0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MIMX8MN1CVTIZAA

MIMX8MN1CVTIZAA

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LFBGA486

  • 描述:

    I.MX 8M NANO ARM CORTEX

  • 数据手册
  • 价格&库存
MIMX8MN1CVTIZAA 数据手册
NXP Semiconductors Data Sheet: Technical Data Document Number: IMX8MNIEC Rev. 1, 03/2021 MIMX8MN6CVTIZAA MIMX8MN4CVTIZAA MIMX8MN2CVTIZAA MIMX8MN5CVPIZAA MIMX8MN1CVPIZAA i.MX 8M Nano Applications Processor Datasheet for Industrial Products MIMX8MN5CVTIZAA MIMX8MN3CVTIZAA MIMX8MN1CVTIZAA MIMX8MN3CVPIZAA Package Information Plastic Package FCBGA 14 x 14 mm, 0.5 mm pitch FCBGA 11 x 11 mm, 0.5 mm pitch Ordering Information See Table 3 on page 6 1 i.MX 8M Nano introduction The i.MX 8M Nano application processor represents NXP’s latest graphics and audio experience combining state-of-the-art media-specific features with high-performance processing while optimized for lowest power consumption. The i.MX 8M Nano family of processors features advanced implementation of a quad Arm® Cortex®-A53 core, which operates at speeds of up to 1.4 GHz. A general purpose Cortex®-M7 running up to 750 MHz core processor is for real-time and low-power processing. The i.MX 8M Nano family of processors provides additional computing resources and peripherals: • Advanced security modules for secure boot, cipher acceleration and DRM support • A wide range of audio interfaces, including I2S, AC 97, TDM, and S/PDIF • Large set of peripherals that are commonly used in consumer/industrial market, including USB and Ethernet NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. © 2019-2021 NXP Semiconductors All rights reserved. 1. i.MX 8M Nano introduction . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6 2. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1. Recommended connections for unused input/output 12 3. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 14 3.2. Power supplies requirements and restrictions . . . 27 3.3. PLL electrical characteristics . . . . . . . . . . . . . . . . 33 3.4. On-chip oscillators . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6. I/O AC parameters . . . . . . . . . . . . . . . . . . . . . . . 36 3.7. Output buffer impedance parameters . . . . . . . . . 37 3.8. System modules timing . . . . . . . . . . . . . . . . . . . . 39 3.9. External peripheral interface parameters . . . . . . 40 4. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1. Boot mode configuration pins . . . . . . . . . . . . . . . 74 4.2. Boot device interface allocation . . . . . . . . . . . . . . 74 5. Package information and contact assignments . . . . . . . 76 5.1. 14 x 14 mm package information . . . . . . . . . . . . 76 5.2. 11 x 11 mm package information . . . . . . . . . . . . 92 5.3. DDR pin function list . . . . . . . . . . . . . . . . . . . . . 107 6. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 i.MX 8M Nano introduction Table 1. Features Subsystem Cortex®-A53 MPCore platform Feature Quad symmetric Cortex® -A53 processors • 32 KB L1 Instruction Cache • 32 KB L1 Data Cache • Media Processing Engine (MPE) with Arm® NEONTM technology supporting the Advanced Single Instruction Multiple Data architecture: • Floating Point Unit (FPU) with support of the Arm® VFPv4-D16 architecture Support of 64-bit Arm®v8-A architecture 512 KB unified L2 cache Cortex®-M7 core platform Low power microcontroller available for customer application: • low power standby mode • IoT features including Weave • Manage IR or wireless remote • ML inference applications (enhanced for i.MX 8M Nano) Cortex® M7 CPU: • 256 KB tightly coupled memory (TCM) Connectivity One USB 2.0 OTG controllers with integrated PHY interfaces: • Spread spectrum clock support Three Ultra Secure Digital Host Controller (uSDHC) interfaces: • MMC 5.1 compliance with HS400 DDR signaling to support up to 400 MB/sec • SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100 MB/sec • Support for SDXC (extended capacity) One Gigabit Ethernet controller with support for Energy Efficient Ethernet (EEE), Ethernet AVB, and IEEE 1588 Four Universal Asynchronous Receiver/Transmitter (UART) modules Four I2C modules Three SPI modules On-chip memory Boot ROM (256 KB) On-chip RAM (512 KB + 32 KB) GPIO and pin multiplexing General-purpose input/output (GPIO) modules with interrupt capability Input/output multiplexing controller (IOMUXC) to provide centralized pad control Power management Temperature sensor with programmable trip points Flexible power domain partitioning with internal power switches to support efficient power management i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 2 NXP Semiconductors i.MX 8M Nano introduction Table 1. Features (continued) Subsystem External memory interface Feature 16-bit DRAM interfaces: • LPDDR4-3200 • DDR4-2400 • DDR3L-1600 8-bit NAND-Flash, including support for Raw MLC/SLC devices, BCH ECC up to 62-bit, and ONFi3.2 compliance (clock rates up to 100 MHz and data rates up to 200 MB/sec) eMMC 5.1 Flash (3 interfaces) SPI NOR Flash (3 interfaces) QuadSPI Flash with support for XIP (for Cortex®-M7 in low-power mode) and parallel read mode of two identical FLASH devices Multimedia Graphic Processing Unit: • GC7000UL with OpenCL and Vulkan support • 2 shader • 99.8 million triangles/sec • 0.6 giga pixel/sec • 9.6 GFLOPs 32-bit/19.2 GFLOPs 16-bit • Supports OpenGL ES 1.1, 2.0, 3.0, OpenCL • Core clock frequency of 600 MHz • Shader clock frequency of 600 MHz LCDIF Display Controller: • Support up to 1080p60 display through MIPI DSI MIPI Interfaces: • 4-lane MIPI DSI interface • 4-lane MIPI CSI interface Audio: • S/PDIF input and output, including a raw capture input mode • Five external synchronous audio interface (SAI) modules supporting I2S, AC97, TDM, codec/DSP, and DSD interfaces, comprising one SAI with 4 Tx and 4 Rx lanes, two SAI with 2 Tx and 2 Rx lanes, and two SAI with 1 Tx and 1Rx lane. All ports support 49.152 MHz BCLK. • ASRC supports processing 32 audio channels, 4 context groups, 8 kHz to 384 kHz sample rate and 1/16 to 8x sample rate conversion ratio. • Pulse Density Modulation (PDM) input i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 3 i.MX 8M Nano introduction Table 1. Features (continued) Subsystem Security Feature Resource Domain Controller (RDC): • supports 4 domains and up to 8 regions of DDR Arm® TrustZone® (TZ) architecture: • Arm® Cortex-A53 MPCore TrustZone support On-chip RAM (OCRAM) secure region protection using OCRAM controller High Assurance Boot (HAB) Cryptographic acceleration and assurance module (CAAM): • Support Widevine and PlayReady content protection • Public Key Cryptography (PKHA) with RSA and Elliptic Curve (ECC) algorithms • Real-time integrity checker (RTIC) • DRM support for RSA, AES, 3DES, DES • Side channel attack resistance • True random number generation (RNG) • Manufacturing protection support Secure non-volatile storage (SNVS): • Secure real-time clock (RTC) Secure JTAG controller (SJC) System debug Arm® CoreSightTM debug and trace technology Trace Port Interface Unit (TPIU) to support off-chip real-time trace Embedded Trace FIFO (ETF) with 4 KB internal storage to provide trace buffering Unified trace capability for Quad Cortex®-A53 and Cortex®-M7 CPUs Cross Triggering Interface (CTI) Support for 4-pin (JTAG) debug interface NOTE The actual feature set depends on the part numbers as described in Table 3. Functions such as display and camera interfaces, and connectivity interfaces, may not be enabled for specific part numbers. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 4 NXP Semiconductors i.MX 8M Nano introduction 1.1 Block diagram Figure 1 shows the functional modules in the i.MX 8M Nano applications processor system. Security TrustZone DRM Ciphers Secure Clock Main CPU Platform Connectivity Quad Cortex®-A53 1 GB Ethernet (IEEE1588, EEE, and AVB) 32 KB I-cache 32 KB D-cache NEON S/PDIF Rx and Tx FPU 5x I2S/SAI eFuse Key Storage 512 KB L2 Cache Random Number 32 KB Secure RAM Low Power, Security CPU 1x USB 2.0 OTG and PHY PDM Cortex®-M7 4x UART System Control 256 KB TCM 4x I2C 3x Smart DMA XTAL PLLs Multimedia 3D Graphics: GC7000UL 3x SPI External Memory 3x Watchdog LPDDR4/DDR4/DDR3L 4x PWM 4-lane MIPI-DSI Interface eMMC 5.1/SD 3.0 6x Timer 4-lane MIPI-CSI Interface Secure JTAG NAND CTL (BCH62) Temperature Sensor ASRC Dual-ch QuadSPI 512 KB OCRAM Figure 1. i.MX 8M Nano system block diagram i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 5 i.MX 8M Nano introduction NOTE Some modules shown in this block diagram are not offered on all derivatives. See Table 2 for exceptions. Table 2. Modules supported Key Modules 6CVT 5CVT 4CVT 3CVT 2CVT 1CVT 5CVP 3CVP 1CVP Cortex® A53 4x 4x 2x 2x 1x 1x 4x 2x 1x Cortex® M7 1x 1x 1x 1x 1x 1x 1x 1x 1x GPU 1x N/A 1x N/A 1x N/A N/A N/A N/A MIPI DSI 1x 1x 1x 1x 1x 1x N/A N/A N/A 1.2 Ordering information Table 3 shows examples of orderable sample part numbers covered by this data sheet. This table does not include all possible orderable part numbers. If your desired part number is not listed in the table, or you have questions about available parts, contact your NXP representative. Table 3. Orderable part numbers Cortex-A53 CPU speed grade Qualification tier Temperature Tj (C) 4x A53, M7, GPU, MIPI DSI 1.4 GHz Industrial -40 to 105 14 x 14 mm, 0.5 mm pitch i.MX 8M Nano QuadLite 4x A53, M7, No GPU, MIPI DSI 1.4 GHz Industrial -40 to 105 14 x 14 mm, 0.5 mm pitch MIMX8MN4CVTIZAA i.MX 8M Nano Dual 2x A53, M7, GPU, MIPI DSI 1.4 GHz Industrial -40 to 105 14 x 14 mm, 0.5 mm pitch MIMX8MN3CVTIZAA i.MX 8M Nano DualLite 2x A53, M7, No GPU, MIPI DSI 1.4 GHz Industrial -40 to 105 14 x 14 mm, 0.5 mm pitch MIMX8MN2CVTIZAA i.MX 8M Nano Solo 1x A53, M7, GPU, MIPI DSI 1.4 GHz Industrial -40 to 105 14 x 14 mm, 0.5 mm pitch MIMX8MN1CVTIZAA i.MX 8M Nano SoloLite 1x A53, M7, No GPU, MIPI DSI 1.4 GHz Industrial -40 to 105 14 x 14 mm, 0.5 mm pitch MIMX8MN5CVPIZAA i.MX 8M Nano UltraLite Quad 4x A53, M7, No GPU, No MIPI DSI 1.4 GHz Industrial -40 to 105 11 x 11 mm, 0.5 mm pitch MIMX8MN3CVPIZAA i.MX 8M Nano UltraLite Dual 2x A53, M7, No GPU, No MIPI DSI 1.4 GHz Industrial -40 to 105 11 x 11 mm, 0.5 mm pitch MIMX8MN1CVPIZAA i.MX 8M Nano UltraLite Solo 1x A53, M7, No GPU, No MIPI DSI 1.4 GHz Industrial -40 to 105 11 x 11 mm, 0.5 mm pitch Part number Sub-Family Options MIMX8MN6CVTIZAA i.MX 8M Nano Quad MIMX8MN5CVTIZAA Package Figure 2 describes the part number nomenclature so that the users can identify the characteristics of the specific part number. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 6 NXP Semiconductors i.MX 8M Nano introduction Contact an NXP representative for additional details. MIMX8MN@+##$$%A Silicon revision Fusing options Core frequency – Arm A53 Package type – all ROHS Data Sheet Temperature Part differentiator Qualification level Qualification level Samples P Mass Production M Part number series Description IMX8MN i.MX 8M Nano Part number series Part differentiator @ i.MX 8M Nano Quad GPU, 4x A53 6 i.MX 8M Nano QuadLite *i.MX 8M Nano UltraLite Quad No GPU, 4x A53 5 i.MX 8M Nano Dual GPU, 2x A53 4 i.MX 8M Nano DualLite *i.MX 8M Nano UltraLite Dual No GPU, 2x A53 3 i.MX 8M Nano Solo GPU, 1x A53 2 i.MX 8M Nano SoloLite *i.MX 8M Nano UltraLite Solo No GPU, 1x A53 1 + A53 core frequency $$ +95oC D 1.5 GHz JZ Industrial: -40 to 105oC C 1.4 GHz IZ Temperature Tj Consumer: 0 to Package Type ROH S Fusing % FCBGA486 14 x14mm, 0.5mm pitch VT Default A FCBGA306 11x11mm, 0.5mm pitch VP Immersiv3D w/ Dolby Atmos C Immersiv3D w/ Dolby Atmos & DTS D Silicon Rev A Rev A0 A *i.MX 8M Nano UltraLite Quad/Dual/Solo (11x11 package) has no MIPI DSI Figure 2. Part number nomenclature—i.MX 8M Nano family of processors i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 7 Modules list 2 Modules list The i.MX 8M Nano family of processors contains a variety of digital and analog modules. Table 4 describes these modules in alphabetical order. Table 4. i.MX 8M Nano modules list Block mnemonic Block name APBH-DMA NAND Flash and BCH ECC DMA Controller Arm Arm Platform The Arm Core Platform includes a quad Cortex-A53 core and a Cortex-M7 core. The Cortex-A53 core includes associated sub-blocks, such as the Level 2 Cache Controller, Snoop Control Unit (SCU), General Interrupt Controller (GIC), private timers, watchdog, and CoreSight debug modules. The Cortex-M7 core is used as a customer microcontroller. BCH Binary-BCH ECC Processor The BCH module provides up to 62-bit ECC encryption/decryption for NAND Flash controller (GPMI) CAAM Cryptographic accelerator and assurance module CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, entropy source generator, and a Pseudo Random Number Generator (PRNG). The PRNG is certifiable by the Cryptographic Algorithm Validation Program (CAVP) of the National Institute of Standards and Technology (NIST). CAAM also implements a Secure Memory mechanism. In i.MX 8M Nano processors, the secure memory provided is 32 KB. CCM GPC SRC Brief description DMA controller used for GPMI2 operation. Clock Control Module, General These modules are responsible for clock and reset distribution in the Power Controller, System Reset system, and also for the system power management. Controller CSU Central Security Unit The Central Security Unit (CSU) is responsible for setting comprehensive security policy within the i.MX 8M Nano platform. CTI-0 CTI-1 CTI-2 CTI-3 CTI-4 Cross Trigger Interface Cross Trigger Interface (CTI) allows cross-triggering based on inputs from masters attached to CTIs. The CTI module is internal to the Cortex-A53 core platform. DAP Debug Access Port The DAP provides real-time access for the debugger without halting the core to access: • System memory and peripheral registers • All debug configuration registers The DAP also provides debugger access to JTAG scan chains. DDRC Double Data Rate Controller The DDR Controller has the following features: • Supports 16-bit LPDDR4-3200, DDR4-2400, and DDR3L-1600 • Supports up to 8 Gbyte DDR memory space eCSPI1 eCSPI2 eCSPI3 Configurable SPI Full-duplex enhanced Synchronous Serial Interface, with data rate up to 52 Mbit/s. Configurable to support Master/Slave modes, four chip selects to support multiple peripherals. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 8 NXP Semiconductors Modules list Table 4. i.MX 8M Nano modules list (continued) Block mnemonic Block name Brief description ENET1 Ethernet Controller The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the i.MX 8M Nano Applications Processor Reference Manual (IMX8MNRM) for details. FlexSPI FlexSPI The FlexSPI module acts as an interface to external serial flash devices. This module contains the following features: • Flexible sequence engine to support various flash vendor devices • Single pad/Dual pad/Quad pad mode of operation • Single Data Rate/Double Data Rate mode of operation • Parallel Flash mode • DMA support • Memory mapped read access to connected flash devices • Multi master access with priority and flexible and configurable buffer for each master GIC Generic Interrupt Controller The GIC handles all interrupts from the various subsystems and is ready for virtualization. GPC General Power Control Module The GPC independently control reset and gated clock to each switched power domain when powering on/off the domain. GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 General Purpose I/O Modules Used for general purpose input/output to external ICs. Each GPIO module supports up to 32 bits of I/O. GPMI General Purpose Memory Interface The GPMI module supports up to 8x NAND devices and 62-bit ECC encryption/decryption for NAND Flash Controller (GPMI2). GPMI supports separate DMA channels for each NAND device. GPT1 GPT2 GPT3 GPT4 GPT5 GPT6 General Purpose Timer Each GPT is a 32-bit “free-running” or “set-and-forget” mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in “set-and-forget” mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. GPU3D Graphics Processing Unit-3D I2C1 I2C2 I2C3 I2C4 I2C Interface The GPU3D provides hardware acceleration for 3D graphics algorithms with sufficient processor power to run desktop quality interactive graphics applications on displays. I2C provides serial interface for external devices. Data rates of up to 320 kbps are supported. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 9 Modules list Table 4. i.MX 8M Nano modules list (continued) Block mnemonic Block name Brief description IOMUXC IOMUX Control This module enables flexible I/O multiplexing. Each IO pad has a default as well as several alternate functions. The alternate functions are software configurable. LCDIF LCD interface The LCDIF is a general purpose display controller used to drive a wide range of display devices varying in size and capability, the key feature of the display controller includes: • Support 8-bit/16-bit/24-bit/32-bit pixel depth • Support DOTCLK mode for MIPI-DPI interface • Support resolution up to 1920 x1200p60 MIPI CSI (four-lane) MIPI Camera Serial Interface This module provides one four-lane MIPI camera serial interfaces, which operates up to a maximum bit rate of 1.5 Gbps. MIPI DSI (four-lane) MIPI Display Serial Interface This module provides a four-lane MIPI display serial interface operating up to a maximum bit rate of 1.5 Gbps. OCOTP_CTRL OTP Controller The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals requiring permanent non volatility. OCRAM On-Chip Memory controller The On-Chip Memory controller (OCRAM) module is designed as an interface between the system’s AXI bus and the internal (on-chip) SRAM memory module. In i.MX 8M Nano processors, the OCRAM is used for controlling the 512 KB multimedia RAM through a 64-bit AXI bus. PDM Pulse Density Modulation PWM1 PWM2 PWM3 PWM4 Pulse Width Modulation The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images. It can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound. SAI2 SAI3 SAI5 SAI6 SAI7 Synchronous Audio Interface The SAI module provides a synchronous audio interface (SAI) that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces. The PDM supports up to 8-channels (4 lanes). i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 10 NXP Semiconductors Modules list Table 4. i.MX 8M Nano modules list (continued) Block mnemonic Block name Brief description SDMA Smart Direct Memory Access The SDMA is a multichannel flexible DMA engine. It helps in maximizing system performance by offloading the various cores in dynamic data routing. It has the following features: • Powered by a 16-bit Instruction-Set micro-RISC engine • Multi channel DMA supporting up to 32 time-division multiplexed DMA channels • 48 events with total flexibility to trigger any combination of channels • Memory accesses including linear, FIFO, and 2D addressing • Shared peripherals between Arm and SDMA • Very fast Context-Switching with 2-level priority based preemptive multi tasking • DMA units with auto-flush and prefetch capability • Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) • DMA ports can handle unidirectional and bidirectional flows (Copy mode) • Up to 8-word buffer for configurable burst transfers for EMIv2.5 • Support of byte-swapping and CRC calculations • Library of Scripts and API is available SJC Secure JTAG Controller The SJC provides JTAG interface (designed to be compatible with JTAG TAP standards) to internal logic. The i.MX 8M Nano family of processors uses JTAG port for system debugging. The JTAG port must be accessible during platform initial laboratory bring-up, for troubleshooting, as well as for software debugging by authorized entities. The i.MX 8M Nano SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration. SNVS Secure Non-Volatile Storage Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting. SPDIF1 Sony Philips Digital Interconnect Format A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. It supports Transmitter and Receiver functionality. TEMPSENSOR Temperature Sensor Temperature sensor TZASC Trust-Zone Address Space Controller The TZASC (TZC-380 by Arm) provides security address region control functions required for intended application. It is used on the path to the DRAM controller. UART1 UART2 UART3 UART4 UART Interface Each of the UARTv2 modules supports the following serial data transmit/receive protocols and configurations: • 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd, or none) • Programmable baud rates up to 4 Mbps. This is a higher max baud rate relative to the 1.875 MHz, which is stated by the TIA/EIA-232-F standard. • 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 11 Modules list Table 4. i.MX 8M Nano modules list (continued) Block mnemonic Block name Brief description uSDHC1 uSDHC2 uSDHC3 SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller i.MX 8M Nano SoC characteristics: All the MMC/SD/SDIO controller IPs are based on the uSDHC IP. They are designed to support: • SD/SDIO standard, up to version 3.0. • MMC standard, up to version 5.1. • 1.8 V and 3.3 V operation, but do not support 1.2 V operation. • 1-bit/4-bit SD and SDIO modes, 1-bit/4-bit/8-bit MMC mode. One uSDHC controller (SD1) can support up to an 8-bit interface, the other controller (SD2) can only support up to a 4-bit interface. USB 2.0 1x USB 2.0 controller and PHY One USB controller and PHY that support USB 2.0. WDOG1 WDOG2 WDOG3 2.1 Watchdog The watchdog (WDOG) timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the Arm core, and a second point evokes an external event on the WDOG line. Recommended connections for unused input/output If a function of the i.MX 8M Nano is not in use, the I/Os and power rails of that function can be terminated to reduce overall board power. Table 5 shows the recommended connections for 14 x 14 mm package unused power supply rails. Table 5. Recommended connections for 14 x 14 mm package unused power supply rails Function Ball Name Recommendations if Unused MIP-CSI and MIPI-DSI VDD_MIPI_0P8, VDD_MIPI_1P2, VDD_MIPI_1P8 Leave unconnected USB1 VDD_USB_0P8, VDD_USB_1P8, VDD_USB_3P3 Leave unconnected GPU VDD_GPU Leave unconnected NVCC_CLK, NVCC_ECSPI, NVDD_ENET, NVCC_GPIO1, NVCC_I2C, NVCC_JTAG, NVCC_NAND, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5, NVCC_SD1, NVCC_SD2, NVCC_UART, NVCC_SNVS_1P8, PVCC0_1P8, PVCC1_1P8, PVCC2_1P8 All digital I/O supplies listed in this table must be powered under normal conditions whether the associated I/O pins are in use or not, and associated I/O pins need to enable pull in pad control register to limit any floating gate current. Digital I/O supplies i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 12 NXP Semiconductors Modules list Table 6 shows the recommended connections for 11 x 11 mm package unused power supply rails. Table 6. Recommended connections for 11 x 11 mm package unused power supply rails Function MIP-CSI USB1 Digital I/O supplies Ball Name Recommendations if Unused VDD_MIPI_1P2 Leave unconnected VDD_USB_0P8, VDD_USB_1P8, VDD_USB_3P3 Leave unconnected NVCC_ENET_GPIO_SAI2, NVCC_CLK_JTAG_PVCC_1P8, NVCC_I2C_UART, NVCC_SAI3_SAI5, NVCC_SD1_NAND, NVCC_ECSPI, NVCC_SD2, NVCC_SNVS_1P8 All digital I/O supplies listed in this table must be powered under normal conditions whether the associated I/O pins are in use or not, and associated I/O pins need to enable pull in pad control register to limit any floating gate current. Table 8 shows recommended connections for 14 x 14 mm package unused signal contacts/interfaces. Table 7. Recommended connections for 14 x 14 mm package unused signal contacts/interfaces Function Ball Name Recommendations if Unused MIPI-CSI MIPI_CSI_CLK_P, MIPI_CSI_CLK_N, MIPI_CSI_Dx_P, MIPI_CSI_Dx_N Tie all signals to ground MIPI-DSI MIPI_VREG_CAP, MIPI_DSI_CLK_P, MIPI_DSI_CLK_N, MIPI_DSI_Dx_P, MIPI_DSI_Dx_N Leave unconnected USB1_VBUS, USB1_DN, USB1_DP, USB1_ID, USB1_TXRTUNE Leave unconnected USB1 Table 8 shows recommended connections for 11 x 11 mm package unused signal contacts/interfaces. Table 8. Recommended connections for 11 x 11 mm package unused signal contacts/interfaces Function USB1 MIPI-CSI Ball Name Recommendations if Unused USB1_VBUS, USB1_DN, USB1_DP, USB1_ID, USB1_TXRTUNE Leave unconnected MIPI_CSI_CLK_P, MIPI_CSI_CLK_N, MIPI_CSI_Dx_P, MIPI_CSI_Dx_N Tie all signals to ground i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 13 Electrical characteristics 3 Electrical characteristics This section provides the device and module-level electrical characteristics for the i.MX 8M Nano family of processors. 3.1 Chip-level conditions This section provides the device-level electrical characteristics for the IC. See Table 9 for a quick reference to the individual tables and sections. Table 9. i.MX 8M Nano chip-level conditions For these characteristics, … Topic appears … Absolute maximum ratings on page 14 Thermal resistance on page 17 Operating ranges on page 18 External clock sources on page 21 Estimated power supply maximum currents on page 22 Power modes on page 23 Power supplies requirements and restrictions on page 27 3.1.1 Absolute maximum ratings CAUTION Stresses beyond those listed under Table 10 may affect reliability or cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operating ranges or parameters tables is not implied. Table 10. Absolute maximum ratings for 14 x 14 mm package Parameter description Symbol Min Max Unit Notes Core supply voltages VDD_ARM VDD_SOC -0.3 1.15 V — Power supply for GPU VDD_GPU -0.3 1.15 V — VDD_DRAM -0.3 1.15 V — NVCC_DRAM -0.3 1.575 V — VDD_DRAM_PLL_0P8 -0.3 1.15 V — VDD_DRAM_PLL_1P8 -0.3 2.15 V — NVCC_SNVS_1P8 -0.3 2.15 V — VDD_SNVS_0V8 -0.3 0.95 V — DDR PHY supply voltage DDR I/O supply voltage DRAM PLL supply voltage SNVS IO supply voltage VDD_SNVS supply voltage i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 14 NXP Semiconductors Electrical characteristics Table 10. Absolute maximum ratings for 14 x 14 mm package (continued) Parameter description Symbol Min Max Unit Notes NVCC_JTAG, NVCC_GPIO1, NVCC_ENET, NVCC_SD1, NVCC_SD2, NVCC_NAND, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5, NVCC_ECSPI, NVCC_I2C, NVCC_UART, NVCC_CLK -0.3 3.8 V — PVCC0_1P8, PVCC1_1P8, PVCC2_1P8 -0.3 2.15 V — Isolated core supply voltage VDD_ANA_0P8 -0.3 1.15 V — Analog core supply voltage VDD_ANA0_1P8 -0.3 2.15 V — VDD_ANA1_1P8 -0.3 2.15 V — VDD_ARM_PLL_0P8 -0.3 1.15 V — VDD_ARM_PLL_1P8 -0.3 2.15 V — VDD_MIPI_0P8 -0.3 1.15 V — VDD_MIPI_1P2 -0.3 1.45 V — VDD_MIPI_1P8 -0.3 2.15 V — VDD_USB_0P8 -0.3 1.15 V — VDD_USB_1P8 -0.3 2.15 V — VDD_USB_3P3 -0.3 3.95 V — USB1_VBUS -0.3 3.95 V — VDD_24M_XTAL_1P8 -0.3 2.15 V — 150 oC — GPIO supply voltage GPIO pre-driver supply voltage Arm PLL supply voltage MIPI PHY supply voltage USB PHY supply voltage USB_VBUS input detected XTAL supply voltage Storage temperature range TSTORAGE -40 Table 11. Absolute maximum ratings for 11 x 11 mm package Parameter description Core and DDR PHY supply voltage DDR I/O supply voltage DRAM PLL supply voltage SNVS IO supply voltage Symbol Min Max Unit Notes VDD_SOC -0.3 1.15 V — NVCC_DRAM -0.3 1.575 V — VDD_DRAM_PLL_1P8 -0.3 2.15 V — NVCC_SNVS_1P8 -0.3 2.15 V — i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 15 Electrical characteristics Table 11. Absolute maximum ratings for 11 x 11 mm package (continued) Parameter description Symbol Min Max Unit Notes VDD_SNVS_0V8 -0.3 0.95 V — GPIO supply voltage NVCC_ENET_GPIO_S AI2, NVCC_I2C_UART, NVCC_SAI3_SAI5, NVCC_SD1_NAND, NVCC_ECSPI, NVCC_SD2 -0.3 3.8 V — GPIO supply voltage NVCC_CLK_JTAG_PV CC_1P8 -0.3 2.15 V — XTAL, Analog core, MIPI PHY and USB PHY 1.8 V supply voltage VDD_ANA1_XTAL_MIP I_USB_1P8 -0.3 2.15 V — Analog core and ARM PLL 1.8 V supply voltage VDD_ANA0_ARM_PLL _1P8 -0.3 2.15 V — MIPI PHY 1.2 V supply voltage VDD_MIPI_1P2 -0.3 1.45 V — USB PHY 3.3 V supply voltage VDD_USB_3P3 -0.3 3.95 V — USB1_VBUS -0.3 3.95 V — VDD_24M_XTAL_1P8 -0.3 2.15 V — TSTORAGE -40 150 oC — VDD_SNVS supply voltage USB_VBUS input detected XTAL supply voltage Storage temperature range Table 12. Electrostatic discharge and latch up ratings Parameter description Rating Reference Comment Electrostatic Discharge (ESD) Human Body Model (HBM) ±1000 V JS-001-2017 — Charged Device Model (CDM) ±250 V JS-002-2018 — Latch UP (LU) Immunity level: • Class I@ 25 oC ambient temperature • Class II @ 105 oC ambient temperature A A JESD78E Mandatory requirement: JTAG_TMS pin must be connected with a 50 ohm series resistor near the component. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 16 NXP Semiconductors Electrical characteristics 3.1.2 3.1.2.1 Thermal resistance 14 x 14 mm FCBGA package thermal resistance Table 13 displays the 14 x 14 mm FCBGA package thermal resistance data. Table 13. 14 x 14 mm package thermal resistance data Rating Test conditions Symbol Value Unit Notes Junction to Ambient Natural Convection Single layer board (1s) Four layer board (2s2p) RJA 30 o C/W 1, 2 Junction to Ambient Natural Convection Four layer board (2s2p) Four layer board (2s2p) RJA 22.9 o C/W 1, 2, 3 Junction to Ambient (@200 ft/min) Single layer board (1s) RJMA 24 o C/W 1, 3 Junction to Ambient (@200 ft/min) Four layer board (2s2p) RJMA 18.5 oC/W 1, 3 Junction to Board — RJB 7.8 oC/W 4 Junction to Case — RJC 4 oC/W 5 Junction to Package Top Natural Convection JT 0.2 oC/W 6 1 2 3 4 5 6 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JESD51-2 with the single layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. 3.1.2.2 11 x 11 mm FCBGA package thermal resistance Table 13 displays the 11 x 11 mm FCBGA package thermal resistance data. Table 14. 11 x 11 mm thermal resistance data1 Rating Board type2 Value Symbol Unit Coreless Junction to Ambient Thermal Resistance3 JESD51-9, 2s2p RJA 27.7 oC/W Junction-to-Top of Package Thermal Characterization Parameter3 JESD51-9, 2s2p JT 5.2 oC/W Junction to Case Resistance4 JESD51-9, 1s RJC 11 oC/W 1 Non-uniform power is applied on the die. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 17 Electrical characteristics 2 Thermal test board meets JEDEC specification for this package (JESD51-9). Test board has 40 vias under die shadow mapped according to BGA layout under die. Each via is 0.2 mm in diameter and connects top layer with the first buried plane layer. 3 Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment. 4 Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature refers to the surface temperature at the package top side. 3.1.3 Operating ranges Table 15 provides the operating ranges of the i.MX 8M Nano applications processor. For details on the chip's power structure, see the “Power Management Unit (PMU)” chapter of the i.MX 8M Nano Applications Processor Reference Manual (IMX8MNRM). Table 15. Operating ranges for 14 x 14 mm package Symbol Min Typ Max1 Unit VDD_ARM 0.805 0.850 0.950 V Power supply for Cortex® A53, 1.2 GHz 0.900 0.950 1.000 V Power supply for Cortex® A53, 1.4 GHz2 0.805 0.850 0.900 V Power supply for SoC logic4, Cortex® M7 600 MHz 0.900 0.950 1.000 V Power supply for SoC logic, overdrive mode, Cortex® M7 750 MHz 0.805 0.850 0.900 V Power supply for 3D GPU, nominal mode, 400 MHz 0.900 0.950 1.000 V Power supply for 3D GPU, overdrive mode, 600 MHz 0.805 0.850 0.900 V Power supply for DDRC, 0.85 V supports up to 1.2 GHz (DDR clock) 0.900 0.950 1.000 V Power supply for DDRC, 0.95 V supports up to 1.6 GHz (DDR clock) VDD_SNVS_0P8 0.760 0.800 0.900 V Power supply for SNVS core logic NVCC_SNVS_1P8 1.620 1.800 1.980 V Power supply for GPIO pre-driver in SNVS bank NVCC_JTAG, NVCC_GPIO1, NVCC_ENET, NVCC_SD1, NVCC_SD2, NVCC_NAND, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5, NVCC_ECSPI, NVCC_I2C, NVCC_UART, NVCC_CLK 1.650 1.800 1.950 V Power supply for GPIO when it is in 1.8 V mode 3.000 3.300 3.600 V Power supply for GPIO when it is in 3.3 V mode NVCC_ENET 2.250 2.500 2.750 V Power supply for GPIO when it is in 2.5 V mode VDD_SOC3 VDD_GPU3 VDD_DRAM3 Comment i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 18 NXP Semiconductors Electrical characteristics Table 15. Operating ranges for 14 x 14 mm package (continued) Symbol Min Typ Max1 Unit PVCC0_1P8, PVCC1_1P8, PVCC2_1P8 1.650 1.800 1.950 V Power supply for GPIO pre-driver VSS — — — V Ground for all core logic and I/O NVCC_DRAM 1.283 1.35 1.425 V DDR3L 1.14 1.2 1.26 V DDR4 1.06 1.1 1.14 V LPDDR4 0.51 x NVCC_DRAM V Internal output, no connection is needed. DRAM_VREF VDD_DRAM_PLL_0P8 0.49 x 0.5 x NVCC_DRAM NVCC_DRAM Comment 0.805 0.850 0.900 V Power supply for DRAM PLL, nominal mode 0.900 0.950 1.000 V Power supply for DRAM PLL, overdrive mode VDD_ANA0_1P8 VDD_ANA1_1P8 1.71 1.8 1.89 V Analog 1.8 V core power VDD_ANA_0P8 0.805 0.850 0.900 V Supplies for Analog PLL, nominal mode 0.900 0.950 1.000 V Supplies for Analog PLL, overdrive mode 0.805 0.850 0.900 V Power supply for Arm PLL, nominal mode 0.900 0.950 1.000 V Power supply for Arm PLL, overdrive mode VDD_ARM_PLL_1P8 1.71 1.8 1.89 V Arm PLL 1.8 V power VDD_24M_XTAL_1P8 1.71 1.8 1.89 V XTAL 1.8 V power VDD_DRAM_PLL_1P8 1.71 1.8 1.89 V Analog 1.8 V core power VDD_MIPI_0P8 0.805 0.850 0.900 V Digital supply for MIPI PHY, nominal mode 0.900 0.950 1.000 V Digital supply for MIPI PHY, overdrive mode VDD_MIPI_1P2 1.14 1.2 1.26 V 1.2 V power for analog VDD_MIPI_1P8 1.71 1.8 1.89 V 1.8 V power for PLL and analog VDD_USB_0P8 0.805 0.850 0.900 V Digital power supply from PHY’s I/O power pads, nominal mode 0.900 0.950 1.000 V Digital power supply from PHY’s I/O power pads, overdrive mode VDD_USB_1P8 1.71 1.80 1.89 V 1.8 V analog power supply VDD_USB_3P3 3.069 3.30 3.6 V 3.3 V analog power supply VDD_ARM_PLL_0P8 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 19 Electrical characteristics Table 15. Operating ranges for 14 x 14 mm package (continued) 1 2 3 4 5 Symbol Min Typ Max1 Unit USB1_VBUS 1.34 — 3.60 V USB_VBUS input detect signal Temperature Sensor Accuracy5 — ±3 ±5 °C Sensing temperature range 10°C to 105°C T J -40 — +105 o See Table 3 for complete list of junction temperature capabilities. C Comment Applying the maximum voltage results in maximum power consumption and heat generation. A voltage set point = (Vmin + the supply tolerance) is recommended. This results in an optimized power/speed ratio. For VDD_ARM at 1.0V typical, Power-on Hours will decreased if junction temperature is increased. Please refer to i.MX 8M Nano Product Lifetime Usage (AN12983) for details. VDD_DRAM, VDD_SOC, and VDD_GPU are required to be tied together and keep same or ground. Booting VDD_SOC at 0.800 V ±5% is acceptable (Vmin = 0.760 V). Software is expected to program the VDD_SOC voltage to the typical value in this table prior to first DRAM memory access. “EN” of TMU Enable Register (TMU_TER) is required to be always enabled for the part to operate correctly. Table 16. Operating ranges for 11 x11 mm package Symbol Min Typ Max1 Unit Comment VDD_SOC 0.805 0.850 0.900 V Power supply for SoC logic2, Cortex® M7 600 MHz; Cortex® A53, 1.2 GHz, nominal mode, 1.2 GHz DDR clock 0.900 0.950 1.000 V Power supply for SoC logic2, Cortex® M7 750 MHz; Cortex® A53, 1.4 GHz, overdrive mode, 1.6 GHz DDR clock VDD_SNVS_0P8 0.760 0.800 0.900 V Power supply for SNVS core logic NVCC_SNVS_1P8 1.620 1.800 1.980 V Power supply for GPIO pre-driver in SNVS bank NVCC_I2C_UART, NVCC_SAI3_SAI5, NVCC_SD1_NAND, NVCC_ECSPI, NVCC_SD2, NVCC_ENET_GPIO_SAI2 1.650 1.800 1.950 V Power supply for GPIO when it is in 1.8 V mode 3.000 3.300 3.600 V Power supply for GPIO when it is in 3.3 V mode NVCC_CLK_JTAG_PVCC_ 1P8 1.650 1.800 1.950 V Power supply for GPIO and GPIO pre-driver in 1.8 V mode VSS — — — V Ground for all core logic and I/O NVCC_DRAM 1.283 1.35 1.425 V DDR3L 1.14 1.2 1.26 V DDR4 1.06 1.1 1.14 V LPDDR4 V Internal output, no connection is needed. DRAM_VREF 0.49 x 0.5 x 0.51 x NVCC_DRAM NVCC_DRAM NVCC_DRAM i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 20 NXP Semiconductors Electrical characteristics Table 16. Operating ranges for 11 x11 mm package (continued) Symbol Min Typ Max1 Unit Comment VDD_ANA1_XTAL_MIPI_U SB_1P8, VDD_ANA0_ARM_PLL_1P 8 1.71 1.8 1.89 V 1.8 V power for Analog core, XTAL, MIPI PLL and analog, USB analog and ARM PLL VDD_DRAM_PLL_1P8 1.71 1.8 1.89 V Analog 1.8 V core power VDD_MIPI_1P2 1.14 1.2 1.26 V 1.2 V power for analog VDD_USB_3P3 3.069 3.30 3.6 V 3.3 V analog power supply USB1_VBUS 1.34 — 3.60 V USB_VBUS input detect signal Temperature Sensor Accuracy2 — ±3 ±5 °C Sensing temperature range 10°C to 105°C T J -40 — +105 oC See Table 3 for complete list of junction temperature capabilities. 1 Applying the maximum voltage results in maximum power consumption and heat generation. A voltage set point = (Vmin + the supply tolerance) is recommended. This results in an optimized power/speed ratio. 2 “EN” of TMU Enable Register (TMU_TER) is required to be always enabled for the part to operate correctly. 3.1.4 External clock sources Each i.MX 8M Nano processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI). The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can only be connected to an external oscillator. RTC_XTALO should be directly connected to VDD_SNVS_0P8. The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either an external oscillator or a crystal using internal oscillator amplifier. Table 17 shows the interface frequency requirements. Table 17. External input clock frequency Parameter Description RTC_XTALI Oscillator1 1,3 XTALI Oscillator Symbol Min Typ Max Unit fckil — 32.7682 — kHz fxtal 24 MHz 1 The required frequency stability of this clock source is application dependent. Recommended nominal frequency 32.768 kHz. 3 External oscillator or a fundamental frequency crystal appropriately coupled to the internal oscillator amplifier. 2 The typical values shown in Table 17 are required for use with NXP software to ensure precise time keeping and USB operation. For RTC_XTALI operation, an external oscillator is necessary. RTC_XTALO should be directly connected to VDD_SNVS_0P8 when using an external 32.768 kHz oscillator. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 21 Electrical characteristics NOTE There is no internal RC oscillator. Table 18 shows the external input clock for OSC32K. Table 18. External input clock for OSC32K Symbol Min Typ Max Unit Frequency f — 32.768 — kHz RTC_XTALI VIH 0.7 x NVCC_SNVS_1P8 — NVCC_SNVS_1P8 V VIL 0 — 0.3 x NVCC_SNVS_1P8 V 3.1.5 Estimated power supply maximum currents Power consumption is highly dependent on the application. Estimating the maximum supply currents required for power supply design is difficult because the use cases that requires maximum supply current is not a realistic use cases. The table below represents the estimated maximum current on the power supply rails and should be used as a guideline for power supply selection. The data below is based on a combination of design simulation and characterization data based on typical datasheet voltages. Actual power consumption for typical use cases are lower than values presented on the table below. Table 19. Estimated power supply maximum currents for 14 x 14 mm package Power rail Max current Unit VDD_ARM 2200 mA VDD_SOC 1000 mA VDD_GPU 800 mA VDD_DRAM 800 mA VDD_ANA_0P8 50 mA VDD_ANA0_1P8 VDD_ANA1_1P8 250 mA 3 mA NVCC_SNVS_1P8 NVCC_ NVCC_DRAM DRAM_VFEF Imax = N x C x V x (0.5 x F) Where: N—Number of IO pins supplied by the power line C—Equivalent external capacitive load V—IO voltage (0.5 x F)—Data change rate. Up to 0.5 of the clock rate (F). In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz. 10 mA i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 22 NXP Semiconductors Electrical characteristics Table 20. Estimated power supply maximum currents for 11 x 11 mm package Power rail Max current Unit 3000 mA 3 mA VDD_ANA1_XTAL_MIPI_USB_1P8, VDD_ANA0_ARM_PLL_1P8, VDD_DRAM_PLL_1P8 250 mA VDD_MIPI_1P2 100 mA VDD_SOC NVCC_SNVS_1P8 Imax = N x C x V x (0.5 x F) Where: N—Number of IO pins supplied by the power line C—Equivalent external capacitive load V—IO voltage (0.5 x F)—Data change rate. Up to 0.5 of the clock rate (F). In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz. NVCC_ NVCC_DRAM DRAM_VFEF 3.1.6 10 mA Power modes The i.MX 8M Nano supports the following power modes: • RUN Mode: All external power rails are on, CPU is active and running; other internal modules can be on/off based on application. • IDLE Mode: When there is no thread running and all high-speed devices are not active, the CPU can automatically enter this mode. The CPU can be in the power-gated state but with L2 data retained, DRAM and the bus clock are reduced. Most of the internal logic is clock gated but still remains powered. The M7 core can remain running. Compared with RUN mode, all the external power rails from the PMIC remain the same, and most of the modules still remain in their state. • SUSPEND Mode: The most efficient power saving mode where all the clocks are off and all the unnecessary power supplies are off. • SNVS Mode: This mode is also called RTC mode. Only the power for the SNVS domain remains on to keep RTC and SNVS logic alive. • OFF Mode: All power rails are off. Table 21. Chip power in different LP mode for 14 x 14 mm package Mode SNVS Typ.1 Supply VDD_SNVS_0P8 0.10 NVCC_SNVS_1P8 1.20 2 Total Unit mW 1.30 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 23 Electrical characteristics Table 21. Chip power in different LP mode for 14 x 14 mm package (continued) Mode SUSPEND Low-V SUSPEND3 Typ.1 Supply NVCC 0.80 NVCC_DRAM 2.40 NVCC_ENET 0.10 NVCC_SNVS_1P8 0.20 PVCC 0.60 VDD_DRAM 9.40 VDD_MIPI_0P8 0.10 VDD_SNVS_0P8 0.10 VDD_SOC 4.50 VDD_ARM_PLL_0P8 0.10 VDD_USB_0P8 2.50 Total2 20.80 NVCC 0.70 NVCC_DRAM 1.50 NVCC_ENET 0.10 NVCC_SNVS_1P8 0.20 PVCC 0.60 VDD_DRAM 6.80 VDD_MIPI_0P8 0.20 VDD_SNVS_0P8 0.10 VDD_SOC 3.50 VDD_ARM_PLL_0P8 0.10 VDD_USB_0P8 2.60 Total2 16.40 Unit mW mW All the power numbers defined in the table are for information only. These numbers are based on typical silicon at 25oC, under non-OS environment and use case dependent. For power numbers with OS and real use cases, see Power consumption measurement application note for more details. 2 Sum of the listed supply rails. 3 Low-V suspend mode is low voltage suspend mode. Comparing with suspend mode (VDD_SOC/GPU/DRAM at 0.8 V), Low-V suspend mode sets VDD_SOC/GPU/DRAM at 0.75 V. 1 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 24 NXP Semiconductors Electrical characteristics Table 22. Chip power in different LP mode for 11 x 11 mm package Mode SUSPEND Low-V SUSPEND 2 SNVS Typ.1 Supply VDD_SOC 12.1 NVCC_DRAM 2 VDD_SNVS_0P8 0.1 NVCC_SNVS_1P8 0.2 NVCC_CLK_JTAG_PVCC_1P8 1 NVCC_I2C_UART NVCC_SAI3_SAI5 NVCC_SD1_NAND NVCC_ECSPI NVCC_SD2 0.2 NVCC_ENET_GPIO_SAI2 0.3 Total 15.9 VDD_SOC 9.9 NVCC_DRAM 1.5 VDD_SNVS_0P8 0.1 NVCC_SNVS_1P8 0.2 NVCC_CLK_JTAG_PVCC_1P8 0.9 NVCC_I2C_UART NVCC_SAI3_SAI5 NVCC_SD1_NAND NVCC_ECSPI NVCC_SD2 0.2 NVCC_ENET_GPIO_SAI2 0.3 Total 13.1 VDD_SNVS_0P8 0.1 NVCC_SNVS_1P8 0.3 Total 0.4 Unit mW mW mW All the power numbers defined in the table are for information only. These numbers are based on typical silicon at 25oC, under non-OS environment and use case dependent. For power numbers with OS and real use cases, see Power consumption measurement application note for more details. 2 Low-V suspend mode is low voltage suspend mode. Comparing with suspend mode (VDD_SOC at 0.8 V), Low-V suspend mode sets VDD_SOC at 0.75 V. 1 Table 23 and Table 25 summary the power supply states in all the power modes. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 25 Electrical characteristics Table 23. The power supply states for 14 x 14 mm package Power rail OFF SNVS SUSPEND1 IDLE RUN VDD_ARM OFF OFF OFF ON ON VDD_SOC OFF OFF ON ON ON VDD_GPU OFF OFF OFF OFF ON/OFF VDD_DRAM OFF OFF ON ON ON Misc_1P82 OFF OFF ON ON ON Misc_0P82 OFF OFF ON ON ON VDD_MIPI_1P2 OFF OFF ON ON ON VDD_MIPI_0P8 OFF OFF ON ON ON VDD_DRAM_PLL_0P8 OFF OFF ON ON ON VDD_SNVS_0P8 OFF ON ON ON ON NVCC_SNVS_1P8 OFF ON ON ON ON NVCC_ OFF OFF ON ON ON PVCCx_1P8 OFF OFF ON ON ON NVCC_DRAM OFF OFF ON ON ON 1 SUSPEND is covering normal suspend mode (VDD_SOC/GPU/DRAM at 0.8 V) and Low-V suspend (VDD_SOC/GPU/DRAM at 0.75 V). 2 See Table 24 Table 24. Group name Misc_1P8 VDD_24M_XTAL_1P8 VDD_ANA0_1P8 VDD_ANA1_1P8 VDD_ARM_PLL_1P8 VDD_DRAM_PLL_1P8 VDD_MIPI_1P8 VDD_USB_1P8 Misc_0P8 VDD_ANA_0P8 VDD_ARM_PLL_0P8 VDD_USB_0P8 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 26 NXP Semiconductors Electrical characteristics Table 25. The power supply states for 11 x 11 mm package Power rail VDD_SOC OFF SNVS SUSPEND IDLE RUN OFF OFF ON ON ON VDD_ANA1_XTAL_MIPI_ OFF USB_1P8, VDD_ANA0_ARM_PLL_ 1P8, VDD_DRAM_PLL_1P8 OFF ON ON ON VDD_MIPI_1P2 OFF OFF ON ON ON VDD_SNVS_0P8 OFF ON ON ON ON NVCC_SNVS_1P8 OFF ON ON ON ON NVCC_ OFF OFF ON ON ON NVCC_DRAM OFF OFF ON ON ON 3.2 Power supplies requirements and restrictions The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations: • Excessive current during power-up phase • Prevention of the device from booting • Irreversible damage to the processor (worst-case scenario) i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 27 Electrical characteristics 3.2.1 Power-up sequence Figure 3 illustrates the power-up sequence for 14 x 14 mm package of i.MX 8M Nano applications processor. NVCC_SNVS_1P8 T1 VDD_SNVS_0P8 T2 RTC_RESET_B T3 32K RTC_XTALI t1 PMIC_ON_REQ VDD_SOC,VDD_ANA_0P8,VDD_ARM_PLL_0P8 VDD_USB_0P8 VDD_GPU,VDD_DRAM, VDD_DRAM_PLL_0P8 T4 T5 T6 VDD_MIPI_0P8 VDD_ARM VDD_ANAx_1P8,VDD_DRAM_PLL_1P8,VDD_MIPI_1P8, VDD_24M_XTAL_1P8,VDD_USB_1P8 VDD_ARM_PLL_1P8 PVCCx_1P8, NVCC_xxx (1.8 V) NVCC_DRAM T7 T8 T9 T10 T11 NVCC_xxx (2.5 and 3.3 V),VDD_USB_3P3 VDD_MIPI_1P2 T12 T13 POR_B Figure 3. The power-up sequence for 14 x 14 mm package NOTE VDD_MIPI_1P2 should power up after VDD_MIPI_0P8 and VDD_MIPI_1P8, and it can power up before the POR_B release or after the POR_B release. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 28 NXP Semiconductors Electrical characteristics Table 26 represents the timing parameters of the power-up sequence for 14 x 14 mm package. Table 26. Power-up sequence for 14 x 14 mm package Description Min Typ Max Unit T1 Delay from NVCC_SNVS_1P8 to VDD_SNVS_0P8 0 2 — ms T2 Delay from VDD_SNVS_0P8 high or RTC_SET_B de-assert 0 10 — ms T3 Delay from RTC_RESET_B de-assert to stable 32 k existed — 40 100 s T4 Delay from PMIC_ON_REQ assert to analog 0.8 V on 0 0.2 — ms T5 Delay from analog 0.8 V on to analog 0.8/0/9 V on 0 2 — ms T6 Delay from analog 0.8/0.9 V on to PHY 0.9 V on 0 15 — s T7 Delay from PHY 0.9 V on to VDD_ARM on 0 2 — ms T8 Delay from VDD_ARM on to analog 1.8 V on 0 15 — s T9 Delay from analog 1.8 V on to digital 1.8 V on 0 2 — ms T10 Delay from digital 1.8 V on to NVCC_DRAM on 0 2 — ms T11 Delay from NVCC_DRAM on to digital 2.5 V and 3.3 V on 0 2 — ms T12 Delay from digital 2.5 V and 3.3 V on to PHY 1.2 V on 0 2 — ms T131 Delay from digital 2.5 V and 3.3 V on to POR_B de-assert 0 20 — ms t1 Uncertain period before PMIC_ON_REQ assert during VDD_SNVS_0P8 ramp up. For ramp up requirement, only VDD_ANA0_1P8 has 5 s minimum requirement, others do not have such requirement. During power-up, make sure NVCC_xxx - PVCCx_1P8 < 2 V. 1 The values of T13 depend on T2. RTC_RESET_B must be de-assert before POR_B de-asserts. Figure 4 illustrates the power-up sequence for 11 x 11 mm package of i.MX 8M Nano applications processor. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 29 Electrical characteristics NVCC_SNVS_1P8 T1 VDD_SNVS_0P8 T2 RTC_RESET_B T3 32K RTC_XTALI t1 PMIC_ON_REQ T4 VDD_SOC T5 VDD_ANA1_XTAL_MIPI_USB_1P8, VDD_ANA0_ARM_PLL_1P8,VDD_DRAM_PLL_1P8 T6 NVCC_xxx (1.8V) T7 NVXX_DRAM T8 NVCC_xxx (3.3 V), VDD_USB_3P3 T9 VDD_MIPI_1P2 T10 POR_B Figure 4. The power-up sequence for 11 x 11 mm package NOTE VDD_MIPI_1P2 should power up after Analog 1.8 V on, and it can power up before POR_B release or after POR_B release. Table 27 represents the timing parameters of the power-up sequence for 11 x 11 mm package. Table 27. Power-up sequence for 11 x 11 mm package Description Min Typ Max Unit T1 Delay from NVCC_SNVS_1P8 to VDD_SNVS_0P8 0 2 — ms T2 Delay from VDD_SNVS_0P8 high or RTC_SET_B de-assert 0 10 — ms T3 Delay from RTC_RESET_B de-assert to stable 32 k existed — 40 100 s T4 Delay from PMIC_ON_REQ assert to ARM, analog and PHY 0.8/0.9 V on 0 5 — ms T5 Delay from SOC, analog and PHY 0.8/0.9 V to analog 1.8 V on 0 15 — s T6 Delay from analog 1.8 V on to digital 1.8 V on 0 2 — ms T7 Delay from digital 1.8 V on to NVCC_DRAM on 0 2 — ms T8 Delay from NVCC_DRAM on to digital 3.3 V on 0 2 — ms T9 Delay from analog 1.8 V on to PHY 1.2 V on 0 2 — ms 0 20 — ms T10 Delay from digital 3.3 V on to POR_B de-assert 1 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 30 NXP Semiconductors Electrical characteristics Table 27. Power-up sequence for 11 x 11 mm package (continued) Description t1 Min Typ Max Unit Uncertain period before PMIC_ON_REQ assert during VDD_SNVS_0P8 ramp up. For ramp up requirement, only VDD_ANA0_ARM_PLL_1P8 has 5 s minimum requirement, others do not have such requirement. 1 The values of T10 depend on T2. RTC_RESET_B must be de-assert before POR_B de-asserts. 3.2.2 Power-down sequence Figure 5 illustrates the power-down sequence for 14 x 14 mm package of i.MX 8M Nano applications processor. VDD_MIPI_1P2 T1 NVCC_xxx (2.5 and 3.3 V) T2 NVCC_DRAM T3 PVCCx_1P8, NVCC_xxx (1.8V) VDD_ANAx_1P8, VDD_DRAM_PLL_1P8,VDD_MIPI_1P8 VDD_24M_XTAL_1P8,VDD_USB_1P8 T4 T5 VDD_ARM T6 VDD_MIPI_0P8 VDD_GPU, VDD_DRAM, VDD_DRAM_PLL_0P8 T7 T8 VDD_SOC, VDD_ANA_0P8 VDD_USB_0P8 T9 32K RTC_XTALI T10 RTC_RESET_B VDD_SNVS_0P8 T11 NVCC_SNVS_1P8 T12 Figure 5. The power-down sequence for 14 x 14 mm package i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 31 Electrical characteristics Table 28 represents the timing parameters of the power-down sequence for 14 x 14 mm package. Table 28. Power-down sequence for 14 x 14 mm package Description Min Typ Max Unit T1 Delay from PHY 1.2 V off to digital 2.5 V and 3.3 V off 0 10 — ms T2 Delay from digital 2.5 V and 3.3 V off to NVCC_DRAM off 0 10 — ms T3 Delay from NVCC_DRAM off to digital 1.8 V off 0 10 — ms T4 Delay from digital 1.8 V off to analog 1.8 V off 0 10 — ms T5 Delay from analog 1.8 V off to VDD_ARM off 0 10 — ms T6 Delay from VDD_ARM off to PHY 0.9 V off 0 10 — ms T7 Delay from PHY 0.9 V off to analog 0.8/0.9 V off 0 10 — ms T8 Delay from analog 0.8/0.9 V off to analog 0.8 V off 0 10 — ms T9 Delay from analog 0.8 V off to 32k off 0 10 — ms T10 Delay from 32k off to RTC_RESET_B assert 0 10 — ms T11 Delay from RTC_RESET_B assert to VDD_SNVS_0P8 off 0 10 — ms T12 Delay from VDD_SNVS_0P8 off to NVCC_SNVS_1P8 off 0 10 — ms During power-down, make sure NVCC_xxx - PVCCx_1P8 < 2 V. Figure 6 illustrates the power-down sequence for 11 x 11 mm package of i.MX 8M Nano applications processor. VDD_MIPI_1P2 T1 NVCC_xxx (3.3 V) T2 NVCC_DRAM T3 NVCC_xxx (1.8 V) VDD_ANA1_XTAL_MIPI_USB_1P8 VDD_ANA0_ARM_PLL_1P8,VDD_DRAM_PLL_1P8 T4 T5 VDD_SOC 32K RTC_XTALI RTC_RESET_B VDD_SNVS_0P8 T6 T7 T8 T9 NVCC_SNVS_1P8 Figure 6. The power-down sequence for 11 x 11 mm package i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 32 NXP Semiconductors Electrical characteristics Table 29 represents the timing parameters of the power-down sequence for 11 x 11 mm package. Table 29. Power-down sequence for 11 x 11 mm package Description 3.3 Min Typ Max Unit T1 Delay from PHY 1.2 V off to digital 2.5 V and 3.3 V off 0 10 — ms T2 Delay from digital 2.5 V and 3.3 V off to NVCC_DRAM off 0 10 — ms T3 Delay from NVCC_DRAM off to digital 1.8 V off 0 10 — ms T4 Delay from digital 1.8 V off to analog 1.8 V off 0 10 — ms T5 Delay from analog 1.8 V off to VDD_SOC off 0 40 — ms T6 Delay from VDD_SOC off to 32k off 0 10 — ms T7 Delay from 32k off to RTC_RESET_B assert 0 10 — ms T8 Delay from RTC_RESET_B assert to VDD_SNVS_0P8 off 0 10 — ms T9 Delay from VDD_SNVS_0P8 off to NVCC_SNVS_1P8 off 0 10 — ms PLL electrical characteristics Table 30 shows PLL electrical characteristics. Table 30. PLL electrical parameters PLL type Parameter Value AUDIO_PLL1 Clock output range Maximum 650 MHz Reference clock 24 MHz Lock time1 500 s Clock output range Maximum 650 MHz Reference clock 24 MHz Lock time 500 s Clock output range Maximum 650 MHz Reference clock 24 MHz Lock time 500 s Clock output range 800 MHz Reference clock 24 MHz Lock time 50 s Clock output range 1 GHz Reference clock 24 MHz Lock time 50 s AUDIO_PLL2 VIDEO_PLL1 SYS_PLL1 SYS_PLL2 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 33 Electrical characteristics Table 30. PLL electrical parameters (continued) PLL type Parameter Value SYS_PLL3 Clock output range 600 MHz — 1 GHz Reference clock 24 MHz Lock time 50 s Clock output range 800 MHz — 2 GHz Reference clock 24 MHz Lock time 50 s Clock output range 400 MHz — 800 MHz Reference clock 24 MHz Lock time 50 s Clock output range 400 MHz — 800 MHz Reference clock 24 MHz Lock time 500 s Clock output range 800 MHz — 1600 MHz Reference clock 24 MHz Lock time 50 s ARM_PLL M7_ALT_PLL DRAM_PLL GPU_PLL 1 Lock time is referring from PLL enable to valid lock flag time. 3.4 3.4.1 On-chip oscillators OSC24M A 24 MHz oscillator is used as the primary clock source for the PLLs to generate the clock for the CPU, BUS, and high-speed interfaces. For fractional PLLs, the 24 MHz clock from the oscillator can be used as the PLL reference clock directly. Table 31. Crystal specifications1 1 Parameter Description Min Typ Max Unit Frequency — 24 — MHz Cload — 12 — pF Drive level 100 — — W ESR — — 80  Actual working drive level is depend on real design. Please contact crystal vendor for selecting drive level of crystal. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 34 NXP Semiconductors Electrical characteristics 3.4.2 OSC32K An external 32.768 kHz oscillator is necessary. 3.5 General purpose I/O (GPIO) DC parameters Table 32 shows DC parameters for GPIO pads. The parameters in Table 32 are guaranteed per the operating ranges in Table 15, unless otherwise noted. Table 32. GPIO DC parameters Parameter Symbol Test Conditions Min Typ Max Unit High-level output voltage VOH (1.8 V) IOH = 1.6/3.2/6.4/9.6 mA (1.8 V) IOH = 2/4/8/12 mA (3.3 V) 0.8 x VDD — VDD V 0.8 x VDD — VDD V 0 — 0.2 x VDD V 0 — 0.2 x VDD V VOH (3.3 V) Low-level output voltage VOL (1.8 V) VOL (3.3 V) IOL = 1.6/3.2/6.4/9.6 mA (1.8 V) IOL = 2/4/8/12 mA (3.3 V) High-level input voltage VIH — 0.7 x VDD — VDD + 0.3 V Low-level input voltage VIL — -0.3 — 0.3 x VDD V Pull-up resistor — 12 22 49 K Pull-down resistor — VDD = 1.65 - 1.95V Temp = 0 - 95 oC 13 23 48 K Pull-up resistor — 13 24 69 K Pull-down resistor — VDD = 2.25 - 2.75V Temp = 0 - 95 oC 9.1 33 69 K Pull-up resistor — 18 37 72 K Pull-down resistor — VDD = 3.0 - 3.6V Temp = 0 - 95 oC 24 43 87 K High level input current IIH — -4 — 4 A Low level input current IIL — -0.7 — 0.7 A Table 33. Additional leakage parameters Parameter High level input current Low level input current Symbol IIH IIL Pins Min Max USB1_Dx -30 30 MIPI_CSI -4 4 USB1_ID, ONOFF, POR_B -1 1 USB1_ID -200 200 USB1_Dx -6 6 MIPI_CSI, ONOFF, POR_B -0.7 0.7 Unit A A i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 35 Electrical characteristics 3.5.1 DDR I/O DC electrical characteristics The DDR I/O pads support LPDDR 4, DDR4, and DDR3L operational modes. The DDR Memory Controller (DDRMC) is designed to be compatible with JEDEC-compliant SDRAMs. DDRMC operation is contingent upon the board’s DDR design adherence to the DDR design and layout requirements stated in the hardware development guide for the i.MX 8M Nano applications processor. 3.6 I/O AC parameters This section includes the AC parameters of the following I/O types: • General Purpose I/O (GPIO) The GPIO load circuit and output transition time waveforms are shown in Figure 7 and Figure 8. From Output Under Test Test Point CL CL includes package, probe and fixture capacitance Figure 7. Load circuit for output 80% 80% 20% Output (at pad) tf tr OVDD 20% 0V Figure 8. Output transition time waveform 3.6.1 General purpose I/O AC parameters This section presents the I/O AC parameters for GPIO in different modes. