
1 High frequency range selected for the external oscillator
0 Low frequency range selected for the external oscillator
4
HGO
High Gain Oscillator Select — The HGO bit controls the external oscillator mode of operation.
1 Configure external oscillator for high gain operation
0 Configure external oscillator for low power operation
3
LP
Low Power Select — The LP bit controls whether the FLL is disabled in FLL bypassed modes.
1 FLL is disabled in bypass modes unless BDM is active
0 FLL is not disabled in bypass mode
2
EREFS
1
ERCLKEN
External Reference Select — The EREFS bit selects the source for the external reference clock.
1 Oscillator requested
0 External Clock Source requested
External Reference Enable — The ERCLKEN bit enables the external reference clock for use as ICSERCLK.
1 ICSERCLK active
0 ICSERCLK inactive
0
External Reference Stop Enable — The EREFSTEN bit controls whether or not the external reference clock
EREFSTEN remains enabled when the ICS enters stop mode.
1 External reference clock stays enabled in stop if ERCLKEN is set or if ICS is in FEE, FBE, or FBELP mode
before entering stop
0 External reference clock is disabled in stop
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
173
Chapter 11 Internal Clock Source (S08ICSV2)
11.3.3
ICS Trim Register (ICSTRM)
7
6
5
4
3
2
1
0
R
TRIM
W
POR:
1
0
0
0
0
0
0
0
Reset:
U
U
U
U
U
U
U
U
Figure 11-5. ICS Trim Register (ICSTRM)
Table 11-4. ICS Trim Register Field Descriptions
Field
Description
7:0
TRIM
ICS Trim Setting — The TRIM bits control the internal reference clock frequency by controlling the internal
reference clock period. The bits’ effect are binary weighted (i.e., bit 1 will adjust twice as much as bit 0).
Increasing the binary value in TRIM will increase the period, and decreasing the value will decrease the period.
An additional fine trim bit is available in ICSSC as the FTRIM bit.
11.3.4
ICS Status and Control (ICSSC)
R
7
6
5
4
3
0
0
0
IREFST
2
CLKST
1
0
OSCINIT
FTRIM
W
POR:
Reset:
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
U
Figure 11-6. ICS Status and Control Register (ICSSC)
Table 11-5. ICS Status and Control Register Field Descriptions
Field
7:5
Description
Reserved, should be cleared.
4
IREFST
Internal Reference Status — The IREFST bit indicates the current source for the reference clock. The IREFST
bit does not update immediately after a write to the IREFS bit due to internal synchronization between clock
domains.
0 Source of reference clock is external clock.
1 Source of reference clock is internal clock.
3-2
CLKST
Clock Mode Status — The CLKST bits indicate the current clock mode. The CLKST bits don’t update
immediately after a write to the CLKS bits due to internal synchronization between clock domains.
00 Output of FLL is selected.
01 FLL Bypassed, Internal reference clock is selected.
10 FLL Bypassed, External reference clock is selected.
11
Reserved.
MC9S08SH32 Series Data Sheet, Rev. 3
174
Freescale Semiconductor
Chapter 11 Internal Clock Source (S08ICSV2)
Table 11-5. ICS Status and Control Register Field Descriptions (continued)
Field
Description
1
OSC Initialization — If the external reference clock is selected by ERCLKEN or by the ICS being in FEE, FBE,
or FBELP mode, and if EREFS is set, then this bit is set after the initialization cycles of the external oscillator
clock have completed. This bit is only cleared when either ERCLKEN or EREFS are cleared.
0
ICS Fine Trim — The FTRIM bit controls the smallest adjustment of the internal reference clock frequency.
Setting FTRIM will increase the period and clearing FTRIM will decrease the period by the smallest amount
possible.
11.4
Functional Description
11.4.1
Operational Modes
IREFS=1
CLKS=00
FLL Engaged
Internal (FEI)
IREFS=0
CLKS=10
BDM Enabled
or LP =0
FLL Bypassed
External Low
Power(FBELP)
FLL Bypassed
External (FBE)
IREFS=0
CLKS=10
BDM Disabled
and LP=1
IREFS=1
CLKS=01
BDM Enabled
or LP=0
FLL Bypassed
Internal (FBI)
FLL Engaged
External (FEE)
FLL Bypassed
Internal Low
Power(FBILP)
IREFS=1
CLKS=01
BDM Disabled
and LP=1
IREFS=0
CLKS=00
Entered from any state
when MCU enters stop
Stop
Returns to state that was active
before MCU entered stop, unless
RESET occurs while in stop.
Figure 11-7. Clock Switching Modes
The seven states of the ICS are shown as a state diagram and are described below. The arrows indicate the
allowed movements between the states.
11.4.1.1
FLL Engaged Internal (FEI)
FLL engaged internal (FEI) is the default mode of operation and is entered when all the following
conditions occur:
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
175
Chapter 11 Internal Clock Source (S08ICSV2)
•
•
•
CLKS bits are written to 00
IREFS bit is written to 1
RDIV bits are written to divide trimmed reference clock to be within the range of 31.25 kHz to
39.0625 kHz.
In FLL engaged internal mode, the ICSOUT clock is derived from the FLL clock, which is controlled by
the internal reference clock. The FLL loop will lock the frequency to 1024 times the reference frequency,
as selected by the RDIV bits. The ICSLCLK is available for BDC communications, and the internal
reference clock is enabled.
11.4.1.2
FLL Engaged External (FEE)
The FLL engaged external (FEE) mode is entered when all the following conditions occur:
•
•
•
CLKS bits are written to 00
IREFS bit is written to 0
RDIV bits are written to divide reference clock to be within the range of 31.25 kHz to 39.0625 kHz
In FLL engaged external mode, the ICSOUT clock is derived from the FLL clock which is controlled by
the external reference clock.The FLL loop will lock the frequency to 1024 times the reference frequency,
as selected by the RDIV bits. The ICSLCLK is available for BDC communications, and the external
reference clock is enabled.
11.4.1.3
FLL Bypassed Internal (FBI)
The FLL bypassed internal (FBI) mode is entered when all the following conditions occur:
• CLKS bits are written to 01
• IREFS bit is written to 1.
• BDM mode is active or LP bit is written to 0
In FLL bypassed internal mode, the ICSOUT clock is derived from the internal reference clock. The FLL
clock is controlled by the internal reference clock, and the FLL loop will lock the FLL frequency to 1024
times the reference frequency, as selected by the RDIV bits. The ICSLCLK will be available for BDC
communications, and the internal reference clock is enabled.
11.4.1.4
FLL Bypassed Internal Low Power (FBILP)
The FLL bypassed internal low power (FBILP) mode is entered when all the following conditions occur:
• CLKS bits are written to 01
• IREFS bit is written to 1.
• BDM mode is not active and LP bit is written to 1
In FLL bypassed internal low power mode, the ICSOUT clock is derived from the internal reference clock
and the FLL is disabled. The ICSLCLK will be not be available for BDC communications, and the internal
reference clock is enabled.
MC9S08SH32 Series Data Sheet, Rev. 3
176
Freescale Semiconductor
Chapter 11 Internal Clock Source (S08ICSV2)
11.4.1.5
FLL Bypassed External (FBE)
The FLL bypassed external (FBE) mode is entered when all the following conditions occur:
• CLKS bits are written to 10.
• IREFS bit is written to 0.
• BDM mode is active or LP bit is written to 0.
In FLL bypassed external mode, the ICSOUT clock is derived from the external reference clock. The FLL
clock is controlled by the external reference clock, and the FLL loop will lock the FLL frequency to 1024
times the reference frequency, as selected by the RDIV bits, so that the ICSLCLK will be available for
BDC communications, and the external reference clock is enabled.
11.4.1.6
FLL Bypassed External Low Power (FBELP)
The FLL bypassed external low power (FBELP) mode is entered when all the following conditions occur:
• CLKS bits are written to 10.
• IREFS bit is written to 0.
• BDM mode is not active and LP bit is written to 1.
In FLL bypassed external low power mode, the ICSOUT clock is derived from the external reference clock
and the FLL is disabled. The ICSLCLK will be not be available for BDC communications. The external
reference clock is enabled.
11.4.1.7
Stop
Stop mode is entered whenever the MCU enters a STOP state. In this mode, all ICS clock signals are static
except in the following cases:
ICSIRCLK will be active in stop mode when all the following conditions occur:
• IRCLKEN bit is written to 1
• IREFSTEN bit is written to 1
ICSERCLK will be active in stop mode when all the following conditions occur:
• ERCLKEN bit is written to 1
• EREFSTEN bit is written to 1
11.4.2
Mode Switching
When switching between FLL engaged internal (FEI) and FLL engaged external (FEE) modes the IREFS
bit can be changed at anytime, but the RDIV bits must be changed simultaneously so that the resulting
frequency stays in the range of 31.25 kHz to 39.0625 kHz. After a change in the IREFS value the FLL will
begin locking again after a few full cycles of the resulting divided reference frequency. The completion of
the switch is shown by the IREFST bit.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
177
Chapter 11 Internal Clock Source (S08ICSV2)
The CLKS bits can also be changed at anytime, but the RDIV bits must be changed simultaneously so that
the resulting frequency stays in the range of 31.25 kHz to 39.0625 kHz. The actual switch to the newly
selected clock will not occur until after a few full cycles of the new clock. If the newly selected clock is
not available, the previous clock will remain selected.
11.4.3
Bus Frequency Divider
The BDIV bits can be changed at anytime and the actual switch to the new frequency will occur
immediately.
11.4.4
Low Power Bit Usage
The low power bit (LP) is provided to allow the FLL to be disabled and thus conserve power when it is
not being used. However, in some applications it may be desirable to enable the FLL and allow it to lock
for maximum accuracy before switching to an FLL engaged mode. Do this by writing the LP bit to 0.
11.4.5
Internal Reference Clock
When IRCLKEN is set the internal reference clock signal will be presented as ICSIRCLK, which can be
used as an additional clock source. The ICSIRCLK frequency can be re-targeted by trimming the period
of the internal reference clock. This can be done by writing a new value to the TRIM bits in the ICSTRM
register. Writing a larger value will slow down the ICSIRCLK frequency, and writing a smaller value to
the ICSTRM register will speed up the ICSIRCLK frequency. The TRIM bits will effect the ICSOUT
frequency if the ICS is in FLL engaged internal (FEI), FLL bypassed internal (FBI), or FLL bypassed
internal low power (FBILP) mode. The TRIM and FTRIM value will not be affected by a reset.
Until ICSIRCLK is trimmed, programming low reference divider (RDIV) factors may result in ICSOUT
frequencies that exceed the maximum chip-level frequency and violate the chip-level clock timing
specifications (see the Device Overview chapter).
If IREFSTEN is set and the IRCLKEN bit is written to 1, the internal reference clock will keep running
during stop mode in order to provide a fast recovery upon exiting stop.
All MCU devices are factory programmed with a trim value in a reserved memory location
(NVTRIM:NVFTRIM). This value can be copied to the ICSTRM register during reset initialization. The
factory trim value includes the FTRIM bit. For finer precision, the user can trim the internal oscillator in
the application to take into account small differences between the factory test setup and actual application
conditions.
11.4.6
Optional External Reference Clock
The ICS module can support an external reference clock with frequencies between 31.25 kHz to 5 MHz
in all modes. When the ERCLKEN is set, the external reference clock signal will be presented as
ICSERCLK, which can be used as an additional clock source. When IREFS = 1, the external reference
clock will not be used by the FLL and will only be used as ICSERCLK. In these modes, the frequency can
be equal to the maximum frequency the chip-level timing specifications will support (see the Device
Overview chapter).
MC9S08SH32 Series Data Sheet, Rev. 3
178
Freescale Semiconductor
Chapter 11 Internal Clock Source (S08ICSV2)
If EREFSTEN is set and the ERCLKEN bit is written to 1, the external reference clock will keep running
during stop mode in order to provide a fast recovery upon exiting stop.
11.4.7
Fixed Frequency Clock
The ICS presents the divided FLL reference clock as ICSFFCLK for use as an additional clock source for
peripheral modules. The ICS provides an output signal (ICSFFE) which indicates when the ICS is
providing ICSOUT frequencies four times or greater than the divided FLL reference clock (ICSFFCLK).
In FLL Engaged mode (FEI and FEE) this is always true and ICSFFE is always high. In ICS Bypass
modes, ICSFFE will get asserted for the following combinations of BDIV and RDIV values:
• BDIV=00 (divide by 1), RDIV ≥ 010
• BDIV=01 (divide by 2), RDIV ≥ 011
• BDIV=10 (divide by 4), RDIV ≥ 100
• BDIV=11 (divide by 8), RDIV ≥ 101
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
179
Chapter 11 Internal Clock Source (S08ICSV2)
MC9S08SH32 Series Data Sheet, Rev. 3
180
Freescale Semiconductor
Chapter 12
Modulo Timer (S08MTIMV1)
12.1
Introduction
The MTIM is a simple 8-bit timer with several software selectable clock sources and a programmable
interrupt.
The central component of the MTIM is the 8-bit counter, which can operate as a free-running counter or a
modulo counter. A timer overflow interrupt can be enabled to generate periodic interrupts for time-based
software loops.
Figure 12-1 shows the MC9S08SH32 Series block diagram with the MTIM highlighted.
12.1.1
MTIM Configuration Information
The external clock for the MTIM module, TCLK, is selected by setting CLKS = 1:1 or 1:0 in MTIMCLK,
which selects the TCLK pin input. The TCLK input can be enabled as external clock inputs to both the
MTIM and TPM modules simultaneously.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
181
Chapter 12 Modulo Timer (S08MTIMV1)
BKGD/MS
HCS08 CORE
DEBUG MODULE (DBG)
PTA6/TPM2CH0
HCS08 SYSTEM CONTROL
RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT
IRQ
SCL
IRQ
IIC MODULE (IIC)
LVD
SERIAL PERIPHERAL
INTERFACE MODULE (SPI)
USER FLASH
(MC9S08SH32 = 32,768 BYTES)
(MC9S08SH16 = 16,384 BYTES)
SERIAL COMMUNICATIONS
INTERFACE MODULE (SCI)
USER RAM
(MC9S08SH32/16 = 1024 BYTES)
16-BIT TIMER/PWM
MODULE (TPM1)
REAL-TIME COUNTER (RTC)
40-MHz INTERNAL CLOCK
SOURCE (ICS)
LOW-POWER OSCILLATOR
31.25 kHz to 38.4 kHz
1 MHz to 16 MHz
(XOSC)
TCLK
16-BIT TIMER/PWM
MODULE (TPM2)
EXTAL
XTAL
ANALOG COMPARATOR
(ACMP)
PTA5/IRQ/TCLK/RESET
PORT A
8-BIT MODULO TIMER
MODULE (MTIM)
SDA
VSSA/VREFL
VDDA
VSSA
PTA2/PIA2/SD/ADP2
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
TCLK
TPM1CH0
PTB4/TPM2CH1/MISO
PTB3/PIB3/MOSI/ADP7
TPM1CH1
PTB5/TPM1CH1/SS
PTB2/PIB2/SPSCK/ADP6
PTB1/PIB1/TxD/ADP5
TCLK
TPM2CH0
PTB0/PIB0/RxD/ADP4
TPM2CH1
ACMPO
ACMP–
ACMP+
PTC7/ADP15
PTC6/ADP14
PTC5/ADP13
10-BIT
ANALOG-TO-DIGITAL
CONVERTER (ADC)
ADP15-ADP0
PORT C
VDDA/VREFH
VOLTAGE REGULATOR
PTA3/PIA3/SCL/ADP3
RxD
TxD
VSS
VDD
PTA4/ACMPO/BKGD/MS
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
SS
MISO
MOSI
SPSCK
PORT B
CPU
COP
PTA7/TPM2CH1
BDC
PTC4/ADP12
PTC3/ADP11
PTC2/ADP10
PTC1/TPM1CH1/ADP9
VREFH
VREFL
PTC0/TPM1CH0/ADP8
= Pin can be enabled as part of the ganged output drive feature
NOTE: - PTC7-PTC0 and PTA7-PTA6 not available on 16--pin Packages
- PTC7-PTC4 and PTA7-PTA6 not available on 20-pin Packages
- For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL , are double bonded to VDD and VSS respectively.
- When PTA4 is configured as BKGD, pin becomes bi-directional.
Figure 12-1. MC9S08SH32 Series Block Diagram Highlighting MTIM Block and Pins
MC9S08SH32 Series Data Sheet, Rev. 3
182
Freescale Semiconductor
Chapter 12 Modulo Timer (S08MTIMV1)
12.1.2
Features
Timer system features include:
• 8-bit up-counter
— Free-running or 8-bit modulo limit
— Software controllable interrupt on overflow
— Counter reset bit (TRST)
— Counter stop bit (TSTP)
• Four software selectable clock sources for input to prescaler:
— System bus clock — rising edge
— Fixed frequency clock (XCLK) — rising edge
— External clock source on the TCLK pin — rising edge
— External clock source on the TCLK pin — falling edge
• Nine selectable clock prescale values:
— Clock source divide by 1, 2, 4, 8, 16, 32, 64, 128, or 256
12.1.3
Modes of Operation
This section defines the MTIM’s operation in stop, wait and background debug modes.
12.1.3.1
MTIM in Wait Mode
The MTIM continues to run in wait mode if enabled before executing the WAIT instruction. Therefore,
the MTIM can be used to bring the MCU out of wait mode if the timer overflow interrupt is enabled. For
lowest possible current consumption, the MTIM should be stopped by software if not needed as an
interrupt source during wait mode.
12.1.3.2
MTIM in Stop Modes
The MTIM is disabled in all stop modes, regardless of the settings before executing the STOP instruction.
Therefore, the MTIM cannot be used as a wake up source from stop modes.
Waking from stop1 and stop2 modes, the MTIM will be put into its reset state. If stop3 is exited with a
reset, the MTIM will be put into its reset state. If stop3 is exited with an interrupt, the MTIM continues
from the state it was in when stop3 was entered. If the counter was active upon entering stop3, the count
will resume from the current value.
12.1.3.3
MTIM in Active Background Mode
The MTIM suspends all counting until the microcontroller returns to normal user operating mode.
Counting resumes from the suspended value as long as an MTIM reset did not occur (TRST written to a 1
or MTIMMOD written).
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
183
Chapter 12 Modulo Timer (S08MTIMV1)
12.1.4
Block Diagram
The block diagram for the modulo timer module is shown Figure 12-2.
BUSCLK
XCLK
TCLK
SYNC
CLOCK
SOURCE
SELECT
PRESCALE
AND SELECT
DIVIDE BY
CLKS
PS
TRST
TSTP
8-BIT COMPARATOR
MTIM
INTERRUPT
REQUEST
TOIE
8-BIT COUNTER
(MTIMCNT)
8-BIT MODULO
(MTIMMOD)
TOF
REG
set_tof_pulse
Figure 12-2. Modulo Timer (MTIM) Block Diagram
12.2
External Signal Description
The MTIM includes one external signal, TCLK, used to input an external clock when selected as the
MTIM clock source. The signal properties of TCLK are shown in Table 12-1.
Table 12-1. Signal Properties
Signal
TCLK
Function
External clock source input into MTIM
I/O
I
The TCLK input must be synchronized by the bus clock. Also, variations in duty cycle and clock jitter
must be accommodated. Therefore, the TCLK signal must be limited to one-fourth of the bus frequency.
The TCLK pin can be muxed with a general-purpose port pin. See the Pins and Connections chapter for
the pin location and priority of this function.
MC9S08SH32 Series Data Sheet, Rev. 3
184
Freescale Semiconductor
Chapter 12 Modulo Timer (S08MTIMV1)
12.3
Register Definition
Figure 12-3 is a summary of MTIM registers.
Name
MTIMSC
MTIMCLK
MTIMCNT
MTIMMOD
7
R
TOF
W
R
0
W
R
6
TOIE
0
5
4
0
TRST
TSTP
CLKS
3
2
1
0
0
0
0
0
PS
COUNT
W
R
MOD
W
Figure 12-3. MTIM Register Summary
Each MTIM includes four registers:
• An 8-bit status and control register
• An 8-bit clock configuration register
• An 8-bit counter register
• An 8-bit modulo register
Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address
assignments for all MTIM registers.This section refers to registers and control bits only by their names and
relative address offsets.
Some MCUs may have more than one MTIM, so register names include placeholder characters to identify
which MTIM is being referenced.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
185
Chapter 12 Modulo Timer (S08MTIMV1)
12.3.1
MTIM Status and Control Register (MTIMSC)
MTIMSC contains the overflow status flag and control bits which are used to configure the interrupt
enable, reset the counter, and stop the counter.
7
R
6
5
TOF
0
TOIE
W
Reset:
4
3
2
1
0
0
0
0
0
0
0
0
0
TSTP
TRST
0
0
0
1
Figure 12-4. MTIM Status and Control Register
Table 12-2. MTIM Status and Control Register Field Descriptions
Field
Description
7
TOF
MTIM Overflow Flag — This read-only bit is set when the MTIM counter register overflows to $00 after reaching
the value in the MTIM modulo register. Clear TOF by reading the MTIMSC register while TOF is set, then writing
a 0 to TOF. TOF is also cleared when TRST is written to a 1 or when any value is written to the MTIMMOD register.
0 MTIM counter has not reached the overflow value in the MTIM modulo register.
1 MTIM counter has reached the overflow value in the MTIM modulo register.
6
TOIE
MTIM Overflow Interrupt Enable — This read/write bit enables MTIM overflow interrupts. If TOIE is set, then an
interrupt is generated when TOF = 1. Reset clears TOIE. Do not set TOIE if TOF = 1. Clear TOF first, then set TOIE.
0 TOF interrupts are disabled. Use software polling.
1 TOF interrupts are enabled.
5
TRST
MTIM Counter Reset — When a 1 is written to this write-only bit, the MTIM counter register resets to $00 and TOF
is cleared. Reading this bit always returns 0.
0 No effect. MTIM counter remains at current state.
1 MTIM counter is reset to $00.
4
TSTP
MTIM Counter Stop — When set, this read/write bit stops the MTIM counter at its current value. Counting resumes
from the current value when TSTP is cleared. Reset sets TSTP to prevent the MTIM from counting.
0 MTIM counter is active.
1 MTIM counter is stopped.
3:0
Unused register bits, always read 0.
MC9S08SH32 Series Data Sheet, Rev. 3
186
Freescale Semiconductor
Chapter 12 Modulo Timer (S08MTIMV1)
12.3.2
MTIM Clock Configuration Register (MTIMCLK)
MTIMCLK contains the clock select bits (CLKS) and the prescaler select bits (PS).
R
7
6
0
0
5
4
3
2
CLKS
1
0
0
0
PS
W
Reset:
0
0
0
0
0
0
Figure 12-5. MTIM Clock Configuration Register
Table 12-3. MTIM Clock Configuration Register Field Description
Field
7:6
5:4
CLKS
3:0
PS
Description
Unused register bits, always read 0.
Clock Source Select — These two read/write bits select one of four different clock sources as the input to the
MTIM prescaler. Changing the clock source while the counter is active does not clear the counter. The count
continues with the new clock source. Reset clears CLKS to 000.
00
Encoding 0. Bus clock (BUSCLK)
01
Encoding 1. Fixed-frequency clock (XCLK)
10
Encoding 3. External source (TCLK pin), falling edge
11
Encoding 4. External source (TCLK pin), rising edge
All other encodings default to the bus clock (BUSCLK).
Clock Source Prescaler — These four read/write bits select one of nine outputs from the 8-bit prescaler.
Changing the prescaler value while the counter is active does not clear the counter. The count continues with the
new prescaler value. Reset clears PS to 0000.
0000 Encoding 0. MTIM clock source ÷ 1
0001 Encoding 1. MTIM clock source ÷ 2
0010 Encoding 2. MTIM clock source ÷ 4
0011 Encoding 3. MTIM clock source ÷ 8
0100 Encoding 4. MTIM clock source ÷ 16
0101 Encoding 5. MTIM clock source ÷ 32
0110 Encoding 6. MTIM clock source ÷ 64
0111 Encoding 7. MTIM clock source ÷ 128
1000 Encoding 8. MTIM clock source ÷ 256
All other encodings default to MTIM clock source ÷ 256.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
187
Chapter 12 Modulo Timer (S08MTIMV1)
12.3.3
MTIM Counter Register (MTIMCNT)
MTIMCNT is the read-only value of the current MTIM count of the 8-bit counter.
7
6
5
4
R
3
2
1
0
0
0
0
0
COUNT
W
Reset:
0
0
0
0
Figure 12-6. MTIM Counter Register
Table 12-4. MTIM Counter Register Field Description
Field
Description
7:0
COUNT
MTIM Count — These eight read-only bits contain the current value of the 8-bit counter. Writes have no effect to
this register. Reset clears the count to $00.
12.3.4
MTIM Modulo Register (MTIMMOD)
7
6
5
4
3
2
1
0
0
0
0
0
R
MOD
W
Reset:
0
0
0
0
Figure 12-7. MTIM Modulo Register
Table 12-5. MTIM Modulo Register Field Descriptions
Field
Description
7:0
MOD
MTIM Modulo — These eight read/write bits contain the modulo value used to reset the count and set TOF. A value
of $00 puts the MTIM in free-running mode. Writing to MTIMMOD resets the COUNT to $00 and clears TOF. Reset
sets the modulo to $00.
MC9S08SH32 Series Data Sheet, Rev. 3
188
Freescale Semiconductor
Chapter 12 Modulo Timer (S08MTIMV1)
12.4
Functional Description
The MTIM is composed of a main 8-bit up-counter with an 8-bit modulo register, a clock source selector,
and a prescaler block with nine selectable values. The module also contains software selectable interrupt
logic.
The MTIM counter (MTIMCNT) has three modes of operation: stopped, free-running, and modulo. Out
of reset, the counter is stopped. If the counter is started without writing a new value to the modulo register,
then the counter will be in free-running mode. The counter is in modulo mode when a value other than $00
is in the modulo register while the counter is running.
After any MCU reset, the counter is stopped and reset to $00, and the modulus is set to $00. The bus clock
is selected as the default clock source and the prescale value is divide by 1. To start the MTIM in
free-running mode, simply write to the MTIM status and control register (MTIMSC) and clear the MTIM
stop bit (TSTP).
Four clock sources are software selectable: the internal bus clock, the fixed frequency clock (XCLK), and
an external clock on the TCLK pin, selectable as incrementing on either rising or falling edges. The MTIM
clock select bits (CLKS1:CLKS0) in MTIMSC are used to select the desired clock source. If the counter
is active (TSTP = 0) when a new clock source is selected, the counter will continue counting from the
previous value using the new clock source.
Nine prescale values are software selectable: clock source divided by 1, 2, 4, 8, 16, 32, 64, 128, or 256.
The prescaler select bits (PS[3:0]) in MTIMSC select the desired prescale value. If the counter is active
(TSTP = 0) when a new prescaler value is selected, the counter will continue counting from the previous
value using the new prescaler value.
The MTIM modulo register (MTIMMOD) allows the overflow compare value to be set to any value from
$01 to $FF. Reset clears the modulo value to $00, which results in a free running counter.
When the counter is active (TSTP = 0), the counter increments at the selected rate until the count matches
the modulo value. When these values match, the counter overflows to $00 and continues counting. The
MTIM overflow flag (TOF) is set whenever the counter overflows. The flag sets on the transition from the
modulo value to $00. Writing to MTIMMOD while the counter is active resets the counter to $00 and
clears TOF.
Clearing TOF is a two-step process. The first step is to read the MTIMSC register while TOF is set. The
second step is to write a 0 to TOF. If another overflow occurs between the first and second steps, the
clearing process is reset and TOF will remain set after the second step is performed. This will prevent the
second occurrence from being missed. TOF is also cleared when a 1 is written to TRST or when any value
is written to the MTIMMOD register.
The MTIM allows for an optional interrupt to be generated whenever TOF is set. To enable the MTIM
overflow interrupt, set the MTIM overflow interrupt enable bit (TOIE) in MTIMSC. TOIE should never
be written to a 1 while TOF = 1. Instead, TOF should be cleared first, then the TOIE can be set to 1.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
189
Chapter 12 Modulo Timer (S08MTIMV1)
12.4.1
MTIM Operation Example
This section shows an example of the MTIM operation as the counter reaches a matching value from the
modulo register.
selected
clock source
MTIM clock
(PS=%0010)
MTIMCNT
$A7
$A8
$A9
$AA
$00
$01
TOF
MTIMMOD:
$AA
Figure 12-8. MTIM counter overflow example
In the example of Figure 12-8, the selected clock source could be any of the five possible choices. The
prescaler is set to PS = %0010 or divide-by-4. The modulo value in the MTIMMOD register is set to $AA.
When the counter, MTIMCNT, reaches the modulo value of $AA, the counter overflows to $00 and
continues counting. The timer overflow flag, TOF, sets when the counter value changes from $AA to $00.
An MTIM overflow interrupt is generated when TOF is set, if TOIE = 1.
MC9S08SH32 Series Data Sheet, Rev. 3
190
Freescale Semiconductor
Chapter 13
Real-Time Counter (S08RTCV1)
13.1
Introduction
The RTC module consists of one 8-bit counter, one 8-bit comparator, several binary-based and
decimal-based prescaler dividers, two clock sources, and one programmable periodic interrupt. This
module can be used for time-of-day, calendar or any task scheduling functions. It can also serve as a cyclic
wake up from low power modes without the need of external components.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
191
Chapter 13 Real-Time Counter (S08RTCV1)
BKGD/MS
HCS08 CORE
DEBUG MODULE (DBG)
PTA6/TPM2CH0
HCS08 SYSTEM CONTROL
RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT
IRQ
SCL
IRQ
IIC MODULE (IIC)
LVD
SERIAL PERIPHERAL
INTERFACE MODULE (SPI)
USER FLASH
(MC9S08SH32 = 32,768 BYTES)
(MC9S08SH16 = 16,384 BYTES)
SERIAL COMMUNICATIONS
INTERFACE MODULE (SCI)
USER RAM
(MC9S08SH32/16 = 1024 BYTES)
16-BIT TIMER/PWM
MODULE (TPM1)
REAL-TIME COUNTER (RTC)
40-MHz INTERNAL CLOCK
SOURCE (ICS)
LOW-POWER OSCILLATOR
31.25 kHz to 38.4 kHz
1 MHz to 16 MHz
(XOSC)
TCLK
16-BIT TIMER/PWM
MODULE (TPM2)
EXTAL
XTAL
ANALOG COMPARATOR
(ACMP)
PTA5/IRQ/TCLK/RESET
PORT A
8-BIT MODULO TIMER
MODULE (MTIM)
SDA
VSSA/VREFL
VDDA
VSSA
PTA2/PIA2/SD/ADP2
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
TCLK
TPM1CH0
PTB4/TPM2CH1/MISO
PTB3/PIB3/MOSI/ADP7
TPM1CH1
PTB5/TPM1CH1/SS
PTB2/PIB2/SPSCK/ADP6
PTB1/PIB1/TxD/ADP5
TCLK
TPM2CH0
PTB0/PIB0/RxD/ADP4
TPM2CH1
ACMPO
ACMP–
ACMP+
PTC7/ADP15
PTC6/ADP14
PTC5/ADP13
10-BIT
ANALOG-TO-DIGITAL
CONVERTER (ADC)
ADP15-ADP0
PORT C
VDDA/VREFH
VOLTAGE REGULATOR
PTA3/PIA3/SCL/ADP3
RxD
TxD
VSS
VDD
PTA4/ACMPO/BKGD/MS
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
SS
MISO
MOSI
SPSCK
PORT B
CPU
COP
PTA7/TPM2CH1
BDC
PTC4/ADP12
PTC3/ADP11
PTC2/ADP10
PTC1/TPM1CH1/ADP9
VREFH
VREFL
PTC0/TPM1CH0/ADP8
= Pin can be enabled as part of the ganged output drive feature
NOTE: - PTC7-PTC0 and PTA7-PTA6 not available on 16--pin Packages
- PTC7-PTC4 and PTA7-PTA6 not available on 20-pin Packages
- For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL , are double bonded to VDD and VSS respectively.
