0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MF1S7031XDUF/V1V

MF1S7031XDUF/V1V

  • 厂商:

    NXP(恩智浦)

  • 封装:

    模具

  • 描述:

    MIFARE CLASSIC SMART CARD IC

  • 数据手册
  • 价格&库存
MF1S7031XDUF/V1V 数据手册
MF1S70YYX_V1 MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Rev. 3.2 — 23 November 2017 279332 1 Product data sheet COMPANY PUBLIC General description NXP Semiconductors has developed the MIFARE Classic MF1S70yyX/V1 to be used in a contactless smart card according to ISO/IEC 14443 Type A. The MIFARE Classic EV1 4K MF1S70yyX/V1 IC is used in applications like public transport ticketing and can also be used for various other applications. 1.1 Anticollision An intelligent anticollision function allows to operate more than one card in the field simultaneously. The anticollision algorithm selects each card individually and ensures that the execution of a transaction with a selected card is performed correctly without interference from another card in the field. energy MIFARE CARD PCD data 001aam199 Figure 1. Contactless MIFARE system 1.2 Simple integration and user convenience The MF1S70yyX/V1 is designed for simple integration and user convenience which allows complete ticketing transactions to be handled in less than 100 ms. 1.3 Security and privacy • • • • Manufacturer programmed 7-byte UID or 4-byte NUID identifier for each device Random ID support Mutual three pass authentication (ISO/IEC DIS 9798-2) Individual set of two keys per sector to support multi-application with key hierarchy 1.4 Delivery options • 7-byte UID, 4-byte NUID • Bumped die on sawn wafer • MOA4 and MOA8 contactless module MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development 2 Features and benefits • Contactless transmission of data and energy supply • Operating distance up to 100 mm depending on antenna geometry and reader configuration • Operating frequency of 13.56 MHz • Data transfer of 106 kbit/s • Data integrity of 16-bit CRC, parity, bit coding, • Anticollision bit counting • Typical ticketing transaction time of < 100 ms (including backup management) • 7 Byte UID or 4 Byte NUID • Random ID support (7 Byte UID version) 2.1 EEPROM 3 4 • 4 kB, organized in 32 sectors of 4 blocks and 8 sectors of 16 blocks (one block consists of 16 byte) • User definable access conditions for each memory block • Data retention time of 10 years • Write endurance 200000 cycles Applications • Public transportation • Access management • Electronic toll collection • Car parking • School and campus cards • Employee cards • Internet cafés • Loyalty Quick reference data Table 1. Quick reference data Symbol Parameter Ci input capacitance fi input frequency Conditions [1] Min Typ Max Unit 14.9 16.9 19.0 pF - 13.56 - MHz EEPROM characteristics tret retention time Tamb = 22 °C 10 - - year Nendu(W) write endurance Tamb = 22 °C 100000 200000 - cycle [1] MF1S70yyX_V1 Product data sheet COMPANY PUBLIC Tamb=22°C, f=13,56Mhz, VLaLb = 1,5 V RMS All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 2 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development 5 Ordering information Table 2. Ordering information Type number Package Name MF1S7001XDUD/V1 Description Version FFC Bump 8 inch wafer, 120 μm thickness, on film frame carrier, electronic fail die marking according to SECS-II format), Au bumps, 7-byte UID - MF1S7001XDUD2/V1 FFC Bump 12 inch wafer, 120 μm thickness, on film frame carrier, electronic fail die marking according to SECS-II format), Au bumps, 7-byte UID - MF1S7001XDUF/V1 FFC Bump 8 inch wafer, 75 μm thickness, on film frame carrier, electronic fail die marking according to SECS-II format), Au bumps, 7-byte UID - MF1S7000XDA4/V1 MOA4 plastic leadless module carrier package; 35 mm wide tape, 7-byte UID SOT500-2 MF1S7000XDA8/V1 MOA8 plastic leadless module carrier package; 35 mm wide tape, 7-byte UID SOT500-4 MF1S7031XDUD/V1 FFC Bump 8 inch wafer, 120 μm thickness, on film frame carrier, electronic fail die marking according to SECS-II format), Au bumps, 4-byte non-unique ID - MF1S7031XDUD2/V1 FFC Bump 12 inch wafer, 120 μm thickness, on film frame carrier, electronic fail die marking according to SECS-II format), Au bumps, 4-byte non-unique ID - MF1S7031XDUF/V1 FFC Bump 8 inch wafer, 75 μm thickness, on film frame carrier, electronic fail die marking according to SECS-II format), Au bumps, 4-byte non-unique ID - MF1S7030XDA4/V1 MOA4 plastic leadless module carrier package; 35 mm wide tape, 4-byte non-unique ID SOT500-2 MF1S7030XDA8/V1 MOA8 plastic leadless module carrier package; 35 mm wide tape, 4-byte non-unique ID SOT500-4 6 Block diagram RF INTERFACE UART ISO/IEC 14443 TYPE A POWER ON RESET CRYPTO1 RNG VOLTAGE REGULATOR CRC CLOCK INPUT FILTER RESET GENERATOR LOGIC UNIT EEPROM 001aan006 Figure 2. Block diagram of MF1S70yyX/V1 MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 3 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development 7 Pinning information 7.1 Pinning The pinning for the MF1S70yyX/V1DAx is shown as an example in Figure 3 for the MOA4 contactless module. For the contactless module MOA8, the pinning is analogous and not explicitly shown. LA top view LB 001aan002 Figure 3. Pin configuration for SOT500-2 (MOA4) Table 3. Pin allocation table 8 Pin Symbol LA LA Antenna coil connection LA LB LB Antenna coil connection LB Functional description 8.1 Block description The MF1S70yyX/V1 chip consists of a 4 kB EEPROM, RF interface and Digital Control Unit. Energy and data are transferred via an antenna consisting of a coil with a small number of turns which is directly connected to the MF1S70yyX/V1. No further external components are necessary. Refer to the document Ref. 1 for details on antenna design. • RF interface: – Modulator/demodulator – Rectifier – Clock regenerator – Power-On Reset (POR) – Voltage regulator • Anticollision: Multiple cards in the field may be selected and managed in sequence • Authentication: Preceding any memory operation the authentication procedure ensures that access to a block is only possible via the two keys specified for each block MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 4 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development • Control and Arithmetic Logic Unit: Values are stored in a special redundant format and can be incremented and decremented • EEPROM interface • Crypto unit: The CRYPTO1 stream cipher of the MF1S70yyX/V1 is used for authentication and encryption of data exchange. • EEPROM: 4 kB is organized in 32 sectors of 4 blocks and 8 sectors of 16 blocks. One block contains 16 bytes. The last block of each sector is called "trailer", which contains two secret keys and programmable access conditions for each block in this sector. 8.2 Communication principle The commands are initiated by the reader and controlled by the Digital Control Unit of the MF1S70yyX/V1. The command response is depending on the state of the IC and for memory operations also on the access conditions valid for the corresponding sector. 8.2.1 Request standard / all After Power-On Reset (POR) the card answers to a request REQA or wakeup WUPA command with the answer to request code (see Section 9.4, ATQA according to ISO/IEC 14443A). 8.2.2 Anticollision loop In the anticollision loop the identifier of a card is read. If there are several cards in the operating field of the reader, they can be distinguished by their identifier and one can be selected (select card) for further transactions. The unselected cards return to the idle state and wait for a new request command. If the 7-byte UID is used for anticollision and selection, two cascade levels need to be processes as defined in ISO/IEC 14443-3. Remark: For the 4-byte non-unique ID product versions, the identifier retrieved from the card is not defined to be unique. For further information regarding handling of non-unique identifiers see Ref. 6. 