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers. Table 34. Maximum frequency of operation for input Maximum frequency (MHz) VDD = 1.8 V, CL = 50 pF VDD = 3.3 V, CL = 50 pF 450 440 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 36 NXP Semiconductors Electrical characteristics Table 35. Maximum frequency of operation for output Maximum Frequency (MHz) Parameter VDD = 1.8 V VDD = 3.3 V dse[2:0] sre[1:0] Driver type CL = 10 pF CL = 20 pF CL = 10 pF CL = 20 pF 00X 0X 1x Slow Slew 150 80 120 65 00X 1X 1x Fast Slew 150 80 120 65 10X 0X 2x Slow Slew 160 90 150 80 10X 1X 2x Fast Slew 160 90 150 80 01X 0X 4x Slow Slew 200 100 180 90 01X 1X 4x Fast Slew 200 100 180 90 11X 0X 6x Slow Slew 250 130 200 100 11X 1X 6x Fast Slew 250 130 200 100 3.7 Output buffer impedance parameters This section defines the I/O impedance parameters of the i.MX 8M Nano family of processors for the following I/O types: NOTE DDR I/O output driver impedance is measured with “long” transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 9). i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 37 Electrical characteristics OVDD PMOS (Rpu) Ztl W, L = 20 inches ipp_do pad predriver Cload = 1p NMOS (Rpd) OVSS U,(V) Vin (do) VDD t,(ns) 0 U,(V) Vout (pad) OVDD Vref2 Vref1 Vref t,(ns) 0 Rpu = Vovdd - Vref1 x Ztl Vref1 Rpd = Vref2 x Ztl Vovdd - Vref2 Figure 9. Impedance matching load for measurement i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 38 NXP Semiconductors Electrical characteristics 3.7.1 DDR I/O output buffer impedance Table 36 shows DDR I/O output buffer impedance of i.MX 8M Nano family of processors. Table 36. DDR I/O output buffer impedance Parameter Symbol Output Driver Impedance Rdrv Test Conditions DSE (Drive Strength) Typical NVCC_DRAM = 1.35 V (DDR3L) NVCC_DRAM = 1.2 V (DDR4) NVCC_DRAM = 1.1 V (LPDDR4) 000000 Hi-Z Hi-Z Hi-Z 000010 240 240 240 001000 120 120 120 001010 80 80 80 011000 60 60 60 011010 48 48 48 111000 40 40 40 111010 34 34 34 Unit  Note: 1. Output driver impedance is controlled across PVTs using ZQ calibration procedure. 2. Calibration is done against 240  external reference resistor. 3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs. 3.8 System modules timing This section contains the timing and electrical parameters for the modules in each i.MX 8M Nano processor. 3.8.1 Reset timings parameters Figure 10 shows the reset timing and Table 37 lists the timing parameters. POR_B (Input) CC1 Figure 10. Reset timing diagram Table 37. Reset timing parameters ID CC1 Parameter Duration of POR_B to be qualified as valid. Min Max Unit 1 — RTC_XTALI cycle i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 39 Electrical characteristics 3.8.2 WDOG Reset timing parameters Figure 11 shows the WDOG reset timing and Table 38 lists the timing parameters. WDOGx_B (Output) CC3 Figure 11. WDOGx_B timing diagram Table 38. WDOGx_B timing parameters ID CC3 Parameter Duration of WDOG1_B Assertion Min Max Unit 1 — RTC_XTALI cycle NOTE RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 s. NOTE WDOGx_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUXC chapter of the i.MX 8M Nano Applications Processor Reference Manual (IMX8MNRM) for detailed information. 3.9 External peripheral interface parameters The following subsections provide information on external peripheral interfaces. 3.9.1 ECSPI timing parameters This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 40 NXP Semiconductors Electrical characteristics 3.9.1.1 ECSPI Master mode timing Figure 12 depicts the timing of ECSPI in master mode. Table 39 lists the ECSPI master mode timing characteristics. ECSPIx_RDY_B ECSPIx_SS_B CS10 CS2 CS3 CS1 CS5 CS6 CS4 ECSPIx_SCLK CS7 CS3 CS2 ECSPIx_MOSI CS8 CS9 ECSPIx_MISO Figure 12. ECSPI Master mode timing diagram Table 39. ECSPI Master mode timing parameters ID Parameter 2 Min Max Unit CS1 ECSPIx_SCLK Cycle Time–Read ECSPIx_SCLK Cycle Time–Write tclk 43 15 — ns CS2 ECSPIx_SCLK High or Low Time–Read ECSPIx_SCLK High or Low Time–Write tSW 21.5 7 — ns CS3 ECSPIx_SCLK Rise or Fall1 tRISE/FALL — — ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period — ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS Half ECSPIx_SCLK period - 4 — ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS Half ECSPIx_SCLK period - 2 — ns CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF) tPDmosi -1 1 ns CS8 ECSPIx_MISO Setup Time tSmiso 18 — ns CS9 ECSPIx_MISO Hold Time tHmiso 0 — ns tSDRY 5 — ns CS10 RDY to ECSPIx_SS_B Time2 1 Symbol See specific I/O AC parameters Section 3.6, I/O AC parameters”. SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 41 Electrical characteristics 3.9.1.2 ECSPI Slave mode timing Figure 13 depicts the timing of ECSPI in Slave mode. Table 40 lists the ECSPI Slave mode timing characteristics. ECSPIx_SS_B CS2 CS1 CS5 CS6 CS4 ECSPIx_SCLK CS2 CS9 ECSPIx_MISO CS7 CS8 ECSPIx_MOSI Figure 13. ECSPI Slave mode timing diagram Table 40. ECSPI Slave mode timing parameters ID Parameter Symbol Min Max Unit CS1 ECSPIx_SCLK Cycle Time–Read ECSPI_SCLK Cycle Time–Write tclk 15 43 — ns CS2 ECSPIx_SCLK High or Low Time–Read ECSPIx_SCLK High or Low Time–Write tSW 7 21.5 — ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period — ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS 5 — ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS 5 — ns CS7 ECSPIx_MOSI Setup Time tSmosi 4 — ns CS8 ECSPIx_MOSI Hold Time tHmosi 4 — ns CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF) tPDmiso 4 19 ns i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 42 NXP Semiconductors Electrical characteristics 3.9.2 Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC timing This section describes the electrical information of the uSDHC, which includes SD/eMMC 5.1 (single data rate) timing, eMMC 5.1/SD3.0 (dual data rate) AC timing, and SDR50/SDR104 AC timing. 3.9.2.1 SD/eMMC5.1 (single data rate) AC timing Figure 14 depicts the timing of SD3.0/eMMC5.1 (SDR), and Table 41 lists the SD3.0/eMMC5.1 (SDR) timing characteristics. SD4 SD2 SD1 SD5 SDx_CLK SD3 SD6 Output from uSDHC to card SDx_DATA[7:0] SD7 SD8 Input from card to uSDHC SDx_DATA[7:0] Figure 14. SD3.0/eMMC5.1 (SDR) timing Table 41. SD3.0/eMMC5.1 (SDR) interface timing specification ID Parameter Symbols Min Max Unit Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2 0 25/50 MHz Clock Frequency (MMC Full Speed/High Speed) fPP3 0 20/52 MHz Clock Frequency (Identification Mode) fOD 100 400 kHz SD2 Clock Low Time tWL 7 — ns SD3 Clock High Time tWH 7 — ns SD4 Clock Rise Time tTLH — 3 ns SD5 Clock Fall Time tTHL — 3 ns 3.6 ns Card Input Clock SD1 uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD6 uSDHC Output Delay tOD 6.6 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 43 Electrical characteristics Table 41. SD3.0/eMMC5.1 (SDR) interface timing specification (continued) ID Parameter Symbols Min Max Unit uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD7 uSDHC Input Setup Time SD8 4 uSDHC Input Hold Time tISU 2.5 — ns tIH 1.5 — ns 1 In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 0 – 25 MHz. In High-speed mode, clock frequency can be any value between 0 – 50 MHz. 3 In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 0 – 20 MHz. In High-speed mode, clock frequency can be any value between 0 – 52 MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns. 2 3.9.2.2 eMMC5.1/SD3.0 (dual data rate) AC timing Figure 15 depicts the timing of eMMC5.1/SD3.0 (DDR). Table 42 lists the eMMC5.1/SD3.0 (DDR) timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD). SD1 SDx_CLK SD2 SD2 Output from eSDHCv3 to card SDx_DATA[7:0] ...... SD3 SD4 Input from card to eSDHCv3 SDx_DATA[7:0] ...... Figure 15. eMMC5.1/SD3.0 (DDR) timing Table 42. eMMC5.1/SD3.0 (DDR) interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency (eMMC5.1 DDR) fPP 0 52 MHz SD1 Clock Frequency (SD3.0 DDR) fPP 0 50 MHz 6.9 ns uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD2 uSDHC Output Delay tOD 2.7 uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 44 NXP Semiconductors Electrical characteristics Table 42. eMMC5.1/SD3.0 (DDR) interface timing specification (continued) ID Parameter Symbols Min Max Unit SD3 uSDHC Input Setup Time tISU 2.4 — ns SD4 uSDHC Input Hold Time tIH 1.3 — ns 3.9.2.3 HS400 DDR AC timing Figure 16 depicts the timing of HS400 mode, and Table 43 lists the HS400 timing characteristics. Be aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6, and SD7 parameters in Table 45 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for HS400 mode. SD1 SD3 SD2 SCK SD4 SD5 DAT0 DAT1 ... SD4 SD5 Output from uSDHC to eMMC DAT7 Strobe Input from eMMC to uSDHC SD6 DAT0 DAT1 ... SD7 DAT7 Figure 16. HS400 Mode timing Table 43. HS400 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock frequency fPP 0 200 MHz SD2 Clock low time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock high time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs DAT (Reference to SCK) SD4 Output skew from data of edge of SCK tOSkew1 0.45 — ns SD5 Output skew from edge of SCk to data tOSkew2 0.45 — ns uSDHC Input/Card Outputs DAT (Reference to Strobe) i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 45 Electrical characteristics Table 43. HS400 interface timing specification (continued) ID Parameter Symbols Min Max Unit SD6 uSDHC input skew tRQ — 0.45 ns SD7 uSDHC hold skew tRQH — 0.45 ns 3.9.2.4 HS200 Mode AC timing Figure 17 depicts the timing of HS200 mode, and Table 44 lists the HS200 timing characteristics. SD1 SD2 SD3 SCK SD4/SD5 8-bit output from uSDHC to eMMC 8-bit input from eMMC to uSDHC SD8 Figure 17. HS200 timing iti Table 44. HS200 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 5.0 — ns SD2 Clock Low Time tCL 0.3 x tCLK 0.7 x tCLK ns SD3 Clock High Time tCH 0.3 x tCLK 0.7 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK) SD5 uSDHC Output Delay tOD -1.6 1 ns — ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1 SD8 1 uSDHC Output Data Window tODW 0.5 x tCLK HS200 is for 8 bits while SDR104 is for 4 bits. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 46 NXP Semiconductors Electrical characteristics 3.9.2.5 SDR50/SDR104 AC timing Figure 18 depicts the timing of SDR50/SDR104, and Table 45 lists the SDR50/SDR104 timing characteristics. SD1 SD2 SD3 SCK SD4/SD5 8-bit output from uSDHC to eMMC SD6 SD7 8-bit input from eMMC to uSDHC SD8 Figure 18. SDR50/SDR104 timing Table 45. SDR50/SDR104 interface timing specification ID Parameter Symbols Min Max Unit 5 — ns Card Input Clock SD1 Clock Frequency Period tCLK SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD4 uSDHC Output Delay tOD -3 1 ns 1 ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) SD5 uSDHC Output Delay tOD -1.6 uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD6 uSDHC Input Setup Time tISU 2.4 — ns SD7 uSDHC Input Hold Time tIH 1.4 — ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1 SD8 1 uSDHC Output Data Window tODW 0.5 x tCLK — ns Data window in SDR100 mode is variable. 3.9.2.6 Bus operation condition for 3.3 V and 1.8 V signaling Signaling level of SD/eMMC4.5/5.0/5.1 can be 1.8 V or 3.3 V depending on the working mode. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in Table 32, "GPIO DC parameters," on page 35. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 47 Electrical characteristics 3.9.3 Ethernet controller (ENET) AC electrical specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. Table 46. ENET signal mapping Pad name RGMII/RMII signal Mode Alt mode Direction ENET_MDC MDC RMII/RGMII ALT0 O — ENET_MDIO MDIO RMII/RGMII ALT0 I/O — ENET_TD3 TX_D3 RGMII ALT0 O Only used for RGMII ENET_TD2 REF_CLK RMII ALT1 I/O TX_D2 RGMII ALT0 Used as RMII clock and RGMII data, there are two RMII clock schemes. • MAC generate output 50M reference clock for PHY, and MAC also use this 50M clock. • MAC use external 50M clock. For RMII—ENET_TD2 functions as RMII REF_CLK when configured in the ALT1 mode. ENET_TD1 TX_D1 RMII/RGMII ALT0 O — ENET_TD0 TX_D0 RMII/RGMII ALT0 O — ENET_TX_CTL TX_EN RMII ALT0 O — TX_CTL RGMII ALT0 TX_ER RMII ALT1 O TXC RGMII ALT0 For RMII—ENET_TXC functions as RMII TX_ER when configured in the ALT1 mode. For RGMII—ENET_TXC functions as RGMII TXC when configured in the ALT0 mode. RX_EN (CRS_DV) RMII ALT0 I — RX_CTL RGMII ALT0 RX_ER RMII ALT1 I RXC RGMII ALT0 For RMII—ENET_RXC functions as RMII RX_ER when configured in the ALT1 mode. For RGMII—ENET_RXC functions as RGMII RXC when configured in the ALT0 mode. ENET_RD0 RX_D0 RMII/RGMII ALT0 I — ENET_RD1 RX_D1 RMII/RGMII ALT0 I — ENET_RD2 RX_D2 RGMII ALT0 I — ENET_RD3 RX_D3 RGMII ALT0 I — GPIO1_IO06 MDC RMII/RGMII ALT1 O — GPIO1_IO07 MDIO RMII/RGMII ALT1 I/O — I2C1_SCL MDC RMII/RGMII ALT1 O — I2C1_SDA MDIO RMII/RGMII ALT1 I/O — ENET_TXC ENET_RX_CTL ENET_RXC Comments i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 48 NXP Semiconductors Electrical characteristics Table 46. ENET signal mapping (continued) RGMII/RMII signal Pad name Mode Alt mode Direction Comments GPIO1_IO08 1588_EVENT0_ IN RMII/RGMII ALT1 I Capture/compare block input/output event bus signal. When configured for capture and a rising edge is detected, the current timer value is latched and transferred into the corresponding ENET_TCCRn register for inspection by software. When configured for compare, the corresponding signal 1588_EVENT is asserted for one cycle when the timer reaches the compare value programmed in register ENET_TCCRn. An interrupt or DMA request can be triggered if the corresponding bit in ENET_TCSRn[TIE] or ENET_TSCRn[TDRE] is set. GPIO1_IO09 1588_EVENT0_ OUT RMII/RGMII ALT1 O — I2C2_SCL 1588_EVENT1_ IN RMII/RGMII ALT1 I — I2C2_SDA 1588_EVENT1_ OUT RMII/RGMII ALT1 O — GPIO1_IO00 ENET_PHY_RE F_CLK_ROOT RGMII ALT1 O Reference clock for PHY. SD1_CLK MDC RMII ALT1 O — SD1_CMD MDIO RMII ALT1 I/O — SD1_DATA0 TX_D1 RMII ALT1 O — SD1_DATA1 TX_D0 RMII ALT1 O — SD1_DATA2 RX_D0 RMII ALT1 I — SD1_DATA3 RX_D1 RMII ALT1 I — SD1_DATA4 TX_EN RMII ALT1 O — SD1_DATA5 TX_ER RMII ALT1 O For RMII—SD1_DATA5 functions as RMII TX_ER when configured in the ALT1 mode. SD1_DATA6 RX_EN (CRS_DV) RMII ALT1 I — SD1_DATA7 RX_ER RMII ALT1 I For RMII—SD1_DATA7 functions as RMII RX_ER when configured in the ALT1 mode. SD1_RESET_B REF_CLK RMII ALT1 O For RMII—SD1_RESET_B functions as RMII REF_CLK when configured in the ALT1 mode. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 49 Electrical characteristics 3.9.3.1 RMII mode timing Figure 19 shows RMII mode timings. Table 47 describes the timing parameters (M16–M21) shown in the figure. M16 M17 ENET_CLK (input) M18 ENET_TXD[1:0] (output) ENET_TX_EN M19 ENET_RX_EN (input) ENET_RXD[1:0] ENET_RX_ER M20 M21 Figure 19. RMII mode signal timing diagram Table 47. RMII signal timing ID Characteristic Min. Max. Unit M16 ENET_CLK pulse width high 35% 65% ENET_CLK period M17 ENET_CLK pulse width low 35% 65% ENET_CLK period M18 ENET_CLK to ENET_TXD[1:0], ENET_TXD invalid 4 — ns M19 ENET_CLK to ENET_TXD[1:0], ENET_TXD valid — 15 ns M20 ENET_RXD[1:0], ENET_RX_EN, ENET_RX_ER to ENET_CLK setup 4 — ns M21 ENET_CLK to ENET_RXD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 — ns 3.9.3.2 RGMII signal switching specifications The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 50 NXP Semiconductors Electrical characteristics Table 48. RGMII signal switching specifications1 Symbol Tcyc2 Description Clock cycle duration TskewT3 Data to clock output skew at transmitter Min. Max. Unit 7.2 8.8 ns -500 500 ps 3 Data to clock input skew at receiver 1 2.6 ns 4 Duty_G Duty cycle for Gigabit 45 55 % Duty_T4 Duty cycle for 10/100T 40 60 % Tr/Tf Rise/fall time (20–80%) — 0.75 ns TskewR 1 The timings assume the following configuration: DDR_SEL = (11)b DSE (drive-strength) = (111)b 2 For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively. 3 For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified. 4 Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between. 2'-))?48#ATTRANSMITTER 4SKEW4 2'-))?48$NNTO 2'-))?48?#4, 48%. 48%22 4SKEW2 2'-))?48#ATRECEIVER Figure 20. RGMII transmit signal timing diagram original 2'-))?28#ATTRANSMITTER 4SKEW4 2'-))?28$NNTO 2'-))?28?#4, 28$6 28%22 4SKEW2 2'-))?28#ATRECEIVER Figure 21. RGMII receive signal timing diagram original i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 51 Electrical characteristics 2'-))?28#SOURCEOFDATA )NTERNALDELAY 4SETUP4 4HOLD4 4SETUP2 4HOLD2 2'-))?28$NNTO 28$6 2'-))?28?#4, 28%22 2'-))?28#ATRECEIVER Figure 22. RGMII receive signal timing diagram with internal delay 3.9.4 General-purpose media interface (GPMI) timing The i.MX 8M Nano GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous Timing mode, Source Synchronous Timing mode and Toggle Timing mode separately, as described in the following subsections. 3.9.4.1 Asynchronous mode AC timing (ONFI 1.0 compatible) Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 23 through Figure 26 depicts the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 49 describes the timing parameters (NF1–NF17) that are shown in the figures. .!.$?#%?" .!.$?7%?" .!.$?!,% NF2 NF1 .!.$?#,% NF3 NF4 NF5 NF6 NF8 .!.$?$!4!XX NF7 NF9 Command Figure 23. Command Latch cycle timing diagram i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 52 NXP Semiconductors Electrical characteristics NF1 .!.$?#,% NF3 .!.$?#%?" NF10 .!.$?7%?" NF5 .!.$?!,% NF11 NF7 NF6 NF8 NAND_DATAxx NF9 Address Figure 24. Address Latch cycle timing diagram .!.$?#,% .!.$?#%?" NF1 NF3 NF10 NF5 .!.$?7%?" .!.$?!,% NF11 NF7 NF6 NF9 NF8 .!.$?$!4!XX Data to NF Figure 25. Write Data Latch cycle timing diagram .!.$?#,% .!.$?#%?" NF14 .!.$?2%?" .!.$?2%!$9?" NF15 NF13 NF12 NF16 .!.$?$!4!XX NF17 Data from NF Figure 26. Read Data Latch cycle timing diagram (Non-EDO Mode) .!.$?#,% .!.$?#%?" NF14 NF13 .!.$?2%?" .!.$?2%!$9?" NF12 NF15 NF17 NF16 NAND_DATAxx Data from NF Figure 27. Read Data Latch cycle timing diagram (EDO mode) i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 53 Electrical characteristics Table 49. Asynchronous mode timing parameters1 ID Parameter Timing T = GPMI Clock Cycle Symbol Unit Min. NF1 NF2 NF3 NF4 NF5 NF6 NF7 NF8 NF9 NF10 NF11 NF12 NF13 NF14 NAND_CLE setup time NAND_CLE hold time NAND_CE0_B setup time NAND_CE0_B hold time NAND_WE_B pulse width NAND_ALE setup time tCLS (AS + DS)  T - 0.12 [see ns DH  T - 0.72 [see note ] (AS + DS + 1)  T [see notes (DH+1)  T - 1 [see tCH ns 3,2 ns ] ns ] note2 DS  T [see note ] 2 tWP tALS ] 2 tCLH tCS Max. notes2,3 ns (AS + DS)  T - 0.49 [see notes 3,2 ] ns tALH DH  T - 0.42 [see note2 ] ns tDS DH  T - 0.26 [see note2] ns tDH DH  T - 1.37 [see note2] ns tWC (DS + DH)  T [see note2] ns NAND_WE_B hold time tWH DH  T [see Ready to NAND_RE_B low tRR4 NAND_ALE hold time Data setup time Data hold time Write cycle time NAND_RE_B pulse width READ cycle time (AS + 2)  T [see note2] 3,2] ns — tRP DS  T [see tRC (DS + DH)  T [see DS  T [see ns note2] ns note2] ns note2] NF15 NAND_RE_B high hold time tREH NF16 Data setup on read tDSR — (DS  T -0.67)/18.38 [see notes5,6] ns NF17 Data hold on read tDHR 0.82/11.83 [see notes5,6] — ns 1 2 3 4 5 6 ns GPMI’s Asynchronous mode output timing can be controlled by the module’s internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = GPMI clock period -0.075 ns (half of maximum p-p jitter). NF12 is guaranteed by the design. Non-EDO mode. EDO mode, GPMI clock  100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0). In EDO mode (Figure 26), NF16/NF17 are different from the definition in non-EDO mode (Figure 25). They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical values for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI samples NAND_DATAxx at the rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 8M Nano Applications Processor Reference Manual [IMX8MNRM]). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 54 NXP Semiconductors Electrical characteristics 3.9.4.2 Source synchronous mode AC timing (ONFI 2.x compatible) Figure 28 to Figure 30 show the write and read timing of Source Synchronous mode. NF19 NF18 .!.$?#%?" NF23 NAND_CLE NF25 NF26 NF24 NAND_ALE NF25 NF26 NAND_WE/RE_B NF22 NAND_CLK NAND_DQS NAND_DQS Output enable NF20 NF20 NF21 NF21 NAND_DATA[7:0] CMD ADD NAND_DATA[7:0] Output enable Figure 28. Source Synchronous mode command and address timing diagram i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 55 Electrical characteristics .!.$?#%?" NF19 NF18 NF23 .!.$?#,% NF23 .!.$?!,% NF25 NF26 NF25 NF26 NF24 NF24 NAND_WE/RE_B NF22 .!.$?#,+ NF27 NF27 .!.$?$13 .!.$?$13 Output enable NF29 NF29 .!.$?$1;= NF28 NF28 .!.$?$1;= Output enable Figure 29. Source Synchronous mode data write timing diagram .!.$?#%?" NF18 NF19 NF23 .!.$?#,% NAND_ALE .!.$?7%2% NF23 NF25 NF26 NF25 NF26 NF24 NF24 NF25 NF25 NF22 NF26 .!.$?#,+ .!.$?$13 .!.$?$13 /UTPUTENABLE .!.$?$!4!;= .!.$?$!4!;= /UTPUTENABLE Figure 30. Source Synchronous mode data read timing diagram i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 56 NXP Semiconductors Electrical characteristics .!.$?$13 NF30 .!.$?$!4!;= D0 NF30 D1 D2 D3 NF31 NF31 Figure 31. NAND_DQS/NAND_DQ read valid window Table 50. Source Synchronous mode timing parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Min. NF18 NAND_CE0_B access time NF19 NAND_CE0_B hold time tCE tCH Unit Max. CE_DELAY  T - 0.79 [see note 2] 0.5  tCK - 0.63 [see note2] ns ns NF20 Command/address NAND_DATAxx setup time tCAS 0.5  tCK - 0.05 ns NF21 Command/address NAND_DATAxx hold time tCAH 0.5  tCK - 1.23 ns tCK — NF22 clock period ns tPRE PRE_DELAY  T - 0.29 [see NF24 postamble delay tPOST POST_DELAY  T - 0.78 [see NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5  tCK - 0.86 ns NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5  tCK - 0.37 ns NF23 preamble delay NF27 NAND_CLK to first NAND_DQS latching transition tDQSS T - 0.41 [see note2] note2] note2] NF28 Data write setup — 0.25  tCK - 0.35 NF29 Data write hold — 0.25  tCK - 0.85 NF30 NAND_DQS/NAND_DQ read setup skew — — 2.06 NF31 NAND_DQS/NAND_DQ read hold skew — — 1.95 ns ns ns 1 GPMI’s Source Synchronous mode output timing can be controlled by the module’s internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings. 2 T = tCK(GPMI clock period) –0.075 ns (half of maximum p-p jitter). For DDR Source Synchronous mode, Figure 31 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 8M Nano Applications Processor Reference Manual [IMX8MNRM]). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 57 Electrical characteristics 3.9.4.3 3.9.4.3.1 ONFI NV-DDR2 mode (ONFI 3.2 compatible) Command and address timing ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 3.9.4.1, Asynchronous mode AC timing (ONFI 1.0 compatible), for details. 3.9.4.3.2 Read and write timing ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 3.9.4.4, Toggle mode AC Timing, for details. 3.9.4.4 3.9.4.4.1 Toggle mode AC Timing Command and address timing NOTE Toggle mode command and address timing is the same as ONFI 1.0 compatible Asynchronous mode AC timing. See Section 3.9.4.1, Asynchronous mode AC timing (ONFI 1.0 compatible), for details. 3.9.4.4.2 Read and write timing Figure 32. Toggle mode data write timing i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 58 NXP Semiconductors Electrical characteristics DEV?CLK .!.$?#%X?" .& .!.$?#,% .!.$?!,% .!.$?7%?" T#+  .& T#+ .& .!.$?2%?" T#+ T#+ T#+ .!.$?$13 .!.$?$!4!;= Figure 33. Toggle mode data read timing Table 51. Toggle mode timing parameters ID Parameter Symbol Timing T = GPMI Clock Cycle Min. Unit Max. NF1 NAND_CLE setup time tCLS (AS + DS)  T - 0.12 [see note1s,2] NF2 NAND_CLE hold time tCLH DH  T - 0.72 [see note2] NF3 NAND_CE0_B setup time tCS (AS + DS)  T - 0.58 [see notes,2] NF4 NAND_CE0_B hold time tCH DH  T - 1 [see note2] NF5 NAND_WE_B pulse width tWP DS  T [see note2] NF6 NAND_ALE setup time tALS (AS + DS)  T - 0.49 [see notes,2] NF7 NAND_ALE hold time tALH DH  T - 0.42 [see note2] NF8 Command/address NAND_DATAxx setup time tCAS DS  T - 0.26 [see note2] NF9 Command/address NAND_DATAxx hold time tCAH DH  T - 1.37 [see note2] NF18 NAND_CEx_B access time tCE CE_DELAY  T [see notes3,2] — ns NF22 clock period tCK — — ns tPRE PRE_DELAY  T [see notes4,2] — ns NF23 preamble delay i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 59 Electrical characteristics Table 51. Toggle mode timing parameters (continued) ID Parameter Symbol Timing T = GPMI Clock Cycle Unit Min. Max. NF24 postamble delay tPOST POST_DELAY  T + 0.43 [see note2] — ns NF28 Data write setup tDS5 0.25  tCK - 0.32 — ns 0.25  tCK - 0.79 — ns — 3.18 ns — 3.27 ns NF29 Data write hold 5 tDH 6 NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ NF31 NAND_DQS/NAND_DQ read hold skew tQHS6 1 2 3 4 5 6 AS minimum value can be 0, while DS/DH minimum value is 1. T = tCK (GPMI clock period) - 0.075 ns (half of maximum p-p jitter). CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level. PRE_DELAY + 1  (AS + DS) Shown in Figure 32. Shown in Figure 33. For DDR Toggle mode, Figure 31 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI samples NAND_DATA[7:0] at both the rising and falling edges of a delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by the GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 8M Nano Applications Processor Reference Manual [IMX8MNRM]). Generally, the typical delay value is equal to 0x7, which means a 1/4 clock cycle delay is expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. 3.9.5 I2C bus characteristics The Inter-Integrated Circuit (I2C) provides functionality of a standard I2C master and slave. The I2C is designed to be compatible with the I2C Bus Specification, version 2.1, by Philips Semiconductor (now NXP Semiconductors). 3.9.6 MIPI D-PHY timing parameters MIPI D-PHY electrical specifications are compliance. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 60 NXP Semiconductors Electrical characteristics Table 52. MIPI PHY worst power dissipation1 MODE 2.1 Gbps Total power consume (mW) M4 on S4 on 226.1 4.1 35.6 265.8 M4 on S4 off 164.7 4.03 28.6 197.33 M4 off S4 on 63.02 0 15.8 78.82 4.26 0.0367 0.0584 4.36 ULPS 1 Power consume on Power consume on Power consume on VDD_MIPI_0P8 (mW) VDD_MIPI_1P2 (mW) VDD_MIPI_1P8 (mW) M4 indicates MIPI DSI have 4 data lane enable (at least 1 clock lane enable). S4 indicates MIPI CSI have 4 data lane enable (at least 1 clock lane enable). 3.9.7 PDM timing parameters Figure 34 illustrates the input timing of the PDM. PDM Clock PDM Bitstream ipg_clk_app Pulse right pre_channel_1 ipg_dee_clk Channel 1 Channel 0 Figure 34. PDM input timing PDM clock operative range is from 500 kHz to 6 MHz. Within range, only need to configure ipg_clk_app rate and CLKDIV without I/O timing concerns. 3.9.8 Pulse width modulator (PWM) timing parameters This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 61 Electrical characteristics being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Figure 35 depicts the timing of the PWM, and Table 53 lists the PWM timing parameters. 0 0 07-N?/54 Figure 35. PWM timing Table 53. PWM output timing parameters ID 3.9.9 Parameter Min Max Unit PWM Module Clock Frequency 0 66 (ipg_clk) MHz P1 PWM output pulse width high 12 — ns P2 PWM output pulse width low 12 — ns FlexSPI timing parameters Measurements are with a load of 15 pF and an input slew rate of 1 V/ns. 3.9.9.1 FlexSPI input/read timing There are three sources for the internal sample clock for FlexSPI read data: • Dummy read strobe generated by FlexSPI controller and looped back internally (FlexSPIn_MCR0[RXCLKSRC] = 0x0) • Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1) • Read strobe provided by memory device and input from DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x3) The following sections describe input signal timing for each of these four internal sample clock sources. 3.9.9.1.1 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1, 0x2 Table 54. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0 Symbol Parameter Min. Max. Unit Notes — 66 MHz — — [D:] Frequency of operation F1 [D:] Setup time for incoming data 8.67 — ns 1 F2 [D:] Hold time for incoming data 0 — ns — 1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 62 NXP Semiconductors Electrical characteristics Table 55. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1, 0x2 Symbol Parameter Min. Max. Unit Notes — [D:] Frequency of operation — 133 MHz — F1 [D:] Setup time for incoming data 1.5 — ns 1 F2 [D:] Hold time for incoming data 1 — ns — 1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns. FLEXSPI_SCLK F1 F2 F1 F2 FLEXSPI_DATA[7:0] Internal Sample Clock Figure 36. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1, 0x2 NOTE Timing shown is based on the memory generating read data on the SCK falling edge, and FlexSPI controller sampling read data on the falling edge. 3.9.9.1.2 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 There are two cases when the memory provides both read data and the read strobe in SDR mode: • A1—Memory generates both read data and read strobe on SCK rising edge (or falling edge) • A2—Memory generates read data on SCK falling edge and generates read strobe on SCK rising edge Table 56. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1) Symbol Parameter Min. Max. Unit — [D:] Frequency of operation — 166 MHz F3 [D:] Time from SCK to data valid — — ns F4 [D:] Time from SCK to DQS — — ns — [D:] Time delta between TSCKD and TSCKDQS -2 2 ns i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 63 Electrical characteristics FLEXSPI_SCLK F3 F3 FLEXSPI_DATA[7:0] F4 F4 FLEXSPI_DQS Figure 37. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1) NOTE Timing shown is based on the memory generating read data and read strobe on the SCK rising edge. The FlexSPI controller samples read data on the DQS falling edge. Table 57. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2) Symbol Parameter Min. Max. Unit — [D:] Frequency of operation — 166 MHz F5 [D:] Time from SCK to data valid — — ns F6 [D:] Time from SCK to DQS — — ns — [D:] Time delta between TSCKD and TSCKDQS -2 2 ns FLEXSPI_SCLK F5 F5 F5 FLEXSPI_DATA[7:0] F6 F6 F6 FLEXSPI_DQS Internal Sample Clock Figure 38. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2) NOTE Timing shown is based on the memory generating read data on the SCK falling edge and read strobe on the SCK rising edge. The FlexSPI controller samples read data on a half-cycle delayed DQS falling edge. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 64 NXP Semiconductors Electrical characteristics 3.9.9.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1, 0x2 Table 58. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0 Symbol Parameter Min. Max. Unit Notes — 33 MHz — — [D:] Frequency of operation F1 [D:] Setup time for incoming data 8.67 — ns 1 F2 [D:] Hold time for incoming data 0 — ns — 1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns. Table 59. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1, 0x2 Symbol Parameter Min. Max. Unit Notes — [D:] Frequency of operation — 66 MHz — F1 [D:] Setup time for incoming data 1.5 — ns 1 F2 [D:] Hold time for incoming data 1 — ns — 1 The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be decreased by up to 2ns. SCLK F1 F2 F1 F2 SIO[0:7] Internal Sample Clocks Figure 39. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1, 0x2 3.9.9.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 Table 60. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case 1) Symbol Parameter Min. Max. Unit — [D:] Frequency of operation — 166 MHz TSCKD [D:] Time from SCK to data valid — — ns TSCKDQS [D:] Time from SCK to DQS — — ns TSCKD - TSCKDQS [D:] Time delta between TSCKD and TSCKDQS -0.6 0.6 ns i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 65 Electrical characteristics SCK TSCKD SIO[0:7] TSCKDQS DQS Figure 40. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 3.9.9.2 FlexSPI output/write timing The following sections describe output signal timing for the FlexSPI controller including control signals and data outputs. 3.9.9.2.1 SDR mode Table 61. FlexSPI output timing in SDR mode Symbol Parameter Min. Max. Unit — 166 MHz 6.02 — ns — [D:] Frequency of operation1 TCK [D:] SCK clock period TDSO [D:] Output data setup time 2 — ns TDHO [D:] Output data hold time 2 — ns TCSS [D:] Chip select output setup time 3 x TCK - 1 — ns TCSH [D:] Chip select output hold time 3 x TCK - 1 — ns 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. See the FlexSPI SDR input timing specifications. TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. See the i.MX 8M Nano Applications Processor Reference Manual (IMX8MNRM) for more details. SCK TCSS TCK TCSH CS TDVO TDVO SIO[0:7] TDHO TDHO Figure 41. FlexSPI output timing in SDR mode i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 66 NXP Semiconductors Electrical characteristics 3.9.9.2.2 DDR mode Table 62. FlexSPI output timing in DDR mode Symbol Parameter Min. Max. Unit — 166 MHz 6.02 — ns — [D:] Frequency of operation1 TCK [D:] SCK clock period TDSO [D:] Output data setup time — 0.6 ns TDHO [D:] Output data hold time 0.6 — ns TCSS [D:] Chip select output setup time 3 x TCK - 1.075 — ns TCSH [D:] Chip select output hold time 3 x TCK - 1.075 — ns 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. See the FlexSPI SDR input timing specifications. NOTE TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. See the i.MX 8M Nano Applications Processor Reference Manual (IMX8MNRM) for more details. SCK TCSS TCK TCSH CS TDVO SIO[0:7] TDHO TDVO TDHO Figure 42. FlexSPI output timing in DDR mode 3.9.10 SAI/I2S switching specifications This section provides the AC timings for the SAI in Master (clocks driven) and Slave (clocks input) modes. All timings are given for non inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below. Table 63. Master mode SAI timing (50 MHz)1 Num Characteristic Min Max Unit S1 SAI_MCLK cycle time 20 — ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 20 — ns i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 67 Electrical characteristics Table 63. Master mode SAI timing (50 MHz)1 (continued) Num Characteristic Min Max Unit S4 SAI_BCLK pulse width high/low 40% 60% BCLK period S5 SAI_BCLK to SAI_FS output valid — 2 ns S6 SAI_BCLK to SAI_FS output invalid 0 — ns S7 SAI_BCLK to SAI_TXD valid — 2 ns S8 SAI_BCLK to SAI_TXD invalid 0 — ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 2 — ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 — ns 1 To achieve 50 MHz for BCLK operation, clock must be set in feedback mode. Table 64. Master mode SAI timing (25 MHz) Num Characteristic Min Max Unit S1 SAI_MCLK cycle time 40 — ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 40 — ns S4 SAI_BCLK pulse width high/low 40% 60% BCLK period S5 SAI_BCLK to SAI_FS output valid — 2 ns S6 SAI_BCLK to SAI_FS output invalid 0 — ns S7 SAI_BCLK to SAI_TXD valid — 2 ns S8 SAI_BCLK to SAI_TXD invalid 0 — ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 12 — ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 — ns i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 68 NXP Semiconductors Electrical characteristics Figure 43. SAI timing—Master modes Table 65. Slave mode SAI timing (50 MHz)1 Num Characteristic Min Max Unit S11 SAI_BCLK cycle time (input) 20 — ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period S13 SAI_FS input setup before SAI_BCLK 2 — ns S14 SAI_FA input hold after SAI_BCLK 2 — ns S17 SAI_RXD setup before SAI_BCLK 2 — ns S18 SAI_RXD hold after SAI_BCLK 2 — ns 1 TX does not support 50 MHz operation in Slave mode. Table 66. Slave mode SAI timing (25 MHz) Num Characteristic Min Max Unit S11 SAI_BCLK cycle time (input) 40 — ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period S13 SAI_FS input setup before SAI_BCLK 12 — ns S14 SAI_FA input hold after SAI_BCLK 2 — ns S15 SAI_BCLK to SAI_TXD/SAI_FS output valid — 7 ns S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 — ns S17 SAI_RXD setup before SAI_BCLK 12 — ns S18 SAI_RXD hold after SAI_BCLK 2 — ns i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 69 Electrical characteristics Figure 44. SAI Timing — Slave Modes 3.9.11 SPDIF timing parameters The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. Table 67 and Figure 45 and Figure 46 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode. Table 67. SPDIF timing parameters Timing Parameter Range Parameter Symbol Unit Min Max SPDIF_IN Skew: asynchronous inputs, no specs apply — — 0.7 ns SPDIF_OUT output (Load = 50 pf) • Skew • Transition rising • Transition falling — — — — — — 1.5 24.2 31.3 ns SPDIF_OUT output (Load = 30 pf) • Skew • Transition rising • Transition falling — — — — — — Modulating Rx clock (SPDIF_SR_CLK) period srckp SPDIF_SR_CLK high period 1.5 13.6 18.0 ns 40.0 — ns srckph 16.0 — ns SPDIF_SR_CLK low period srckpl 16.0 — ns Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 — ns SPDIF_ST_CLK high period stclkph 16.0 — ns SPDIF_ST_CLK low period stclkpl 16.0 — ns i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 70 NXP Semiconductors Electrical characteristics srckp srckpl SPDIF_SR_CLK srckph VM VM (Output) Figure 45. SPDIF_SR_CLK timing diagram stclkp stclkpl SPDIF_ST_CLK stclkph VM VM (Input) Figure 46. SPDIF_ST_CLK timing diagram 3.9.12 3.9.12.1 UART I/O configuration and timing parameters UART RS-232 I/O configuration in different modes The i.MX 8M Nano UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0—DCE mode). Table 68 shows the UART I/O configuration based on the enabled mode. Table 68. UART I/O configuration vs. mode DTE Mode DCE Mode Port Direction Description Direction Description UARTx_RTS_B Output UARTx_RTS_B from DTE to DCE Input UARTx_RTS_B from DTE to DCE UARTx_CTS_B Input UARTx_CTS_B from DCE to DTE Output UARTx_CTS_B from DCE to DTE UARTx_TX_ DATA Input Serial data from DCE to DTE Output Serial data from DCE to DTE UARTx_RX_DATA Output Serial data from DTE to DCE Input Serial data from DTE to DCE 3.9.12.2 UART RS-232 Serial mode timing This section describes the electrical information of the UART module in the RS-232 mode. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 71 Electrical characteristics 3.9.12.2.1 UART transmitter Figure 47 depicts the transmit timing of UART in the RS-232 Serial mode, with 8 data bit/1 stop bit format. Table 69 lists the UART RS-232 Serial mode transmit timing characteristics. UA1 Start Bit UARTx_TX_DATA (output) Possible Parity Bit UA1 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT Next Start Bit UA1 UA1 Figure 47. UART RS-232 Serial mode transmit timing diagram Table 69. RS-232 Serial mode transmit timing parameters ID Parameter UA1 1 2 Transmit Bit Time Symbol Min Max Unit tTbit 1/Fbaud_rate1 - Tref_clk2 1/Fbaud_rate + Tref_clk — Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). 