Freescale Semiconductor
Data Sheet: Technical Data
MCF5208EC
Rev. 3, 9/2009
MCF5208 ColdFire®
Microprocessor Data Sheet
Supports MCF5207 & MCF5208
by: Microcontroller Solutions Group
The MCF5207 and MCF5208 devices are
highly-integrated, 32-bit microprocessors based on the
version 2 ColdFire microarchitecture. Both devices
contain a 16-Kbyte internal SRAM, an 8-Kbyte
configurable cache, a 2-bank SDR/DDR SDRAM
controller, a 16-channel DMA controller, up to three
UARTs, a queued SPI, a low-power management
modeule, and other peripherals that enable the MCF5207
and MCF5208 for use in industrial control and
connectivity applications. The MCF5208 device also
features a 10/100 Mbps fast ethernet controller.
Table of Contents
1
2
3
4
5
6
MCF5207/8 Device Configurations......................2
Ordering Information ...........................................2
Signal Descriptions..............................................3
Mechanicals and Pinouts ....................................8
Electrical Characteristics ...................................17
Revision History ................................................43
This document provides detailed information on power
considerations, DC/AC electrical characteristics, and AC
timing specifications of the MCF5207 and MCF5208
microprocessors. It was written from the perspective of
the MCF5208 device. See the following section for a
summary of differences between the two devices.
Freescale reserves the right to change the detail specifications as may be required to permit
improvements in the design of its products.
© Freescale Semiconductor, Inc., 2009. All rights reserved.
MCF5207/8 Device Configurations
1
MCF5207/8 Device Configurations
The following table compares the two devices described in this document:
Table 1. MCF5207 & MCF5208 Configurations
Module
MCF5207
MCF5208
Version 2 ColdFire Core with EMAC
(Enhanced Multiply-Accumulate Unit)
•
•
Core (System) Clock
up to 166.67 MHz
Peripheral and External Bus Clock
(Core clock ÷ 2)
up to 83.33 MHz
Performance (Dhrystone/2.1 MIPS)
up to 159
Instruction/Data Cache
8 Kbytes
Static RAM (SRAM)
16 Kbytes
SDR/DDR SDRAM Controller
•
•
Fast Ethernet Controller (FEC)
—
•
Low-Power Management Module
•
•
UARTs
3
3
I
•
•
QSPI
•
•
32-bit DMA Timers
4
4
Watchdog Timer (WDT)
•
•
Periodic Interrupt Timers (PIT)
4
4
Edge Port Module (EPORT)
•
•
Interrupt Controllers (INTC)
1
1
16-channel Direct Memory Access (DMA)
•
•
FlexBus External Interface
•
•
General Purpose I/O Module (GPIO)
•
•
•
•
144 LQFP
144 MAPBGA
160 QFP
196 MAPBGA
2C
JTAG -
IEEE®
1149.1 Test Access Port
Package
2
Ordering Information
Table 2. Orderable Part Numbers
Freescale Part
Number
Description
Speed
Temperature
MCF5207CAG166
MCF5207 RISC Microprocessor, 144 LQFP
166.67 MHz
–40° to +85° C
MCF5207CVM166
MCF5207 RISC Microprocessor, 144 MAPBGA
166.67 MHz
–40° to +85° C
MCF5208CAB166
MCF5208 RISC Microprocessor, 160 QFP
166.67 MHz
–40° to +85° C
MCF5208CVM166
MCF5208 RISC Microprocessor, 196 MAPBGA
166.67 MHz
–40° to +85° C
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
2
Freescale Semiconductor
Signal Descriptions
3
Signal Descriptions
The following table lists all the MCF5208 pins grouped by function. The Dir column is the direction for
the primary function of the pin only. Refer to Section 4, “Mechanicals and Pinouts” for package diagrams.
For a more detailed discussion of the MCF5208 signals, consult the MCF5208 Reference Manual
(MCF5208RM).
NOTE
In this table and throughout this document, a single signal within a group is
designated without square brackets (i.e., A23), while designations for
multiple signals within a group use brackets (i.e., A[23:21]) and is meant to
include all signals within the two bracketed numbers when these numbers
are separated by a colon.
NOTE
The primary functionality of a pin is not necessarily its default functionality.
Pins that are muxed with GPIO default to their GPIO functionality.
MCF5207
144
LQFP
RESET2
—
—
—
I
EVDD
82
J10
90
J14
RSTOUT
—
—
—
O
EVDD
74
M12
82
N14
Signal Name
GPIO
Alternate 1
Alternate 2
Dir.1
Voltage
Domain
Table 3. MCF5207/8 Signal Information and Muxing
MCF5207
144
MAPBGA
MCF5208
160
QFP
MCF5208
196
MAPBGA
Reset
Clock
EXTAL
—
—
—
I
EVDD
78
K12
86
L14
XTAL
—
—
—
O
EVDD
80
J12
88
K14
FB_CLK
—
—
—
O
SDVDD
34
L1
40
N1
Mode Selection
RCON2
—
—
—
I
EVDD
144
C4
160
C3
DRAMSEL
—
—
—
I
EVDD
79
H10
87
K11
FlexBus
A[23:22]
—
FB_CS[5:4]
—
O
SDVDD
118, 117
B9, A10
126, 125
B11, A11
A[21:16]
—
—
—
O
SDVDD
116–114,
112, 108,
107
C9, A11,
B10, A12,
C11, B11
124, 123,
122, 120,
116, 115
B12, A12,
A13, B13,
B14, C13
A[15:14]
—
SD_BA[1:0]3
—
O
SDVDD
106, 105
B12, C12
114, 113
C14, D12
A[13:11]
—
SD_A[13:11]3
—
O
SDVDD
104–102
D11, E10,
D12
112, 111,
110
D13, D14,
E11
A10
—
—
—
O
SDVDD
101
C10
109
E12
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
3
Signal Descriptions
Dir.1
Voltage
Domain
Table 3. MCF5207/8 Signal Information and Muxing (continued)
MCF5207
144
LQFP
MCF5207
144
MAPBGA
MCF5208
160
QFP
MCF5208
196
MAPBGA
O
SDVDD
100–91
E11, D9,
E12, F10,
F11, E9,
F12, G10,
G12, F9
108–99
E13, E14,
F11–F14,
G11–G14
I/O
SDVDD
21–28,
40–47
F1, F2, G1,
G2, G4, G3,
H1, H2, K3,
L2, L3, K2,
M3, J4, M4,
K4
27–34,
46–53
J4–J1,
K4–K1, M3,
N3, M4, N4,
P4, L5, M5,
N5
—
I/O
SDVDD 8–15, 51–58
B2, B1, C2,
C1, D2, D1,
E2, E1, L5,
K5, L6, J6,
M6, J7, L7,
K7
16–23,
57–64
F3–F1,
G4–G1, H1,
N6, P6, L7,
M7, N7, P7,
N8, P8
SD_DQM[3:0]3
—
O
SDVDD
20, 48, 18,
50
F4, L4, E3,
J5
26, 54, 24,
56
H2, P5, H4,
M6
PBUSCTL3
—
—
O
SDVDD
60
J8
66
M8
TA2
PBUSCTL2
—
—
I
SDVDD
90
G11
98
H14
R/W
PBUSCTL1
—
—
O
SDVDD
59
K6
65
L8
TS
PBUSCTL0
DACK0
—
O
SDVDD
4
B3
12
E3
Signal Name
GPIO
Alternate 1
Alternate 2
A[9:0]
—
SD_A[9:0]3
—
D[31:16]
—
SD_D[31:16]4
—
D[15:0]
—
FB_D[31:16]4
BE/BWE[3:0]
PBE[3:0]
OE
Chip Selects
FB_CS[3:2]
PCS[3:2]
—
—
O
SDVDD
119, 120
D7, A9
—
C11, A10
FB_CS1
PCS1
SD_CS1
—
O
SDVDD
121
C8
127
B10
FB_CS0
—
—
—
O
SDVDD
122
B8
128
C10
SDRAM Controller
SD_A10
—
—
—
O
SDVDD
37
M1
43
N2
SD_CKE
—
—
—
O
SDVDD
6
C3
14
E1
SD_CLK
—
—
—
O
SDVDD
31
J1
37
L1
SD_CLK
—
—
—
O
SDVDD
32
K1
38
M1
SD_CS0
—
—
—
O
SDVDD
7
A1
15
F4
SD_DQS[3:2]
—
—
—
O
SDVDD
19, 49
F3, M5
25, 55
H3, L6
SD_SCAS
—
—
—
O
SDVDD
38
M2
44
P2
SD_SRAS
—
—
—
O
SDVDD
39
J2
45
P3
SD_SDR_DQS
—
—
—
O
SDVDD
29
H3
35
L3
SD_WE
—
—
—
O
SDVDD
5
D3
13
E2
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
4
Freescale Semiconductor
Signal Descriptions
GPIO
Alternate 1
Alternate 2
Voltage
Domain
Signal Name
Dir.1
Table 3. MCF5207/8 Signal Information and Muxing (continued)
MCF5207
144
LQFP
MCF5207
144
MAPBGA
MCF5208
160
QFP
MCF5208
196
MAPBGA
External Interrupts Port5
IRQ72
PIRQ72
IRQ4
2
2
DREQ0
IRQ1
2
2
—
—
PIRQ4
PIRQ1
2
—
I
EVDD
134
A5
142
C7
—
I
EVDD
133
C6
141
D7
—
I
EVDD
132
B6
140
D8
FEC
PFECI2C3
I2C_SCL2
U2TXD
O
EVDD
—
—
148
D6
FEC_MDIO
PFECI2C2
2
I2C_SDA
U2RXD
I/O
EVDD
—
—
147
C6
FEC_TXCLK
PFECH7
—
—
I
EVDD
—
—
157
B3
—
PFECH6
—
U1RTS
O
EVDD
142
A2
—
—
FEC_TXEN
PFECH6
—
U1RTS
O
EVDD
—
—
158
A2
FEC_TXD0
PFECH5
—
—
O
EVDD
—
—
3
B1
FEC_COL
PFECH4
—
—
I
EVDD
—
—
7
D3
FEC_RXCLK
PFECH3
—
—
I
EVDD
—
—
154
B4
FEC_RXDV
PFECH2
—
—
I
EVDD
—
—
153
A4
FEC_RXD0
PFECH1
—
—
I
EVDD
—
—
152
D5
FEC_CRS
PFECH0
—
—
I
EVDD
—
—
8
D2
FEC_TXD[3:1]
PFECL[7:5]
—
—
O
EVDD
—
—
6–4
C1, C2, B2
—
PFECL4
—
U0RTS
O
EVDD
141
D5
—
—
FEC_TXER
PFECL4
—
U0RTS
O
EVDD
—
—
156
A3
FEC_RXD[3:2]
PFECL[3:2]
—
—
I
EVDD
—
—
149–150
A5, B5
—
PFECL1
—
U1CTS
I
EVDD
139
B4
—
—
FEC_RXD1
PFECL1
—
U1CTS
I
EVDD
—
—
151
C5
—
PFECL0
—
U0CTS
I
EVDD
140
E4
—
—
FEC_RXER
PFECL0
—
U0CTS
I
EVDD
—
—
155
C4
FEC_MDC
Note: The MCF5207 does not contain an FEC module. However, the UART0 and UART1 control signals (as well as their GPIO signals)
are available by setting the appropriate FEC GPIO port registers.
