NXP Semiconductors
Data Sheet: Technical Data
Document Number: IMX28AEC
Rev. 4, 10/2018
i.MX28
i.MX28 Applications
Processors for
Automotive Products
Package Information
Plastic package
Case MAPBGA-289, 14 x 14 mm, 0.8 mm pitch
Ordering Information
See Table on page 3 for ordering information.
1
Introduction
The i.MX28 family of processors offers feature
integration suited for automotive infotainment systems
and gateway products. These AEC-Q100 qualified
products are designed for cost-optimized multimedia
systems. The i.MX28 enables many of the features only
available in high-end systems, and at a price point
suitable for all vehicles. The core of the i.MX28 is
NXP’s fast, power-efficient implementation of the
ARM926EJ-S™ core, with speeds of up to 454 MHz.
Integrated power management, USB PHY, and LCD
display controller all contribute to overall system cost
savings.
The integrated power management unit (PMU) on the
i.MX28 is composed of a triple output DC-DC switching
converter and multiple linear regulators. These provide
power sequencing for the device and its I/O peripherals
such as memories and SD cards, as well as provide
battery charging capability for Li-Ion batteries.
The i.MX28 processor includes an additional 128-Kbyte
on-chip SRAM to make the device ideal for eliminating
NXP reserves the right to change the detail specifications as may be required
to permit improvements in the design of its products.
1
2
3
4
5
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Device Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Ordering Information and Functional
Part Differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Special Signal Considerations. . . . . . . . . . . . . . . . 10
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 i.MX28 Device-Level Conditions . . . . . . . . . . . . . . 10
3.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . 17
3.3 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 I/O AC Timing and Parameters . . . . . . . . . . . . . . . 21
3.5 Module Timing and Electrical Parameters. . . . . . . 26
Package Information and Contact Assignments . . . . . . . 58
4.1 Case MAPBGA-289, 14 x 14 mm, 0.8 mm Pitch. . 58
4.2 Ground, Power, Sense, and Reference Contact
Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Signal Contact Assignments . . . . . . . . . . . . . . . . . 60
4.4 i.MX281 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 i.MX285 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 64
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Introduction
external RAM in applications with small footprint RTOS.
The i.MX28 supports connections to various types of external memories, such as mobile DDR, DDR2 and
LV-DDR2, SLC and MLC NAND Flash.
The i.MX28 can be connected to a variety of external devices such as high-speed USB2.0 OTG, CAN,
10/100 Ethernet, and SD/SDIO/MMC.
1.1
Device Features
The following lists the features of the i.MX28:
• ARM926EJ-S CPU running at 454 MHz:
— 16-Kbyte instruction cache and 32-Kbyte data cache
— Arm embedded trace macrocell (CoreSight™ ETM9™)
— Parallel JTAG interface
• 128 KBytes of integrated low-power on-chip SRAM
• 128 KBytes of integrated mask-programmable on-chip ROM
• 1280 bits of on-chip one-time-programmable (OCOTP) ROM
• 16-bit mobile DDR (mDDR) (1.8 V), DDR2 (1.8 V) and LV-DDR2 (1.5 V), up to 205 MHz DDR
clock frequency with voltage overdrive
• Support for up to eight NAND Flash memory devices with up to 20-bit BCH ECC
• Four synchronous serial ports (SSP) for SDIO/MMC/MS/SPI: SSP0, SSP1, SSP2, and SSP3. SSP0
and SSP1 can support three modes,1-bit, 4-bit, and 8-bit, whereas SSP2 and SSP3 can support only
1-bit and 4-bit modes.
• 10/100-Mbps Ethernet MAC compatible with IEEE Std 802.3™:
— Single 10/100 Ethernet with GMII/RMII
— Supporting IEEE Std 1588™-compatible hardware timestamp
— Supporting 50-MHz/25-MHz clock output for external Ethernet PHY
• Two 2.0B protocol-compatible Controller Area Network (CAN) interfaces
• One USB2.0 OTG device/host controller and PHY
• One USB2.0 host controller and PHY
• LCD controller, up to 24-bit RGB (DOTCK) modes and 24-bit system-mode
• Pixel-processing pipeline (PXP) supports full path from color-space conversion, scaling,
alpha-blending to rotation without intermediate memory access.
• SPDIF transmitter
• Dual serial audio interface (SAIF) to support full-duplex transmit and receive operations; each
SAIF supports three stereo pairs
• Five application Universal Asynchronous Receiver-Transmitters (UARTs), up to 3.25 Mbps with
hardware flow control
• One debug UART operating at up to 115 Kb/s using programmed I/O
• Two I2C master/slave interfaces, up to 400 kbps
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
2
NXP Semiconductors
Introduction
•
•
•
•
•
•
•
•
•
•
•
1.2
Four 32-bit timers and a rotary decoder
Eight Pulse Width Modulators (PWMs)
Real-time clock (RTC)
GPIO with interrupt capability
Power Management Unit (PMU) supports a triple output DC-DC switching converter, multiple
linear regulators, battery charger, and detector.
16-channel Low-Resolution A/D Converter (LRADC). There are 16 physical channels but they can
only be mapped to 8 virtual channels at a time.
Single channel High Speed A/D Converter (HSADC), up to 2 Msps data rate
4/5-wire touchscreen controller
Up to 8X8 keypad matrix with button-detect circuit
Security features:
— Read-only unique ID for Digital Rights Management (DRM) algorithms
— Secure boot using 128-bit AES hardware decryption
— SHA-1 and SHA256 hashing hardware
— High assurance boot (HAB4)
Offered in 289-pin Ball Grid Array (BGA)
Ordering Information and Functional Part Differences
Table 1 provides the ordering information for the i.MX28.
Table 1. Ordering Information
Part Number
Projected Temperature Range (°C)
Package
MCIMX281AVM4B
–40 to +85
14 x 14 mm, 0.8 mm pitch, MAPBGA-289
MCIMX281AVM4C
–40 to +85
14 x 14 mm, 0.8 mm pitch, MAPBGA-289
MCIMX285AVM4B
–40 to +85
14 x 14 mm, 0.8 mm pitch, MAPBGA-289
MCIMX285AVM4C
–40 to +85
14 x 14 mm, 0.8 mm pitch, MAPBGA-289
Table 2 provides the functional differences between the i.MX281 and i.MX285.
Table 2. i.MX28 Functional Differences
Function
i.MX281
i.MX285
LCD Interface
—
Yes
Touch Screen
—
Yes
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
3
Introduction
1.3
Block Diagram
Figure 1 shows the simplified interface block diagram.
Figure 1. i.MX28 Simplified Interface Block Diagram
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
4
NXP Semiconductors
Features
2
Features
Table 3 shows the device functions.
Table 3. i.MX28 Functions
Function
External Memory Interface (EMI)
(1.5 V LV-DDR2, 1.8 V DDR2, 1.8 V LP-DDR1)
BGA289
Yes
General-Purpose Media Interface (GPMI):
• NAND data width
• Number of external NANDs supported
8-bit
4 dedicated / 8 with muxing
Pulse Width Modulator (PWM)
5 dedicated / 8 with muxing
Application UART (AUART): Interfaces supported
4 dedicated / 5 with muxing
Synchronous Serial Port (SSP): Supported through dedicated pins
3 dedicated / 4 with muxing
I2C
1 dedicated / 2 with muxing
SPDIF
1
SAIF
2
FlexCAN
2
LCD interface
24 bits
High-speed ADC
Yes
LRADC (touchscreen, keypad...)
Yes
Ethernet MAC
Up to 2 MACs
Universal Serial Bus (USB)
2
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
5
Features
Table 4 describes the digital and analog modules of the device.
Table 4. i.MX28 Digital and Analog Modules
Block
Mnemonic
Block Name
Subsystem
Brief Description
APBHDMA
AHB to APBH System control
Bridge with
DMA
The AHB to APBH bridge with DMA includes the AHB-to-APB PIO bridge for
memory-mapped I/O to the APB devices, as well a central DMA facility for
devices on this bus. The bridge provides a peripheral attachment bus
running on the AHB’s HCLK. (The ‘H’ in APBH denotes that the APBH is
synchronous to HCLK, as compared to APBX, which runs on the
crystal-derived XCLK.) The DMA controller transfers read and write data to
and from each peripheral on APBH bridge.
APBXDMA
AHB to APBX System control
Bridge with
DMA
The AHB-to-APBX bridge includes the AHB-to-APB PIO bridge for
memory-mapped I/O to the APB devices, as well a central DMA facility for
devices on this bus. The AHB-to-APBX bridge provides a peripheral
attachment bus running on the AHB’s XCLK. (The ‘X’ in APBX denotes that
the APBX runs on a crystal-derived clock, as compared to APBH, which is
synchronous to HCLK.) The DMA controller transfers read and write data to
and from each peripheral on APBX bridge.
ARM926EJ-S Arm®
CPU
The ARM926 Platform consists of the ARM926EJ-S™ core and the ETM
real-time debug modules. It contains the 16-Kbyte L1 instruction cache,
32-Kbyte L1 data cache, 128-Kbyte ROM and 128-Kbyte RAM.
Application
UART
interface
Connectivity
peripherals
Each of the UART modules supports the following serial data
transmit/receive protocols and configurations:
• 7- or 8-bit data words, one or two stop bits, programmable parity (even,
odd, or none)
• Programmable baud rates up to 3.25 MHz. This is a higher maximum
baud rate than the 1.875 MHz specified by the TIA/EIA-232-F standard
and previous NXP UART modules. 16-byte FIFO on Tx and 16-byte FIFO
on Rx supporting auto-baud detection
BCH
Bit-correcting Connectivity
ECC
peripherals
accelerator
The Bose, Ray-Chaudhuri, Hocquenghem (BCH) Encoder and Decoder
module is capable of correcting from 2 to 20 single bit errors within a block of
data no larger than about 900 bytes (512 bytes is typical) in applications such
as protecting data and resources stored on modern NAND Flash devices.
BSI
Boundary
Connectivity
Scan Interface peripherals
The boundary scan interface is provided to enable board level testing.
There are five pins on the device which is used to implement the IEEE Std
1149.1™ boundary scan protocol.
CLKCTRL
Clock control
module
Clocks
The clock control module, or CLKCTRL, generates the clock domains for all
components in the i.MX28 system. The crystal clock or PLL clock are the two
fundamental sources used to produce most of the clock domains. For lower
performance and reduced power consumption, the crystal clock is selected.
The PLL is selected for higher performance requirements but requires
increased power consumption. In most cases, when the PLL is used as the
source, a Phase Fractional Divider (PFD) can be programmed to reduce the
PLL clock frequency by up to a factor of 2.
DCP
Data
co-processor
Security
This module provides support for general encryption and hashing functions
typically used for security functions. Because its basic job is moving data
from memory to memory, it also incorporates a memory-copy (memcopy)
function for both debugging and as a more efficient method of copying data
between memory blocks than the DMA-based approach.
Arm9 or
ARM926
AUART(5)
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
6
NXP Semiconductors
Features
Table 4. i.MX28 Digital and Analog Modules (continued)
Block
Mnemonic
Block Name
Subsystem
DFLPT
Default
first-level
page table
DIGCTL
Digital control System control
and on-chip
RAM
The digital control module includes sections for controlling the SRAM, the
performance monitors, high-entropy pseudo-random number seed,
free-running microseconds counter, and other chip control functions.
DUART
Debug UART Connectivity
peripherals
The Debug UART performs the following data conversions:
• Serial-to-parallel conversion on data received from a peripheral device
• Parallel-to-serial conversion on data transmitted to the peripheral device
External
memory
interface
The i.MX28 supports off-chip DRAM storage through the EMI controller,
which is connected to the four internal AHB/AXI busses. The EMI supports
multiple external memory types, including:
• 1.8-V Mobile DDR1 (LP-DDR1)
• Standard 1.8-V DDR2
• Low Voltage 1.5-V DDR2 (LV-DDR2)
EMI
ENET
System control
Brief Description
Connectivity
peripherals
The DFLPT provides a unique method of implementing the Arm MMU
first-level page table (L1PT) using a hardware-based approach.
Ethernet MAC Connectivity
Controller
peripherals
Ethernet MAC controller connected to the uDMA (unified DMA). Supports
10/100 Mbps with TCP/UDP/IP Acceleration and IEEE 1588 Functions; also
supports RMII or MII connectivity.
FlexCAN(2)
Controller
area network
module
Connectivity
peripherals
The Controller Area Network (CAN) protocol is a message based protocol
used for serial data. It was designed specifically for automotive but is also
used in industrial control and medical applications. The serial data bus runs
at 1 Mbps.
GPMI
General-purpose media
interface
Connectivity
peripherals
The General-Purpose Media Interface (GPMI) controller is a flexible NAND
Flash controller with 8-bit data width, up to 50-MBps I/O speed and individual
chip-select and DMA channels for up to 8 NAND devices. It also provides a
interface to 20-bit BCH for ECC.
HSADC
High-speed
ADC
Connectivity
peripherals
The high-speed ADC block is designed to sample an analog input with 12-bit
resolution and a sample rate of up to 2 Msps. The output of the HSADC block
can be moved to the external memory through APBH-DMA. A typical user
case of the HSADC is to work with the PWM block to drive an external linear
image scanner sensor.
I2C(2)
I2C module
Connectivity
peripherals
The I2C is a standard two-wire serial interface used to connect the chip with
peripherals or host controllers. The I2C operates up to 400 kbps in either I2C
master or I2C slave mode. Each I2C has a dedicated DMA channel and can
also controlled by CPU in PIO or PIO queue modes. It supports both 7-bit and
10-bit device address in master mode, and has programmable 7-bit address
in slave mode.
ICOLL
Interrupt
Collector
System control
The Arm9 CPU core has two interrupt input lines, IRQ and FIQ. The interrupt
collector (ICOLL) can steer any of 128 interrupt sources to either the FIQ or
IRQ line of the Arm9 CPU.
L2 Switch
3-Port L2
Switch
Network Control Programmable 3-Port Ethernet Switch with QOS
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
7
Features
Table 4. i.MX28 Digital and Analog Modules (continued)
Block
Mnemonic
Block Name
Subsystem
Brief Description
LCDIF
LCD Interface Multimedia
peripherals
The LCDIF provides display data for external LCD panels from simple
text-only displays to WVGA, 16/18/24 bpp color TFT panels. The LCDIF
supports all of these different interfaces by providing fully programmable
functionality and sharing register space, FIFOs, and ALU resources at the
same time. The LCDIF supports RGB (DOTCLK) modes as well as system
mode including both VSYNC and WSYNC modes.
LRADC
Low resolution Connectivity
ADC module peripherals
The sixteen-channel 12-bit low-resolution ADC (LRADC) block is used for
voltage measurement. Channels 0 – 6 measure the voltage on the seven
application-dependent LRADC pins. The auxiliary channels can be used for
a variety of uses, including a resistor-divider-based wired remote control,
external temperature sensing, touch-screen, and other measurement
functions.