3.9.12.2.2 UART receiver Figure 48 depicts the RS-232 Serial mode receive timing with 8 data bit/1 stop bit format. Table 70 lists Serial mode receive timing characteristics. UA2 UARTx_RX_DATA (output) Start Bit Possible Parity Bit UA2 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT UA2 Next Start Bit UA2 Figure 48. UART RS-232 Serial mode receive timing diagram Table 70. RS-232 Serial mode receive timing parameters ID Parameter Symbol Min Max Unit UA2 Receive Bit Time1 tRbit 1/Fbaud_rate2 - 1/(16 x Fbaud_rate) 1/Fbaud_rate + 1/(16 x Fbaud_rate) — 1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x Fbaud_rate). 2 F baud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 72 NXP Semiconductors Electrical characteristics 3.9.13 USB PHY parameters This section describes the USB-OTG PHY parameters. 3.9.13.1 Pad/Package/Board connections The USB1_VBUS pin cannot directly connect to the 5 V VBUS voltage on the USB2.0 link. Each USB1_VBUS pin must be isolated by an external 30 K1% precision resistor. The USB 2.0 PHY uses USB1_TXRTUNE and an external resistor to calibrate the USB1_DP/DN 45  source impedance. The external resistor value is 200  1% precision on USB1_TXRTUNE pad to ground. 3.9.13.2 USB PHY worst power consumption Table 71 shows the USB 2.0 PHY worst power dissipation. Table 71. USB 2.0 PHY worst power dissipation VDD_USB_3P3 VDD_USB_1P8 Total Power Mode VDD_USB_0P8 HS TX 8.286 4.63 23.409 70.448 FS TX 6.767 12.52 5.968 63.22 LS TX 7.001 Suspend 0.752 0.164 0.106 1.465 Sleep 0.761 0.163 0.106 1.472 mA 13.58 mA 6.224 mA 67.779 mW i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 73 Boot mode configuration 4 Boot mode configuration This section provides information on Boot mode configuration pins allocation and boot devices interfaces allocation. 4.1 Boot mode configuration pins Table 72 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an unblown fuse). For detailed Boot mode options configured by the Boot mode pins, see the “System Boot, Fusemap, and eFuse” chapter in the i.MX 8M Nano Applications Processor Reference Manual (IMX8MNRM). Table 72. Fuses and associated pins used for boot Interface IP instance Allocated pads during boot BOOT_MODE0 Input ccmsrcgpcmix.BOOT_MODE[0] BOOT_MODE1 Input ccmsrcgpcmix.BOOT_MODE[1] BOOT_MODE2 Input ccmsrcgpcmix.BOOT_MODE[2] BOOT_MODE3 Input ccmsrcgpcmix.BOOT_MODE[3] 4.2 Comment Boot mode selection Boot device interface allocation Table 73 lists the interfaces that can be used by the boot process in accordance with the specific Boot mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 73. Interface allocation during boot Interface IP Instance Allocated Pads During Boot Comment SPI ECSPI-1 ECSPI1_SCLK, ECSPI1_MOSI, ECSPI1_MISO, ECSPI1_SS0 The chip-select pin used depends on the fuse “CS select (SPI only)“. SPI ECSPI-2 ECSPI2_SCLK, ECSPI2_MOSI, ECSPI2_MISO, ECSPI2_SS0 The chip-select pin used depends on the fuse “CS select (SPI only)“. SPI ECSPI-3 UART1_RXD, UART1_TXD, UART2_RXD, UART2_TXD The chip-select pin used depends on the fuse “CS select (SPI only)“. NAND Flash GPMI NAND_ALE, NAND_CE0_B, NAND_CLE, 8-bit, only CS0 is supported. NAND_DATA00,NAND_DATA01,NAND_DATA02, NAND_DATA03,NAND_DATA04,NAND_DATA05, NAND_DATA06, NAND_DATA07, NAND_DQS, NAND_RE_B, NAND_READY_B, NAND_WE_B, NAND_WP_B i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 74 NXP Semiconductors Boot mode configuration Table 73. Interface allocation during boot (continued) Interface IP Instance Allocated Pads During Boot Comment SD/MMC USDHC-1 GPIO1_IO03, GPIO1_IO06, GPIO1_IO07, SD1_RESET_B, SD1_CLK, SD1_CMD, SD1_STROBE, SD1_DATA0, SD1_DATA1, SD1_DATA2, SD1_DATA3, SD1_DATA4, SD1_DATA5, SD1_DATA6, SD1_DATA7 SD/MMC USDHC-2 GPIO1_IO04, GPIO1_IO08, GPIO1_IO07, 1 or 4-bit SD2_RESET_B, SD2_WP, SD2_CLK, SD2_CMD, SD2_DATA0, SD2_DATA1, SD2_DATA2, SD2_DATA3 SD/MMC USDHC-3 NAND_CE1_B, NAND_CE2_B, NAND_CE3_B, 1, 4, or 8-bit NAND_CLE, NAND_DATA02, NAND_DATA03, NAND_DATA04,NAND_DATA05,NAND_DATA06, NAND_DATA07, NAND_RE_B, NAND_READY_B, NAND_WE_B, NAND_WP_B FlexSPI FlexSPI USB USB_OTG PHY 1, 4, or 8-bit NAND_ALE, NAND_CE0_B, NAND_CE1_B, For FlexSPI flash NAND_CE2_B, NAND_CE3_B, NAND_CLE, NAND_DATA00,NAND_DATA01,NAND_DATA02, NAND_DATA03,NAND_DATA04,NAND_DATA05, NAND_DATA06, NAND_DATA07, NAND_DQS, NAND_RE_B Dedicated USB pins — i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 75 Package information and contact assignments 5 Package information and contact assignments This section includes the contact assignment information and mechanical package drawing. 5.1 5.1.1 14 x 14 mm package information 14 x 14 mm, 0.5 mm pitch, ball matrix Figure 49 shows the top, bottom, and side views of the 14 × 14 mm FCBGA package. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 76 NXP Semiconductors Package information and contact assignments Figure 49. 14 X 14 MM BGA, case x package top, bottom, and side views i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 77 Package information and contact assignments 5.1.2 14 x 14 mm supplies contact assignments and functional contact assignments Table 74 shows supplies contact assignments for the 14 x 14 mm package. Table 74. i.MX 8M Nano 14 x 14 mm supplies contact assignments Supply Rail Name Ball(s) Position(s) Remark NVCC_CLK M19 Supply for CLK interface NVCC_DRAM P7, K8, N8, R8, V8, K9, L9, M9, N9, R9, T9, U9, V9 Supply for DRAM interface NVCC_ECSPI H10 Supply for ECSPI interface NVCC_ENET W22 Supply for ENET interface NVCC_GPIO1 W12 Supply for GPIO1 interface NVCC_I2C J11 Supply for I2C interface NVCC_JTAG L19 Supply for JTAG interface NVCC_NAND U19 Supply for NAND interface NVCC_SAI2 V19 Supply for SAI interface NVCC_SAI3 Y10 Supply for SAI interface NVCC_SAI5 W17 Supply for SAI interface NVCC_SD1 V20 Supply for SD interface NVCC_SD2 V22 Supply for SD interface NVCC_SNVS_1P8 J22 Supply for SNVS interface NVCC_UART J12 Supply for UART interface PVCC0_1P8 AB13 Digital IO pre-drive PVCC1_1P8 T19 Digital IO pre-drive PVCC2_1P8 J13 Digital IO pre-drive VDD_24M_XTAL_1P8 N19 Supply for XTAL VDD_ANA_0P8 L17, N17 Supply for Analog logic VDD_ANA0_1P8 AA14, Y15 Supply for Analog logic VDD_ANA1_1P8 P19, N20 Supply for Analog logic VDD_ARM R13, T13, U13, V13, W13, T14, W14, R15, T15, U15, V15, W15, V16, W16 Supply for ARM VDD_ARM_PLL_0P8 P16 Supply for ARM PLL VDD_ARM_PLL_1P8 R19 Supply for ARM PLL VDD_DRAM J10, L10, N10, R10, U10, W10 Supply for DRAM module VDD_DRAM_PLL_0P8 P9 Supply for DRAM PLL VDD_DRAM_PLL_1P8 P5 Supply for DRAM PLL i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 78 NXP Semiconductors Package information and contact assignments Table 74. i.MX 8M Nano 14 x 14 mm supplies contact assignments (continued) VDD_GPU R11, U11, W11, P12, V12 Supply for GPU VDD_MIPI_0P8 J14 Supply for MIPI PHY VDD_MIPI_1P2 J15 Supply for MIPI PHY VDD_MIPI_1P8 H13 Supply for MIPI PHY VDD_SNVS_0P8 K22 Supply for SNVS logic VDD_SOC N13, K15, L15, M15, N15, K16, R17, U17, L18, N18, R18, U18 Supply for SOC logic VDD_USB_0P8 J17 Supply for USB PHY VDD_USB_1P8 H15 Supply for USB PHY VDD_USB_3P3 K19 Supply for USB PHY VSS A1, AG1, C2, H2, Y2, AE2, B3, E3, F3, J3, K3, N3, P3, R3, — V3, W3, AB3, AC3, AF3, C5, AE5, C6, AE6, G7, J7, K7, N7, R7, V7, W7, AA7, C9, G9, AA9, AE9, C10, G10, AA10, AE10, L12, M12, N12, R12, T12, U12, C13, G13, P13, Y13, AA13, AE13, C14, AE14, C15, G15, P15, AA15, AE15, L16, M16, N16, R16, T16, U16, C18, G18, H18, Y18, AA18, AE18, C19, G19, AA19, AE19, K20, R20, G21, J21, K21, N21, P21, R21, V21, W21, AA21, C22, AE22, C23, AE23, E25, F25, J25, K25, N25, P25, R25, V25, W25, AB25, AC25, B26, A27, AG27 Table 75 shows an alpha-sorted list of functional contact assignments for the 14 x 14 mm package. Table 75. i.MX 8M Nano 14 x 14 mm functional contact assignments Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status 24M_XTALI B27 NVCC_CLK ANALOG — — Input 24M_XTALO C26 NVCC_CLK ANALOG — — Output BOOT_MODE0 G26 NVCC_JTAG GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[0] Input with PD BOOT_MODE1 G27 NVCC_JTAG GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[1] Input with PD BOOT_MODE2 C27 NVCC_JTAG GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[2] Input with PD BOOT_MODE3 D26 NVCC_JTAG GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[3] Input with PD CLKIN1 H27 NVCC_CLK GPIO — — Input without PU/PD CLKIN2 J27 NVCC_CLK GPIO — — Input without PU/PD CLKOUT1 H26 NVCC_CLK GPIO — — Output low without PU/PD i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 79 Package information and contact assignments Table 75. i.MX 8M Nano 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status CLKOUT2 J26 NVCC_CLK GPIO — — Output low without PU/PD DRAM_AC00 F4 NVCC_DRAM DDR — — Output low DRAM_AC01 F5 NVCC_DRAM DDR — — Output low DRAM_AC02 K4 NVCC_DRAM DDR — — Input DRAM_AC03 J4 NVCC_DRAM DDR — — Input DRAM_AC04 L2 NVCC_DRAM DDR — — Input DRAM_AC05 L1 NVCC_DRAM DDR — — Input DRAM_AC06 F6 NVCC_DRAM DDR — — Input DRAM_AC07 J5 NVCC_DRAM DDR — — Input DRAM_AC08 J6 NVCC_DRAM DDR — — Input DRAM_AC09 K6 NVCC_DRAM DDR — — Input DRAM_AC10 E4 NVCC_DRAM DDR — — Input DRAM_AC11 D5 NVCC_DRAM DDR — — Input DRAM_AC12 N4 NVCC_DRAM DDR — — Input DRAM_AC13 N5 NVCC_DRAM DDR — — Input DRAM_AC14 K5 NVCC_DRAM DDR — — Input DRAM_AC15 N6 NVCC_DRAM DDR — — Input DRAM_AC16 M1 NVCC_DRAM DDR — — Input DRAM_AC17 M2 NVCC_DRAM DDR — — Input DRAM_AC19 N2 NVCC_DRAM DDR — — Input DRAM_AC20 AB4 NVCC_DRAM DDR — — Output low DRAM_AC21 AB5 NVCC_DRAM DDR — — Output low DRAM_AC22 W4 NVCC_DRAM DDR — — Input DRAM_AC23 V4 NVCC_DRAM DDR — — Input DRAM_AC24 U2 NVCC_DRAM DDR — — Input DRAM_AC25 U1 NVCC_DRAM DDR — — Input DRAM_AC26 N1 NVCC_DRAM DDR — — Input DRAM_AC27 R6 NVCC_DRAM DDR — — Input DRAM_AC28 W6 NVCC_DRAM DDR — — Input i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 80 NXP Semiconductors Package information and contact assignments Table 75. i.MX 8M Nano 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status DRAM_AC29 V6 NVCC_DRAM DDR — — Input DRAM_AC30 AC4 NVCC_DRAM DDR — — Input DRAM_AC31 AD5 NVCC_DRAM DDR — — Input DRAM_AC32 R4 NVCC_DRAM DDR — — Input DRAM_AC33 R5 NVCC_DRAM DDR — — Input DRAM_AC34 T1 NVCC_DRAM DDR — — Input DRAM_AC35 T2 NVCC_DRAM DDR — — Input DRAM_AC36 V5 NVCC_DRAM DDR — — Input DRAM_AC37 W5 NVCC_DRAM DDR — — Input DRAM_AC38 AB6 NVCC_DRAM DDR — — Input DRAM_ALERT_N R2 NVCC_DRAM DDR — — Input DRAM_DM0 A4 NVCC_DRAM DDR — — Input DRAM_DM1 F1 NVCC_DRAM DDR — — Input DRAM_DQ00 A5 NVCC_DRAM DDR — — Input DRAM_DQ01 B5 NVCC_DRAM DDR — — Input DRAM_DQ02 D2 NVCC_DRAM DDR — — Input DRAM_DQ03 D1 NVCC_DRAM DDR — — Input DRAM_DQ04 C1 NVCC_DRAM DDR — — Input DRAM_DQ05 B1 NVCC_DRAM DDR — — Input DRAM_DQ06 A3 NVCC_DRAM DDR — — Input DRAM_DQ07 B4 NVCC_DRAM DDR — — Input DRAM_DQ08 F2 NVCC_DRAM DDR — — Input DRAM_DQ09 G2 NVCC_DRAM DDR — — Input DRAM_DQ10 J1 NVCC_DRAM DDR — — Input DRAM_DQ11 J2 NVCC_DRAM DDR — — Input DRAM_DQ12 K2 NVCC_DRAM DDR — — Input DRAM_DQ13 K1 NVCC_DRAM DDR — — Input DRAM_DQ14 E1 NVCC_DRAM DDR — — Input DRAM_DQ15 E2 NVCC_DRAM DDR — — Input DRAM_DQS0_N B2 NVCC_DRAM — — — Input i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 81 Package information and contact assignments Table 75. i.MX 8M Nano 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status DRAM_DQS0_P A2 NVCC_DRAM DDRCLK — — Input DRAM_DQS1_N H1 NVCC_DRAM — — — Input DRAM_DQS1_P G1 NVCC_DRAM DDRCLK — — Input DRAM_RESET_N R1 NVCC_DRAM DDR — — Output low DRAM_VREF P1 NVCC_DRAM DDR — — — DRAM_ZN P2 NVCC_DRAM DDR — — — ECSPI1_MISO A7 NVCC_ECSPI GPIO ALT5 GPIO5.IO[8] Input with PD ECSPI1_MOSI B7 NVCC_ECSPI GPIO ALT5 GPIO5.IO[7] Input with PD ECSPI1_SCLK D6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[6] Input with PD ECSPI1_SS0 B6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[9] Input with PD ECSPI2_MISO A8 NVCC_ECSPI GPIO ALT5 GPIO5.IO[12] Input with PD ECSPI2_MOSI B8 NVCC_ECSPI GPIO ALT5 GPIO5.IO[11] Input with PD ECSPI2_SCLK E6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[10] Input with PD ECSPI2_SS0 A6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[13] Input with PD ENET_MDC AC27 NVCC_ENET GPIO ALT5 GPIO1.IO[16] Input with PD ENET_MDIO AB27 NVCC_ENET GPIO ALT5 GPIO1.IO[17] Input with PD ENET_RD0 AE27 NVCC_ENET GPIO ALT5 GPIO1.IO[26] Input with PD ENET_RD1 AD27 NVCC_ENET GPIO ALT5 GPIO1.IO[27] Input with PD ENET_RD2 AD26 NVCC_ENET GPIO ALT5 GPIO1.IO[28] Input with PD ENET_RD3 AC26 NVCC_ENET GPIO ALT5 GPIO1.IO[29] Input with PD ENET_RXC AE26 NVCC_ENET GPIO ALT5 GPIO1.IO[25] Input with PD ENET_RX_CTL AF27 NVCC_ENET GPIO ALT5 GPIO1.IO[24] Input with PD ENET_TD0 AG26 NVCC_ENET GPIO ALT5 GPIO1.IO[21] Input with PD ENET_TD1 AF26 NVCC_ENET GPIO ALT5 GPIO1.IO[20] Input with PD ENET_TD2 AG25 NVCC_ENET GPIO ALT5 GPIO1.IO[19] Input with PD ENET_TD3 AF25 NVCC_ENET GPIO ALT5 GPIO1.IO[18] Input with PD ENET_TXC AG24 NVCC_ENET GPIO ALT5 GPIO1.IO[23] Input with PD ENET_TX_CTL AF24 NVCC_ENET GPIO ALT5 GPIO1.IO[22] Input with PD GPIO1_IO00 AG14 NVCC_GPIO1 GPIO ALT6 GPIO1.IO[0] Input with PD GPIO1_IO01 AF14 NVCC_GPIO1 GPIO ALT6 GPIO1.IO[1] 1 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 82 NXP Semiconductors Package information and contact assignments Table 75. i.MX 8M Nano 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status GPIO1_IO02 AG13 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[2] Input with PU GPIO1_IO03 AF13 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[3] Input with PD GPIO1_IO04 AG12 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[4] Input with PD GPIO1_IO05 AF12 NVCC_GPIO1 GPIO ALT6 GPIO1.IO[5] 1 GPIO1_IO06 AG11 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[6] Input with PD GPIO1_IO07 AF11 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[7] Input with PD GPIO1_IO08 AG10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[8] Input with PD GPIO1_IO09 AF10 NVCC_GPIO1 GPIO ALT1 GPIO1.IO[9] Input with PD GPIO1_IO10 AD10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[10] Input with PD GPIO1_IO11 AC10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[11] Input with PD GPIO1_IO12 AB10 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[12] Input with PD GPIO1_IO13 AD9 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[13] Input with PD GPIO1_IO14 AC9 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[14] Input with PD GPIO1_IO15 AB9 NVCC_GPIO1 GPIO ALT0 GPIO1.IO[15] Input with PD I2C1_SCL E9 NVCC_I2C GPIO ALT5 GPIO5.IO[14] Input with PD I2C1_SDA F9 NVCC_I2C GPIO ALT5 GPIO5.IO[15] Input with PD I2C2_SCL D10 NVCC_I2C GPIO ALT5 GPIO5.IO[16] Input with PD I2C2_SDA D9 NVCC_I2C GPIO ALT5 GPIO5.IO[17] Input with PD I2C3_SCL E10 NVCC_I2C GPIO ALT5 GPIO5.IO[18] Input with PD I2C3_SDA F10 NVCC_I2C GPIO ALT5 GPIO5.IO[19] Input with PD I2C4_SCL D13 NVCC_I2C GPIO ALT5 GPIO5.IO[20] Input with PD I2C4_SDA E13 NVCC_I2C GPIO ALT5 GPIO5.IO[21] Input with PD JTAG_MOD D27 NVCC_JTAG GPIO ALT0 cjtag_wrapper.MOD Input with PD JTAG_TCK F26 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TCK Input with PU JTAG_TDI E27 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TDI Input with PU JTAG_TDO E26 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TDO Input with PU JTAG_TMS2 F27 NVCC_JTAG GPIO ALT0 cjtag_wrapper.TMS Input with PU MIPI_CSI_CLK_N A16 VDD_MIPI_1P8 PHY — — Input MIPI_CSI_CLK_P B16 VDD_MIPI_1P8 PHY — — Input MIPI_CSI_D0_N A14 VDD_MIPI_1P8 PHY — — Input i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 83 Package information and contact assignments Table 75. i.MX 8M Nano 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status MIPI_CSI_D0_P B14 VDD_MIPI_1P8 PHY — — Input MIPI_CSI_D1_N A15 VDD_MIPI_1P8 PHY — — Input MIPI_CSI_D1_P B15 VDD_MIPI_1P8 PHY — — Input MIPI_CSI_D2_N A17 VDD_MIPI_1P8 PHY — — Input MIPI_CSI_D2_P B17 VDD_MIPI_1P8 PHY — — Input MIPI_CSI_D3_N A18 VDD_MIPI_1P8 PHY — — Input MIPI_CSI_D3_P B18 VDD_MIPI_1P8 PHY — — Input MIPI_DSI_CLK_N A11 VDD_MIPI_1P8 PHY — — Output low MIPI_DSI_CLK_P B11 VDD_MIPI_1P8 PHY — — Output low MIPI_DSI_D0_N A9 VDD_MIPI_1P8 PHY — — Output low MIPI_DSI_D0_P B9 VDD_MIPI_1P8 PHY — — Output low MIPI_DSI_D1_N A10 VDD_MIPI_1P8 PHY — — Output low MIPI_DSI_D1_P B10 VDD_MIPI_1P8 PHY — — Output low MIPI_DSI_D2_N A12 VDD_MIPI_1P8 PHY — — Output low MIPI_DSI_D2_P B12 VDD_MIPI_1P8 PHY — — Output low MIPI_DSI_D3_N A13 VDD_MIPI_1P8 PHY — — Output low MIPI_DSI_D3_P B13 VDD_MIPI_1P8 PHY — — Output low MIPI_VREG_CAP D15 0.35 - 0.45 V PHY — — Output NAND_ALE N22 NVCC_NAND GPIO ALT5 GPIO3.IO[0] Input with PD NAND_CE0_B N24 NVCC_NAND GPIO ALT5 GPIO3.IO[1] Input with PD NAND_CE1_B P27 NVCC_NAND GPIO ALT5 GPIO3.IO[2] Input with PD NAND_CE2_B M27 NVCC_NAND GPIO ALT5 GPIO3.IO[3] Input with PD NAND_CE3_B L27 NVCC_NAND GPIO ALT5 GPIO3.IO[4] Input with PD NAND_CLE K27 NVCC_NAND GPIO ALT5 GPIO3.IO[5] Input with PD NAND_DATA00 P23 NVCC_NAND GPIO ALT5 GPIO3.IO[6] Input with PD NAND_DATA01 K24 NVCC_NAND GPIO ALT5 GPIO3.IO[7] Input with PD NAND_DATA02 K23 NVCC_NAND GPIO ALT5 GPIO3.IO[8] Input with PD NAND_DATA03 N23 NVCC_NAND GPIO ALT5 GPIO3.IO[9] Input with PD NAND_DATA04 M26 NVCC_NAND GPIO ALT5 GPIO3.IO[10] Input with PD NAND_DATA05 L26 NVCC_NAND GPIO ALT5 GPIO3.IO[11] Input with PD i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 84 NXP Semiconductors Package information and contact assignments Table 75. i.MX 8M Nano 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status NAND_DATA06 K26 NVCC_NAND GPIO ALT5 GPIO3.IO[12] Input with PD NAND_DATA07 N26 NVCC_NAND GPIO ALT5 GPIO3.IO[13] Input with PD NAND_DQS R22 NVCC_NAND GPIO ALT5 GPIO3.IO[14] Input with PD NAND_RE_B N27 NVCC_NAND GPIO ALT5 GPIO3.IO[15] Input with PD NAND_READY_B P26 NVCC_NAND GPIO ALT5 GPIO3.IO[16] Input with PD NAND_WE_B R26 NVCC_NAND GPIO ALT5 GPIO3.IO[17] Input with PD NAND_WP_B R27 NVCC_NAND GPIO ALT5 GPIO3.IO[18] Input with PD ONOFF A25 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.ONOFF Input without PU/PD PMIC_ON_REQ A24 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.PMIC_ON_REQ Open-drain output high with PU PMIC_STBY_REQ E24 NVCC_SNVS_1P8 GPIO ALT0 ccmsrcgpcmix.PMIC_STBY_RE Q Output low with PD POR_B B24 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.POR_B Input without PU/PD RTC_XTALI A26 NVCC_SNVS_1P8 ANALOG ALT0 snvsmix.RTC Input RTC_XTALO B25 NVCC_SNVS_1P8 ANALOG — — Output, inverted of RTC_XTALI RTC_RESET_B F24 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.RTC_POR_B Input without PU/PD SAI2_MCLK AD19 NVCC_SAI2 GPIO ALT5 GPIO4.IO[27] Input with PD SAI2_RXC AB22 NVCC_SAI2 GPIO ALT5 GPIO4.IO[22] Input with PD SAI2_RXD0 AC24 NVCC_SAI2 GPIO ALT5 GPIO4.IO[23] Input with PD SAI2_RXFS AC19 NVCC_SAI2 GPIO ALT5 GPIO4.IO[21] Input with PD SAI2_TXC AD22 NVCC_SAI2 GPIO ALT5 GPIO4.IO[25] Input