I2C
I2C_SDA2
PFECI2C02
U2RXD2
—
I/O
EVDD
—
—
—
D1
2
2
2
—
I/O
EVDD
—
—
—
E4
I2C_SCL
PFECI2C1
U2TXD
DMA
DACK0 and DREQ0 do not have a dedicated bond pads. Please refer to the following pins for muxing:
TS and QSPI_CS2 for DACK0, IRQ4 and QSPI_DIN for DREQ0.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
5
Signal Descriptions
GPIO
MCF5207
144
LQFP
U2RTS
O
EVDD
126
A8
132
D10
2
—
O
EVDD
127
C7
133
A9
2
Alternate 1
Alternate 2
Dir.1
Signal Name
Voltage
Domain
Table 3. MCF5207/8 Signal Information and Muxing (continued)
MCF5207
144
MAPBGA
MCF5208
160
QFP
MCF5208
196
MAPBGA
QSPI
QSPI_CS2
QSPI_CLK
PQSPI3
PQSPI0
DACK0
I2C_SCL
QSPI_DOUT
PQSPI1
I2C_SDA
—
O
EVDD
128
A7
134
B9
QSPI_DIN
PQSPI2
DREQ02
U2CTS
I
EVDD
129
B7
135
C9
Note: The QSPI_CS1 and QSPI_CS0 signals are available on the U1CTS, U1RTS, U0CTS, or U0RTS pins for the 196 and 160-pin
packages.
UARTs
U1CTS
PUARTL7
DT1IN
QSPI_CS1
I
EVDD
—
—
136
D9
U1RTS
PUARTL6
DT1OUT
QSPI_CS1
O
EVDD
—
—
137
C8
U1TXD
PUARTL5
—
—
O
EVDD
131
A6
139
A8
U1RXD
PUARTL4
—
—
I
EVDD
130
D6
138
B8
U0CTS
PUARTL3
DT0IN
QSPI_CS0
I
EVDD
—
—
76
N12
U0RTS
PUARTL2
DT0OUT
QSPI_CS0
O
EVDD
—
—
77
P12
U0TXD
PUARTL1
—
—
O
EVDD
71
L10
79
P13
U0RXD
PUARTL0
—
—
I
EVDD
70
M10
78
N13
Note: The UART2 signals are multiplexed on the DMA Timers, QSPI, FEC, and I2C pins. For the MCF5207 devices, the UART0 and
UART1 control signals are multiplexed internally on the FEC signals.
DMA Timers
DT3IN
PTIMER3
DT3OUT
U2CTS
I
EVDD
135
B5
143
B7
DT2IN
PTIMER2
DT2OUT
U2RTS
I
EVDD
136
C5
144
A7
DT1IN
PTIMER1
DT1OUT
U2RXD
I
EVDD
137
A4
145
A6
DT0IN
PTIMER0
DT0OUT
U2TXD
I
EVDD
138
A3
146
B6
BDM/JTAG6
JTAG_EN7
—
—
—
I
EVDD
83
J11
91
J13
DSCLK
—
TRST2
—
I
EVDD
76
K11
84
L12
—
TCLK
2
—
O
EVDD
64
M7
70
P9
BKPT
—
TMS2
—
I
EVDD
75
L12
83
M14
DSI
—
TDI2
—
I
EVDD
77
H9
85
K12
DSO
—
TDO
—
O
EVDD
69
M9
75
M12
DDATA[3:0]
—
—
—
O
EVDD
—
K9, L9, M11,
M8
—
P11, N11,
M11, P10
PST[3:0]
—
—
—
O
EVDD
—
L11, L8,
K10, K8
—
N10, M10,
L10, L9
PSTCLK
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
6
Freescale Semiconductor
Signal Descriptions
GPIO
Alternate 1
Alternate 2
ALLPST
—
—
—
Voltage
Domain
Signal Name
Dir.1
Table 3. MCF5207/8 Signal Information and Muxing (continued)
MCF5207
144
LQFP
MCF5207
144
MAPBGA
MCF5208
160
QFP
MCF5208
196
MAPBGA
O
EVDD
67
—
73
—
Test
TEST7
—
—
—
I
EVDD
109
—
—
C12
PLL_TEST
—
—
—
I
EVDD
—
—
—
M13
Power Supplies
EVDD
—
—
—
—
—
1, 33, 63, 66,
72, 81, 87,
125
E5–E6, F5,
G8–G9,
H7–H8
2, 9, 69, 72, E5–E7, F5,
80, 89, 95, F6, G5, H10,
131
J9, J10,
K8–K10,
K13, M9
IVDD
—
—
—
—
—
30, 68, 84,
113, 143
D4, D8, H4,
H11, J9
36, 74, 92,
121, 159
J12, D4,
D11, H11,
L4, L11,
PLL_VDD
—
—
—
—
—
86
H12
94
H13
SD_VDD
—
—
—
—
—
3, 17, 35, 61, E7–E8, F8, 11, 39, 41, E8–E10, F9,
89, 110, 123 G5, H5–H6, 67, 97, 118, F10, G10,
J3
129
H5, J5, J6,
K5–K7, L2
VSS
—
—
—
—
—
2, 16, 36, 62, D10, F6–F7, 1, 10, 42, 68,
65, 73, 88,
G6–G7
71, 81, 96,
111, 124
117, 119,
130
PLL_VSS
—
—
—
—
—
85
—
93
A1, A14,
F7–F8,
G6–G9,
H6–H9,
J7–J8, L13,
M2, N9, P1,
P14
H12
NOTES:
1
Refers to pin’s primary function.
2
Pull-up enabled internally on this signal for this mode.
3
The SDRAM functions of these signals are not programmable by the user. They are dynamically switched by the processor when
accessing SDRAM memory space and are included here for completeness.
4 Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by negating the
DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins.
5 GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate functions.
6 If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning
these pins.
7 Pull-down enabled internally on this signal for this mode.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
7
Mechanicals and Pinouts
4
Mechanicals and Pinouts
Drawings in this section show the pinout and the packaging and mechanical characteristics of the
MCF5207 and MCF5208 devices.
NOTE
The mechanical drawings are the latest revisions at the time of publication
of this document. The most up-to-date mechanical drawings can be found at
the product summary page located at http://www.freescale.com/coldfire.
4.1
Pinout—144 LQFP
RCON
IVDD
U1RTS
U0RTS
U0CTS
U1CTS
DT0IN
DT1IN
DT2IN
DT3IN
IRQ7
IRQ4
IRQ1
U1TXD
U1RXD
QSPI_DIN
QSPI_DOUT
QSPI_CLK
QSPI_CS2
EVDD
VSS
SD_VDD
FB_CS0
FB_CS1
FB_CS2
FB_CS3
A23
A22
A21
A20
A19
IVDD
A18
VSS
SD_VDD
TEST
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
•
144
Figure 1 shows a pinout of the MCF5207CAG166 device.