8.2.3 Select card With the select card command the reader selects one individual card for authentication and memory related operations. The card returns the Select AcKnowledge (SAK) code which determines the type of the selected card, see Section 9.4. For further details refer to the document Ref. 2. 8.2.4 Three pass authentication After selection of a card the reader specifies the memory location of the following memory access and uses the corresponding key for the three pass authentication procedure. After a successful authentication all commands and responses are encrypted. Remark: The HLTA command needs to be sent encrypted to the PICC after a successful authentication in order to be accepted. MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 5 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Transaction Sequence POR Request Standard Typical Transaction Time Request All Identification and Selection Procedure Anticollision Loop Get Identifier ~2.5 ms without collision + ~1 ms for 7-byte UID + ~1 ms for each collision Select Card Authentication Procedure 3 Pass Authenticationon specific sector ~2 ms Memory Operations Read Block Write Block Decrement Increment Restore Halt ~2.5 ms ~5.5 ms read block write block ~2.5 ms de-/increment ~4.5 ms transfer Transfer 001aan921 1. the command flow diagram does not include the Personalize UID Usage and the SET_MOD_TYPE command, for details on those commands please see Section 10.1.1 and Section 11 Figure 4. MIFARE Classic command flow diagram 8.2.5 Memory operations After authentication any of the following operations may be performed: • Read block • Write block • Decrement: Decrements the contents of a block and stores the result in the internal Transfer Buffer • Increment: Increments the contents of a block and stores the result in the internal Transfer Buffer • Restore: Moves the contents of a block into the internal Transfer Buffer • Transfer: Writes the contents of the internal Transfer Buffer to a value block 8.3 Data integrity Following mechanisms are implemented in the contactless communication link between reader and card to ensure very reliable data transmission: • 16 bits CRC per block • Parity bits for each byte MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 6 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development • Bit count checking • Bit coding to distinguish between "1", "0" and "no information" • Channel monitoring (protocol sequence and bit stream analysis) 8.4 Three pass authentication sequence 1. The reader specifies the sector to be accessed and chooses key A or B. 2. The card reads the secret key and the access conditions from the sector trailer. Then the card sends a number as the challenge to the reader (pass one). 3. The reader calculates the response using the secret key and additional input. The response, together with a random challenge from the reader, is then transmitted to the card (pass two). 4. The card verifies the response of the reader by comparing it with its own challenge and then it calculates the response to the challenge and transmits it (pass three). 5. The reader verifies the response of the card by comparing it to its own challenge. After transmission of the first random challenge the communication between card and reader is encrypted. 8.5 RF interface The RF-interface is according to the standard for contactless smart cards ISO/IEC 14443A. For operation, the carrier field from the reader always needs to be present (with short pauses when transmitting), as it is used for the power supply of the card. For both directions of data communication there is only one start bit at the beginning of each frame. Each byte is transmitted with a parity bit (odd parity) at the end. The LSB of the byte with the lowest address of the selected block is transmitted first. The maximum frame length is 163 bits (16 data bytes + 2 CRC bytes = 16 × 9 + 2 × 9 + 1 start bit). 8.6 Memory organization The 4096 × 8 bit EEPROM memory is organized in 32 sectors of 4 blocks and 8 sectors of 16 blocks. One block contains 16 bytes. MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 7 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Byte Number within a Block Sector Block 39 15 32 31 0 0 1 2 3 Key A 4 5 6 7 8 9 10 11 12 13 14 15 Access Bits Key B Description Sector Trailer 39 14 Data 13 Data : : : : 2 Data 1 Data 0 Data : : : : : : 15 Key A Access Bits Key B Sector Trailer 32 14 Data 13 Data : : : : 2 Data 1 Data 0 Data 3 Key A Access Bits Key B Sector Trailer 31 2 Data 1 Data 0 Data : : : : : : 3 Key A Access Bits Key B Sector Trailer 0 2 Data 1 Data 0 Manufacturer Data Manufacturer Block 001aan021 Figure 5. Memory organization 8.6.1 Manufacturer block This is the first data block (block 0) of the first sector (sector 0). It contains the IC manufacturer data. This block is programmed and write protected in the production test. The manufacturer block is shown in Figure 6 and Figure 7 for the 4-byte NUID and 7-byte UID version respectively. MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 8 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Block 0/Sector 0 Byte 0 1 2 3 4 5 6 7 NUID 8 9 10 11 12 13 Manufacturer Data 14 15 001aan010 Figure 6. Manufacturer block for MF1S503yX with 4-byte NUID Block 0/Sector 0 Byte 0 1 2 3 4 5 6 7 8 9 UID 10 11 12 13 Manufacturer Data 14 15 001aam204 Figure 7. Manufacturer block for MF1S500yX with 7-byte UID 8.6.2 Data blocks One block consists of 16 bytes. The first 32 sectors contain 3 blocks and the last 8 sectors contain 15 blocks for storing data (Sector 0 contains only two data blocks and the read-only manufacturer block). The data blocks can be configured by the access bits as • read/write blocks • value blocks Value blocks can be used for e.g. electronic purse applications, where additional commands like increment and decrement for direct control of the stored value are provided A successful authentication has to be performed to allow any memory operation. Remark: The default content of the data blocks at delivery is not defined. 8.6.2.1 Value blocks Value blocks allow performing electronic purse functions (valid commands are: read, write, increment, decrement, restore, transfer). Value blocks have a fixed data format which permits error detection and correction and a backup management. A value block can only be generated through a write operation in value block format: • Value: Signifies a signed 4-byte value. The lowest significant byte of a value is stored in the lowest address byte. Negative values are stored in standard 2´s complement format. For reasons of data integrity and security, a value is stored three times, twice non-inverted and once inverted. • Adr: Signifies a 1-byte address, which can be used to save the storage address of a block, when implementing a powerful backup management. The address byte is stored four times, twice inverted and non-inverted. During increment, decrement, restore and transfer operations the address remains unchanged. It can only be altered via a write command. Byte Number 0 Description 1 2 value 3 4 5 6 7 value 8 9 10 value 11 12 13 14 15 adr adr adr adr 001aan018 Figure 8. Value blocks MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 9 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development An example