0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC9S12A256CPVE

MC9S12A256CPVE

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LQFP112

  • 描述:

    IC MCU 16BIT 256KB FLASH 112LQFP

  • 数据手册
  • 价格&库存
MC9S12A256CPVE 数据手册
DOCUMENT NUMBER 9S12DT256DGV3/D MC9S12DT256 Device User Guide V03.07 Covers also MC9S12A256, MC9S12DJ256 MC9S12DG256, Original Release Date: 24 March 2003 Revised: 12 October 2005 Motorola, Inc Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. 1 DOCUMENT NUMBER 9S12DT256DGV3/D Revision History Version Revision Effective Number Date Date V03.00 V03.01 V03.02 24 March 2003 30 June 2003 24 July 2003 Author Description of Changes Initial version for Maskset L91N , based on MC9S12DP256B V02.11. • added new HCS12 core documentation • added cumulative program/erase cycle limitation to Table A-12 for EEPROM • • updated Table 0-2 Document References removed cumulative program/erase cycle limitation from Table A-12 for EEPROM • V03.03 26 July 2003 • added LRAE generic load and execute info to section 15 Added MC9S12DT256 in QFP 80 to Table 0-1 V03.04 15 March 2004 • Added Masksets 0L01Y and 4L91N V03.05 4 April 2005 • V03.06 12 Oct 2005 Changed NVM data retention specification Table A-12 Corrected Flash Burst Programming Time Table A-11, • V03.07 02 Jan 2006 • • NVM Reliability Spec Table A-12 ,Figure A-2 Corrected Flash Burst Programming Time Table A-11, Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. 2 MC9S12DT256 Device User Guide — 9S12DT256DGV3/D V03.07 3 MC9S12DT256 Device User Guide — 9S12DT256DGV3/D V03.07 4 MC9S12DT256 Device User Guide — V03.07 Table of Contents Section 1 IntroductionMC9S12DT256 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 Section 2 Signal Description 2.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 2.2 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 2.3 Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.1 EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.2 RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 2.3.3 TEST — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 2.3.4 VREGEN — Voltage Regulator Enable Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 2.3.5 XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . . . .57 2.3.7 PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1 . . . . . . . . . . . . . . . . . . . . . .57 2.3.8 PAD[14:08] / AN[14:08] — Port AD Input Pins of ATD1 . . . . . . . . . . . . . . . . . . . . . .57 2.3.9 PAD7 / AN07 / ETRIG0 — Port AD Input Pin of ATD0 . . . . . . . . . . . . . . . . . . . . . . .58 2.3.10 PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0 . . . . . . . . . . . . . . . . . . . . . .58 2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . . . .58 2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . .58 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 2.3.16 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 2.3.17 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 2.3.18 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 2.3.19 PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 2.3.20 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 5 MC9S12DT256 Device User Guide — V03.07 2.3.21 2.3.22 2.3.23 2.3.24 2.3.25 2.3.26 2.3.27 2.3.28 2.3.29 2.3.30 2.3.31 2.3.32 2.3.33 2.3.34 2.3.35 2.3.36 2.3.37 2.3.38 2.3.39 2.3.40 2.3.41 2.3.42 2.3.43 2.3.44 2.3.45 2.3.46 2.3.47 2.3.48 2.3.49 2.3.50 2.3.51 2.3.52 2.3.53 2.3.54 2.3.55 2.3.56 6 PH7 / KWH7 / SS2 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PH6 / KWH6 / SCK2 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PH5 / KWH5 / MOSI2 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PH4 / KWH4 / MISO2 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PH3 / KWH3 / SS1 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 PH2 / KWH2 / SCK1 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . .62 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . .62 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PK7 / ECS / ROMONE — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PM7 / TXCAN4 — Port M I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PM6 / RXCAN4 — Port M I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 PM5 / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . .63 PM4 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . .63 PM3 / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . .63 PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . .63 PM1 / TXCAN0 / TXB — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 PM0 / RXCAN0 / RXB — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . .64 PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . .64 PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . .64 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .65 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . .65 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . .65 PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 MC9S12DT256 Device User Guide — V03.07 2.3.57 PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 2.3.58 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 2.4 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . . . .66 2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator 66 2.4.3 VDD1, VDD2, VSS1, VSS2 — Core Power Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . . . .67 2.4.5 VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . .67 2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . . . .67 2.4.7 VREGEN — On Chip Voltage Regulator Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Section 3 System Clock Description 3.