EVDD
1
108
A17
EVSS
2
107
A16
SD_VDD
3
106
A15
TS
4
105
A14
SD_WE
5
104
A13
SD_CKE
6
103
A12
SD_CS
7
102
A11
D15
8
101
A10
D14
9
100
A9
D13
10
99
A8
D12
11
98
A7
D11
D10
12
97
A6
13
96
A5
D9
14
95
A4
D8
15
94
A3
EVSS
16
93
A2
SD_VDD
17
92
A1
BE/BWE1
18
91
A0
SD_DQS3
19
90
TA
BE/BWE3
20
89
SD_VDD
D31
21
88
VSS
D30
22
87
EVDD
D29
23
86
PLL_VDD
D28
24
85
PLL_VSS
D27
25
84
IVDD
D26
26
83
JTAG_EN
D25
27
82
RESET
EVDD
D24
28
81
SD_SDR_DQS
29
80
XTAL
IVDD
30
79
DRAMSEL
SD_CLK
31
78
EXTAL
SD_CLK
32
77
TDI/DSI
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
D20
D19
D18
D17
D16
BE/BWE2
SD_DQS2
BE/BWE0
D7
D6
D5
D4
D3
D2
D1
D0
R/W
OE
SD_VDD
VSS
EVDD
TCLK/PSTCLK
VSS
EVDD
ALL_PST
IVDD
TDO/DSO
U0RXD
U0TXD
EVDD
42
D21
41
VSS
D22
RSTOUT
73
40
74
36
D23
35
VSS
39
SD_VDD
SD_RAS
TMS/BKPT
38
TRST/DSCLK
75
37
76
34
SD_A10
33
FB_CLK
SD_CAS
SD_VDD
Figure 1. MCF5207CAG166 Pinout Top View (144 LQFP)
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
8
Freescale Semiconductor
Mechanicals and Pinouts
4.2
Package Dimensions—144 LQFP
Figure 2 and Figure 3 show MCF5207CAB166 package dimensions.
Figure 2. MCF5207CAB166 Package Dimensions (Sheet 1 of 2)
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
9
Mechanicals and Pinouts
View A
Section A-A
Rotated 90× CW
144 Places
View B
Figure 3. MCF5207CAB166 Package Dimensions (Sheet 2 of 2)
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
10
Freescale Semiconductor
Mechanicals and Pinouts
4.3
Pinout—144 MAPBGA
The pinout of the MCF5207CVM166 device is shown below.
1
2
3
4
5
6
7
8
9
10
11
12
A
SD_CS
U1RTS
DT0IN
DT1IN
IRQ7
U1TXD
QSPI_
DOUT
QSPI_CS2
FB_CS2
A22
A20
A18
A
B
D14
D15
TS
U1CTS
DT3IN
IRQ1
QSPI_
DIN
FB_CS0
A23
A19
A16
A15
B
C
D12
D13
SD_CKE
RCON
DT2IN
IRQ4
QSPI_
CLK
FB_CS1
A21
A10
A17
A14
C
D
D10
D11
SD_WE
IVDD
U0RTS
U1RXD
FB_CS3
IVDD
A8
VSS
A13
A11
D
E
D8
D9
BE/BWE1
U0CTS
EVDD
EVDD
SD_VDD
SD_VDD
A4
A12
A9
A7
E
F
D31
D30
SD_DQS3 BE/BWE3
EVDD
VSS
VSS
SD_VDD
A0
A6
A5
A3
F
G
D29
D28
D26
D27
SD_VDD
VSS
VSS
EVDD
EVDD
A2
TA
A1
G
H
D25
D24
SD_SDR_
DQS
IVDD
SD_VDD
SD_VDD
EVDD
EVDD
TDI/DSI
DRAM
SEL
IVDD
J
SD_CLK
SD_RAS
SD_VDD
D18
BE/BWE0
D4
D2
OE
IVDD
RESET
JTAG_EN
XTAL
J
K
SD_CLK
D20
D23
D16
D6
R/W
D0
PST0
DDATA3
PST1
TRST/
DSCLK
EXTAL
K
L
FB_CLK
D22
D21
BE/BWE2
D7
D5
D1
PST2
DDATA2
U0TXD
PST3
TMS/
BKPT
L
M
SD_A10
SD_CAS
D19
D17
SD_DQS2
D3
TCLK/
PSTCLK
DDATA0
TDO/DSO
U0RXD
DDATA1
RSTOUT
M
1
2
3
4
5
6
7
8
9
10
11
12
PLL_VDD H
Figure 4. MCF5207CVM166 Pinout Top View (144 MAPBGA)
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
11
Mechanicals and Pinouts
4.4
Package Dimensions—144 MAPBGA
Figure 5 shows the MCF5207CAB166 package dimensions.
Figure 5. MCF5207CAB166 Package Dimensions (144 MAPBGA)
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
12
Freescale Semiconductor
Mechanicals and Pinouts
4.5
Pinout—160 QFP
DT1IN
DT2IN
DT3IN
IRQ7
IRQ4
IRQ1
U1TXD
U1RXD
U1RTS
U1CTS
QSPI_DIN
QSPI_DOUT
QSPI_CLK
QSPI_CS2
EVDD
VSS
SD_VDD
FB_CS0
FB_CS1
A23
A22
A21
A20
A19
IVDD
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
FEC_RXD2
DT0IN
FEC_RXD1
150
145
FEC_RXD0
151
FEC_MDIO
FEC_RXDV
152
146
FEC_RXCLK
153
FEC_MDC
FEC_RXER
154
147
FEC_TXER
155
FEC_RXD3
FEC_TXCLK
156
148
FEC_TXEN
157
149
IVDD
158
RCON
160
•
159
Figure 6 shows a pinout of the MCF5208CAB166 device.
VSS
1
120
A18
EVDD
2
119
VSS
FEC_TXD0
3
118
SD_VDD
FEC_TXD1
4
117
VSS
FEC_TXD2
5
116
A17
FEC_TXD3
6
115
A16
FEC_COL
7
114
A15
FEC_CRS
8
113
A14
EVDD
9
112
A13
VSS
10
111
A12
SD_VDD
11
110
A11
TS
SD_WE
12
109
A10
13
108
A9
SD_CKE
14
107
A8
SD_CS
15
106
A7
D15
16
105
A6
D14
17
104
A5
D13
18
103
A4
D12
19
102
A3
D11
20
101
A2
D10
21
100
A1
D9
22
99
A0
D8
23
98
TA
SD_VDD
BE/BWE1
24
97
SD_DQS3
25
96
VSS
BE/BWE3
26
95
EVDD
PLL_VDD
D31
27
94
D30
28
93
PLL_VSS
D29
29
92
IVDD
D28
30
91
JTAG_EN
D27
31
90
RESET
EVDD
D26
32
89
D25
33
88
XTAL
D24
34
87
DRAMSEL
SD_SDR_DQS
35
86
EXTAL
IVDD
36
85
TDI/DSI
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
D20
D19
D18
D17
D16
BE/BWE2
SD_DQS2
BE/BWE0
D7
D6
D5
D4
D3
D2
D1
D0
R/W
OE
SD_VDD
VSS
EVDD
TCLK/PSTCLK
VSS
EVDD
ALL_PST
IVDD
TDO/DSO
U0CTS
U0RTS
U0RXD
U0TXD
EVDD
48
47
D22
D21
46
D23
VSS
45
81
SD_RAS
40
44
RSTOUT
FB_CLK
SD_CAS
82
43
39
SD_A10
TMS/BKPT
SD_VDD
42
TRST/DSCLK
41
84
83
VSS
37
38
SD_VDD
SD_CLK
SD_CLK
Figure 6. MCF5208CAB166 Pinout Top View (160 QFP)
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
13
Mechanicals and Pinouts
4.6
Package Dimensions—160 QFP
The package dimensions of the MCF5208CAB166 device are shown in the figures below.
Top View
Figure 7. MCF5208CAB166 Package Dimensions (Sheet 1 of 2)
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
14
Freescale Semiconductor
Mechanicals and Pinouts
SECTION B-B
DETAIL A
Figure 8. MCF5208CAB166 Package Dimensions (Sheet 2 of 2)
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
15
Mechanicals and Pinouts
4.7
Pinout—196 MAPBGA
Figure 9 shows a pinout of the MCF5208CVM166 device.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
A
VSS
FEC_
TXEN
FEC_
TXER
FEC_
RXDV
FEC_
RXD3
DT1IN
DT2IN
U1TXD
QSPI_
CLK
FB_CS2
A22
A20
A19
VSS
A
B
FEC_
TXD0
FEC_
TXD1
FEC_
TXCLK
FEC_
RXCLK
FEC_
RXD2
DT0IN
DT3IN
U1RXD
QSPI_
DOUT
FB_CS1
A23
A21
A18
A17
B
C
FEC_
TXD3
FEC_
TXD2
RCON
FEC_
RXER
FEC_
RXD1
FEC_
MDIO
IRQ7
U1RTS
QSPI_
DIN
FB_CS0
FB_CS3
TEST
A16
A15
C
D
I2C_SDA
FEC_
CRS
FEC_
COL
IVDD
FEC_
RXD0
FEC_
MDC
IRQ4
IRQ1
U1CTS
QSPI_
CS2
IVDD
A14
A13
A12
D
E
SD_CKE
SD_WE
TS
I2C_SCL
EVDD
EVDD
EVDD
SD_VDD
SD_VDD
SD_VDD
A11
A10
A9
A8
E
F
D13
D14
D15
SD_CS
EVDD
EVDD
VSS
VSS
SD_VDD
SD_VDD
A7
A6
A5
A4
F
G
D9
D10
D11
D12
EVDD
VSS
VSS
VSS
VSS
SD_VDD
A3
A2
A1
A0
G
H
D8
BE/
BWE3
SD_
DQS3
BE/
BWE1
SD_VDD
VSS
VSS
VSS
VSS
EVDD
IVDD
PLL_
VSS
PLL_
VDD
TA
H
J
D28
D29
D30
D31
SD_VDD
SD_VDD
VSS
VSS
EVDD
EVDD
NC
IVDD
JTAG_
EN
RESET
J
K
D24
D25
D26
D27
SD_VDD
SD_VDD
SD_VDD
EVDD
EVDD
EVDD
DRAM
SEL
TDI/
DSI
EVDD
XTAL
K
L
SD_CLK
SD_VDD
SD_SDR
_DQS
IVDD
D18
SD_
DQS2
D5
R/W
PST0
PST1
IVDD
TRST/
DSCLK
VSS
EXTAL
L
M
SD_CLK
VSS
D23
D21
D17
BE/
BWE0
D4
OE
EVDD
PST2
DDATA1
TDO/
DSO
PLL_
TEST
TMS/
BKPT
M
N
FB_CLK
SD_A10
D22
D20
D16
D7
D3
D1
VSS
PST3
DDATA2
U0CTS
U0RXD
P
VSS
SD_CAS
SD_RAS
D19
BE/
BWE2
D6
D2
D0
TCLK/
PSTCLK
DDATA0
DDATA3
U0RTS
U0TXD
VSS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
RSTOUT N
Figure 9. MCF5208CVM166 Pinout Top View (196 MAPBGA)
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
16
Freescale Semiconductor
P
Electrical Characteristics
4.8
Package Dimensions—196 MAPBGA
The package dimensions for the MCF5208CVM166 device is shown below.