OCOTP
Controller
On-chip OTP
controller
Security
The on-chip one-time-programmable (OCOTP) ROM serves the functions of
hardware and software capability bits, NXP operations and unique-ID, the
customer-programmable cryptography key, and storage of various ROM
configuration bits.
PINCTRL
Pin control
and GPIO
System control
peripherals
Used for general purpose input/output to external ICs. Each GPIO bank
supports 32 bits of I/O.
PMU
PWM(8)
PXP
Power
Power
management management
Unit (DC-DC) system
The i.MX28 integrates a comprehensive power supply subsystem, including
the following features:
• One integrated DC-DC converter that supports Li-Ion battery.
• Four linear regulators directly power the supply rails from 5-V.
• Linear battery charger for Li-Ion cells.
• Battery voltage and brownout detection monitoring for VDDD, VDDA,
VDDIO, VDD4P2 and 5-V supplies.
• Integrated current limiter from 5-V power source.
• Reset controller.
• System monitors for temperature and speed.
• Generates USB-Host 5-V from Li-Ion battery (using PWM).
• Support for on-the-fly transitioning between 5-V and battery power.
• VDD4P2, a nominal 4.2-V supply, is available when the i.MX28 is
connected to a 5-V source and allows the DCDC to run from a 5-V source
with a depleted battery.
• The 4.2-V regulated output also allows for programmable current limits:
– Battery Charge current + DCDC input current < the 5-V current limit
– DCDC input current (which ultimately provides current to the on-chip
and off-chip loads) as the priority and battery charge current is
automatically reduced if the 5-V current limit is reached
Pulse width
modulation
There are eight PWM output controllers that can be used in place of GPIO
pins. Applications include HSADC driving signals and LED & backlight
brightness control. Independent output control of each phase allows 0, 1, or
high-impedance to be independently selected for the active and inactive
phases. Individual outputs can be run in lock step with guaranteed
non-overlapping portions for differential drive applications.
Connectivity
peripherals
Pixel Pipeline Multimedia
The pixel pipeline (PXP) is used to perform alpha blending of graphic or video
buffers with graphics data before sending to an LCD display. The PXP also
supports image rotation for hand-held devices that require both portrait and
landscape image support.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
8
NXP Semiconductors
Features
Table 4. i.MX28 Digital and Analog Modules (continued)
Block
Mnemonic
Block Name
Subsystem
Brief Description
RTC
Real-time
clock, alarm,
watchdog
Clocks
The real-time clock (RTC) and alarm share a one-second pulse time domain.
The watchdog reset and millisecond counter run on a one-millisecond time
domain. The RTC, alarm, and persistent bits reside in a special power
domain (crystal domain) that remains powered up even when the rest of the
chip is in its powered-down state.
SAIF(2)
Serial audio
interface
Connectivity
peripherals
SAIF provides a half-duplex serial port for communication with a variety of
serial devices, including industry-standard codecs and DSPs. It supports a
continuous range of sample rates from 8 kHz–192 kHz using a
high-resolution fractional divider driven by the PLL. Samples are transferred
to/from the FIFO through the APBX DMA interface, a FIFO service interrupt,
or software polling.
SPDIF
SPDIF
Connectivity
peripherals
The Sony-Philips Digital Interface Format (SPDIF) transmitter module
transmits data according to the SPDIF digital audio interface standard
(IEC-60958).
SSP(4)
Synchronous
serial port
Connectivity
peripherals
The synchronous serial port is a flexible interface for inter-IC and removable
media control and communication. The SSP supports master operation of
SPI, Texas Instruments SSI; 1-bit, 4-bit, and 8-bit SD/SDIO/MMC and 1-bit
and 4-bit MS modes.
The SPI mode has enhancements to support 1-bit legacy MMC cards. SPI
master dual (2-bit) and quad (4-bit) mode reads are also supported. The SSP
also supports slave operation for the SPI and SSI modes. The SSP has a
dedicated DMA channel in the bridge and can also be controlled directly by
the CPU through PIO registers. Each of the four SSP modules is
independent of the other and can have separate SSPCLK frequencies.
TIMROT
Timers and
Rotary
Decoder
Timer
peripherals
This module implements four timers and a rotary decoder. The timers and
decoder can take their inputs from any of the pins defined for PWM, rotary
encoders, or certain divisions from the 32-kHz clock input. Thus, the PWM
pins can be inputs or outputs, depending on the application.
USBOTG
USBHOST
High-speed
USB
on-the-go
Connectivity
peripherals
The USB module provides high-performance USB On-The-Go (OTG) and
host functionality (up to 480 Mbps), compliant with the USB 2.0 specification
and the OTG supplement. The module has DMA capabilities for handling
data transfer between internal buffers and system memory.
When the OTG controller works in device mode, it can only work in FS or HS
mode. Two USB2.0 PHYs are also integrated (one for the OTG port, another
for the host port.)
Integrated
USB PHY
Connectivity
peripherals
The integrated USB 2.0 PHY macrocells are capable of connecting to USB
host/device systems at the USB low-speed (LS) rate of 1.5 Mbps, full-speed
(FS) rate of 12 Mbps or at the USB 2.0 high-speed (HS) rate of 480 Mbps.
The integrated PHYs provide a standard UTM interface. The USB_DP and
USB_DN pins connect directly to a USB connector.
USBPHY
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
9
Electrical Characteristics
2.1
Special Signal Considerations
Special signal considerations are listed in Table 5. The package contact assignment is found in Section 4,
“Package Information and Contact Assignments.” Signal descriptions are provided in the reference
manual.
Table 5. Signal Considerations
Signal
Descriptions
PSWITCH
The pin is used for chip power on or recovery. VDDIO can be applied to PSWITCH through a 10 kΩ
resistor. This is necessary in order to enter the chip’s firmware recovery. The on-chip circuitry
prevents the actual voltage on the pin from exceeding acceptable levels.
VDDXTAL
This pin is an output of i.MX28. Should be coupled to ground with a 0.1 uF capacitor. User should
not supply external power to this pin.
BATTERY
This pin should be connected to the battery with minimal resistance. It provides charging current to
the battery.
See the “Power Supply” section of the reference manual for details.
DCDC_BATTERY
This pin is an input of i.MX28 that provides supply to the DCDC converter. It should be connected
to the battery with minimal resistance. See the “Power Supply” section of the reference manual for
details.
XTALI
XTALO
These analog pins are connected to an external 24 MHz crystal circuit. This crystal provides the
clock source for on-chip PLLs.
RTC_XTALO
RTC_XTALI
RESETN
This pin resets the chip if it is low. This pin is pulled up to VDDIO33 with an internal 10 kΩ resistor.
No external pull up resistors are needed.
DEBUG
This pin is used for JTAG interface.
DEBUG=0: JTAG interface works for boundary scan.
DEBUG=1: JTAG interface works for Arm debugging.
TESTMODE
3
These analog pins are connected to an external 32.768/32.0 kHz crystal circuit. This crystal
provides clock source to the on-chip real-time counter circuits.
For NXP factory use only. Must be externally connected to GND for normal operation.
Electrical Characteristics
This section provides the device-level and module-level electrical characteristics for the i.MX28.
3.1
i.MX28 Device-Level Conditions
This section provides the device-level electrical characteristics for the IC.
3.1.1
DC Absolute Maximum Ratings
Table 6 provides the DC absolute maximum operating conditions.
•
CAUTION
Stresses beyond those listed under Table 6 may cause permanent
damage to the device.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
10
NXP Semiconductors
Electrical Characteristics
•
Exposure to absolute-maximum-rated conditions for extended periods
may affect device reliability.
Table 6 gives stress ratings only—functional operation of the device is
not implied beyond the conditions indicated in Table 8.
•
Table 6. DC Absolute Maximum Ratings
Parameter
Symbol
Min
Max
Unit
BATT, VDD4P2V
–0.3
4.242
V
5-Volt Source Pin - transient, t1
—
—
MΩ
Table 11 shows the PSWITCH input characteristics. See the reference schematics for the recommended
PSWITCH button circuitry.
Table 11. PSWITCH Input Characteristics
Parameter
HW_PWR_STS_PSWITCH
Min
Max
Unit
PSWITCH LOW LEVEL
0x00
0.00
0.30
V
PSWITCH MID LEVEL & STARTUP1
0x01
0.65
1.50
V
0x11
(1.1 * VDDXTAL) + 0.58
2.45
V
PSWITCH HIGH
LEVEL2
1
A MID LEVEL PSWITCH state can be generated by connecting the VDDXTAL output of the SoC to PSWITCH through a
switch.
2 PSWITCH acts like a high impedance input (>300 kΩ) when the voltage applied to it is less than 1.5V. However, above 1.5V
it becomes lower impedance. To simplify design, it is recommended that a 10 kΩ resistor to VDDIO be applied to PSWITCH
to set the HIGH LEVEL state (the PSWITCH input can tolerate voltages greater than 2.45 V as long as there is a 10 kΩ
resistor in series to limit the current).
Table 12 shows a test case example for Run IDD.
Table 12. Run IDD Test Case1,2
Power Rail
Conditions
Min
Typ
Max
Unit
VDDD
1.57 V
—
150
188
mA
VDDIO33
3.62 V
—
31
34
mA
VDDA
2.12 V
—
1.11
1.17
mA
VDDIO_EMI
1.92 V
—
1.01
1.08
mA
VDDIO18
1.92 V
—
0.61
2.97
μA
1
2
CPUCLK = 300 MHz, AHBCLK = 150 MHz.
Continuous read / write to the cache memory.
Table 13 illustrates the power supply characteristics.
Table 13. Power Supply Characteristics
Parameter
Min
Typ
Max
Unit
Output Voltage Accuracy (VDDIO, VDDA, VDDM, VDDD)1
–3
—
+3
%
VDDIO Maximum Output Current (VDDIO = 3.30 V, VDD5V = 4.75 V)2, 3
270
—
—
mA
VDDM Maximum Output Current (VDDM = 1.5 V)2
160
—
—
mA
Linear Regulators
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
13
Electrical Characteristics
Table 13. Power Supply Characteristics (continued)
Parameter
Min
Typ
Max
Unit
VDDA Maximum Output Current (VDDA = 1.8 V)2, 3
225
—
—
mA
VDDD Maximum Output Current (VDDD = 1.2 V)2, 3
200
—
—
mA
Output Voltage Accuracy (DCDC_VDDIO, DCDC_VDDA,
DCDC_VDDD)1
–3
—
+3
%
DCDC_VDDD Maximum Output Current (VDDD = 1.55 V)4, 5
250
—
—
mA
DCDC_VDDA Maximum Output Current (VDDA = 1.8 V)4, 5
200
—
—
mA
DCDC_VDDIO Maximum Output Current (VDDIO = 3.15 V, 3.3 V < BATT
< 4.242 V)4, 5, 6
250
—
—
mA
VDD4P2 Output Voltage Accuracy (TARGET=4.2V)1
–3
—
+3
%
VDD4P2 Output Current Limit Accuracy (VDD5V = 4.75 V,
ILIMIT=480 mA)7
480
500
520
mA
VDD4P2 Output Current Limit Accuracy (VDD5V=4.75 V,
ILIMIT=100 mA)7
100
120
140
mA
-2
—
+1
%
DCDC Converters
VDD4P2 Regulated Output
Battery Charger
Final Charge Voltage Accuracy (TARGET=4.2 V)
1
2
3
4
5
6
7
No load.
Maximum output current measured when output voltage droops 100 mV from the programmed target voltage with no load
present.
Because the internal linear regulators are cascaded, it is not possible to simultaneously operate the VDDIO, VDDA, VDDM, and
VDDD linear regulators at the maximum specified load current. For example, the VDDIO linear regulator provides current to both
the VDDIO 3.3 V supply rail as well as the VDDM and VDDA linear regulator inputs. Likewise, the VDDA linear regulator provides
current to both the 1.8 V supply rail as well as the VDDD linear regulator input. The application designer should ensure the
following two conditions are met:
(VDDIO Load Current + VDDM Load Current + VDDA Load Current) < VDDIO Maximum Output Current
(VDDA Load Current + VDDD Load Current) < VDDA Maximum Output Current
DCDC Double FETs Enabled, Inductor Value = 15 μH.
The DCDC Converter is a triple output buck converter. The maximum output current capability of each output of the converter
is dependent on the loads on the other two outputs. For a given output, it may be possible to achieve a maximum output current
higher than that specified by ensuring the load on the other outputs is well below the maximum.
Assumes simultaneous load of IDDD = 250 mA@ 1.55 V and IDDA = 200 mA@1.8 V.
Untuned.
3.1.2.1
Recommended Operating Conditions for Specific Clock Targets
Table 14 through Table 17 provide the recommended operating conditions for specific clock targets.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
14
NXP Semiconductors
Electrical Characteristics
Table 14. Recommended Operating States—289-Pin BGA Package
VDDD
(V)
VDDD
Brown-out
(V)
CPUCLK
/ clk_p
HW_
DIGCTRL
HW_
CLKCTRL
HW_
CLKCTRL
ARMCACHE
Frequency
(MHz)
CPU_DIV_CPU
FRAC_
CPUFRC
/ PFD
1
AHBCLK
/ clk_h
HW_
CLKCTRL
Frequency
HBUS_DIV
(MHz)
EMICLK
/ clk_emi
HW_
HW_
CLKCTRL CLKCTRL
Frequency
(MHz)
EMI_
DIV_EMI
FRAC_
EMIFRAC
Supported
DRAM
1.300
1.200
00
64
5
27
64
1
130.91
2
33
DDR2
mDDR
1.350
1.250
00
261.81
1
33
130.91
2
130.91
2
33
DDR2
mDDR
1.350
1.250
00
360
1
24
120.00
3
130.91
2
33
DDR2
mDDR
1.450
1.350
00
392.72
1
22
130.91
3
160.00
2
27
DDR2
mDDR
1.550
1.450
00
454.73
1
19
151.57
3
205.71
2
21
DDR2
mDDR
1
All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.
Table 15. Recommended Operating Conditions—CPU Clock (clk_p)
1
HW_CLKCTRL
CPUCLK / clk_p
FRAC_CPUFRC / PFD Frequency max (MHz)
VDDD (V)
VDDDBrown-out (V)
HW_DIGCTRL
ARMCACHE1
1.350
1.250
00
18 - 35
360
1.450
1.350
00
18 - 35
392.72
1.550
1.450
00
18 - 35
454.73
All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.
Table 16. Recommended Operating Conditions—AHB Clock (clk_h)
1
HW_CLKCTRL
AHBCLK / clk_h
FRAC_CPUFRC / PFD Frequency max (MHz)
VDDD (V)
VDDDBrown-out (V)
HW_DIGCTRL
ARMCACHE1
1.350
1.250
00
18 - 35
160
1.450
1.350
00
18 - 35
196
1.550
1.45
00
18 - 35
206
All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.