of a valid value block format for the decimal value 1234567d and the block address 17d is shown in Table 4. First, the decimal value has to be converted to the hexadecimal representation of 0012D687h. The LSByte of the hexadecimal value is stored in Byte 0, the MSByte in Byte 3. The bit inverted hexadecimal representation of the value is FFED2978h where the LSByte is stored in Byte 4 and the MSByte in Byte 7. The hexadecimal value of the address in the example is 11h, the bit inverted hexadecimal value is EEh. Table 4. Value block format example Byte Number 0 1 Description Values [hex] 2 3 4 5 value 87 D6 6 7 8 value 12 00 78 9 10 11 12 87 D6 14 15 adr adr adr adr value 29 ED FF 13 12 00 11 EE 11 EE 8.6.3 Sector trailer The sector trailer is always the last block in one sector. For the first 32 sectors this is block 3 and for the remaining 8 sectors it is block 15. Each sector has a sector trailer containing the • secret keys A (mandatory) and B (optional), which return logical "0"s when read and • the access conditions for the blocks of that sector, which are stored in bytes 6...9. The access bits also specify the type (data or value) of the data blocks. If key B is not needed, the last 6 bytes of the sector trailer can be used as data bytes. The access bits for the sector trailer have to be configured accordingly, see Section 8.7.2. Byte 9 of the sector trailer is available for user data. For this byte the same access rights as for byte 6, 7 and 8 apply. When the sector trailer is read, the key bytes are blanked out by returning logical zeros. If key B is configured to be readable, the data stored in bytes 10 to 15 is returned, see Section 8.7.2. All keys are set to FFFF FFFF FFFFh at chip delivery and the bytes 6, 7 and 8 are set to FF0780h. Byte Number 0 1 2 Description 3 4 5 Key A 6 7 8 Access Bits 9 10 11 12 13 14 15 Key B (optional) 001aan013 Figure 9. Sector trailer 8.7 Memory access Before any memory operation can be done, the card has to be selected and authenticated as described in Section 8.2. The possible memory operations for an addressed block depend on the key used during authentication and the access conditions stored in the associated sector trailer. Table 5. Memory operations MF1S70yyX_V1 Product data sheet COMPANY PUBLIC Operation Description Valid for Block Type Read reads one memory block read/write, value and sector trailer All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 10 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Operation Description Valid for Block Type Write writes one memory block read/write, value and sector trailer Increment increments the contents of a block and stores the result in the internal Transfer Buffer value Decrement decrements the contents of a block and stores the result in the internal Transfer Buffer value Transfer writes the contents of the internal Transfer Buffer to a block value and read/write Restore reads the contents of a block into the internal Transfer Buffer value 8.7.1 Access conditions The access conditions for every data block and sector trailer are defined by 3 bits, which are stored non-inverted and inverted in the sector trailer of the specified sector. The access bits control the rights of memory access using the secret keys A and B. The access conditions may be altered, provided one knows the relevant key and the current access condition allows this operation. Remark: With each memory access the internal logic verifies the format of the access conditions. If it detects a format violation the whole sector is irreversibly blocked. Remark: In the following description the access bits are mentioned in the non-inverted mode only. The internal logic of the MF1S70yyX/V1 ensures that the commands are executed only after a successful authentication. Table 6. Access conditions Access Bits MF1S70yyX_V1 Product data sheet COMPANY PUBLIC Valid Commands Block Block(s) Description (sectors 0 - 31) (sectors 32-39) C13 C23 C33 read, write → 3 15 sector trailer C12 C22 C32 read, write, increment, decrement, transfer, restore → 2 10-14 data block(s) C11 C21 C31 read, write, increment, decrement, transfer, restore → 1 5-9 data block(s) C10 C20 C30 read, write, increment, decrement, transfer, restore → 0 0-4 data block(s) All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 11 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Byte Number 0 1 Description 2 3 4 5 6 Key A Bit 7 7 8 9 10 11 Access Bits 12 13 14 15 Key B (optional) 6 5 4 3 2 1 0 Byte 6 C23 C22 C21 C20 C13 C12 C11 C10 Byte 7 C13 C12 C11 C10 C33 C32 C31 C30 Byte 8 C33 C32 C31 C30 C23 C22 C21 C20 Byte 9 user data 001aan003 Figure 10. Access conditions 8.7.2 Access conditions for the sector trailer Depending on the access bits for the sector trailer (block 3, respectively block 15) the read/write access to the keys and the access bits is specified as ‘never’, ‘key A’, ‘key B’ or key A|B’ (key A or key B). On chip delivery the access conditions for the sector trailers and key A are predefined as transport configuration. Since key B may be read in the transport configuration, new cards must be authenticated with key A. Since the access bits themselves can also be blocked, special care has to be taken during the personalization of cards. Table 7. Access conditions for the sector trailer Access bits Access condition for KEYA Remark Access bits KEYB C1 C2 C3 read write read write read write 0 0 0 never key A key A never key A key A Key B may be read [1] 0 1 0 never never key A never key A never Key B may be read [1] 1 0 0 never key B key A|B never never key B 1 1 0 never never key A|B never never never 0 0 1 never key A key A key A key A key A 0 1 1 never key B key A|B key B never key B 1 0 1 never never key A|B key B never never 1 1 1 never never key A|B never never never [1] Key B may be read, [1] transport configuration For this access condition key B is readable and may be used for data 8.7.3 Access conditions for data blocks Depending on the access bits for data blocks (blocks 0...2) the read/write access is specified as ‘never’, ‘key A’, ‘key B’ or ‘key A|B’ (key A or key B). The setting of the relevant access bits defines the application and the corresponding applicable commands. MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 12 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development • Read/write block: the operations read and write are allowed. • Value block: Allows the additional value operations increment, decrement, transfer and restore. With access condition ‘001’ only read and decrement are possible which reflects a non-rechargeable card. For access condition ‘110’ recharging is possible by using key B. • Manufacturer block: the read-only condition is not affected by the access bits setting! • Key management: in transport configuration key A must be used for authentication Table 8. Access conditions for data blocks Access condition for C1 C2 C3 read write increment decrement, transfer, restore 0 0 0 key A|B key A|B key A|B key A|B transport [1] configuration 0 1 0 key A|B never never never read/write block 1 0 0 key A|B key B never never read/write block 1 1 0 key A|B key B key B key A|B value block 0 0 1 key A|B never never key A|B value block 0 1 1 key B key B never never read/write block 1 0 1 key B never never never read/write block 1 1 1 never never never never read/write block [1] 9 Application Access bits [1] [1] [1] [1] [1] [1] If key B may be read in the corresponding Sector Trailer it cannot serve for authentication (see grey marked lines in Table 7). As a consequences, if the reader authenticates any block of a sector which uses such access conditions for the Sector Trailer and using key B, the card will refuse any subsequent memory access after authentication. Command overview The MIFARE Classic card activation follows the ISO/IEC 14443 Type A. After the MIFARE Classic card has been selected, it can either be deactivated using the ISO/IEC 14443 Halt command, or the MIFARE Classic commands can be performed. For more details about the card activation refer to Ref. 4. 