Top View
Bottom View
Figure 10. MCF5208CVM166 Package Dimensions (196 MAPBGA)
5
Electrical Characteristics
5.1
Maximum Ratings
Table 4. Absolute Maximum Ratings1, 2
Rating
Symbol
Value
Unit
Core Supply Voltage
IVDD
– 0.5 to +2.0
V
CMOS Pad Supply Voltage
EVDD
– 0.3 to +4.0
V
DDR/Memory Pad Supply Voltage
SDVDD
– 0.3 to +4.0
V
PLL Supply Voltage
PLLVDD
– 0.3 to +2.0
V
VIN
– 0.3 to +3.6
V
ID
25
mA
Digital Input Voltage 3
Instantaneous Maximum Current
Single pin limit (applies to all pins) 3, 4, 5
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
17
Electrical Characteristics
Table 4. Absolute Maximum Ratings1, 2 (continued)
Operating Temperature Range (Packaged)
TA
(TL - TH)
– 40 to 85
°C
Tstg
– 55 to 150
°C
Storage Temperature Range
NOTES:
1
Functional operating conditions are given in Section 5.4, “DC Electrical Specifications”.
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is
not guaranteed. Continued operation at these levels may affect device reliability or cause
permanent damage to the device.
2
This device contains circuitry protecting against damage due to high static voltage or
electrical fields; however, it is advised that normal precautions be taken to avoid application of
any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of
operation is enhanced if unused inputs are tied to an appropriate logic voltage level (VSS or
EVDD).
3
Input must be current limited to the value specified. To determine the value of the required
current-limiting resistor, calculate resistance values for positive and negative clamp voltages,
then use the larger of the two values.
4
All functional non-supply pins are internally clamped to VSS and EVDD.
5 Power supply must maintain regulation within operating EV
DD range during instantaneous
and operating maximum current conditions. If positive injection current (Vin > EVDD) is greater
than IDD, the injection current may flow out of EVDD and could result in external power supply
going out of regulation. Ensure external EVDD load shunts current greater than maximum
injection current. This is the greatest risk when the MCU is not consuming power (ex; no
clock). Power supply must maintain regulation within operating EVDD range during
instantaneous and operating maximum current conditions.
5.2
Thermal Characteristics
Table 5 lists thermal resistance values
Table 5. Thermal Characteristics
Characteristic
Symbol 196MBGA 144MBGA 160QFP 144LQFP Unit
Junction to ambient, natural convection
Four layer board
(2s2p)
θJMA
471,2
471,2
491,2
651,2
°C/W
Junction to ambient (@200 ft/min)
Four layer board
(2s2p)
θJMA
431,2
431,2
441,2
581,2
°C/W
Junction to board
θJB
363
363
403
503
°C/W
Junction to case
θJC
224
224
394
194
°C/W
Junction to top of package
Ψjt
61,5
61,5
121,6
51,7
°C/W
Maximum operating junction temperature
Tj
105
105
105
105
o
C
NOTES:
1 θ
JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale
recommends the use of θJmA and power dissipation specifications in the system design to prevent device junction temperatures
from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly
influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be
verified by physical measurement in the customer’s system using the Ψjt parameter, the device power dissipation, and the
method described in EIA/JESD Standard 51-2.
2 Per JEDEC JESD51-6 with the board horizontal.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
18
Freescale Semiconductor
Electrical Characteristics
3
4
5
6
7
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is
measured on the top surface of the board near the package.
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1).
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance
with Psi-JT.
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance
with Psi-JT.
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance
with Psi-JT.
The average chip-junction temperature (TJ) in °C can be obtained from:
T J = T A + ( P D × Θ JMA )
Eqn. 1
Where:
TA
= Ambient Temperature, °C
QJMA
= Package Thermal Resistance, Junction-to-Ambient, ×C/W
PD
= PINT + PI/O
PINT
= IDD × IVDD, Watts - Chip Internal Power
PI/O
= Power Dissipation on Input and Output Pins — User Determined
For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if
PI/O is neglected) is:
K
P D = --------------------------------( T J + 273°C )
Eqn. 2
Solving equations 1 and 2 for K gives:
2
K = P D × ( T A × 273°C ) + Q JMA × P D
Eqn. 3
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring
PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by
solving Equation 1 and Equation 2 iteratively for any value of TA.
5.3
ESD Protection
Table 6. ESD Protection Characteristics1, 2
Characteristics
ESD Target for Human Body Model
Symbol
Value
Unit
HBM
2000
V
NOTES:
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for
Automotive Grade Integrated Circuits.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
19
Electrical Characteristics
2
5.4
A device is defined as a failure if, after exposure to ESD pulses, the device no longer
meets the device specification requirements. Complete DC parametric and functional
testing is performed per applicable device specification at room temperature followed by
hot temperature, unless specified otherwise in the device specification.
DC Electrical Specifications
Table 7. DC Electrical Specifications
Characteristic
Symbol
Min
Max
Unit
Core Supply Voltage
IVDD
1.4
1.6
V
PLL Supply Voltage
PLLVDD
1.4
1.6
V
EVDD
3.0
3.6
V
1.70
2.25
3.0
1.95
2.75
3.6
CMOS Pad Supply Voltage
SDRAM and FlexBus Supply Voltage
Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V)
DDR/Bus Pad Supply Voltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
SDVDD
V
CMOS Input High Voltage
EVIH
2
EVDD + 0.3
V
CMOS Input Low Voltage
EVIL
VSS - 0.3
0.8
V
CMOS Output High Voltage
IOH = –5.0 mA
EVOH
EVDD - 0.4
—
V
CMOS Output Low Voltage
IOL = 5.0 mA
EVOL
—
0.4
V
SDRAM and FlexBus Input High Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Voltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
SDVIH
1.35
1.7
2
SDVDD + 0.3
SDVDD + 0.3
SDVDD + 0.3
SDRAM and FlexBus Input Low Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Voltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
SDVIL
VSS - 0.3
VSS - 0.3
VSS - 0.3
0.45
0.8
0.8
SDRAM and FlexBus Output High Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Voltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
IOH = –5.0 mA for all modes
SDVOH
SDVDD - 0.35
2.1
2.4
—
—
—
SDRAM and FlexBus Output Low Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Voltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
IOL = 5.0 mA for all modes
SDVOL
—
—
—
0.3
0.3
0.5
–1.0
1.0
Input Leakage Current
Vin = IVDD or VSS, Input-only pins
Iin
V
V
V
V
μA
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
20
Freescale Semiconductor
Electrical Characteristics
Table 7. DC Electrical Specifications (continued)
Characteristic
Symbol
Min
Max
Unit
Weak Internal Pull Up Device Current, tested at VIL Max.1
IAPU
-10
- 130
μA
Input Capacitance 2
All input-only pins
All input/output (three-state) pins
Cin
—
—
7
7
pF
NOTES:
1
Refer to the signals section for pins having weak internal pull-up devices.
2
This parameter is characterized before qualification rather than 100% tested.
5.4.1
PLL Power Filtering
To further enhance noise isolation, an external filter is strongly recommended for PLL analog VDD pins.
The filter shown in Figure 11 should be connected between the board VDD and the PLLVDD pins. The
resistor and capacitors should be placed as close to the dedicated PLLVDD pin as possible.
10 Ω
Board VDD
PLL VDD Pin
10 µF
0.1 µF
GND
Figure 11. System PLL VDD Power Filter
5.4.2
Supply Voltage Sequencing and Separation Cautions
The relationship between SDVDD and EVDD is non-critical during power-up and power-down sequences.
SDVDD (2.5V or 3.3V) and EVDD are specified relative to IVDD.
5.4.2.1
Power Up Sequence
If EVDD/SDVDD are powered up with IVDD at 0 V, the sense circuits in the I/O pads cause all pad output
drivers connected to the EVDD/SDVDD to be in a high impedance state. There is no limit on how long after
EVDD/SDVDD powers up before IVDD must power up. IVDD should not lead the EVDD, SDVDD, or
PLLVDD by more than 0.4 V during power ramp-up or there will be high current in the internal ESD
protection diodes. The rise times on the power supplies should be slower than 500 us to avoid turning on
the internal ESD protection clamp diodes.
