0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MIMXRT1052CVL5B

MIMXRT1052CVL5B

  • 厂商:

    NXP(恩智浦)

  • 封装:

    MAPBGA10_10X10MM

  • 描述:

    32位MCU微控制器 MAPBGA10_10X10MM ARM® Cortex®-M7 528MHz

  • 数据手册
  • 价格&库存
MIMXRT1052CVL5B 数据手册
NXP Semiconductors Data Sheet: Technical Data Document Number: IMXRT1050IEC Rev. 1, 03/2018 MIMXRT1051CVL5A MIMXRT1051CVL5B MIMXRT1052CVL5A MIMXRT1052CVL5B i.MX RT1050 Crossover Processors for Industrial Products Package Information Plastic Package 196-pin MAPBGA, 10 x 10 mm, 0.65 mm pitch Ordering Information See Table 1 on page 5 1 i.MX RT1050 introduction The i.MX RT1050 is a new processor family featuring NXP’s advanced implementation of the Arm Cortex®-M7 core, which operates at speeds up to 528 MHz to provide high CPU performance and best real-time response. The i.MX RT1050 processor has 512 KB on-chip RAM, which can be flexibly configured as TCM or general-purpose on-chip RAM. The i.MX RT1050 integrates advanced power management module with DCDC and LDO that reduces complexity of external power supply and simplifies power sequencing. The i.MX RT1050 also provides various memory interfaces, including SDRAM, RAW NAND FLASH, NOR FLASH, SD/eMMC, Quad SPI, and a wide range of other interfaces for connecting peripherals, such as WLAN, Bluetooth™, GPS, displays, and camera sensors. The i.MX RT1050 also has rich audio and video features, including LCD display, basic 2D graphics, camera interface, SPDIF, and I2S audio interface. © 2017-2018 NXP Semiconductors. All rights reserved. 1. i.MX RT1050 introduction . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 5 2. Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1. Special signal considerations . . . . . . . . . . . . . . . 14 3.2. Recommended connections for unused analog interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 17 4.2. System power and clocks . . . . . . . . . . . . . . . . . . 23 4.3. I/O parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4. System modules . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.5. External memory interface . . . . . . . . . . . . . . . . . 38 4.6. Display and graphics . . . . . . . . . . . . . . . . . . . . . . 48 4.7. Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.8. Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.9. Communication interfaces . . . . . . . . . . . . . . . . . . 60 4.10. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1. Boot mode configuration pins . . . . . . . . . . . . . . . 75 5.2. Boot device interface allocation . . . . . . . . . . . . . . 75 6. Package information and contact assignments . . . . . . . 80 6.1. 10 x 10 mm package information . . . . . . . . . . . . 80 7. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 i.MX RT1050 introduction The i.MX RT1050 is specifically useful for applications such as: • Industrial Human Machine Interfaces (HMI) • Motor Control • Home Appliance 1.1 Features The i.MX RT1050 processors are based on Arm Cortex-M7 MPCore™ Platform, which has the following features: • Supports single Arm Cortex-M7 MPCore with: — 32 KB L1 Instruction Cache — 32 KB L1 Data Cache — Full featured Floating Point Unit (FPU) with support of the VFPv5 architecture — Support the Armv7-M Thumb instruction set • Integrated MPU, up to 16 individual protection regions • Up to 512 KB I-TCM and D-TCM in total • Frequency of 528 MHz • Cortex M7 CoreSight™ components integration for debug • Frequency of the core, as per Table 9, "Operating ranges," on page 19. The SoC-level memory system consists of the following additional components: — Boot ROM (96 KB) — On-chip RAM (512 KB) – Configurable RAM size up to 512 KB shared with M7 TCM • External memory interfaces: — 8/16-bit SDRAM, up to SDRAM-166 — 8/16-bit SLC NAND FLASH, with ECC handled in software — SD/eMMC — SPI NOR FLASH — Parallel NOR FLASH with XIP support — Single/Dual channel Quad SPI FLASH with XIP support • Timers and PWMs: — Two General Programmable Timers (GPT) – 4-channel generic 32-bit resolution timer – Each support standard capture and compare operation — Four Periodical Interrupt Timer (PIT) – Generic 16-bit resolution timer – Periodical interrupt generation — Four Quad Timers (QTimer) i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 2 NXP Semiconductors i.MX RT1050 introduction – 4-channel generic 16-bit resolution timer for each – Each support standard capture and compare operation – Quadrature decoder integrated — Four FlexPWMs – Up to 8 individual PWM channels for each – 16-bit resolution PWM suitable for Motor Control applications — Four Quadrature Encoder/Decoders Each i.MX RT1050 processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously): • Display Interface: — Parallel RGB LCD interface – Support 8/16/24 bit interface – Support up to 1366 x 768 WXGA resolution – Support Index color with 256 entry x 24 bit color LUT – Smart LCD display with 8/16-bit MPU/8080 interface • Audio: — S/PDIF input and output — Three synchronous audio interface (SAI) modules supporting I2S, AC97, TDM, and codec/DSP interfaces — MQS interface for medium quality audio via GPIO pads • Generic 2D graphics engine: — BitBlit — Flexible image composition options—alpha, chroma key — Image rotation (90, 180, 270) — Porter-Daff operation — Image size — Color space conversion — Multiple pixel format support (RGB, YUV444, YUV422, YUV420, YUV400) — Standard 2D-DMA operation • Camera sensors: — Support 24-bit, 16-bit, and 8-bit CSI input • Connectivity: — Two USB 2.0 OTG controllers with integrated PHY interfaces — Two Ultra Secure Digital Host Controller (uSDHC) interfaces – MMC 4.5 compliance with HS200 support up to 200 MB/sec – SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100 MB/sec – Support for SDXC (extended capacity) i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 3 i.MX RT1050 introduction • — One 10/100 M Ethernet controller with support for IEEE1588 — Eight universal asynchronous receiver/transmitter (UARTs) modules — Four I2C modules — Four SPI modules — Two FlexCAN modules GPIO and Pin Multiplexing: — General-purpose input/output (GPIO) modules with interrupt capability — Input/output multiplexing controller (IOMUXC) to provide centralized pad control — Two FlexIOs The i.MX RT1050 processors integrate advanced power management unit and controllers: • Full PMIC integration. On-chip DCDC and LDO • Temperature sensor with programmable trip points • GPC hardware power management controller The i.MX RT1050 processors support the following system debug: • Arm CoreSight debug and trace architecture • Trace Port Interface Unit (TPIU) to support off-chip real-time trace • Support for 5-pin (JTAG) and SWD debug interfaces selected by eFuse Security functions are enabled and accelerated by the following hardware: • High Assurance Boot (HAB) • Data Co-Processor (DCP): — AES-128, ECB, and CBC mode — SHA-1 and SHA-256 — CRC-32 • Bus Encryption Engine (BEE) — AES-128, ECB, and CTR mode — On-the-fly QSPI Flash decryption • True random number generation (TRNG) • Secure Non-Volatile Storage (SNVS) — Secure real-time clock (RTC) — Zero Master Key (ZMK) • Secure JTAG Controller (SJC) NOTE The actual feature set depends on the part numbers as described in Table 1. Functions such as display and camera interfaces, connectivity interfaces, and security features are not offered on all derivatives. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 4 NXP Semiconductors i.MX RT1050 introduction 1.2 Ordering information Table 1 provides examples of orderable part numbers covered by this Data Sheet. Table 1. Ordering information Part Number Feature Package Junction Temperature Tj (C) MIMXRT1051CVL5A MIMXRT1051CVL5B Features supports: • 528 MHz, industrial grade for general purpose • No LCD/PXP/CSI • CAN x2 • Ethernet • eMMC 4.5/SD 3.0 x2 • USB OTG x2 • UART x8 • SAI x3 • Timer x4 • PWM x4 • I2C x4 • SPI x4 10 x 10 mm, 0.65 pitch, 196 MAPBGA -40 to +105 C MIMXRT1052CVL5A MIMXRT1052CVL5B Features supports: • 528 MHz, industrial grade for general purpose • With LCD/CSI/PXP • CAN x2 • Ethernet • eMMC 4.5/SD 3.0 x2 • USB OTG x2 • UART x8 • SAI x3 • Timer x4 • PWM x4 • I2C x4 • SPI x4 10 x 10 mm, 0.65 pitch, 196 MAPBGA -40 to +105 C Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The primary characteristic which describes which data sheet applies to a specific part is the temperature grade (junction) field. • The i.MX RT1050 Crossover Processors for Industrial Products Data Sheet (IMXRT1050IEC) covers parts listed with a “C (Industrial temp)” Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/imxrtseries or contact an NXP representative for details. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 5 i.MX RT1050 introduction M IMX XX @ ## % + VV $ A Qualification Level M Silicon Rev A Prototype Samples P A0 (Maskset ID: 00N04V) A Mass Production M A1 (Maskset ID: 01N04V) B Special S Part # series XX i.MX RT RT Family @ First Generation RT family 1 Reserved 2 3 Frequency $ 400 MHz 4 500 MHz 5 600 MHz 6 700 MHz 7 800 MHz 8 1000 MHz A 4 5 6 VV Package Type VL MAPBGA 10 x 10 mm, 0.65 mm 7 8 Sub-Family ## 02 RT1020 05 RT1050 Tie % 1 Reduced Feature General Purpose 2 Full Feature General Purpose Temperature + Consumer: 0 to + 95 °C D Industrial: -40 to +105 °C C Figure 1. Part number nomenclature—i.MX RT1050 i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 6 NXP Semiconductors Architectural overview 2 Architectural overview The following subsections provide an architectural overview of the i.MX RT1050 processor system. 