- When PTA4 is configured as BKGD, pin becomes bi-directional.
Figure 13-1. MC9S08SH32 Series Block Diagram Highlighting RTC Block and Pins
MC9S08SH32 Series Data Sheet, Rev. 3
192
Freescale Semiconductor
Chapter 13 Real-Time Counter (S08RTCV1)
13.1.1
Features
Features of the RTC module include:
• 8-bit up-counter
— 8-bit modulo match limit
— Software controllable periodic interrupt on match
• Three software selectable clock sources for input to prescaler with selectable binary-based and
decimal-based divider values
— 1-kHz internal low-power oscillator (LPO)
— External clock (ERCLK)
— 32-kHz internal clock (IRCLK)
13.1.2
Modes of Operation
This section defines the operation in stop, wait and background debug modes.
13.1.2.1
Wait Mode
The RTC continues to run in wait mode if enabled before executing the appropriate instruction. Therefore,
the RTC can bring the MCU out of wait mode if the real-time interrupt is enabled. For lowest possible
current consumption, the RTC should be stopped by software if not needed as an interrupt source during
wait mode.
13.1.2.2
Stop Modes
The RTC continues to run in stop2 or stop3 mode if the RTC is enabled before executing the STOP
instruction. Therefore, the RTC can bring the MCU out of stop modes with no external components, if the
real-time interrupt is enabled.
The LPO clock can be used in stop2 and stop3 modes. ERCLK and IRCLK clocks are only available in
stop3 mode.
Power consumption is lower when all clock sources are disabled, but in that case, the real-time interrupt
cannot wake up the MCU from stop modes.
13.1.2.3
Active Background Mode
The RTC suspends all counting during active background mode until the microcontroller returns to normal
user operating mode. Counting resumes from the suspended value as long as the RTCMOD register is not
written and the RTCPS and RTCLKS bits are not altered.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
193
Chapter 13 Real-Time Counter (S08RTCV1)
13.1.3
Block Diagram
The block diagram for the RTC module is shown in Figure 13-2.
LPO
Clock
Source
Select
ERCLK
IRCLK
8-Bit Modulo
(RTCMOD)
RTCLKS
VDD
RTCLKS[0]
RTCPS
Prescaler
Divide-By
Q
D
Background
Mode
E
8-Bit Comparator
RTC
Clock
RTC
Interrupt
Request
RTIF
R
Write 1 to
RTIF
8-Bit Counter
(RTCCNT)
RTIE
Figure 13-2. Real-Time Counter (RTC) Block Diagram
13.2
External Signal Description
The RTC does not include any off-chip signals.
13.3
Register Definition
The RTC includes a status and control register, an 8-bit counter register, and an 8-bit modulo register.
Refer to the direct-page register summary in the memory section of this document for the absolute address
assignments for all RTC registers.This section refers to registers and control bits only by their names and
relative address offsets.
Table 13-1 is a summary of RTC registers.
Table 13-1. RTC Register Summary
Name
7
6
5
4
3
2
1
0
R
RTCSC
RTIF
RTCLKS
RTIE
RTCPS
W
R
RTCCNT
RTCCNT
W
R
RTCMOD
RTCMOD
W
MC9S08SH32 Series Data Sheet, Rev. 3
194
Freescale Semiconductor
Chapter 13 Real-Time Counter (S08RTCV1)
13.3.1
RTC Status and Control Register (RTCSC)
RTCSC contains the real-time interrupt status flag (RTIF), the clock select bits (RTCLKS), the real-time
interrupt enable bit (RTIE), and the prescaler select bits (RTCPS).
7
6
5
4
3
2
1
0
0
0
R
RTIF
RTCLKS
RTIE
RTCPS
W
Reset:
0
0
0
0
0
0
Figure 13-3. RTC Status and Control Register (RTCSC)
Table 13-2. RTCSC Field Descriptions
Field
Description
7
RTIF
Real-Time Interrupt Flag This status bit indicates the RTC counter register reached the value in the RTC modulo
register. Writing a logic 0 has no effect. Writing a logic 1 clears the bit and the real-time interrupt request. Reset
clears RTIF.
0 RTC counter has not reached the value in the RTC modulo register.
1 RTC counter has reached the value in the RTC modulo register.
6–5
RTCLKS
Real-Time Clock Source Select. These two read/write bits select the clock source input to the RTC prescaler.
Changing the clock source clears the prescaler and RTCCNT counters. When selecting a clock source, ensure
that the clock source is properly enabled (if applicable) to ensure correct operation of the RTC. Reset clears
RTCLKS.
00 Real-time clock source is the 1-kHz low power oscillator (LPO)
01 Real-time clock source is the external clock (ERCLK)
1x Real-time clock source is the internal clock (IRCLK)
4
RTIE
Real-Time Interrupt Enable. This read/write bit enables real-time interrupts. If RTIE is set, then an interrupt is
generated when RTIF is set. Reset clears RTIE.
0 Real-time interrupt requests are disabled. Use software polling.
1 Real-time interrupt requests are enabled.
3–0
RTCPS
Real-Time Clock Prescaler Select. These four read/write bits select binary-based or decimal-based divide-by
values for the clock source. See Table 13-3. Changing the prescaler value clears the prescaler and RTCCNT
counters. Reset clears RTCPS.
Table 13-3. RTC Prescaler Divide-by values
RTCPS
RTCLKS[0]
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0
Off
23
25
26
27
28
29
210
1
2
22
10
24
102
5x102
103
1
Off
210
211
212
213
214
215
216
103
105
2x105
2x103 5x103
104
2x104 5x104
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
195
Chapter 13 Real-Time Counter (S08RTCV1)
13.3.2
RTC Counter Register (RTCCNT)
RTCCNT is the read-only value of the current RTC count of the 8-bit counter.
7
6
5
4
R
3
2
1
0
0
0
0
0
RTCCNT
W
Reset:
0
0
0
0
Figure 13-4. RTC Counter Register (RTCCNT)
Table 13-4. RTCCNT Field Descriptions
Field
Description
7:0
RTCCNT
RTC Count. These eight read-only bits contain the current value of the 8-bit counter. Writes have no effect to this
register. Reset, writing to RTCMOD, or writing different values to RTCLKS and RTCPS clear the count to 0x00.
13.3.3
RTC Modulo Register (RTCMOD)
7
6
5
4
3
2
1
0
0
0
0
0
R
RTCMOD
W
Reset:
0
0
0
0
Figure 13-5. RTC Modulo Register (RTCMOD)
Table 13-5. RTCMOD Field Descriptions
Field
Description
7:0
RTC Modulo. These eight read/write bits contain the modulo value used to reset the count to 0x00 upon a compare
RTCMOD match and set the RTIF status bit. A value of 0x00 sets the RTIF bit on each rising edge of the prescaler output.
Writing to RTCMOD resets the prescaler and the RTCCNT counters to 0x00. Reset sets the modulo to 0x00.
13.4
Functional Description
The RTC is composed of a main 8-bit up-counter with an 8-bit modulo register, a clock source selector,
and a prescaler block with binary-based and decimal-based selectable values. The module also contains
software selectable interrupt logic.
After any MCU reset, the counter is stopped and reset to 0x00, the modulus register is set to 0x00, and the
prescaler is off. The 1-kHz internal oscillator clock is selected as the default clock source. To start the
prescaler, write any value other than zero to the prescaler select bits (RTCPS).
Three clock sources are software selectable: the low power oscillator clock (LPO), the external clock
(ERCLK), and the internal clock (IRCLK). The RTC clock select bits (RTCLKS) select the desired clock
source. If a different value is written to RTCLKS, the prescaler and RTCCNT counters are reset to 0x00.
MC9S08SH32 Series Data Sheet, Rev. 3
196
Freescale Semiconductor
Chapter 13 Real-Time Counter (S08RTCV1)
RTCPS and the RTCLKS[0] bit select the desired divide-by value. If a different value is written to RTCPS,
the prescaler and RTCCNT counters are reset to 0x00. Table 13-6 shows different prescaler period values.
Table 13-6. Prescaler Period
RTCPS
1-kHz Internal Clock
(RTCLKS = 00)
1-MHz External Clock 32-kHz Internal Clock 32-kHz Internal Clock
(RTCLKS = 01)
(RTCLKS = 10)
(RTCLKS = 11)
0000
Off
Off
Off
Off
0001
8 ms
1.024 ms
250 μs
32 ms
0010
32 ms
2.048 ms
1 ms
64 ms
0011
64 ms
4.096 ms
2 ms
128 ms
0100
128 ms
8.192 ms
4 ms
256 ms
0101
256 ms
16.4 ms
8 ms
512 ms
0110
512 ms
32.8 ms
16 ms
1.024 s
0111
1.024 s
65.5 ms
32 ms
2.048 s
1000
1 ms
1 ms
31.25 μs
31.25 ms
1001
2 ms
2 ms
62.5 μs
62.5 ms
1010
4 ms
5 ms
125 μs
156.25 ms
1011
10 ms
10 ms
312.5 μs
312.5 ms
1100
16 ms
20 ms
0.5 ms
0.625 s
1101
0.1 s
50 ms
3.125 ms
1.5625 s
1110
0.5 s
0.1 s
15.625 ms
3.125 s
1111
1s
0.2 s
31.25 ms
6.25 s
The RTC modulo register (RTCMOD) allows the compare value to be set to any value from 0x00 to 0xFF.
When the counter is active, the counter increments at the selected rate until the count matches the modulo
value. When these values match, the counter resets to 0x00 and continues counting. The real-time interrupt
flag (RTIF) is set when a match occurs. The flag sets on the transition from the modulo value to 0x00.
Writing to RTCMOD resets the prescaler and the RTCCNT counters to 0x00.
The RTC allows for an interrupt to be generated when RTIF is set. To enable the real-time interrupt, set
the real-time interrupt enable bit (RTIE) in RTCSC. RTIF is cleared by writing a 1 to RTIF.
13.4.1
RTC Operation Example
This section shows an example of the RTC operation as the counter reaches a matching value from the
modulo register.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
197
Chapter 13 Real-Time Counter (S08RTCV1)
Internal 1-kHz
Clock Source
RTC Clock
(RTCPS = 0xA)
RTCCNT
0x52
0x53
0x54
0x55
0x00
0x01
RTIF
RTCMOD
0x55
Figure 13-6. RTC Counter Overflow Example
In the example of Figure 13-6, the selected clock source is the 1-kHz internal oscillator clock source. The
prescaler (RTCPS) is set to 0xA or divide-by-4. The modulo value in the RTCMOD register is set to 0x55.
When the counter, RTCCNT, reaches the modulo value of 0x55, the counter overflows to 0x00 and
continues counting. The real-time interrupt flag, RTIF, sets when the counter value changes from 0x55 to
0x00. A real-time interrupt is generated when RTIF is set, if RTIE is set.
13.5
Initialization/Application Information
This section provides example code to give some basic direction to a user on how to initialize and
configure the RTC module. The example software is implemented in C language.
The example below shows how to implement time of day with the RTC using the 1-kHz clock source to
achieve the lowest possible power consumption. Because the 1-kHz clock source is not as accurate as a
crystal, software can be added for any adjustments. For accuracy without adjustments at the expense of
additional power consumption, the external clock (ERCLK) or the internal clock (IRCLK) can be selected
with appropriate prescaler and modulo values.
/* Initialize the elapsed time counters */
Seconds = 0;
Minutes = 0;
Hours = 0;
Days=0;
/* Configure RTC to interrupt every 1 second from 1-kHz clock source */
RTCMOD.byte = 0x00;
RTCSC.byte = 0x1F;
/**********************************************************************
Function Name : RTC_ISR
Notes : Interrupt service routine for RTC module.
**********************************************************************/
MC9S08SH32 Series Data Sheet, Rev. 3
198
Freescale Semiconductor
Chapter 13 Real-Time Counter (S08RTCV1)
#pragma TRAP_PROC
void RTC_ISR(void)
{
/* Clear the interrupt flag */
RTCSC.byte = RTCSC.byte | 0x80;
/* RTC interrupts every 1 Second */
Seconds++;
/* 60 seconds in a minute */
if (Seconds > 59){
Minutes++;
Seconds = 0;
}
/* 60 minutes in an hour */
if (Minutes > 59){
Hours++;
Minutes = 0;
}
/* 24 hours in a day */
if (Hours > 23){
Days ++;
Hours = 0;
}
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
199
Chapter 13 Real-Time Counter (S08RTCV1)
MC9S08SH32 Series Data Sheet, Rev. 3
200
Freescale Semiconductor
Chapter 14
Serial Communications Interface (S08SCIV4)
14.1
Introduction
Figure 14-1 shows the MC9S08SH32 Series block diagram with the SCI module highlighted.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
201
Chapter 14 Serial Communications Interface (S08SCIV4)
BKGD/MS
HCS08 CORE
DEBUG MODULE (DBG)
PTA6/TPM2CH0
IRQ
SCL
IRQ
IIC MODULE (IIC)
LVD
SERIAL PERIPHERAL
INTERFACE MODULE (SPI)
USER FLASH
(MC9S08SH32 = 32,768 BYTES)
(MC9S08SH16 = 16,384 BYTES)
SERIAL COMMUNICATIONS
INTERFACE MODULE (SCI)
USER RAM
(MC9S08SH32/16 = 1024 BYTES)
16-BIT TIMER/PWM
MODULE (TPM1)
REAL-TIME COUNTER (RTC)
40-MHz INTERNAL CLOCK
SOURCE (ICS)
LOW-POWER OSCILLATOR
31.25 kHz to 38.4 kHz
1 MHz to 16 MHz
(XOSC)
16-BIT TIMER/PWM
MODULE (TPM2)
EXTAL
XTAL
ANALOG COMPARATOR
(ACMP)
PTA5/IRQ/TCLK/RESET
PORT A
RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT
TCLK
SDA
SS
MISO
MOSI
SPSCK
VDDA/VREFH
VSSA/VREFL
VDDA
VSSA
PTA2/PIA2/SD/ADP2
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
TCLK
TPM1CH0
PTB4/TPM2CH1/MISO
PTB3/PIB3/MOSI/ADP7
TPM1CH1
PTB5/TPM1CH1/SS
PTB2/PIB2/SPSCK/ADP6
PTB1/PIB1/TxD/ADP5
TCLK
TPM2CH0
PTB0/PIB0/RxD/ADP4
TPM2CH1
ACMPO
ACMP–
ACMP+
PTC7/ADP15
PTC6/ADP14
PTC5/ADP13
10-BIT
ANALOG-TO-DIGITAL
CONVERTER (ADC)
ADP15-ADP0
PORT C
VDD
PTA3/PIA3/SCL/ADP3
RxD
TxD
VSS
VOLTAGE REGULATOR
PTA4/ACMPO/BKGD/MS
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
PORT B
8-BIT MODULO TIMER
MODULE (MTIM)
HCS08 SYSTEM CONTROL
COP
PTA7/TPM2CH1
BDC
CPU
PTC4/ADP12
PTC3/ADP11
PTC2/ADP10
PTC1/TPM1CH1/ADP9
VREFH
VREFL
PTC0/TPM1CH0/ADP8
= Pin can be enabled as part of the ganged output drive feature
NOTE: - PTC7-PTC0 and PTA7-PTA6 not available on 16--pin Packages
- PTC7-PTC4 and PTA7-PTA6 not available on 20-pin Packages
- For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL , are double bonded to VDD and VSS respectively.
- When PTA4 is configured as BKGD, pin becomes bi-directional.
Figure 14-1. MC9S08SH32 Series Block Diagram Highlighting SCI Block and Pins
MC9S08SH32 Series Data Sheet, Rev. 3
202
Freescale Semiconductor
Chapter 14 Serial Communications Interface (S08SCIV4)
14.1.1
Features
Features of SCI module include:
• Full-duplex, standard non-return-to-zero (NRZ) format
• Double-buffered transmitter and receiver with separate enables
• Programmable baud rates (13-bit modulo divider)
• Interrupt-driven or polled operation:
— Transmit data register empty and transmission complete
— Receive data register full
— Receive overrun, parity error, framing error, and noise error
— Idle receiver detect
— Active edge on receive pin
— Break detect supporting LIN
• Hardware parity generation and checking
• Programmable 8-bit or 9-bit character length
• Receiver wakeup by idle-line or address-mark
• Optional 13-bit break character generation / 11-bit break character detection
• Selectable transmitter output polarity
14.1.2
Modes of Operation
See Section 14.3, “Functional Description,” For details concerning SCI operation in these modes:
• 8- and 9-bit data modes
• Stop mode operation
• Loop mode
• Single-wire mode
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
203
Chapter 14 Serial Communications Interface (S08SCIV4)
14.1.3
Block Diagram
Figure 14-2 shows the transmitter portion of the SCI.
INTERNAL BUS
(WRITE-ONLY)
LOOPS
SCID – Tx BUFFER
RSRC
LOOP
CONTROL
STOP
M
START
11-BIT TRANSMIT SHIFT REGISTER
8
7
6
5
4
3
2
1
0
TO TxD PIN
L
LSB
H
1 × BAUD
RATE CLOCK
TO RECEIVE
DATA IN
SHIFT DIRECTION
PT
BREAK (ALL 0s)
PARITY
GENERATION
PREAMBLE (ALL 1s)
PE
SHIFT ENABLE
T8
LOAD FROM SCIxD
TXINV
SCI CONTROLS TxD
TE
SBK
TRANSMIT CONTROL
TXDIR
TxD DIRECTION
TO TxD
PIN LOGIC
BRK13
TDRE
TIE
TC
Tx INTERRUPT
REQUEST
TCIE
Figure 14-2. SCI Transmitter Block Diagram
MC9S08SH32 Series Data Sheet, Rev. 3
204
Freescale Semiconductor
Chapter 14 Serial Communications Interface (S08SCIV4)
Figure 14-3 shows the receiver portion of the SCI.
INTERNAL BUS
(READ-ONLY)
16 × BAUD
RATE CLOCK
DIVIDE
BY 16
SCID – Rx BUFFER
LBKDE
H
DATA RECOVERY
WAKE
ILT
8
7
6
5
4
3
2
1
START
FROM RxD PIN
RXINV
M
LSB
RSRC
11-BIT RECEIVE SHIFT REGISTER
MSB
SINGLE-WIRE
LOOP CONTROL
ALL 1s
LOOPS
STOP
FROM
TRANSMITTER
0
L
SHIFT DIRECTION
WAKEUP
LOGIC
RWU
RWUID
ACTIVE EDGE
DETECT
RDRF
RIE
IDLE
ILIE
LBKDIF
Rx INTERRUPT
REQUEST
LBKDIE
RXEDGIF
RXEDGIE
OR
ORIE
FE
FEIE
NF
ERROR INTERRUPT
REQUEST
NEIE
PE
PT
PARITY
CHECKING
PF
PEIE
Figure 14-3. SCI Receiver Block Diagram
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
205
Chapter 14 Serial Communications Interface (S08SCIV4)
14.2
Register Definition
The SCI has eight 8-bit registers to control baud rate, select SCI options, report SCI status, and for
transmit/receive data.
Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address
assignments for all SCI registers. This section refers to registers and control bits only by their names. A
Freescale-provided equate or header file is used to translate these names into the appropriate absolute
addresses.
14.2.1
SCI Baud Rate Registers (SCIxBDH, SCIxBDL)
This pair of registers controls the prescale divisor for SCI baud rate generation. To update the 13-bit baud
rate setting [SBR12:SBR0], first write to SCIxBDH to buffer the high half of the new value and then write
to SCIxBDL. The working value in SCIxBDH does not change until SCIxBDL is written.
SCIxBDL is reset to a non-zero value, so after reset the baud rate generator remains disabled until the first
time the receiver or transmitter is enabled (RE or TE bits in SCIxC2 are written to 1).
7
6
5
LBKDIE
RXEDGIE
0
0
R
4
3
2
1
0
SBR12
SBR11
SBR10
SBR9
SBR8
0
0
0
0
0
0
W
Reset
0
= Unimplemented or Reserved
Figure 14-4. SCI Baud Rate Register (SCIxBDH)
Table 14-1. SCIxBDH Field Descriptions
Field
7
LBKDIE
Description
LIN Break Detect Interrupt Enable (for LBKDIF)
0 Hardware interrupts from LBKDIF disabled (use polling).
1 Hardware interrupt requested when LBKDIF flag is 1.
6
RXEDGIE
RxD Input Active Edge Interrupt Enable (for RXEDGIF)
0 Hardware interrupts from RXEDGIF disabled (use polling).
1 Hardware interrupt requested when RXEDGIF flag is 1.
4:0
SBR[12:8]
Baud Rate Modulo Divisor — The 13 bits in SBR[12:0] are referred to collectively as BR, and they set the
modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to
reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in
Table 14-2.
MC9S08SH32 Series Data Sheet, Rev. 3
206
Freescale Semiconductor
Chapter 14 Serial Communications Interface (S08SCIV4)
7
6
5
4
3
2
1
0
SBR7
SBR6
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
0
0
0
0
0
1
0
0
R
W
Reset
Figure 14-5. SCI Baud Rate Register (SCIxBDL)
Table 14-2. SCIxBDL Field Descriptions
Field
7:0
SBR[7:0]
14.2.2
Description
Baud Rate Modulo Divisor — These 13 bits in SBR[12:0] are referred to collectively as BR, and they set the
modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to
reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in
Table 14-1.
SCI Control Register 1 (SCIxC1)
This read/write register is used to control various optional features of the SCI system.
7
6
5
4
3
2
1
0
LOOPS
SCISWAI
RSRC
M
WAKE
ILT
PE
PT
0
0
0
0
0
0
0
0
R
W
Reset
Figure 14-6. SCI Control Register 1 (SCIxC1)
Table 14-3. SCIxC1 Field Descriptions
Field
Description
7
LOOPS
Loop Mode Select — Selects between loop back modes and normal 2-pin full-duplex modes. When LOOPS = 1,
the transmitter output is internally connected to the receiver input.
0 Normal operation — RxD and TxD use separate pins.
1 Loop mode or single-wire mode where transmitter outputs are internally connected to receiver input. (See
RSRC bit.) RxD pin is not used by SCI.
6
SCISWAI
SCI Stops in Wait Mode
0 SCI clocks continue to run in wait mode so the SCI can be the source of an interrupt that wakes up the CPU.
1 SCI clocks freeze while CPU is in wait mode.
5
RSRC
4
M
Receiver Source Select — This bit has no meaning or effect unless the LOOPS bit is set to 1. When
LOOPS = 1, the receiver input is internally connected to the TxD pin and RSRC determines whether this
connection is also connected to the transmitter output.
0 Provided LOOPS = 1, RSRC = 0 selects internal loop back mode and the SCI does not use the RxD pins.
1 Single-wire SCI mode where the TxD pin is connected to the transmitter output and receiver input.
9-Bit or 8-Bit Mode Select
0 Normal — start + 8 data bits (LSB first) + stop.
1 Receiver and transmitter use 9-bit data characters
start + 8 data bits (LSB first) + 9th data bit + stop.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
207
Chapter 14 Serial Communications Interface (S08SCIV4)
Table 14-3. SCIxC1 Field Descriptions (continued)
Field
3
WAKE
Description
Receiver Wakeup Method Select — Refer to Section 14.3.3.2, “Receiver Wakeup Operation” for more
information.
0 Idle-line wakeup.
1 Address-mark wakeup.
2
ILT
Idle Line Type Select — Setting this bit to 1 ensures that the stop bit and logic 1 bits at the end of a character
do not count toward the 10 or 11 bit times of logic high level needed by the idle line detection logic. Refer to
Section 14.3.3.2.1, “Idle-Line Wakeup” for more information.
0 Idle character bit count starts after start bit.
1 Idle character bit count starts after stop bit.
1
PE
Parity Enable — Enables hardware parity generation and checking. When parity is enabled, the most significant
bit (MSB) of the data character (eighth or ninth data bit) is treated as the parity bit.
0 No hardware parity generation or checking.
1 Parity enabled.
0
PT
Parity Type — Provided parity is enabled (PE = 1), this bit selects even or odd parity. Odd parity means the total
number of 1s in the data character, including the parity bit, is odd. Even parity means the total number of 1s in
the data character, including the parity bit, is even.
0 Even parity.
1 Odd parity.
14.2.3
SCI Control Register 2 (SCIxC2)
This register can be read or written at any time.
7
6
5
4
3
2
1
0
TIE
TCIE
RIE
ILIE
TE
RE
RWU
SBK
0
0
0
0
0
0
0
0
R
W
Reset
Figure 14-7. SCI Control Register 2 (SCIxC2)
Table 14-4. SCIxC2 Field Descriptions
Field
7
TIE
6
TCIE
Description
Transmit Interrupt Enable (for TDRE)
0 Hardware interrupts from TDRE disabled (use polling).
1 Hardware interrupt requested when TDRE flag is 1.
Transmission Complete Interrupt Enable (for TC)
0 Hardware interrupts from TC disabled (use polling).
1 Hardware interrupt requested when TC flag is 1.
5
RIE
Receiver Interrupt Enable (for RDRF)
0 Hardware interrupts from RDRF disabled (use polling).
1 Hardware interrupt requested when RDRF flag is 1.
4
ILIE
Idle Line Interrupt Enable (for IDLE)
0 Hardware interrupts from IDLE disabled (use polling).
1 Hardware interrupt requested when IDLE flag is 1.
MC9S08SH32 Series Data Sheet, Rev. 3
208
Freescale Semiconductor
Chapter 14 Serial Communications Interface (S08SCIV4)
Table 14-4. SCIxC2 Field Descriptions (continued)
Field
Description
3
TE
Transmitter Enable
0 Transmitter off.
1 Transmitter on.
TE must be 1 in order to use the SCI transmitter. When TE = 1, the SCI forces the TxD pin to act as an output
for the SCI system.
When the SCI is configured for single-wire operation (LOOPS = RSRC = 1), TXDIR controls the direction of
traffic on the single SCI communication line (TxD pin).
TE also can be used to queue an idle character by writing TE = 0 then TE = 1 while a transmission is in progress.
Refer to Section 14.3.2.1, “Send Break and Queued Idle” for more details.
When TE is written to 0, the transmitter keeps control of the port TxD pin until any data, queued idle, or queued
break character finishes transmitting before allowing the pin to revert to a general-purpose I/O pin.
2
RE
Receiver Enable — When the SCI receiver is off, the RxD pin reverts to being a general-purpose port I/O pin. If
LOOPS = 1 the RxD pin reverts to being a general-purpose I/O pin even if RE = 1.
0 Receiver off.
1 Receiver on.
1
RWU
Receiver Wakeup Control — This bit can be written to 1 to place the SCI receiver in a standby state where it
waits for automatic hardware detection of a selected wakeup condition. The wakeup condition is either an idle
line between messages (WAKE = 0, idle-line wakeup), or a logic 1 in the most significant data bit in a character
(WAKE = 1, address-mark wakeup). Application software sets RWU and (normally) a selected hardware
condition automatically clears RWU. Refer to Section 14.3.3.2, “Receiver Wakeup Operation” for more details.
0 Normal SCI receiver operation.
1 SCI receiver in standby waiting for wakeup condition.
0
SBK
Send Break — Writing a 1 and then a 0 to SBK queues a break character in the transmit data stream. Additional
break characters of 10 or 11 (13 or 14 if BRK13 = 1) bit times of logic 0 are queued as long as SBK = 1.
Depending on the timing of the set and clear of SBK relative to the information currently being transmitted, a
second break character may be queued before software clears SBK. Refer to Section 14.3.2.1, “Send Break and
Queued Idle” for more details.
0 Normal transmitter operation.
1 Queue break character(s) to be sent.
14.2.4
SCI Status Register 1 (SCIxS1)
This register has eight read-only status flags. Writes have no effect. Special software sequences (which do
not involve writing to this register) are used to clear these status flags.
R
7
6
5
4
3
2
1
0
TDRE
TC
RDRF
IDLE
OR
NF
FE
PF
1
1
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 14-8. SCI Status Register 1 (SCIxS1)
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
209
Chapter 14 Serial Communications Interface (S08SCIV4)
Table 14-5. SCIxS1 Field Descriptions
Field
Description
7
TDRE
Transmit Data Register Empty Flag — TDRE is set out of reset and when a transmit data value transfers from
the transmit data buffer to the transmit shifter, leaving room for a new character in the buffer. To clear TDRE, read
SCIxS1 with TDRE = 1 and then write to the SCI data register (SCIxD).
0 Transmit data register (buffer) full.
1 Transmit data register (buffer) empty.
6
TC
Transmission Complete Flag — TC is set out of reset and when TDRE = 1 and no data, preamble, or break
character is being transmitted.
0 Transmitter active (sending data, a preamble, or a break).
1 Transmitter idle (transmission activity complete).
TC is cleared automatically by reading SCIxS1 with TC = 1 and then doing one of the following three things:
• Write to the SCI data register (SCIxD) to transmit new data
• Queue a preamble by changing TE from 0 to 1
• Queue a break character by writing 1 to SBK in SCIxC2
5
RDRF
Receive Data Register Full Flag — RDRF becomes set when a character transfers from the receive shifter into
the receive data register (SCIxD). To clear RDRF, read SCIxS1 with RDRF = 1 and then read the SCI data
register (SCIxD).
0 Receive data register empty.
1 Receive data register full.
4
IDLE
Idle Line Flag — IDLE is set when the SCI receive line becomes idle for a full character time after a period of
activity. When ILT = 0, the receiver starts counting idle bit times after the start bit. So if the receive character is
all 1s, these bit times and the stop bit time count toward the full character time of logic high (10 or 11 bit times
depending on the M control bit) needed for the receiver to detect an idle line. When ILT = 1, the receiver doesn’t
start counting idle bit times until after the stop bit. So the stop bit and any logic high bit times at the end of the
previous character do not count toward the full character time of logic high needed for the receiver to detect an
idle line.