5.4.2.2
Power Down Sequence
If IVDD/PLLVDD are powered down first, sense circuits in the I/O pads cause all output drivers to be in a
high impedance state. There is no limit on how long after IVDD and PLLVDD power down before EVDD
or SDVDD must power down. IVDD should not lag EVDD, SDVDD, or PLLVDD going low by more than
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
21
Electrical Characteristics
0.4 V during power down or there is an undesired high current in the ESD protection diodes. There are no
requirements for the fall times of the power supplies.
The recommended power down sequence is:
1. Drop IVDD/PLLVDD to 0 V.
2. Drop EVDD/SDVDD supplies.
5.5
Current Consumption
All of the below current consumption data is lab data measured on a single device using an evaluation
board. Table 8 shows the typical current consumption in low-power modes at various fsys/2 frequencies.
Current measurements are taken after executing a STOP instruction.
Table 8. Current Consumption in Low-Power Mode1,2
Mode
Stop Mode 3
(Stop 11)5
Stop Mode 2
(Stop 10)5
Stop Mode 1
(Stop 01)5
Stop Mode 0
(Stop 00)5
Wait/Doze
Run
Voltage
(V)
Typical3 (mA)
44 MHz
56 MHz
64 MHz
3.3
1.33
2.5
15.19
1.5
0.519
3.3
1.93
2.5
15.19
1.5
1.25
3.3
1.83
2.5
15.23
Peak4 (mA)
72 MHz
83.33 MHz
83.33 MHz
1.5
8.24
10.22
9.55
10.61
12.1
12.1
3.3
2.23
2.33
2.41
2.5
2.61
2.61
2.5
16.2
16.47
16.62
16.91
17.24
17.24
1.5
8.32
10.32
9.66
10.73
12.25
12.25
3.3
2.23
2.33
2.41
2..5
2.6
4.07
2.5
16.2
16.48
16.62
16.91
17.24
18.77
1.5
11.53
14.36
14.29
15.92
18.21
35.45
3.3
6.79
9.02
14.56
19.54
29.12
30.43
2.5
16.17
16.48
16.64
16.89
17.23
18.76
1.5
16.29
20.36
21.13
23.57
27.0
44.1
NOTES:
1
All values are measured with a 3.30V EVDD, 2.50V SDVDD, and 1.5V IVDD power supplies. Tests performed at
room temperature with pins configured for high drive strength.
2 Refer to the Power Management chapter in the MCF5208 Reference Manual for more information on low-power
modes.
3 All peripheral clocks except UART0, FlexBus, INTC, reset controller, PLL, and Edge Port off before entering
low-power mode. All code executed from flash.
4
Peak current measured while running a while(1) loop with all modules active.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
22
Freescale Semiconductor
Electrical Characteristics
5
See the description of the low-power control register (LCPR) in the MCF5208 Reference Manual for more
information on stop modes 0–3.
The figure below illustrates the power consumption in a graphical format.
Power Consumption (mW)
250
Stop 0 - Flash
200
Stop 1 - Flash
Stop 2 - Flash
150
Stop 3 - Flash
Wait/Doze - Flash
100
Run - Flash
50
0
44
48
56
64
72
83.33
83.33(peak)
fsys/2 (MHz)
Figure 12. Current Consumption in Low-Power Modes
Table 9. Typical Active Current Consumption Specifications1
fsys/2 Frequency
1 MHz
2 MHz
4 MHz
44 MHz
48 MHz
Voltage
(V)
Typical2 Active (mA)
Peak3 Active
(mA)
SRAM
Flash
3.3
2.04
2.12
2.28
2.5
15.24
15.32
15.24
1.5
1.30
1.41
1.49
3.3
2.23
2.40
3.57
2.5
15.26
15.42
15.26
1.5
1.71
1.92
2.09
3.3
2.60
2.95
3.58
2.5
15.30
15.61
15.30
1.5
2.49
2.95
3.29
3.3
7.61
17.67
25.34
2.5
16.13
19.49
16.95
1.5
24.04
28.72
39.02
3.3
8.16
26.21
34.45
2.5
16.28
20.06
17.17
1.5
26.05
31.13
42.30
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
23
Electrical Characteristics
Table 9. Typical Active Current Consumption Specifications1 (continued)
fsys/2 Frequency
Voltage
(V)
56 MHz
64 MHz
72 MHz
83.33 MHz
Typical2 Active (mA)
Peak3 Active
(mA)
SRAM
Flash
3.3
10.09
30.71
38.97
2.5
16.43
20.71
17.65
1.5
30.07
35.90
47.90
3.3
15.72
31.37
42.10
2.5
16.56
21.08
17.95
1.5
32.19
38.72
53.50
3.3
20.97
31.40
48.80
2.5
16.87
21.70
18.20
1.5
35.90
43.20
59.50
3.3
31.37
25.83
48.60
2.5
17.21
22.80
18.83
1.5
41.10
49.40
67.50
NOTES:
1 All values are measured with a 3.30V EV , 2.50V SDV , and 1.5V IV
DD
DD
DD power
supplies. Tests performed at room temperature with pins configured for high drive
strength.
2 CPU polling a status register. All peripheral clocks except UART0, FlexBus, INTC,
reset controller, PLL, and edge port disabled.
3 Peak current measured while running a while(1) loop with all modules active.
5.6
Oscillator and PLL Electrical Characteristics
Table 10. PLL Electrical Characteristics
Num
1
Characteristic
PLL Reference Frequency Range
Crystal reference
External reference
Symbol
Min.
Value
Max.
Value
Unit
fref_crystal
fref_ext
12
12
251
401
MHz
MHz
fsys
fsys/2
488 x 10-6
244 x 10-6
166.66
83.33
MHz
MHz
tcst
—
10
ms
2
Core frequency
CLKOUT Frequency2
3
Crystal Start-up Time3, 4
4
EXTAL Input High Voltage
Crystal Mode5
All other modes (External, Limp)
VIHEXT
VIHEXT
VXTAL + 0.4
EVDD/2 + 0.4
—
—
V
V
EXTAL Input Low Voltage
Crystal Mode5
All other modes (External, Limp)
VILEXT
VILEXT
—
—
VXTAL - 0.4
EVDD/2 - 0.4
V
V
5
7
PLL Lock Time 3, 6
tlpll
—
50000
CLKIN
8
Duty Cycle of reference 3
tdc
40
60
%
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
24
Freescale Semiconductor
Electrical Characteristics
Table 10. PLL Electrical Characteristics (continued)
Num
Characteristic
Symbol
Min.
Value
Max.
Value
Unit
IXTAL
1
3
mA
9
XTAL Current
10
Total on-chip stray capacitance on XTAL
CS_XTAL
1.5
pF
11
Total on-chip stray capacitance on EXTAL
CS_EXTAL
1.5
pF
12
Crystal capacitive load
CL
See crystal
spec
13
Discrete load capacitance for XTAL
CL_XTAL
2*CL CS_XTAL CPCB_XTAL7
pF
14
Discrete load capacitance for EXTAL
CL_EXTAL
2*CL CS_EXTAL CPCB_EXTAL7
pF
17
CLKOUT Period Jitter, 3, 4, 7, 8, 9 Measured at fSYS Max
Peak-to-peak Jitter (Clock edge to clock edge)
Long Term Jitter
Cjitter
—
—
10
TBD
% fsys/2
% fsys/2
18
Frequency Modulation Range Limit 3, 10, 11
(fsysMax must not be exceeded)
Cmod
0.8
2.2
%fsys/2
19
VCO Frequency. fvco = (fref * PFD)/4
fvco
350
540
MHz
NOTES:
1 The maximum allowable input clock frequency when booting with the PLL enabled is 24 MHz. For higher input clock
frequencies, the processor must boot in LIMP mode to avoid violating the maximum allowable CPU frequency.
2 All internal registers retain data at 0 Hz.
3 This parameter is guaranteed by characterization before qualification rather than 100% tested.
4 Proper PC board layout procedures must be followed to achieve specifications.
5 This parameter is guaranteed by design rather than 100% tested.
6 This specification is the PLL lock time only and does not include oscillator start-up time.
7 C
PCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.
8 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f
sys.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal.
Noise injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase
the Cjitter percentage for a given interval.
9 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.
10
Modulation percentage applies over an interval of 10μs, or equivalently the modulation rate is 100KHz.
11
Modulation range determined by hardware design.
5.7
External Interface Timing Characteristics
Table 11 lists processor bus input timings.
NOTE
All processor bus timings are synchronous; that is, input setup/hold and
output delay with respect to the rising edge of a reference clock. The
reference clock is the FB_CLK output.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
25
Electrical Characteristics
All other timing relationships can be derived from these values. Timings
listed in Table 11 are shown in Figure 14 and Figure 15.
* The timings are also valid for inputs sampled on the negative clock edge.
1.5V
FB_CLK(75MHz)
TSETUP
THOLD
Input Setup And Hold
Invalid
1.5V Valid 1.5V
Invalid
trise
Input Rise Time
Vh = VIH
Vl = VIL
tfall
Input Fall Time
FB_CLK
Vh = VIH
Vl = VIL
FB4
FB5
Inputs
Figure 13. General Input Timing Requirements
5.7.1
FlexBus
FlexBus is a multi-function external bus interface provided to interface to slave-only devices up to a
maximum bus frequency of 83.33 MHz. It can be directly connected to asynchronous or synchronous
devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave)
devices with little or no additional circuitry. For asynchronous devices, a simple chip-select based interface
can be used. The FlexBus interface has six general purpose chip-selects (FB_CS[5:0]) that can be
configured to be distributed between the FlexBus or SDRAM memory interfaces. Chip-select FB_CS[0]
can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or
longword (32 bits) wide. Control signal timing is compatible with common ROM/flash memories.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
26
Freescale Semiconductor
Electrical Characteristics
5.7.1.1
FlexBus AC Timing Characteristics
The following timing numbers indicate when data will be latched or driven onto the external bus, relative
to the system clock.