Table 17. Frequency vs. Voltage for EMICLK—289-Pin BGA Package
EMICLK Fmax (MHz)
VDDD (V)
VDDDBrownout (V)
DDR2
mDDR
1.550
1.450
205.71
205.71
1.450
1.350
196.36
196.36
1.350
1.250
196.36
196.36
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
15
Electrical Characteristics
3.1.3
Fusebox Supply Current Parameters
Table 18 lists the fusebox supply current parameters.
Table 18. Fusebox Supply Current Parameters
Parameter
eFuse Program Current1
Current to program one eFuse bit
efuse_vddq=2.5V
eFuse Read Current2
Current to read an 8-bit eFuse word
vdd_fusebox = 3.3 V
1
2
Symbol
Min
Typ
Max
Unit
Iprogram
21.39
25.05
33.54
mA
Iread
—
—
4.07
mA
The current Iprogram is during program time.
The current Iread is present for approximately 10 ns of the read access to the 8-bit word.
3.1.4
Interface Frequency Limits
Table 19 provides information for interface frequency limits.
Table 19. Interface Frequency Limits
Parameter
Min
Typ
Max
Unit
JTAG: TCK Frequency of Operation
—
—
10
MHz
OSC24M_XTAL Oscillator
—
24.000
—
MHz
OSC32K_XTAL Oscillator
—
32.768/32.0
—
kHz
3.1.5
Power Modes
Table 20 describes the core, clock, and module settings for the different power modes of the processor.
Table 20. Power Mode Settings
Core/Clock/Module
3.1.6
Offstate
Standby
Run
Arm Core
Off
Off
On
USB0 PLL (System PLL)
Off
Off
On
OSC24M
Off
On
On
OSC32K
On
On
On
DCDC
Off
On
On
RTC
On
On
On
Other Modules
Off
On/Off
On/Off
Supply Power-Up/Power-Down Requirements
There is no special power-up sequence. After applying 5 V or battery in any order, the rest of the power
supplies are internally generated and automatically come up in a safe way.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
16
NXP Semiconductors
Electrical Characteristics
There is no special power-down sequence. 5 V or the battery can be removed at any time.
3.1.7
Reset Timing
Because the i.MX28 is a PMU and an SoC, power-on reset is generated internally and there is no timing
requirement on external pins.
The i.MX28 can be reset by asserting the external pin RESETN for at least 100 mS and later deasserting
RESETN.
If the reset occurs while the device is only powered by the battery, then the reset kills all of the power
supplies and the system reboots on the assertion of PSWITCH. If auto-restart is set up ahead of time, the
system reboots immediately.
If the chip is powered by 5 V, then the reset serves to reset the digital sections of the chip. If the DCDC is
operating at the time of the reset, then power switches back to the default linear regulators powered by 5 V.
RESETN
At least 100ms
Figure 2. RESETN Timing
3.2
Thermal Characteristics
The thermal resistance characteristics for the device are given in Table 21. These values are measured
under the following conditions:
• Two layer Substrate
• Substrate solder mask thickness: 0.025 mm
• Substrate metal thicknesses: 0.016 mm
• Substrate core thickness: 0.160 mm
• Core via I.D: 0.068 mm, Core via plating 0.016 mm
• Flag: trace style with ground balls under the die connected to the flag
• Die Attach: 0.033 mm non-conductive die attach, k = 0.3 W/m K
• Mold Compound: generic mold compound, k = 0.9 W/m K
Table 21. Thermal Resistance Data
Rating
Condition
Symbol
Value
Unit
Junction to ambient1 natural convection
Single layer board (1s)
RθJA
62
°C/W
Junction to ambient1 natural convection
Four layer board (2s2p)
RθJA
36
°C/W
1
Junction to ambient (@200 ft/min)
Single layer board (1s)
RθJMA
53
°C/W
Junction to ambient1 (@200 ft/min)
Four layer board (2s2p)
RθJMA
33
°C/W
RθJB
24
°C/W
Junction to
boards2
—
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
17
Electrical Characteristics
Table 21. Thermal Resistance Data (continued)
Rating
Junction to case (top)3
Junction to package top4
Condition
Symbol
—
RθJCtop
15
°C/W
ΨJT
3
°C/W
Natural Convection
Value
Unit
1
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-2 and JESD51-6. Thermal test board meets
JEDEC specification for this package.
2
Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification
for the specified package.
3
Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer.
4
Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
3.3
I/O DC Parameters
This section includes the DC parameters of the following I/O types:
• DDR I/O: Mobile DDR (LPDDR1), standard 1.8 V DDR2, and low-voltage 1.5 V DDR2
(LVDDR2)
• General purpose I/O (GPIO)
3.3.1
DDR I/O DC Parameters
Table 22 shows the EMI digital pin DC characteristics.
NOTE
The current values and the I-V curves of the I/O DC characteristics are
estimated based on an overly conservative device model. They are updated
upon the measurement results of the first silicon.
Table 22. EMI Digital Pin DC Characteristics
Parameter
Symbol
Min
Max
Unit
Input voltage high (dc)
VIH
VREF + 0.125
VDDIO_EMI + 0.3
V
Input voltage low (dc)
VIL
0.3
VREF – 0.125
V
Output voltage high (dc)
VOH
0.8 * VDDIO_EMI
—
V
Output voltage low (dc)
VOL
—
0.2 * VDDIO_EMI
V
Output source current (dc)
LVDDR2 Mode
IOH1—Low
-6.2
—
mA
IOH—Medium
-7.2
—
mA
IOH—High
-9.7
—
mA
IOL —Low
5.7
—
mA
IOL—Medium
7.3
—
mA
IOL—High
10.0
—
mA
Output sink current (dc)
LVDDR2 Mode
2
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
18
NXP Semiconductors
Electrical Characteristics
Table 22. EMI Digital Pin DC Characteristics (continued)
Parameter
Output source current (dc)
mDDR, DDR2 Mode
Output sink current (dc)
mDDR, DDR2 Mode
1
2
Symbol
Min
Max
Unit
IOH—Low
-5.7
—
mA
IOH—High
-7.5
—
mA
IOL—Low
5.4
—
mA
IOL—High
8.8
—
mA
IOH is the output current at which the VOH specification is met.
IOL is the output current at which the VOL specification is met.
Table 23 shows the ON impedance of EMI drivers for different drive strengths.
Table 23. ON Impedance of EMI Drivers for Different Drive Strengths1
Mode
Drive
Min (Ω)
Typ (Ω)
Max (Ω)
1.5
LVDDR2
Low
26
38
58
Medium
17
25
36
High
15
20
27
Low
36
53
78
Medium
17
27
42
High
16
19
28
1.8
DDR2/mDDR
1
ON impedance of the EMI drivers are guaranteed by design and are not tested during production.
Table 24 shows the external devices supported by the EMI.
Table 24. External Devices Supported by the EMI
1
2
DRAM Device
Max Load1, 2
Pad Voltage
DDR2
15 pF
1.8 V
mDDR
15 pF
1.8 V
LVDDR2
15 pF
1.5 V
Max load includes capacitive load due to PCB traces, pad capacitance and driver self-loading.
Setting is for worst case. NXP’s EMI interface uses less powerful drivers than those typically used in mDDR devices. A possible
transmission-line effect on the PC board must be suppressed by minimizing the trace length combined with NXP’s slower
edge-rate drivers. The i.MX28 provides up to 16 mA programmable drive strength. However, the 16-mA mode is an
experimental mode. With the 16-mA mode, the EMI function may be impaired by Simultaneous Switching Output (SSO) noise.
In general, the stronger the driver mode, the noisier the on-chip power supply. NXP recommends not using a stronger driver
mode than is required. Because on-chip power and ground noise is proportional to the inductance of its return path, users
should make their best effort to reduce inductance between the EMI power and ground balls and the PC board power and
ground planes.
3.3.2
GPIO I/O DC Parameters
Max load includes capacitive load due to PCB traces, pad capacitance and driver self-loading. For the
internal pull up setting of each pad, see the “Pin Control and GPIO” section of the reference manual.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
19
Electrical Characteristics
Table 25 shows the digital pin DC characteristics for GPIO in 3.3-V mode. Measurements are valid for
eight pins loaded using the 4mA driver, four pins loaded using the 8mA driver, and two pins loaded using
either the 12mA or 16mA driver.
Table 25. Digital Pin DC Characteristics for GPIO in 3.3-V Mode
Parameter
Symbol
Min
Max
Unit
Input voltage high (DC)
VIH
2
VDDIO
V
Input voltage low (DC)
VIL
—
0.8
V
Output voltage high (DC)
VOH
0.8 × VDDIO
—
V
Output voltage low (DC)
VOL
—
0.4
V
IOH – Low
-5.0
—
mA
IOH – Medium
-9.5
—
mA
IOH – High
-11.4
—
mA
IOL – Low
3.8
—
mA
IOL – Medium
7.7
—
mA
IOL – High
9.0
—
mA
IOH – Low
-9.2
—
mA
IOH – High
-15.2
—
mA
IOL – Low
7.6
—
mA
IOL – High
12.0
—
mA
Rpu10k
8
12
kΩ
Rpu47k
39
56
kΩ
1
Output source current (DC)
gpio
Output sink current (DC)
gpio
Output source current (DC)
gpio_clk
Output sink current (DC)
gpio_clk
10-K pull-up
resistance2
47-K pull-up resistance
1
The conditions of the current measurements for all different drives are as follows:
IOL: at 0.4 V
IOH: at VDDIO * 0.8 V
Maximum corner for 3.3 V mode: 3.6 V, -40°C, fast process.
Minimum corner for 3.3 V mode: 3.0 V, 105°C, slow process.
8 gpio pins (LCD_D0-D7) and 2 gpio_clk pins (LCD_DOTCLK and LCD_WR_RWN) simultaneously
loaded.
2 See the i.MX28 reference manual for detailed pull-up configuration of each I/O.
Table 26 shows the digital pin DC characteristics for GPIO in 1.8 V mode.
Table 26. Digital Pin DC Characteristics for GPIO in 1.8 V Mode
Parameter
Symbol
Min
Max
Unit
Input voltage high (DC)
VIH
0.7 × VDDIO18
VDDIO18
V
Input voltage low (DC)
VIL
—
0.3 × VDDIO18
V
Output voltage high (DC)
VOH
0.8 * VDDIO18
—
V
Output voltage low (DC)
VOL
—
0.2 × VDDIO18
V
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
20
NXP Semiconductors
Electrical Characteristics
Table 26. Digital Pin DC Characteristics for GPIO in 1.8 V Mode (continued)
Parameter
Symbol
Min
Max
Unit
IOH – low
-2.2
—
mA
IOH – medium
-3.5
—
mA
IOH – high
-4.0
—
mA
IOL – low
3.3
—
mA
IOL – medium
7.0
—
mA
IOL – high
7.5
—
mA
IOH – low
-4.2
—
mA
IOH – high
-6.0
—
mA
IOL – low
6.8
—
mA
IOL – high
11.5
—
mA
10-K pull-up resistance2
Rpu10k
8
12
kΩ
47-K pull-up resistance
Rpu47k
39
56
kΩ
Output source current1 (DC)
gpio
Output sink current (DC)
gpio
Output source current (DC)
gpio_clk
Output sink current (DC)
gpio_clk
1
The condition of the current measurements for all different drives are as follows:
Maximum corner for 1.8 V mode: 1.9 V, -40°C, Fast process.
Minimum corner for 1.8 V mode: 1.7 V, 105°C, Slow process.
1 gpio pin (GPMI_D0) and 1 gpio_clk pin (GPMI_WRN) simultaneously loaded.
2 See the i.MX28 reference manual for detailed pull-up configuration of each I/O.
3.4
I/O AC Timing and Parameters
Figure 3 and Figure 4 show the Driver Used for AC Simulation Testpoint and the Output Pad Transition
Waveform.
Testpoint
Figure 3. Driver Used for AC Simulation Testpoint
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
21
Electrical Characteristics
VDDIO
80%
20%
Figure 4. Output Pad Transition Waveform
Table 27 shows the base GPIO AC timing and parameters.
Table 27. Base GPIO
Parameters
Symbol
Test Voltage
Test Capacitance
Min
Rise/Fall
MaxRise/Fall
Unit
Notes
Duty cycle
Fduty
—
—
—
—
%
—
Output pad transition
times (maximum
drive)
tpr
1.7~1.9V
10 pF
0.82
0.91
1.93
1.97
ns
—
1.7~1.9V
20 pF
1.18
1.22
2.69
2.71
—
1.7~1.9V
50 pF
2.11
2.03
4.62
4.44
—
3.0~3.6V
10 pF
1.04
1.08
2.46
2.18
—
3.0~3.6V
20 pF
1.42
1.5
3.29
3
—
3.0~3.6V
50 pF
2.46
2.61
5.34
5.12
—
1.7~1.9V
10 pF
1.02
1.08
2.34
2.38
1.7~1.9V
20 pF
1.51
1.5
3.34
3.28
—
1.7~1.9V
50 pF
2.91
2.62
6.24
5.67
—
3.0~3.6V
10 pF
1.26
1.29
2.9
2.6
—
3.0~3.6V
20 pF
1.8
1.88
4
3.67
—
3.0~3.6V
50 pF
3.3
3.46
6.91
6.64
—
1.7~1.9V
10 pF
1.62
1.68
3.65
3.68
1.7~1.9V
20 pF
2.55
2.45
5.59
5.37
—
1.7~1.9V
50 pF
5.42
4.62
11.46 10.01
—
3.0~3.6V
10 pF
1.95
2.12
4.43
4.25
—
3.0~3.6V
20 pF
2.96
3.21
6.36
6.25
—
3.0~3.6V
50 pF
5.89
6.39
12.02 12.18
—
Output pad transition
times (medium drive)
Output pad transition
times (low drive)
tpr
tpr
ns
ns
—
—
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
22
NXP Semiconductors
Electrical Characteristics
Table 27. Base GPIO (continued)
Min
Rise/Fall
Parameters
Symbol
Test Voltage
Test Capacitance
Output pad slew rate
(maximum drive)
tps
1.7~1.9V
10 pF
1.39
1.25
0.53
0.52
1.7~1.9V
20 pF
0.97
0.93
0.38
0.38
—
1.7~1.9V
50 pF
0.54
0.56
0.22
0.23
—
3.0~3.6V
10 pF
2.08
2.00
0.73
0.83
—
3.0~3.6V
20 pF
1.52
1.44
0.55
0.60
—
3.0~3.6V
50 pF
0.88
0.83
0.34
0.35
—
1.7~1.9V
10 pF
1.12
1.06
0.44
0.43
1.7~1.9V
20 pF
0.75
0.76
0.31
0.31
—
1.7~1.9V
50 pF
0.39
0.44
0.16
0.18
—
3.0~3.6V
10 pF
1.71
1.67
0.62
0.69
—
3.0~3.6V
20 pF
1.20
1.15
0.45
0.49
—
3.0~3.6V
50 pF
0.65
0.62
0.26
0.27
—
1.7~1.9V
10 pF
1.17
1.13
0.47
0.46
1.7~1.9V
20 pF
0.75
0.78
0.30
0.32
—
1.7~1.9V
50 pF
0.35
0.41
0.15
0.17
—
3.0~3.6V
10 pF
1.11
1.02
0.41
0.42
—
3.0~3.6V
20 pF
0.73
0.67
0.28
0.29
—
3.0~3.6V
50 pF
0.37
0.34
0.15
0.15
—
1.7 V–1.9 V
—
100
75
3.0 V–3.6 V
—
100
50
Output pad slew rate
(medium drive)
Output pad slew rate
(low drive)
Input pad average
hysteresis
tps
tps
tih
MaxRise/Fall
Unit
Notes
V/ns
—
V/ns
V/ns
mV
—
—
—
—
Table 28 shows the F-type GPIO AC timing and parameters.