To clear IDLE, read SCIxS1 with IDLE = 1 and then read the SCI data register (SCIxD). After IDLE has been
cleared, it cannot become set again until after a new character has been received and RDRF has been set. IDLE
will get set only once even if the receive line remains idle for an extended period.
0 No idle line detected.
1 Idle line was detected.
3
OR
Receiver Overrun Flag — OR is set when a new serial character is ready to be transferred to the receive data
register (buffer), but the previously received character has not been read from SCIxD yet. In this case, the new
character (and all associated error information) is lost because there is no room to move it into SCIxD. To clear
OR, read SCIxS1 with OR = 1 and then read the SCI data register (SCIxD).
0 No overrun.
1 Receive overrun (new SCI data lost).
2
NF
Noise Flag — The advanced sampling technique used in the receiver takes seven samples during the start bit
and three samples in each data bit and the stop bit. If any of these samples disagrees with the rest of the samples
within any bit time in the frame, the flag NF will be set at the same time as the flag RDRF gets set for the character.
To clear NF, read SCIxS1 and then read the SCI data register (SCIxD).
0 No noise detected.
1 Noise detected in the received character in SCIxD.
MC9S08SH32 Series Data Sheet, Rev. 3
210
Freescale Semiconductor
Chapter 14 Serial Communications Interface (S08SCIV4)
Table 14-5. SCIxS1 Field Descriptions (continued)
Field
Description
1
FE
Framing Error Flag — FE is set at the same time as RDRF when the receiver detects a logic 0 where the stop
bit was expected. This suggests the receiver was not properly aligned to a character frame. To clear FE, read
SCIxS1 with FE = 1 and then read the SCI data register (SCIxD).
0 No framing error detected. This does not guarantee the framing is correct.
1 Framing error.
0
PF
Parity Error Flag — PF is set at the same time as RDRF when parity is enabled (PE = 1) and the parity bit in
the received character does not agree with the expected parity value. To clear PF, read SCIxS1 and then read
the SCI data register (SCIxD).
0 No parity error.
1 Parity error.
14.2.5
SCI Status Register 2 (SCIxS2)
This register has one read-only status flag.
7
6
LBKDIF
RXEDGIF
0
0
R
5
4
3
2
1
RXINV
RWUID
BRK13
LBKDE
0
0
0
0
0
0
RAF
W
Reset
0
0
= Unimplemented or Reserved
Figure 14-9. SCI Status Register 2 (SCIxS2)
Table 14-6. SCIxS2 Field Descriptions
Field
Description
7
LBKDIF
LIN Break Detect Interrupt Flag — LBKDIF is set when the LIN break detect circuitry is enabled and a LIN break
character is detected. LBKDIF is cleared by writing a “1” to it.
0 No LIN break character has been detected.
1 LIN break character has been detected.
6
RXEDGIF
RxD Pin Active Edge Interrupt Flag — RXEDGIF is set when an active edge (falling if RXINV = 0, rising if
RXINV=1) on the RxD pin occurs. RXEDGIF is cleared by writing a “1” to it.
0 No active edge on the receive pin has occurred.
1 An active edge on the receive pin has occurred.
4
RXINV1
Receive Data Inversion — Setting this bit reverses the polarity of the received data input.
0 Receive data not inverted
1 Receive data inverted
3
RWUID
Receive Wake Up Idle Detect— RWUID controls whether the idle character that wakes up the receiver sets the
IDLE bit.
0 During receive standby state (RWU = 1), the IDLE bit does not get set upon detection of an idle character.
1 During receive standby state (RWU = 1), the IDLE bit gets set upon detection of an idle character.
2
BRK13
Break Character Generation Length — BRK13 is used to select a longer transmitted break character length.
Detection of a framing error is not affected by the state of this bit.
0 Break character is transmitted with length of 10 bit times (11 if M = 1)
1 Break character is transmitted with length of 13 bit times (14 if M = 1)
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
211
Chapter 14 Serial Communications Interface (S08SCIV4)
Table 14-6. SCIxS2 Field Descriptions (continued)
Field
1
LBKDE
0
RAF
1
Description
LIN Break Detection Enable— LBKDE is used to select a longer break character detection length. While
LBKDE is set, framing error (FE) and receive data register full (RDRF) flags are prevented from setting.
0 Break character is detected at length of 10 bit times (11 if M = 1).
1 Break character is detected at length of 11 bit times (12 if M = 1).
Receiver Active Flag — RAF is set when the SCI receiver detects the beginning of a valid start bit, and RAF is
cleared automatically when the receiver detects an idle line. This status flag can be used to check whether an
SCI character is being received before instructing the MCU to go to stop mode.
0 SCI receiver idle waiting for a start bit.
1 SCI receiver active (RxD input not idle).
Setting RXINV inverts the RxD input for all cases: data bits, start and stop bits, break, and idle.
When using an internal oscillator in a LIN system, it is necessary to raise the break detection threshold by
one bit time. Under the worst case timing conditions allowed in LIN, it is possible that a 0x00 data
character can appear to be 10.26 bit times long at a slave which is running 14% faster than the master. This
would trigger normal break detection circuitry which is designed to detect a 10 bit break symbol. When
the LBKDE bit is set, framing errors are inhibited and the break detection threshold changes from 10 bits
to 11 bits, preventing false detection of a 0x00 data character as a LIN break symbol.
14.2.6
SCI Control Register 3 (SCIxC3)
7
R
6
5
4
3
2
1
0
T8
TXDIR
TXINV
ORIE
NEIE
FEIE
PEIE
0
0
0
0
0
0
0
R8
W
Reset
0
= Unimplemented or Reserved
Figure 14-10. SCI Control Register 3 (SCIxC3)
Table 14-7. SCIxC3 Field Descriptions
Field
Description
7
R8
Ninth Data Bit for Receiver — When the SCI is configured for 9-bit data (M = 1), R8 can be thought of as a ninth
receive data bit to the left of the MSB of the buffered data in the SCIxD register. When reading 9-bit data, read
R8 before reading SCIxD because reading SCIxD completes automatic flag clearing sequences which could
allow R8 and SCIxD to be overwritten with new data.
6
T8
Ninth Data Bit for Transmitter — When the SCI is configured for 9-bit data (M = 1), T8 may be thought of as a
ninth transmit data bit to the left of the MSB of the data in the SCIxD register. When writing 9-bit data, the entire
9-bit value is transferred to the SCI shift register after SCIxD is written so T8 should be written (if it needs to
change from its previous value) before SCIxD is written. If T8 does not need to change in the new value (such
as when it is used to generate mark or space parity), it need not be written each time SCIxD is written.
5
TXDIR
TxD Pin Direction in Single-Wire Mode — When the SCI is configured for single-wire half-duplex operation
(LOOPS = RSRC = 1), this bit determines the direction of data at the TxD pin.
0 TxD pin is an input in single-wire mode.
1 TxD pin is an output in single-wire mode.
MC9S08SH32 Series Data Sheet, Rev. 3
212
Freescale Semiconductor
Chapter 14 Serial Communications Interface (S08SCIV4)
Table 14-7. SCIxC3 Field Descriptions (continued)
Field
4
TXINV1
1
Description
Transmit Data Inversion — Setting this bit reverses the polarity of the transmitted data output.
0 Transmit data not inverted
1 Transmit data inverted
3
ORIE
Overrun Interrupt Enable — This bit enables the overrun flag (OR) to generate hardware interrupt requests.
0 OR interrupts disabled (use polling).
1 Hardware interrupt requested when OR = 1.
2
NEIE
Noise Error Interrupt Enable — This bit enables the noise flag (NF) to generate hardware interrupt requests.
0 NF interrupts disabled (use polling).
1 Hardware interrupt requested when NF = 1.
1
FEIE
Framing Error Interrupt Enable — This bit enables the framing error flag (FE) to generate hardware interrupt
requests.
0 FE interrupts disabled (use polling).
1 Hardware interrupt requested when FE = 1.
0
PEIE
Parity Error Interrupt Enable — This bit enables the parity error flag (PF) to generate hardware interrupt
requests.
0 PF interrupts disabled (use polling).
1 Hardware interrupt requested when PF = 1.
Setting TXINV inverts the TxD output for all cases: data bits, start and stop bits, break, and idle.
14.2.7
SCI Data Register (SCIxD)
This register is actually two separate registers. Reads return the contents of the read-only receive data
buffer and writes go to the write-only transmit data buffer. Reads and writes of this register are also
involved in the automatic flag clearing mechanisms for the SCI status flags.
7
6
5
4
3
2
1
0
R
R7
R6
R5
R4
R3
R2
R1
R0
W
T7
T6
T5
T4
T3
T2
T1
T0
0
0
0
0
0
0
0
0
Reset
Figure 14-11. SCI Data Register (SCIxD)
14.3
Functional Description
The SCI allows full-duplex, asynchronous, NRZ serial communication among the MCU and remote
devices, including other MCUs. The SCI comprises a baud rate generator, transmitter, and receiver block.
The transmitter and receiver operate independently, although they use the same baud rate generator.
During normal operation, the MCU monitors the status of the SCI, writes the data to be transmitted, and
processes received data. The following describes each of the blocks of the SCI.
14.3.1
Baud Rate Generation
As shown in Figure 14-12, the clock source for the SCI baud rate generator is the bus-rate clock.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
213
Chapter 14 Serial Communications Interface (S08SCIV4)
MODULO DIVIDE BY
(1 THROUGH 8191)
BUSCLK
SBR12:SBR0
BAUD RATE GENERATOR
OFF IF [SBR12:SBR0] = 0
DIVIDE BY
16
Tx BAUD RATE
Rx SAMPLING CLOCK
(16 × BAUD RATE)
BAUD RATE =
BUSCLK
[SBR12:SBR0] × 16
Figure 14-12. SCI Baud Rate Generation
SCI communications require the transmitter and receiver (which typically derive baud rates from
independent clock sources) to use the same baud rate. Allowed tolerance on this baud frequency depends
on the details of how the receiver synchronizes to the leading edge of the start bit and how bit sampling is
performed.
The MCU resynchronizes to bit boundaries on every high-to-low transition, but in the worst case, there are
no such transitions in the full 10- or 11-bit time character frame so any mismatch in baud rate is
accumulated for the whole character time. For a Freescale Semiconductor SCI system whose bus
frequency is driven by a crystal, the allowed baud rate mismatch is about ±4.5 percent for 8-bit data format
and about ±4 percent for 9-bit data format. Although baud rate modulo divider settings do not always
produce baud rates that exactly match standard rates, it is normally possible to get within a few percent,
which is acceptable for reliable communications.
14.3.2
Transmitter Functional Description
This section describes the overall block diagram for the SCI transmitter, as well as specialized functions
for sending break and idle characters. The transmitter block diagram is shown in Figure 14-2.
The transmitter output (TxD) idle state defaults to logic high (TXINV = 0 following reset). The transmitter
output is inverted by setting TXINV = 1. The transmitter is enabled by setting the TE bit in SCIxC2. This
queues a preamble character that is one full character frame of the idle state. The transmitter then remains
idle until data is available in the transmit data buffer. Programs store data into the transmit data buffer by
writing to the SCI data register (SCIxD).
The central element of the SCI transmitter is the transmit shift register that is either 10 or 11 bits long
depending on the setting in the M control bit. For the remainder of this section, we will assume M = 0,
selecting the normal 8-bit data mode. In 8-bit data mode, the shift register holds a start bit, eight data bits,
and a stop bit. When the transmit shift register is available for a new SCI character, the value waiting in
the transmit data register is transferred to the shift register (synchronized with the baud rate clock) and the
transmit data register empty (TDRE) status flag is set to indicate another character may be written to the
transmit data buffer at SCIxD.
If no new character is waiting in the transmit data buffer after a stop bit is shifted out the TxD pin, the
transmitter sets the transmit complete flag and enters an idle mode, with TxD high, waiting for more
characters to transmit.
MC9S08SH32 Series Data Sheet, Rev. 3
214
Freescale Semiconductor
Chapter 14 Serial Communications Interface (S08SCIV4)
Writing 0 to TE does not immediately release the pin to be a general-purpose I/O pin. Any transmit activity
that is in progress must first be completed. This includes data characters in progress, queued idle
characters, and queued break characters.
14.3.2.1
Send Break and Queued Idle
The SBK control bit in SCIxC2 is used to send break characters which were originally used to gain the
attention of old teletype receivers. Break characters are a full character time of logic 0 (10 bit times
including the start and stop bits). A longer break of 13 bit times can be enabled by setting BRK13 = 1.
Normally, a program would wait for TDRE to become set to indicate the last character of a message has
moved to the transmit shifter, then write 1 and then write 0 to the SBK bit. This action queues a break
character to be sent as soon as the shifter is available. If SBK is still 1 when the queued break moves into
the shifter (synchronized to the baud rate clock), an additional break character is queued. If the receiving
device is another Freescale Semiconductor SCI, the break characters will be received as 0s in all eight data
bits and a framing error (FE = 1) occurs.
When idle-line wakeup is used, a full character time of idle (logic 1) is needed between messages to wake
up any sleeping receivers. Normally, a program would wait for TDRE to become set to indicate the last
character of a message has moved to the transmit shifter, then write 0 and then write 1 to the TE bit. This
action queues an idle character to be sent as soon as the shifter is available. As long as the character in the
shifter does not finish while TE = 0, the SCI transmitter never actually releases control of the TxD pin. If
there is a possibility of the shifter finishing while TE = 0, set the general-purpose I/O controls so the pin
that is shared with TxD is an output driving a logic 1. This ensures that the TxD line will look like a normal
idle line even if the SCI loses control of the port pin between writing 0 and then 1 to TE.
The length of the break character is affected by the BRK13 and M bits as shown below.
Table 14-8. Break Character Length
14.3.3
BRK13
M
Break Character Length
0
0
10 bit times
0
1
11 bit times
1
0
13 bit times
1
1
14 bit times
Receiver Functional Description
In this section, the receiver block diagram (Figure 14-3) is used as a guide for the overall receiver
functional description. Next, the data sampling technique used to reconstruct receiver data is described in
more detail. Finally, two variations of the receiver wakeup function are explained.
The receiver input is inverted by setting RXINV = 1. The receiver is enabled by setting the RE bit in
SCIxC2. Character frames consist of a start bit of logic 0, eight (or nine) data bits (LSB first), and a stop
bit of logic 1. For information about 9-bit data mode, refer to Section 14.3.5.1, “8- and 9-Bit Data Modes.”
For the remainder of this discussion, we assume the SCI is configured for normal 8-bit data mode.
After receiving the stop bit into the receive shifter, and provided the receive data register is not already
full, the data character is transferred to the receive data register and the receive data register full (RDRF)
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
215
Chapter 14 Serial Communications Interface (S08SCIV4)
status flag is set. If RDRF was already set indicating the receive data register (buffer) was already full, the
overrun (OR) status flag is set and the new data is lost. Because the SCI receiver is double-buffered, the
program has one full character time after RDRF is set before the data in the receive data buffer must be
read to avoid a receiver overrun.
When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive
data register by reading SCIxD. The RDRF flag is cleared automatically by a 2-step sequence which is
normally satisfied in the course of the user’s program that handles receive data. Refer to Section 14.3.4,
“Interrupts and Status Flags” for more details about flag clearing.
14.3.3.1
Data Sampling Technique
The SCI receiver uses a 16× baud rate clock for sampling. The receiver starts by taking logic level samples
at 16 times the baud rate to search for a falling edge on the RxD serial data input pin. A falling edge is
defined as a logic 0 sample after three consecutive logic 1 samples. The 16× baud rate clock is used to
divide the bit time into 16 segments labeled RT1 through RT16. When a falling edge is located, three more
samples are taken at RT3, RT5, and RT7 to make sure this was a real start bit and not merely noise. If at
least two of these three samples are 0, the receiver assumes it is synchronized to a receive character.
The receiver then samples each bit time, including the start and stop bits, at RT8, RT9, and RT10 to
determine the logic level for that bit. The logic level is interpreted to be that of the majority of the samples
taken during the bit time. In the case of the start bit, the bit is assumed to be 0 if at least two of the samples
at RT3, RT5, and RT7 are 0 even if one or all of the samples taken at RT8, RT9, and RT10 are 1s. If any
sample in any bit time (including the start and stop bits) in a character frame fails to agree with the logic
level for that bit, the noise flag (NF) will be set when the received character is transferred to the receive
data buffer.
The falling edge detection logic continuously looks for falling edges, and if an edge is detected, the sample
clock is resynchronized to bit times. This improves the reliability of the receiver in the presence of noise
or mismatched baud rates. It does not improve worst case analysis because some characters do not have
any extra falling edges anywhere in the character frame.
In the case of a framing error, provided the received character was not a break character, the sampling logic
that searches for a falling edge is filled with three logic 1 samples so that a new start bit can be detected
almost immediately.
In the case of a framing error, the receiver is inhibited from receiving any new characters until the framing
error flag is cleared. The receive shift register continues to function, but a complete character cannot
transfer to the receive data buffer if FE is still set.
14.3.3.2
Receiver Wakeup Operation
Receiver wakeup is a hardware mechanism that allows an SCI receiver to ignore the characters in a
message that is intended for a different SCI receiver. In such a system, all receivers evaluate the first
character(s) of each message, and as soon as they determine the message is intended for a different
receiver, they write logic 1 to the receiver wake up (RWU) control bit in SCIxC2. When RWU bit is set,
the status flags associated with the receiver (with the exception of the idle bit, IDLE, when RWUID bit is
set) are inhibited from setting, thus eliminating the software overhead for handling the unimportant
MC9S08SH32 Series Data Sheet, Rev. 3
216
Freescale Semiconductor
Chapter 14 Serial Communications Interface (S08SCIV4)
message characters. At the end of a message, or at the beginning of the next message, all receivers
automatically force RWU to 0 so all receivers wake up in time to look at the first character(s) of the next
message.
14.3.3.2.1
Idle-Line Wakeup
When WAKE = 0, the receiver is configured for idle-line wakeup. In this mode, RWU is cleared
automatically when the receiver detects a full character time of the idle-line level. The M control bit selects
8-bit or 9-bit data mode that determines how many bit times of idle are needed to constitute a full character
time (10 or 11 bit times because of the start and stop bits).
When RWU is one and RWUID is zero, the idle condition that wakes up the receiver does not set the IDLE
flag. The receiver wakes up and waits for the first data character of the next message which will set the
RDRF flag and generate an interrupt if enabled. When RWUID is one, any idle condition sets the IDLE
flag and generates an interrupt if enabled, regardless of whether RWU is zero or one.
The idle-line type (ILT) control bit selects one of two ways to detect an idle line. When ILT = 0, the idle
bit counter starts after the start bit so the stop bit and any logic 1s at the end of a character count toward
the full character time of idle. When ILT = 1, the idle bit counter does not start until after a stop bit time,
so the idle detection is not affected by the data in the last character of the previous message.
14.3.3.2.2
Address-Mark Wakeup
When WAKE = 1, the receiver is configured for address-mark wakeup. In this mode, RWU is cleared
automatically when the receiver detects a logic 1 in the most significant bit of a received character (eighth
bit in M = 0 mode and ninth bit in M = 1 mode).
Address-mark wakeup allows messages to contain idle characters but requires that the MSB be reserved
for use in address frames. The logic 1 MSB of an address frame clears the RWU bit before the stop bit is
received and sets the RDRF flag. In this case the character with the MSB set is received even though the
receiver was sleeping during most of this character time.
14.3.4
Interrupts and Status Flags
The SCI system has three separate interrupt vectors to reduce the amount of software needed to isolate the
cause of the interrupt. One interrupt vector is associated with the transmitter for TDRE and TC events.
Another interrupt vector is associated with the receiver for RDRF, IDLE, RXEDGIF and LBKDIF events,
and a third vector is used for OR, NF, FE, and PF error conditions. Each of these ten interrupt sources can
be separately masked by local interrupt enable masks. The flags can still be polled by software when the
local masks are cleared to disable generation of hardware interrupt requests.
The SCI transmitter has two status flags that optionally can generate hardware interrupt requests. Transmit
data register empty (TDRE) indicates when there is room in the transmit data buffer to write another
transmit character to SCIxD. If the transmit interrupt enable (TIE) bit is set, a hardware interrupt will be
requested whenever TDRE = 1. Transmit complete (TC) indicates that the transmitter is finished
transmitting all data, preamble, and break characters and is idle with TxD at the inactive level. This flag is
often used in systems with modems to determine when it is safe to turn off the modem. If the transmit
complete interrupt enable (TCIE) bit is set, a hardware interrupt will be requested whenever TC = 1.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
217
Chapter 14 Serial Communications Interface (S08SCIV4)
Instead of hardware interrupts, software polling may be used to monitor the TDRE and TC status flags if
the corresponding TIE or TCIE local interrupt masks are 0s.
When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive
data register by reading SCIxD. The RDRF flag is cleared by reading SCIxS1 while RDRF = 1 and then
reading SCIxD.
When polling is used, this sequence is naturally satisfied in the normal course of the user program. If
hardware interrupts are used, SCIxS1 must be read in the interrupt service routine (ISR). Normally, this is
done in the ISR anyway to check for receive errors, so the sequence is automatically satisfied.
The IDLE status flag includes logic that prevents it from getting set repeatedly when the RxD line remains
idle for an extended period of time. IDLE is cleared by reading SCIxS1 while IDLE = 1 and then reading
SCIxD. After IDLE has been cleared, it cannot become set again until the receiver has received at least
one new character and has set RDRF.
If the associated error was detected in the received character that caused RDRF to be set, the error flags
— noise flag (NF), framing error (FE), and parity error flag (PF) — get set at the same time as RDRF.
These flags are not set in overrun cases.
If RDRF was already set when a new character is ready to be transferred from the receive shifter to the
receive data buffer, the overrun (OR) flag gets set instead the data along with any associated NF, FE, or PF
condition is lost.
At any time, an active edge on the RxD serial data input pin causes the RXEDGIF flag to set. The
RXEDGIF flag is cleared by writing a “1” to it. This function does depend on the receiver being enabled
(RE = 1).
14.3.5
Additional SCI Functions
The following sections describe additional SCI functions.
14.3.5.1
8- and 9-Bit Data Modes
The SCI system (transmitter and receiver) can be configured to operate in 9-bit data mode by setting the
M control bit in SCIxC1. In 9-bit mode, there is a ninth data bit to the left of the MSB of the SCI data
register. For the transmit data buffer, this bit is stored in T8 in SCIxC3. For the receiver, the ninth bit is
held in R8 in SCIxC3.
For coherent writes to the transmit data buffer, write to the T8 bit before writing to SCIxD.
If the bit value to be transmitted as the ninth bit of a new character is the same as for the previous character,
it is not necessary to write to T8 again. When data is transferred from the transmit data buffer to the
transmit shifter, the value in T8 is copied at the same time data is transferred from SCIxD to the shifter.
9-bit data mode typically is used in conjunction with parity to allow eight bits of data plus the parity in the
ninth bit. Or it is used with address-mark wakeup so the ninth data bit can serve as the wakeup bit. In
custom protocols, the ninth bit can also serve as a software-controlled marker.
MC9S08SH32 Series Data Sheet, Rev. 3
218
Freescale Semiconductor
Chapter 14 Serial Communications Interface (S08SCIV4)
14.3.5.2
Stop Mode Operation
During all stop modes, clocks to the SCI module are halted.
In stop1 and stop2 modes, all SCI register data is lost and must be re-initialized upon recovery from these
two stop modes. No SCI module registers are affected in stop3 mode.
The receive input active edge detect circuit is still active in stop3 mode, but not in stop2. . An active edge
on the receive input brings the CPU out of stop3 mode if the interrupt is not masked (RXEDGIE = 1).
Note, because the clocks are halted, the SCI module will resume operation upon exit from stop (only in
stop3 mode). Software should ensure stop mode is not entered while there is a character being transmitted
out of or received into the SCI module.
14.3.5.3
Loop Mode
When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or
single-wire mode (RSRC = 1). Loop mode is sometimes used to check software, independent of
connections in the external system, to help isolate system problems. In this mode, the transmitter output is
internally connected to the receiver input and the RxD pin is not used by the SCI, so it reverts to a
general-purpose port I/O pin.
14.3.5.4
Single-Wire Operation
When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or
single-wire mode (RSRC = 1). Single-wire mode is used to implement a half-duplex serial connection.
The receiver is internally connected to the transmitter output and to the TxD pin. The RxD pin is not used
and reverts to a general-purpose port I/O pin.
In single-wire mode, the TXDIR bit in SCIxC3 controls the direction of serial data on the TxD pin. When
TXDIR = 0, the TxD pin is an input to the SCI receiver and the transmitter is temporarily disconnected
from the TxD pin so an external device can send serial data to the receiver. When TXDIR = 1, the TxD pin
is an output driven by the transmitter. In single-wire mode, the internal loop back connection from the
transmitter to the receiver causes the receiver to receive characters that are sent out by the transmitter.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
219
Chapter 14 Serial Communications Interface (S08SCIV4)
MC9S08SH32 Series Data Sheet, Rev. 3
220
Freescale Semiconductor
Chapter 15
Serial Peripheral Interface (S08SPIV3)
15.1
Introduction
The serial peripheral interface (SPI) module provides for full-duplex, synchronous, serial communication
between the MCU and peripheral devices. These peripheral devices can include other microcontrollers,
analog-to-digital converters, shift registers, sensors, memories, and so forth.
The SPI runs at a baud rate up to that of the bus clock divided by two in master mode and bus clock divided
by four in slave mode. The SPI operation can be interrupt driven or software can poll the status flags.
All devices in the MC9S08SH32 Series MCUs contain one SPI module, as shown in the following block
diagram. Figure 15-1 shows the MC9S08SH32 Series block diagram with the SPI modules highlighted.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
221
Chapter 15 Serial Peripheral Interface (S08SPIV3)
BKGD/MS
HCS08 CORE
DEBUG MODULE (DBG)
PTA6/TPM2CH0
HCS08 SYSTEM CONTROL
RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT
IRQ
SCL
IRQ
IIC MODULE (IIC)
LVD
SERIAL PERIPHERAL
INTERFACE MODULE (SPI)
USER FLASH
(MC9S08SH32 = 32,768 BYTES)
(MC9S08SH16 = 16,384 BYTES)
SERIAL COMMUNICATIONS
INTERFACE MODULE (SCI)
USER RAM
(MC9S08SH32/16 = 1024 BYTES)
16-BIT TIMER/PWM
MODULE (TPM1)
REAL-TIME COUNTER (RTC)
40-MHz INTERNAL CLOCK
SOURCE (ICS)
LOW-POWER OSCILLATOR
31.25 kHz to 38.4 kHz
1 MHz to 16 MHz
(XOSC)
TCLK
16-BIT TIMER/PWM
MODULE (TPM2)
EXTAL
XTAL
ANALOG COMPARATOR
(ACMP)
PTA5/IRQ/TCLK/RESET
PORT A
8-BIT MODULO TIMER
MODULE (MTIM)
SDA
VSSA/VREFL
VDDA
VSSA
PTA2/PIA2/SD/ADP2
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
TCLK
TPM1CH0
PTB4/TPM2CH1/MISO
PTB3/PIB3/MOSI/ADP7
TPM1CH1
PTB5/TPM1CH1/SS
PTB2/PIB2/SPSCK/ADP6
PTB1/PIB1/TxD/ADP5
TCLK
TPM2CH0
PTB0/PIB0/RxD/ADP4
TPM2CH1
ACMPO
ACMP–
ACMP+
PTC7/ADP15
PTC6/ADP14
PTC5/ADP13
10-BIT
ANALOG-TO-DIGITAL
CONVERTER (ADC)
ADP15-ADP0
PORT C
VDDA/VREFH
VOLTAGE REGULATOR
PTA3/PIA3/SCL/ADP3
RxD
TxD
VSS
VDD
PTA4/ACMPO/BKGD/MS
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
SS
MISO
MOSI
SPSCK
PORT B
CPU
COP
PTA7/TPM2CH1
BDC
PTC4/ADP12
PTC3/ADP11
PTC2/ADP10
PTC1/TPM1CH1/ADP9
VREFH
VREFL
PTC0/TPM1CH0/ADP8
= Pin can be enabled as part of the ganged output drive feature
NOTE: - PTC7-PTC0 and PTA7-PTA6 not available on 16--pin Packages
- PTC7-PTC4 and PTA7-PTA6 not available on 20-pin Packages
- For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL , are double bonded to VDD and VSS respectively.
- When PTA4 is configured as BKGD, pin becomes bi-directional.
Figure 15-1. MC9S08SH32 Series Block Diagram Highlighting SPI Block and Pin
MC9S08SH32 Series Data Sheet, Rev. 3
222
Freescale Semiconductor
Chapter 15 Serial Peripheral Interface (S08SPIV3)
15.1.1
Features
Features of the SPI module include:
• Master or slave mode operation
• Full-duplex or single-wire bidirectional option
• Programmable transmit bit rate
• Double-buffered transmit and receive
• Serial clock phase and polarity options
• Slave select output
• Selectable MSB-first or LSB-first shifting
15.1.2
Block Diagrams
This section includes block diagrams showing SPI system connections, the internal organization of the SPI
module, and the SPI clock dividers that control the master mode bit rate.
15.1.2.1
SPI System Block Diagram
Figure 15-2 shows the SPI modules of two MCUs connected in a master-slave arrangement. The master
device initiates all SPI data transfers. During a transfer, the master shifts data out (on the MOSI pin) to the
slave while simultaneously shifting data in (on the MISO pin) from the slave. The transfer effectively
exchanges the data that was in the SPI shift registers of the two SPI systems. The SPSCK signal is a clock
output from the master and an input to the slave. The slave device must be selected by a low level on the
slave select input (SS pin). In this system, the master device has configured its SS pin as an optional slave
select output.
SLAVE
MASTER
MOSI
MOSI
SPI SHIFTER
7
6
5
4
3
2
SPI SHIFTER
1
0
MISO
SPSCK
CLOCK
GENERATOR
SS
MISO
7
6
5
4
3
2
1
0
SPSCK
SS
Figure 15-2. SPI System Connections
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
223
Chapter 15 Serial Peripheral Interface (S08SPIV3)
The most common uses of the SPI system include connecting simple shift registers for adding input or
output ports or connecting small peripheral devices such as serial A/D or D/A converters. Although
Figure 15-2 shows a system where data is exchanged between two MCUs, many practical systems involve
simpler connections where data is unidirectionally transferred from the master MCU to a slave or from a
slave to the master MCU.
15.1.2.2
SPI Module Block Diagram
Figure 15-3 is a block diagram of the SPI module. The central element of the SPI is the SPI shift register.