Table 11. FlexBus AC Timing Specifications
Num
Characteristic
Symbol
Min
Frequency of Operation
FB1
Clock Period (FB_CLK)
FB2
Max
Unit
Notes
83.33
Mhz
fsys/2
ns
tcyc
tFBCK
12
Data, and Control Output Valid (A[23:0], D[31:0],
FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)
tFBCHDCV
—
7.0
ns
1
FB3
Data, and Control Output Hold ((A[23:0], D[31:0],
FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)
tFBCHDCI
1
—
ns
1, 2
FB4
Data Input Setup
tDVFBCH
3.5
—
ns
FB5
Data Input Hold
tDIFBCH
0
—
ns
FB6
Transfer Acknowledge (TA) Input Setup
tCVFBCH
4
—
ns
FB7
Transfer Acknowledge (TA) Input Hold
tCIFBCH
0
—
ns
NOTES:
1 Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.8, “SDRAM Bus” for SD_CS[1:0]
timing.
2
The FlexBus supports programming an extension of the address hold. Please consult the device reference manual for
more information.
NOTE
The processor drives the data lines during the first clock cycle of the transfer
with the full 32-bit address. This may be ignored by standard connected
devices using non-multiplexed address and data buses. However, some
applications may find this feature beneficial.
The address and data busses are muxed between the FlexBus and SDRAM
controller. At the end of the read and write bus cycles the address signals are
indeterminate.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
27
Electrical Characteristics
S0
S1
S2
S3
FB_CLK
FB1
FB3
ADDR[23:0]
FB_A[23:0]
FB2
FB_D[31:X]
FB5
ADDR[31:X]
DATA
FB4
FB_R/W
FB_TS
FB_CSn, FB_OE,
FB_BE/BWEn
FB6
FB7
FB_TA
Figure 14. FlexBus Read Timing
S0
S1
S2
S3
FB_CLK
FB1
FB3
ADDR[23:0]
FB_A[23:0]
FB2
FB_D[31:X]
ADDR[31:X]
DATA
FB_R/W
FB_TS
FB_CSn, FB_BE/BWEn
FB_OE
FB6
FB7
FB_TA
Figure 15. Flexbus Write Timing
5.8
SDRAM Bus
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports
standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time. The
SDRAM controller uses SSTL2 and SSTL3 I/O drivers. Both SSTL drive modes are programmable for
Class I or Class II drive strength.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
28
Freescale Semiconductor
Electrical Characteristics
5.8.1
SDR SDRAM AC Timing Characteristics
The following timing numbers indicate when data will be latched or driven onto the external bus, relative
to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read
cycles. The SDRAM controller is a DDR controller with an SDR mode. Because it is designed to support
DDR, a DQS pulse must remain supplied to the device for each data beat of an SDR read. The ColdFire
processor accomplishes this by asserting a signal called SD_SDR_DQS during read cycles. Take care
during board design to adhere to the following guidelines and specs with regard to the SD_SDR_DQS
signal and its usage.
Table 12. SDR Timing Specifications
Symbol
Characteristic
Symbol
Frequency of Operation
Min
Max
Unit
Notes
60
83.33
MHz
1
SD1
Clock Period (tCK)
tSDCK
12
16.67
ns
2
SD3
Pulse Width High (tCKH)
tSDCKH
0.45
0.55
SD_CLK
3
SD4
Pulse Width Low (tCKL)
tSDCKL
0.45
0.55
SD_CLK
3
SD5
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_BA, SD_CS[1:0] - Output Valid (tCMV)
tSDCHACV
—
0.5 × SD_CLK
+ 1.0
ns
SD6
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_BA, SD_CS[1:0] - Output Hold (tCMH)
tSDCHACI
2.0
—
ns
SD7
SD_SDR_DQS Output Valid (tDQSOV)
tDQSOV
—
Self timed
ns
4
SD8
SD_DQS[3:2] input setup relative to SD_CLK (tDQSIS) tDQVSDCH 0.25 × SD_CLK 0.40 × SD_CLK
ns
5
SD9
SD_DQS[3:2] input hold relative to SD_CLK (tDQSIH)
tDQISDCH
SD10
Data (D[31:0]) Input Setup relative to SD_CLK
(reference only) (tDIS)
tDVSDCH
0.25 × SD_CLK
—
ns
SD11
Data Input Hold relative to SD_CLK (reference only)
(tDIH)
tDISDCH
1.0
—
ns
SD12
Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output tSDCHDMV
Valid (tDV)
—
0.75 × SD_CLK
+ 0.5
ns
SD13
Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output tSDCHDMI
Hold (tDH)
1.5
—
ns
Does not apply. 0.5 SD_CLK fixed width.
6
7
NOTES:
1 The device supports the same frequency of operation for FlexBus and SDRAM as that of the internal bus clock. Please see the
PLL chapter of the MCF5208 Reference Manual for more information on setting the SDRAM clock rate.
2 SD_CLK is one SDRAM clock in (ns).
3 Pulse width high plus pulse width low cannot exceed min and max clock period.
4
SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation from
this guideline is expected. SD_DQS only pulses during a read cycle and one pulse occurs for each data beat.
5 SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle
variation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat.
6 The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does
not affect the memory controller.
7 Because a read cycle in SDR mode continues using the DQS circuit within the device, it is most critical that the data valid window
be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The input setup spec
is provided as guidance.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
29
Electrical Characteristics
SD2
SD1
SD_CLK
SD3
SD5
SD_CSn
SD_RAS
SD_CAS
SD_WE
CMD
SD4
A[23:0]
SD_BA[1:0]
ROW
COL
SD11
SDDM
SD12
WD1
D[31:0]
WD2
WD3
WD4
Figure 16. SDR Write Timing
SD2
SD1
SD_CLK
SD_CSn,
SD_RAS,
SD_CAS,
SD_WE
A[23:0],
SD_BA[1:0]
SD5
SD3
CMD
3/4 MCLK
Reference
SD4
ROW
COL
tDQS
SDDM
SD6
SD_SDR_DQS
(Measured at Output Pin)
Board Delay
SD_DQS[3:2]
SD8
(Measured at Input Pin)
SD7
Board Delay
Delayed
SD_CLK
SD9
D[31:0]
from
Memories
WD1
NOTE: Data driven from memories relative
to delayed memory clock.
WD2
WD3
WD4
SD10
Figure 17. SDR Read Timing
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
30
Freescale Semiconductor
Electrical Characteristics
5.8.2
DDR SDRAM AC Timing Characteristics
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to
properly latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte
lanes. The following timing numbers are subject to change at anytime, and are only provided to aid in early
board design. Please contact your local Freescale representative if questions develop.
Table 13. DDR Timing Specifications
Num
Characteristic
Symbol
Min
Max
Unit
Notes
—
Frequency of Operation
—
60
83.33
Mhz
1
DD1
Clock Period (SD_CLK)
tDDCK
12
16.67
ns
2
DD2
Pulse Width High
tDDCKH
0.45
0.55
SD_CLK
3
DD3
Pulse Width Low
tDDCKL
0.45
0.55
SD_CLK
3
DD4
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] - Output Valid
tSDCHACV
—
0.5 × SD_CLK
+ 1.0
ns
4
DD5
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] - Output Hold
tSDCHACI
2.0
—
ns
—
DD6
Write Command to first DQS Latching Transition
tCMDVDQ
1.25
SD_CLK
—
DD7
Data and Data Mask Output Setup (DQ-->DQS)
Relative to DQS (DDR Write Mode)
tDQDMV
1.5
—
ns
5
DD8
Data and Data Mask Output Hold (DQS-->DQ)
Relative to DQS (DDR Write Mode)
tDQDMI
1.0
—
ns
7
DD9
Input Data Skew Relative to DQS (Input Setup)
tDVDQ
—
1
ns
8
DD10
Input Data Hold Relative to DQS.
tDIDQ
0.25 × SD_CLK
+ 0.5ns
—
ns
9
DD11
DQS falling edge from SDCLK rising (output hold time)
tDQLSDCH
0.5
—
ns
—
DD12
DQS input read preamble width (tRPRE)
tDQRPRE
0.9
1.1
SD_CLK
—
DD13
DQS input read postamble width (tRPST)
tDQRPST
0.4
0.6
SD_CLK
—
DD14
DQS output write preamble width (tWPRE)
tDQWPRE
0.25
—
SD_CLK
—
DD15
DQS output write postamble width (tWPST)
tDQWPST
0.4
0.6
SD_CLK
—
6
NOTES:
1 The frequency of operation is 2x or 4x the FB_CLK frequency of operation. FlexBus and SDRAM clock operate at the same
frequency as the internal bus clock.
2 SD_CLK is one SDRAM clock in (ns).
3 Pulse width high plus pulse width low cannot exceed min and max clock period.
4
Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature, and
voltage variations.
5
This specification relates to the required input setup time of today’s DDR memories. The device’s output setup should be larger
than the input setup of the DDR memories. If it is not larger, the input setup on the memory is in violation.
MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to
MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].