9.1 MIFARE Classic command overview All MIFARE Classic commands typically use the MIFARE CRYPTO1 and require an authentication. All available commands for the MIFARE Classic EV1 4K are shown in Table 9. Table 9. Command overview MF1S70yyX_V1 Product data sheet COMPANY PUBLIC Command ISO/IEC 14443 Command code (hexadecimal) Request REQA 26h (7 bit) Wake-up WUPA 52h (7 bit) Anticollision CL1 Anticollision CL1 93h 20h Select CL1 Select CL1 93h 70h All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 13 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Command ISO/IEC 14443 Command code (hexadecimal) Anticollision CL2 Anticollision CL2 95h 20h Select CL2 Select CL2 95h 70h Halt Halt 50h 00h Authentication with Key A - 60h Authentication with Key B - 61h Personalize UID Usage - 40h SET_MOD_TYPE - 43h MIFARE Read - 30h MIFARE Write - A0h MIFARE Decrement - C0h MIFARE Increment - C1h MIFARE Restore - C2h MIFARE Transfer - B0h All commands use the coding and framing as described in Ref. 3 and Ref. 4 if not otherwise specified. 9.2 Timings The timing shown in this document are not to scale and values are rounded to 1 μs. All given times refer to the data frames including start of communication and end of communication. A PCD data frame contains the start of communication (1 "start bit") and the end of communication (one logic 0 + 1 bit length of unmodulated carrier). A PICC data frame contains the start of communication (1 "start bit") and the end of communication (1 bit length of no subcarrier). The minimum command response time is specified according to Ref. 4 as an integer n which specifies the PCD to PICC frame delay time. The frame delay time from PICC to PCD is at least 87 μs. The maximum command response time is specified as a time-out value. Depending on the command, the TACK value specified for command responses defines the PCD to PICC frame delay time. It does it for either the 4-bit ACK value specified in Section 9.3 or for a data frame. All command timings are according to ISO/IEC 14443-3 frame specification as shown for the Frame Delay Time in Figure 11. For more details refer to Ref. 3 and Ref. 4. MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 14 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development last data bit transmitted by the PCD first modulation of the PICC FDT = (n* 128 + 84)/fc 128/fc logic „1“ 256/fc end of communication (E) 128/fc start of communication (S) FDT = (n* 128 + 20)/fc 128/fc logic „0“ 256/fc end of communication (E) 128/fc start of communication (S) aaa-006279 Figure 11. Frame Delay Time (from PCD to PICC) and TACK and TNAK Remark: Due to the coding of commands, the measured timings usually excludes (a part of) the end of communication. Consider this factor when comparing the specified with the measured times. 9.3 MIFARE Classic ACK and NAK The MIFARE Classic uses a 4 bit ACK / NAK as shown in Table 10. Table 10. MIFARE ACK and NAK Code (4-bit) Transfer Buffer Validity Ah MF1S70yyX_V1 Product data sheet COMPANY PUBLIC Description Acknowledge (ACK) 0h valid invalid operation 1h valid parity or CRC error 4h invalid invalid operation 5h invalid parity or CRC error All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 15 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development 9.4 ATQA and SAK responses For details on the type identification procedure please refer to Ref. 2. The MF1S70yyX/V1 answers to a REQA or WUPA command with the ATQA value shown in Table 11 and to a Select CL1 command (CL2 for the 7-byte UID variant) with the SAK value shown in Table 12. Table 11. ATQA response of the MF1S70yyX/V1 Bit Number Sales Type Hex Value 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 MF1S00yX 00 44h 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 MF1S03yX 00 04h 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 MF1S700yX 00 42h 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 MF1S703yX 00 02h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Table 12. SAK response of the MF1S70yyX/V1 Bit Number Sales Type Hex Value 8 7 6 5 4 3 2 1 MF1S70yyX/V1 18 0 0 0 1 1 0 0 0 Remark: The ATQA coding in bits 7 and 8 indicate the UID size according to ISO/IEC 14443 independent from the settings of the UID usage. Remark: The bit numbering in the ISO/IEC 14443 starts with LSBit = bit 1, but not LSBit = bit 0. So one byte counts bit 1 to 8 instead of bit 0 to 7. 10 UID Options and Handling The MF1S70yyX/V1 product family offers two delivery options for the UID which is stored in block 0 of sector 0. • 7-byte UID • 4-byte NUID (Non-Unique ID) This section describes the MIFARE Classic MF1S70yyX/V1 operation when using one of the 2 UID options with respect to card selection, authentication and personalization. See also Ref. 6 for details on how to handle UIDs and NUIDs with MIFARE Classic products. 10.1 7-byte UID Operation All MF1S70yXDyy products are featuring a 7-byte UID. This 7-byte UID is stored in block 0 of sector 0 as shown in Figure 7. The behaviour during anti-collision, selection and authentication can be configured during personalization for this UID variant. 10.1.1 Personalization Options The 7-byte UID variants of the MF1S70yyX/V1 can be operated with four different functionalities, denoted as UIDFn (UID Functionality n). MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 16 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development 1. UIDF0: anti-collision and selection with the double size UID according to ISO/IEC 14443-3 2. UIDF1: anti-collision and selection with the double size UID according to ISO/IEC 14443-3 and optional usage of a selection process shortcut 3. UIDF2: anti-collision and selection with a single size random ID according to ISO/IEC 14443-3 4. UIDF3: anti-collision and selection with a single size NUID according to ISO/IEC 14443-3 where the NUID is calculated out of the 7-byte UID The anti-collision and selection procedure and the implications on the authentication process are detailed in Section 10.1.2 and Section 10.1.3. The default configuration at delivery is option 1 which enables the ISO/IEC 14443-3 compliant anti-collision and selection. This configuration can be changed using the ‘Personalize UID Usage’ command. The execution of this command requires an authentication to sector 0. Once this command has been issued and accepted by the PICC, the configuration is automatically locked. A subsequently issued ‘Personalize UID Usage’ command is not executed and a NAK is replied by the PICC. Remark: As the configuration is changeable at delivery, it is strongly recommended to send this command at personalization of the card to prevent unwanted changes in the field. This should also be done if the default configuration is used. Remark: The configuration becomes effective only after PICC unselect or PICC field reset. PCD Cmd Type CRC ACK PICC #ACK# 368 µs TACK 59 µs TNAK 59 µs NAK PICC #NAK# TTimeOut TimeOut 001aan919 Figure 12. Personalize UID Usage Table 13. Personalize UID Usage command MF1S70yyX_V1 Product data sheet COMPANY PUBLIC Name Code Description Length Cmd 40h Set anti-collision, selection