Data is written to the double-buffered transmitter (write to SPIxD) and gets transferred to the SPI shift
register at the start of a data transfer. After shifting in a byte of data, the data is transferred into the
double-buffered receiver where it can be read (read from SPIxD). Pin multiplexing logic controls
connections between MCU pins and the SPI module.
When the SPI is configured as a master, the clock output is routed to the SPSCK pin, the shifter output is
routed to MOSI, and the shifter input is routed from the MISO pin.
When the SPI is configured as a slave, the SPSCK pin is routed to the clock input of the SPI, the shifter
output is routed to MISO, and the shifter input is routed from the MOSI pin.
In the external SPI system, simply connect all SPSCK pins to each other, all MISO pins together, and all
MOSI pins together. Peripheral devices often use slightly different names for these pins.
MC9S08SH32 Series Data Sheet, Rev. 3
224
Freescale Semiconductor
Chapter 15 Serial Peripheral Interface (S08SPIV3)
PIN CONTROL
M
SPE
MOSI
(MOMI)
S
Tx BUFFER (WRITE SPIxD)
ENABLE
SPI SYSTEM
M
SHIFT
OUT
SPI SHIFT REGISTER
SHIFT
IN
MISO
(SISO)
S
SPC0
Rx BUFFER (READ SPIxD)
BIDIROE
SHIFT
DIRECTION
LSBFE
SHIFT
CLOCK
Rx BUFFER
FULL
Tx BUFFER
EMPTY
MASTER CLOCK
BUS RATE
CLOCK
SPIBR
CLOCK GENERATOR
MSTR
CLOCK
LOGIC
SLAVE CLOCK
MASTER/SLAVE
M
SPSCK
S
MASTER/
SLAVE
MODE SELECT
MODFEN
SSOE
MODE FAULT
DETECTION
SPRF
SS
SPTEF
SPTIE
MODF
SPIE
SPI
INTERRUPT
REQUEST
Figure 15-3. SPI Module Block Diagram
15.1.3
SPI Baud Rate Generation
As shown in Figure 15-4, the clock source for the SPI baud rate generator is the bus clock. The three
prescale bits (SPPR2:SPPR1:SPPR0) choose a prescale divisor of 1, 2, 3, 4, 5, 6, 7, or 8. The three rate
select bits (SPR2:SPR1:SPR0) divide the output of the prescaler stage by 2, 4, 8, 16, 32, 64, 128, or 256
to get the internal SPI master mode bit-rate clock.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
225
Chapter 15 Serial Peripheral Interface (S08SPIV3)
BUS CLOCK
PRESCALER
CLOCK RATE DIVIDER
DIVIDE BY
1, 2, 3, 4, 5, 6, 7, or 8
DIVIDE BY
2, 4, 8, 16, 32, 64, 128, or 256
SPPR2:SPPR1:SPPR0
SPR2:SPR1:SPR0
MASTER
SPI
BIT RATE
Figure 15-4. SPI Baud Rate Generation
15.2
External Signal Description
The SPI optionally shares four port pins. The function of these pins depends on the settings of SPI control
bits. When the SPI is disabled (SPE = 0), these four pins revert to being general-purpose port I/O pins that
are not controlled by the SPI.
15.2.1
SPSCK — SPI Serial Clock
When the SPI is enabled as a slave, this pin is the serial clock input. When the SPI is enabled as a master,
this pin is the serial clock output.
15.2.2
MOSI — Master Data Out, Slave Data In
When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this
pin is the serial data output. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data
input. If SPC0 = 1 to select single-wire bidirectional mode, and master mode is selected, this pin becomes
the bidirectional data I/O pin (MOMI). Also, the bidirectional mode output enable bit determines whether
the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and slave mode is
selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.
15.2.3
MISO — Master Data In, Slave Data Out
When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this
pin is the serial data input. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data
output. If SPC0 = 1 to select single-wire bidirectional mode, and slave mode is selected, this pin becomes
the bidirectional data I/O pin (SISO) and the bidirectional mode output enable bit determines whether the
pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and master mode is selected,
this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.
15.2.4
SS — Slave Select
When the SPI is enabled as a slave, this pin is the low-true slave select input. When the SPI is enabled as
a master and mode fault enable is off (MODFEN = 0), this pin is not used by the SPI and reverts to being
a general-purpose port I/O pin. When the SPI is enabled as a master and MODFEN = 1, the slave select
output enable bit determines whether this pin acts as the mode fault input (SSOE = 0) or as the slave select
output (SSOE = 1).
MC9S08SH32 Series Data Sheet, Rev. 3
226
Freescale Semiconductor
Chapter 15 Serial Peripheral Interface (S08SPIV3)
15.3
Modes of Operation
15.3.1
SPI in Stop Modes
The SPI is disabled in all stop modes, regardless of the settings before executing the STOP instruction.
During either stop1 or stop2 mode, the SPI module will be fully powered down. Upon wake-up from stop1
or stop2 mode, the SPI module will be in the reset state. During stop3 mode, clocks to the SPI module are
halted. No registers are affected. If stop3 is exited with a reset, the SPI will be put into its reset state. If
stop3 is exited with an interrupt, the SPI continues from the state it was in when stop3 was entered.
15.4
Register Definition
The SPI has five 8-bit registers to select SPI options, control baud rate, report SPI status, and for
transmit/receive data.
Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address
assignments for all SPI registers. This section refers to registers and control bits only by their names, and
a Freescale-provided equate or header file is used to translate these names into the appropriate absolute
addresses.
15.4.1
SPI Control Register 1 (SPIxC1)
This read/write register includes the SPI enable control, interrupt enables, and configuration options.
7
6
5
4
3
2
1
0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
0
0
1
0
0
R
W
Reset
Figure 15-5. SPI Control Register 1 (SPIxC1)
Table 15-1. SPIxC1 Field Descriptions
Field
Description
7
SPIE
SPI Interrupt Enable (for SPRF and MODF) — This is the interrupt enable for SPI receive buffer full (SPRF)
and mode fault (MODF) events.
0 Interrupts from SPRF and MODF inhibited (use polling)
1 When SPRF or MODF is 1, request a hardware interrupt
6
SPE
SPI System Enable — Disabling the SPI halts any transfer that is in progress, clears data buffers, and initializes
internal state machines. SPRF is cleared and SPTEF is set to indicate the SPI transmit data buffer is empty.
0 SPI system inactive
1 SPI system enabled
5
SPTIE
SPI Transmit Interrupt Enable — This is the interrupt enable bit for SPI transmit buffer empty (SPTEF).
0 Interrupts from SPTEF inhibited (use polling)
1 When SPTEF is 1, hardware interrupt requested
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
227
Chapter 15 Serial Peripheral Interface (S08SPIV3)
Table 15-1. SPIxC1 Field Descriptions (continued)
Field
Description
4
MSTR
Master/Slave Mode Select
0 SPI module configured as a slave SPI device
1 SPI module configured as a master SPI device
3
CPOL
Clock Polarity — This bit effectively places an inverter in series with the clock signal from a master SPI or to a
slave SPI device. Refer to Section 15.5.1, “SPI Clock Formats” for more details.
0 Active-high SPI clock (idles low)
1 Active-low SPI clock (idles high)
2
CPHA
Clock Phase — This bit selects one of two clock formats for different kinds of synchronous serial peripheral
devices. Refer to Section 15.5.1, “SPI Clock Formats” for more details.
0 First edge on SPSCK occurs at the middle of the first cycle of an 8-cycle data transfer
1 First edge on SPSCK occurs at the start of the first cycle of an 8-cycle data transfer
1
SSOE
Slave Select Output Enable — This bit is used in combination with the mode fault enable (MODFEN) bit in
SPCR2 and the master/slave (MSTR) control bit to determine the function of the SS pin as shown in Table 15-2.
0
LSBFE
LSB First (Shifter Direction)
0 SPI serial data transfers start with most significant bit
1 SPI serial data transfers start with least significant bit
Table 15-2. SS Pin Function
MODFEN
SSOE
Master Mode
Slave Mode
0
0
General-purpose I/O (not SPI)
Slave select input
0
1
General-purpose I/O (not SPI)
Slave select input
1
0
SS input for mode fault
Slave select input
1
1
Automatic SS output
Slave select input
NOTE
Ensure that the SPI should not be disabled (SPE=0) at the same time as a bit change to the CPHA bit. These
changes should be performed as separate operations or unexpected behavior may occur.
15.4.2
SPI Control Register 2 (SPIxC2)
This read/write register is used to control optional features of the SPI system. Bits 7, 6, 5, and 2 are not
implemented and always read 0.
R
7
6
5
0
0
0
4
3
MODFEN
BIDIROE
0
0
2
1
0
SPISWAI
SPC0
0
0
0
W
Reset
0
0
0
0
= Unimplemented or Reserved
Figure 15-6. SPI Control Register 2 (SPIxC2)
MC9S08SH32 Series Data Sheet, Rev. 3
228
Freescale Semiconductor
Chapter 15 Serial Peripheral Interface (S08SPIV3)
Table 15-3. SPIxC2 Register Field Descriptions
Field
Description
4
MODFEN
Master Mode-Fault Function Enable — When the SPI is configured for slave mode, this bit has no meaning or
effect. (The SS pin is the slave select input.) In master mode, this bit determines how the SS pin is used (refer to
Table 15-2 for more details).
0 Mode fault function disabled, master SS pin reverts to general-purpose I/O not controlled by SPI
1 Mode fault function enabled, master SS pin acts as the mode fault input or the slave select output
3
BIDIROE
Bidirectional Mode Output Enable — When bidirectional mode is enabled by SPI pin control 0 (SPC0) = 1,
BIDIROE determines whether the SPI data output driver is enabled to the single bidirectional SPI I/O pin.
Depending on whether the SPI is configured as a master or a slave, it uses either the MOSI (MOMI) or MISO
(SISO) pin, respectively, as the single SPI data I/O pin. When SPC0 = 0, BIDIROE has no meaning or effect.
0 Output driver disabled so SPI data I/O pin acts as an input
1 SPI I/O pin enabled as an output
1
SPISWAI
SPI Stop in Wait Mode
0 SPI clocks continue to operate in wait mode
1 SPI clocks stop when the MCU enters wait mode
0
SPC0
15.4.3
SPI Pin Control 0 — The SPC0 bit chooses single-wire bidirectional mode. If MSTR = 0 (slave mode), the SPI
uses the MISO (SISO) pin for bidirectional SPI data transfers. If MSTR = 1 (master mode), the SPI uses the MOSI
(MOMI) pin for bidirectional SPI data transfers. When SPC0 = 1, BIDIROE is used to enable or disable the output
driver for the single bidirectional SPI I/O pin.
0 SPI uses separate pins for data input and data output
1 SPI configured for single-wire bidirectional operation
SPI Baud Rate Register (SPIxBR)
This register is used to set the prescaler and bit rate divisor for an SPI master. This register may be read or
written at any time.
7
R
6
5
4
3
SPPR2
SPPR1
SPPR0
0
0
0
0
2
1
0
SPR2
SPR1
SPR0
0
0
0
0
W
Reset
0
0
= Unimplemented or Reserved
Figure 15-7. SPI Baud Rate Register (SPIxBR)
Table 15-4. SPIxBR Register Field Descriptions
Field
Description
6:4
SPPR[2:0]
SPI Baud Rate Prescale Divisor — This 3-bit field selects one of eight divisors for the SPI baud rate prescaler
as shown in Table 15-5. The input to this prescaler is the bus rate clock (BUSCLK). The output of this prescaler
drives the input of the SPI baud rate divider (see Figure 15-4).
2:0
SPR[2:0]
SPI Baud Rate Divisor — This 3-bit field selects one of eight divisors for the SPI baud rate divider as shown in
Table 15-6. The input to this divider comes from the SPI baud rate prescaler (see Figure 15-4). The output of this
divider is the SPI bit rate clock for master mode.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
229
Chapter 15 Serial Peripheral Interface (S08SPIV3)
Table 15-5. SPI Baud Rate Prescaler Divisor
SPPR2:SPPR1:SPPR0
Prescaler Divisor
0:0:0
1
0:0:1
2
0:1:0
3
0:1:1
4
1:0:0
5
1:0:1
6
1:1:0
7
1:1:1
8
Table 15-6. SPI Baud Rate Divisor
15.4.4
SPR2:SPR1:SPR0
Rate Divisor
0:0:0
2
0:0:1
4
0:1:0
8
0:1:1
16
1:0:0
32
1:0:1
64
1:1:0
128
1:1:1
256
SPI Status Register (SPIxS)
This register has three read-only status bits. Bits 6, 3, 2, 1, and 0 are not implemented and always read 0.
Writes have no meaning or effect.
R
7
6
5
4
3
2
1
0
SPRF
0
SPTEF
MODF
0
0
0
0
0
0
1
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 15-8. SPI Status Register (SPIxS)
MC9S08SH32 Series Data Sheet, Rev. 3
230
Freescale Semiconductor
Chapter 15 Serial Peripheral Interface (S08SPIV3)
Table 15-7. SPIxS Register Field Descriptions
Field
Description
7
SPRF
SPI Read Buffer Full Flag — SPRF is set at the completion of an SPI transfer to indicate that received data may
be read from the SPI data register (SPIxD). SPRF is cleared by reading SPRF while it is set, then reading the
SPI data register.
0 No data available in the receive data buffer
1 Data available in the receive data buffer
5
SPTEF
SPI Transmit Buffer Empty Flag — This bit is set when there is room in the transmit data buffer. It is cleared
by reading SPIxS with SPTEF set, followed by writing a data value to the transmit buffer at SPIxD. SPIxS must
be read with SPTEF = 1 before writing data to SPIxD or the SPIxD write will be ignored. SPTEF generates an
SPTEF CPU interrupt request if the SPTIE bit in the SPIxC1 is also set. SPTEF is automatically set when a data
byte transfers from the transmit buffer into the transmit shift register. For an idle SPI (no data in the transmit buffer
or the shift register and no transfer in progress), data written to SPIxD is transferred to the shifter almost
immediately so SPTEF is set within two bus cycles allowing a second 8-bit data value to be queued into the
transmit buffer. After completion of the transfer of the value in the shift register, the queued value from the transmit
buffer will automatically move to the shifter and SPTEF will be set to indicate there is room for new data in the
transmit buffer. If no new data is waiting in the transmit buffer, SPTEF simply remains set and no data moves from
the buffer to the shifter.
0 SPI transmit buffer not empty
1 SPI transmit buffer empty
4
MODF
Master Mode Fault Flag — MODF is set if the SPI is configured as a master and the slave select input goes low,
indicating some other SPI device is also configured as a master. The SS pin acts as a mode fault error input only
when MSTR = 1, MODFEN = 1, and SSOE = 0; otherwise, MODF will never be set. MODF is cleared by reading
MODF while it is 1, then writing to SPI control register 1 (SPIxC1).
0 No mode fault error
1 Mode fault error detected
15.4.5
SPI Data Register (SPIxD)
7
6
5
4
3
2
1
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 15-9. SPI Data Register (SPIxD)
Reads of this register return the data read from the receive data buffer. Writes to this register write data to
the transmit data buffer. When the SPI is configured as a master, writing data to the transmit data buffer
initiates an SPI transfer.
Data should not be written to the transmit data buffer unless the SPI transmit buffer empty flag (SPTEF)
is set, indicating there is room in the transmit buffer to queue a new transmit byte.
Data may be read from SPIxD any time after SPRF is set and before another transfer is finished. Failure
to read the data out of the receive data buffer before a new transfer ends causes a receive overrun condition
and the data from the new transfer is lost.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
231
Chapter 15 Serial Peripheral Interface (S08SPIV3)
15.5
Functional Description
An SPI transfer is initiated by checking for the SPI transmit buffer empty flag (SPTEF = 1) and then
writing a byte of data to the SPI data register (SPIxD) in the master SPI device. When the SPI shift register
is available, this byte of data is moved from the transmit data buffer to the shifter, SPTEF is set to indicate
there is room in the buffer to queue another transmit character if desired, and the SPI serial transfer starts.
During the SPI transfer, data is sampled (read) on the MISO pin at one SPSCK edge and shifted, changing
the bit value on the MOSI pin, one-half SPSCK cycle later. After eight SPSCK cycles, the data that was
in the shift register of the master has been shifted out the MOSI pin to the slave while eight bits of data
were shifted in the MISO pin into the master’s shift register. At the end of this transfer, the received data
byte is moved from the shifter into the receive data buffer and SPRF is set to indicate the data can be read
by reading SPIxD. If another byte of data is waiting in the transmit buffer at the end of a transfer, it is
moved into the shifter, SPTEF is set, and a new transfer is started.
Normally, SPI data is transferred most significant bit (MSB) first. If the least significant bit first enable
(LSBFE) bit is set, SPI data is shifted LSB first.
When the SPI is configured as a slave, its SS pin must be driven low before a transfer starts and SS must
stay low throughout the transfer. If a clock format where CPHA = 0 is selected, SS must be driven to a
logic 1 between successive transfers. If CPHA = 1, SS may remain low between successive transfers. See
Section 15.5.1, “SPI Clock Formats” for more details.
Because the transmitter and receiver are double buffered, a second byte, in addition to the byte currently
being shifted out, can be queued into the transmit data buffer, and a previously received character can be
in the receive data buffer while a new character is being shifted in. The SPTEF flag indicates when the
transmit buffer has room for a new character. The SPRF flag indicates when a received character is
available in the receive data buffer. The received character must be read out of the receive buffer (read
SPIxD) before the next transfer is finished or a receive overrun error results.
In the case of a receive overrun, the new data is lost because the receive buffer still held the previous
character and was not ready to accept the new data. There is no indication for such an overrun condition
so the application system designer must ensure that previous data has been read from the receive buffer
before a new transfer is initiated.
15.5.1
SPI Clock Formats
To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI
system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock
formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses
between two different clock phase relationships between the clock and data.
Figure 15-10 shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are
shown for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle
after the sixteenth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits
depending on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these
waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform
applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the
MC9S08SH32 Series Data Sheet, Rev. 3
232
Freescale Semiconductor
Chapter 15 Serial Peripheral Interface (S08SPIV3)
MOSI output pin from a master and the MISO waveform applies to the MISO output from a slave. The SS
OUT waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The
master SS output goes to active low one-half SPSCK cycle before the start of the transfer and goes back
high at the end of the eighth bit time of the transfer. The SS IN waveform applies to the slave select input
of a slave.
BIT TIME #
(REFERENCE)
1
2
...
6
7
8
BIT 7
BIT 0
BIT 6
BIT 1
...
...
BIT 2
BIT 5
BIT 1
BIT 6
BIT 0
BIT 7
SPSCK
(CPOL = 0)
SPSCK
(CPOL = 1)
SAMPLE IN
(MISO OR MOSI)
MOSI
(MASTER OUT)
MSB FIRST
LSB FIRST
MISO
(SLAVE OUT)
SS OUT
(MASTER)
SS IN
(SLAVE)
Figure 15-10. SPI Clock Formats (CPHA = 1)
When CPHA = 1, the slave begins to drive its MISO output when SS goes to active low, but the data is not
defined until the first SPSCK edge. The first SPSCK edge shifts the first bit of data from the shifter onto
the MOSI output of the master and the MISO output of the slave. The next SPSCK edge causes both the
master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the
third SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled,
and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the
master and slave, respectively. When CHPA = 1, the slave’s SS input is not required to go to its inactive
high level between transfers.
Figure 15-11 shows the clock formats when CPHA = 0. At the top of the figure, the eight bit times are
shown for reference with bit 1 starting as the slave is selected (SS IN goes low), and bit 8 ends at the last
SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending on the setting
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
233
Chapter 15 Serial Peripheral Interface (S08SPIV3)
in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a
specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input
of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a
master and the MISO waveform applies to the MISO output from a slave. The SS OUT waveform applies
to the slave select output from a master (provided MODFEN and SSOE = 1). The master SS output goes
to active low at the start of the first bit time of the transfer and goes back high one-half SPSCK cycle after
the end of the eighth bit time of the transfer. The SS IN waveform applies to the slave select input of a
slave.
BIT TIME #
(REFERENCE)
1
2
BIT 7
BIT 0
BIT 6
BIT 1
...
6
7
8
BIT 2
BIT 5
BIT 1
BIT 6
BIT 0
BIT 7
SPSCK
(CPOL = 0)
SPSCK
(CPOL = 1)
SAMPLE IN
(MISO OR MOSI)
MOSI
(MASTER OUT)
MSB FIRST
LSB FIRST
...
...
MISO
(SLAVE OUT)
SS OUT
(MASTER)
SS IN
(SLAVE)
Figure 15-11. SPI Clock Formats (CPHA = 0)
When CPHA = 0, the slave begins to drive its MISO output with the first data bit value (MSB or LSB
depending on LSBFE) when SS goes to active low. The first SPSCK edge causes both the master and the
slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the second SPSCK
edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled and shifts the
second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and
slave, respectively. When CPHA = 0, the slave’s SS input must go to its inactive high level between
transfers.
MC9S08SH32 Series Data Sheet, Rev. 3
234
Freescale Semiconductor
Chapter 15 Serial Peripheral Interface (S08SPIV3)
15.5.2
SPI Interrupts
There are three flag bits, two interrupt mask bits, and one interrupt vector associated with the SPI system.
The SPI interrupt enable mask (SPIE) enables interrupts from the SPI receiver full flag (SPRF) and mode
fault flag (MODF). The SPI transmit interrupt enable mask (SPTIE) enables interrupts from the SPI
transmit buffer empty flag (SPTEF). When one of the flag bits is set, and the associated interrupt mask bit
is set, a hardware interrupt request is sent to the CPU. If the interrupt mask bits are cleared, software can
poll the associated flag bits instead of using interrupts. The SPI interrupt service routine (ISR) should
check the flag bits to determine what event caused the interrupt. The service routine should also clear the
flag bit(s) before returning from the ISR (usually near the beginning of the ISR).
15.5.3
Mode Fault Detection
A mode fault occurs and the mode fault flag (MODF) becomes set when a master SPI device detects an
error on the SS pin (provided the SS pin is configured as the mode fault input signal). The SS pin is
configured to be the mode fault input signal when MSTR = 1, mode fault enable is set (MODFEN = 1),
and slave select output enable is clear (SSOE = 0).
The mode fault detection feature can be used in a system where more than one SPI device might become
a master at the same time. The error is detected when a master’s SS pin is low, indicating that some other
SPI device is trying to address this master as if it were a slave. This could indicate a harmful output driver
conflict, so the mode fault logic is designed to disable all SPI output drivers when such an error is detected.
When a mode fault is detected, MODF is set and MSTR is cleared to change the SPI configuration back
to slave mode. The output drivers on the SPSCK, MOSI, and MISO (if not bidirectional mode) are
disabled.
MODF is cleared by reading it while it is set, then writing to the SPI control register 1 (SPIxC1). User
software should verify the error condition has been corrected before changing the SPI back to master
mode.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
235
Chapter 15 Serial Peripheral Interface (S08SPIV3)
MC9S08SH32 Series Data Sheet, Rev. 3
236
Freescale Semiconductor
Chapter 16
Timer Pulse-Width Modulator (S08TPMV3)
16.1
Introduction
The TPM uses one input/output (I/O) pin per channel, TPMxCHn where x is the TPM number (for
example, 1 or 2) and n is the channel number (for example, 0–1). The TPM shares its I/O pins with
general-purpose I/O port pins (refer to the Pins and Connections chapter for more information).
All MC9S08SH32 Series MCUs have two TPM modules.
Figure 16-1 shows the MC9S08SH32 Series block diagram with the TPM modules highlighted.
16.1.1
TPM Configuration Information
The external clock for the MTIM module, TCLK, is selected by setting CLKS = 1:1 or 1:0 in MTIMCLK,
which selects the TCLK pin input. The TCLK input can be enabled as external clock inputs to both the
MTIM and TPM modules simultaneously.
.
16.1.2
TPM Pin Repositioning
The TPM modules pins, TPM1CHx and TPM2CHx can be repositioned under software control using
TxCHnPS bits in SOPT2 as shown in Table 16-1.
Table 16-1. TPM Position Options
TxCHxPS in SOPT2
Port Pin for TPM2CH1
Port Pin for TPM2CH0
Port Pin for TPM1CH1
Port Pin for TPM1CH0
0 (default)
PTB4
PTA1
PTB5
PTA0
1
PTA7
PTA6
PTC1
PTC0
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
237
Chapter 16 Timer Pulse-Width Modulator (S08TPMV3)
BKGD/MS
HCS08 CORE
DEBUG MODULE (DBG)
PTA6/TPM2CH0
HCS08 SYSTEM CONTROL
RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT
IRQ
SCL
IRQ
IIC MODULE (IIC)
LVD
SERIAL PERIPHERAL
INTERFACE MODULE (SPI)
USER FLASH
(MC9S08SH32 = 32,768 BYTES)
(MC9S08SH16 = 16,384 BYTES)
SERIAL COMMUNICATIONS
INTERFACE MODULE (SCI)
USER RAM
(MC9S08SH32/16 = 1024 BYTES)
16-BIT TIMER/PWM
MODULE (TPM1)
REAL-TIME COUNTER (RTC)
40-MHz INTERNAL CLOCK
SOURCE (ICS)
LOW-POWER OSCILLATOR
31.25 kHz to 38.4 kHz
1 MHz to 16 MHz
(XOSC)
TCLK
16-BIT TIMER/PWM
MODULE (TPM2)
EXTAL
XTAL
ANALOG COMPARATOR
(ACMP)
PTA5/IRQ/TCLK/RESET
PORT A
8-BIT MODULO TIMER
MODULE (MTIM)
SDA
VSSA/VREFL
VDDA
VSSA
PTA2/PIA2/SD/ADP2
PTB7/SCL/EXTAL
PTB6/SDA/XTAL
TCLK
TPM1CH0
PTB4/TPM2CH1/MISO
PTB3/PIB3/MOSI/ADP7
TPM1CH1
PTB5/TPM1CH1/SS
PTB2/PIB2/SPSCK/ADP6
PTB1/PIB1/TxD/ADP5
TCLK
TPM2CH0
PTB0/PIB0/RxD/ADP4
TPM2CH1
ACMPO
ACMP–
ACMP+
PTC7/ADP15
PTC6/ADP14
PTC5/ADP13
10-BIT
ANALOG-TO-DIGITAL
CONVERTER (ADC)
ADP15-ADP0
PORT C
VDDA/VREFH
VOLTAGE REGULATOR
PTA3/PIA3/SCL/ADP3
RxD
TxD
VSS
VDD
PTA4/ACMPO/BKGD/MS
PTA1/PIA1/TPM2CH0/ADP1/ACMP–
PTA0/PIA0/TPM1CH0/ADP0/ACMP+
SS
MISO
MOSI
SPSCK
PORT B
CPU
COP
PTA7/TPM2CH1
BDC
PTC4/ADP12
PTC3/ADP11
PTC2/ADP10
PTC1/TPM1CH1/ADP9
VREFH
VREFL
PTC0/TPM1CH0/ADP8
= Pin can be enabled as part of the ganged output drive feature
NOTE: - PTC7-PTC0 and PTA7-PTA6 not available on 16--pin Packages
- PTC7-PTC4 and PTA7-PTA6 not available on 20-pin Packages
- For the 16-pin and 20-pin packages: VDDA/VREFH and VSSA/VREFL , are double bonded to VDD and VSS respectively.
- When PTA4 is configured as BKGD, pin becomes bi-directional.
Figure 16-1. MC9S08SH32 Series Block Diagram Highlighting TPM Block and Pins
MC9S08SH32 Series Data Sheet, Rev. 3
238
Freescale Semiconductor
Chapter 16 Timer/PWM Module (S08TPMV3)
16.1.3
Features
The TPM includes these distinctive features:
• One to eight channels:
— Each channel may be input capture, output compare, or edge-aligned PWM
— Rising-Edge, falling-edge, or any-edge input capture trigger
— Set, clear, or toggle output compare action
— Selectable polarity on PWM outputs
• Module may be configured for buffered, center-aligned pulse-width-modulation (CPWM) on all
channels
• Timer clock source selectable as prescaled bus clock, fixed system clock, or an external clock pin
— Prescale taps for divide-by 1, 2, 4, 8, 16, 32, 64, or 128
— Fixed system clock source are synchronized to the bus clock by an on-chip synchronization
circuit
— External clock pin may be shared with any timer channel pin or a separated input pin
• 16-bit free-running or modulo up/down count operation
• Timer system enable
• One interrupt per channel plus terminal count interrupt
16.1.4
Modes of Operation
In general, TPM channels may be independently configured to operate in input capture, output compare,
or edge-aligned PWM modes. A control bit allows the whole TPM (all channels) to switch to
center-aligned PWM mode. When center-aligned PWM mode is selected, input capture, output compare,
and edge-aligned PWM functions are not available on any channels of this TPM module.
When the microcontroller is in active BDM background or BDM foreground mode, the TPM temporarily
suspends all counting until the microcontroller returns to normal user operating mode. During stop mode,
all system clocks, including the main oscillator, are stopped; therefore, the TPM is effectively disabled
until clocks resume. During wait mode, the TPM continues to operate normally. Provided the TPM does
not need to produce a real time reference or provide the interrupt source(s) needed to wake the MCU from
wait mode, the user can save power by disabling TPM functions before entering wait mode.
• Input capture mode
When a selected edge event occurs on the associated MCU pin, the current value of the 16-bit timer
counter is captured into the channel value register and an interrupt flag bit is set. Rising edges,
falling edges, any edge, or no edge (disable channel) may be selected as the active edge which
triggers the input capture.
• Output compare mode
When the value in the timer counter register matches the channel value register, an interrupt flag
bit is set, and a selected output action is forced on the associated MCU pin. The output compare
action may be selected to force the pin to zero, force the pin to one, toggle the pin, or ignore the
pin (used for software timing functions).
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
239
Chapter 16 Timer/PWM Module (S08TPMV3)
•
•
Edge-aligned PWM mode
The value of a 16-bit modulo register plus 1 sets the period of the PWM output signal. The channel
value register sets the duty cycle of the PWM output signal. The user may also choose the polarity
of the PWM output signal. Interrupts are available at the end of the period and at the duty-cycle
transition point. This type of PWM signal is called edge-aligned because the leading edges of all
PWM signals are aligned with the beginning of the period, which is the same for all channels within
a TPM.
Center-aligned PWM mode
Twice the value of a 16-bit modulo register sets the period of the PWM output, and the
channel-value register sets the half-duty-cycle duration. The timer counter counts up until it
reaches the modulo value and then counts down until it reaches zero. As the count matches the
channel value register while counting down, the PWM output becomes active. When the count
matches the channel value register while counting up, the PWM output becomes inactive. This type
of PWM signal is called center-aligned because the centers of the active duty cycle periods for all
channels are aligned with a count value of zero. This type of PWM is required for types of motors
used in small appliances.