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Section 4 Modes of Operation 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Section 5 Resets and Interrupts 5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 5.2.1 Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 5.3 Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 5.3.1 I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 5.3.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Section 6 HCS12 Core Block Description 7 MC9S12DT256 Device User Guide — V03.07 6.1 6.2 6.2.1 6.3 6.3.1 6.4 6.5 6.6 CPU12 Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 HCS12 Module Mapping Control (MMC) Block Description . . . . . . . . . . . . . . . . . . . . . .79 Device specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 HCS12 Multiplexed External Bus Interface (MEBI) Block Description . . . . . . . . . . . . . .79 Device specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 HCS12 Interrupt (INT) Block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 HCS12 Background Debug (BDM) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . .79 HCS12 Breakpoint (BKP) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 Section 7 Clock and Reset Generator (CRG) Block Description 7.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 7.1.1 XCLKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 Section 8 Enhanced Capture Timer (ECT) Block Description Section 9 Analog to Digital Converter (ATD) Block Description Section 10 Inter-IC Bus (IIC) Block Description Section 11 Serial Communications Interface (SCI) Block Description Section 12 Serial Peripheral Interface (SPI) Block Description Section 13 J1850 (BDLC) Block Description Section 14 Pulse Width Modulator (PWM) Block Description Section 15 Flash EEPROM 256K Block Description Section 16 EEPROM 4K Block Description Section 17 RAM Block Description Section 18 MSCAN Block Description Section 19 Port Integration Module (PIM) Block Description Section 20 Voltage Regulator (VREG) Block Description 8 MC9S12DT256 Device User Guide — V03.07 Appendix A Electrical Characteristics A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 A.1.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 A.1.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 A.1.3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 A.1.4 Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 A.1.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 A.1.6 ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 A.1.7 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 A.1.8 Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 A.1.9 I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 A.2.1 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 A.2.2 Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 A.2.3 ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 A.3 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 A.3.1 NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 A.3.2 NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 A.4 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 A.5 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 A.5.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 A.5.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 A.5.3 Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 A.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 A.7.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 A.7.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 A.8.1 General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 Appendix B Package Information B.1 B.2 B.3 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 9 MC9S12DT256 Device User Guide — V03.07 10 MC9S12DT256 Device User Guide — V03.07 List of Figures Figure 0-1 Figure 1-1 Figure 1-2 Figure 2-1 Figure 2-2 Figure 2-3 Figure 2-4 Figure 2-5 Figure 2-6 Figure 3-1 Figure 20-1 Figure 20-2 Figure 20-3 Figure 20-4 Figure A-1 Figure A-2 Figure A-3 Figure A-4 Figure A-5 Figure A-6 Figure A-7 Figure A-8 Figure A-9 Figure A-10 Figure B-1 Figure B-2 Order Partnumber Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 MC9S12DT256 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 MC9S12DT256 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Pin Assignments in 112-pin LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Pin Assignments in 80-pin QFP for MC9S12DJ256 . . . . . . . . . . . . . . . . . . . . . .53 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Recommended PCB Layout for 112LQFP Colpitts Oscillator . . . . . . . . . . . . . . .84 Recommended PCB Layout for 80QFP Colpitts Oscillator . . . . . . . . . . . . . . . . .85 Recommended PCB Layout for 112LQFP Pierce Oscillator . . . . . . . . . . . . . . . .86 Recommended PCB Layout for 80QFP Pierce Oscillator . . . . . . . . . . . . . . . . . .87 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Typical Endurance vs Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 SPI Master Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 SPI Master Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 SPI Slave Timing (CPHA=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 SPI Slave Timing (CPHA=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . . . 128 80-pin QFP Mechanical Dimensions (case no. 841B) . . . . . . . . . . . . . . . . . . . 129 11 MC9S12DT256 Device User Guide — V03.07 12 MC9S12DT256 Device User Guide — V03.07 List of Tables Table 0-1 Table 0-2 Table 0-3 Table 1-1 Table 1-2 Table 1-3 Table 1-4 Table 2-1 Table 2-2 Table 4-1 Table 4-2 Table 4-3 Table 5-1 Table A-1 Table A-2 Table A-3 Table A-4 Table A-5 Table A-6 Table A-7 Table A-8 Table A-9 Table A-10 Table A-11 Table A-12 Table A-13 Table A-14 Table A-15 Table A-16 Table A-17 Table A-18 Table A-19 Table A-20 Derivative Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Specification Change Summary for Maskset L91N . . . . . . . . . . . . . . . . . . . . . . . .17 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . . . .43 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 MC9S12DP256 Power and Ground Connection Summary . . . . . . . . . . . . . . . . . .67 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 NVM Reliability Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 Voltage Regulator Recommended Load Capacitances . . . . . . . . . . . . . . . . . . .109 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 MSCAN Wake-up Pulse Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 SPI Slave Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 13 MC9S12DT256 Device User Guide — V03.07 Table A-21 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 14 MC9S12DT256 Device User Guide — V03.07 Derivative Differences and Document References Derivative Differences Table 0-1 shows the availability of peripheral modules on the various derivatives. For details about the compatibility within the MC9S12D-Family refer also to engineering bulletin EB386. Table 0-1 Derivative Differences Generic device MC9S12A256 MC9S12DT256 MC9S12DJ256 MC9S12DG256 # of CANs 0 3 2 2 CAN0 — ✓ ✓ ✓ CAN1 — ✓ — — CAN4 — ✓ ✓ ✓ J1850/BDLC — — ✓ — Package 112 LQFP/80 QFP 112 LQFP/80 QFP 112 LQFP/80 QFP 112 LQFP/80 QFP Mask set L91N/L01Y L91N/L01Y L91N/L01Y L91N/L01Y Temp Options C M, V, C M, V, C M, V, C Package Code PV/FU PV/FU PV/FU PV/FU Notes An errata exists contact Sales Office An errata exists contact Sales Office An errata exists contact Sales Office An errata exists contact Sales Office The following figure provides an ordering number example for the MC9S12H-Family devices. MC9S12 DT256 C FU Package Option Temperature Option Device Title Controller Family Temperature Options C = -40˚C to 85˚C V = -40˚C to 105˚C M = -40˚C to 125˚C Package Options FU = 80QFP PV = 112 LQFP Figure 0-1 Order Partnumber Example 15 MC9S12DT256 Device User Guide — V03.07 The following items should be considered when using a derivative (Table 0-1): • • • Registers – Do not write or read CAN0 registers (after reset: address range $0140 - $017F), if using a derivative without CAN0. – Do not write or read CAN1registers (after reset: address range $0180 - $01BF), if using a derivative without CAN1. – Do not write or read CAN4 registers (after reset: address range $0280 - $02BF), if using a derivative without CAN4. – Do not write or read BDLC registers (after reset: address range $00E8 - $00EF), if using a derivative without BDLC. Interrupts – Fill the four CAN0 interrupt vectors ($FFB0 - $FFB7) according to your coding policies for unused interrupts, if using a derivative without CAN0. – Fill the four CAN1 interrupt vectors ($FFA8 - $FFAF) according to your coding policies for unused interrupts, if using a derivative without CAN1. – Fill the four CAN4 interrupt vectors ($FF90 - $FF97) according to your coding policies for unused interrupts, if using a derivative without CAN4. – Fill the BDLC interrupt vector ($FFC2, $FFC3) according to your coding policies for unused interrupts, if using a derivative without BDLC. Ports – The CAN0 pin functionality (TXCAN0, RXCAN0) is not available on port PJ7, PJ6, PM5, PM4, PM3, PM2, PM1 and PM0, if using a derivative without CAN0. – The CAN1 pin functionality (TXCAN1, RXCAN1) is not available on port PM3 and PM2, if using a derivative without CAN1. – The CAN4 pin functionality (TXCAN4, RXCAN4) is not available on port PJ7, PJ6, PM5, PM7, PM6, PM5 and PM4, if using a derivative without CAN0. – The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a derivative without BDLC. – Do not write MODRR1 and MODRR0 bits of Module Routing Register (PIM_9DP256 Block Guide), if using a derivative without CAN0. – Do not write MODRR3 and MODRR2 bits of Module Routing