with PD SAI2_TXD0 AC22 NVCC_SAI2 GPIO ALT5 GPIO4.IO[26] Input with PD SAI2_TXFS AD23 NVCC_SAI2 GPIO ALT5 GPIO4.IO[24] Input with PD SAI3_MCLK AD6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[2] Input with PD SAI3_RXC AG7 NVCC_SAI3 GPIO ALT5 GPIO4.IO[29] Input with PD SAI3_RXD AF7 NVCC_SAI3 GPIO ALT5 GPIO4.IO[30] Input with PD SAI3_RXFS AG8 NVCC_SAI3 GPIO ALT5 GPIO4.IO[28] Input with PD i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 85 Package information and contact assignments Table 75. i.MX 8M Nano 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status SAI3_TXC AG6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[0] Input with PD SAI3_TXD AF6 NVCC_SAI3 GPIO ALT5 GPIO5.IO[1] Input with PD SAI3_TXFS AC6 NVCC_SAI3 GPIO ALT5 GPIO4.IO[31] Input with PD SAI5_MCLK AD15 NVCC_SAI5 GPIO ALT5 GPIO3.IO[25] 3 SAI5_RXC AC15 NVCC_SAI5 GPIO ALT5 GPIO3.IO[20] Input with PD SAI5_RXD0 AD18 NVCC_SAI5 GPIO ALT5 GPIO3.IO[21] Input with PD SAI5_RXD1 AC14 NVCC_SAI5 GPIO ALT5 GPIO3.IO[22] Input with PD SAI5_RXD2 AD13 NVCC_SAI5 GPIO ALT5 GPIO3.IO[23] Input with PD SAI5_RXD3 AC13 NVCC_SAI5 GPIO ALT5 GPIO3.IO[24] Input with PD SAI5_RXFS AB15 NVCC_SAI5 GPIO ALT5 GPIO3.IO[19] Input with PD SD1_CLK V26 NVCC_SD1 GPIO ALT5 GPIO2.IO[0] Input with PD SD1_CMD V27 NVCC_SD1 GPIO ALT5 GPIO2.IO[1] Input with PD SD1_DATA0 Y27 NVCC_SD1 GPIO ALT5 GPIO2.IO[2] Input with PD SD1_DATA1 Y26 NVCC_SD1 GPIO ALT5 GPIO2.IO[3] Input with PD SD1_DATA2 T27 NVCC_SD1 GPIO ALT5 GPIO2.IO[4] Input with PD SD1_DATA3 T26 NVCC_SD1 GPIO ALT5 GPIO2.IO[5] Input with PD SD1_DATA4 U27 NVCC_SD1 GPIO ALT5 GPIO2.IO[6] Input with PD SD1_DATA5 U26 NVCC_SD1 GPIO ALT5 GPIO2.IO[7] Input with PD SD1_DATA6 W27 NVCC_SD1 GPIO ALT5 GPIO2.IO[8] Input with PD SD1_DATA7 W26 NVCC_SD1 GPIO ALT5 GPIO2.IO[9] Input with PD SD1_RESET_B R23 NVCC_SD1 GPIO ALT5 GPIO2.IO[10] Input with PD SD1_STROBE R24 NVCC_SD1 GPIO ALT5 GPIO2.IO[11] Input with PD SD2_CD_B AA26 NVCC_SD2 GPIO ALT5 GPIO2.IO[12] Input with PD SD2_CLK W23 NVCC_SD2 GPIO ALT5 GPIO2.IO[13] Input with PD SD2_CMD W24 NVCC_SD2 GPIO ALT5 GPIO2.IO[14] Input with PD SD2_DATA0 AB23 NVCC_SD2 GPIO ALT5 GPIO2.IO[15] Input with PD SD2_DATA1 AB24 NVCC_SD2 GPIO ALT5 GPIO2.IO[16] Input with PD SD2_DATA2 V24 NVCC_SD2 GPIO ALT5 GPIO2.IO[17] Input with PD SD2_DATA3 V23 NVCC_SD2 GPIO ALT5 GPIO2.IO[18] Input with PD SD2_RESET_B AB26 NVCC_SD2 GPIO ALT5 GPIO2.IO[19] Input with PD i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 86 NXP Semiconductors Package information and contact assignments Table 75. i.MX 8M Nano 14 x 14 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status SD2_WP AA27 NVCC_SD2 GPIO ALT5 GPIO2.IO[20] Input with PD SPDIF_EXT_CLK AF8 NVCC_SAI3 GPIO ALT5 GPIO5.IO[5] Input with PD SPDIF_RX AG9 NVCC_SAI3 GPIO ALT5 GPIO5.IO[4] Input with PD SPDIF_TX AF9 NVCC_SAI3 GPIO ALT5 GPIO5.IO[3] Input with PD TSENSOR_TEST_ OUT J23 VDD_ANA1_1P8 ANALOG — — Output low TSENSOR_RES_E XT J24 VDD_ANA1_1P8 ANALOG — — — UART1_RXD E14 NVCC_UART GPIO ALT5 GPIO5.IO[22] Input with PD UART1_TXD F13 NVCC_UART GPIO ALT5 GPIO5.IO[23] Input with PD UART2_RXD F15 NVCC_UART GPIO ALT5 GPIO5.IO[24] Input with PD UART2_TXD E15 NVCC_UART GPIO ALT5 GPIO5.IO[25] Input with PD UART3_RXD E18 NVCC_UART GPIO ALT5 GPIO5.IO[26] Input with PD UART3_TXD D18 NVCC_UART GPIO ALT5 GPIO5.IO[27] Input with PD UART4_RXD F19 NVCC_UART GPIO ALT5 GPIO5.IO[28] Input with PD UART4_TXD F18 NVCC_UART GPIO ALT5 GPIO5.IO[29] Input with PD USB1_DN A22 VDD_USB_3P3 PHY — — Input USB1_DP B22 VDD_USB_3P3 PHY — — Input USB1_ID D22 VDD_USB_1P8 PHY — — Input USB1_TXRTUNE E19 VDD_USB_1P8 PHY — — — USB1_VBUS F22 VDD_USB_3P3 PHY — — — 1 During reset: output high without PU/PD; After reset: input with PU Mandatory requirement: JTAG_TMS pin must be connected with a 50 ohm serial resistor near the component. 3 During reset: input without PU/PD; After reset: input with PD 2 5.1.3 i.MX 8M Nano 14 x 14 mm 0.5 mm pitch ball map Table 76 shows the i.MX 8M Nano 14 x 14 mm 0.5 mm pitch ball map. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 87 88 VSS DRAM_AC10 VSS DRAM_AC00 UART4_TXD UART4_RXD VSS VSS USB1_TXRTUNE UART3_RXD UART2_TXD UART1_RXD I2C4_SDA JTAG_TCK JTAG_TMS BOOT_MODE0 BOOT_MODE1 VSS JTAG_TDI JTAG_TDO VSS RTC_RESET_B PMIC_STBY_REQ USB1_VBUS UART2_RXD VSS VSS UART1_TXD VSS JTAG_MOD BOOT_MODE3 USB1_ID UART3_TXD MIPI_VREG_CAP I2C4_SCL I2C2_SCL BOOT_MODE2 24M_XTALO VSS VSS VSS VSS VSS VSS VSS VSS MIPI_DSI_D1_N MIPI_DSI_D0_N MIPI_CSI_D1_N MIPI_CSI_D0_N MIPI_DSI_D3_N MIPI_DSI_D2_N 24M_XTALI VSS RTC_XTALO POR_B USB1_DP MIPI_CSI_D3_P MIPI_CSI_D2_P VSS RTC_XTALI ONOFF PMIC_ON_REQ USB1_DN MIPI_CSI_D3_N MIPI_CSI_D2_N MIPI_CSI_CLK_P MIPI_CSI_CLK_N MIPI_CSI_D1_P MIPI_CSI_D0_P MIPI_DSI_D3_P MIPI_DSI_D2_P MIPI_DSI_CLK_P MIPI_DSI_CLK_N MIPI_DSI_D1_P MIPI_DSI_D0_P 9 I2C3_SCL VSS 8 I2C3_SDA I2C2_SDA ECSPI2_MISO ECSPI2_MOSI 7 VSS I2C1_SCL ECSPI1_MISO ECSPI2_SS0 ECSPI1_MOSI ECSPI1_SS0 6 I2C1_SDA VSS DRAM_DQ00 5 VSS ECSPI1_SCLK ECSPI2_SCLK DRAM_DQ01 DRAM_DM0 DRAM_DQ06 DRAM_DQS0_P VSS A 4 DRAM_AC06 VSS DRAM_DQ07 VSS DRAM_DQS0_N DRAM_DQ05 B 3 DRAM_AC11 VSS DRAM_DQ04 C 2 DRAM_AC01 DRAM_DQ02 DRAM_DQ03 D 1 VSS DRAM_DQ15 DRAM_DQ08 DRAM_DQ09 DRAM_DQ14 DRAM_DM1 DRAM_DQS1_P E F G Package information and contact assignments Table 76. 14 x 14 mm, 0.5 mm pitch ball map 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors DRAM_AC02 DRAM_AC12 NXP Semiconductors NAND_DATA07 NAND_RE_B NAND_READY_B NAND_CE1_B NAND_CE2_B NAND_CE3_B NAND_CLE NAND_DATA06 VSS NAND_DATA01 NAND_CE0_B VSS NAND_DATA02 NAND_DATA03 VDD_SNVS_0P8 VSS VDD_USB_3P3 NAND_ALE NAND_DATA04 NAND_DATA05 NVCC_JTAG VDD_SOC VSS VSS NAND_DATA00 VSS VDD_SOC NVCC_DRAM VSS VDD_ANA1_1P8 VDD_24M_XTAL_1P8 NVCC_CLK VSS VDD_SOC VDD_SOC VSS VDD_ARM_PLL_0P8 VDD_SOC VDD_SOC VDD_SOC VSS VSS VDD_ANA_0P8 VDD_SOC VSS VSS VDD_DRAM VDD_ANA_0P8 VSS VDD_DRAM VDD_GPU VSS NVCC_DRAM CLKIN2 CLKOUT2 VSS TSENSOR_RES_EXT TSENSOR_TEST_OUT NVCC_SNVS_1P8 VSS VDD_USB_0P8 VDD_MIPI_1P2 VDD_MIPI_0P8 PVCC2_1P8 NVCC_UART NVCC_I2C VDD_DRAM CLKIN1 CLKOUT1 VSS VDD_USB_1P8 VDD_MIPI_1P8 NVCC_ECSPI 9 VDD_ANA1_1P8 NVCC_DRAM 8 NVCC_DRAM NVCC_DRAM NVCC_DRAM VSS 7 VDD_DRAM_PLL_0P8 VSS 6 VSS DRAM_AC08 5 NVCC_DRAM DRAM_AC09 DRAM_AC15 DRAM_AC07 VSS 4 DRAM_AC14 DRAM_AC03 VSS DRAM_DQ11 DRAM_DQS1_N 3 DRAM_AC13 DRAM_DQ12 DRAM_DQ10 H 2 VDD_DRAM_PLL_1P8 VSS VSS VSS DRAM_AC04 DRAM_DQ13 J 1 DRAM_AC17 DRAM_AC05 DRAM_AC19 DRAM_AC16 DRAM_ZN K DRAM_AC26 L DRAM_VREF M N P Package information and contact assignments Table 76. 14 x 14 mm, 0.5 mm pitch ball map (continued) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 89 90 SD1_DATA7 SD2_CD_B SD2_WP SD2_RESET_B ENET_MDIO SD1_DATA6 VSS VSS SD1_DATA0 SD2_CMD SD2_DATA1 NVCC_ENET VSS SD1_CMD SD1_CLK VSS SD2_DATA2 SD2_DATA3 NVCC_SD2 VSS NVCC_SD1 NVCC_SAI2 VDD_ARM VDD_ARM NVCC_SAI5 VDD_ARM VDD_ARM VDD_ARM VDD_ARM VDD_ARM SD1_DATA4 SD1_DATA5 NVCC_NAND VDD_SOC VDD_SOC VSS VDD_ARM VDD_ARM VSS NVCC_GPIO1 SD2_CLK VSS SD1_DATA1 VSS VSS VSS VDD_ANA0_1P8 VSS VSS VDD_GPU VDD_GPU VDD_GPU VDD_DRAM VDD_DRAM SD2_DATA0 SAI2_RXC SAI5_RXFS VSS PVCC0_1P8 NVCC_SAI3 SD1_DATA2 SD1_DATA3 PVCC1_1P8 VSS VDD-ARM VDD_ARM VDD_ARM VSS NAND_WP_B NAND_WE_B VSS SD1_STROBE SD1_RESET_B NAND_DQS VSS VSS VDD_ARM_PLL_1P8 VDD_SOC VDD_SOC VSS VDD_ARM VDD_ARM VSS VDD_GPU VDD_DRAM 9 VDD_ANA0_1P8 VSS GPIO1_IO12 NVCC_DRAM 8 NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM 7 VSS VSS DRAM_AC27 6 VSS DRAM_AC29 DRAM_AC33 DRAM_AC32 VSS DRAM_ALERT_N DRAM_RESET_N R 5 GPIO1_IO15 DRAM_AC28 DRAM_AC38 DRAM_AC35 DRAM_AC34 DRAM_AC25 DRAM_AC24 T U 4 DRAM_AC36 DRAM_AC23 VSS V 3 VSS DRAM_AC37 DRAM_AC21 VSS DRAM_AC22 W DRAM_AC20 VSS Y 2 VSS AA 1 VSS AB Package information and contact assignments Table 76. 14 x 14 mm, 0.5 mm pitch ball map (continued) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors NXP Semiconductors GPIO1_IO07 GPIO1_IO05 GPIO1_IO03 GPIO1_IO01 ENET_TX_CTL ENET_TD3 ENET_TD1 ENET_RX_CTL GPIO1_IO06 GPIO1_IO04 GPIO1_IO02 GPIO1_IO00 ENET_TXC ENET_TD2 ENET_TD0 VSS SAI2_TXC SAI2_TXFS VSS VSS ENET_RD0 ENET_RD1 ENET_RD2 SAI2_MCLK VSS ENET_RXC SAI5_RXD0 VSS ENET_MDC ENET_RD3 VSS SAI2_RXD0 SAI2_TXD0 SAI2_RXFS SAI5_RXC SAI5_MCLK VSS SAI5_RXD3 SAI5_RXD1 SAI5_RXD2 VSS VSS GPIO1_IO10 GPIO1_IO11 GPIO1_IO09 VSS 9 GPIO1_IO08 GPIO1_IO13 GPIO1_IO14 8 SPDIF_TX 7 SPDIF_RX VSS 6 SAI3_RXFS SPDIF_EXT_CLK SAI3_RXD 5 SAI3_RXC DRAM_AC30 SAI3_TXFS VSS AC 4 SAI3_MCLK DRAM_AC31 AD 3 VSS VSS VSS AE 2 SAI3_TXD VSS AF 1 SAI3_TXC VSS AG Package information and contact assignments Table 76. 14 x 14 mm, 0.5 mm pitch ball map (continued) 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 91 Package information and contact assignments 5.2 5.2.1 11 x 11 mm package information 11 x 11 mm, 0.5 mm pitch, ball matrix Figure 50 shows the top, bottom, and side views of the 11 × 11 mm FCBGA package. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 92 NXP Semiconductors Package information and contact assignments Figure 50. 11 X 11 MM BGA, case x package top, bottom, and side views i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 93 Package information and contact assignments 5.2.2 11 x 11 mm supplies contact assignments and functional contact assignments Table 77 shows supplies contact assignments for the 11 x 11 mm package. Table 77. i.MX 8M Nano 11 x 11 mm supplies contact assignments Supply Rail Name Ball(s) Position(s) Remark NVCC_CLK_JTAG_PVCC_1 P8 L15 Supply for CLK, JTAG interface and Digital I/O pre-drive NVCC_DRAM G6, J6, J7, L6, N6, N7, R6 Supply for DRAM interface NVCC_ECSPI G8 Supply for ECSPI interface NVCC_ENET_GPIO_SAI2 R12 Supply for ENET, GPIO1, and SAI2 interface NVCC_I2C_UART G10 Supply for I2C and UART interface NVCC_SAI3_SAI5 R10 Supply for SAI3 and SAI5 interface NVCC_SD1_NAND N15 Supply for SD1 and NAND interface NVCC_SD2 R16 Supply for SD interface NVCC_SNVS_1P8 G14 Supply for SNVS interface VDD_ANA1_XTAL_MIPI_US B_1P8 G12 Supply for XTAL, Analog logic, MIPI, and USB 1.8 V VDD_ANA0_ARM_PLL_1P8 R14 Supply for Analog logic and ARM PLL 1.8 V VDD_DRAM_PLL_1P8 L7 Supply for DRAM PLL VDD_MIPI_1P2 F12 Supply for MIPI PHY VDD_SNVS_0P8 J15 Supply for SNVS logic VDD_SOC J9, J10, J11, J12, J13, K10, K12, L9, L10, L12, Supply for SOC logic L13, M10, M12, N9, N10, N11, N12, N13 VDD_USB_3P3 F14 VSS A1, AA1, E3, G3, J3, L3, N3, R3, U3, C4, W4, — C6, W6, C8, H8, J8, L8, N8, P8, W8, C10, H10, P10, W10, K11, M11, C12, H12, P12, W12, C14, H14, J14, L14, N14, P14, W14, C16, W16, C18, W18, E19, G19, J19, L19, N19, R19, U19, B20, A21, AA21 Supply for USB PHY i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 94 NXP Semiconductors Package information and contact assignments Table 78 shows an alpha-sorted list of functional contact assignments for the 11 x 11 mm package. Table 78. i.MX 8M Nano 11 x 11 mm functional contact assignments Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status 24M_XTALI B21 NVCC_CLK_JTAG _PVCC_1P8 ANALOG — — Input 24M_XTALO C20 NVCC_CLK_JTAG _PVCC_1P8 ANALOG — — Output BOOT_MODE0 G16 NVCC_CLK_JTAG _PVCC_1P8 GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[0] Input with PD BOOT_MODE1 G18 NVCC_CLK_JTAG _PVCC_1P8 GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[1] Input with PD BOOT_MODE2 F16 NVCC_CLK_JTAG _PVCC_1P8 GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[2] Input with PD BOOT_MODE3 G17 NVCC_CLK_JTAG _PVCC_1P8 GPIO ALT0 ccmsrcgpcmix.BOOT_MODE[3] Input with PD CLKIN1 E20 NVCC_CLK_JTAG _PVCC_1P8 GPIO — — Input without PU/PD CLKIN2 F20 NVCC_CLK_JTAG _PVCC_1P8 GPIO — — Input without PU/PD CLKOUT1 E21 NVCC_CLK_JTAG _PVCC_1P8 GPIO — — Output low without PU/PD CLKOUT2 F21 NVCC_CLK_JTAG _PVCC_1P8 GPIO — — Output low without PU/PD DRAM_AC00 P1 NVCC_DRAM DDR — — Output low DRAM_AC01 N1 NVCC_DRAM DDR — — Output low DRAM_AC02 N2 NVCC_DRAM DDR — — Input DRAM_AC03 P2 NVCC_DRAM DDR — — Input DRAM_AC04 G5 NVCC_DRAM DDR — — Input DRAM_AC05 G4 NVCC_DRAM DDR — — Input DRAM_AC06 D4 NVCC_DRAM DDR — — Input DRAM_AC07 E4 NVCC_DRAM DDR — — Input DRAM_AC08 R1 NVCC_DRAM DDR — — Input DRAM_AC09 R2 NVCC_DRAM DDR — — Input DRAM_AC10 M2 NVCC_DRAM DDR — — Input i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 95 Package information and contact assignments Table 78. i.MX 8M Nano 11 x 11 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status DRAM_AC11 L2 NVCC_DRAM DDR — — Input DRAM_AC12 L1 NVCC_DRAM DDR — — Input DRAM_AC13 M1 NVCC_DRAM DDR — — Input DRAM_AC14 Y1 NVCC_DRAM DDR — — Input DRAM_AC15 L5 NVCC_DRAM DDR — — Input DRAM_AC16 J4 NVCC_DRAM DDR — — Input DRAM_AC17 J5 NVCC_DRAM DDR — — Input DRAM_AC20 T1 NVCC_DRAM DDR — — Output low DRAM_AC21 T2 NVCC_DRAM DDR — — Output low DRAM_AC23 R4 NVCC_DRAM DDR — — Input DRAM_AC24 Y2 NVCC_DRAM DDR — — Input DRAM_AC25 AA2 NVCC_DRAM DDR — — Input DRAM_AC26 W2 NVCC_DRAM DDR — — Input DRAM_AC28 AA3 NVCC_DRAM DDR — — Input DRAM_AC29 V4 NVCC_DRAM DDR — — Input DRAM_AC30 W1 NVCC_DRAM DDR — — Input DRAM_AC31 Y3 NVCC_DRAM DDR — — Input DRAM_AC32 R5 NVCC_DRAM DDR — — Input DRAM_AC33 U2 NVCC_DRAM DDR — — Input DRAM_AC34 V2 NVCC_DRAM DDR — — Input DRAM_AC35 U4 NVCC_DRAM DDR — — Input DRAM_AC36 V1 NVCC_DRAM DDR — — Input DRAM_ALERT_N N5 NVCC_DRAM DDR — — Input DRAM_DM0 B2 NVCC_DRAM DDR — — Input DRAM_DM1 H2 NVCC_DRAM DDR — — Input DRAM_DQ00 B3 NVCC_DRAM DDR — — Input DRAM_DQ01 A2 NVCC_DRAM DDR — — Input DRAM_DQ02 A3 NVCC_DRAM DDR — — Input DRAM_DQ03 B4 NVCC_DRAM DDR — — Input DRAM_DQ04 E2 NVCC_DRAM DDR — — Input i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 96 NXP Semiconductors Package information and contact assignments Table 78. i.MX 8M Nano 11 x 11 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status DRAM_DQ05 D1 NVCC_DRAM DDR — — Input DRAM_DQ06 C1 NVCC_DRAM DDR — — Input DRAM_DQ07 D2 NVCC_DRAM DDR — — Input DRAM_DQ08 G1 NVCC_DRAM DDR — — Input DRAM_DQ09 H1 NVCC_DRAM DDR — — Input DRAM_DQ10 J1 NVCC_DRAM DDR — — Input DRAM_DQ11 J2 NVCC_DRAM DDR — — Input DRAM_DQ12 K1 NVCC_DRAM DDR — — Input DRAM_DQ13 K2 NVCC_DRAM DDR — — Input DRAM_DQ14 F2 NVCC_DRAM DDR — — Input DRAM_DQ15 E1 NVCC_DRAM DDR — — Input DRAM_DQS0_N C2 NVCC_DRAM — — — Input DRAM_DQS0_P B1 NVCC_DRAM DDRCLK — — Input DRAM_DQS1_N F1 NVCC_DRAM — — — Input DRAM_DQS1_P G2 NVCC_DRAM DDRCLK — — Input DRAM_RESET_N N4 NVCC_DRAM DDR — — Output low DRAM_VREF L4 NVCC_DRAM DDR — — — DRAM_ZN U1 NVCC_DRAM DDR — — — ECSPI1_MISO D6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[8] Input with PD ECSPI1_MOSI F6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[7] Input with PD ECSPI1_SCLK E6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[6] Input with PD ECSPI1_SS0 B6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[9] Input with PD ECSPI2_MISO B5 NVCC_ECSPI GPIO ALT5 GPIO5.IO[12] Input with PD ECSPI2_MOSI A6 NVCC_ECSPI GPIO ALT5 GPIO5.IO[11] Input with PD ECSPI2_SCLK A4 NVCC_ECSPI GPIO ALT5 GPIO5.IO[10] Input with PD ECSPI2_SS0 A5 NVCC_ECSPI GPIO ALT5 GPIO5.IO[13] Input with PD ENET_MDC Y18 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[16] Input with PD ENET_MDIO T16 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[17] Input with PD i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 97 Package information and contact assignments Table 78. i.MX 8M Nano 11 x 11 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status ENET_RD0 AA19 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[26] Input with PD ENET_RD1 Y15 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[27] Input with PD ENET_RD2 Y16 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[28] Input with PD ENET_RD3 AA16 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[29] Input with PD ENET_RXC U16 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[25] Input with PD ENET_RX_CTL V16 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[24] Input with PD ENET_TD0 U18 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[21] Input with PD ENET_TD1 AA18 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[20] Input with PD ENET_TD2 V18 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[19] Input with PD ENET_TD3 AA17 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[18] Input with PD ENET_TXC Y19 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[23] Input with PD ENET_TX_CTL Y17 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO1.IO[22] Input with PD GPIO1_IO00 V8 NVCC_ENET_GPI O_SAI2 GPIO ALT6 GPIO1.IO[0] Input with PD GPIO1_IO01 R8 NVCC_ENET_GPI O_SAI2 GPIO ALT6 GPIO1.IO[1] 1 GPIO1_IO02 AA8 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[2] Input with PU GPIO1_IO03 Y9 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[3] Input with PD GPIO1_IO04 AA7 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[4] Input with PD GPIO1_IO05 T8 NVCC_ENET_GPI O_SAI2 GPIO ALT6 GPIO1.IO[5] 1 GPIO1_IO06 Y8 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[6] Input with PD i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 98 NXP Semiconductors Package information and contact assignments Table 78. i.MX 8M Nano 11 x 11 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status GPIO1_IO07 U8 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[7] Input with PD GPIO1_IO08 V10 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[8] Input with PD GPIO1_IO09 AA9 NVCC_ENET_GPI O_SAI2 GPIO ALT1 GPIO1.IO[9] Input with PD GPIO1_IO10 AA10 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[10] Input with PD GPIO1_IO11 Y11 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[11] Input with PD GPIO1_IO12 U10 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[12] Input with PD GPIO1_IO13 T10 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[13] Input with PD GPIO1_IO14 Y10 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[14] Input with PD GPIO1_IO15 AA11 NVCC_ENET_GPI O_SAI2 GPIO ALT0 GPIO1.IO[15] Input with PD I2C1_SCL B7 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[14] Input with PD I2C1_SDA A7 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[15] Input with PD I2C2_SCL F10 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[16] Input with PD I2C2_SDA D8 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[17] Input with PD I2C3_SCL F8 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[18] Input with PD I2C3_SDA E8 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[19] Input with PD I2C4_SCL B8 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[20] Input with PD I2C4_SDA A8 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[21] Input with PD JTAG_MOD D18 NVCC_CLK_JTAG _PVCC_1P8 GPIO ALT0 cjtag_wrapper.MOD Input with PD JTAG_TCK D21 NVCC_CLK_JTAG _PVCC_1P8 GPIO ALT0 cjtag_wrapper.TCK Input with PU JTAG_TDI C21 NVCC_CLK_JTAG _PVCC_1P8 GPIO ALT0 cjtag_wrapper.TDI Input with PU JTAG_TDO D20 NVCC_CLK_JTAG _PVCC_1P8 GPIO ALT0 cjtag_wrapper.TDO Input with PU JTAG_TMS2 E18 NVCC_CLK_JTAG _PVCC_1P8 GPIO ALT0 cjtag_wrapper.TMS Input with PU i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 99 Package information and contact assignments Table 78. i.MX 8M Nano 11 x 11 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status