and authentication behaviour 1 byte Type - Encoded type of UID usage: UIDF0: 00h UIDF1: 40h UIDF2: 20h UIDF3: 60h 1 byte CRC - CRC according to Ref. 4 2 bytes ACK, NAK see Table 10 see Section 9.3 4-bit All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 17 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Table 14. Personalize UID Usage timing TACK min Personalize UID Usage n=9 TACK max TNAK min TNAK max TTimeOut TTimeOut n=9 TTimeOut 10 ms 10.1.2 Anti-collision and Selection Depending on the chosen personalization option there are certain possibilities to perform anti-collision and selection. To bring the MIFARE Classic into the ACTIVE state according to ISO/IEC 14443-3, the following sequences are available. Sequence 1: ISO/IEC 14443-3 compliant anti-collision and selection using the cascade level 1 followed by the cascade level 2 SEL command Sequence 2: using cascade level 1 anti-collision and selection procedure followed by a Read command from block 0 Sequence 3: ISO/IEC 14443-3 compliant anti-collision and selection using the cascade level 1 SEL command Remark: The Read from Block 0 in Sequence 2 does not require a prior authentication to Sector 0 and is transmitted in plain data. For all other sequences, the readout from Block 0 in Sector 0 is encrypted and requires an authentication to that sector. Remark: The settings done with Personalize UID Usage do not change the ATQA coding. Table 15. Available activation sequences for 7-byte UID options UID Functionality Available Activation Sequences UIDF0 Sequence 1 UIDF1 Sequence 1, Sequence 2 UIDF2 Sequence 3 UIDF3 Sequence 3 10.1.3 Authentication During the authentication process, 4-byte of the UID are passed on to the MIFARE Classic Authenticate command of the contactless reader IC. Depending on the activation sequence, those 4-byte are chosen differently. In general, the input parameter to the MIFARE Classic Authenticate command is the set of 4 bytes retrieved during the last cascade level from the ISO/IEC 14443-3 Type A anticollision. Table 16. Input parameter to MIFARE Classic Authenticate UID Functionality Input to MIFARE Classic Authenticate Command Sequence 1 CL2 bytes (UID3...UID6) Sequence 2 CL1 bytes (CT, UID0...UID2) Sequence 3 4-byte NUID/RID (UID0...UID3) 10.2 4-byte UID Operation All MF1S703yXDyy products are featuring a 4-byte NUID. This 4-byte NUID is stored in block 0 of sector 0 as shown in Figure 6. MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 18 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development 10.2.1 Anti-collision and Selection The anti-collision and selection process for the product variants featuring 4-byte NUIDs is done according to ISO/IEC 14443-3 Type A using cascade level 1 only. 10.2.2 Authentication The input parameter to the MIFARE Classic Authenticate command is the full 4-byte UID retrieved during the anti-collision procedure. This is the same as for the activation Sequence 3 in the 7-byte UID variant. 11 Load Modulation Strength Option The MIFARE Classic EV1 4K features the possibility to set the load modulation strength to high or normal. The default level is set to a high modulation strength and it is recommended for optimal performance to maintain this level and only switch to the low load modulation strength if the contactless system requires it. Remark: The configuration becomes effective only after a PICC unselect or a PICC field reset. The configuration can be changed multiple times by asserting the command. Remark: The MIFARE Classic EV1 4K needs to be authenticated to sector 0 with Key A to perform the SET_MOD_TYPE command. The Access Bits for sector 0 are irrelevant. PCD Cmd Type CRC ACK PICC #ACK# 368 µs TACK 59 µs TNAK 59 µs NAK PICC #NAK# TTimeOut TimeOut 001aan919 Figure 13. SET_MOD_TYPE Table 17. SET_MOD_TYPE command MF1S70yyX_V1 Product data sheet COMPANY PUBLIC Name Code Description Length Cmd 43h Set load modulation strength 1 byte Type - Encoded load modulation strength: strong modulation: 01h (default) normal modulation: 00h 1 byte CRC - CRC according to Ref. 4 2 bytes ACK, NAK see Table 10 see Section 9.3 4-bit All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 19 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Table 18. SET_MOD_TYPE timing SET_MOD_TYPE TACK min TACK max TNAK min TNAK max TTimeOut n=9 TTimeOut n=9 TTimeOut 5 ms The configured load modulation is shown in the manufacturer data of block 0 in sector 0. The exact location is shown below in Figure 14 and Table 19. Block 0/Sector 0 Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Load Modulation Status Byte 14 15 aaa-012192 Figure 14. Byte Location of Load Modulation Status in Block 0 / Sector 0 Table 19. Load Modulation Status Indication Bit Number Load Modulation Type Hex Value 7 6 5 4 3 2 1 0 strong load modulation 20h (default) 0 0 1 0 0 0 0 0 normal load modulation 00h 0 0 0 0 0 0 0 0 12 MIFARE Classic commands 12.1 MIFARE Authentication The MIFARE authentication is a 3-pass mutual authentication which needs two pairs of command-response. These two parts, MIFARE authentication part 1 and part 2 are shown in Figure 15, Figure 16 and Table 20. Table 21 shows the required timing. PCD Auth Addr CRC Token RB PICC ,,ACK'' 368 µs TACK 359 µs NAK PICC ,,NAK'' TNAK 59 µs TTimeOut Time out 001aan004 Figure 15. MIFARE Authentication part 1 MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 20 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development PCD Token AB Token BA PICC #ACK# TACK 708 µs 359 µs TTimeOut TimeOut 001aan917 Figure 16. MIFARE Authentication part 2 Table 20. MIFARE authentication command Name Code Description Length Auth (with Key A) 60h Authentication with Key A 1 byte Auth (with Key B) 61h Authentication with Key B 1 byte Addr - MIFARE Block address (00h to FFh) 1 byte CRC - CRC according to Ref. 4 2 bytes Token RB - Challenge 1 (Random Number) 4 bytes Token AB - Challenge 2 (encrypted data) 8 bytes Token BA - Challenge 2 (encrypted data) 4 bytes NAK see Table 10 see Section 9.3 4-bit Table 21. MIFARE authentication timing TACK min TACK max TNAK min TNAK max TTimeOut Authentication part 1 n=9 TTimeOut n=9 n=9 1 ms Authentication part 2 n=9 TTimeOut 1 ms Remark: The minimum required time between MIFARE Authentication part 1 and part 2 is the minimum required FDT according to Ref. 4. There is no maximum time specified. Remark: The MIFARE authentication and encryption requires an MIFARE reader IC (e.g. the CL RC632). For more details about the authentication command refer to the corresponding data sheet (e.g. Ref. 5). The 4-byte input parameter for the MIFARE Classic Authentication is detailed in Section 10.1.3 and Section 10.2.2. 