Register (PIM_9DP256 Block Guide), if using a derivative without CAN4. Document References 16 MC9S12DT256 Device User Guide — V03.07 The Device Guide provides information about the MC9S12DT256 device made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the customer documentation. A complete set of device manuals also includes the HCS12 Core User Guide and all the individual Block Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block Guide. If applicable, special implementation details of the module are given in the block description sections of this document. See Table 0-2 for names and versions of the referenced documents throughout the Device User Guide. Table 0-2 Document References User Guide Version Document Order Number CPU12 Reference Manual V04 CPU12RM/AD HCS12 Multiplexed External Bus Interface (MEBI) Block Guide V03 S12MEBIV3/D HCS12 Module Mapping Control (MMC) Block Guide V04 S12MMCV4/D HCS12 Interrupt (INT) Block Guide V01 S12INTV1/D HCS12 Background Debug (BDM) Block Guide V04 S12BDMV4/D HCS12 Breakpoint (BKP) Block Guide V01 S12BKPV1/D Clock and Reset Generator (CRG) Block User Guide V04 S12CRGV4/D Enhanced Capture Timer (ECT_16B8C) Block User Guide V01 S12ECT16B8CV1/D Analog to Digital Converter 10 Bit 8 Channels (ATD_10B8C) Block User Guide V02 S12ATD10B8CV2/D Inter IC Bus (IIC) Block User Guide V02 S12IICV2/D Asynchronous Serial Interface (SCI) Block User Guide V02 S12SCIV2/D Serial Peripheral Interface (SPI) Block User Guide V03 S12SPIV3/D Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide V01 S12PWM8B8CV1/D 256 K Byte Flash (FTS256K) Block User Guide V03 S12FTS256KV3/D 4K Byte EEPROM (EETS4K) Block User Guide V02 S12EETS4KV2/D Byte Level Data Link Controller -J1850 (BDLC) Block User Guide V01 S12BDLCV1/D Motorola Scalable CAN (MSCAN) Block User Guide V02 S12MSCANV2/D Voltage Regulator (VREG) Block User Guide V01 S12VREGV1/D Port Integration Module (PIM_9DP256) Block User Guide V03 S12PIM9DP256V3/D Oscillator (OSC) Block Guide V02 S12OSCV2/D Table 0-3 shows the Specification Change Summary for Maskset L91N. Table 0-3 Specification Change Summary for Maskset L91N Block MCU_9DT256 HCS12 V1.5 HCS12 V1.5 CRG Spec Change removed CAN2 and CAN3 The Background Debug Module includes an Acknowledge Protocol (two additional hardware commands ACK_ENABLE/ACK_DISABLE) The state of PK7/ROMCTL is latched into ROMON Bit during RESET into Emulation Mode or Normal Expanded Mode Maskset includes an additional Pierce Oscillator 17 MC9S12DT256 Device User Guide — V03.07 Table 0-3 Specification Change Summary for Maskset L91N Block EETS4K/FTS256K PIM_9DP256 18 Spec Change Reliability Specification for Non Volatile Memories CAN0 can be routed to PORTJ MC9S12DT256 Device User Guide — V03.07 Section 1 IntroductionMC9S12DT256 1.1 Overview The MC9S12DT256 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 256K bytes of Flash EEPROM, 12K bytes of RAM, 4K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), three serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules (MSCAN12), and an Inter-IC Bus. The MC9S12DT256 has full 16-bit data paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements. 1.2 Features • HCS12 Core – 16-bit HCS12 CPU i. Upward compatible with M68HC11 instruction set ii. Interrupt stacking and programmer’s model identical to M68HC11 iii. Instruction queue iv. Enhanced indexed addressing • • – MEBI (Multiplexed External Bus Interface) – MMC (Module Mapping Control) – INT (Interrupt control) – BKP (Breakpoints) – BDM (Background Debug Mode) CRG – Low current Colpitts or Pierce oscillator – PLL – COP watchdog – Real time interrupt – Clock Monitor 8-bit and 4-bit ports with interrupt functionality – Digital filtering 19 MC9S12DT256 Device User Guide — V03.07 – • • • • • • • Memory – 256K Flash EEPROM – 4K byte EEPROM – 12K byte RAM Two 8-channel Analog-to-Digital Converters – 10-bit resolution – External conversion trigger capability Three 1M bit per second, CAN 2.0 A, B software compatible modules – Five receive and three transmit buffers – Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit – Four separate interrupt channels for Rx, Tx, error and wake-up – Low-pass filter wake-up function – Loop-back for self test operation Enhanced Capture Timer – 16-bit main counter with 7-bit prescaler – 8 programmable input capture or output compare channels – Four 8-bit or two 16-bit pulse accumulators 8 PWM channels – Programmable period and duty cycle – 8-bit 8-channel or 16-bit 4-channel – Separate control for each pulse width and duty cycle – Center-aligned or left-aligned outputs – Programmable clock select logic with a wide range of frequencies – Fast emergency shutdown input – Usable as interrupt inputs Serial interfaces – Two asynchronous Serial Communications Interfaces (SCI) – Three Synchronous Serial Peripheral Interface (SPI) Byte Data Link Controller (BDLC) – • 20 Programmable rising or falling edge trigger SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible for Low-Speed (=100nF C5 VDDPLL filter cap ceramic X7R 100nF C6 VDDX filter cap X7R/tantalum >=100nF C7 OSC load cap C8 OSC load cap