This is a high-level description only. Detailed descriptions of operating modes are in later sections.
16.1.5
Block Diagram
The TPM uses one input/output (I/O) pin per channel, TPMxCHn (timer channel n) where n is the channel
number (1-8). The TPM shares its I/O pins with general purpose I/O port pins (refer to I/O pin descriptions
in full-chip specification for the specific chip implementation).
Figure 16-2 shows the TPM structure. The central component of the TPM is the 16-bit counter that can
operate as a free-running counter or a modulo up/down counter. The TPM counter (when operating in
normal up-counting mode) provides the timing reference for the input capture, output compare, and
edge-aligned PWM functions. The timer counter modulo registers, TPMxMODH:TPMxMODL, control
the modulo value of the counter (the values 0x0000 or 0xFFFF effectively make the counter free running).
Software can read the counter value at any time without affecting the counting sequence. Any write to
either half of the TPMxCNT counter resets the counter, regardless of the data value written.
MC9S08SH32 Series Data Sheet, Rev. 3
240
Freescale Semiconductor
Chapter 16 Timer/PWM Module (S08TPMV3)
BUS CLOCK
FIXED SYSTEM CLOCK
SYNC
EXTERNAL CLOCK
CLOCK SOURCE
SELECT
OFF, BUS, FIXED
SYSTEM CLOCK, EXT
PRESCALE AND SELECT
³1, 2, 4, 8, 16, 32, 64,
or ³128
CLKSB:CLKSA
PS2:PS1:PS0
CPWMS
16-BIT COUNTER
TOF
COUNTER RESET
TOIE
INTERRUPT
LOGIC
16-BIT COMPARATOR
TPMxMODH:TPMxMODL
CHANNEL 0
ELS0B
ELS0A
PORT
LOGIC
TPMxCH0
16-BIT COMPARATOR
CH0F
TPMxC0VH:TPMxC0VL
INTERNAL BUS
16-BIT LATCH
CHANNEL 1
MS0B
MS0A
ELS1B
ELS1A
CH0IE
INTERRUPT
LOGIC
PORT
LOGIC
TPMxCH1
16-BIT COMPARATOR
CH1F
TPMxC1VH:TPMxC1VL
16-BIT LATCH
MS1B
CH1IE
MS1A
INTERRUPT
LOGIC
Up to 8 channels
CHANNEL 7
ELS7B
ELS7A
PORT
LOGIC
TPMxCH7
16-BIT COMPARATOR
CH7F
TPMxC7VH:TPMxC7VL
16-BIT LATCH
MS7B
MS7A
CH7IE
INTERRUPT
LOGIC
Figure 16-2. TPM Block Diagram
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
241
Chapter 16 Timer/PWM Module (S08TPMV3)
The TPM channels are programmable independently as input capture, output compare, or edge-aligned
PWM channels. Alternately, the TPM can be configured to produce CPWM outputs on all channels. When
the TPM is configured for CPWMs, the counter operates as an up/down counter; input capture, output
compare, and EPWM functions are not practical.
If a channel is configured as input capture, an internal pullup device may be enabled for that channel. The
details of how a module interacts with pin controls depends upon the chip implementation because the I/O
pins and associated general purpose I/O controls are not part of the module. Refer to the discussion of the
I/O port logic in a full-chip specification.
Because center-aligned PWMs are usually used to drive 3-phase AC-induction motors and brushless DC
motors, they are typically used in sets of three or six channels.
16.2
Signal Description
Table 16-2 shows the user-accessible signals for the TPM. The number of channels may be varied from
one to eight. When an external clock is included, it can be shared with the same pin as any TPM channel;
however, it could be connected to a separate input pin. Refer to the I/O pin descriptions in full-chip
specification for the specific chip implementation.
Table 16-2. Signal Properties
Name
Function
EXTCLK1
2
TPMxCHn
External clock source which may be selected to drive the TPM counter.
I/O pin associated with TPM channel n
1
When preset, this signal can share any channel pin; however depending upon full-chip
implementation, this signal could be connected to a separate external pin.
2 n=channel number (1 to 8)
Refer to documentation for the full-chip for details about reset states, port connections, and whether there
is any pullup device on these pins.
TPM channel pins can be associated with general purpose I/O pins and have passive pullup devices which
can be enabled with a control bit when the TPM or general purpose I/O controls have configured the
associated pin as an input. When no TPM function is enabled to use a corresponding pin, the pin reverts
to being controlled by general purpose I/O controls, including the port-data and data-direction registers.
Immediately after reset, no TPM functions are enabled, so all associated pins revert to general purpose I/O
control.
16.2.1
Detailed Signal Descriptions
This section describes each user-accessible pin signal in detail. Although Table 16-2 grouped all channel
pins together, any TPM pin can be shared with the external clock source signal. Since I/O pin logic is not
part of the TPM, refer to full-chip documentation for a specific derivative for more details about the
interaction of TPM pin functions and general purpose I/O controls including port data, data direction, and
pullup controls.
MC9S08SH32 Series Data Sheet, Rev. 3
242
Freescale Semiconductor
Chapter 16 Timer/PWM Module (S08TPMV3)
16.2.1.1
EXTCLK — External Clock Source
Control bits in the timer status and control register allow the user to select nothing (timer disable), the
bus-rate clock (the normal default source), a crystal-related clock, or an external clock as the clock which
drives the TPM prescaler and subsequently the 16-bit TPM counter. The external clock source is
synchronized in the TPM. The bus clock clocks the synchronizer; the frequency of the external source must
be no more than one-fourth the frequency of the bus-rate clock, to meet Nyquist criteria and allowing for
jitter.
The external clock signal shares the same pin as a channel I/O pin, so the channel pin will not be usable
for channel I/O function when selected as the external clock source. It is the user’s responsibility to avoid
such settings. If this pin is used as an external clock source (CLKSB:CLKSA = 1:1), the channel can still
be used in output compare mode as a software timer (ELSnB:ELSnA = 0:0).
16.2.1.2
TPMxCHn — TPM Channel n I/O Pin(s)
Each TPM channel is associated with an I/O pin on the MCU. The function of this pin depends on the
channel configuration. The TPM pins share with general purpose I/O pins, where each pin has a port data
register bit, and a data direction control bit, and the port has optional passive pullups which may be enabled
whenever a port pin is acting as an input.
The TPM channel does not control the I/O pin when (ELSnB:ELSnA = 0:0) or when (CLKSB:CLKSA =
0:0) so it normally reverts to general purpose I/O control. When CPWMS = 1 (and ELSnB:ELSnA not =
0:0), all channels within the TPM are configured for center-aligned PWM and the TPMxCHn pins are all
controlled by the TPM system. When CPWMS=0, the MSnB:MSnA control bits determine whether the
channel is configured for input capture, output compare, or edge-aligned PWM.
When a channel is configured for input capture (CPWMS=0, MSnB:MSnA = 0:0 and ELSnB:ELSnA not
= 0:0), the TPMxCHn pin is forced to act as an edge-sensitive input to the TPM. ELSnB:ELSnA control
bits determine what polarity edge or edges will trigger input-capture events. A synchronizer based on the
bus clock is used to synchronize input edges to the bus clock. This implies the minimum pulse width—that
can be reliably detected—on an input capture pin is four bus clock periods (with ideal clock pulses as near
as two bus clocks can be detected). TPM uses this pin as an input capture input to override the port data
and data direction controls for the same pin.
When a channel is configured for output compare (CPWMS=0, MSnB:MSnA = 0:1 and ELSnB:ELSnA
not = 0:0), the associated data direction control is overridden, the TPMxCHn pin is considered an output
controlled by the TPM, and the ELSnB:ELSnA control bits determine how the pin is controlled. The
remaining three combinations of ELSnB:ELSnA determine whether the TPMxCHn pin is toggled, cleared,
or set each time the 16-bit channel value register matches the timer counter.
When the output compare toggle mode is initially selected, the previous value on the pin is driven out until
the next output compare event—then the pin is toggled.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
243
Chapter 16 Timer/PWM Module (S08TPMV3)
When a channel is configured for edge-aligned PWM (CPWMS=0, MSnB=1 and ELSnB:ELSnA not =
0:0), the data direction is overridden, the TPMxCHn pin is forced to be an output controlled by the TPM,
and ELSnA controls the polarity of the PWM output signal on the pin. When ELSnB:ELSnA=1:0, the
TPMxCHn pin is forced high at the start of each new period (TPMxCNT=0x0000), and the pin is forced
low when the channel value register matches the timer counter. When ELSnA=1, the TPMxCHn pin is
forced low at the start of each new period (TPMxCNT=0x0000), and the pin is forced high when the
channel value register matches the timer counter.
TPMxMODH:TPMxMODL = 0x0008
TPMxMODH:TPMxMODL = 0x0005
TPMxCNTH:TPMxCNTL...
0
1
2
3
4
5
6
7
8
0
1
2
...
2
...
TPMxCHn
CHnF BIT
TOF BIT
Figure 16-3. High-True Pulse of an Edge-Aligned PWM
TPMxMODH:TPMxMODL = 0x0008
TPMxMODH:TPMxMODL = 0x0005
TPMxCNTH:TPMxCNTL...
0
1
2
3
4
5
6
7
8
0
1
TPMxCHn
CHnF BIT
TOF BIT
Figure 16-4. Low-True Pulse of an Edge-Aligned PWM
MC9S08SH32 Series Data Sheet, Rev. 3
244
Freescale Semiconductor
Chapter 16 Timer/PWM Module (S08TPMV3)
When the TPM is configured for center-aligned PWM (and ELSnB:ELSnA not = 0:0), the data direction
for all channels in this TPM are overridden, the TPMxCHn pins are forced to be outputs controlled by the
TPM, and the ELSnA bits control the polarity of each TPMxCHn output. If ELSnB:ELSnA=1:0, the
corresponding TPMxCHn pin is cleared when the timer counter is counting up, and the channel value
register matches the timer counter; the TPMxCHn pin is set when the timer counter is counting down, and
the channel value register matches the timer counter. If ELSnA=1, the corresponding TPMxCHn pin is set
when the timer counter is counting up and the channel value register matches the timer counter; the
TPMxCHn pin is cleared when the timer counter is counting down and the channel value register matches
the timer counter.
TPMxMODH:TPMxMODL = 0x0008
TPMxMODH:TPMxMODL = 0x0005
TPMxCNTH:TPMxCNTL ...
7
8
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
8
7
6
5
...
7
8
7
6
5
...
TPMxCHn
CHnF BIT
TOF BIT
Figure 16-5. High-True Pulse of a Center-Aligned PWM
TPMxMODH:TPMxMODL = 0x0008
TPMxMODH:TPMxMODL = 0x0005
TPMxCNTH:TPMxCNTL ...
7
8
7
6
5
4
3
2
1
0
1
2
3
4
5
6
TPMxCHn
CHnF BIT
TOF BIT
Figure 16-6. Low-True Pulse of a Center-Aligned PWM
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
245
Chapter 16 Timer/PWM Module (S08TPMV3)
16.3
Register Definition
This section consists of register descriptions in address order. A typical MCU system may contain multiple
TPMs, and each TPM may have one to eight channels, so register names include placeholder characters to
identify which TPM and which channel is being referenced. For example, TPMxCnSC refers to timer
(TPM) x, channel n. TPM1C2SC would be the status and control register for channel 2 of timer 1.
16.3.1
TPM Status and Control Register (TPMxSC)
TPMxSC contains the overflow status flag and control bits used to configure the interrupt enable, TPM
configuration, clock source, and prescale factor. These controls relate to all channels within this timer
module.
7
R
TOF
W
0
Reset
0
6
5
4
3
2
1
0
TOIE
CPWMS
CLKSB
CLKSA
PS2
PS1
PS0
0
0
0
0
0
0
0
Figure 16-7. TPM Status and Control Register (TPMxSC)
Table 16-3. TPMxSC Field Descriptions
Field
Description
7
TOF
Timer overflow flag. This read/write flag is set when the TPM counter resets to 0x0000 after reaching the modulo
value programmed in the TPM counter modulo registers. Clear TOF by reading the TPM status and control
register when TOF is set and then writing a logic 0 to TOF. If another TPM overflow occurs before the clearing
sequence is complete, the sequence is reset so TOF would remain set after the clear sequence was completed
for the earlier TOF. This is done so a TOF interrupt request cannot be lost during the clearing sequence for a
previous TOF. Reset clears TOF. Writing a logic 1 to TOF has no effect.
0 TPM counter has not reached modulo value or overflow
1 TPM counter has overflowed
6
TOIE
Timer overflow interrupt enable. This read/write bit enables TPM overflow interrupts. If TOIE is set, an interrupt is
generated when TOF equals one. Reset clears TOIE.
0 TOF interrupts inhibited (use for software polling)
1 TOF interrupts enabled
5
CPWMS
Center-aligned PWM select. When present, this read/write bit selects CPWM operating mode. By default, the TPM
operates in up-counting mode for input capture, output compare, and edge-aligned PWM functions. Setting
CPWMS reconfigures the TPM to operate in up/down counting mode for CPWM functions. Reset clears CPWMS.
0 All channels operate as input capture, output compare, or edge-aligned PWM mode as selected by the
MSnB:MSnA control bits in each channel’s status and control register.
1 All channels operate in center-aligned PWM mode.
MC9S08SH32 Series Data Sheet, Rev. 3
246
Freescale Semiconductor
Chapter 16 Timer/PWM Module (S08TPMV3)
Table 16-3. TPMxSC Field Descriptions (continued)
Field
Description
4–3
Clock source selects. As shown in Table 16-4, this 2-bit field is used to disable the TPM system or select one of
CLKS[B:A] three clock sources to drive the counter prescaler. The fixed system clock source is only meaningful in systems
with a PLL-based or FLL-based system clock. When there is no PLL or FLL, the fixed-system clock source is the
same as the bus rate clock. The external source is synchronized to the bus clock by TPM module, and the fixed
system clock source (when a PLL or FLL is present) is synchronized to the bus clock by an on-chip
synchronization circuit. When a PLL or FLL is present but not enabled, the fixed-system clock source is the same
as the bus-rate clock.
2–0
PS[2:0]
Prescale factor select. This 3-bit field selects one of 8 division factors for the TPM clock input as shown in
Table 16-5. This prescaler is located after any clock source synchronization or clock source selection so it affects
the clock source selected to drive the TPM system. The new prescale factor will affect the clock source on the
next system clock cycle after the new value is updated into the register bits.
Table 16-4. TPM-Clock-Source Selection
CLKSB:CLKSA
TPM Clock Source to Prescaler Input
00
No clock selected (TPM counter disable)
01
Bus rate clock
10
Fixed system clock
11
External source
Table 16-5. Prescale Factor Selection
16.3.2
PS2:PS1:PS0
TPM Clock Source Divided-by
000
1
001
2
010
4
011
8
100
16
101
32
110
64
111
128
TPM-Counter Registers (TPMxCNTH:TPMxCNTL)
The two read-only TPM counter registers contain the high and low bytes of the value in the TPM counter.
Reading either byte (TPMxCNTH or TPMxCNTL) latches the contents of both bytes into a buffer where
they remain latched until the other half is read. This allows coherent 16-bit reads in either big-endian or
little-endian order which makes this more friendly to various compiler implementations. The coherency
mechanism is automatically restarted by an MCU reset or any write to the timer status/control register
(TPMxSC).
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
247
Chapter 16 Timer/PWM Module (S08TPMV3)
Reset clears the TPM counter registers. Writing any value to TPMxCNTH or TPMxCNTL also clears the
TPM counter (TPMxCNTH:TPMxCNTL) and resets the coherency mechanism, regardless of the data
involved in the write.
R
7
6
5
4
3
2
1
0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
W
Reset
Any write to TPMxCNTH clears the 16-bit counter
0
0
0
0
0
0
Figure 16-8. TPM Counter Register High (TPMxCNTH)
R
7
6
5
4
3
2
1
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
W
Reset
Any write to TPMxCNTL clears the 16-bit counter
0
0
0
0
0
0
Figure 16-9. TPM Counter Register Low (TPMxCNTL)
When BDM is active, the timer counter is frozen (this is the value that will be read by user); the coherency
mechanism is frozen such that the buffer latches remain in the state they were in when the BDM became
active, even if one or both counter halves are read while BDM is active. This assures that if the user was
in the middle of reading a 16-bit register when BDM became active, it will read the appropriate value from
the other half of the 16-bit value after returning to normal execution.
In BDM mode, writing any value to TPMxSC, TPMxCNTH or TPMxCNTL registers resets the read
coherency mechanism of the TPMxCNTH:L registers, regardless of the data involved in the write.
16.3.3
TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)
The read/write TPM modulo registers contain the modulo value for the TPM counter. After the TPM
counter reaches the modulo value, the TPM counter resumes counting from 0x0000 at the next clock, and
the overflow flag (TOF) becomes set. Writing to TPMxMODH or TPMxMODL inhibits the TOF bit and
overflow interrupts until the other byte is written. Reset sets the TPM counter modulo registers to 0x0000
which results in a free running timer counter (modulo disabled).
Writing to either byte (TPMxMODH or TPMxMODL) latches the value into a buffer and the registers are
updated with the value of their write buffer according to the value of CLKSB:CLKSA bits, so:
• If (CLKSB:CLKSA = 0:0), then the registers are updated when the second byte is written
• If (CLKSB:CLKSA not = 0:0), then the registers are updated after both bytes were written, and the
TPM counter changes from (TPMxMODH:TPMxMODL - 1) to (TPMxMODH:TPMxMODL). If
the TPM counter is a free-running counter, the update is made when the TPM counter changes from
0xFFFE to 0xFFFF
The latching mechanism may be manually reset by writing to the TPMxSC address (whether BDM is
active or not).
MC9S08SH32 Series Data Sheet, Rev. 3
248
Freescale Semiconductor
Chapter 16 Timer/PWM Module (S08TPMV3)
When BDM is active, the coherency mechanism is frozen (unless reset by writing to TPMxSC register)
such that the buffer latches remain in the state they were in when the BDM became active, even if one or
both halves of the modulo register are written while BDM is active. Any write to the modulo registers
bypasses the buffer latches and directly writes to the modulo register while BDM is active.
7
6
5
4
3
2
1
0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
R
W
Reset
Figure 16-10. TPM Counter Modulo Register High (TPMxMODH)
7
6
5
4
3
2
1
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 16-11. TPM Counter Modulo Register Low (TPMxMODL)
Reset the TPM counter before writing to the TPM modulo registers to avoid confusion about when the first
counter overflow will occur.
16.3.4
TPM Channel n Status and Control Register (TPMxCnSC)
TPMxCnSC contains the channel-interrupt-status flag and control bits used to configure the interrupt
enable, channel configuration, and pin function.
7
R
6
5
4
3
2
CHnIE
MSnB
MSnA
ELSnB
ELSnA
0
0
0
0
0
CHnF
W
0
Reset
0
1
0
0
0
0
0
= Unimplemented or Reserved
Figure 16-12. TPM Channel n Status and Control Register (TPMxCnSC)
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
249
Chapter 16 Timer/PWM Module (S08TPMV3)
Table 16-6. TPMxCnSC Field Descriptions
Field
Description
7
CHnF
Channel n flag. When channel n is an input-capture channel, this read/write bit is set when an active edge occurs
on the channel n pin. When channel n is an output compare or edge-aligned/center-aligned PWM channel, CHnF
is set when the value in the TPM counter registers matches the value in the TPM channel n value registers. When
channel n is an edge-aligned/center-aligned PWM channel and the duty cycle is set to 0% or 100%, CHnF will not
be set even when the value in the TPM counter registers matches the value in the TPM channel n value registers.
A corresponding interrupt is requested when CHnF is set and interrupts are enabled (CHnIE = 1). Clear CHnF by
reading TPMxCnSC while CHnF is set and then writing a logic 0 to CHnF. If another interrupt request occurs
before the clearing sequence is complete, the sequence is reset so CHnF remains set after the clear sequence
completed for the earlier CHnF. This is done so a CHnF interrupt request cannot be lost due to clearing a previous
CHnF.
Reset clears the CHnF bit. Writing a logic 1 to CHnF has no effect.
0 No input capture or output compare event occurred on channel n
1 Input capture or output compare event on channel n
6
CHnIE
Channel n interrupt enable. This read/write bit enables interrupts from channel n. Reset clears CHnIE.
0 Channel n interrupt requests disabled (use for software polling)
1 Channel n interrupt requests enabled
5
MSnB
Mode select B for TPM channel n. When CPWMS=0, MSnB=1 configures TPM channel n for edge-aligned PWM
mode. Refer to the summary of channel mode and setup controls in Table 16-7.
4
MSnA
Mode select A for TPM channel n. When CPWMS=0 and MSnB=0, MSnA configures TPM channel n for
input-capture mode or output compare mode. Refer to Table 16-7 for a summary of channel mode and setup
controls.
Note: If the associated port pin is not stable for at least two bus clock cycles before changing to input capture
mode, it is possible to get an unexpected indication of an edge trigger.
3–2
ELSnB
ELSnA
Edge/level select bits. Depending upon the operating mode for the timer channel as set by CPWMS:MSnB:MSnA
and shown in Table 16-7, these bits select the polarity of the input edge that triggers an input capture event, select
the level that will be driven in response to an output compare match, or select the polarity of the PWM output.
Setting ELSnB:ELSnA to 0:0 configures the related timer pin as a general purpose I/O pin not related to any timer
functions. This function is typically used to temporarily disable an input capture channel or to make the timer pin
available as a general purpose I/O pin when the associated timer channel is set up as a software timer that does
not require the use of a pin.
Table 16-7. Mode, Edge, and Level Selection
CPWMS
MSnB:MSnA
ELSnB:ELSnA
X
XX
00
Mode
Configuration
Pin not used for TPM - revert to general
purpose I/O or other peripheral control
MC9S08SH32 Series Data Sheet, Rev. 3
250
Freescale Semiconductor
Chapter 16 Timer/PWM Module (S08TPMV3)
Table 16-7. Mode, Edge, and Level Selection
CPWMS
MSnB:MSnA
ELSnB:ELSnA
Mode
Configuration
0
00
01
Input capture
Capture on rising edge
only
01
10
Capture on falling edge
only
11
Capture on rising or
falling edge
01
1X
Output compare
10
Clear output on
compare
11
Set output on compare
10
Edge-aligned
PWM
X1
1
XX
High-true pulses (clear
output on compare)
Low-true pulses (set
output on compare)
10
Center-aligned
PWM
X1
16.3.5
Toggle output on
compare
High-true pulses (clear
output on compare-up)
Low-true pulses (set
output on compare-up)
TPM Channel Value Registers (TPMxCnVH:TPMxCnVL)
These read/write registers contain the captured TPM counter value of the input capture function or the
output compare value for the output compare or PWM functions. The channel registers are cleared by
reset.
7
6
5
4
3
2
1
0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
R
W
Reset
Figure 16-13. TPM Channel Value Register High (TPMxCnVH)
7
6
5
4
3
2
1
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
R
W
Reset
Figure 16-14. TPM Channel Value Register Low (TPMxCnVL)
In input capture mode, reading either byte (TPMxCnVH or TPMxCnVL) latches the contents of both bytes
into a buffer where they remain latched until the other half is read. This latching mechanism also resets
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
251
Chapter 16 Timer/PWM Module (S08TPMV3)
(becomes unlatched) when the TPMxCnSC register is written (whether BDM mode is active or not). Any
write to the channel registers will be ignored during the input capture mode.
When BDM is active, the coherency mechanism is frozen (unless reset by writing to TPMxCnSC register)
such that the buffer latches remain in the state they were in when the BDM became active, even if one or
both halves of the channel register are read while BDM is active. This assures that if the user was in the
middle of reading a 16-bit register when BDM became active, it will read the appropriate value from the
other half of the 16-bit value after returning to normal execution. The value read from the TPMxCnVH
and TPMxCnVL registers in BDM mode is the value of these registers and not the value of their read
buffer.
In output compare or PWM modes, writing to either byte (TPMxCnVH or TPMxCnVL) latches the value
into a buffer. After both bytes are written, they are transferred as a coherent 16-bit value into the
timer-channel registers according to the value of CLKSB:CLKSA bits and the selected mode, so:
• If (CLKSB:CLKSA = 0:0), then the registers are updated when the second byte is written.
• If (CLKSB:CLKSA not = 0:0 and in output compare mode) then the registers are updated after the
second byte is written and on the next change of the TPM counter (end of the prescaler counting).
• If (CLKSB:CLKSA not = 0:0 and in EPWM or CPWM modes), then the registers are updated after
the both bytes were written, and the TPM counter changes from (TPMxMODH:TPMxMODL - 1)
to (TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter then the update is
made when the TPM counter changes from 0xFFFE to 0xFFFF.
The latching mechanism may be manually reset by writing to the TPMxCnSC register (whether BDM
mode is active or not). This latching mechanism allows coherent 16-bit writes in either big-endian or
little-endian order which is friendly to various compiler implementations.
When BDM is active, the coherency mechanism is frozen such that the buffer latches remain in the state
they were in when the BDM became active even if one or both halves of the channel register are written
while BDM is active. Any write to the channel registers bypasses the buffer latches and directly write to
the channel register while BDM is active. The values written to the channel register while BDM is active
are used for PWM & output compare operation once normal execution resumes. Writes to the channel
registers while BDM is active do not interfere with partial completion of a coherency sequence. After the
coherency mechanism has been fully exercised, the channel registers are updated using the buffered values
written (while BDM was not active) by the user.
16.4
Functional Description
All TPM functions are associated with a central 16-bit counter which allows flexible selection of the clock
source and prescale factor. There is also a 16-bit modulo register associated with the main counter.
The CPWMS control bit chooses between center-aligned PWM operation for all channels in the TPM
(CPWMS=1) or general purpose timing functions (CPWMS=0) where each channel can independently be
configured to operate in input capture, output compare, or edge-aligned PWM mode. The CPWMS control
bit is located in the main TPM status and control register because it affects all channels within the TPM
and influences the way the main counter operates. (In CPWM mode, the counter changes to an up/down
mode rather than the up-counting mode used for general purpose timer functions.)
MC9S08SH32 Series Data Sheet, Rev. 3
252
Freescale Semiconductor
Chapter 16 Timer/PWM Module (S08TPMV3)
The following sections describe the main counter and each of the timer operating modes (input capture,
output compare, edge-aligned PWM, and center-aligned PWM). Because details of pin operation and
interrupt activity depend upon the operating mode, these topics will be covered in the associated mode
explanation sections.
16.4.1
Counter
All timer functions are based on the main 16-bit counter (TPMxCNTH:TPMxCNTL). This section
discusses selection of the clock source, end-of-count overflow, up-counting vs. up/down counting, and
manual counter reset.
16.4.1.1
Counter Clock Source
The 2-bit field, CLKSB:CLKSA, in the timer status and control register (TPMxSC) selects one of three
possible clock sources or OFF (which effectively disables the TPM). See Table 16-4. After any MCU reset,
CLKSB:CLKSA=0:0 so no clock source is selected, and the TPM is in a very low power state. These
control bits may be read or written at any time and disabling the timer (writing 00 to the CLKSB:CLKSA
field) does not affect the values in the counter or other timer registers.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
253
Chapter 16 Timer/PWM Module (S08TPMV3)
Table 16-8. TPM Clock Source Selection
CLKSB:CLKSA
TPM Clock Source to Prescaler Input
00
No clock selected (TPM counter disabled)
01
Bus rate clock
10
Fixed system clock
11
External source
The bus rate clock is the main system bus clock for the MCU. This clock source requires no
synchronization because it is the clock that is used for all internal MCU activities including operation of
the CPU and buses.
In MCUs that have no PLL and FLL or the PLL and FLL are not engaged, the fixed system clock source
is the same as the bus-rate-clock source, and it does not go through a synchronizer. When a PLL or FLL
is present and engaged, a synchronizer is required between the crystal divided-by two clock source and the
timer counter so counter transitions will be properly aligned to bus-clock transitions. A synchronizer will
be used at chip level to synchronize the crystal-related source clock to the bus clock.
The external clock source may be connected to any TPM channel pin. This clock source always has to pass
through a synchronizer to assure that counter transitions are properly aligned to bus clock transitions. The
bus-rate clock drives the synchronizer; therefore, to meet Nyquist criteria even with jitter, the frequency
of the external clock source must not be faster than the bus rate divided-by four. With ideal clocks the
external clock can be as fast as bus clock divided by four.
When the external clock source shares the TPM channel pin, this pin should not be used for other channel
timing functions. For example, it would be ambiguous to configure channel 0 for input capture when the
TPM channel 0 pin was also being used as the timer external clock source. (It is the user’s responsibility
to avoid such settings.) The TPM channel could still be used in output compare mode for software timing
functions (pin controls set not to affect the TPM channel pin).
16.4.1.2
Counter Overflow and Modulo Reset
An interrupt flag and enable are associated with the 16-bit main counter. The flag (TOF) is a
software-accessible indication that the timer counter has overflowed. The enable signal selects between
software polling (TOIE=0) where no hardware interrupt is generated, or interrupt-driven operation
(TOIE=1) where a static hardware interrupt is generated whenever the TOF flag is equal to one.
The conditions causing TOF to become set depend on whether the TPM is configured for center-aligned
PWM (CPWMS=1). In the simplest mode, there is no modulus limit and the TPM is not in CPWMS=1
mode. In this case, the 16-bit timer counter counts from 0x0000 through 0xFFFF and overflows to 0x0000
on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus
limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When
the TPM is in center-aligned PWM mode (CPWMS=1), the TOF flag gets set as the counter changes
direction at the end of the count value set in the modulus register (that is, at the transition from the value
set in the modulus register to the next lower count value). This corresponds to the end of a PWM period
(the 0x0000 count value corresponds to the center of a period).
MC9S08SH32 Series Data Sheet, Rev. 3
254
Freescale Semiconductor
Chapter 16 Timer/PWM Module (S08TPMV3)
16.4.1.3
Counting Modes
The main timer counter has two counting modes. When center-aligned PWM is selected (CPWMS=1), the
counter operates in up/down counting mode. Otherwise, the counter operates as a simple up counter. As
an up counter, the timer counter counts from 0x0000 through its terminal count and then continues with
0x0000. The terminal count is 0xFFFF or a modulus value in TPMxMODH:TPMxMODL.
When center-aligned PWM operation is specified, the counter counts up from 0x0000 through its terminal
count and then down to 0x0000 where it changes back to up counting. Both 0x0000 and the terminal count
value are normal length counts (one timer clock period long). In this mode, the timer overflow flag (TOF)
becomes set at the end of the terminal-count period (as the count changes to the next lower count value).
16.4.1.4
Manual Counter Reset
The main timer counter can be manually reset at any time by writing any value to either half of
TPMxCNTH or TPMxCNTL. Resetting the counter in this manner also resets the coherency mechanism
in case only half of the counter was read before resetting the count.