12.2 MIFARE Read The MIFARE Read requires a block address, and returns the 16 bytes of one MIFARE Classic block. The command structure is shown in Figure 17 and Table 22. Table 23 shows the required timing. MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 21 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development PCD Cmd Addr CRC Data PICC ,,ACK'' TACK 368 µs CRC 1548 µs NAK PICC ,,NAK'' TNAK 59 µs TTimeOut Time out 001aan014 Figure 17. MIFARE Read Table 22. MIFARE Read command Name Code Description Length Cmd 30h Read one block 1 byte Addr - MIFARE Block address (00h to FFh) 1 byte CRC - CRC according to Ref. 4 2 bytes Data - Data content of the addressed block 16 bytes NAK see Table 10 see Section 9.3 4-bit Table 23. MIFARE Read timing Read TACK min TACK max TNAK min TNAK max TTimeOut n=9 TTimeOut n=9 TTimeOut 5 ms 12.3 MIFARE Write The MIFARE Write requires a block address, and writes 16 bytes of data into the addressed MIFARE Classic EV1 4K block. It needs two pairs of command-response. These two parts, MIFARE Write part 1 and part 2 are shown in Figure 18 and Figure 19 and Table 24. Table 25 shows the required timing. MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 22 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development PCD Cmd Addr CRC ACK PICC ,,ACK'' TACK 368 µs 59 µs NAK PICC ,,NAK'' TNAK 59 µs TTimeOut Time out 001aan015 Figure 18. MIFARE Write part 1 PCD Data CRC ACK PICC ,,ACK'' TACK 1558 µs 59 µs NAK PICC ,,NAK'' TNAK 59 µs TTimeOut Time out 001aan016 Figure 19. MIFARE Write part 2 Table 24. MIFARE Write command Name Code Description Length Cmd A0h Write one block 1 byte Addr - MIFARE Block or Page address (00h 1 byte to FFh) CRC - CRC according to Ref. 4 2 bytes Data - Data 16 bytes NAK see Table 10 see Section 9.3 4-bit Table 25. MIFARE Write timing MF1S70yyX_V1 Product data sheet COMPANY PUBLIC TACK min TACK max TNAK min TNAK max TTimeOut Write part 1 n=9 TTimeOut n=9 TTimeOut 5 ms Write part 2 n=9 TTimeOut n=9 TTimeOut 10 ms All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 23 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Remark: The minimum required time between MIFARE Write part 1 and part 2 is the minimum required FDT according to Ref. 4. There is no maximum time specified. 12.4 MIFARE Increment, Decrement and Restore The MIFARE Increment requires a source block address and an operand. It adds the operand to the value of the addressed block, and stores the result in the Transfer Buffer. The MIFARE Decrement requires a source block address and an operand. It subtracts the operand from the value of the addressed block, and stores the result in the Transfer Buffer. The MIFARE Restore requires a source block address. It copies the value of the addressed block into the Transfer Buffer. The 4 byte Operand in the second part of the command is not used and may contain arbitrary values. All three commands are responding with a NAK to the first command part if the addressed block is not formatted to be a valid value block, see Section 8.6.2.1. The two parts of each command are shown in Figure 20 and Figure 21 and Table 26. Table 27 shows the required timing. PCD Cmd Addr CRC ACK PICC ,,ACK'' TACK 368 µs 59 µs NAK PICC ,,NAK'' TNAK 59 µs TTimeOut Time out 001aan015 Figure 20. MIFARE Increment, Decrement, Restore part 1 PCD Data CRC PICC ,,ACK'' 538 µs NAK PICC ,,NAK'' TNAK 59 µs TTimeOut Time out 001aan009 1. Increment, Decrement and Restore part 2 does not acknowledge Figure 21. MIFARE Increment, Decrement, Restore part 2 MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 24 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Table 26. MIFARE Increment, Decrement and Restore command Name Code Description Length Cmd C1h Increment 1 byte Cmd C0h Decrement 1 byte Cmd C2h Restore 1 byte Addr - MIFARE source block address (00h to FFh) 1 byte CRC - CRC according to Ref. 4 2 bytes Data - Operand (4 byte signed integer) 4 bytes NAK see Table 10 see Section 9.3 4-bit Table 27. MIFARE Increment, Decrement and Restore timing TACK min TACK max TNAK min TNAK max TTimeOut Increment, Decrement, and Restore part 1 n=9 TTimeOut n=9 TTimeOut 5 ms Increment, Decrement, and Restore part 2 n=9 TTimeOut n=9 TTimeOut 5 ms Remark: The minimum required time between MIFARE Increment, Decrement, and Restore part 1 and part 2 is the minimum required FDT according to Ref. 4. There is no maximum time specified. Remark: The MIFARE Increment, Decrement, and Restore commands require a MIFARE Transfer to store the value into a destination block. Remark: The MIFARE Increment, Decrement, and Restore command part 2 does not provide an acknowledgement, so the regular time out has to be used instead. 12.5 MIFARE Transfer The MIFARE Transfer requires a destination block address, and writes the value stored in the Transfer Buffer into one MIFARE Classic block. The command structure is shown in Figure 22 and Table 28. Table 29 shows the required timing. MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 25 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development PCD Cmd Addr CRC ACK PICC ,,ACK'' TACK 368 µs 59 µs NAK PICC ,,NAK'' TNAK 59 µs TTimeOut Time out 001aan015 Figure 22. MIFARE Transfer Table 28. MIFARE Transfer command Name Code Description Length Cmd B0h Write the value from the Transfer Buffer into destination block 1 byte Addr - MIFARE destination block address (00h to FFh) 1 byte CRC - CRC according to Ref. 4 2 bytes NAK see Table 10 see Section 9.3 4-bit Table 29. MIFARE Transfer timing Transfer TACK min TACK max TNAK min TNAK max TTimeOut n=9 TTimeOut n=9 TTimeOut 10 ms 13 Limiting values Stresses above one or more of the limiting values may cause permanent damage to the device. Exposure to limiting values for extended periods may affect device reliability. Table 30. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Min Max Unit II input current - 30 mA Ptot/pack total power dissipation per package - 120 mW Tstg storage temperature -55 125 °C Tamb ambient temperature -25 70 °C 2 - kV VESD [1] MF1S70yyX_V1 Product data sheet COMPANY PUBLIC electrostatic discharge voltage on LA/LB [1] ANSI/ESDA/JEDEC JS-001; Human body model: C = 100 pF, R = 1.5 kΩ All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 26 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development CAUTION This device has limited built-in ElectroStatic Discharge (ESD) protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the gates. 14 Characteristics Table 31. Characteristics Symbol Parameter Ci input capacitance fi input frequency Conditions [1] Min Typ Max Unit 14.9 16.9 19.0 pF - 13.56 - MHz EEPROM characteristics tret retention time Tamb = 22 °C 10 - - year Nendu(W) write endurance Tamb = 22 °C 100000 200000 - cycle [1] Tamb=22°C, f=13,56Mhz, VLaLb = 1,5 V RMS 15 Wafer specification For more details on the wafer delivery forms see Ref. 9. Table 32. Wafer specifications MF1S70yyXDUy Wafer diameter 200 mm typical (8 inches) 300 mm typical (12 inches) maximum diameter after foil expansion 210 mm (8 inches) not applicable (12 inches) die separation process laser dicing (8 inches) blade dicing (12 inches) thickness MF1S70yyXDUD 120 μm ± 15 μm MF1S70yyXDUF 75 μm ± 10 μm flatness not applicable Potential Good Dies per Wafer (PGDW) 64727 (8 inches) 147540 (12 inches) Wafer backside material Si treatment ground and stress relieve roughness Ra max = 0.5 μm Rt max = 5 μm Chip dimensions [1] x = 658 μm (8 inches) x = 660 μm (12 inches) step size MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 27 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development y = 713 μm (8 inches) y = 715 μm (12 inches) [1] typical = 19 μm gap between chips minimum = 5 μm not applicable (12 inches) Passivation type sandwich structure material PSG / nitride thickness 500 nm / 600 nm Au bump (substrate connected to VSS) material > 99.9 % pure Au hardness 35 to 80 HV 0.005 shear strength > 70 MPa height 18 μm height uniformity within a die = ±2 μm within a wafer = ±3 μm wafer to wafer = ±4 μm flatness minimum = ±1.5 μm size LA, LB, VSS, TEST size variation ±5 μm under bump metallization sputtered TiW [1] [2] [2] = 66 μm × 66 μm The step size and the gap between chips may vary due to changing foil expansion Pads VSS and TESTIO are disconnected when wafer is sawn. 15.1 Fail die identification Electronic wafer mapping covers the electrical test results and additionally the results of mechanical/visual inspection. No ink dots are applied. 