C9 / CS PLL loop filter cap C10 / CP PLL loop filter cap C11 / CDC DC cutoff cap Colpitts mode only, if recommended by quartz manufacturer R1 / R PLL loop filter res See PLL Specification chapter See PLL specification chapter R2 / RB Pierce mode only R3 / RS Q1 Quartz The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the MCU itself. The following rules must be observed: • Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins (C1 – C6). • Central point of the ground star should be the VSSR pin. • Use low ohmic low inductance connections between VSS1, VSS2 and VSSR. • VSSPLL must be directly connected to VSSR. • Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible. • Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the connection area to the MCU. • Central power input should be fed in at the VDDA/VSSA pins. 83 MC9S12DT256 Device User Guide — V03.07 Figure 20-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 C1 VSS1 VSS2 C2 VDD2 VSSR C4 C7 84 C8 C10 C9 R1 C11 C5 VDDR Q1 VSSPLL VDDPLL MC9S12DT256 Device User Guide — V03.07 Figure 20-2 Recommended PCB Layout for 80QFP Colpitts Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 VSS2 C1 C2 VSS1 VDD2 VSSR C4 C5 VDDR C7 C8 C11 Q1 C10 C9 R1 VSSPLL VDDPLL 85 MC9S12DT256 Device User Guide — V03.07 Figure 20-3 Recommended PCB Layout for 112LQFP Pierce Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 C1 VSS1 VSS2 C2 VDD2 VSSR VSSPLL C4 R3 C5 VDDR R2 Q1 86 C7 R1 C8 C10 C9 VDDPLL MC9S12DT256 Device User Guide — V03.07 Figure 20-4 Recommended PCB Layout for 80QFP Pierce Oscillator VREGEN C6 VDDX VSSX VSSA C3 VDDA VDD1 VSS2 C1 C2 VSS1 VDD2 VSSPLL VSSR C4 R3 C5 VDDR R2 Q1 C7 C8 C10 C9 R1 VSSPLL VDDPLL 87 MC9S12DT256 Device User Guide — V03.07 88 MC9S12DT256 Device User Guide — V03.07 Appendix A Electrical Characteristics A.1 General NOTE: The electrical characteristics given in this section are preliminary and should be used as a guide only. Values cannot be guaranteed by Motorola and are subject to change without notice. This supplement contains the most accurate electrical information for the MC9S12DT256 microcontroller available at the time of publication. The information should be considered PRELIMINARY and is subject to change. This introduction is intended to give an overview on several common topics like power supply, current injection etc. A.1.1 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate. NOTE: This classification is shown in the column labeled “C” in the parameter tables where appropriate. P: Those parameters are guaranteed during production testing on each individual device. C: Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T: Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D: Those parameters are derived mainly from simulations. A.1.2 Power Supply The MC9S12DT256 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator and PLL as well as the digital core. The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator. 89 MC9S12DT256 Device User Guide — V03.07 The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage regulator. VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the oscillator and the PLL. VSS1 and VSS2 are internally connected by metal. VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection. NOTE: In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted. IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins. VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL. IDD is used for the sum of the currents flowing into VDD1 and VDD2. A.1.3 Pins There are four groups of functional pins. A.1.3.1 5V I/O pins Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD and the RESET pins.The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently. A.1.3.2 Analog Reference This group is made up by the VRH and VRL pins. A.1.3.3 Oscillator The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL. A.1.3.4 TEST This pin is used for production testing only. A.1.3.5 VREGEN This pin is used to enable the on chip voltage regulator. 90 MC9S12DT256 Device User Guide — V03.07 A.1.4 Current Injection Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption. A.1.5 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5). Table A-1 Absolute Maximum Ratings1 Num Rating Symbol Min Max Unit 1 I/O, Regulator and Analog Supply Voltage VDD5 -0.3 6.0 V 2 Digital Logic Supply Voltage 2 VDD -0.3 3.0 V 3 PLL Supply Voltage 2 VDDPLL -0.3 3.0 V 4 Voltage difference VDDX to VDDR and VDDA ∆VDDX -0.3 0.3 V 5 Voltage difference VSSX to VSSR and VSSA ∆VSSX -0.3 0.3 V 6 Digital I/O Input Voltage VIN -0.3 6.0 V 7 Analog Reference VRH, VRL -0.3 6.0 V 8 XFC, EXTAL, XTAL inputs VILV -0.3 3.0 V 9 TEST input VTEST -0.3 10.0 V 10 Instantaneous Maximum Current Single pin limit for all digital I/O pins 3 ID -25 +25 mA 11 Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL4 IDL -25 +25 mA 12 Instantaneous Maximum Current Single pin limit for TEST 5 IDT -0.25 0 mA 13 Storage Temperature Range T – 65 155 °C stg NOTES: 1. Beyond absolute maximum ratings device might be damaged. 91 MC9S12DT256 Device User Guide — V03.07 2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source. 