6
The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid
for each subsequent DQS edge.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
31
Electrical Characteristics
7
This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3],
MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative
MEM_DQS[0].
8
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes
valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
9 Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes
invalid.
DD1
DD2
SD_CLK
DD3
SD_CLK
DD5
SD_CSn, SD_WE,
SD_RAS, SD_CAS
CMD
DD4
A[13:0]
DD6
ROW
COL
DD7
DM3/DM2
DD8
SD_DQS3/SD_DQS2
DD7
D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
DD8
Figure 18. DDR Write Timing
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
32
Freescale Semiconductor
Electrical Characteristics
DD1
DD2
SD_CLK
DD3
SD_CLK
CL=2
DD5
SD_CSn, SD_WE,
SD_RAS, SD_CAS
CMD
CL=2.5
DD4
A[13:0]
ROW
COL
DD9
DQS Read
Preamble
CL = 2
SD_DQS3/SD_DQS2
DQS Read
Postamble
DD10
D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
DQS Read
DQS Read
Preamble
Postamble
CL = 2.5
SD_DQS3/SD_DQS2
D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
Figure 19. DDR Read Timing
5.9
General Purpose I/O Timing
Table 14. GPIO Timing1
Num
Characteristic
Symbol
Min
Max
Unit
G1
FB_CLK High to GPIO Output Valid
tCHPOV
—
8
ns
G2
FB_CLK High to GPIO Output Invalid
tCHPOI
1.5
—
ns
G3
GPIO Input Valid to FB_CLK High
tPVCH
8
—
ns
G4
FB_CLK High to GPIO Input Invalid
tCHPI
1.5
—
ns
NOTES:
1
GPIO spec cover: IRQn, UART and Timer pins.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
33
Electrical Characteristics
FB_CLK
G2
G1
GPIO Outputs
G3
G4
GPIO Inputs
Figure 20. GPIO Timing
5.10 Reset and Configuration Override Timing
Table 15. Reset and Configuration Override Timing
Num
Characteristic
Symbol
Min
Max
Unit
R1
RESET Input valid to FB_CLK High
tRVCH
9
—
ns
R2
FB_CLK High to RESET Input invalid
tCHRI
1.5
—
ns
R3
RESET Input valid Time 1
tRIVT
5
—
tCYC
R4
FB_CLK High to RSTOUT Valid
tCHROV
—
10
ns
R5
RSTOUT valid to Config. Overrides valid
tROVCV
0
—
ns
R6
Configuration Override Setup Time to RSTOUT invalid
tCOS
20
—
tCYC
R7
Configuration Override Hold Time after RSTOUT invalid
tCOH
0
—
ns
R8
RSTOUT invalid to Configuration Override High Impedance
tROICZ
—
1
tCYC
NOTES:
1 During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to
the system. Thus, RESET must be held a minimum of 100 ns.
FB_CLK
R1
R2
R3
RESET
R4
R4
RSTOUT
R8
R5
R6
R7
Configuration Overrides*:
(RCON, Override pins)
Figure 21. RESET and Configuration Override Timing
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
34
Freescale Semiconductor
Electrical Characteristics
NOTE
Refer to the MCF5208 Reference Manual for more information.
5.11 I2C Input/Output Timing Specifications
Table 16 and Table 17 list specifications for the I2C input and output timing parameters.
Table 16. I2C Input Timing Specifications between I2C_SCL and I2C_SDA
Num
Characteristic
Min
Max
Unit
I1
Start condition hold time
2
—
tcyc
I2
Clock low period
8
—
tcyc
I3
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)
—
1
ms
I4
Data hold time
0
—
ns
I5
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)
—
1
ms
I6
Clock high time
4
—
tcyc
I7
Data setup time
0
—
ns
I8
Start condition setup time (for repeated start condition only)
2
—
tcyc
I9
Stop condition setup time
2
—
tcyc
Table 17. I2C Output Timing Specifications between I2C_SCL and I2C_SDA
Num
I11
I2
1.
I3 2
I4
1.
I5 3
Characteristic
Min
Max
Unit
Start condition hold time
6
—
tcyc
Clock low period
10
—
tcyc
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)
—
—
µs
Data hold time
7
—
tcyc
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)
—
3
ns
1.
Clock high time
10
—
tcyc
I7 1.
Data setup time
2
—
tcyc
Start condition setup time (for repeated start condition only)
20
—
tcyc
Stop condition setup time
10
—
tcyc
I6
I8
1.
I9 1.
NOTES:
1 Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the
maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table A-16. The I2C
interface is designed to scale the actual data transition time to move it to the middle of the I2C_SCL low
period. The actual position is affected by the prescale and division values programmed into the IFDR;
however, the numbers given in Table A-16 are minimum values.
2 Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively
drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal
capacitance and pull-up resistor values.
3 Specified at a nominal 50-pF load.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
35
Electrical Characteristics
I2
I6
I5
I2C_SCL
I1
I4
I3
I8
I9
I7
I2C_SDA
Figure 22. I2C Input/Output Timings
5.12 Fast Ethernet AC Timing Specifications
MII signals use TTL signal levels compatible with devices operating at 5.0 V or 3.3 V.
5.12.1 MII Receive Signal Timing (FEC_RXD[3:0], FEC_RXDV,
FEC_RXER, and FEC_RXCLK)
The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. There is no
minimum frequency requirement. In addition, the processor clock frequency must exceed twice the
FEC_RXCLK frequency.
Table 18 lists MII receive channel timings.
Table 18. MII Receive Signal Timing
Num
Characteristic
Min
Max
Unit
M1
FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK
setup
5
—
ns
M2
FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold
5
—
ns
M3
FEC_RXCLK pulse width high
35%
65%
FEC_RXCLK period
M4
FEC_RXCLK pulse width low
35%
65%
FEC_RXCLK period
Figure 23 shows MII receive signal timings listed in Table 18.
M3
FEC_RXCLK (input)
M4
FEC_RXD[3:0] (inputs)
FEC_RXDV
FEC_RXER
M1
M2
Figure 23. MII Receive Signal Timing Diagram
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
36
Freescale Semiconductor
Electrical Characteristics
5.12.2 MII Transmit Signal Timing (FEC_TXD[3:0], FEC_TXEN,
FEC_TXER, FEC_TXCLK)
Table 19 lists MII transmit channel timings.
The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. In
addition, the processor clock frequency must exceed twice the FEC_TXCLK frequency.
Table 19. MII Transmit Signal Timing
Num
Characteristic
Min
Max
Unit
M5
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER
invalid
5
—
ns
M6
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid
—
25
ns
M7
FEC_TXCLK pulse width high
35%
65%
FEC_TXCLK period
M8
FEC_TXCLK pulse width low
35%
65%
FEC_TXCLK period
Figure 24 shows MII transmit signal timings listed in Table 19.
M7
FEC_TXCLK (input)
M5
M8
FEC_TXD[3:0] (outputs)
FEC_TXEN
FEC_TXER
M6
Figure 24. MII Transmit Signal Timing Diagram
5.12.3 MII Async Inputs Signal Timing (FEC_CRS and FEC_COL)
Table 20 lists MII asynchronous inputs signal timing.
Table 20. MII Async Inputs Signal Timing
Num
M9
Characteristic
Min
Max
Unit
1.5
—
FEC_TXCLK period
FEC_CRS, FEC_COL minimum pulse width
Figure 25 shows MII asynchronous input timings listed in Table 20.
FEC_CRS
FEC_COL
M9
Figure 25. MII Async Inputs Timing Diagram
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
37
Electrical Characteristics
5.12.4 MII Serial Management Channel Timing (FEC_MDIO and
FEC_MDC)
Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum
MDC frequency of 2.5 MHz.
Table 21. MII Serial Management Channel Timing
Num
Characteristic
Min
Max
Unit
M10 FEC_MDC falling edge to FEC_MDIO output invalid (minimum
propagation delay)
0
—
ns
M11 FEC_MDC falling edge to FEC_MDIO output valid (max prop delay)
—
25
ns
M12 FEC_MDIO (input) to FEC_MDC rising edge setup
10
—
ns
M13 FEC_MDIO (input) to FEC_MDC rising edge hold
0
—
ns
M14 FEC_MDC pulse width high
40% 60% FEC_MDC period
M15 FEC_MDC pulse width low
40% 60% FEC_MDC period
Figure 26 shows MII serial management channel timings listed in Table 21.
M14
M15
FEC_MDC (output)
M10
FEC_MDIO (output)
M11
FEC_MDIO (input)
M12
M13
Figure 26. MII Serial Management Channel Timing Diagram
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
38
Freescale Semiconductor
Electrical Characteristics
5.13 32-Bit Timer Module AC Timing Specifications
Table 22 lists timer module AC timings.
Table 22. Timer Module AC Timing Specifications
Name
Characteristic
Unit
Min
Max
T1
DT0IN / DT1IN / DT2IN / DT3IN cycle time
3
—
tCYC
T2
DT0IN / DT1IN / DT2IN / DT3IN pulse width
1
—
tCYC
5.14 QSPI Electrical Specifications
Table 23 lists QSPI timings.
Table 23. QSPI Modules AC Timing Specifications
Name
Characteristic
Min
Max
Unit
QS1
QSPI_CS[3:0] to QSPI_CLK
1
510
tcyc
QS2
QSPI_CLK high to QSPI_DOUT valid.