Table 28. F-type GPIO
Parameters
Symbol
Test Voltage
Test Capacitance Min Rise/Fall Max Rise/Fall
Duty cycle
Fduty
—
—
Output pad transition
times (maximum
drive)
tpr
1.7~1.9V
10 pF
0.58
0.61
1.29
1.33
1.7~1.9V
20 pF
0.89
0.88
1.94
1.88
—
1.7~1.9V
50 pF
1.83
1.59
3.88
3.39
—
3.0~3.6V
10 pF
0.71
0.68
1.47
1.34
—
3.0~3.6V
20 pF
1.02
1.04
2.11
1.99
—
3.0~3.6V
50 pF
1.98
2.09
3.97
3.96
—
—
—
Unit
Notes
%
—
ns
—
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
23
Electrical Characteristics
Table 28. F-type GPIO (continued)
Parameters
Symbol
Test Voltage
Output pad transition
times (medium drive)
tpr
1.7~1.9V
10 pF
0.76
0.76
1.68
1.61
1.7~1.9V
20 pF
1.23
1.13
2.63
2.38
—
1.7~1.9V
50 pF
2.66
2.18
5.61
4.6
—
3.0~3.6V
10 pF
0.9
0.88
1.84
1.7
—
3.0~3.6V
20 pF
1.36
1.4
2.76
2.67
—
3.0~3.6V
50 pF
2.85
3.02
5.59
5.67
—
1.7~1.9V
10 pF
1.32
1.26
2.88
2.72
1.7~1.9V
20 pF
2.27
1.98
4.84
4.23
—
1.7~1.9V
50 pF
5.23
4.13
10.95
8.8
—
3.0~3.6V
10 pF
1.46
1.55
3.05
3
—
3.0~3.6V
20 pF
2.46
2.62
4.92
5.02
—
3.0~3.6V
50 pF
5.56
5.96
10.78
11.22
—
1.7~1.9V
10 pF
1.97
1.87
0.79
0.77
1.7~1.9V
20 pF
1.28
1.30
0.53
0.54
—
1.7~1.9V
50 pF
0.62
0.72
0.26
0.30
—
3.0~3.6V
10 pF
3.04
3.18
1.22
1.34
—
3.0~3.6V
20 pF
2.12
2.08
0.85
0.90
—
3.0~3.6V
50 pF
1.09
1.03
0.45
0.45
—
1.7~1.9V
1.7~1.9V
10 pF
20 pF
1.50
0.93
1.50
1.01
0.61
0.39
0.63
0.43
1.7~1.9V
50 pF
0.43
0.52
0.18
0.22
—
3.0~3.6V
10 pF
2.40
2.45
0.98
1.06
—
3.0~3.6V
20 pF
1.59
1.54
0.65
0.67
—
3.0~3.6V
50 pF
0.76
0.72
0.32
0.32
—
1.7~1.9V
1.7~1.9V
10 pF
20 pF
1.44
0.84
1.51
0.96
0.59
0.35
0.63
0.40
1.7~1.9V
50 pF
0.36
0.46
0.16
0.19
—
3.0~3.6V
10 pF
1.48
1.39
0.59
0.60
—
3.0~3.6V
20 pF
0.88
0.82
0.37
0.36
—
3.0~3.6V
50 pF
0.39
0.36
0.17
0.16
—
1.7 V–1.9 V
—
100
75
3.0 V–3.6 V
—
100
50
Output pad transition
times (low drive)
Output pad slew rate
(maximum drive)
Output pad slew rate
(medium drive)
Output pad slew rate
(low drive)
Input pad average
hysteresis
tpr
tps
tps
tps
tih
Test Capacitance Min Rise/Fall Max Rise/Fall
Unit
Notes
ns
—
ns
ns
ns
ns
mV
—
—
—
—
—
—
—
—
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
24
NXP Semiconductors
Electrical Characteristics
Table 29 shows the CLK-type GPIO AC timing and parameters.
Table 29. CLK-Type GPIO
Parameters
Symbol
Duty cycle
Fduty
—
—
Output pad transition
times (maximum
drive)
tpr
1.7~1.9V
10 pF
0.48
0.52
1.08
1.12
1.7~1.9V
20 pF
0.72
0.74
1.56
1.56
—
1.7~1.9V
50 pF
1.41
1.28
3.04
2.7
—
3.0~3.6V
10 pF
0.61
0.57
1.25
1.12
—
3.0~3.6V
20 pF
0.85
0.85
1.73
1.63
—
3.0~3.6V
50 pF
1.56
1.63
3.13
3.08
—
1.7~1.9V
10 pF
0.76
0.76
1.67
1.62
1.7~1.9V
20 pF
1.22
1.14
2.64
2.41
—
1.7~1.9V
50 pF
2.66
2.2
5.61
4.62
—
3.0~3.6V
10 pF
0.9
0.89
1.83
1.72
—
3.0~3.6V
20 pF
1.37
1.41
2.77
2.69
—
3.0~3.6V
50 pF
2.85
3.03
5.59
5.72
—
1.7~1.9V
10 pF
2.38
2.19
0.94
0.91
1.7~1.9V
20 pF
1.58
1.54
0.65
0.65
—
1.7~1.9V
50 pF
0.81
0.89
0.34
0.38
—
3.0~3.6V
10 pF
3.54
3.79
1.44
1.61
—
3.0~3.6V
20 pF
2.54
2.54
1.04
1.10
—
3.0~3.6V
50 pF
1.38
1.33
0.58
0.58
—
1.7~1.9V
10 pF
1.50
1.50
0.61
0.63
1.7~1.9V
20 pF
0.93
1.00
0.39
0.42
—
1.7~1.9V
50 pF
0.43
0.52
0.18
0.22
—
3.0~3.6V
10 pF
2.40
2.43
0.98
1.05
—
3.0~3.6V
20 pF
1.58
1.53
0.65
0.67
—
3.0~3.6V
50 pF
0.76
0.71
0.32
0.31
—
1.7 V–1.9 V
—
100
75
3.0 V–3.6 V
—
100
50
Output pad transition
times (medium drive)
Output pad slew rate
(maximum drive)
Output pad slew rate
(medium drive)
Input pad average
hysteresis
tpr
tps
tps
tih
Test Voltage Test Capacitance
Min Rise/Fall
Max Rise/Fall
units
Notes
—
—
%
—
ns
—
ns
ns
ns
mV
—
—
—
—
—
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
25
Electrical Characteristics
3.5
Module Timing and Electrical Parameters
3.5.1
ADC Electrical Specifications
This section describes the electrical specifications, including DC and AC information, of Low-Resolution
ADC (LRADC) and High-Speed ADC (HSADC).
3.5.1.1
LRADC Electrical Specifications
Table 30 shows the electrical specifications for the LRADC.
Table 30. LRADC Electrical Specifications
Parameter
Conditions
Min
Typ
Max
Unit
—
0.5
—
pF
AC Electrical Specification
Input capacitance (Cp)
No pin/pad capacitance included
Resolution
—
Maximum sampling
(fs)
rate1
Power-up time2
12
—
—
—
—
bits
428
1
kHz
sample
cycles
DC Electrical Specification
DC input voltage
—
0
Current consumption3
VDDA
—
—
200
1.85
V
10
—
μA
—
50000
Ω
Touchscreen Interface
Expected plate resistance
—
1
There is no sample and hold circuit in LRADC, so it is only for DC input voltage or ones with very small slope.
This comprises only the required initial dummy conversion cycle, NOT including the Analog part power-up time.
3
This value only includes the ADC and the driver switches, but it does not take into account the current consumption in the
touchscreen plate. For example, if the plate resistance is 200 ohm, the total current consumption is about 11 mA.
2
3.5.1.2
HSADC Electrical Specification
Table 31 shows the electrical specifications for the HSADC
Table 31. HSADC Electrical Specification
Parameter
Conditions
Min
Typ
Max
Unit
—
0.5
—
pF
AC Electrical Specification
Input sampling
capacitance (Cs)
Resolution
No pin/pad capacitance included
—
12
bits
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
26
NXP Semiconductors
Electrical Characteristics
Table 31. HSADC Electrical Specification (continued)
Parameter
Conditions
Min
Typ
Max
Unit
Maximum sampling rate
(fs)
—
—
—
2
MHz
Power-up time
—
1
sample
cycles
DC Electrical Specification
DC input voltage
—
0.5
—
VDDA-0.5
V
Current Consumption
VDDA
—
—
10
—
μA
DNL
fin = 1 kHz
—
0.5
1.2
LSB
INL
fin = 1kHz
—
0.5
1.2
LSB
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
27
Electrical Characteristics
3.5.2
DPLL Electrical Specifications
This section includes descriptions of the USB PLL electrical specifications and Ethernet PLL electrical
specifications.
3.5.2.1
USB PLL Electrical Specifications
The i.MX28 integrates a high-frequency USB PLL that provides the 480-MHz clock for the USB and other
system blocks.
Table 32 lists the USB PLL output electrical specifications.
Table 32. USB PLL Specifications
Parameter
PLL lock time
3.5.2.2
Test Conditions
Min
Typ
Max
Unit
—
—
—
10
µs
Ethernet PLL Electrical Specifications
i.MX28 provides a 50-MHz/25-MHz output clock, called the Ethernet PLL output.
Table 33 lists the Ethernet PLL output electrical specifications.
Table 33. Ethernet PLL Specifications
Parameter
Test Conditions
Min
Typ
Max
Unit
Output Duty Cycle
—
45
50
55
%
PLL lock time
—
—
—
10
µs
Cycle to cycle jitter
—
—
25
—
ps
Clock output frequency tolerance1
—
—
—
±20
ppm
1
This Ethernet output clock tolerance specification is the contribution from the PLL only and assumes a perfect 24 MHz
clock/crystal source with 0 ppm deviation. The 24 MHz crystal frequency tolerance/deviation should be added to this number
for the total Ethernet clock output frequency tolerance.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
28
NXP Semiconductors
Electrical Characteristics
3.5.3
EMI AC Timing
This section includes descriptions of the electrical specifications of EMI module which interfaces
external DDR2 and Mobile-DDR1 (LP-DDR1) memory devices.
3.5.3.1
EMI Command and Address AC Timing
Figure 5 and Table 34 specify the timing related to the address and command pins that interfaces DDR2
and Mobile-DDR1 memory devices.
DDR2
DDR3
EMI_CLKN
EMI_CLK
DDR1
EMI_CE0N
DDR4
DDR5
EMI_RASN
EMI_CASN
DDR4
EMI_WEN
DDR5
DDR5
DDR4
bank
row
EMI_ADDR
bank
column
Figure 5. EMI Command/Address AC Timing
Table 34. EMI Command/Address AC Timing
ID
Description
DDR1
CK cycle time
DDR2
CK high level width
DDR3
CK low level width
Symbol
Min
Max
Unit
tCK
4.86
—
ns
tCH
0.5 tCK
-0.5
0.5 tCK
+ 0.5
ns
tCL
0.5 tCK
-0.5
0.5 tCK
+ 0.5
ns
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
29
Electrical Characteristics
Table 34. EMI Command/Address AC Timing (continued)
ID
Description
DDR4
Address and control output setup time
DDR5
Address and control output hold time
3.5.3.2
Symbol
Min
Max
Unit
tIS
0.5 tCK – 1
0.5 tCK
+ 0.5
ns
tIH
0.5 tCK – 1
0.5 tCK
+ 0.5
ns
DDR Output AC Timing
Figure 6 and Table 35 show the DDR output AC timing defined for all DDR types: LPDDR1, standard
DDR2 (1.8 V), and LVDDR2 (1.5 V).
EMI_CLKN
EMI_CLK
DDR10
DDR11
DDR12
EMI_DQSN
EMI_DQS
DDR13
EMI_DQ & EMI_DQM
DDR14
d0
d1
d2
d3
DDR15
DDR16
Figure 6. DDR Output AC Timing
Table 35. DDR Output AC Timing
ID
Description
Symbol
Min
Max
Unit
tDQSS
– 0.5
+ 0.5
ns
DDR10
Positive DQS latching edge to associated CK edge
DDR11
DQS falling edge from CK rising edge—hold time
tDSH
0.5 tCK
-0.5
0.5 tCK
+ 0.5
ns
DDR12
DQS falling edge to CK rising edge—setup time
tDSS
0.5 tCK
-0.5
0.5 tCK
+ 0.5
ns
DDR13
DQS output high pulse width
tDQSH
0.5 tCK
-0.5
0.5 tCK
+ 0.5
ns
DDR14
DQS output low pulse width
tDQSL
0.5 tCK
-0.5
0.5 tCK
+ 0.5
ns
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
30
NXP Semiconductors
Electrical Characteristics
Table 35. DDR Output AC Timing (continued)
ID
Description
Symbol
Min
Max
Unit
DDR15
DQ & DQM output setup time relative to DQS
tDS
1/4 tCK
-0.8
1/4 tCK
-0.5
ns
DDR16
DQ & DQM output hold time relative to DQS
tDH
1/4 tCK
-0.8
1/4 tCK
-0.5
ns
3.5.3.3
DDR2 Input AC Timing
Figure 7 and Table 36 show input AC timing for standard DDR2 and LVDDR2.
EMI_CLKN
EMI_CLK
DDR20
EMI_DQSN
EMI_DQS
DDR22
DDR21
d0
EMI_DQ
d1
d2
d3
Figure 7. DDR2 Input AC Timing
Table 36. DDR2 Input AC Timing
ID
Description
Symbol
Min
Max
Unit
DDR20
Positive DQS latching edge to associated CK edge
tDQSCK
–0.5
0.5
ns
DDR21
DQS to DQ input skew
tDQSQ
0.25 tCK
-0.85
0.25 tCK
-0.5
ns
DDR22
DQS to DQ input hold time
tQH
0.25 tCK
+0.75
0.25 tCK
+1
ns
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
31
Electrical Characteristics
3.5.3.4
LPDDR1 Input AC Timing
Figure 8 and Table 37 show input AC timing for LPDDR1.