3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA. 4. Those pins are internally clamped to VSSPLL and VDDPLL. 5. This pin is clamped low to VSSR, but not clamped high. This pin must be tied low in applications. A.1.6 ESD Protection and Latch-up Immunity All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table A-2 ESD and Latch-up Test Conditions Model Human Body Machine Description Symbol Value Unit Series Resistance R1 1500 Ohm Storage Capacitance C 100 pF Number of Pulse per pin positive negative - 3 3 Series Resistance R1 0 Ohm Storage Capacitance C 200 pF Number of Pulse per pin positive negative - 3 3 Minimum input voltage limit -2.5 V Maximum input voltage limit 7.5 V Latch-up Table A-3 ESD and Latch-Up Protection Characteristics Num C 92 Rating Symbol Min Max Unit 1 C Human Body Model (HBM) VHBM 2000 - V 2 C Machine Model (MM) VMM 200 - V 3 C Charge Device Model (CDM) VCDM 500 - V 4 Latch-up Current at TA = 125°C C positive negative ILAT +100 -100 - mA 5 Latch-up Current at TA = 27°C C positive negative ILAT +200 -200 - mA MC9S12DT256 Device User Guide — V03.07 A.1.7 Operating Conditions This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data. NOTE: Please refer to the temperature rating of the device (C, V, M) with regards to the ambient temperature TA and the junction temperature TJ. For power dissipation calculations refer to Section A.1.8 Power Dissipation and Thermal Characteristics. Table A-4 Operating Conditions Rating Symbol Min Typ Max Unit I/O, Regulator and Analog Supply Voltage VDD5 4.5 5 5.25 V Digital Logic Supply Voltage 1 VDD 2.35 2.5 2.75 V PLL Supply Voltage 1 VDDPLL 2.35 2.5 2.75 V Voltage Difference VDDX to VDDR and VDDA ∆VDDX -0.1 0 0.1 V Voltage Difference VSSX to VSSR and VSSA ∆VSSX -0.1 0 0.1 V Oscillator fosc 0.5 - 16 MHz Bus Frequency fbus 0.5 - 25 MHz TJ -40 - 100 °C T A -40 27 85 °C Operating Junction Temperature Range TJ -40 - 120 °C Operating Ambient Temperature Range 2 TA -40 27 105 °C Operating Junction Temperature Range TJ -40 - 140 °C Operating Ambient Temperature Range 2 TA -40 27 125 °C MC9S12DT256C Operating Junction Temperature Range Operating Ambient Temperature Range 2 MC9S12DT256V MC9S12DT256M NOTES: 1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when this regulator is disabled and the device is powered from an external source. 2. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation between ambient temperature TA and device junction temperature TJ. A.1.8 Power Dissipation and Thermal Characteristics Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be obtained from: 93 MC9S12DT256 Device User Guide — V03.07 T J = T A + ( P D • Θ JA ) T J = Junction Temperature, [°C ] T A = Ambient Temperature, [°C ] P D = Total Chip Power Dissipation, [W] Θ JA = Package Thermal Resistance, [°C/W] The total power dissipation can be calculated from: P D = P INT + P IO P INT = Chip Internal Power Dissipation, [W] Two cases with internal voltage regulator enabled and disabled must be considered: 1. Internal Voltage Regulator disabled P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA 2 P IO = R DSON ⋅ I IO i i ∑ PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR. For RDSON is valid: V OL R DSON = ------------ ;for outputs driven low I OL respectively V DD5 – V OH R DSON = ------------------------------------ ;for outputs driven high I OH 2. Internal voltage regulator enabled P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA IDDR is the current shown in Table A-7 and not the overall current flowing into VDDR, which additionally contains the current flowing into the external loads with output high. 2 P IO = R DSON ⋅ I IO i i ∑ PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR. 94 MC9S12DT256 Device User Guide — V03.07 Table A-5 Thermal Package Characteristics1 Num C Rating Symbol Min Typ Max Unit 1 T Thermal Resistance LQFP112, single sided PCB2 θJA - - 54 o 2 T Thermal Resistance LQFP112, double sided PCB with 2 internal planes3 θJA - - 41 o 3 T Thermal Resistance LQFP 80, single sided PCB θJA - - 51 oC/W 4 T θJA - - 41 o Thermal Resistance LQFP 80, double sided PCB with 2 internal planes C/W C/W C/W NOTES: 1. The values for thermal resistance are achieved by package simulations 2. PC Board according to EIA/JEDEC Standard 51-2 3. PC Board according to EIA/JEDEC Standard 51-7 A.1.9 I/O Characteristics This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances. 