16.4.2
Channel Mode Selection
Provided CPWMS=0, the MSnB and MSnA control bits in the channel n status and control registers
determine the basic mode of operation for the corresponding channel. Choices include input capture,
output compare, and edge-aligned PWM.
16.4.2.1
Input Capture Mode
With the input-capture function, the TPM can capture the time at which an external event occurs. When
an active edge occurs on the pin of an input-capture channel, the TPM latches the contents of the TPM
counter into the channel-value registers (TPMxCnVH:TPMxCnVL). Rising edges, falling edges, or any
edge may be chosen as the active edge that triggers an input capture.
In input capture mode, the TPMxCnVH and TPMxCnVL registers are read only.
When either half of the 16-bit capture register is read, the other half is latched into a buffer to support
coherent 16-bit accesses in big-endian or little-endian order. The coherency sequence can be manually
reset by writing to the channel status/control register (TPMxCnSC).
An input capture event sets a flag bit (CHnF) which may optionally generate a CPU interrupt request.
While in BDM, the input capture function works as configured by the user. When an external event occurs,
the TPM latches the contents of the TPM counter (which is frozen because of the BDM mode) into the
channel value registers and sets the flag bit.
16.4.2.2
Output Compare Mode
With the output-compare function, the TPM can generate timed pulses with programmable position,
polarity, duration, and frequency. When the counter reaches the value in the channel-value registers of an
output-compare channel, the TPM can set, clear, or toggle the channel pin.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
255
Chapter 16 Timer/PWM Module (S08TPMV3)
In output compare mode, values are transferred to the corresponding timer channel registers only after both
8-bit halves of a 16-bit register have been written and according to the value of CLKSB:CLKSA bits, so:
• If (CLKSB:CLKSA = 0:0), the registers are updated when the second byte is written
• If (CLKSB:CLKSA not = 0:0), the registers are updated at the next change of the TPM counter
(end of the prescaler counting) after the second byte is written.
The coherency sequence can be manually reset by writing to the channel status/control register
(TPMxCnSC).
An output compare event sets a flag bit (CHnF) which may optionally generate a CPU-interrupt request.
16.4.2.3
Edge-Aligned PWM Mode
This type of PWM output uses the normal up-counting mode of the timer counter (CPWMS=0) and can
be used when other channels in the same TPM are configured for input capture or output compare
functions. The period of this PWM signal is determined by the value of the modulus register
(TPMxMODH:TPMxMODL) plus 1. The duty cycle is determined by the setting in the timer channel
register (TPMxCnVH:TPMxCnVL). The polarity of this PWM signal is determined by the setting in the
ELSnA control bit. 0% and 100% duty cycle cases are possible.
The output compare value in the TPM channel registers determines the pulse width (duty cycle) of the
PWM signal (Figure 16-15). The time between the modulus overflow and the output compare is the pulse
width. If ELSnA=0, the counter overflow forces the PWM signal high, and the output compare forces the
PWM signal low. If ELSnA=1, the counter overflow forces the PWM signal low, and the output compare
forces the PWM signal high.
OVERFLOW
OVERFLOW
OVERFLOW
PERIOD
PULSE
WIDTH
TPMxCHn
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
Figure 16-15. PWM Period and Pulse Width (ELSnA=0)
When the channel value register is set to 0x0000, the duty cycle is 0%. 100% duty cycle can be achieved
by setting the timer-channel register (TPMxCnVH:TPMxCnVL) to a value greater than the modulus
setting. This implies that the modulus setting must be less than 0xFFFF in order to get 100% duty cycle.
Because the TPM may be used in an 8-bit MCU, the settings in the timer channel registers are buffered to
ensure coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to any of the registers
TPMxCnVH and TPMxCnVL, actually write to buffer registers. In edge-aligned PWM mode, values are
transferred to the corresponding timer-channel registers according to the value of CLKSB:CLKSA bits, so:
• If (CLKSB:CLKSA = 0:0), the registers are updated when the second byte is written
• If (CLKSB:CLKSA not = 0:0), the registers are updated after the both bytes were written, and the
TPM counter changes from (TPMxMODH:TPMxMODL - 1) to (TPMxMODH:TPMxMODL). If
MC9S08SH32 Series Data Sheet, Rev. 3
256
Freescale Semiconductor
Chapter 16 Timer/PWM Module (S08TPMV3)
the TPM counter is a free-running counter then the update is made when the TPM counter changes
from 0xFFFE to 0xFFFF.
16.4.2.4
Center-Aligned PWM Mode
This type of PWM output uses the up/down counting mode of the timer counter (CPWMS=1). The output
compare value in TPMxCnVH:TPMxCnVL determines the pulse width (duty cycle) of the PWM signal
while the period is determined by the value in TPMxMODH:TPMxMODL. TPMxMODH:TPMxMODL
should be kept in the range of 0x0001 to 0x7FFF because values outside this range can produce ambiguous
results. ELSnA will determine the polarity of the CPWM output.
pulse width = 2 x (TPMxCnVH:TPMxCnVL)
period = 2 x (TPMxMODH:TPMxMODL); TPMxMODH:TPMxMODL=0x0001-0x7FFF
If the channel-value register TPMxCnVH:TPMxCnVL is zero or negative (bit 15 set), the duty cycle will
be 0%. If TPMxCnVH:TPMxCnVL is a positive value (bit 15 clear) and is greater than the (non-zero)
modulus setting, the duty cycle will be 100% because the duty cycle compare will never occur. This
implies the usable range of periods set by the modulus register is 0x0001 through 0x7FFE (0x7FFF if you
do not need to generate 100% duty cycle). This is not a significant limitation. The resulting period would
be much longer than required for normal applications.
TPMxMODH:TPMxMODL=0x0000 is a special case that should not be used with center-aligned PWM
mode. When CPWMS=0, this case corresponds to the counter running free from 0x0000 through 0xFFFF,
but when CPWMS=1 the counter needs a valid match to the modulus register somewhere other than at
0x0000 in order to change directions from up-counting to down-counting.
The output compare value in the TPM channel registers (times 2) determines the pulse width (duty cycle)
of the CPWM signal (Figure 16-16). If ELSnA=0, a compare occurred while counting up forces the
CPWM output signal low and a compare occurred while counting down forces the output high. The
counter counts up until it reaches the modulo setting in TPMxMODH:TPMxMODL, then counts down
until it reaches zero. This sets the period equal to two times TPMxMODH:TPMxMODL.
COUNT= 0
OUTPUT
COUNT=
COMPARE
TPMxMODH:TPMxMODL (COUNT DOWN)
OUTPUT
COMPARE
(COUNT UP)
COUNT=
TPMxMODH:TPMxMODL
TPMxCHn
PULSE WIDTH
2 x TPMxCnVH:TPMxCnVL
PERIOD
2 x TPMxMODH:TPMxMODL
Figure 16-16. CPWM Period and Pulse Width (ELSnA=0)
Center-aligned PWM outputs typically produce less noise than edge-aligned PWMs because fewer I/O pin
transitions are lined up at the same system clock edge. This type of PWM is also required for some types
of motor drives.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
257
Chapter 16 Timer/PWM Module (S08TPMV3)
Input capture, output compare, and edge-aligned PWM functions do not make sense when the counter is
operating in up/down counting mode so this implies that all active channels within a TPM must be used in
CPWM mode when CPWMS=1.
The TPM may be used in an 8-bit MCU. The settings in the timer channel registers are buffered to ensure
coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to any of the registers
TPMxMODH, TPMxMODL, TPMxCnVH, and TPMxCnVL, actually write to buffer registers.
In center-aligned PWM mode, the TPMxCnVH:L registers are updated with the value of their write buffer
according to the value of CLKSB:CLKSA bits, so:
• If (CLKSB:CLKSA = 0:0), the registers are updated when the second byte is written
• If (CLKSB:CLKSA not = 0:0), the registers are updated after the both bytes were written, and the
TPM counter changes from (TPMxMODH:TPMxMODL - 1) to (TPMxMODH:TPMxMODL). If
the TPM counter is a free-running counter, the update is made when the TPM counter changes from
0xFFFE to 0xFFFF.
When TPMxCNTH:TPMxCNTL=TPMxMODH:TPMxMODL, the TPM can optionally generate a TOF
interrupt (at the end of this count).
Writing to TPMxSC cancels any values written to TPMxMODH and/or TPMxMODL and resets the
coherency mechanism for the modulo registers. Writing to TPMxCnSC cancels any values written to the
channel value registers and resets the coherency mechanism for TPMxCnVH:TPMxCnVL.
16.5
16.5.1
Reset Overview
General
The TPM is reset whenever any MCU reset occurs.
16.5.2
Description of Reset Operation
Reset clears the TPMxSC register which disables clocks to the TPM and disables timer overflow interrupts
(TOIE=0). CPWMS, MSnB, MSnA, ELSnB, and ELSnA are all cleared which configures all TPM
channels for input-capture operation with the associated pins disconnected from I/O pin logic (so all MCU
pins related to the TPM revert to general purpose I/O pins).
16.6
16.6.1
Interrupts
General
The TPM generates an optional interrupt for the main counter overflow and an interrupt for each channel.
The meaning of channel interrupts depends on each channel’s mode of operation. If the channel is
configured for input capture, the interrupt flag is set each time the selected input capture edge is
recognized. If the channel is configured for output compare or PWM modes, the interrupt flag is set each
time the main timer counter matches the value in the 16-bit channel value register.
MC9S08SH32 Series Data Sheet, Rev. 3
258
Freescale Semiconductor
Chapter 16 Timer/PWM Module (S08TPMV3)
All TPM interrupts are listed in Table 16-9 which shows the interrupt name, the name of any local enable
that can block the interrupt request from leaving the TPM and getting recognized by the separate interrupt
processing logic.
Table 16-9. Interrupt Summary
Interrupt
Local
Enable
Source
Description
TOF
TOIE
Counter overflow
Set each time the timer counter reaches its terminal
count (at transition to next count value which is
usually 0x0000)
CHnF
CHnIE
Channel event
An input capture or output compare event took
place on channel n
The TPM module will provide a high-true interrupt signal. Vectors and priorities are determined at chip
integration time in the interrupt module so refer to the user’s guide for the interrupt module or to the chip’s
complete documentation for details.
16.6.2
Description of Interrupt Operation
For each interrupt source in the TPM, a flag bit is set upon recognition of the interrupt condition such as
timer overflow, channel-input capture, or output-compare events. This flag may be read (polled) by
software to determine that the action has occurred, or an associated enable bit (TOIE or CHnIE) can be set
to enable hardware interrupt generation. While the interrupt enable bit is set, a static interrupt will generate
whenever the associated interrupt flag equals one. The user’s software must perform a sequence of steps
to clear the interrupt flag before returning from the interrupt-service routine.
TPM interrupt flags are cleared by a two-step process including a read of the flag bit while it is set (1)
followed by a write of zero (0) to the bit. If a new event is detected between these two steps, the sequence
is reset and the interrupt flag remains set after the second step to avoid the possibility of missing the new
event.
16.6.2.1
Timer Overflow Interrupt (TOF) Description
The meaning and details of operation for TOF interrupts varies slightly depending upon the mode of
operation of the TPM system (general purpose timing functions versus center-aligned PWM operation).
The flag is cleared by the two step sequence described above.
16.6.2.1.1
Normal Case
Normally TOF is set when the timer counter changes from 0xFFFF to 0x0000. When the TPM is not
configured for center-aligned PWM (CPWMS=0), TOF gets set when the timer counter changes from the
terminal count (the value in the modulo register) to 0x0000. This case corresponds to the normal meaning
of counter overflow.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
259
Chapter 16 Timer/PWM Module (S08TPMV3)
16.6.2.1.2
Center-Aligned PWM Case
When CPWMS=1, TOF gets set when the timer counter changes direction from up-counting to
down-counting at the end of the terminal count (the value in the modulo register). In this case the TOF
corresponds to the end of a PWM period.
16.6.2.2
Channel Event Interrupt Description
The meaning of channel interrupts depends on the channel’s current mode (input-capture, output-compare,
edge-aligned PWM, or center-aligned PWM).
16.6.2.2.1
Input Capture Events
When a channel is configured as an input capture channel, the ELSnB:ELSnA control bits select no edge
(off), rising edges, falling edges or any edge as the edge which triggers an input capture event. When the
selected edge is detected, the interrupt flag is set. The flag is cleared by the two-step sequence described
in Section 16.6.2, “Description of Interrupt Operation.”
16.6.2.2.2
Output Compare Events
When a channel is configured as an output compare channel, the interrupt flag is set each time the main
timer counter matches the 16-bit value in the channel value register. The flag is cleared by the two-step
sequence described Section 16.6.2, “Description of Interrupt Operation.”
16.6.2.2.3
PWM End-of-Duty-Cycle Events
For channels configured for PWM operation there are two possibilities. When the channel is configured
for edge-aligned PWM, the channel flag gets set when the timer counter matches the channel value register
which marks the end of the active duty cycle period. When the channel is configured for center-aligned
PWM, the timer count matches the channel value register twice during each PWM cycle. In this CPWM
case, the channel flag is set at the start and at the end of the active duty cycle period which are the times
when the timer counter matches the channel value register. The flag is cleared by the two-step sequence
described Section 16.6.2, “Description of Interrupt Operation.”
MC9S08SH32 Series Data Sheet, Rev. 3
260
Freescale Semiconductor
Chapter 17
Development Support
17.1
Introduction
Development support systems in the HCS08 include the background debug controller (BDC) and the
on-chip debug module (DBG). The BDC provides a single-wire debug interface to the target MCU that
provides a convenient interface for programming the on-chip FLASH and other nonvolatile memories. The
BDC is also the primary debug interface for development and allows non-intrusive access to memory data
and traditional debug features such as CPU register modify, breakpoints, and single instruction trace
commands.
In the HCS08 Family, address and data bus signals are not available on external pins (not even in test
modes). Debug is done through commands fed into the target MCU via the single-wire background debug
interface. The debug module provides a means to selectively trigger and capture bus information so an
external development system can reconstruct what happened inside the MCU on a cycle-by-cycle basis
without having external access to the address and data signals.
17.1.1
Forcing Active Background
The method for forcing active background mode depends on the specific HCS08 derivative. For the
MC9S08SH32 Series, you can force active background after a power-on reset by holding the BKGD pin
low as the device exits the reset condition. You can also force active background by driving BKGD low
immediately after a serial background command that writes a one to the BDFR bit in the SBDFR register.
Other causes of reset including an external pin reset or an internally generated error reset ignore the state
of the BKGD pin and reset into normal user mode. If no debug pod is connected to the BKGD pin, the
MCU will always reset into normal operating mode.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
261
Chapter 17 Development Support
17.1.2
Features
Features of the BDC module include:
• Single pin for mode selection and background communications
• BDC registers are not located in the memory map
• SYNC command to determine target communications rate
• Non-intrusive commands for memory access
• Active background mode commands for CPU register access
• GO and TRACE1 commands
• BACKGROUND command can wake CPU from stop or wait modes
• One hardware address breakpoint built into BDC
• Oscillator runs in stop mode, if BDC enabled
• COP watchdog disabled while in active background mode
Features of the ICE system include:
• Two trigger comparators: Two address + read/write (R/W) or one full address + data + R/W
• Flexible 8-word by 16-bit FIFO (first-in, first-out) buffer for capture information:
— Change-of-flow addresses or
— Event-only data
• Two types of breakpoints:
— Tag breakpoints for instruction opcodes
— Force breakpoints for any address access
• Nine trigger modes:
— Basic: A-only, A OR B
— Sequence: A then B
— Full: A AND B data, A AND NOT B data
— Event (store data): Event-only B, A then event-only B
— Range: Inside range (A ≤ address ≤ B), outside range (address < A or address > B)
17.2
Background Debug Controller (BDC)
All MCUs in the HCS08 Family contain a single-wire background debug interface that supports in-circuit
programming of on-chip nonvolatile memory and sophisticated non-intrusive debug capabilities. Unlike
debug interfaces on earlier 8-bit MCUs, this system does not interfere with normal application resources.
It does not use any user memory or locations in the memory map and does not share any on-chip
peripherals.
BDC commands are divided into two groups:
• Active background mode commands require that the target MCU is in active background mode (the
user program is not running). Active background mode commands allow the CPU registers to be
read or written, and allow the user to trace one user instruction at a time, or GO to the user program
from active background mode.
MC9S08SH32 Series Data Sheet, Rev. 3
262
Freescale Semiconductor
Chapter 17 Development Support
•
Non-intrusive commands can be executed at any time even while the user’s program is running.
Non-intrusive commands allow a user to read or write MCU memory locations or access status and
control registers within the background debug controller.
Typically, a relatively simple interface pod is used to translate commands from a host computer into
commands for the custom serial interface to the single-wire background debug system. Depending on the
development tool vendor, this interface pod may use a standard RS-232 serial port, a parallel printer port,
or some other type of communications such as a universal serial bus (USB) to communicate between the
host PC and the pod. The pod typically connects to the target system with ground, the BKGD pin, RESET,
and sometimes VDD. An open-drain connection to reset allows the host to force a target system reset,
which is useful to regain control of a lost target system or to control startup of a target system before the
on-chip nonvolatile memory has been programmed. Sometimes VDD can be used to allow the pod to use
power from the target system to avoid the need for a separate power supply. However, if the pod is powered
separately, it can be connected to a running target system without forcing a target system reset or otherwise
disturbing the running application program.
BKGD 1
2 GND
NO CONNECT 3
4 RESET
NO CONNECT 5
6 VDD
Figure 17-1. BDM Tool Connector
17.2.1
BKGD Pin Description
BKGD is the single-wire background debug interface pin. The primary function of this pin is for
bidirectional serial communication of active background mode commands and data. During reset, this pin
is used to select between starting in active background mode or starting the user’s application program.
This pin is also used to request a timed sync response pulse to allow a host development tool to determine
the correct clock frequency for background debug serial communications.
BDC serial communications use a custom serial protocol first introduced on the M68HC12 Family of
microcontrollers. This protocol assumes the host knows the communication clock rate that is determined
by the target BDC clock rate. All communication is initiated and controlled by the host that drives a
high-to-low edge to signal the beginning of each bit time. Commands and data are sent most significant
bit first (MSB first). For a detailed description of the communications protocol, refer to Section 17.2.2,
“Communication Details.”
If a host is attempting to communicate with a target MCU that has an unknown BDC clock rate, a SYNC
command may be sent to the target MCU to request a timed sync response signal from which the host can
determine the correct communication speed.
BKGD is a pseudo-open-drain pin and there is an on-chip pullup so no external pullup resistor is required.
Unlike typical open-drain pins, the external RC time constant on this pin, which is influenced by external
capacitance, plays almost no role in signal rise time. The custom protocol provides for brief, actively
driven speedup pulses to force rapid rise times on this pin without risking harmful drive level conflicts.
Refer to Section 17.2.2, “Communication Details,” for more detail.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
263
Chapter 17 Development Support
When no debugger pod is connected to the 6-pin BDM interface connector, the internal pullup on BKGD
chooses normal operating mode. When a debug pod is connected to BKGD it is possible to force the MCU
into active background mode after reset. The specific conditions for forcing active background depend
upon the HCS08 derivative (refer to the introduction to this Development Support section). It is not
necessary to reset the target MCU to communicate with it through the background debug interface.
17.2.2
Communication Details
The BDC serial interface requires the external controller to generate a falling edge on the BKGD pin to
indicate the start of each bit time. The external controller provides this falling edge whether data is
transmitted or received.
BKGD is a pseudo-open-drain pin that can be driven either by an external controller or by the MCU. Data
is transferred MSB first at 16 BDC clock cycles per bit (nominal speed). The interface times out if
512 BDC clock cycles occur between falling edges from the host. Any BDC command that was in progress
when this timeout occurs is aborted without affecting the memory or operating mode of the target MCU
system.
The custom serial protocol requires the debug pod to know the target BDC communication clock speed.
The clock switch (CLKSW) control bit in the BDC status and control register allows the user to select the
BDC clock source. The BDC clock source can either be the bus or the alternate BDC clock source.
The BKGD pin can receive a high or low level or transmit a high or low level. The following diagrams
show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but
asynchronous to the external host. The internal BDC clock signal is shown for reference in counting
cycles.
MC9S08SH32 Series Data Sheet, Rev. 3
264
Freescale Semiconductor
Chapter 17 Development Support
Figure 17-2 shows an external host transmitting a logic 1 or 0 to the BKGD pin of a target HCS08 MCU.
The host is asynchronous to the target so there is a 0-to-1 cycle delay from the host-generated falling edge
to where the target perceives the beginning of the bit time. Ten target BDC clock cycles later, the target
senses the bit level on the BKGD pin. Typically, the host actively drives the pseudo-open-drain BKGD pin
during host-to-target transmissions to speed up rising edges. Because the target does not drive the BKGD
pin during the host-to-target transmission period, there is no need to treat the line as an open-drain signal
during this period.
BDC CLOCK
(TARGET MCU)
HOST
TRANSMIT 1
HOST
TRANSMIT 0
10 CYCLES
SYNCHRONIZATION
UNCERTAINTY
EARLIEST START
OF NEXT BIT
TARGET SENSES BIT LEVEL
PERCEIVED START
OF BIT TIME
Figure 17-2. BDC Host-to-Target Serial Bit Timing
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
265
Chapter 17 Development Support
Figure 17-3 shows the host receiving a logic 1 from the target HCS08 MCU. Because the host is
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on
BKGD to the perceived start of the bit time in the target MCU. The host holds the BKGD pin low long
enough for the target to recognize it (at least two target BDC cycles). The host must release the low drive
before the target MCU drives a brief active-high speedup pulse seven cycles after the perceived start of the
bit time. The host should sample the bit level about 10 cycles after it started the bit time.
BDC CLOCK
(TARGET MCU)
HOST DRIVE
TO BKGD PIN
TARGET MCU
SPEEDUP PULSE
HIGH-IMPEDANCE
HIGH-IMPEDANCE
HIGH-IMPEDANCE
PERCEIVED START
OF BIT TIME
R-C RISE
BKGD PIN
10 CYCLES
10 CYCLES
EARLIEST START
OF NEXT BIT
HOST SAMPLES BKGD PIN
Figure 17-3. BDC Target-to-Host Serial Bit Timing (Logic 1)
MC9S08SH32 Series Data Sheet, Rev. 3
266
Freescale Semiconductor
Chapter 17 Development Support
Figure 17-4 shows the host receiving a logic 0 from the target HCS08 MCU. Because the host is
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on
BKGD to the start of the bit time as perceived by the target MCU. The host initiates the bit time but the
target HCS08 finishes it. Because the target wants the host to receive a logic 0, it drives the BKGD pin low
for 13 BDC clock cycles, then briefly drives it high to speed up the rising edge. The host samples the bit
level about 10 cycles after starting the bit time.
BDC CLOCK
(TARGET MCU)
HOST DRIVE
TO BKGD PIN
HIGH-IMPEDANCE
SPEEDUP
PULSE
TARGET MCU
DRIVE AND
SPEED-UP PULSE
PERCEIVED START
OF BIT TIME
BKGD PIN
10 CYCLES
10 CYCLES
EARLIEST START
OF NEXT BIT
HOST SAMPLES BKGD PIN
Figure 17-4. BDM Target-to-Host Serial Bit Timing (Logic 0)
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
267
Chapter 17 Development Support
17.2.3
BDC Commands
BDC commands are sent serially from a host computer to the BKGD pin of the target HCS08 MCU. All
commands and data are sent MSB-first using a custom BDC communications protocol. Active background
mode commands require that the target MCU is currently in the active background mode while
non-intrusive commands may be issued at any time whether the target MCU is in active background mode
or running a user application program.
Table 17-1 shows all HCS08 BDC commands, a shorthand description of their coding structure, and the
meaning of each command.
Coding Structure Nomenclature
This nomenclature is used in Table 17-1 to describe the coding structure of the BDC commands.
Commands begin with an 8-bit hexadecimal command code in the host-to-target
direction (most significant bit first)
/ = separates parts of the command
d = delay 16 target BDC clock cycles
AAAA = a 16-bit address in the host-to-target direction
RD = 8 bits of read data in the target-to-host direction
WD = 8 bits of write data in the host-to-target direction
RD16 = 16 bits of read data in the target-to-host direction
WD16 = 16 bits of write data in the host-to-target direction
SS = the contents of BDCSCR in the target-to-host direction (STATUS)
CC = 8 bits of write data for BDCSCR in the host-to-target direction (CONTROL)
RBKP = 16 bits of read data in the target-to-host direction (from BDCBKPT breakpoint
register)
WBKP = 16 bits of write data in the host-to-target direction (for BDCBKPT breakpoint register)
MC9S08SH32 Series Data Sheet, Rev. 3
268
Freescale Semiconductor
Chapter 17 Development Support
Table 17-1. BDC Command Summary
Command
Mnemonic
1
Active BDM/
Non-intrusive
Coding
Structure
Description
SYNC
Non-intrusive
n/a1
Request a timed reference pulse to determine
target BDC communication speed
ACK_ENABLE
Non-intrusive
D5/d
Enable acknowledge protocol. Refer to
Freescale document order no. HCS08RMv1/D.
ACK_DISABLE
Non-intrusive
D6/d
Disable acknowledge protocol. Refer to
Freescale document order no. HCS08RMv1/D.
BACKGROUND
Non-intrusive
90/d
Enter active background mode if enabled
(ignore if ENBDM bit equals 0)
READ_STATUS
Non-intrusive
E4/SS
Read BDC status from BDCSCR
WRITE_CONTROL
Non-intrusive
C4/CC
Write BDC controls in BDCSCR
READ_BYTE
Non-intrusive
E0/AAAA/d/RD
Read a byte from target memory
READ_BYTE_WS
Non-intrusive
E1/AAAA/d/SS/RD
Read a byte and report status
READ_LAST
Non-intrusive
E8/SS/RD
Re-read byte from address just read and report
status
WRITE_BYTE
Non-intrusive
C0/AAAA/WD/d
Write a byte to target memory
WRITE_BYTE_WS
Non-intrusive
C1/AAAA/WD/d/SS
Write a byte and report status
READ_BKPT
Non-intrusive
E2/RBKP
Read BDCBKPT breakpoint register
WRITE_BKPT
Non-intrusive
C2/WBKP
Write BDCBKPT breakpoint register
GO
Active BDM
08/d
Go to execute the user application program
starting at the address currently in the PC
TRACE1
Active BDM
10/d
Trace 1 user instruction at the address in the
PC, then return to active background mode
TAGGO
Active BDM
18/d
Same as GO but enable external tagging
(HCS08 devices have no external tagging pin)
READ_A
Active BDM
68/d/RD
Read accumulator (A)
READ_CCR
Active BDM
69/d/RD
Read condition code register (CCR)
READ_PC
Active BDM
6B/d/RD16
Read program counter (PC)
READ_HX
Active BDM
6C/d/RD16
Read H and X register pair (H:X)
READ_SP
Active BDM
6F/d/RD16
Read stack pointer (SP)
READ_NEXT
Active BDM
70/d/RD
Increment H:X by one then read memory byte
located at H:X
READ_NEXT_WS
Active BDM
71/d/SS/RD
Increment H:X by one then read memory byte
located at H:X. Report status and data.
WRITE_A
Active BDM
48/WD/d
Write accumulator (A)
WRITE_CCR
Active BDM
49/WD/d
Write condition code register (CCR)
WRITE_PC
Active BDM
4B/WD16/d
Write program counter (PC)
WRITE_HX
Active BDM
4C/WD16/d
Write H and X register pair (H:X)
WRITE_SP
Active BDM
4F/WD16/d
Write stack pointer (SP)
WRITE_NEXT
Active BDM
50/WD/d
Increment H:X by one, then write memory byte
located at H:X
WRITE_NEXT_WS
Active BDM
51/WD/d/SS
Increment H:X by one, then write memory byte
located at H:X. Also report status.
The SYNC command is a special operation that does not have a command code.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
269
Chapter 17 Development Support
The SYNC command is unlike other BDC commands because the host does not necessarily know the
correct communications speed to use for BDC communications until after it has analyzed the response to
the SYNC command.
To issue a SYNC command, the host:
• Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest
clock is normally the reference oscillator/64 or the self-clocked rate/64.)
• Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically
one cycle of the fastest clock in the system.)
• Removes all drive to the BKGD pin so it reverts to high impedance
• Monitors the BKGD pin for the sync response pulse
The target, upon detecting the SYNC request from the host (which is a much longer low time than would
ever occur during normal BDC communications):
• Waits for BKGD to return to a logic high
• Delays 16 cycles to allow the host to stop driving the high speedup pulse
• Drives BKGD low for 128 BDC clock cycles
• Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD
• Removes all drive to the BKGD pin so it reverts to high impedance
The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for
subsequent BDC communications. Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication protocol can easily tolerate speed
errors of several percent.
17.2.4
BDC Hardware Breakpoint
The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a
16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged
breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction
boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction
opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather
than executing that instruction if and when it reaches the end of the instruction queue. This implies that
tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can
be set at any address.
The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to
enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the
breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC
breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.
The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more
flexible than the simple breakpoint in the BDC module.
MC9S08SH32 Series Data Sheet, Rev. 3
270
Freescale Semiconductor
Chapter 17 Development Support
17.3
On-Chip Debug System (DBG)
Because HCS08 devices do not have external address and data buses, the most important functions of an
in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage
FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture
bus information and what information to capture. The system relies on the single-wire background debug
system to access debug control registers and to read results out of the eight stage FIFO.
The debug module includes control and status registers that are accessible in the user’s memory map.
These registers are located in the high register space to avoid using valuable direct page memory space.
Most of the debug module’s functions are used during development, and user programs rarely access any
of the control and status registers for the debug module. The one exception is that the debug system can
provide the means to implement a form of ROM patching. This topic is discussed in greater detail in
Section 17.3.6, “Hardware Breakpoints.”
17.3.1
Comparators A and B
Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking
circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry
optionally allows you to specify that a trigger will occur only if the opcode at the specified address is
actually executed as opposed to only being read from memory into the instruction queue. The comparators
are also capable of magnitude comparisons to support the inside range and outside range trigger modes.
Comparators are disabled temporarily during all BDC accesses.
The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the
CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data
bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an
additional purpose, in full address plus data comparisons they are used to decide which of these buses to
use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU’s
write data bus is used. Otherwise, the CPU’s read data bus is used.
The currently selected trigger mode determines what the debugger logic does when a comparator detects
a qualified match condition. A match can cause:
• Generation of a breakpoint to the CPU
• Storage of data bus values into the FIFO
• Starting to store change-of-flow addresses into the FIFO (begin type trace)
• Stopping the storage of change-of-flow addresses into the FIFO (end type trace)
17.3.2
Bus Capture Information and FIFO Operation
The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the
debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would
read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of
words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by
writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
271
Chapter 17 Development Support
the host must perform ((8 – CNT) – 1) dummy reads of the FIFO to advance it to the first significant entry
in the FIFO.