EMI_CLKN
EMI_CLK
DDR20
EMI_DQSN
EMI_DQS
DDR22
DDR21
d0
EMI_DQ
d1
d2
d3
Figure 8. LPDDR1 Input AC Timing
Table 37. LPDDR1 Input AC Timing
ID
Description
DDR20
Positive DQS latching edge to associated CK edge
DDR21
DQS to DQ input skew
DDR22
DQS to DQ input hold time
3.5.4
Symbol
Min
Max
Unit
tDQSCK
2
6
ns
tDQSQ
0.25 tCK
- 0.85
0.25 tCK
- 0.5
ns
tQH
0.25 tCK
+ 0.75
0.25 tCK
+1
ns
Ethernet MAC Controller (ENET) Timing
The ENET is designed to support both 10- and 100-Mbps Ethernet networks compliant with IEEE 802.3.
An external transceiver interface and transceiver function are required to complete the interface to the
media. The ENET supports 10/100-Mbps MII (18 pins altogether), 10/100-Mbps RMII (10 pins, including
serial management interface), for connection to an external Ethernet transceiver. All signals are compatible
with transceivers operating at a voltage of 3.3 V.
The following subsections describe the timing for MII and RMII modes.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
32
NXP Semiconductors
Electrical Characteristics
3.5.4.1
ENET MII Mode Timing
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal
timings.
3.5.4.1.1
MII Receive Signal Timing (ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER,
and ENET0_RX_CLK)
The receiver functions correctly up to an ENET0_RX_CLK maximum frequency of 25 MHz + 1%. There
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the
ENET0_RX_CLK frequency.
Figure 9 shows MII receive signal timings. Table 38 describes the timing parameters (M1–M4) shown in
the figure.
M3
ENET0_RX_CLK (input)
M4
ENET0_RXD[3:0] (inputs)
ENET0_RX_DV
ENET0_RX_ER
M1
M2
Figure 9. MII Receive Signal Timing Diagram
Table 38. MII Receive Signal Timing
Characteristic1
ID
Min
Max
Unit
M1
ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER to
ENET0_RX_CLK setup
5
—
ns
M2
ENET0_RX_CLK to ENET0_RXD[3:0], ENET0_RX_DV,
ENET0_RX_ER hold
5
—
ns
M3
ENET0_RX_CLK pulse width high
35%
65%
ENET0_RX_CLK
period
M4
ENET0_RX_CLK pulse width low
35%
65%
ENET0_RX_CLK
period
1 ENET0_RX_DV,
3.5.4.1.2
ENET0_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.
MII Transmit Signal Timing (ENET0_TXD[3:0], ENET0_TX_EN, ENET0_TX_ER,
and ENET0_TX_CLK)
The transmitter functions correctly up to an ENET0_TX_CLK maximum frequency of 25 MHz + 1%.
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed
twice the ENET0_TX_CLK frequency.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
33
Electrical Characteristics
Figure 10 shows MII transmit signal timings. Table 39 describes the timing parameters (M5–M8) shown
in the figure.
M7
ENET0_TX_CLK (input)
M5
M8
ENET0_TXD[3:0] (outputs)
ENET0_TX_EN
ENET0_TX_ER
M6
Figure 10. MII Transmit Signal Timing Diagram
Table 39. MII Transmit Signal Timing
Characteristic1
ID
Min
Max
Unit
M5
ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN,
ENET0_TX_ER invalid
5
—
ns
M6
ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN,
ENET0_TX_ER valid
—
20
ns
M7
ENET0_TX_CLK pulse width high
35%
65%
ENET0_TX_CLK
period
M8
ENET0_TX_CLK pulse width low
35%
65%
ENET0_TX_CLK
period
1 ENET0_TX_EN,
3.5.4.1.3
ENET0_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.
MII Asynchronous Inputs Signal Timing (ENET0_CRS and ENET0_COL)
Figure 11 shows MII asynchronous input timings. Table 40 describes the timing parameter (M9) shown in
the figure.
ENET0_CRS, ENET0_COL
M9
Figure 11. MII Async Inputs Timing Diagram
Table 40. MII Asynchronous Inputs Signal Timing
ID
M91
1
Characteristic
ENET0_CRS to ENET0_COL minimum pulse width
Min
Max
Unit
1.5
—
ENET0_TX_CLK period
ENET0_COL has the same timing in 10-Mbit 7-wire interface mode.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
34
NXP Semiconductors
Electrical Characteristics
3.5.4.1.4
MII Serial Management Channel Timing (ENET0_MDIO and ENET0_MDC)
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3
MII specification. However the ENET can function correctly with a maximum MDC frequency of
15 MHz.
Figure 12 shows MII asynchronous input timings. Table 41 describes the timing parameters (M10–M15)
shown in the figure.
M14
M15
ENET0_MDC (output)
M10
ENET0_MDIO (output)
M11
ENET0_MDIO (input)
M12
M13
Figure 12. MII Serial Management Channel Timing Diagram
Table 41. MII Serial Management Channel Timing
ID
Characteristic
Min
Max
Unit
M10
ENET0_MDC falling edge to ENET0_MDIO output invalid (min.
propagation delay)
0
—
ns
M11
ENET0_MDC falling edge to ENET0_MDIO output valid (max.
propagation delay)
—
5
ns
M12
ENET0_MDIO (input) to ENET0_MDC rising edge setup
18
—
ns
M13
ENET0_MDIO (input) to ENET0_MDC rising edge hold
0
—
ns
M14
ENET0_MDC pulse width high
40%
60%
ENET0_MDC period
M15
ENET0_MDC pulse width low
40%
60%
ENET0_MDC period
3.5.4.2
RMII Mode Timing
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference
clock. ENET0_RX_DV is used as the CRS_DV in RMII. Other signals under RMII mode include
ENET0_TX_EN, ENET0_TXD[1:0], ENET0_RXD[1:0] and ENET0_RX_ER.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
35
Electrical Characteristics
Figure 13 shows RMII mode timings. Table 42 describes the timing parameters (M16–M21) shown in the
figure.
M16
M17
ENET_CLK (input)
M18
ENET0_TXD[1:0] (output)
ENET0_TX_EN
M19
CRS_DV (input)
ENET0_RXD[1:0]
ENET0_RX_ER
M20
M21
Figure 13. RMII Mode Signal Timing Diagram
Table 42. RMII Signal Timing
ID
Characteristic
Min
Max
Unit
M16
ENET_CLK pulse width high
35%
65%
ENET_CLK period
M17
ENET_CLK pulse width low
35%
65%
ENET_CLK period
M18
ENET_CLK to ENET0_TXD[1:0], ENET0_TX_EN invalid
3
—
ns
M19
ENET_CLK to ENET0_TXD[1:0], ENET0_TX_EN valid
—
12
ns
M20
ENET0_RXD[1:0], CRS_DV(ENET0_RX_DV), ENET0_RX_ER to
ENET_CLK setup
2
—
ns
M21
ENET_CLK to ENET0_RXD[1:0], ENET0_RX_DV, ENET0_RX_ER hold
2
—
ns
3.5.5
Coresight ETM9 AC Interface Timing
The following timing specifications are given as a guide for a TPA that supports TRACECLK
(ETM_TCLK) frequencies up to 80 MHz. TRACECLK is the ETM_TCLK signal which can be made
functional by using some IOMUX configurations. See the reference manual for detailed information.
3.5.5.1
TRACECLK Timing
This section describes TRACECLK timings.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
36
NXP Semiconductors
Electrical Characteristics
Figure 14 shows TRACECLK signal timings. Table 43 describes the timing parameters shown in the
figure.
Figure 14. TRACECLK Signal Timing Diagram
Table 43. TRACECLK Signal Timing
Characteristic1
ID
Min
Max
Unit
Tr
Clock and data raise time
3
—
ns
Tf
Clock and data fall time
3
—
ns
Twh
High pulse wide
2
—
ns
Twl
Low pulse wide
2
—
ns
Tcyc
Clock period
12.5
—
ns
3.5.5.2
Trace Data Signal Timing
Figure 15 shows the setup and hold requirements of the trace data pins with respect to TRACECLK.
Table 44 describes the timing parameters shown in the figure.
Figure 15. Trace Data Signal Timing Diagram
Table 44. Trace Data Signal Timing
Characteristic1
ID
Min
Max
Unit
Ts
Data setup
2
—
ns
Th
Data hold
2
—
ns
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
37
Electrical Characteristics
3.5.6
FlexCAN AC Timing
Table 45 and Table 46 show voltage requirements for the FlexCAN transceiver Tx and Rx pins.
Table 45. Tx Pin Characteristics
1
Parameter
Symbol
Min
Typ
Max
Unit
High-level output voltage
VOH
2
—
Vcc1 + 0.3
V
Low-level output voltage
VOL
—
0.8
—
V
Vcc = +3.3 V ± 5%
Table 46. Rx Pin Characteristics
1
Parameter
Symbol
Min
Typ
Max
Unit
High-level input voltage
VIH
0.8 × Vcc1
—
Vcc1
V
Low-level input voltage
VIL
—
0.4
—
V
Vcc = +3.3 V ± 5%
Figure 16 through Figure 19 show the FlexCAN timing, including timing of the standby and shutdown
signals.
TXD
VCC/2
VCC/2
tOFFTXD
tONTXD
0.9V
VDIFF
0.5V
tONRXD
RXD
tOFFRXD
VCC/2
VCC/2
Figure 16. FlexCAN Timing Diagram
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
38
NXP Semiconductors
Electrical Characteristics
VCC x 0.75
RS
Bus Externally
Driven
1.1V
VDIFF
tSBRXDL
tDRXDL
RXD
VCC/2
VCC/2
Figure 17. Timing Diagram for FlexCAN Standby Signal
SHDN
VCC/2
VCC/2
tOFFSHDN
tONSHDN
VDIFF
0.5V
Bus Externally
Driven
VCC/2
RXD
Figure 18. Timing Diagram for FlexCAN Shutdown Signal
SHDN
VCC/2
tSHDNSB
0.75 x VCC
RS
Figure 19. Timing Diagram for FlexCAN Shutdown-to-Standby Signal
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
39
Electrical Characteristics
3.5.7
General-Purpose Media Interface (GPMI) Timing
The i.MX28 GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to
50MB/s I/O speed and individual chip-select.
It supports normal timing mode, using two Flash clock cycles for one access of RE and WE. AC timings
are provided as multiplications of the clock cycle and fixed delay. Figure 20, Figure 21, Figure 22 and
Figure 23 depict the relative timing between GPMI signals at the module level for different operations
under normal mode. Table 47 describes the timing parameters (NF1–NF17) that are shown in the figures.
CLE
NF2
NF1
NF3
NF4
CEn
NF5
WE
NF6
NF7
ALE
NF8
NF9
Command
IO[7:0]
Figure 20. Command Latch Cycle Timing Diagram
CLE
NF1
NF4
NF3
CEn
NF10
NF11
NF5
WE
NF7
NF6
ALE
NF8
NF9
IO[7:0]
Address
Figure 21. Address Latch Cycle Timing Diagram
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
40
NXP Semiconductors
Electrical Characteristics
CLE
NF1
NF3
CEn
NF10
NF11
NF5
WE
NF7
NF6
ALE
NF8
NF9
IO[7:0]
Data to NF
Figure 22. Write Data Latch Cycle Timing Diagram
CLE
CEn
NF14
NF15
NF13
RE
NF16
NF17
RB
NF12
IO[7:0]
Data from NF
Figure 23. Read Data Latch Cycle Timing Diagram
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
41
Electrical Characteristics
Table 47. NFC Timing Parameters1
ID
Parameter
Symbol
Timing
T = GPMI Clock Cycle
Example Timing for
GPMI Clock ≈ 100MHz
T = 10ns
Min
Max
Min
Max
Unit
NF1
CLE setup time
tCLS
(AS+1)*T
—
10
—
ns
NF2
CLE hold time
tCLH
(DH+1)*T
—
20
—
ns
NF3
CEn setup time
tCS
(AS+1)*T
—
10
—
ns
NF4
CE hold time
tCH
(DH+1)*T
—
20
—
ns
NF5
WE pulse width
tWP
NF6
ALE setup time
tALS
(AS+1)*T
—
10
—
ns
NF7
ALE hold time
tALH
(DH+1)*T
—
20
—
ns
NF8
Data setup time
tDS
DS*T
—
10
—
ns
NF9
Data hold time
tDH
DH*T
—
10
—
ns
NF10
Write cycle time
tWC
(DS+DH)*T
20
ns
NF11
WE hold time
tWH
DH*T
10
ns
NF12
Ready to RE low
tRR
(AS+1)*T
—
10
—
ns
NF13
RE pulse width
tRP
DS*T
—
10
—
ns
NF14
READ cycle time
tRC
(DS+DH)*T
—
20
—
ns
NF15
RE high hold time
tREH
DH*T
10
—
ns
NF16
Data setup on read
tDSR
N/A
10
—
ns
NF17
Data hold on read
tDHR
N/A
10
—
ns
DS*T
10
ns
1
The Flash clock maximum frequency is 100 MHz.
2)GPMI’s output timing could be controlled by module’s internal register, say
HW_GPMI_TIMING0_ADDRESS_SETUP,HW_GPMI_TIMING0_DATA_SETUP,HW_GPMI_TIMING0_DATA_HOLD, this AC
timing depends on these registers’ setting. In the above table we use AS/DS/DH representing these settings each.
3)AS minimum value could be 0, while DS/DH minimum value is 1.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
42
NXP Semiconductors
Electrical Characteristics
3.5.8
LCD AC Output Electrical Specifications
Figure 24 depicts the AC output timing for the LCD module. Table 48 lists the LCD module timing
parameters.
T
PAD_LCD_DOTCK
Falling edge capture
tSF
tHF
tSR
tHR
PAD_LCD_DOTCK
Rising edge capture
tDW
PAD_LCD_D[17:0],
PAD_LCD_VSYNC, etc
DATA/CTRL
Notes:
T = LCD interface clock period
I/O Drive Strength = 4mA
I/O Voltage = 3.3V
Cck = Capacitance load on DOTCK pad
Cd = Capacitance load on DATA/CTRL pad
Figure 24. LCD AC Output Timing Diagram
Table 48. LCD AC Output Timing Parameters
ID
Parameter
Description
tSF
Data setup for falling edge
DOTCK = T/2 – 1.97ns + 0.15*Cck – 0.19*Cd
tHF
Data hold for falling edge
DOTCK = T/2 + 0.29ns + 0.09*Cd – 0.10*Cck
tSR
Data setup for rising edge
DOTCK = T/2 – 2.09ns + 0.18*Cck – 0.19*Cd
tHR
Data hold for rising edge
DOTCK = T/2 + 0.40ns + 0.09*Cd – 0.10*Cck
tDW
Data valid window
tDW = T – 1.45ns
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
43
Electrical Characteristics
3.5.9
Inter IC (I2C) Timing
The I2C module is designed to support up to 400-Kbps I2C connection compliant with I2C bus protocol.
The following section describes I2C SDA and SCL signal timings.
Figure 25 shows the timing of the I2C module. Table 49 describes the I2C module timing parameters (IC1–
IC11) shown in the figure.