95 MC9S12DT256 Device User Guide — V03.07 Table A-6 5V I/O Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C 1 2 Rating Symbol Min Typ Max Unit 0.65*VDD5 - - V P Input High Voltage V T Input High Voltage VIH - - VDD5 + 0.3 V P Input Low Voltage VIL - - 0.35*VDD5 V T Input Low Voltage VIL VSS5 - 0.3 - - V 3 C Input Hysteresis 4 Input Leakage Current (pins in high impedance input P mode)1 Vin = VDD5 or VSS5 5 C 6 IH V 250 HYS mV I in –2.5 - 2.5 µA Output High Voltage (pins in output mode) Partial Drive IOH = –2mA V OH VDD5 – 0.8 - - V P Output High Voltage (pins in output mode) Full Drive IOH = –10mA VOH VDD5 – 0.8 - - V 7 C Output Low Voltage (pins in output mode) Partial Drive IOL = +2mA VOL - - 0.8 V 8 P Output Low Voltage (pins in output mode) Full Drive IOL = +10mA V OL - - 0.8 V 9 Internal Pull Up Device Current, P tested at V Max. IPUL - - -130 µA Internal Pull Up Device Current, C tested at V Min. IPUH -10 - - µA Internal Pull Down Device Current, P tested at V Min. IPDH - - 130 µA Internal Pull Down Device Current, C tested at V Max. IPDL 10 - - µA 13 D Input Capacitance Cin 6 - pF 14 Injection current2 T Single Pin limit Total Device Limit. Sum of all injected currents IICS IICP - 2.5 25 mA 15 P Port H, J, P Interrupt Input Pulse filtered3 tPULSE 3 µs 16 P Port H, J, P Interrupt Input Pulse passed3 tPULSE IL 10 IH 11 IH 12 IL -2.5 -25 10 µs NOTES: 1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each 8 C to 12 C in the temperature range from 50 C to 125 C. 2. Refer to Section A.1.4 Current Injection, for more details 3. Parameter only applies in STOP or Pseudo STOP mode. 96 MC9S12DT256 Device User Guide — V03.07 A.1.10 Supply Currents This section describes the current consumption characteristics of the device as well as the conditions for the measurements. A.1.10.1 Measurement Conditions All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input. A.1.10.2 Additional Remarks In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be 97 MC9S12DT256 Device User Guide — V03.07 given. A very good estimate is to take the single chip currents and add the currents due to the external loads. Table A-7 Supply Current Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Run supply currents Single Chip, Internal regulator enabled IDD5 65 IDDW 40 5 1 P 2 P P All modules enabled, PLL on only RTI enabled 1 C P C C P C P C P Pseudo Stop Current (RTI and COP disabled) 1, 2 -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C C C C C C C C Pseudo Stop Current (RTI and COP enabled) 1, 2 -40°C 27°C 70°C 85°C 105°C 125°C 140°C Min Typ Max Unit mA Wait Supply current 3 4 IDDPS IDDPS 370 400 450 550 600 650 800 850 1200 mA 500 1600 µA 2100 5000 570 600 650 750 850 1200 1500 µA Stop Current 2 5 C P C C P C P C P -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C NOTES: 1. PLL off 2. At those low power dissipation levels TJ = TA can be assumed 98 IDDS 12 25 100 130 160 200 350 400 600 100 1200 1700 5000 µA MC9S12DT256 Device User Guide — V03.07 A.2 ATD Characteristics This section describes the characteristics of the analog to digital converter. A.2.1 ATD Operating Characteristics The Table A-8 shows conditions under which the ATD operates. The following constraints exist to obtain full-scale, full range results: VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped. Table A-8 ATD Operating Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min VRL VRH VSSA VDDA/2 Typ Max Unit VDDA/2 VDDA V V 5.25 V Reference Potential 1 D Low High 2 C Differential Reference Voltage1 VRH-VRL 4.50 3 D ATD Clock Frequency fATDCLK 0.5 2.0 MHz 4 D 14 7 28 14 Cycles µs 5 D 12 6 26 13 Cycles µs 6 D Recovery Time (VDDA=5.0 Volts) tREC 20 µs 7 P Reference Supply current 2 ATD blocks on IREF 0.750 mA 8 P Reference Supply current 1 ATD block on IREF 0.375 mA 5.00 ATD 10-Bit Conversion Period Clock Cycles2 NCONV10 Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10 ATD 8-Bit Conversion Period Clock Cycles2 Conv, Time at 2.0MHz ATD Clock fATDCLK NCONV8 TCONV8 NOTES: 1. Full accuracy is not guaranteed when differential voltage is less than 4.50V 2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks. A.2.2 Factors influencing accuracy Three factors - source resistance, source capacitance and current injection - have an influence on the accuracy of the ATD. A.2.2.1 Source Resistance: Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS 99 MC9S12DT256 Device User Guide — V03.07 specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance is allowed. A.2.2.2 Source Capacitance When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS- CINN). A.2.2.3 Current Injection There are two cases to consider. 1. A current is injected into the channel being converted. The channel being stressed has conversion values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than VRL unless the current is higher than specified as disruptive condition. 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance. The additional input voltage error on the converted channel can be calculated as VERR = K * RS * IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted channel. Table A-9 ATD Electrical Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit RS - - 1 KΩ 10 22 pF 2.5 mA 1 C Max input Source Resistance 2 Total Input Capacitance T Non Sampling Sampling 3 C Disruptive Analog Input Current INA 4 C Coupling Ratio positive current injection Kp 10-4 A/A 5 C Coupling Ratio negative current injection Kn 10-2 A/A 100 CINN CINS -2.5 MC9S12DT256 Device User Guide — V03.07 A.2.3 ATD accuracy Table A-10 specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance. Table A-10 ATD Conversion Performance Conditions are shown in Table A-4 unless otherwise noted VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV fATDCLK = 2.0MHz Num C Rating Symbol Min 1 P 10-Bit Resolution LSB 2 P 10-Bit Differential Nonlinearity DNL –1 3 P 10-Bit Integral Nonlinearity INL –2.5 4 P 10-Bit Absolute Error1 AE -3 5 P 8-Bit Resolution LSB 6 P 8-Bit Differential Nonlinearity DNL –0.5 7 P 8-Bit Integral Nonlinearity INL –1.0 8 P 8-Bit Absolute Error1 AE -1.5 Typ Max 5 Unit mV 1 Counts ±1.5 2.5 Counts ±2.0 3 Counts 20 mV 0.5 Counts ±0.5 1.0 Counts ±1.0 1.5 Counts NOTES: 1. These values include the quantization error which is inherently 1/2 count for any A/D converter. For the following definitions see also Figure A-1. Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps. Vi – Vi – 1 DNL ( i ) = ------------------------ – 1 1LSB The Integral Non-Linearity (INL) is defined as the sum of all DNLs: n INL ( n ) = ∑ i=1 Vn – V0 DNL ( i ) = -------------------- – n 1LSB 101 MC9S12DT256 Device User Guide — V03.07 DNL 10-Bit Absolute Error Boundary LSB Vi-1 Vi $3FF 8-Bit Absolute Error Boundary $3FE $3FD $3FC $FF $3FB $3FA $3F9 $3F8 $FE $3F7 $3F6 $3F4 8-Bit Resolution 10-Bit Resolution $3F5 $FD $3F3 9 Ideal Transfer Curve 8 2 7 10-Bit Transfer Curve 6 5 4 1 3 8-Bit Transfer Curve 2 1 0 5 10 15 20 25 30 35 40 50 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 Vin mV Figure A-1 ATD Accuracy Definitions NOTE: 102 Figure A-1 shows only definitions, for specification values refer to Table A-10. MC9S12DT256 Device User Guide V03.07 A.3 NVM, Flash and EEPROM NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM. A.3.1 NVM timing The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured. The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as fNVMOP. The minimum program and erase times shown in Table A-11 are calculated for maximum fNVMOP and maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz. A.3.1.1 Single Word Programming The programming time for single word programming is dependant on the bus frequency as a well as on the frequency fNVMOP and can be calculated according to the following formula. 1 1 t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP f bus A.3.1.2 Burst Programming This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst programming by keeping the command pipeline filled. The time to program a consecutive word can be calculated as: 1 1 t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP f bus The time to program a whole row is: t brpgm = t swpgm + 31 ⋅ t bwpgm Burst programming is more than 2 times faster than single word programming. 103 MC9S12DT256 Device User Guide V03.07 A.3.1.3 Sector Erase Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes: 1 t era ≈ 4000 ⋅ --------------------f NVMOP The setup time can be ignored for this operation. A.3.1.4 Mass Erase Erasing a NVM block takes: 1 t mass ≈ 20000 ⋅ --------------------f NVMOP The setup time can be ignored for this operation. A.3.1.5 Blank Check The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup of the command. t check ≈ location ⋅ t cyc + 10 ⋅ t cyc Table A-11 NVM Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 50 1 MHz 1 D External Oscillator Clock (MC9S12DT256C< V, M) fNVMOSC 0.5 2 D Bus frequency for Programming or Erase Operations fNVMBUS 1 3 D Operating Frequency fNVMOP 150 200 kHz 4 P Single Word Programming Time tswpgm 46 2 74.5 3 µs 5 D Flash Burst Programming consecutive word 4 tbwpgm 20.4 2 31 3 µs 6 D Flash Burst Programming Time for 32 Words 4 tbrpgm 678.4 2 1035.5 3 µs 7 P Sector Erase Time tera 20 5 26.7 3 ms 8 P Mass Erase Time tmass 100 5 133 3 ms 9 D Blank Check Time Flash per block tcheck 11 6 32778 7 tcyc 10 D Blank Check Time EEPROM per block tcheck 11 6 20587 tcyc MHz NOTES: 1. Restrictions for oscillator in crystal mode apply! 2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency fbus. 104 MC9S12DT256 Device User Guide V03.07 3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus. Refer to formulae in Sections A.3.1.1 - A.3.1.4 for guidance. 4. Burst Programming operations are not applicable to EEPROM 5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP. 6. Minimum time, if first word in the array is not blank 7. Maximum time to complete check on an erased block 105 MC9S12DT256 Device User Guide V03.07 A.3.2 NVM Reliability The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures.The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed Table A-12 NVM Reliability Characteristics1 Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max 15 1002 — 20 1002 — 10,000 — — 10,000 100,0003 — 1002 — Unit Flash Reliability Characteristics Data retention after 10,000 program/erase cycles at an average junction temperature of TJavg ≤ 85°C 1 C 2 Data retention with
MC9S12A256CPVE 价格&库存

很抱歉,暂时无法提供与“MC9S12A256CPVE”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MC9S12A256CPVE
    •  国内价格
    • 1+275.18400

    库存:3

    MC9S12A256CPVE
    •  国内价格 香港价格
    • 1+289.111371+34.56813
    • 3+285.039383+34.08125
    • 5+283.053045+33.84375
    • 15+278.9810515+33.35688
    • 25+275.4056525+32.92938

    库存:1650

    MC9S12A256CPVE
      •  国内价格
      • 1+280.46824
      • 5+225.43967
      • 50+215.67653
      • 100+206.80095
      • 300+189.93736

      库存:300