In most trigger modes, the information stored in the FIFO consists of 16-bit change-of-flow addresses. In
these cases, read DBGFH then DBGFL to get one coherent word of information out of the FIFO. Reading
DBGFL (the low-order byte of the FIFO data port) causes the FIFO to shift so the next word of information
is available at the FIFO data port. In the event-only trigger modes (see Section 17.3.5, “Trigger Modes”),
8-bit data information is stored into the FIFO. In these cases, the high-order half of the FIFO (DBGFH) is
not used and data is read out of the FIFO by simply reading DBGFL. Each time DBGFL is read, the FIFO
is shifted so the next data value is available through the FIFO data port at DBGFL.
In trigger modes where the FIFO is storing change-of-flow addresses, there is a delay between CPU
addresses and the input side of the FIFO. Because of this delay, if the trigger event itself is a
change-of-flow address or a change-of-flow address appears during the next two bus cycles after a trigger
event starts the FIFO, it will not be saved into the FIFO. In the case of an end-trace, if the trigger event is
a change-of-flow, it will be saved as the last change-of-flow entry for that debug run.
The FIFO can also be used to generate a profile of executed instruction addresses when the debugger is
not armed. When ARM = 0, reading DBGFL causes the address of the most-recently fetched opcode to be
saved in the FIFO. To use the profiling feature, a host debugger would read addresses out of the FIFO by
reading DBGFH then DBGFL at regular periodic intervals. The first eight values would be discarded
because they correspond to the eight DBGFL reads needed to initially fill the FIFO. Additional periodic
reads of DBGFH and DBGFL return delayed information about executed instructions so the host debugger
can develop a profile of executed instruction addresses.
17.3.3
Change-of-Flow Information
To minimize the amount of information stored in the FIFO, only information related to instructions that
cause a change to the normal sequential execution of instructions is stored. With knowledge of the source
and object code program stored in the target system, an external debugger system can reconstruct the path
of execution through many instructions from the change-of-flow information stored in the FIFO.
For conditional branch instructions where the branch is taken (branch condition was true), the source
address is stored (the address of the conditional branch opcode). Because BRA and BRN instructions are
not conditional, these events do not cause change-of-flow information to be stored in the FIFO.
Indirect JMP and JSR instructions use the current contents of the H:X index register pair to determine the
destination address, so the debug system stores the run-time destination address for any indirect JMP or
JSR. For interrupts, RTI, or RTS, the destination address is stored in the FIFO as change-of-flow
information.
17.3.4
Tag vs. Force Breakpoints and Triggers
Tagging is a term that refers to identifying an instruction opcode as it is fetched into the instruction queue,
but not taking any other action until and unless that instruction is actually executed by the CPU. This
distinction is important because any change-of-flow from a jump, branch, subroutine call, or interrupt
causes some instructions that have been fetched into the instruction queue to be thrown away without being
executed.
MC9S08SH32 Series Data Sheet, Rev. 3
272
Freescale Semiconductor
Chapter 17 Development Support
A force-type breakpoint waits for the current instruction to finish and then acts upon the breakpoint
request. The usual action in response to a breakpoint is to go to active background mode rather than
continuing to the next instruction in the user application program.
The tag vs. force terminology is used in two contexts within the debug module. The first context refers to
breakpoint requests from the debug module to the CPU. The second refers to match signals from the
comparators to the debugger control logic. When a tag-type break request is sent to the CPU, a signal is
entered into the instruction queue along with the opcode so that if/when this opcode ever executes, the
CPU will effectively replace the tagged opcode with a BGND opcode so the CPU goes to active
background mode rather than executing the tagged instruction. When the TRGSEL control bit in the DBGT
register is set to select tag-type operation, the output from comparator A or B is qualified by a block of
logic in the debug module that tracks opcodes and only produces a trigger to the debugger if the opcode at
the compare address is actually executed. There is separate opcode tracking logic for each comparator so
more than one compare event can be tracked through the instruction queue at a time.
17.3.5
Trigger Modes
The trigger mode controls the overall behavior of a debug run. The 4-bit TRG field in the DBGT register
selects one of nine trigger modes. When TRGSEL = 1 in the DBGT register, the output of the comparator
must propagate through an opcode tracking circuit before triggering FIFO actions. The BEGIN bit in
DBGT chooses whether the FIFO begins storing data when the qualified trigger is detected (begin trace),
or the FIFO stores data in a circular fashion from the time it is armed until the qualified trigger is detected
(end trigger).
A debug run is started by writing a 1 to the ARM bit in the DBGC register, which sets the ARMF flag and
clears the AF and BF flags and the CNT bits in DBGS. A begin-trace debug run ends when the FIFO gets
full. An end-trace run ends when the selected trigger event occurs. Any debug run can be stopped manually
by writing a 0 to ARM or DBGEN in DBGC.
In all trigger modes except event-only modes, the FIFO stores change-of-flow addresses. In event-only
trigger modes, the FIFO stores data in the low-order eight bits of the FIFO.
The BEGIN control bit is ignored in event-only trigger modes and all such debug runs are begin type
traces. When TRGSEL = 1 to select opcode fetch triggers, it is not necessary to use R/W in comparisons
because opcode tags would only apply to opcode fetches that are always read cycles. It would also be
unusual to specify TRGSEL = 1 while using a full mode trigger because the opcode value is normally
known at a particular address.
The following trigger mode descriptions only state the primary comparator conditions that lead to a trigger.
Either comparator can usually be further qualified with R/W by setting RWAEN (RWBEN) and the
corresponding RWA (RWB) value to be matched against R/W. The signal from the comparator with
optional R/W qualification is used to request a CPU breakpoint if BRKEN = 1 and TAG determines
whether the CPU request will be a tag request or a force request.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
273
Chapter 17 Development Support
A-Only — Trigger when the address matches the value in comparator A
A OR B — Trigger when the address matches either the value in comparator A or the value in
comparator B
A Then B — Trigger when the address matches the value in comparator B but only after the address for
another cycle matched the value in comparator A. There can be any number of cycles after the A match
and before the B match.
A AND B Data (Full Mode) — This is called a full mode because address, data, and R/W (optionally)
must match within the same bus cycle to cause a trigger event. Comparator A checks address, the low byte
of comparator B checks data, and R/W is checked against RWA if RWAEN = 1. The high-order half of
comparator B is not used.
In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you
do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the
CPU breakpoint is issued when the comparator A address matches.
A AND NOT B Data (Full Mode) — Address must match comparator A, data must not match the low
half of comparator B, and R/W must match RWA if RWAEN = 1. All three conditions must be met within
the same bus cycle to cause a trigger.
In full trigger modes it is not useful to specify a tag-type CPU breakpoint (BRKEN = TAG = 1), but if you
do, the comparator B data match is ignored for the purpose of issuing the tag request to the CPU and the
CPU breakpoint is issued when the comparator A address matches.
Event-Only B (Store Data) — Trigger events occur each time the address matches the value in
comparator B. Trigger events cause the data to be captured into the FIFO. The debug run ends when the
FIFO becomes full.
A Then Event-Only B (Store Data) — After the address has matched the value in comparator A, a trigger
event occurs each time the address matches the value in comparator B. Trigger events cause the data to be
captured into the FIFO. The debug run ends when the FIFO becomes full.
Inside Range (A ≤ Address ≤ B) — A trigger occurs when the address is greater than or equal to the value
in comparator A and less than or equal to the value in comparator B at the same time.
Outside Range (Address < A or Address > B) — A trigger occurs when the address is either less than
the value in comparator A or greater than the value in comparator B.
MC9S08SH32 Series Data Sheet, Rev. 3
274
Freescale Semiconductor
Chapter 17 Development Support
17.3.6
Hardware Breakpoints
The BRKEN control bit in the DBGC register may be set to 1 to allow any of the trigger conditions
described in Section 17.3.5, “Trigger Modes,” to be used to generate a hardware breakpoint request to the
CPU. TAG in DBGC controls whether the breakpoint request will be treated as a tag-type breakpoint or a
force-type breakpoint. A tag breakpoint causes the current opcode to be marked as it enters the instruction
queue. If a tagged opcode reaches the end of the pipe, the CPU executes a BGND instruction to go to active
background mode rather than executing the tagged opcode. A force-type breakpoint causes the CPU to
finish the current instruction and then go to active background mode.
If the background mode has not been enabled (ENBDM = 1) by a serial WRITE_CONTROL command
through the BKGD pin, the CPU will execute an SWI instruction instead of going to active background
mode.
17.4
Register Definition
This section contains the descriptions of the BDC and DBG registers and control bits.
Refer to the high-page register summary in the device overview chapter of this data sheet for the absolute
address assignments for all DBG registers. This section refers to registers and control bits only by their
names. A Freescale-provided equate or header file is used to translate these names into the appropriate
absolute addresses.
17.4.1
BDC Registers and Control Bits
The BDC has two registers:
• The BDC status and control register (BDCSCR) is an 8-bit register containing control and status
bits for the background debug controller.
• The BDC breakpoint match register (BDCBKPT) holds a 16-bit breakpoint match address.
These registers are accessed with dedicated serial BDC commands and are not located in the memory
space of the target MCU (so they do not have addresses and cannot be accessed by user programs).
Some of the bits in the BDCSCR have write limitations; otherwise, these registers may be read or written
at any time. For example, the ENBDM control bit may not be written while the MCU is in active
background mode. (This prevents the ambiguous condition of the control bit forbidding active background
mode while the MCU is already in active background mode.) Also, the four status bits (BDMACT, WS,
WSF, and DVF) are read-only status indicators and can never be written by the WRITE_CONTROL serial
BDC command. The clock switch (CLKSW) control bit may be read or written at any time.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
275
Chapter 17 Development Support
17.4.1.1
BDC Status and Control Register (BDCSCR)
This register can be read or written by serial BDC commands (READ_STATUS and WRITE_CONTROL)
but is not accessible to user programs because it is not located in the normal memory map of the MCU.
7
R
6
5
4
3
BKPTEN
FTS
CLKSW
BDMACT
ENBDM
2
1
0
WS
WSF
DVF
W
Normal
Reset
0
0
0
0
0
0
0
0
Reset in
Active BDM:
1
1
0
0
1
0
0
0
= Unimplemented or Reserved
Figure 17-5. BDC Status and Control Register (BDCSCR)
Table 17-2. BDCSCR Register Field Descriptions
Field
Description
7
ENBDM
Enable BDM (Permit Active Background Mode) — Typically, this bit is written to 1 by the debug host shortly
after the beginning of a debug session or whenever the debug host resets the target and remains 1 until a normal
reset clears it.
0 BDM cannot be made active (non-intrusive commands still allowed)
1 BDM can be made active to allow active background mode commands
6
BDMACT
Background Mode Active Status — This is a read-only status bit.
0 BDM not active (user application program running)
1 BDM active and waiting for serial commands
5
BKPTEN
BDC Breakpoint Enable — If this bit is clear, the BDC breakpoint is disabled and the FTS (force tag select)
control bit and BDCBKPT match register are ignored.
0 BDC breakpoint disabled
1 BDC breakpoint enabled
4
FTS
3
CLKSW
Force/Tag Select — When FTS = 1, a breakpoint is requested whenever the CPU address bus matches the
BDCBKPT match register. When FTS = 0, a match between the CPU address bus and the BDCBKPT register
causes the fetched opcode to be tagged. If this tagged opcode ever reaches the end of the instruction queue,
the CPU enters active background mode rather than executing the tagged opcode.
0 Tag opcode at breakpoint address and enter active background mode if CPU attempts to execute that
instruction
1 Breakpoint match forces active background mode at next instruction boundary (address need not be an
opcode)
Select Source for BDC Communications Clock — CLKSW defaults to 0, which selects the alternate BDC
clock source.
0 Alternate BDC clock source
1 MCU bus clock
MC9S08SH32 Series Data Sheet, Rev. 3
276
Freescale Semiconductor
Chapter 17 Development Support
Table 17-2. BDCSCR Register Field Descriptions (continued)
Field
Description
2
WS
Wait or Stop Status — When the target CPU is in wait or stop mode, most BDC commands cannot function.
However, the BACKGROUND command can be used to force the target CPU out of wait or stop and into active
background mode where all BDC commands work. Whenever the host forces the target MCU into active
background mode, the host should issue a READ_STATUS command to check that BDMACT = 1 before
attempting other BDC commands.
0 Target CPU is running user application code or in active background mode (was not in wait or stop mode when
background became active)
1 Target CPU is in wait or stop mode, or a BACKGROUND command was used to change from wait or stop to
active background mode
1
WSF
Wait or Stop Failure Status — This status bit is set if a memory access command failed due to the target CPU
executing a wait or stop instruction at or about the same time. The usual recovery strategy is to issue a
BACKGROUND command to get out of wait or stop mode into active background mode, repeat the command
that failed, then return to the user program. (Typically, the host would restore CPU registers and stack values and
re-execute the wait or stop instruction.)
0 Memory access did not conflict with a wait or stop instruction
1 Memory access command failed because the CPU entered wait or stop mode
0
DVF
Data Valid Failure Status — This status bit is not used in the MC9S08SH32 Series because it does not have
any slow access memory.
0 Memory access did not conflict with a slow memory access
1 Memory access command failed because CPU was not finished with a slow memory access
17.4.1.2
BDC Breakpoint Match Register (BDCBKPT)
This 16-bit register holds the address for the hardware breakpoint in the BDC. The BKPTEN and FTS
control bits in BDCSCR are used to enable and configure the breakpoint logic. Dedicated serial BDC
commands (READ_BKPT and WRITE_BKPT) are used to read and write the BDCBKPT register but is
not accessible to user programs because it is not located in the normal memory map of the MCU.
Breakpoints are normally set while the target MCU is in active background mode before running the user
application program. For additional information about setup and use of the hardware breakpoint logic in
the BDC, refer to Section 17.2.4, “BDC Hardware Breakpoint.”
17.4.2
System Background Debug Force Reset Register (SBDFR)
This register contains a single write-only control bit. A serial background mode command such as
WRITE_BYTE must be used to write to SBDFR. Attempts to write this register from a user program are
ignored. Reads always return 0x00.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
277
Chapter 17 Development Support
R
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
BDFR1
W
Reset
0
0
0
0
0
0
0
0
= Unimplemented or Reserved
1
BDFR is writable only through serial background mode debug commands, not from user programs.
Figure 17-6. System Background Debug Force Reset Register (SBDFR)
Table 17-3. SBDFR Register Field Description
Field
Description
0
BDFR
Background Debug Force Reset — A serial active background mode command such as WRITE_BYTE allows
an external debug host to force a target system reset. Writing 1 to this bit forces an MCU reset. This bit cannot
be written from a user program.
17.4.3
DBG Registers and Control Bits
The debug module includes nine bytes of register space for three 16-bit registers and three 8-bit control
and status registers. These registers are located in the high register space of the normal memory map so
they are accessible to normal application programs. These registers are rarely if ever accessed by normal
user application programs with the possible exception of a ROM patching mechanism that uses the
breakpoint logic.
17.4.3.1
Debug Comparator A High Register (DBGCAH)
This register contains compare value bits for the high-order eight bits of comparator A. This register is
forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.
17.4.3.2
Debug Comparator A Low Register (DBGCAL)
This register contains compare value bits for the low-order eight bits of comparator A. This register is
forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.
17.4.3.3
Debug Comparator B High Register (DBGCBH)
This register contains compare value bits for the high-order eight bits of comparator B. This register is
forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.
17.4.3.4
Debug Comparator B Low Register (DBGCBL)
This register contains compare value bits for the low-order eight bits of comparator B. This register is
forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.
MC9S08SH32 Series Data Sheet, Rev. 3
278
Freescale Semiconductor
Chapter 17 Development Support
17.4.3.5
Debug FIFO High Register (DBGFH)
This register provides read-only access to the high-order eight bits of the FIFO. Writes to this register have
no meaning or effect. In the event-only trigger modes, the FIFO only stores data into the low-order byte
of each FIFO word, so this register is not used and will read 0x00.
Reading DBGFH does not cause the FIFO to shift to the next word. When reading 16-bit words out of the
FIFO, read DBGFH before reading DBGFL because reading DBGFL causes the FIFO to advance to the
next word of information.
17.4.3.6
Debug FIFO Low Register (DBGFL)
This register provides read-only access to the low-order eight bits of the FIFO. Writes to this register have
no meaning or effect.
Reading DBGFL causes the FIFO to shift to the next available word of information. When the debug
module is operating in event-only modes, only 8-bit data is stored into the FIFO (high-order half of each
FIFO word is unused). When reading 8-bit words out of the FIFO, simply read DBGFL repeatedly to get
successive bytes of data from the FIFO. It isn’t necessary to read DBGFH in this case.
Do not attempt to read data from the FIFO while it is still armed (after arming but before the FIFO is filled
or ARMF is cleared) because the FIFO is prevented from advancing during reads of DBGFL. This can
interfere with normal sequencing of reads from the FIFO.
Reading DBGFL while the debugger is not armed causes the address of the most-recently fetched opcode
to be stored to the last location in the FIFO. By reading DBGFH then DBGFL periodically, external host
software can develop a profile of program execution. After eight reads from the FIFO, the ninth read will
return the information that was stored as a result of the first read. To use the profiling feature, read the FIFO
eight times without using the data to prime the sequence and then begin using the data to get a delayed
picture of what addresses were being executed. The information stored into the FIFO on reads of DBGFL
(while the FIFO is not armed) is the address of the most-recently fetched opcode.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
279
Chapter 17 Development Support
17.4.3.7
Debug Control Register (DBGC)
This register can be read or written at any time.
7
6
5
4
3
2
1
0
DBGEN
ARM
TAG
BRKEN
RWA
RWAEN
RWB
RWBEN
0
0
0
0
0
0
0
0
R
W
Reset
Figure 17-7. Debug Control Register (DBGC)
Table 17-4. DBGC Register Field Descriptions
Field
Description
7
DBGEN
Debug Module Enable — Used to enable the debug module. DBGEN cannot be set to 1 if the MCU is secure.
0 DBG disabled
1 DBG enabled
6
ARM
Arm Control — Controls whether the debugger is comparing and storing information in the FIFO. A write is used
to set this bit (and ARMF) and completion of a debug run automatically clears it. Any debug run can be manually
stopped by writing 0 to ARM or to DBGEN.
0 Debugger not armed
1 Debugger armed
5
TAG
Tag/Force Select — Controls whether break requests to the CPU will be tag or force type requests. If
BRKEN = 0, this bit has no meaning or effect.
0 CPU breaks requested as force type requests
1 CPU breaks requested as tag type requests
4
BRKEN
Break Enable — Controls whether a trigger event will generate a break request to the CPU. Trigger events can
cause information to be stored in the FIFO without generating a break request to the CPU. For an end trace, CPU
break requests are issued to the CPU when the comparator(s) and R/W meet the trigger requirements. For a
begin trace, CPU break requests are issued when the FIFO becomes full. TRGSEL does not affect the timing of
CPU break requests.
0 CPU break requests not enabled
1 Triggers cause a break request to the CPU
3
RWA
R/W Comparison Value for Comparator A — When RWAEN = 1, this bit determines whether a read or a write
access qualifies comparator A. When RWAEN = 0, RWA and the R/W signal do not affect comparator A.
0 Comparator A can only match on a write cycle
1 Comparator A can only match on a read cycle
2
RWAEN
Enable R/W for Comparator A — Controls whether the level of R/W is considered for a comparator A match.
0 R/W is not used in comparison A
1 R/W is used in comparison A
1
RWB
R/W Comparison Value for Comparator B — When RWBEN = 1, this bit determines whether a read or a write
access qualifies comparator B. When RWBEN = 0, RWB and the R/W signal do not affect comparator B.
0 Comparator B can match only on a write cycle
1 Comparator B can match only on a read cycle
0
RWBEN
Enable R/W for Comparator B — Controls whether the level of R/W is considered for a comparator B match.
0 R/W is not used in comparison B
1 R/W is used in comparison B
MC9S08SH32 Series Data Sheet, Rev. 3
280
Freescale Semiconductor
Chapter 17 Development Support
17.4.3.8
Debug Trigger Register (DBGT)
This register can be read any time, but may be written only if ARM = 0, except bits 4 and 5 are hard-wired
to 0s.
7
6
TRGSEL
BEGIN
0
0
R
5
4
0
0
3
2
1
0
TRG3
TRG2
TRG1
TRG0
0
0
0
0
W
Reset
0
0
= Unimplemented or Reserved
Figure 17-8. Debug Trigger Register (DBGT)
Table 17-5. DBGT Register Field Descriptions
Field
Description
7
TRGSEL
Trigger Type — Controls whether the match outputs from comparators A and B are qualified with the opcode
tracking logic in the debug module. If TRGSEL is set, a match signal from comparator A or B must propagate
through the opcode tracking logic and a trigger event is only signalled to the FIFO logic if the opcode at the match
address is actually executed.
0 Trigger on access to compare address (force)
1 Trigger if opcode at compare address is executed (tag)
6
BEGIN
Begin/End Trigger Select — Controls whether the FIFO starts filling at a trigger or fills in a circular manner until
a trigger ends the capture of information. In event-only trigger modes, this bit is ignored and all debug runs are
assumed to be begin traces.
0 Data stored in FIFO until trigger (end trace)
1 Trigger initiates data storage (begin trace)
3:0
TRG[3:0]
Select Trigger Mode — Selects one of nine triggering modes, as described below.
0000 A-only
0001 A OR B
0010 A Then B
0011 Event-only B (store data)
0100 A then event-only B (store data)
0101 A AND B data (full mode)
0110 A AND NOT B data (full mode)
0111 Inside range: A ≤ address ≤ B
1000 Outside range: address < A or address > B
1001 – 1111 (No trigger)
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
281
Chapter 17 Development Support
17.4.3.9
Debug Status Register (DBGS)
This is a read-only status register.
R
7
6
5
4
3
2
1
0
AF
BF
ARMF
0
CNT3
CNT2
CNT1
CNT0
0
0
0
0
0
0
0
0
W
Reset
= Unimplemented or Reserved
Figure 17-9. Debug Status Register (DBGS)
Table 17-6. DBGS Register Field Descriptions
Field
Description
7
AF
Trigger Match A Flag — AF is cleared at the start of a debug run and indicates whether a trigger match A
condition was met since arming.
0 Comparator A has not matched
1 Comparator A match
6
BF
Trigger Match B Flag — BF is cleared at the start of a debug run and indicates whether a trigger match B
condition was met since arming.
0 Comparator B has not matched
1 Comparator B match
5
ARMF
Arm Flag — While DBGEN = 1, this status bit is a read-only image of ARM in DBGC. This bit is set by writing 1
to the ARM control bit in DBGC (while DBGEN = 1) and is automatically cleared at the end of a debug run. A
debug run is completed when the FIFO is full (begin trace) or when a trigger event is detected (end trace). A
debug run can also be ended manually by writing 0 to ARM or DBGEN in DBGC.
0 Debugger not armed
1 Debugger armed
3:0
CNT[3:0]
FIFO Valid Count — These bits are cleared at the start of a debug run and indicate the number of words of valid
data in the FIFO at the end of a debug run. The value in CNT does not decrement as data is read out of the FIFO.
The external debug host is responsible for keeping track of the count as information is read out of the FIFO.
0000 Number of valid words in FIFO = No valid data
0001 Number of valid words in FIFO = 1
0010 Number of valid words in FIFO = 2
0011 Number of valid words in FIFO = 3
0100 Number of valid words in FIFO = 4
0101 Number of valid words in FIFO = 5
0110 Number of valid words in FIFO = 6
0111 Number of valid words in FIFO = 7
1000 Number of valid words in FIFO = 8
MC9S08SH32 Series Data Sheet, Rev. 3
282
Freescale Semiconductor
Appendix A
Electrical Characteristics
A.1
Introduction
This section contains electrical and timing specifications for the MC9S08SH32 Series of microcontrollers
available at the time of publication.
A.2
Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding, the following classification is used and the parameters are tagged
accordingly in the tables where appropriate:
Table A-1. Parameter Classifications
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved through the design characterization by measuring a statistically relevant
sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from typical devices
under typical conditions unless otherwise noted. All values shown in the typical column are within this
category.
D
Those parameters are derived mainly from simulations.
NOTE
The classification is shown in the column labeled “C” in the parameter
tables where appropriate.
A.3
Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not
guaranteed. Stress beyond the limits specified in Table A-2 may affect device reliability or cause
permanent damage to the device. For functional operating conditions, refer to the remaining tables in this
section.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
283
Appendix A Electrical Characteristics
inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable
pull-up resistor associated with the pin is enabled.
Table A-2. Absolute Maximum Ratings
Rating
#
Symbol
Value
Unit
1
Supply voltage
VDD
–0.3 to +5.8
V
2
Maximum current into VDD
IDD
120
mA
3
Digital input voltage
VIn
–0.3 to VDD + 0.3
V
4
Instantaneous maximum current
Single pin limit (applies to all port pins)1, 2, 3
ID
± 25
mA
5
Storage temperature range
Tstg
–55 to 150
°C
1
Input must be current limited to the value specified. To determine the value of the required
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp
voltages, then use the larger of the two resistance values.
2 All functional non-supply pins except PTA5/IRQ/TCLK/RESET are internally clamped to V
SS and
VDD.
3 Power supply must maintain regulation within operating V
DD range during instantaneous and
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD,
the injection current may flow out of VDD and could result in external power supply going out of
regulation. Ensure external VDD load will shunt current greater than maximum injection current.
This will be the greatest risk when the MCU is not consuming power. Examples are: if no system
clock is present, or if the clock rate is very low (which would reduce overall power consumption).
MC9S08SH32 Series Data Sheet, Rev. 3
284
Freescale Semiconductor
Appendix A Electrical Characteristics
A.4
Thermal Characteristics
This section provides information about operating temperature range, power dissipation, and package
thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in
on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the
MCU design. To take PI/O into account in power calculations, determine the difference between actual pin
voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high
pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small.
Table A-3. Thermal Characteristics
#
C
—
1
Rating
Symbol
Value
Unit
TA
–40 to 125
°C
Operating temperature range
(packaged)
Temperature Code M
Temperature Code C
–40 to 85
Thermal resistance, Single-layer board
2
D
28-pin TSSOP
θJA
72
28-pin SOIC
57
20-pin TSSOP
94
16-pin TSSOP
108
°C/W
Thermal resistance, Four-layer board
3
4
D
D
28-pin TSSOP
θJA
51
28-pin SOIC
42
20-pin TSSOP
68
16-pin TSSOP
78
Maximum junction temperature
TJ
135
°C/W
°C
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
285
Appendix A Electrical Characteristics
The average chip-junction temperature (TJ) in °C can be obtained from:
TJ = TA + (PD × θJA)
Eqn. A-1
where:
TA = Ambient temperature, °C
θJA = Package thermal resistance, junction-to-ambient, °C/W
PD = Pint + PI/O
Pint = IDD × VDD, Watts — chip internal power
PI/O = Power dissipation on input and output pins — user determined
For most applications, PI/O VSS
0
—
100
mA
VIH
5V
0.65 x VDD
—
—
V
3V
0.7 x VDD
—
—
V
5V
—
—
0.35 x VDD
V
3V
—
—
0.35 x VDD
V
|IIn|
—
0.06 x VDD
—
—
V
VIn = VDD or VSS
—
—
1
μA
|IOZ|
VIn = VDD or VSS;
temperature
—
—
1
μA
VIn = VDD or VSS
—
—
2
μA
—
17
37
52
kΩ
—
17
37
52
kΩ
Max total IOL for
all ports
Output
D
low current
P Input high voltage; all digital inputs
C
P Input low voltage; all digital inputs
VIL
C
8
C Input hysteresis
9
P Input leakage current (per pin)
Vhys
Hi-Z (off-state) leakage current (per
pin)
10
P
input/output port pins
PTA5/IRQ/TCLK/RESET,
PTB6/SDA/XTAL pins
Pullup or Pulldown2 resistors; when
enabled
11
P
C
I/O pins RPU,RPD
3
PTA5/IRQ/TCLK/RESET
RPU
MC9S08SH32 Series Data Sheet, Rev. 3
288
Freescale Semiconductor
Appendix A Electrical Characteristics
Table A-6. DC Characteristics (continued)
#
C
Characteristic
DC injection current
Symbol
13
Min
Typ1
Max
Unit
VIN > VDD
0
—
2
mA
4, 5, 6, 7
Single pin limit
12
Condition
VIN < VSS,
0
—
–0.2
mA
Total MCU limit, includes
VIN > VDD
0
—
25
mA
sum of all stressed pins
VIN < VSS,
0
—
–5
mA
CIn
—
—
—
8
pF
D
IIC
D Input Capacitance, all pins
14
D RAM retention voltage
VRAM
—
—
0.6
1.0
V
15
D POR re-arm voltage8
VPOR
—
0.9
1.4
2.0
V
tPOR
—
10
—
—
μs
3.9
4.0
4.0
4.1
4.1
4.2
V
2.48
2.54
2.56
2.62
2.64
2.70
V
4.5
4.6
4.6
4.7
4.7
4.8
V
4.2
4.3
4.3
4.4
4.4
4.5
V
2.84
2.90
2.92
2.98
3.00
3.06
V
2.66
2.72
2.74
2.80
2.82
2.88
V
—
100
—
mV
9
16
D POR re-arm time
17
Low-voltage detection threshold —
high range
P
VDD falling
VDD rising
18
19
20
21
22
Low-voltage detection threshold —
low range
P
VDD falling
VDD rising
Low-voltage warning threshold —
high range 1
P
VDD falling
VDD rising
Low-voltage warning threshold —
high range 0
P
VDD falling
VDD rising
Low-voltage warning threshold
low range 1
P
VDD falling
VDD rising
Low-voltage warning threshold —
low range 0
P
VDD falling
VDD rising
Low-voltage inhibit reset/recover
hysteresis
23
T
24
P Bandgap Voltage Reference10
VLVD1
VLVD0
VLVW3
VLVW2
VLVW1
VLVW0
Vhys
VBG
—
—
—
—
—
—
5V
3V
—
60
—
mV
—
1.18
1.202
1.21
V
1
Typical values are measured at 25°C. Characterized, not tested
When IRQ or a pin interrupt is configured to detect rising edges, pulldown resistors are used in place of pullup resistors.
3 The specified resistor value is the actual value internal to the device. The pullup value may measure higher when measured
externally on the pin.
4 Power supply must maintain regulation within operating V
DD range during instantaneous and operating maximum current
conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result
in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or
if clock rate is very low (which would reduce overall power consumption).
5 All functional non-supply pins except PTA5/IRQ/TCLK/RESET are internally clamped to V
SS and VDD.