I2C_SCL
IC11
IC10
I2C_SDA
IC2
IC10
START
IC7
IC4
IC8
IC11
IC6
IC9
IC3
STOP
START
START
IC5
IC1
Figure 25. I2C Module Timing Diagram
Table 49. I2C Module Timing Parameters: 1.8 V – 3.6 V
Standard Mode
ID
Fast Mode
Parameter
Unit
Min
Max
Min
Max
IC1
I2C_SCL cycle time
10
—
2.5
—
μs
IC2
Hold time (repeated) START condition
4.0
—
0.6
—
μs
IC3
Set-up time for STOP condition
4.0
—
0.6
—
μs
01
0.92
μs
1
2
IC4
Data hold time
0
3.45
IC5
HIGH Period of I2C_SCL clock
4.0
—
0.6
—
μs
IC6
LOW Period of the I2C_SCL clock
4.7
—
1.3
—
μs
IC7
Set-up time for a repeated START condition
4.7
—
0.6
—
μs
—
ns
3
IC8
Data set-up time
250
—
100
IC9
Bus free time between a STOP and START condition
4.7
—
1.3
—
μs
4
300
ns
IC10
Rise time of both I2C_SDA and I2C_SCL signals
—
1000
20+0.1Cb
IC11
Fall time of both I2C_SDA and I2C_SCL signals
—
300
20+0.1Cb4
300
ns
IC12
Capacitive load for each bus line (Cb)
—
400
—
400
pF
1
A device must internally provide a hold time of at least 300 ns for the I2C_SDA signal in order to bridge the undefined region
of the falling edge of I2C_SCL.
2 The maximum IC4 has to be met only if the device does not stretch the LOW period (ID no IC5) of the I2C_SCL signal.
3 A fast-mode I2C bus device can be used in a standard-mode I2C bus system, but the requirement of Set-up time (ID No IC7)
of 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the I2C_SCL signal.
If such a device does stretch the LOW period of the I2C_SCL signal, it must output the next data bit to the I2C_SDA line
max_rise_time (ID No IC9) + data_setup_time (ID No IC7) = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus
specification) before the I2C_SCL line is released.
4 C = total capacitance of one bus line in pF.
b
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
44
NXP Semiconductors
Electrical Characteristics
3.5.10
JTAG Interface Timing
Figure 26 through Figure 29 show respectively the test clock input, boundary scan, test access port, and
TRST timings for the SJC. Table 50 describes the SJC timing parameters (SJ1–SJ13) indicated in the
figures.
SJ1
SJ2
TCK
(Input)
SJ2
VM
VIH
VM
VIL
SJ3
SJ3
Figure 26. Test Clock Input Timing Diagram
TCK
(Input)
VIH
VIL
SJ4
Data
Inputs
SJ5
Input Data Valid
SJ6
Data
Outputs
Output Data Valid
SJ7
Data
Outputs
SJ6
Data
Outputs
Output Data Valid
Figure 27. Boundary Scan (JTAG) Timing Diagram
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
45
Electrical Characteristics
TCK
(Input)
VIH
VIL
SJ8
TDI
TMS
(Input)
SJ9
Input Data Valid
SJ10
TDO
(Output)
Output Data Valid
SJ11
TDO
(Output)
SJ10
TDO
(Output)
Output Data Valid
Figure 28. Test Access Port Timing Diagram
TCK
(Input)
SJ13
TRST
(Input)
SJ12
Figure 29. TRST Timing Diagram
Table 50. SJC Timing Parameters
All Frequencies
ID
Parameter
Unit
Min
Max
SJ1
TCK cycle time
100
—
ns
SJ2
TCK clock pulse width measured at VM1
40
—
ns
SJ3
TCK rise and fall times
—
3
ns
SJ4
Boundary scan input data set-up time
10
—
ns
SJ5
Boundary scan input data hold time
50
—
ns
SJ6
TCK low to output data valid
—
50
ns
SJ7
TCK low to output high impedance
—
50
ns
SJ8
TMS, TDI data set-up time
10
—
ns
SJ9
TMS, TDI data hold time
50
—
ns
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
46
NXP Semiconductors
Electrical Characteristics
Table 50. SJC Timing Parameters (continued)
All Frequencies
ID
1
Parameter
Unit
Min
Max
SJ10
TCK low to TDO data valid
—
44
ns
SJ11
TCK low to TDO high impedance
—
44
ns
SJ12
TRST assert time
100
—
ns
SJ13
TRST set-up time to TCK low
40
—
ns
VM – mid point voltage.
3.5.11
Pulse Width Modulator (PWM) Timing
Figure 30 depicts the timing of the PWM, and Table 51 lists the PWM timing characteristics.
The PWM can be programmed to select one of two clock signals as its source frequency: xtal clock or
hsadc clock. The selected clock signal is passed through a prescaler before being input to the counter. The
output is available at the pulse width modulator output (PWMO) external pin.
PWM also supports MATT mode. In this mode, it can be programmed to select one of two clock signals
as its source frequency, 24-MHz or 32-kHz crystal clock. For a 32-kHz source clock input, the PWM
outputs the 32-kHz clock directly to PAD.
1
2a
3b
PWM Source Clock
2b
4b
3a
4a
PWM Output
Figure 30. PWM Timing
Table 51. PWM Output Timing Parameter: Xtal clock
1
Ref No.
Parameter
Min
Max
Unit
1
System CLK frequency1
0
24MHz
MHz
2a
Clock high time
21
—
ns
2b
Clock low time
21
—
ns
3a
Clock fall time
—
0.3
ns
3b
Clock rise time
—
0.3
ns
4a
Output delay time
—
15.08
ns
4b
Output setup time
15.77
—
ns
CL of PWMO = 30 pF.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
47
Electrical Characteristics
1
2a
3b
PWM Source Clock
2b
4b
3a
4a
PWM Output
Figure 31. PWM Timing
Table 52. PWM Output Timing Parameter: HSADC clock
1
Ref No.
Parameter
Min
Max
Unit
1
System CLK frequency1
0
32
MHz
2a
Clock high time
6.813
—
ns
2b
Clock low time
24.432
—
ns
3a
Clock fall time
—
0.3
ns
3b
Clock rise time
—
0.3
ns
4a
Output delay time
—
14.93
ns
4b
Output setup time
15.71
—
ns
CL of PWMO = 30 pF.
2a
3a
PWM Source Clock
2b
3b
4b
4a
PWM Output
Figure 32. PWM Timing
Table 53. PWM Output Timing Parameter: MATT Mode 24 MHz Crystal Clock
Ref No.
Parameter
Min
Max
Unit
1
System CLK frequency1
24
24
MHz
2a
Clock high time
20.99
—
ns
2b
Clock low time
21.01
—
ns
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
48
NXP Semiconductors
Electrical Characteristics
Table 53. PWM Output Timing Parameter: MATT Mode 24 MHz Crystal Clock (continued)
1
Ref No.
Parameter
Min
Max
Unit
3a
Clock fall time
—
0.3
ns
3b
Clock rise time
—
0.3
ns
4a
Output delay time
—
15.23
ns
4b
Output setup time
15.92
—
ns
CL of PWMO = 30 pF
3.5.12
Serial Audio Interface (SAIF) AC Timing
The following subsections describe SAIF timing in two cases:
• Transmitter
• Receiver
3.5.12.1
SAIF Transmitter Timing
Figure 33 shows the timing for SAIF transmitter with internal clock, and Table 54 describes the timing
parameters (SS1–SS13).
SS1
SS3
SS5
SS2
SS4
BITCLK
SS6
LRCLK
SS7
SS8 SS11
SS10
SDATA0-2
SS9
SS12
SS13
Figure 33. SAIF Transmitter Timing Diagram
Table 54. SAIF Transmitter Timing
ID
Parameter
Min
Max
Unit
SS1
BITCLK period
81.4
—
ns
SS2
BITCLK high period
36.0
—
ns
SS3
BITCLK rise time
—
6.0
ns
SS4
BITCLK low period
36.0
—
ns
SS5
BITCLK fall time
—
6.0
ns
SS6
BITCLK high to LRCLK high
—
15.0
ns
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
49
Electrical Characteristics
Table 54. SAIF Transmitter Timing (continued)
ID
Parameter
Min
Max
Unit
SS7
BITCLK high to LRCLK low
—
15.0
ns
SS8
LRCLK rise time
—
6.0
ns
SS9
LRCLK fall time
—
6.0
ns
SS10
BITCLK high to SDATA valid from high impedance
—
15.0
ns
SS11
BITCLK high to SDATA high/low
—
15.0
ns
SS12
BITCLK high to SDATA high impedance
—
15.0
ns
SS13
SDATA rise/fall time
—
6.0
ns
3.5.12.2
SAIF Receiver Timing
Figure 34 shows the timing for the SAIF receiver with internal clock. Table 55 describes the timing
parameters (SS1–SS17) shown in the figure.
SS1
SS3
SS5
SS2
SS4
BITCLK
SS14
SS15
LRCLK
SS16
SS17
SDATA0-2
Figure 34. SAIF Receiver Timing Diagram
Table 55. SAIF Receiver Timing with Internal Clock
ID
Parameter
Min
Max
Unit
SS1
BITCLK period
81.4
—
ns
SS2
BITCLK high period
36.0
—
ns
SS3
BITCLK rise time
—
6.0
ns
SS4
BITCLK low period
36.0
—
ns
SS5
BITCLK fall time
—
6.0
ns
SS14
BITCLK high to LRCLK high
—
15.0
ns
SS15
BITCLK high to LRCLK low
—
15.0
ns
SS16
SDATA setup time before BITCLK high
10.0
—
ns
SS17
SDATA hold time after BITCLK high
0.0
—
ns
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
50
NXP Semiconductors
Electrical Characteristics
3.5.13
SPDIF AC Timing
SPDIF data is sent using bi-phase marking code. When encoding, the SPDIF data signal is modulated by
a clock that is twice the bit rate of the data signal.
The following Table 56 shows SPDIF timing parameters, including the timing of the modulating Tx clock
(spdif_clk) in SPDIF transmitter as shown in the Figure 35.
Table 56. SPDIF Timing
Timing Parameter Range
Characteristics
Symbol
Unit
Min
Max
—
—
—
—
—
—
1.5
13.6
18.0
ns
Modulating Tx clock (spdif_clk) period
spclkp
81.4
—
ns
spdif_clk high period
spclkph
65.1
—
ns
spdif_clk low period
spclkpl
65.1
—
ns
SPDIFOUT output (Load = 30pf)
• Skew
• Transition Rising
• Transition Falling
spclkp
spclkpl
spclkph
spdif_clk
(Input)
Figure 35. spdif_clk Timing
3.5.14
Synchronous Serial Port (SSP) AC Timing
This section describes the electrical information of the SSP, which includes SD/MMC4.3 (Single Data
Rate) timing, MMC4.4 (Dual Date Rate) timing, MS (Memory Stick) timing, and SPI timing.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
51
Electrical Characteristics
3.5.14.1
SD/MMC4.3 (Single Data Rate) AC Timing
Figure 36 depicts the timing of SD/MMC4.3, and Table 57 lists the SD/MMC4.3 timing characteristics.
SD4
SD2
SD1
SD5
SCK
SD3
CMD
DAT0
DAT1
......
DAT7
output from SSP to card
SD6
SD7
SD8
CMD
DAT0
DAT1
......
DAT7
input from card to SSP
Figure 36. SD/MMC4.3 Timing
Table 57. SD/MMC4.3 Interface Timing Specification
ID
Parameter
Symbols
Min
Max
Unit
Clock Frequency (Low Speed)
fPP1
0
400
kHz
Clock Frequency (SD/SDIO Full Speed/High Speed)
fPP2
0
25/50
MHz
Clock Frequency (MMC Full Speed/High Speed)
fPP3
0
20/52
MHz
Clock Frequency (Identification Mode)
fOD
100
400
kHz
SD2
Clock Low Time
tWL
7
—
ns
SD3
Clock High Time
tWH
7
—
ns
SD4
Clock Rise Time
tTLH
—
3
ns
SD5
Clock Fall Time
tTHL
—
3
ns
tOD
-5
5
ns
Card Input Clock
SD1
SSP Output / Card Inputs CMD, DAT (Reference to CLK)
SD6
SSP Output Delay
SSP Input / Card Outputs CMD, DAT (Reference to CLK)
SD7
SSP Input Setup Time
tISU
2.5
—
ns
SD8
SSP Input Hold Time
tIH4
2.5
—
ns
1
In low speed mode, the card clock must be lower than 400 kHz, and the voltage ranges from 2.7 to 3.6 V.
In normal speed mode for the SD/SDIO card, clock frequency can be any value between 0 ~ 25 MHz. In high speed mode,
clock frequency can be any value between 0 ~ 50 MHz.
3 In normal speed mode for MMC card, clock frequency can be any value between 0 ~ 20 MHz. In high speed mode, clock
frequency can be any value between 0 ~ 52MHz.
2
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
52
NXP Semiconductors
Electrical Characteristics
4
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2ns.
3.5.14.2
MMC4.4 (Dual Data Rate) AC Timing
Figure 37 depicts the timing of MMC4.4, and Table 58 lists the MMC4.4 timing characteristics. Be aware
that only DATA0–DATA7 are sampled on both edges of the clock (not applicable to CMD).
SD1
SCK
output from SSP to card
DAT0
DAT1
......
DAT7
SD2
SD2
......
SD3
input from card to SSP
SD4
DAT0
DAT1
......
DAT7
......
Figure 37. MMC4.4 Timing
Table 58. MMC4.4 Interface Timing Specification
ID
Parameter
Symbols
Min
Max
Unit
Clock Frequency (MMC Full Speed/High Speed)
fPP
0
52
MHz
tOD
–5
5
ns
Card Input Clock
SD1
SSP Output / Card Inputs CMD, DAT (Reference to CLK)
SD2
SSP Output Delay
SSP Input / Card Outputs CMD, DAT (Reference to CLK)
SD3
SSP Input Setup Time
tISU
2.5
—
ns
SD4
SSP Input Hold Time
tIH
2.5
—
ns
3.5.14.3
MS (Memory Stick) AC Timing
The SSP module, which also has the function of a memory stick host controller, is compatible with the
Sony Memory Stick version 1.x and Memory Stick PRO.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
53
Electrical Characteristics
Figure 38, Figure 39 and Table 40 show the timing of the Memory Stick. Table 59 and Table 60 list the
Memory Stick timing characteristics.