—
10
ns
QS3
QSPI_CLK high to QSPI_DOUT invalid. (Output hold)
1.5
—
ns
QS4
QSPI_DIN to QSPI_CLK (Input setup)
9
—
ns
QS5
QSPI_DIN to QSPI_CLK (Input hold)
9
—
ns
The values in Table 23 correspond to Figure 27.
QS1
QSPI_CS[3:0]
QSPI_CLK
QS2
QSPI_DOUT
QS3
QS4
QS5
QSPI_DIN
Figure 27. QSPI Timing
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
39
Electrical Characteristics
5.15 JTAG and Boundary Scan Timing
Table 24. JTAG and Boundary Scan Timing
Characteristics1
Num
Symbol
Min
Max
Unit
J1
TCLK Frequency of Operation
fJCYC
DC
1/4
fsys/2
J2
TCLK Cycle Period
tJCYC
4
—
tCYC
J3
TCLK Clock Pulse Width
tJCW
26
—
ns
J4
TCLK Rise and Fall Times
tJCRF
0
3
ns
J5
Boundary Scan Input Data Setup Time to TCLK Rise
tBSDST
4
—
ns
J6
Boundary Scan Input Data Hold Time after TCLK Rise
tBSDHT
26
—
ns
J7
TCLK Low to Boundary Scan Output Data Valid
tBSDV
0
33
ns
J8
TCLK Low to Boundary Scan Output High Z
tBSDZ
0
33
ns
J9
TMS, TDI Input Data Setup Time to TCLK Rise
tTAPBST
4
—
ns
J10
TMS, TDI Input Data Hold Time after TCLK Rise
tTAPBHT
10
—
ns
J11
TCLK Low to TDO Data Valid
tTDODV
0
26
ns
J12
TCLK Low to TDO High Z
tTDODZ
0
8
ns
J13
TRST Assert Time
tTRSTAT
100
—
ns
J14
TRST Setup Time (Negation) to TCLK High
tTRSTST
10
—
ns
NOTES:
1 JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.
J2
J3
J3
VIH
TCLK
(input)
J4
VIL
J4
Figure 28. Test Clock Input Timing
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
40
Freescale Semiconductor
Electrical Characteristics
TCLK
VIL
VIH
J5
Data Inputs
J6
Input Data Valid
J7
Data Outputs
Output Data Valid
J8
Data Outputs
J7
Data Outputs
Output Data Valid
Figure 29. Boundary Scan (JTAG) Timing
TCLK
VIL
VIH
J9
TDI
TMS
J10
Input Data Valid
J11
TDO
Output Data Valid
J12
TDO
J11
TDO
Output Data Valid
Figure 30. Test Access Port Timing
TCLK
J14
TRST
J13
Figure 31. TRST Timing
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
41
Electrical Characteristics
5.16 Debug AC Timing Specifications
Table 25 lists specifications for the debug AC timing parameters shown in Figure 32.
Table 25. Debug AC Timing Specification
Num
Characteristic
Min
Max
Unit
D0
PSTCLK cycle time
1
1
tSYS
D1
PSTCLK rising to PSTDDATA valid
—
3.0
ns
D2
PSTCLK rising to PSTDDATA invalid
1.5
—
ns
D3
DSI-to-DSCLK setup
1
—
PSTCLK
D41
DSCLK-to-DSO hold
4
—
PSTCLK
D5
DSCLK cycle time
5
—
PSTCLK
D6
BKPT assertion time
1
—
PSTCLK
NOTES:
1 DSCLK and DSI are synchronized internally. D4 is measured from the synchronized
DSCLK input relative to the rising edge of PSTCLK.
D0
PSTCLK
D2
D1
PSTDDATA[7:0]
Figure 32. Real-Time Trace AC Timing
D5
DSCLK
D3
DSI
Current
Next
D4
DSO
Past
Current
Figure 33. BDM Serial Port AC Timing
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
42
Freescale Semiconductor
Revision History
6
Revision History
Table 26. Revision History
Revision
Number
Date
0
5/23/2005
• Initial Release
0.1
6/16/2005
• Corrected 144QFP pinout in Figure 1. Pins 139-142 incorrectly showed
FEC functionality, which are actually UART 0/1 clear-to-send and
request-to-send signals.
• Changed maximum core frequency in Table 10, spec #2, from 240MHz to
166.67MHz. Also, changed symbols in table: fcore -> fsys and fsys -> fsys/2
for consistency throughout document and reference manual.
0.2
8/26/2005
• Changed ball M9 from SD_VDD to EVDD in Figure 9.
• Table 3: Pin 33 for 144 LQFP package should be EVDD instead of
SD_VDD. BE/BWE[3:0] for 144 LQFP should be “20, 48, 18, 50“ instead
of “18, 20, 48, 50”
Cleaned up various electrical specifications:
• Table 4: Added DDR/Memory pad supply voltage spec, changed “clock
synthesizer supply voltage” to “PLL supply voltage”, changed min PLLVDD
from -0.5 to -0.3, changed max VIN from 4.0 to 3.6, changed minimum Tstg
from -65 to -55,
• Table 5: Changed TBD values in Tj entry to 105°C.
• Table 7: Changed minimum core supply voltage from 1.35 to 1.4 and
maximum from 1.65 to 1.6, added PLL supply voltage entry, added pad
supply entries for mobile-DDR, DDR, and SDR, changed minimum input
high voltage from 0.7xEVDD to 2 and maximum from 3.65 to EVDD+0.05,
changed minimum input low voltage from VSS-0.3 to -0.05 and maximum
from 0.35xEVDDto 0.8, added input high/low voltage entries for DDR and
mobile-DDR, removed high impedance leakage current entry, changed
minimum output high voltage from EVDD-0.5 to EVDD-0.4, added DDR/bus
output high/low voltage entries, removed load capacitance and DC
injection current entries.
• Added filtering circuits and voltage sequencing sections: Section 5.4.1,
“PLL Power Filtering,” and Section 5.4.2, “Supply Voltage Sequencing and
Separation Cautions.”
• Removed “Operating Conditions” table from Section 5.6, “Oscillator and
PLL Electrical Characteristics,” because it is redundant with Table 7.
• Table 11: Changed minimum core frequency to TBD, removed external
reference and on-chip PLL frequency specs to have only a CLKOUT
frequency spec of TBD to 83.33MHz, removed loss of reference frequency
and self-clocked mode frequency entries, in EXTAL input high/low voltage
entries changed “All other modes (Dual controller (1:1), Bypass, External)”
to “All other modes (External, Limp)”, removed XTAL output high/low
voltage entries, removed power-up to lock time entry, removed last 5
entries (frequency un-lock range, frequency lock range, CLKOUT period
jitter, frequency modulation range limit, and ICO frequency)
0.3
9/07/2005
•
•
•
•
Substantive Changes
Corrected DRAMSEL footnote #3 in Table 3.
Updated Table 3 with 144MAPBGA pin locations.
Added 144MAPBGA ballmap to Section 4.3, “Pinout—144 MAPBGA.”
Changed J12 from PLL_VDD to IVDD in Figure 9.
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
43
Revision History
Table 26. Revision History (continued)
Revision
Number
Date
Substantive Changes
0.4
10/10/2005
• Figure 1 and Table 3: Changed pin 33 from EVDD to SD_VDD
• Figure 4 and Table 3: Changed ball D10 from TEST to VSS
• Figure 6 and Table 3: Changed pin 39 from EVDD to SD_VDD and pin 117
from TEST to VSS
0.5
3/29/2006
• Added “top view” and “bottom view” labels where appropriate to
mechanical drawings and pinouts.
• Updated mechanical drawings to latest available, and added note to
Section 4, “Mechanicals and Pinouts.”
0.6
7/21/2006
• Corrected cross-reference to Figure 9 in Section 4.7, “Pinout—196
MAPBGA.”
• Corrected L3 label in Figure 9 from SD_DR_DQS to SD_SDR_DQS.
• Corrected L6 label in Figure 9 from SD_DQS0 to SD_DQS2 and H3 from
SD_DQS1 to SD_DQS3.
• Removed second sentence from Section 5.12.2, “MII Transmit Signal
Timing (FEC_TXD[3:0], FEC_TXEN, FEC_TXER, FEC_TXCLK),”
regarding no minimum frequency requirement for TXCLK.
• Removed third and fourth paragraphs from Section 5.12.2, “MII Transmit
Signal Timing (FEC_TXD[3:0], FEC_TXEN, FEC_TXER, FEC_TXCLK),”
as this feature is not supported on this device.
1
3/28/2007
• Removed preliminary designation from Section 5, “Electrical
Characteristics.”
• Updated Section 5.2, “Thermal Characteristics.”
• Updated Section 5.4, “DC Electrical Specifications.”
• Added Section 5.5, “Current Consumption.”
• Updated Section 5.6, “Oscillator and PLL Electrical Characteristics.”
• Made some corrections to the drawings in Section 5.8, “SDRAM Bus.”
• Edited for grammar, punctuation, spelling, style, and format. - JD
2
12/4/2008
• Updated FlexBus read and write timing diagrams in Figure 14 and
Figure 15.
Changed the following specs in Table 12 and Table 13:
• Minimum frequency of operation from TBD to 60MHz
• Maximum clock period from TBD to 16.67 ns
3
9/1/2009
• Changed doc type from Advance Information to Technical Data
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
44
Freescale Semiconductor
Revision History
MCF5208 ColdFire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor
45
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
support@freescale.com
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.
Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners.© Freescale Semiconductor, Inc. 2009. All rights
reserved.
MCF5208EC
Rev. 3
9/2009