MIPI_CSI_CLK_N A13 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — Input MIPI_CSI_CLK_P B13 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — Input MIPI_CSI_D0_N A11 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — Input MIPI_CSI_D0_P B11 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — Input MIPI_CSI_D1_N A12 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — Input MIPI_CSI_D1_P B12 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — Input MIPI_CSI_D2_N A14 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — Input MIPI_CSI_D2_P B14 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — Input MIPI_CSI_D3_N A15 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — Input MIPI_CSI_D3_P B15 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — Input MIPI_VREG_CAP D12 0.35 - 0.45 V PHY — — Output NAND_ALE J17 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[0] Input with PD NAND_CE0_B L21 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[1] Input with PD NAND_CE1_B H20 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[2] Input with PD NAND_CE2_B L16 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[3] Input with PD NAND_CE3_B L20 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[4] Input with PD NAND_CLE K20 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[5] Input with PD NAND_DATA00 M21 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[6] Input with PD NAND_DATA01 J20 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[7] Input with PD NAND_DATA02 M20 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[8] Input with PD NAND_DATA03 K21 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[9] Input with PD NAND_DATA04 L18 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[10] Input with PD NAND_DATA05 J18 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[11] Input with PD NAND_DATA06 N20 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[12] Input with PD i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 100 NXP Semiconductors Package information and contact assignments Table 78. i.MX 8M Nano 11 x 11 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status NAND_DATA07 G20 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[13] Input with PD NAND_DQS H21 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[14] Input with PD NAND_RE_B G21 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[15] Input with PD NAND_READY_B L17 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[16] Input with PD NAND_WE_B J16 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[17] Input with PD NAND_WP_B J21 NVCC_SD1_NAND GPIO ALT5 GPIO3.IO[18] Input with PD ONOFF E14 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.ONOFF Input without PU/PD PMIC_ON_REQ E16 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.PMIC_ON_REQ Open-drain output high with PU PMIC_STBY_REQ A19 NVCC_SNVS_1P8 GPIO ALT0 ccmsrcgpcmix.PMIC_STBY_RE Q Output low with PD POR_B A18 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.POR_B Input without PU/PD RTC_XTALI A20 NVCC_SNVS_1P8 ANALOG ALT0 snvsmix.RTC Input RTC_XTALO B19 NVCC_SNVS_1P8 ANALOG — — Output, inverted of RTC_XTALI RTC_RESET_B B18 NVCC_SNVS_1P8 GPIO ALT0 snvsmix.RTC_POR_B Input without PU/PD SAI2_MCLK Y12 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO4.IO[27] Input with PD SAI2_RXC AA15 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO4.IO[22] Input with PD SAI2_RXD0 AA14 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO4.IO[23] Input with PD SAI2_RXFS Y13 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO4.IO[21] Input with PD SAI2_TXC AA13 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO4.IO[25] Input with PD SAI2_TXD0 Y14 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO4.IO[26] Input with PD SAI2_TXFS AA12 NVCC_ENET_GPI O_SAI2 GPIO ALT5 GPIO4.IO[24] Input with PD SAI3_MCLK AA5 NVCC_SAI3_SAI5 GPIO ALT5 GPIO5.IO[2] Input with PD i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 101 Package information and contact assignments Table 78. i.MX 8M Nano 11 x 11 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status SAI3_RXC Y6 NVCC_SAI3_SAI5 GPIO ALT5 GPIO4.IO[29] Input with PD SAI3_RXD AA6 NVCC_SAI3_SAI5 GPIO ALT5 GPIO4.IO[30] Input with PD SAI3_RXFS Y4 NVCC_SAI3_SAI5 GPIO ALT5 GPIO4.IO[28] Input with PD SAI3_TXC Y5 NVCC_SAI3_SAI5 GPIO ALT5 GPIO5.IO[0] Input with PD SAI3_TXD AA4 NVCC_SAI3_SAI5 GPIO ALT5 GPIO5.IO[1] Input with PD SAI3_TXFS Y7 NVCC_SAI3_SAI5 GPIO ALT5 GPIO4.IO[31] Input with PD SAI5_MCLK W11 NVCC_SAI3_SAI5 GPIO ALT5 GPIO3.IO[25] 3 SAI5_RXC V14 NVCC_SAI3_SAI5 GPIO ALT5 GPIO3.IO[20] Input with PD SAI5_RXD0 U12 NVCC_SAI3_SAI5 GPIO ALT5 GPIO3.IO[21] Input with PD SAI5_RXD1 T14 NVCC_SAI3_SAI5 GPIO ALT5 GPIO3.IO[22] Input with PD SAI5_RXD2 V12 NVCC_SAI3_SAI5 GPIO ALT5 GPIO3.IO[23] Input with PD SAI5_RXD3 U14 NVCC_SAI3_SAI5 GPIO ALT5 GPIO3.IO[24] Input with PD SAI5_RXFS T12 NVCC_SAI3_SAI5 GPIO ALT5 GPIO3.IO[19] Input with PD SD1_CLK R21 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[0] Input with PD SD1_CMD T21 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[1] Input with PD SD1_DATA0 N18 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[2] Input with PD SD1_DATA1 N17 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[3] Input with PD SD1_DATA2 N21 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[4] Input with PD SD1_DATA3 P20 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[5] Input with PD SD1_DATA4 P21 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[6] Input with PD SD1_DATA5 T20 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[7] Input with PD SD1_DATA6 R20 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[8] Input with PD SD1_DATA7 N16 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[9] Input with PD SD1_RESET_B R18 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[10] Input with PD SD1_STROBE R17 NVCC_SD1_NAND GPIO ALT5 GPIO2.IO[11] Input with PD SD2_CD_B U20 NVCC_SD2 GPIO ALT5 GPIO2.IO[12] Input with PD SD2_CLK Y21 NVCC_SD2 GPIO ALT5 GPIO2.IO[13] Input with PD SD2_CMD V21 NVCC_SD2 GPIO ALT5 GPIO2.IO[14] Input with PD SD2_DATA0 AA20 NVCC_SD2 GPIO ALT5 GPIO2.IO[15] Input with PD SD2_DATA1 U21 NVCC_SD2 GPIO ALT5 GPIO2.IO[16] Input with PD i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 102 NXP Semiconductors Package information and contact assignments Table 78. i.MX 8M Nano 11 x 11 mm functional contact assignments (continued) Reset condition Ball name Ball Power group Ball type Default mode Default function Input/ Output status SD2_DATA2 W20 NVCC_SD2 GPIO ALT5 GPIO2.IO[17] Input with PD SD2_DATA3 V20 NVCC_SD2 GPIO ALT5 GPIO2.IO[18] Input with PD SD2_RESET_B Y20 NVCC_SD2 GPIO ALT5 GPIO2.IO[19] Input with PD SD2_WP W21 NVCC_SD2 GPIO ALT5 GPIO2.IO[20] Input with PD SPDIF_EXT_CLK T6 NVCC_SAI3_SAI5 GPIO ALT5 GPIO5.IO[5] Input with PD SPDIF_RX U6 NVCC_SAI3_SAI5 GPIO ALT5 GPIO5.IO[4] Input with PD SPDIF_TX V6 NVCC_SAI3_SAI5 GPIO ALT5 GPIO5.IO[3] Input with PD TSENSOR_RES_E XT D16 VDD_ANA1_XTAL_ MIPI_USB_1P8 ANALOG — — — UART1_RXD A9 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[22] Input with PD UART1_TXD E10 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[23] Input with PD UART2_RXD B9 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[24] Input with PD UART2_TXD C11 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[25] Input with PD UART3_RXD B10 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[26] Input with PD UART3_TXD E12 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[27] Input with PD UART4_RXD A10 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[28] Input with PD UART4_TXD D10 NVCC_I2C_UART GPIO ALT5 GPIO5.IO[29] Input with PD USB1_DN A17 VDD_USB_3P3 PHY — — Input USB1_DP B17 VDD_USB_3P3 PHY — — Input USB1_ID D14 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — Input USB1_TXRTUNE B16 VDD_ANA1_XTAL_ MIPI_USB_1P8 PHY — — — USB1_VBUS A16 VDD_USB_3P3 PHY — — — 1 During reset: output high without PU/PD; After reset: input with PU Mandatory requirement: JTAG_TMS pin must be connected with a 50 ohm serial resistor near the component. 3 During reset: input without PU/PD; After reset: input with PD 2 5.2.3 i.MX 8M Nano 11 x 11 mm 0.5 mm pitch ball map Table 79 shows the i.MX 8M Nano 11 x 11 mm 0.5 mm pitch ball map. i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 103 104 UART3_TXD ONOFF VDD_MIPI_1P2 VDD_USB_3P3 CLKIN1 CLKOUT1 CLKOUT2 JTAG_TDI 24M_XTALO 24M_XTALI VSS VSS RTC_XTALI 20 JTAG_TCK JTAG_TDO PMIC_STBY_REQ POR_B 19 CLKIN2 RTC_XTALO RTC_RESET_B 18 VSS VSS 17 JTAG_MOD USB1_DN USB1_DP 16 JTAG_TMS USB1_VBUS MIPI_CSI_D3_N MIPI_CSI_D3_P 15 USB1_TXRTUNE MIPI_CSI_D2_N MIPI_CSI_D2_P MIPI_CSI_CLK_P MIPI_CSI_CLK_N 14 VSS VSS 13 USB1_ID 12 MIPI_CSI_D1_N MIPI_CSI_D1_P MIPI_CSI_D0_N 11 VSS MIPI_CSI_D0_P UART2_TXD UART4_RXD 10 MIPI_VREG_CAP UART3_RXD VSS UART1_RXD UART2_RXD 9 UART4_TXD I2C4_SDA I2C4_SCL 8 PMIC_ON_REQ TSENSOR_RES_EXT UART1_TXD I2C2_SCL VSS I2C1_SDA I2C1_SCL 7 I2C2_SDA ECSPI2_MOSI ECSPI1_SS0 6 BOOT_MODE2 I2C3_SDA I2C3_SCL VSS 5 ECSPI1_MISO 4 ECSPI1_SCLK 3 ECSPI1_MOSI ECSPI2_SS0 DRAM_DQ02 DRAM_DQ01 ECSPI2_MISO DRAM_DM0 VSS ECSPI2_SCLK VSS DRAM_DQS0_N DRAM_DQS0_P A DRAM_DQ03 DRAM_AC06 DRAM_DQ07 DRAM_DQ06 B DRAM_AC07 DRAM_DQ04 DRAM_DQ14 DRAM_DQ05 C 2 DRAM_DQ00 DRAM_DQ15 DRAM_DQS1_N D 1 VSS E F Package information and contact assignments Table 79. 11 x 11 mm, 0.5 mm pitch ball map 21 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors NXP Semiconductors NVCC_DRAM VSS VDD_SOC VDD_DRAM_PLL_1P8 VSS VDD_SOC NAND_WP_B NAND_DQS NAND_RE_B 20 NAND_DATA03 19 NAND_DATA07 VSS 18 NAND_CE0_B VSS VSS BOOT_MODE1 17 NAND_DATA00 NAND_DATA05 NAND_DATA04 16 BOOT_MODE3 BOOT_MODE0 15 NAND_DATA01 NAND_CE1_B NAND_ALE NAND_READY_B NAND_CLE NAND_WE_B NAND_CE2_B NVCC_SNVS_1P8 14 NAND_CE3_B VDD_SNVS_0P8 NVCC_CLK_JTAG_PVCC_1P8 VSS VDD_ANA1_XTAL_MIPI_USB_1P8 13 NAND_DATA02 VSS VSS VSS 12 VDD_SOC VDD_SOC 11 VDD_SOC VDD_SOC VDD_SOC 10 VDD_SOC 9 VDD_SOC 8 VSS 7 NVCC_I2C_UART NVCC_ECSPI 6 VSS VSS NVCC_DRAM DRAM_AC04 DRAM_AC05 VSS DRAM_DQS1_P 5 VDD_SOC NVCC_DRAM NVCC_DRAM VDD_SOC DRAM_AC17 DRAM_AC15 DRAM_DM1 DRAM_DQ08 G 4 VDD_SOC DRAM_AC16 DRAM_DQ11 DRAM_DQ09 H 3 VSS VDD_SOC DRAM_DQ13 DRAM_DQ10 DRAM_VREF DRAM_AC11 DRAM_AC10 DRAM_DQ12 J 2 VSS DRAM_AC12 DRAM_AC13 K 1 VSS L M Package information and contact assignments Table 79. 11 x 11 mm, 0.5 mm pitch ball map (continued) 21 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 105 106 ENET_TD2 SD2_DATA3 SD2_CMD VSS SD2_DATA2 SD2_WP SD1_CLK SD1_DATA4 SD1_DATA3 SD1_DATA2 NAND_DATA06 20 SD1_CMD SD1_DATA6 19 SD2_DATA1 SD1_DATA5 VSS 18 SD2_CD_B VSS VSS SD1_DATA0 17 SD1_RESET_B 16 ENET_TD0 SD1_DATA1 SD1_STROBE NVCC_SD1_NAND SD1_DATA7 VSS NVCC_SD2 15 ENET_MDIO 14 ENET_RXC VSS ENET_RX_CTL VDD_ANA0_ARM_PLL_1P8 VSS SAI5_RXD1 11 SAI5_RXD3 SAI5_RXC VSS VDD_SOC VSS NVCC_ENET_GPIO_SAI2 VSS VDD_SOC 13 VDD_SOC SAI5_RXFS NVCC_SAI3_SAI5 VSS 12 VDD_SOC SAI5_RXD0 VSS 10 SAI5_RXD2 GPIO1_IO13 GPIO1_IO01 9 GPIO1_IO12 GPIO1_IO05 NVCC_DRAM 8 VSS GPIO1_IO08 VSS GPIO1_IO07 7 NVCC_DRAM DRAM_ALERT_N DRAM_AC32 NVCC_DRAM DRAM_RESET_N VSS DRAM_AC02 6 VDD_SOC GPIO1_IO00 VSS SPDIF_EXT_CLK DRAM_AC03 DRAM_AC01 DRAM_AC23 VSS DRAM_AC09 DRAM_AC00 N 5 SPDIF_RX DRAM_AC21 DRAM_AC08 P 4 SAI5_MCLK SPDIF_TX DRAM_AC35 VSS DRAM_AC33 DRAM_AC20 R 3 VSS DRAM_AC34 DRAM_AC26 DRAM_ZN T 2 DRAM_AC29 DRAM_AC36 DRAM_AC30 U 1 VSS V W Package information and contact assignments Table 79. 11 x 11 mm, 0.5 mm pitch ball map (continued) 21 i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors Package information and contact assignments Table 79. 11 x 11 mm, 0.5 mm pitch ball map (continued) SD2_CLK 21 VSS 20 SD2_DATA0 SD2_RESET_B ENET_MDC ENET_TD1 ENET_TXC ENET_TX_CTL ENET_TD3 19 ENET_RD0 ENET_RD2 ENET_RD3 18 ENET_RD1 17 SAI2_RXC 16 SAI2_TXD0 15 SAI2_RXD0 SAI2_MCLK SAI2_TXFS 14 SAI2_RXFS GPIO1_IO11 GPIO1_IO15 13 SAI2_TXC GPIO1_IO14 12 GPIO1_IO10 11 GPIO1_IO03 10 GPIO1_IO09 SAI3_TXFS GPIO1_IO04 9 GPIO1_IO06 SAI3_RXC SAI3_RXD 8 GPIO1_IO02 SAI3_TXC SAI3_MCLK 7 SAI3_RXFS 6 SAI3_TXD 5 DRAM_AC31 4 DRAM_AC28 3 DRAM_AC24 DRAM_AC14 VSS 5.3 2 DRAM_AC25 Y AA 1 DDR pin function list Table 80 shows the DDR pin function list. Table 80. DDR pin function list Ball name LPDDR4 DDR4 DDR3/3L DRAM_DQS0_P DQS0_t_A DQSL_t_A DQSL_A DRAM_DQS0_N DQS0_c_A DQSL_c_A DQSL#_A DRAM_DM0 DMI0_A DML_n_A / DBIL_n_A DML_A DRAM_DQ00 DQ0_A DQL0_A DQL0_A DRAM_DQ01 DQ1_A DQL1_A DQL1_A DRAM_DQ02 DQ2_A DQL2_A DQL2_A DRAM_DQ03 DQ3_A DQL3_A DQL3_A DRAM_DQ04 DQ4_A DQL4_A DQL4_A DRAM_DQ05 DQ5_A DQL5_A DQL5_A DRAM_DQ06 DQ6_A DQL6_A DQL6_A DRAM_DQ07 DQ7_A DQL7_A DQL7_A DRAM_DQS1_P DQS1_t_A DQSU_t_A DQSU_A DRAM_DQS1_N DQS1_c_A DQSU_c_A DQSU#_A DRAM_DM1 DMI1_A DMU_n_A / DBIU_n_A DMU_A DRAM_DQ08 DQ08_A DQU0_A DQU0_A DRAM_DQ09 DQ09_A DQU1_A DQU1_A DRAM_DQ10 DQ10_A DQU2_A DQU2_A DRAM_DQ11 DQ11_A DQU3_A DQU3_A DRAM_DQ12 DQ12_A DQU4_A DQU4_A DRAM_DQ13 DQ13_A DQU5_A DQU5_A i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 107 Package information and contact assignments Table 80. DDR pin function list (continued) DRAM_DQ14 DQ14_A DQU6_A DQU6_A DRAM_DQ15 DQ15_A DQU7_A DQU7_A DRAM_RESET_N RESET_N RESET_n RESET# DRAM_ALERT_N MTEST1 ALERT_n / MTEST1 MTEST1 DRAM_AC00 CKE0_A CKE0 CKE0 DRAM_AC01 CKE1_A CKE1 CKE1 DRAM_AC02 CS0_A CS0_n CS0# DRAM_AC03 CS1_A C0 — DRAM_AC04 CK_t_A BG0 BA2 DRAM_AC05 CK_c_A BG1 A14 DRAM_AC06 — ACT_n A15 DRAM_AC07 — A9 A9 DRAM_AC08 CA0_A A12 A12 / BC# DRAM_AC09 CA1_A A11 A11 DRAM_AC10 CA2_A A7 A7 DRAM_AC11 CA3_A A8 A8 DRAM_AC12 CA4_A A6 A6 DRAM_AC13 CA5_A A5 A5 DRAM_AC14 — A4 A4 DRAM_AC15 — A3 A3 DRAM_AC16 — CK_t_A CK_A DRAM_AC17 — CK_c_A CK#_A DRAM_AC19 MTEST MTEST MTEST DRAM_AC20 CKE0_B CK_t_B CK_B DRAM_AC21 CKE1_B CK_c_B CK#_B DRAM_AC22 CS1_B — — DRAM_AC23 CS0_B — — DRAM_AC24 CK_t_B A2 A2 DRAM_AC25 CK_c_B A1 A1 DRAM_AC26 — BA1 BA1 DRAM_AC27 — PARITY — DRAM_AC28 CA0_B A13 A13 DRAM_AC29 CA1_B BA0 BA0 DRAM_AC30 CA2_B A10 / AP A10 / AP i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 108 NXP Semiconductors Package information and contact assignments Table 80. DDR pin function list (continued) DRAM_AC31 CA3_B A0 A0 DRAM_AC32 CA4_B C2 — DRAM_AC33 CA5_B CAS_n / A15 CAS# DRAM_AC34 — WE_n / A14 WE# DRAM_AC35 — RAS_n / A16 RAS# DRAM_AC36 — ODT0 ODT0 DRAM_AC37 — ODT1 ODT1 DRAM_AC38 — CS1_n CS1# DRAM_ZN ZQ ZQ ZQ DRAM_VREF VREF VREF VREF i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 109 Revision history 6 Revision history Table 81 provides a revision history for this data sheet. Table 81. Revision history Rev.number Date Substantive change(s) Rev. 1 03/2021 • Updated the M7 frequency in the Chapter 1, i.MX 8M Nano introduction • Added a note for the Figure 1, "i.MX 8M Nano system block diagram" and Table 2, "Modules supported" • Added part numbers for 11 x 11 mm package and descriptions in the Table 3, "Orderable part numbers" • Updated the package type and part differentiator in the Figure 2, "Part number nomenclature—i.MX 8M Nano family of processors" • Updated the LCDIF descriptions in the Table 4, "i.MX 8M Nano modules list" • Updated the Section 2.1, Recommended connections for unused input/output • Updated the title and the maximum values of VDD_ARM_PLL_0P8 and VDD_USB_0P8 in the Table 10, "Absolute maximum ratings for 14 x 14 mm package" • Added the Table 11, "Absolute maximum ratings for 11 x 11 mm package" • Updated the title of Table 13, "14 x 14 mm package thermal resistance data" • Added the new Section 3.1.2.2, 11 x 11 mm FCBGA package thermal resistance • Updated the VDD_ANA_0P8, VDD_ARM_PLL_0P8, VDD_MIPI_0P8, VDD_USB_0P8, VDD_DRAM_PLL_0P8, and USB1_VBUS in the Table 15, "Operating ranges for 14 x 14 mm package" • Added the Table 16, "Operating ranges for 11 x11 mm package" • Updated the title of Table 19, "Estimated power supply maximum currents for 14 x 14 mm package" • Added the Table 20, "Estimated power supply maximum currents for 11 x 11 mm package" • Updated and added Low-V suspend mode data in the Table 21, "Chip power in different LP mode for 14 x 14 mm package" • Added the Table 22, "Chip power in different LP mode for 11 x 11 mm package" • Updated and added a foot note in the Table 23, "The power supply states for 14 x 14 mm package" • Added the Table 25, "The power supply states for 11 x 11 mm package" • Updated POR_B and added a note for Figure 3, "The power-up sequence for 14 x 14 mm package" • Updated the T13 descriptions in the Table 26, "Power-up sequence for 14 x 14 mm package" • Added the Figure 4, "The power-up sequence for 11 x 11 mm package" and Table 27, "Power-up sequence for 11 x 11 mm package" • Updated the titles of Figure 5, "The power-down sequence for 14 x 14 mm package" and Table 28, "Power-down sequence for 14 x 14 mm package" • Added the Figure 6, "The power-down sequence for 11 x 11 mm package" and Table 29, "Power-down sequence for 11 x 11 mm package" • Removed the Section, Power supplies constraints • Updated the lock time and GPU values in the Table 30, "PLL electrical parameters"; added the M7_ALT_PLL in the Table 30, "PLL electrical parameters" • Fixed a typo in the Table 74, "i.MX 8M Nano 14 x 14 mm supplies contact assignments" • Changed the name of TSENSOR_RES_EXT in the Table 75, "i.MX 8M Nano 14 x 14 mm functional contact assignments"; updated the input/out status of GPIO1_IO07, NAND_CE0_B, and NAND_RE_B in the Table 75, "i.MX 8M Nano 14 x 14 mm functional contact assignments" • Updated the names of H10, M1, and W22 in the Table 76, "14 x 14 mm, 0.5 mm pitch ball map" • Added the Section 5.2, 11 x 11 mm package information i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 110 NXP Semiconductors Revision history Table 81. Revision history (continued) Rev.number Date Substantive change(s) Rev. 1 02/2021 • Updated LPDDR4 information of DRAM_AC14 and DRAMAC34 in the Table 80, "DDR pin function list" Rev. 0.1 03/2020 • Updated the Table, “Power supplies constraints” Rev. 0 10/2019 • Initial version i.MX 8M Nano Applications Processor Datasheet for Industrial Products, Rev. 1, 03/2021 NXP Semiconductors 111 How To Reach Us Home Page: nxp.com Web Support: nxp.com/support Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V may appear when operating this product, depending on settings and application. Customers incorporating or otherwise Table continues on the next page... using these products in applications where such high voltages may appear during operation, assembly, test etc. of such application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages. Evaluation products —This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose. Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or other jurisdictions. © NXP B.V. 2021. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: April, 2021 Document identifier: IMX8MNIEC
MIMX8MN1CVTIZAA 价格&库存

很抱歉,暂时无法提供与“MIMX8MN1CVTIZAA”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MIMX8MN1CVTIZAA
    •  国内价格
    • 456+141.91000

    库存:456