15.2 Package outline For more details on the contactless modules MOA4 and MOA8 please refer to Ref. 7 and Ref. 8. MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 28 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development PLLMC: plastic leadless module carrier package; 35 mm wide tape SOT500-2 X D A detail X 0 10 scale DIMENSIONS (mm are the original dimensions) UNIT A (1) max. D mm 0.33 35.05 34.95 20 mm For unspecified dimensions see PLLMC-drawing given in the subpackage code. Note 1. Total package thickness, exclusive punching burr. REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT500-2 --- --- --- EUROPEAN PROJECTION ISSUE DATE 03-09-17 06-05-22 Figure 23. Package outline SOT500-2 MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 29 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development PLLMC: plastic leadless module carrier package; 35 mm wide tape SOT500-4 X D A 0 10 A(1) D max 0.26 35.05 nom 35.00 min 34.95 mm detail X scale Dimensions Unit 20 mm For unspecified dimensions see PLLMC-drawing given in the subpackage code. Note 1. Total package thickness, exclusive punching burr. sot500-4_po References Outline version IEC JEDEC JEITA SOT500-4 --- --- --- European projection Issue date 11-02-18 Figure 24. Package outline SOT500-4 MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 30 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development 16 Bare die outline For more details on the wafer delivery forms, see Ref. 9. Chip Step (8 inches) Chip Step (12 inches) Bump size LA, LB, VSS, TEST x [µm] y [µm] 658(1) 660 713(1) 715 60 60 typ. 19(1) min. 5 typ. 19(1) min. 5 238 LA TESTIO typ. 713(1) 633 43 VSS LB 43 y 578 x typ. 658(1) aaa-012193 1. Laser dicing: The air gap and thus the step size may vary due to varying foil expansion 2. All dimensions in μm, pad locations measured from metal ring edge (see detail) Figure 25. Bare die outline MF1S70yyXDUz/V1 17 Abbreviations Table 33. Abbreviations and symbols MF1S70yyX_V1 Product data sheet COMPANY PUBLIC Acronym Description ACK ACKnowledge ATQA Answer To reQuest, Type A CRC Cyclic Redundancy Check CT Cascade Tag (value 88h) as defined in ISO/IEC 14443-3 Type A EEPROM Electrically Erasable Programmable Read-Only Memory FDT Frame Delay Time FFC Film Frame Carrier IC Integrated Circuit LCR L = inductance, Capacitance, Resistance (LCR meter) LSB Least Significant Bit All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 31 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Acronym Description NAK Not AcKnowledge NUID Non-Unique IDentifier NV Non-Volatile memory PCD Proximity Coupling Device (Contactless Reader) PICC Proximity Integrated Circuit Card (Contactless Card) REQA REQuest command, Type A RID Random ID RF Radio Frequency RMS Root Mean Square RNG Random Number Generator SAK Select AcKnowledge, type A SECS-II SEMI Equipment Communications Standard part 2 TiW Titanium Tungsten UID Unique IDentifier WUPA Wake-Up Protocol type A 18 References [1] MIFARE (Card) Coil Design Guide 1 Application note, BU-ID Document number 0117** [2] MIFARE Type Identification Procedure 1 Application note, BU-ID Document number 0184** [3] ISO/IEC 14443-2 2001 [4] ISO/IEC 14443-3 2001 [5] MIFARE & I-CODE CLRC632 Multiple protocol contactless reader IC Product data sheet [6] MIFARE and handling of UIDs 1 ** ... document version number MF1S70yyX_V1 Product data sheet COMPANY PUBLIC All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 32 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development 1 Application note, BU-ID Document number 1907** [7] Contactless smart card module specification MOA4 1 Delivery Type Description, BU-ID Document number 0823** [8] Contactless smart card module specification MOA8 1 Delivery Type Description, BU-ID Document number 1636** [9] General specification for 8" wafer on UV-tape with electronic fail die marking; delivery types 1 Delivery Type Description, BU-ID Document number 1093** 19 Revision history Table 34. Revision history Document ID Release date Data sheet status MF1S70yyX_V1 v.3.2 20171127 Modifications: Product data sheet COMPANY PUBLIC - MF1S70yyX_V1 v.3.1 Product data sheet - MF1S70yyX_V1 v.3.0 • NXP originality check support only for 1 kB memory version • Wafer delivery specification reference corrected MF1S70yyX_V1 v.3.0 20140303 MF1S70yyX_V1 Supersedes • 12 inch FFC delivery forms added • Format udpated MF1S70yyX_V1 v.3.1 20140908 Modifications: Product data sheet Change notice Product data sheet - All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 - © NXP B.V. 2017. All rights reserved. 33 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development 20 Legal information 20.1 Data sheet status Document status [1][2] Product status [3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] [2] [3] Please consult the most recently issued document before initiating or completing a design. The term 'short data sheet' is explained in section "Definitions". The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 20.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 20.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. MF1S70yyX_V1 Product data sheet COMPANY PUBLIC Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 34 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of nonautomotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP MF1S70yyX_V1 Product data sheet COMPANY PUBLIC Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. 20.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. MIFARE — is a trademark of NXP B.V. MIFARE Classic — is a trademark of NXP B.V. All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 35 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Tables Tab. 1. Tab. 2. Tab. 3. Tab. 4. Tab. 5. Tab. 6. Tab. 7. Tab. 8. Tab. 9. Tab. 10. Tab. 11. Tab. 12. Tab. 13. Tab. 14. Tab. 15. Tab. 16. Tab. 17. Quick reference data .........................................2 Ordering information ..........................................3 Pin allocation table ............................................4 Value block format example ............................10 Memory operations ..........................................10 Access conditions ........................................... 11 Access conditions for the sector trailer ............12 Access conditions for data blocks ................... 13 Command overview .........................................13 MIFARE ACK and NAK ...................................15 ATQA response of the MF1S70yyX/V1 ........... 16 SAK response of the MF1S70yyX/V1 ............. 16 Personalize UID Usage command .................. 17 Personalize UID Usage timing ........................ 18 Available activation sequences for 7-byte UID options ..................................................... 18 Input parameter to MIFARE Classic Authenticate .....................................................18 SET_MOD_TYPE command ........................... 19 Tab. 18. Tab. 19. Tab. 20. Tab. 21. Tab. 22. Tab. 23. Tab. 24. Tab. 25. Tab. 26. Tab. 27. Tab. 28. Tab. 29. Tab. 30. Tab. 31. Tab. 32. Tab. 33. Tab. 34. SET_MOD_TYPE timing ................................. 20 Load Modulation Status Indication .................. 20 MIFARE authentication command ...................21 MIFARE authentication timing .........................21 MIFARE Read command ................................ 22 MIFARE Read timing ...................................... 22 MIFARE Write command ................................ 