2
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
289
Appendix A Electrical Characteristics
6
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate
resistance values for positive and negative clamp voltages, then use the larger of the two values.
7
The RESET pin does not have a clamp diode to VDD. Do not drive this pin above VDD.
8
Maximum is highest voltage that POR is guaranteed.
9
Simulated, not tested.
10
Factory trimmed at VDD = 5.0 V, Temp = 25°C.
1.0
2
125°C
25°C
–40°C
0.8
VOL (V)
VOL (V)
1.5
1
0.5
0
125°C
25°C
–40°C
Max 1.5V@20mA
Max 0.8V@5mA
0.6
0.4
0.2
0
5
10
15
20
IOL (mA)
a) VDD = 5V, High Drive
0
25
0
2
4
6
IOL (mA)
b) VDD = 3V, High Drive
8
10
Figure A-1. Typical VOL vs IOL, High Drive Strength
1.0
2
125°C
25°C
–40°C
0.8
VOL (V)
VOL (V)
1.5
1
0.5
0
125°C
25°C
–40°C
Max 1.5V@4mA
Max 0.8V@1mA
0.6
0.4
0.2
0
1
2
3
IOL (mA)
a) VDD = 5V, Low Drive
4
5
0
0
0.4
0.8
1.2
1.6
IOL (mA)
b) VDD = 3V, Low Drive
2.0
Figure A-2. Typical VOL vs IOL, Low Drive Strength
MC9S08SH32 Series Data Sheet, Rev. 3
290
Freescale Semiconductor
Appendix A Electrical Characteristics
1.0
2
125°C
25°C
–40°C
0.8
VDD – VOH (V)
VDD – VOH (V)
1.5
1
0.5
0
125°C
25°C
–40°C
Max 1.5V@20mA
Max 0.8V@5mA
0.6
0.4
0.2
0
–5
–10
–15
–20
IOH (mA)
a) VDD = 5V, High Drive
0
–25
0
–2
–4
–6
–8
IOH (mA)
b) VDD = 3V, High Drive
–10
Figure A-3. Typical VDD – VOH vs IOH, High Drive Strength
2
1.0
125°C
25°C
–40°C
0.8
VDD – VOH (V)
VDD – VOH (V)
1.5
1
0.5
0
125°C
25°C
–40°C
Max 1.5V@4mA
Max 0.8V@1mA
0.6
0.4
0.2
0
–1
–2
–3
IOH (mA)
a) VDD = 5V, Low Drive
–4
–5
0
0
–0.4
–0.8
–1.2
–1.6
IOH (mA)
b) VDD = 3V, Low Drive
–2.0
Figure A-4. Typical VDD – VOH vs IOH, Low Drive Strength
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
291
Appendix A Electrical Characteristics
A.7
Supply Current Characteristics
This section includes information about power supply current in various operating modes.
Table A-7. Supply Current Characteristics
#
VDD
(V)
Typ1
Max2
Unit
5
1.4
3
mA
3
1.3
2.5
mA
5
4.7
7.5
mA
3
4.6
7
mA
5
8.9
10
mA
3
8.7
9.6
mA
–40°C (C and M suffix)
0.96
–
μA
P
25°C (All parts)
1.3
–
μA
P5
85°C (C suffix only)
16.9
35
μA
P5
125°C (M suffix only)
84
150
μA
C
–40°C (C and M suffix)
0.85
–
μA
P
25°C (All parts)
1.2
–
μA
5
85°C (C suffix only)
14.8
30
μA
P5
125°C (M suffix only)
75
130
μA
C
C
1
2
C
P
C
C
3
C
Parameter
Symbol
3
Run supply current measured at
(CPU clock = 4 MHz, fBus = 2 MHz)
Run supply current3 measured at
(CPU clock = 16 MHz, fBus = 8 MHz)
RIDD
RIDD
4
Run supply current measured at
(CPU clock = 32 MHz, fBus = 16MHz)
RIDD
Stop3 mode supply current
4
P
5
S3IDD
3
MC9S08SH32 Series Data Sheet, Rev. 3
292
Freescale Semiconductor
Appendix A Electrical Characteristics
Table A-7. Supply Current Characteristics (continued)
#
C
Parameter
Symbol
VDD
(V)
Typ1
Max2
Unit
Stop2 mode supply current
5
2
3
4
5
6
7
–40°C (C and Msuffix)
0.94
–
μA
P
25°C (All parts)
1.25
–
μA
P5
85°C (C suffix only)
13.4
30
μA
P5
125°C (M suffix only)
65
120
μA
C
–40°C (C and Msuffix)
0.83
–
μA
P
25°C (All parts)
1.1
–
μA
P5
85°C (C suffix only)
11.5
25
μA
P5
125°C (M suffix only)
57
100
μA
5
300
500
nA
3
300
500
nA
5
110
180
μA
3
90
160
μA
5,3
5
8
μA
6
C
7
C
8
1
C
C
RTC adder to stop2 or
stop36
S2IDD
3
S23IDDRTI
LVD adder to stop3 (LVDE = LVDSE = 1)
Adder to stop3 for oscillator enabled
(EREFSTEN =1)
5
S3IDDLVD
7
S3IDDOSC
Typical values are based on characterization data at 25°C. See Figure A-5 through Figure A-7 for typical curves
across temperature and voltage.
Max values in this column apply for the full operating temperature range of the device unless otherwise noted.
All modules except ADC active, ICS configured for FBELP, and does not include any dc loads on port pins
All modules except ADC active, ICS configured for FEI, and does not include any dc loads on port pins
Stop Currents are tested in production for 25 Con all parts. Tests at other temperatures depend upon the part number
suffix and maturity of the product. Freescale may eliminate a test insertion at a particular temperature from the
production test flow once sufficient data has been collected and is approved.
Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current
wait mode.
Values given under the following conditions: low range operation (RANGE = 0) with a 32.768kHz crystal and low
power mode (HGO = 0).
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
293
Appendix A Electrical Characteristics
12
FEI
FBELP
10
Run IDD (mA)
8
6
4
2
0
0 1 2
4
8
20
16
fbus (MHz)
Figure A-5. Typical Run IDD vs. Bus Frequency (VDD = 5V)
6
RUN
5
Run IDD (mA)
4
3
WAIT
2
1
0
–40
0
25
Temperature (°C)
85
105
125
Figure A-6. Typical Run and Wait IDD vs. Temperature (VDD = 5V; fbus = 8MHz)
MC9S08SH32 Series Data Sheet, Rev. 3
294
Freescale Semiconductor
STOP IDD (µA)
Appendix A Electrical Characteristics
90
80
70
60
50
40
30
20
10
0
–40
0
25
Temperature (°C)
85
105
125
Figure A-7. Typical Stop IDD vs. Temperature (VDD = 5V)
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
295
Appendix A Electrical Characteristics
A.8
External Oscillator (XOSC) Characteristics
Table A-8. Oscillator Electrical Specifications (Temperature Range = –40 to 125°C Ambient)
#
C
Rating
Symbol
Min
Typ1
Max
Unit
flo
32
—
38.4
kHz
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)
Low range (RANGE = 0)
1
C
2
fhi
1
—
5
MHz
High range (RANGE = 1, HGO = 1) FBELP mode
fhi-hgo
1
—
16
MHz
High range (RANGE = 1, HGO = 0) FBELP mode
fhi-lp
1
—
8
MHz
High range (RANGE = 1) FEE or FBE mode
2
— Load capacitors
3
—
C1, C2
See crystal or resonator
manufacturer’s recommendation.
Feedback resistor
RF
Low range (32 kHz to 100 kHz)
High range (1 MHz to 16 MHz)
—
10
—
MΩ
—
1
—
MΩ
Series resistor
4
—
Low range, low gain (RANGE = 0, HGO = 0)
—
0
—
kΩ
Low range, high gain (RANGE = 0, HGO = 1)
—
100
—
kΩ
—
0
—
kΩ
High range, low gain (RANGE = 1, HGO = 0)
High range, high gain (RANGE = 1, HGO = 1)
RS
≥ 8 MHz
—
0
0
kΩ
4 MHz
—
0
10
kΩ
1 MHz
—
0
20
kΩ
Crystal start-up time 3
5
T
Low range, low gain (RANGE = 0, HGO = 0)
t
CSTL-LP
—
200
—
ms
Low range, high gain (RANGE = 0, HGO = 1)
t
CSTL-HGO
—
400
—
ms
t
CSTH-LP
—
5
—
ms
t
CSTH-HGO
—
20
—
ms
High range, low gain (RANGE = 1, HGO =
0)4
4
High range, high gain (RANGE = 1, HGO = 1)
Square wave input clock frequency (EREFS = 0,
ERCLKEN = 1)
6
T
FEE or FBE mode 2
FBELP mode
fextal
0.03125
—
5
MHz
0
—
40
MHz
1
Typical data was characterized at 5.0 V, 25°C or is recommended value.
The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
3 Characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve
specifications.
4 4 MHz crystal
2
MC9S08SH32 Series Data Sheet, Rev. 3
296
Freescale Semiconductor
Appendix A Electrical Characteristics
EXTAL
MCU
RF
C1
Crystal or Resonator
XTAL
RS
C2
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
297
Appendix A Electrical Characteristics
A.9
Internal Clock Source (ICS) Characteristics
Table A-9. ICS Frequency Specifications (Temperature Range = –40 to 125°C Ambient)
#
C
Rating
Symbol
Min
Typical
Max
Unit
1
P
Internal reference frequency — factory
trimmed at VDD = 5 V and temperature = 25°C
fint_ft
—
31.25
—
kHz
2
T Internal reference frequency — untrimmed1
fint_ut
25
36
41.66
kHz
3
P Internal reference frequency — trimmed
fint_t
31.25
—
39.0625
kHz
D Internal reference startup time
tirefst
—
55
100
μs
4
1
5
DCO output frequency range — untrimmed
— value provided for reference: fdco_ut = 1024 x
fint_ut
fdco_ut
25.6
36.86
42.66
MHz
6
D DCO output frequency range — trimmed
fdco_t
32
—
40
MHz
7
D
—
± 0.1
± 0.2
%fdco
8
Resolution of trimmed DCO output frequency
D at fixed voltage and temperature (not using
FTRIM)
Δfdco_res_t
—
± 0.2
± 0.4
%fdco
9
D
Δfdco_t
—
+ 0.5
– 1.0
±2
%fdco
10
Total deviation of trimmed DCO output
D frequency over fixed voltage and temperature
range of 0°C to 70 °C
Δfdco_t
—
± 0.5
±1
%fdco
11
D FLL acquisition time 2
tacquire
—
1
ms
12
D
CJitter
—
0.2
%fdco
Resolution of trimmed DCO output frequency
Δfdco_res_t
at fixed voltage and temperature (using FTRIM)
Total deviation of trimmed DCO output
frequency over voltage and temperature
DCO output clock long term jitter (over 2 ms
interval) 3
0.02
1
TRIM register at default value (0x80) and FTRIM control bit at default value (0x0).
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed
or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being
used as the reference, this specification assumes it is already running.
3 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum
fBUS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock
signal. Noise injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the
CJitter percentage for a given interval.
2
MC9S08SH32 Series Data Sheet, Rev. 3
298
Freescale Semiconductor
Deviation from Trimmed Frequency
Appendix A Electrical Characteristics
+2%
+1%
0
–1%
–2%
–40
0
25
Temperature (°C)
85
105
125
Figure A-8. Typical Frequency Deviation vs Temperature (ICS Trimmed to 16MHz bus@25°C, 5V, FEI)1
A.10
Analog Comparator (ACMP) Electricals
Table A-10. Analog Comparator Electrical Specifications
#
C
1
—
2
C/T
3
Rating
Symbol
Min
Typical
Max
Unit
VDD
2.7
—
5.5
V
Supply current (active)
IDDAC
—
20
35
μA
D
Analog input voltage
VAIN
VSS – 0.3
—
VDD
V
4
D
Analog input offset voltage
VAIO
—
20
40
mV
5
D
Analog Comparator hysteresis
VH
3.0
6.0
20.0
mV
6
D
Analog input leakage current
IALKG
—
—
1.0
μA
7
D
Analog Comparator initialization delay
tAINIT
—
—
1.0
μs
Supply voltage
1. Based on the average of several hundred units from a typical characterization lot.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
299
Appendix A Electrical Characteristics
A.11
ADC Characteristics
Table A-11. ADC Operating Conditions
#
Characteristic
1
Supply voltage
2
Conditions
Absolute
Input Voltage
Symb
Min
Typ1
Max
Unit
VDDAD
2.7
—
5.5
V
VADIN
VREFL
—
VREF
V
Input
Capacitance
CADIN
—
4.5
5.5
pF
4
Input
Resistance
RADIN
—
3
5
kΩ
—
—
—
—
5
10
kΩ
—
—
10
kΩ
0.4
—
8.0
MHz
0.4
—
4.0
MHz
5
10 bit mode
fADCK > 4MHz
fADCK < 4MHz
RAS
8 bit mode (all valid
fADCK)
6
1
H
3
Analog Source
Resistance
ADC
Conversion
Clock Freq.
High Speed (ADLPC=0)
Low Power (ADLPC=1)
fADCK
Comment
External to
MCU
Typical values assume VDDAD = VDD = 5.0V, Temp = 25°C, fADCK=1.0MHz unless otherwise stated. Typical values are
for reference only and are not tested in production.
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
ZADIN
Pad
leakage
due to
input
protection
ZAS
RAS
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
RADIN
ADC SAR
ENGINE
+
VADIN
VAS
+
–
CAS
–
RADIN
INPUT PIN
INPUT PIN
RADIN
RADIN
INPUT PIN
CADIN
Figure A-9. ADC Input Impedance Equivalency Diagram
MC9S08SH32 Series Data Sheet, Rev. 3
300
Freescale Semiconductor
Appendix A Electrical Characteristics
Table A-12. ADC Characteristics
#
Characteristic
Conditions
ADLPC=1
ADLSMP=1
ADCO=1
ADLPC=1
ADLSMP=0
ADCO=1
C
Symb
Min
Typ1
Max
Unit
Comment
T
IDD +
IDDAD
—
133
—
μA
ADC current
only
T
IDD +
IDDAD
—
218
—
μA
ADC current
only
T
IDD +
IDDAD
—
327
—
μA
ADC current
only
P
IDD +
IDDAD
—
0.58
2
1
mA
ADC current
only
2
3.3
5
MHz
tADACK =
1/fADACK
1
Supply current
ADLPC=0
ADLSMP=1
ADCO=1
ADLPC=0
ADLSMP=0
ADCO=1
2
3
ADC
asynchronous
clock source
High speed (ADLPC=0)
Conversion
time (including
sample time)
Short sample
(ADLSMP=0)
Sample time
P
Low power (ADLPC=1)
D
Long sample
(ADLSMP=1)
fADACK
D
Long sample
(ADLSMP=1)
2
3.3
—
20
—
ADCK
cycles
tADC
Short sample
(ADLSMP=0)
4
1.25
—
40
—
—
3.5
—
ADCK
cycles
tADS
—
23.5
—
—
±1
±2.5
—
±0.5
±1
—
±.5
±3.5
—
±0.7
±1.5
—
±.5
±3.5
—
±0.7
±1.5
See ADC
Chapter for
conversion
time variances
28-pin packages only
Total
unadjusted
error (includes
quantization)
10-bit mode
8-bit mode
P
ETUE
LSB2
20-pin packages
5
10-bit mode
P
8-bit mode
ETUE
LSB2
16-pin packages
10-bit mode
P
8-bit mode
ETUE
LSB2
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
301
Appendix A Electrical Characteristics
Table A-12. ADC Characteristics (continued)
#
6
Characteristic
Conditions
Differential
Non-Linearity
C
Symb
P
DNL
10-bit mode
8-bit mode
Min
Typ1
Max
—
±0.5
±1.0
—
±0.3
±0.5
Unit
Comment
LSB2
Monotonicity and No-Missing-Codes guaranteed
7
Integral
non-linearity
10-bit mode
8-bit mode
T
—
±0.5
±1.0
—
±0.3
±0.5
—
±0.5
±1.5
—
±0.5
±0.5
—
±1.5
±2.5
—
±0.5
±0.7
—
±1.5
±2.5
—
±0.5
±0.7
INL
LSB2
28-pin packages only
10-bit mode
Zero-scale
error
P
EZS
8-bit mode
LSB2
20-pin packages
10-bit mode
8
P
EZS
8-bit mode
LSB2
16-pin packages
10-bit mode
8-bit mode
P
EZS
LSB2
MC9S08SH32 Series Data Sheet, Rev. 3
302
Freescale Semiconductor
Appendix A Electrical Characteristics
Table A-12. ADC Characteristics (continued)
#
Characteristic
Conditions
C
Symb
T
EFS
Min
Typ1
Max
Unit
0
±0.5
±1
LSB2
0
±0.5
±0.5
LSB2
0
±1.0
±1.5
LSB2
0
±0.5
±0.5
LSB2
0
±1.0
±1.5
LSB2
0
±0.5
±0.5
LSB2
—
—
±0.5
LSB2
—
—
±0.5
LSB2
0
±0.2
±2.5
LSB2
0
±0.1
±1
LSB2
—
3.26
6
—
mV/°C
—
3.63
8
—
mV/°C
—
1.39
6
—
V
Comment
28-pin packages only
10-bit mode
Full-scale error
8-bit mode
20-pin packages
10-bit mode
8-bit mode
T
EFS
16-pin packages
10-bit mode
8-bit mode
Quantization
error
EFS
10-bit mode
D
8-bit mode
Input leakage
error
Temp sensor
slope
T
EQ
10-bit mode
8-bit mode
D
EIL
-40°C to 25°C
D
m
25°C to 125°C
Temp sensor
voltage
25°C
D
Pad leakage3
* RAS
VTEMP
25
1
Typical values assume VDD = 5.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2 1 LSB = (V
N
REFH - VREFL)/2
3 Based on input pad leakage current. Refer to pad electricals.
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
303
Appendix A Electrical Characteristics
A.12
AC Characteristics
This section describes ac timing characteristics for each peripheral system.
A.12.1
Control Timing
Table A-13. Control Timing
Num
C
Rating
Symbol
1
D
Bus frequency
(tcyc = 1/fBus)
-40 °C to 125 °C
2
D
Internal low power
oscillator period
-40 °C to 125 °C
2
fBus
Min
Typ1
Max
Unit
dc
—
20
MHz
tLPO
700
1500
μs
3
D
External reset pulse width
textrst
100
—
ns
4
D
Reset low drive3
trstdrv
66 x tcyc
—
ns
tILIH, tIHIL
100
1.5 x tcyc
—
—
ns
tILIH, tIHIL
100
1.5 x tcyc
—
—
ns
—
40
—
—
75
—
—
11
—
5
D
6
D
IRQ pulse width
Asynchronous
path2
Synchronous path4
Pin interrupt pulse width
Asynchronous path2
Synchronous path4
Port rise and fall time —
Low output drive (PTxDS = 0) (load = 50 pF)5
Slew rate control
disabled (PTxSE = 0)
7
tRise, tFall
Slew rate control
enabled (PTxSE = 1)
ns
C
Port rise and fall time —
High output drive (PTxDS = 1) (load = 50 pF)5
Slew rate control
disabled (PTxSE = 0)
tRise, tFall
Slew rate control
enabled (PTxSE = 1)
tRise, tFall
ns
—
35
—
1
Typical values are based on characterization data at VDD = 5.0V, 25°C unless otherwise stated.
This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
3
When any reset is initiated, internal circuitry drives the reset pin low for about 66 cycles of tcyc. After POR reset,
the bus clock frequency changes to the untrimmed DCO frequency (freset = (fdco_ut)/4) because TRIM is reset to
0x80 and FTRIM is reset to 0, and there is an extra divide-by-two because BDIV is reset to 0:1. After other resets
trim stays at the pre-reset value.
4
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter
pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be
recognized in that case.
5 Timing is shown with respect to 20% V
DD and 80% VDD levels. Temperature range –40°C to 125°C.
2
MC9S08SH32 Series Data Sheet, Rev. 3
304
Freescale Semiconductor
Appendix A Electrical Characteristics
textrst
RESET PIN
Figure A-10. Reset Timing
tIHIL
IRQ/Pin Interrupts
IRQ/ Pin Interrupts
tILIH
Figure A-11. IRQ/Pin Interrupt Timing
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
305
Appendix A Electrical Characteristics
A.12.2
TPM/MTIM Module Timing
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that
can be used as the optional external source to the timer counter. These synchronizers operate from the
current bus rate clock.
Table A-14. TPM Input Timing
#
C
1
—
2
Rating
Symbol
Min
Max
Unit
External clock frequency (1/tTCLK)
fTCLK
dc
fBus/4
MHz
—
External clock period
tTCLK
4
—
tcyc
3
—
External clock high time
tclkh
1.5
—
tcyc
4
—
External clock low time
tclkl
1.5
—
tcyc
5
—
Input capture pulse width
tICPW
1.5
—
tcyc
tTCLK
tclkh
TCLK
tclkl
Figure A-12. Timer External Clock
tICPW
TPMCHn
TPMCHn
tICPW
Figure A-13. Timer Input Capture Pulse
MC9S08SH32 Series Data Sheet, Rev. 3
306
Freescale Semiconductor
Appendix A Electrical Characteristics
A.12.3
SPI
Table A-15 and Figure A-14 through Figure A-17 describe the timing requirements for the SPI system.
Table A-15. SPI Electrical Characteristic
Num1
C
1
D
2
3
4
5
6
7
D
D
D
D
D
D
Rating2
Symbol
Min
Max
Unit
Master
Slave
tSCK
tSCK
2
4
2048
—
tcyc
tcyc
Master
Slave
tLead
tLead
—
1/2
1/2
—
tSCK
tSCK
Master
Slave
tLag
tLag
—
1/2
1/2
—
tSCK
tSCK
Clock (SPSCK) high time
Master and Slave
tSCKH
1/2 tSCK – 25
—
ns
Clock (SPSCK) low time
Master and Slave
tSCKL
1/2 tSCK – 25
—
ns
Master
Slave
tSI(M)
tSI(S)
30
30
—
—
ns
ns
Master
Slave
tHI(M)
tHI(S)
30
30
—
—
ns
ns
Cycle time
Enable lead time
Enable lag time
Data setup time (inputs)
Data hold time (inputs)
D
Access time, slave3
tA
0
40
ns
9
D
Disable time,
slave4
tdis
—
40
ns
10
D
Data setup time (outputs)
Master
Slave
tSO
tSO
—
—
25
25
ns
ns
Master
Slave
tHO
tHO
–10
–10
—
—
ns
ns
Master
Slave
fop
fop
fBus/2048
dc
55
fBus/4
MHz
8
11
D
D
Data hold time (outputs)
Operating frequency
12
1
Refer to Figure A-14 through Figure A-17.
All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins. All timing
assumes slew rate control disabled and high drive strength enabled for SPI output pins.
3 Time to data active from high-impedance state.
4 Hold time to high-impedance state.
5
Maximum baud rate must be limited to 5 MHz due to input filter characteristics.
2
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
307
Appendix A Electrical Characteristics
SS1
(OUTPUT)
3
1
2
SCK
(CPOL = 0)
(OUTPUT)
5
4
SCK
(CPOL = 1)
(OUTPUT)
5
4
6
MISO
(INPUT)
7
MSB IN2
BIT 6 . . . 1
10
MOSI
(OUTPUT)
LSB IN
11
10
MSB OUT2
BIT 6 . . . 1
LSB OUT
NOTES:
1. SS output mode (MODFEN = 1, SSOE = 1).
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure A-14. SPI Master Timing (CPHA = 0)
SS(1)
(OUTPUT)
1
3
2
SCK
(CPOL = 0)
(OUTPUT)
5
4
SCK
(CPOL = 1)
(OUTPUT)
5
4
6
MISO
(INPUT)
7
MSB IN(2)
LSB IN
11
10
MOSI
(OUTPUT)
BIT 6 . . . 1
MSB OUT(2)
BIT 6 . . . 1
LSB OUT
NOTES:
1. SS output mode (MODFEN = 1, SSOE = 1).
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure A-15. SPI Master Timing (CPHA = 1)
MC9S08SH32 Series Data Sheet, Rev. 3
308
Freescale Semiconductor
Appendix A Electrical Characteristics
SS
(INPUT)
3
1
SCK
(CPOL = 0)
(INPUT)
5
4
2
SCK
(CPOL = 1)
(INPUT)
5
4
8
MISO
(OUTPUT)
11
10
BIT 6 . . . 1
MSB OUT
SLAVE
SLAVE LSB OUT
SEE
NOTE
7
6
MOSI
(INPUT)
9
BIT 6 . . . 1
MSB IN
LSB IN
NOTE:
1. Not defined but normally MSB of character just received
Figure A-16. SPI Slave Timing (CPHA = 0)
SS
(INPUT)
3
1
2
SCK
(CPOL = 0)
(INPUT)
5
4
SCK
(CPOL = 1)
(INPUT)
5
4
10
MISO
(OUTPUT)
SEE
NOTE
8
MOSI
(INPUT)
SLAVE
11
MSB OUT
6
BIT 6 . . . 1
9
SLAVE LSB OUT
7
MSB IN
BIT 6 . . . 1
LSB IN
NOTE:
1. Not defined but normally LSB of character just received
Figure A-17. SPI Slave Timing (CPHA = 1)
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
309
Appendix A Electrical Characteristics
A.13
Flash Specifications
This section provides details about program/erase times and program-erase endurance for the Flash
memory.
Program and erase operations do not require any special power sources other than the normal VDD supply.
For more detailed information about program/erase operations, see the Memory section.
Table A-16. Flash Characteristics
#
C
1
—
2
—
Characteristic
Symbol
Min
Typical
Max
Unit
Supply voltage for program/erase
Vprog/erase
2.7
—
5.5
V
Supply voltage for read operation
VRead
2.7
—
5.5
V
fFCLK
150
—
200
kHz
tFcyc
5
—
6.67
μs
frequency1
3
—
Internal FCLK
4
—
Internal FCLK period (1/fFCLK)
5
6
7
8
—
—
—
—
Byte program time (random
Byte program time (burst
Page erase
time2
Mass erase
time2
location)2
mode)2
3
10
C
C
9
tFcyc
tBurst
4
tFcyc
tPage
4000
tFcyc
tMass
20,000
tFcyc
nFLPE
Program/erase endurance
9
tprog
cycles
TL to TH = –40°C to +125°C
10,000
—
—
T = 25°C
10,000
100,000
—
15
100
—
4
Data retention
tD_ret
years
1
The frequency of this clock is controlled by a software setting.
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied
for calculating approximate time to program and erase.
3
Typical endurance for Flash is based upon the intrinsic bit cell performance. For additional information on how Freescale
defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile Memory.
4 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and
de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention,
please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.
2
MC9S08SH32 Series Data Sheet, Rev. 3
310
Freescale Semiconductor
Appendix A Electrical Characteristics
A.14
EMC Performance
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the
MCU resides. Board design and layout, circuit topology choices, location and characteristics of external
components as well as MCU software operation all play a significant role in EMC performance. The
system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263,
AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.
A.14.1
Radiated Emissions
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell
method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed
with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test
software. The radiated emissions from the microcontroller are measured in a TEM cell in two package
orientations (North and East).
The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal
to the reported emissions levels.
Table A-17. Radiated Emissions, Electric Field
Parameter
Radiated emissions,
electric field
Symbol
VRE_TEM
Conditions
VDD = 5 V
TA = +25oC
package type
28 TSSOP
Frequency
fOSC/fBUS
Level1
(Max)
0.15 – 50 MHz
12
50 – 150 MHz
12
150 – 500 MHz
6
4 MHz crystal
500 – 1000 MHz 20 MHz bus
Unit
dBμV
–8
2
N
—
SAE Level3
2
—
IEC Level
1
Data based on qualification test results.
IEC Level Maximums: N ≤ 12dBμV, L ≤ 24dBμV, I ≤ 36dBμV
3 SAE Level Maximums: 1 ≤ 10dBμV, 2 ≤ 20dBμV, 3 ≤ 30dBμV, 4 ≤ 40dBμV
2
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
311
Appendix A Electrical Characteristics
MC9S08SH32 Series Data Sheet, Rev. 3
312
Freescale Semiconductor
Appendix B Ordering Information and Mechanical Drawings
Appendix B
Ordering Information and Mechanical Drawings
B.1
Ordering Information
This section contains ordering information for MC9S08SH32 and MC9S08SH16 devices.
Table B-1. Device Numbering System
MC9S08SH32
MC9S08SH16
1
2
Memory
Flash
RAM
32 K
1024 B
AEC
Grade 1
16 K
Available Packages2
Temp Rated
Standard
Part Number1
1024 B
AEC Grade 0
Jennifer
28-Pin
20-Pin
16-Pin
28 TSSOP
28 SOIC
20 TSSOP
16 TSSOP
AEC
Grade 1
See Table 1-1 for a complete description of modules included on each device.
See Table B-2 for package information.
B.1.1
Device Numbering Scheme
This device uses a smart numbering system. Refer to the following diagram to understand what each
element of the device number represents.
MC 9
S08 SH n
C
xx
R
Tape and Reel Suffix (optiona
- R = Tape and Reel
Status
- MC = Fully Qualified
Package Designator
Two letter descriptor (refer to
Table B-2).
Main Memory Type
- 9 = Flash-based
Core
Temperature Option
- C = –40 to 85 °C
Family
- M = –40 to 125 °C
- SH
Memory Size
- 32 Kbytes
- 16 Kbytes
Figure B-1. MC9S08SH32 Device Numbering Scheme
MC9S08SH32 Series Data Sheet, Rev. 3
Freescale Semiconductor
313
Appendix B Ordering Information and Mechanical Drawings
B.2
Package Information and Mechanical Drawings
Table B-2 provides the available package types and their document numbers. The latest package
outline/mechanical drawings are available on the MC9S08SH32 Series Product Summary pages at
http://www.freescale.com.
To view the latest drawing, either:
• Click on the appropriate link in Table B-2, or
• Open a browser to the Freescale® website (http://www.freescale.com), and enter the appropriate
document number (from Table B-2) in the “Enter Keyword” search box at the top of the page.
The following pages are mechanical specifications for MC9S08SH32 Series package options. See
Table B-2 for the document number for each package type.
Table B-2. Package Information
is
Pin Count
Type
Designator
Document No.
28
SOIC
WL
98ASB42345B
28
TSSOP
TL
98ARS23923W
20
TSSOP
TJ
98ASH70169A
16
TSSOP
TG
98ASH70247A
MC9S08SH32 Series Data Sheet, Rev. 3
314
Freescale Semiconductor
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.
Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners.
© 2007-2014 Freescale Semiconductor, Inc.
Document Number MC9S08SH32
Revision 3, 3/2014