MS1
80%
50%
20%
80%
50%
20%
SCK
MS2
80%
50%
20%
MS3
MS5
MS4
Figure 38. MS Clock Time Waveforms
MS1
SCK
BS(CMD)
MS6
MS7
MS9
MS8
DATA
(Output)
MS10
DATA
(Input)
Figure 39. MS Serial Transfer Mode Timing Diagram
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
54
NXP Semiconductors
Electrical Characteristics
MS1
SCK
BS(CMD)
MS11
MS12
MS14
MS13
DATA
(Output)
MS15
DATA
(Input)
Figure 40. MS Parallel Transfer Mode Timing Diagram
Table 59. MS Serial Transfer Timing Parameters
ID
Parameter
Symbol
Min
Max
Unit
MS1
SCK Cycle Time
tCLKc
50
—
ns
MS2
SCK High Pulse Time
tCLKwh
15
—
ns
MS3
SCK Low Pulse Time
tCLKwl
15
—
ns
MS4
SCK Rise Time
tCLKr
—
10
ns
MS5
SCK Fall Time
tCLKf
—
10
ns
MS6
BS Setup Time
tBSsu
5
—
ns
MS7
BS Hold Time
tBSh
5
—
ns
MS8
DATA Setup Time
tDsu
5
—
ns
MS9
DATA Hold Time
tDh
5
—
ns
MS10
DATA Input Delay Time
tDd
—
15
ns
Table 60. MS Parallel Transfer Timing Parameters
ID
Parameter
Symbol
Min
Max
Unit
MS1
SCK Cycle Time
tCLKc
25
—
ns
MS2
SCK High Pulse Time
tCLKwh
5
—
ns
MS3
SCK Low Pulse Time
tCLKwl
5
—
ns
MS4
SCK Rise Time
tCLKr
—
10
ns
MS5
SCK Fall Time
tCLKf
—
10
ns
MS11
BS Setup Time
tBSsu
8
—
ns
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
55
Electrical Characteristics
Table 60. MS Parallel Transfer Timing Parameters (continued)
ID
Parameter
Symbol
Min
Max
Unit
MS12
BS Hold Time
tBSh
1
—
ns
MS13
DATA Setup Time
tDsu
8
—
ns
MS14
DATA Hold Time
tDh
1
—
ns
MS15
DATA Input Delay Time
tDd
—
15
ns
3.5.14.4
SPI AC Timing
Figure 41 depicts the master mode and slave mode timings of the SPI, and Table 61 lists the timing
parameters.
SSn
CS1
CS3
CS2
CS6
CS5
CS4
SCK
CS9
CS3
CS10
CS2
MISO
CS8
CS7
MOSI
Figure 41. SPI Interface Timing Diagram
Table 61. SPI Interface Timing Parameters
ID
Parameter
Symbol
Min
Max
Unit
CS1
SCK cycle time
tclk
50
—
ns
CS2
SCK high or low time
tSW
25
—
ns
CS3
SCK rise or fall
tRISE/FALL
—
7.6
ns
CS4
SSn pulse width
tCSLH
25
—
ns
CS5
SSn lead time (CS setup time)
tSCS
25
—
ns
CS6
SSn lag time (CS hold time)
tHCS
25
—
ns
CS7
MOSI setup time
tSmosi
5
—
ns
CS8
MOSI hold time
tHmosi
5
—
ns
CS9
MISO setup time
tSmiso
5
—
ns
CS10
MISO hold time
tHmiso
5
—
ns
3.5.15
UART (UARTAPP and DebugUART) AC Timing
This section describes the UART module AC timing which is applicable to both UARTAPP and
DebugUART.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
56
NXP Semiconductors
Electrical Characteristics
3.5.15.1
UART Transmit Timing
Figure 39 shows the UART transmit timing, showing only eight data bits and one stop bit. Table 62
describes the timing parameter (UA1) shown in the figure.
UA1
TXD
(output)
Start
Bit
Possible
Parity
Bit
UA1
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Par Bit STOP
BIT
UA1
Next
Start
Bit
UA1
Figure 42. UART Transmit Timing Diagram
Table 62. UART Transmit Timing Parameters
ID
Parameter
Symbol
Min
Max
Unit
UA1
Transmit Bit Time
tTbit
1/Fbaud_rate1 – Tref_clk2
1/Fbaud_rate + Tref_clk
—
1
Fbaud_rate: Baud rate frequency. The maximum baud rate the UARTAPP can support is 3.25 Mbps. The maximum baud rate
of DebugUART is 115.2 kbps.
2 T
ref_clk: The period of UART reference clock ref_clk (which is APBX clock = 24 MHz).
3.5.15.2
UART Receive Timing
Figure 43 shows the UART receive timing, showing only eight data bits and one stop bit. Table 63
describes the timing parameter (UA2) shown in the figure.
–
UA2
RXD
(input)
Start
Bit
Possible
Parity
Bit
UA2
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Par Bit STOP
BIT
UA2
Next
Start
Bit
UA2
Figure 43. UART Receive Timing Diagram
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
57
Package Information and Contact Assignments
Table 63. UART Receive Timing Parameters
ID
UA2
Parameter
Symbol
1
Receive bit time
tRbit
Min
Max
2
1/Fbaud_rate – 1/(16 1/Fbaud_rate + 1/(16
× Fbaud_rate)
× Fbaud_rate)
Unit
—
1
The UART receiver can tolerate 1/(16 × Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16 × Fbaud_rate).
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UARTAPP can support is 3.25 Mbps. The maximum baud rate
of DebugUART is 115 kbps.
4
4.1
Package Information and Contact Assignments
Case MAPBGA-289, 14 x 14 mm, 0.8 mm Pitch
The following notes apply to Figure 44:
• All dimensions are in millimeters.
• Dimensioning and tolerancing per ASME Y14.5M-1994.
• Maximum solder bump diameter measured parallel to datum A.
• Datum A, the seating plane, is determined by the spherical crowns of the solder bumps.
• Parallelism measurement excludes any effect of mark on top surface of package.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
58
NXP Semiconductors
Package Information and Contact Assignments
Figure 44 shows the i.MX28 production package.
Figure 44. i.MX28 Production Package
4.2
Ground, Power, Sense, and Reference Contact Assignments
Table 64 shows power and ground contact assignments for the MAPBGA package.
Table 64. MAPBGA Power and Ground Contact Assignments
Contact Name
Contact Assignment
VDDA1
C13
VDDD
G12,G11,F10,F11,K12,F12,G10
VDDIO18
G8,F9,F8,G9
VDDIO33
H8,J8,N3,G3,E6,J9,J10,A7,E16
VDDIO33_EMI
N17
VDDIO_EMI
P11,R13,N13,N15,G17,M12,M10,G13,M11,L13,G15
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
59
Package Information and Contact Assignments
Table 64. MAPBGA Power and Ground Contact Assignments (continued)
Contact Name
Contact Assignment
VDDIO_EMIQ
K15,J13,R15
VDDXTAL
C12
VSS
E15,L11,A1,K10,K11,J11,M14,H11,U1,H9,H12,H3,K9,C16,L10,H16,J12,H10,B7,E5,J15,A9,N4
VSSA1
B13
VSSA2
B11
VSSIO_EMI
F16,R10,H14,M16,F14,L12,P16,U17,T14,P14,R12
4.3
Signal Contact Assignments
Table 65 lists the i.MX285 MAPBGA package signal contact assignments.
Table 65. i.MX285 MAPBGA Contact Assignments
Signal Name
Contact
Assignment
Signal Name
Contact
Assignment
Contact
Assignment
Signal Name
AUART0_CTS
J6
EMI_DQS1N
J16
LCD_D17
R3
AUART0_RTS
J7
EMI_ODT0
R17
LCD_D18
U4
AUART0_RX
G5
EMI_ODT1
T17
LCD_D19
T4
AUART0_TX
H5
EMI_RASN
R16
LCD_D20
R4
NC
K5
EMI_VREF0
R14
LCD_D21
U5
NC
J5
EMI_VREF1
K13
LCD_D22
T5
AUART1_RX
L4
EMI_WEN
T15
LCD_D23
R5
AUART1_TX
K4
ENET0_COL
J4
NC
N1
NC
H6
ENET0_CRS
J3
NC
N5
NC
H7
ENET0_MDC
G4
NC
M1
NC
F6
ENET0_MDIO
H4
LCD_RD_E
P4
NC
F5
ENET0_RXD0
H1
LCD_RESET
M6
NC
L6
ENET0_RXD1
H2
LCD_RS
M4
NC
K6
ENET0_RXD2
J1
NC
L1
NC
M5
ENET0_RXD3
J2
LCD_WR_RWN
K1
NC
L5
ENET0_RX_CLK F3
LRADC0
C15
BATTERY
A15
ENET0_RX_EN
E4
LRADC1
C9
DCDC_BATT
B15
ENET0_TXD0
F1
LRADC2
C8
DCDC_GND
A17
ENET0_TXD1
F2
LRADC3
D9
DCDC_LN1
B17
ENET0_TXD2
G1
LRADC4
D13
DCDC_LP
A16
ENET0_TXD3
G2
LRADC5
D15
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
60
NXP Semiconductors
Package Information and Contact Assignments
Table 65. i.MX285 MAPBGA Contact Assignments (continued)
Contact
Assignment
Signal Name
Signal Name
Contact
Assignment
Signal Name
Contact
Assignment
DCDC_VDDA
B16
ENET0_TX_CLK E3
LRADC6
C14
DCDC_VDDD
D17
ENET0_TX_EN
F4
PSWITCH
A11
DCDC_VDDIO
C17
ENET_CLK
E2
PWM0
K7
DEBUG
B9
GPMI_ALE
P6
PWM1
L7
EMI_A00
U15
GPMI_CE0N
N7
PWM2
K8
EMI_A01
U12
GPMI_CE1N
N9
PWM3
E9
EMI_A02
U14
GPMI_CE2N
M7
PWM4
E10
EMI_A03
T11
GPMI_CE3N
M9
RESETN
A14
EMI_A04
U10
GPMI_CLE
P7
RTC_XTALI
D11
EMI_A05
R11
GPMI_D00
U8
RTC_XTALO
C11
EMI_A06
R9
GPMI_D01
T8
SAIF0_BITCLK
F7
EMI_A07
N11
GPMI_D02
R8
SAIF0_LRCLK
G6
EMI_A08
U9
GPMI_D03
U7
SAIF0_MCLK
G7
EMI_A09
P10
GPMI_D04
T7
SAIF0_SDATA0
E7
EMI_A10
U13
GPMI_D05
R7
SAIF1_SDATA0
E8
EMI_A11
T10
GPMI_D06
U6
SPDIF
D7
EMI_A12
U11
GPMI_D07
T6
SSP0_CMD
A4
EMI_A13
T9
GPMI_RDN
R6
SSP0_DATA0
B6
EMI_A14
N10
GPMI_RDY0
N6
SSP0_DATA1
C6
EMI_BA0
T16
GPMI_RDY1
N8
SSP0_DATA2
D6
EMI_BA1
T12
GPMI_RDY2
M8
SSP0_DATA3
A5
EMI_BA2
N12
GPMI_RDY3
L8
SSP0_DATA4
B5
EMI_CASN
U16
GPMI_RESETN
L9
SSP0_DATA5
C5
EMI_CE0N
P12
GPMI_WRN
P8
SSP0_DATA6
D5
EMI_CE1N
P9
HSADC0
B14
SSP0_DATA7
B4
EMI_CKE
T13
I2C0_SCL
C7
SSP0_DETECT
D10
EMI_CLK
L17
I2C0_SDA
D8
SSP0_SCK
A6
EMI_CLKN
L16
JTAG_RTCK
E14
NC
C1
EMI_D00
N16
JTAG_TCK
E11
NC
D1
EMI_D01
M13
JTAG_TDI
E12
NC
E1
EMI_D02
P15
JTAG_TDO
E13
NC
B1
EMI_D03
N14
JTAG_TMS
D12
SSP2_MISO
B3
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
61
Package Information and Contact Assignments
Table 65. i.MX285 MAPBGA Contact Assignments (continued)
Signal Name
Contact
Assignment
Contact
Assignment
Signal Name
Contact
Assignment
Signal Name
EMI_D04
P13
JTAG_TRST
D14
SSP2_MOSI
C3
EMI_D05
P17
LCD_CS
P5
SSP2_SCK
A3
EMI_D06
L14
LCD_D00
K2
SSP2_SS0
C4
EMI_D07
M17
LCD_D01
K3
SSP2_SS1
D3
EMI_D08
G16
LCD_D02
L2
SSP2_SS2
D4
EMI_D09
H15
LCD_D03
L3
NC
B2
EMI_D10
G14
LCD_D04
M2
NC
C2
EMI_D11
J14
LCD_D05
M3
NC
A2
EMI_D12
H13
LCD_D06
N2
NC
D2
EMI_D13
H17
LCD_D07
P1
TESTMODE
C10
EMI_D14
F13
LCD_D08
P2
USB0DM
A10
EMI_D15
F17
LCD_D09
P3
USB0DP
B10
EMI_DDR_OPE
N
K14
LCD_D10
R1
USB1DM
B8
EMI_DDR_OPE
N_FB
L15
LCD_D11
R2
USB1DP
A8
EMI_DQM0
M15
LCD_D12
T1
VDD1P5
D16
EMI_DQM1
F15
LCD_D13
T2
VDD4P2
A13
EMI_DQS0
K17
LCD_D14
U2
VDD5V
E17
EMI_DQS0N
K16
LCD_D15
U3
XTALI
A12
EMI_DQS1
J17
LCD_D16
T3
XTALO
B12
4.4
i.MX281 Ball Map
Table 66 shows the 289-pin i.MX281 MAPBGA ball map.