23 MIFARE Write timing .......................................23 MIFARE Increment, Decrement and Restore command .........................................................25 MIFARE Increment, Decrement and Restore timing ............................................................... 25 MIFARE Transfer command ............................26 MIFARE Transfer timing ..................................26 Limiting values ................................................ 26 Characteristics .................................................27 Wafer specifications MF1S70yyXDUy .............27 Abbreviations and symbols ............................. 31 Revision history ...............................................33 Figures Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. Fig. 11. Fig. 12. Fig. 13. Contactless MIFARE system .............................1 Block diagram of MF1S70yyX/V1 ......................3 Pin configuration for SOT500-2 (MOA4) ........... 4 MIFARE Classic command flow diagram .......... 6 Memory organization .........................................8 Manufacturer block for MF1S503yX with 4byte NUID ..........................................................9 Manufacturer block for MF1S500yX with 7byte UID ............................................................ 9 Value blocks ......................................................9 Sector trailer ....................................................10 Access conditions ........................................... 12 Frame Delay Time (from PCD to PICC) and TACK and TNAK .............................................15 Personalize UID Usage ...................................17 SET_MOD_TYPE ............................................19 MF1S70yyX_V1 Product data sheet COMPANY PUBLIC Fig. 14. Fig. 15. Fig. 16. Fig. 17. Fig. 18. Fig. 19. Fig. 20. Fig. 21. Fig. 22. Fig. 23. Fig. 24. Fig. 25. Byte Location of Load Modulation Status in Block 0 / Sector 0 ........................................... 20 MIFARE Authentication part 1 .........................20 MIFARE Authentication part 2 .........................21 MIFARE Read ................................................. 22 MIFARE Write part 1 .......................................23 MIFARE Write part 2 .......................................23 MIFARE Increment, Decrement, Restore part 1 ...............................................................24 MIFARE Increment, Decrement, Restore part 2 ...............................................................24 MIFARE Transfer ............................................ 26 Package outline SOT500-2 ............................. 29 Package outline SOT500-4 ............................. 30 Bare die outline MF1S70yyXDUz/V1 ...............31 All information provided in this document is subject to legal disclaimers. Rev. 3.2 — 23 November 2017 279332 © NXP B.V. 2017. All rights reserved. 36 / 37 MF1S70YYX_V1 NXP Semiconductors MIFARE Classic EV1 4K - Mainstream contactless smart card IC for fast and easy solution development Contents 1 1.1 1.2 1.3 1.4 2 2.1 3 4 5 6 7 7.1 8 8.1 8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 8.4 8.5 8.6 8.6.1 8.6.2 8.6.2.1 8.6.3 8.7 8.7.1 8.7.2 8.7.3 9 9.1 9.2 9.3 9.4 10 10.1 10.1.1 10.1.2 10.1.3 10.2 10.2.1 10.2.2 11 12 12.1 12.2 12.3 12.4 12.5 General description ............................................ 1 Anticollision ........................................................ 1 Simple integration and user convenience .......... 1 Security and privacy .......................................... 1 Delivery options ................................................. 1 Features and benefits .........................................2 EEPROM ........................................................... 2 Applications .........................................................2 Quick reference data .......................................... 2 Ordering information .......................................... 3 Block diagram ..................................................... 3 Pinning information ............................................ 4 Pinning ............................................................... 4 Functional description ........................................4 Block description ............................................... 4 Communication principle ................................... 5 Request standard / all ....................................... 5 Anticollision loop ................................................ 5 Select card .........................................................5 Three pass authentication ................................. 5 Memory operations ............................................ 6 Data integrity ..................................................... 6 Three pass authentication sequence .................7 RF interface ....................................................... 7 Memory organization ......................................... 7 Manufacturer block ............................................ 8 Data blocks ........................................................9 Value blocks ...................................................... 9 Sector trailer .................................................... 10 Memory access ............................................... 10 Access conditions ............................................ 11 Access conditions for the sector trailer ............ 12 Access conditions for data blocks ................... 12 Command overview .......................................... 13 MIFARE Classic command overview ...............13 Timings ............................................................ 14 MIFARE Classic ACK and NAK .......................15 ATQA and SAK responses .............................. 16 UID Options and Handling ............................... 16 7-byte UID Operation .......................................16 Personalization Options ...................................16 Anti-collision and Selection ..............................18 Authentication .................................................. 18 4-byte UID Operation .......................................18 Anti-collision and Selection ..............................19 Authentication .................................................. 19 Load Modulation Strength Option ................... 19 MIFARE Classic commands .............................20 MIFARE Authentication ................................... 20 MIFARE Read ................................................. 21 MIFARE Write ..................................................22 MIFARE Increment, Decrement and Restore ... 24 MIFARE Transfer .............................................25 13 14 15 15.1 15.2 16 17 18 19 20 Limiting values .................................................. 26 Characteristics .................................................. 27 Wafer specification ........................................... 27 Fail die identification ........................................ 28 Package outline ............................................... 28 Bare die outline .................................................31 Abbreviations .................................................... 31 References ......................................................... 32 Revision history ................................................ 33 Legal information .............................................. 34 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. © NXP B.V. 2017. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 23 November 2017 Document identifier: MF1S70yyX_V1 Document number: 279332
MF1S7031XDUF/V1V 价格&库存

很抱歉,暂时无法提供与“MF1S7031XDUF/V1V”相匹配的价格&库存,您可以联系我们找货

免费人工找货