A
DCDC_GND 17
16
DCDC_LP
15
BATTERY
14
RESETN
13
VDD4P2
12
XTALI
11
PSWITCH
10
USB0DM
9
VSS
8
USB1DP
7
VDDIO33
6
SSP0_SCK
SSP0_DATA3 5
4
SSP0_CMD
3
SSP2_SCK
2
NC
VSS
A
1
Table 66. 289-Pin i.MX281 MAPBGA Ball Map
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
62
NXP Semiconductors
NXP Semiconductors
USB1DM
DEBUG
USB0DP
VSSA1
HSADC0
DCDC_BATT
DCDC_VDDA
DCDC_LN1
B
LRADC2
LRADC1
TESTMODE
RTC_XTALO
VDDXTAL
VDDA1
LRADC6
LRADC0
VSS
DCDC_VDDIO
C
I2C0_SDA
LRADC3
SSP0_DETECT
RTC_XTALI
JTAG_TMS
LRADC4
JTAG_TRST
LRADC5
VDD1P5
DCDC_VDDD
D
SAIF1_SDATA0
PWM3
PWM4
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_RTCK
VSS
VDDIO33
VDD5V
E
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
EMI_D14
VSSIO_EMI
EMI_DQM1
VSSIO_EMI
EMI_D15
F
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
VDDIO_EMI
EMI_D10
VDDIO_EMI
EMI_D08
VDDIO_EMI
G
VDDIO33
VSS
VSS
VSS
VSS
EMI_D12
VSSIO_EMI
EMI_D09
VSS
EMI_D13
H
VDDIO33
VDDIO33
VDDIO33
VSS
VSS
VDDIO_EMIQ
EMI_D11
VSS
EMI_DQS1N
EMI_DQS1
J
PWM2
VSS
VSS
VSS
VDDD
EMI_VREF1
EMI_DDR_OPEN
VDDIO_EMIQ
EMI_DQS0N
EMI_DQS0
K
XTALO
VSSA2
VSS
I2C0_SCL
SPDIF
SAIF0_SDATA0
SAIF0_BITCLK
SAIF0_MCLK
NC
AUART0_RTS
PWM0
SSP0_DATA1 SSP0_DATA0
SSP0_DATA2
VDDIO33
NC
SAIF0_LRCLK
NC
AUART0_CTS
NC
SSP0_DATA5 SSP0_DATA4
SSP0_DATA6
VSS
AUART0_TX
NC
NC
NC
SSP0_DATA7
AUART0_RX
SSP2_SS0
SSP2_SS2
ENET0_RX_EN
ENET0_COL
AUART1_TX
ENET0_TX_EN
ENET0_MDIO ENET0_MDC
ENET0_RX_CLK ENET0_TX_CLK
SSP2_MISO
VDDIO33
SSP2_MOSI
VSS
SSP2_SS1
ENET0_CRS
NC
NC
NC
ENET_CLK
ENET0_TXD1
ENET0_RXD3 ENET0_RXD1 ENET0_TXD3
ETM_DA0
ETM_DA1
NC
NC
NC
B
C
D
E
F
NC
G
ENET0_TXD0
H
ENET0_RXD2 ENET0_RXD0 ENET0_TXD2
J
ETM_TCLK
K
Package Information and Contact Assignments
Table 66. 289-Pin i.MX281 MAPBGA Ball Map (continued)
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
63
64
4
3
16
15
14
13
12
11
10
9
8
7
6
A
DCDC_GND 17
DCDC_LP
BATTERY
RESETN
VDD4P2
XTALI
PSWITCH
USB0DM
VSS
USB1DP
VDDIO33
SSP0_SCK
SSP0_DATA3 5
SSP0_CMD
SSP2_SCK
2
1
4.5
NC
VSS
A
EMI_A00
EMI_A02
EMI_A10
EMI_A01
EMI_A12
EMI_A04
EMI_A08
GPMI_D00
GPMI_D03
U
T
17 VSSIO_EMI EMI_ODT1
EMI_BA0
EMI_WEN
VSSIO_EMI
EMI_CKE
EMI_BA1
EMI_A03
EMI_A11
EMI_A13
GPMI_D01
GPMI_D04
R
EMI_ODT0
EMI_RASN
VDDIO_EMIQ
EMI_VREF0
VDDIO_EMI
VSSIO_EMI
EMI_A05
VSSIO_EMI
EMI_A06
GPMI_D02
GPMI_D05
P
EMI_D05
VSSIO_EMI
EMI_D02
VSSIO_EMI
EMI_D04
EMI_CE0N
VDDIO_EMI
EMI_A09
EMI_CE1N
GPMI_WRN
GPMI_CLE
GPMI_ALE
N
VDDIO33_EMI
EMI_D00
VDDIO_EMI
EMI_D03
VDDIO_EMI
EMI_BA2
EMI_A07
EMI_A14
GPMI_CE1N
GPMI_RDY1
GPMI_CE0N
GPMI_RDY0
M
EMI_D07
L
EMI_CLK
EMI_CLKN
EMI_DDR_OPEN_FB
EMI_DQM0
VSSIO_EMI
EMI_D06
VDDIO_EMI
VSSIO_EMI
VSS
EMI_D01
VDDIO_EMI
VSS
VSS
VDDIO_EMI
VDDIO_EMI
GPMI_RESETN
GPMI_RDY3
PWM1
NC
GPMI_CE3N
GPMI_RDY2
GPMI_CE2N
NC
NC
NC
NC
NC
NC
NC
NC
GPMI_RDN
AUART1_RX
GPIO_B1P26
VSS
ETM_TCTL
NC
NC
NC
GPMI_D07
ETM_DA3
ETM_DA5
VDDIO33
NC
NC
NC
NC
GPMI_D06
ETM_DA2
ETM_DA4
ETM_DA6
NC
NC
NC
NC
NC
NC
NC
ETM_DA7
NC
NC
VSS
16 EMI_CASN
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
L
M
N
P
R
T
U
Package Information and Contact Assignments
Table 66. 289-Pin i.MX281 MAPBGA Ball Map (continued)
i.MX285 Ball Map
Table 67 shows the 289-pin i.MX285 MAPBGA ball map.
Table 67. 289-Pin i.MX285 MAPBGA Ball Map
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
NXP Semiconductors
USB1DM
DEBUG
USB0DP
VSSA1
HSADC0
DCDC_BATT
DCDC_VDDA
DCDC_LN1
B
LRADC2
LRADC1
TESTMODE
RTC_XTALO
VDDXTAL
VDDA1
LRADC6
LRADC0
VSS
DCDC_VDDIO
C
I2C0_SDA
LRADC3
SSP0_DETECT
RTC_XTALI
JTAG_TMS
LRADC4
JTAG_TRST
LRADC5
VDD1P5
DCDC_VDDD
D
SAIF1_SDATA0
PWM3
PWM4
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_RTCK
VSS
VDDIO33
VDD5V
E
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
EMI_D14
VSSIO_EMI
EMI_DQM1
VSSIO_EMI
EMI_D15
F
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
VDDIO_EMI
EMI_D10
VDDIO_EMI
EMI_D08
VDDIO_EMI
G
VDDIO33
VSS
VSS
VSS
VSS
EMI_D12
VSSIO_EMI
EMI_D09
VSS
EMI_D13
H
VDDIO33
VDDIO33
VDDIO33
VSS
VSS
VDDIO_EMIQ
EMI_D11
VSS
EMI_DQS1N
EMI_DQS1
J
PWM2
VSS
VSS
VSS
VDDD
EMI_VREF1
EMI_DDR_OPEN
VDDIO_EMIQ
EMI_DQS0N
EMI_DQS0
K
XTALO
VSSA2
VSS
I2C0_SCL
SPDIF
SAIF0_SDATA0
SAIF0_BITCLK
SAIF0_MCLK
NC
AUART0_RTS
PWM0
SSP0_DATA1 SSP0_DATA0
SSP0_DATA2
VDDIO33
NC
SAIF0_LRCLK
NC
AUART0_CTS
NC
SSP0_DATA5 SSP0_DATA4
SSP0_DATA6
VSS
AUART0_TX
NC
NC
NC
SSP0_DATA7
AUART0_RX
SSP2_SS0
SSP2_SS2
ENET0_RX_EN
ENET0_COL
AUART1_TX
ENET0_TX_EN
ENET0_MDIO ENET0_MDC
ENET0_RX_CLK ENET0_TX_CLK
SSP2_MISO
VDDIO33
SSP2_MOSI
VSS
SSP2_SS1
ENET0_CRS
NC
NC
NC
ENET_CLK
ENET0_TXD1
ENET0_RXD3 ENET0_RXD1 ENET0_TXD3
LCD_D00
LCD_D01
NC
NC
NC
B
C
D
E
F
NC
G
ENET0_TXD0
H
ENET0_RXD2 ENET0_RXD0 ENET0_TXD2
J
LCD_WR_RWN
K
Package Information and Contact Assignments
Table 67. 289-Pin i.MX285 MAPBGA Ball Map (continued)
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
65
66
NC
NC
PWM1
GPMI_RDY3
GPMI_RESETN
VSS
VDDIO_EMI
EMI_D06
EMI_DDR_OPEN_FB
NC
LCD_RESET
GPMI_CE2N
GPMI_RDY2
GPMI_CE3N
VDDIO_EMI
VDDIO_EMI
VDDIO_EMI
EMI_D01
VSS
EMI_DQM0
NC
GPMI_RDY0
GPMI_CE0N
GPMI_RDY1
GPMI_CE1N
EMI_A14
EMI_A07
EMI_BA2
VDDIO_EMI
EMI_D03
VDDIO_EMI
LCD_CS
GPMI_ALE
GPMI_CLE
GPMI_WRN
EMI_CE1N
EMI_A09
VDDIO_EMI
EMI_CE0N
EMI_D04
VSSIO_EMI
EMI_D02
LCD_D23
GPMI_RDN
GPMI_D05
GPMI_D02
EMI_A06
VSSIO_EMI
EMI_A05
VSSIO_EMI
VDDIO_EMI
EMI_VREF0
VDDIO_EMIQ
LCD_D22
GPMI_D07
GPMI_D04
GPMI_D01
EMI_A13
EMI_A11
EMI_A03
EMI_BA1
EMI_CKE
VSSIO_EMI
EMI_WEN
LCD_D21
GPMI_D06
GPMI_D03
GPMI_D00
EMI_A08
EMI_A04
EMI_A12
EMI_A01
EMI_A10
EMI_A02
EMI_A00
EMI_CLK
L
EMI_D07
M
VDDIO33_EMI
N
EMI_D05
U
T
R
P
EMI_ODT0
17 VSSIO_EMI EMI_ODT1
VSSIO_EMI
VSSIO_EMI
EMI_RASN
EMI_BA0
EMI_D00
EMI_CLKN
VSSIO_EMI
VSS
AUART1_RX
LCD_RS
VSS
LCD_RD_E
LCD_D20
LCD_D03
LCD_D05
VDDIO33
LCD_D09
LCD_D17
LCD_D16
LCD_D15
LCD_D19
LCD_D02
LCD_D04
LCD_D06
LCD_D08
LCD_D11
LCD_D13
LCD_D14
LCD_D18
NC
NC
NC
LCD_D07
LCD_D10
LCD_D12
VSS
16 EMI_CASN
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
L
M
N
P
R
T
U
Package Information and Contact Assignments
Table 67. 289-Pin i.MX285 MAPBGA Ball Map (continued)
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
Revision History
5
Revision History
Table 68 summarizes revisions to this document.
Table 68. Document Revision History
Rev.
Number
Date
Substantive Change(s)
Rev. 4
10/2018
• Table 1, "Ordering Information," on page 3”: Added “C” suffix part numbers.
• Device Section 1.1, “Device Features”: Removed reference to Dual Ethernet.
• Table 37, "LPDDR1 Input AC Timing," on page 32: Corrected table tile from “DDR2” to “LPDDR1” Input
AC Timing.
Rev. 3
07/2012
• Removed the Power Consumption table, and added Table 12, "Run IDD Test Case,," on page 13.
• Updated Table 23, "ON Impedance of EMI Drivers for Different Drive Strengths," on page 19.
Rev. 2
03/2012
• In Section 1.1, “Device Features:”
—Updated synchronous serial ports (SSP) support for the i.MX28
—Updated Ethernet support for the i.MX28
—Updated Low-Resolution A/D Converter (LRADC) support for the i.MX28
• Updated Table 2, "i.MX28 Functional Differences," on page 3.
• In Table 3, "i.MX28 Functions," on page 5, updated the Ethernet MAC function.
• In Table 6, "DC Absolute Maximum Ratings," on page 11, removed the PSWITCH parameter as this
parameter is explained in detail in Table 11.
• In Table 8, "Recommended Power Supply Operating Conditions," on page 11:
—Updated two parameters: “VDD5V Supply Voltage” and “Offstate Current”
—Updated the third footnote
• In Table 9, "Operating Temperature Conditions," on page 12, added a new footnote in the “Parameter”
column.
• In Table 13, "Power Supply Characteristics," on page 13, updated two parameters: “VDDIO Maximum
Output Current” and “VDD4P2 Output Current Limit Accuracy.”
• In Section 3.1.2.1, “Recommended Operating Conditions for Specific Clock Targets:”
—Removed the “System Clocks” table
—Updated two TBD values in the first row of Table 14
—Removed the first row in Table 15
—Removed the first row in Table 16
• In Table 20, "Power Mode Settings," on page 16, changed the second column name from “Deep Sleep”
to “Offstate.”
• Updated Table 22, "EMI Digital Pin DC Characteristics," on page 18.
• In Table 30, "LRADC Electrical Specifications," on page 26, updated the “DC Electrical Specification”
section.
• In Table 31, "HSADC Electrical Specification," on page 26, updated the “DC Electrical Specification”
section.
• In Section 3.5.5, “Coresight ETM9 AC Interface Timing,” updated the first paragraph.
• In Section 3.5.5.1, “TRACECLK Timing,” corrected the title of Table 43.
• In Section 3.5.5.2, “Trace Data Signal Timing,” corrected the titles of Figure 15 and Table 44.
• In Section 4.3, “Signal Contact Assignments:”
—Removed the “i.MX281 MAPBGA Contact Assignments” table
—Updated Table 65
• Updated Table 66, "289-Pin i.MX281 MAPBGA Ball Map," on page 62.
• Updated Table 67, "289-Pin i.MX285 MAPBGA Ball Map," on page 64.
• Removed the following tables:
—289-pin i.MX280 MAPBGA Ball Map
—289-pin i.MX283 MAPBGA Ball Map
—289-pin i.MX286 MAPBGA Ball Map
—289-pin i.MX287 MAPBGA Ball Map
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
NXP Semiconductors
67
Revision History
Table 68. Document Revision History (continued)
Rev.
Number
Date
Rev. 1
04/2011
Substantive Change(s)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Rev. 0
Updated Section 1.1, “Device Features.”
Added Section 3.2, “Thermal Characteristics.”
Updated Table 2, "i.MX28 Functional Differences," on page 3.
Updated Figure 1.
Updated Ethernet MAC row in Table 3, "i.MX28 Functions," on page 5.
Updated ENET row in Table 4, "i.MX28 Digital and Analog Modules," on page 6.
Updated BATT row and its corresponding footnote in Table 8, "Recommended Power Supply Operating
Conditions," on page 11.
Updated Table 9, "Operating Temperature Conditions," on page 12.
Replaced the term “DC Characteristics” with “Power Consumption” in the title and introduction of the
Power Consumption table. Also changed Dissipation to Consumption in first row.
Updated Table 13, "Power Supply Characteristics," on page 13.
Updated Table 25, "Digital Pin DC Characteristics for GPIO in 3.3-V Mode," on page 20.
Updated Table 26, "Digital Pin DC Characteristics for GPIO in 1.8 V Mode," on page 20.
Updated and added a footnote to Table 33, "Ethernet PLL Specifications," on page 28.
Updated DDR1 row of Table 34, "EMI Command/Address AC Timing," on page 29.
09/2010 Initial release.
i.MX28 Applications Processors for Automotive Products, Rev. 4, 10/2018
68
NXP Semiconductors
How to Reach Us:
Information in this document is provided solely to enable system and software implementers to
Home Page:
nxp.com
use NXP products. There are no express or implied copyright licenses granted hereunder to
Web Support:
nxp.com/support
reserves the right to make changes without further notice to any products herein.
design or fabricate any integrated circuits based on the information in this document. NXP
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.
While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C?5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C?Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore,
Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in
the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart,
Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.
© 2010-2018 NXP B.V.
Document Number: IMX28AEC
Rev. 4
10/2018