2.1 Block diagram Figure 2 shows the functional modules in the i.MX RT1050 processor system1. ^LJƐƚĞŵŽŶƚƌŽů WhWůĂƚĨŽƌŵ ^ĞĐƵƌĞ:d' ŽŶŶĞĐƚŝǀŝƚLJ ĞDDϰ͘ϱͬ^ϯ͘ϬdžϮ ƌŵŽƌƚĞdžͲDϳ W>>ͬK^ ϯϮ^, W^ZD ϭϬͬϭϬϬEd ǁŝƚŚ/ϭϱϴϴdžϭ ͬ ;ϭϲͲŚĂŶŶĞůͿdžϮ DWdžϰ ^ĞĐƵƌŝƚLJ ŝƉŚĞƌƐĂŶĚZE' ^ĞĐƵƌĞZd Ğ&ƵƐĞ , . Figure 2. i.MX RT1050 system block diagram 1. Some modules shown in this block diagram are not offered on all derivatives. See Table 1 for details. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 7 Modules list 3 Modules list The i.MX RT1050 processors contain a variety of digital and analog modules. Table 2 describes these modules in alphabetical order. Table 2. i.MX RT1050 modules list Block Mnemonic Block Name Subsystem Brief Description ACMP1 ACMP2 ACMP3 ACMP4 Analog Comparator Analog The comparator (CMP) provides a circuit for comparing two analog input voltages. The comparator circuit is designed to operate across the full range of the supply voltage (rail-to-rail operation). ADC1 ADC2 Analog to Digital Converter Analog The ADC is a 12-bit general purpose analog to digital converter. AOI And-Or-Inverter Cross Trigger The AOI provides a universal boolean function generator using a four team sum of products expression with each product term containing true or complement values of the four selected inputs (A, B, C, D). Arm Arm Platform Arm The Arm Core Platform includes one Cortex-M7 core. It includes associated sub-blocks, such as Nested Vectored Interrupt Controller (NVIC), Floating-Point Unit (FPU), Memory Protection Unit (MPU), and CoreSight debug modules. BEE Bus Encryption Engine Security CCM GPC SRC On-The-Fly FlexSPI Flash Decryption Clock Control Module, Clocks, Resets, and These modules are responsible for clock and reset General Power Power Control distribution in the system, and also for the system Controller, System Reset power management. Controller CSI Parallel CSI Multimedia Peripherals The CSI IP provides parallel CSI standard camera interface port. The CSI parallel data ports are up to 24 bits. It is designed to support 24-bit RGB888/YUV444, CCIR656 video interface, 8-bit YCbCr, YUV or RGB, and 8-bit/10-bit/16-bit Bayer data input. CSU Central Security Unit Security The Central Security Unit (CSU) is responsible for setting comprehensive security policy within the i.MX RT1050 platform. DAP Debug Access Port System Control Peripherals The DAP provides real-time access for the debugger without halting the core to: • System memory and peripheral registers • All debug configuration registers The DAP also provides debugger access to JTAG scan chains. The DAP module is internal to the Cortex-M7 Core Platform. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 8 NXP Semiconductors Modules list Table 2. i.MX RT1050 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description DCDC DCDC Converter Analog The DCDC module is used for generating power supply for core logic. Main features are: • Adjustable high efficiency regulator • Supports 3.0 V input voltage for A0 and 3.3 V input voltage for A1 • Supports nominal run and low power standby modes • Supports at 0.9 ~ 1.3 V output in run mode • Supports at 0.9 ~ 1.0 V output in standby mode • Over current and over voltage detection eDMA enhanced Direct Memory Access System Control Peripherals There is an enhanced DMA (eDMA) engine and two DMA_MUX. • The eDMA is a 32 channel DMA engine, which is capable of performing complex data transfers with minimal intervention from a host processor. • The DMA_MUX is capable of multiplexing up to 128 DMA request sources to the 32 DMA channels of eDMA. ENC Quadrature Encoder/Decoder Timer Peripherals The enhanced quadrature encoder/decoder module provides interfacing capability to position/speed sensors. There are five input signals: PHASEA, PHASEB, INDEX, TRIGGER, and HOME. This module is used to decode shaft position, revolution count, and speed. ENET Ethernet Controller Connectivity Peripherals The Ethernet Media Access Controller (MAC) is designed to support 10/100 Mbit/s Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the reference manual for details. EWM External Watchdog Monitor Timer Peripherals The EWM modules is designed to monitor external circuits, as well as the software flow. This provides a back-up mechanism to the internal WDOG that can reset the system. The EWM differs from the internal WDOG in that it does not reset the system. The EWM, if allowed to time-out, provides an independent trigger pin that when asserted resets or places an external circuit into a safe mode. FLEXCAN1 FLEXCAN2 Flexible Controller Area Network Connectivity Peripherals The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 9 Modules list Table 2. i.MX RT1050 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description FlexIO1 FlexIO2 Flexible Input/output Connectivity and Communications The FlexIO is capable of supporting a wide range of protocols including, but not limited to: UART, I2C, SPI, I2S, camera interface, display interface, PWM waveform generation, etc. The module can remain functional when the chip is in a low power mode provided the clock it is using remain active. FlexPWM1 FlexPWM2 FlexPWM3 FlexPWM4 Pulse Width Modulation Timer Peripherals The pulse-width modulator (PWM) contains four PWM sub-modules, each of which is set up to control a single half-bridge power stage. Fault channel support is provided. The PWM module can generate various switching patterns, including highly sophisticated waveforms. FlexRAM RAM Memories The i.MX RT1050 has 512 KB of on-chip RAM which could be flexible allocated to I-TCM, D-TCM, and on-chip RAM (OCRAM) in a 32 KB granularity. The FlexRAM is the manager of the 512 KB on-chip RAM array. Major functions of this blocks are: interfacing to I-TCM and D-TCM of Arm core and OCRAM controller; dynamic RAM arrays allocation for I-TCM, D-TCM, and OCRAM. FlexSPI Quad Serial Peripheral Interface Connectivity and Communications FlexSPI acts as an interface to one or two external serial flash devices, each with up to four bidirectional data lines. GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 General Purpose I/O Modules System Control Peripherals Used for general purpose input/output to external ICs. Each GPIO module supports up to 32 bits of I/O. GPT1 GPT2 General Purpose Timer Timer Peripherals Each GPT is a 32-bit “free-running” or “set and forget” mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in “set and forget” mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. KPP Keypad Port Human Machine Interfaces The KPP is a 16-bit peripheral that can be used as a keypad matrix interface or as general purpose input/output (I/O). It supports 8 x 8 external key pad matrix. Main features are: • Multiple-key detection • Long key-press detection • Standby key-press detection • Supports a 2-point and 3-point contact key matrix i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 10 NXP Semiconductors Modules list Table 2. i.MX RT1050 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description LCDIF LCD interface Multimedia Peripherals The LCDIF is a general purpose display controller used to drive a wide range of display devices varying in size and capabilities. The LCDIF is designed to support dumb (synchronous 24-bit Parallel RGB interface) and smart (asynchronous parallel MPU interface) LCD devices. LPI2C1 LPI2C2 LPI2C3 LPI2C4 Low Power Inter-integrated Circuit Connectivity and Communications The LPI2C is a low power Inter-Integrated Circuit (I2C) module that supports an efficient interface to an I2C bus as a master. The I2C provides a method of communication between a number of external devices. More detailed information, see Section 4.9.2, “LPI2C module timing parameters. LPSPI1 LPSPI2 LPSPI3 LPSPI4 Low Power Serial Peripheral Interface Connectivity and Communications The LPSPI is a low power Serial Peripheral Interface (SPI) module that support an efficient interface to an SPI bus as a master and/or a slave. • It can continue operating while the chip is in stop modes, if an appropriate clock is available • Designed for low CPU overhead, with DMA off loading of FIFO register access LPUART1 LPUART2 LPUART3 LPUART4 LPUART5 LPUART6 LPUART7 LPUART8 UART Interface Connectivity Peripherals Each of the UART modules support the following serial data transmit/receive protocols and configurations: • 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) • Programmable baud rates up to 5 Mbps. MQS Medium Quality Sound Multimedia Peripherals MQS is used to generate 2-channel medium quality PWM-like audio via two standard digital GPIO pins. PXP Pixel Processing Pipeline Multimedia Peripherals A high-performance pixel processor capable of 1 pixel/clock performance for combined operations, such as color-space conversion, alpha blending, and rotation. The PXP is enhanced with features specifically for gray scale applications. In addition, the PXP supports traditional pixel/frame processing paths for still-image and video processing applications. QuadTimer1 QuadTimer2 QuadTimer3 QuadTimer4 QuadTimer Timer Peripherals The quad-timer provides four time channels with a variety of controls affecting both individual and multi-channel features.Specific features include up/down count, cascading of counters, programmable module, count once/repeated, counter preload, compare registers with preload, shared use of input signals, prescaler controls, independent capture/compare, fault input control, programmable input filters, and multi-channel synchronization. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 11 Modules list Table 2. i.MX RT1050 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description ROMCP ROM Controller with Patch Memories and The ROMCP acts as an interface between the Arm Memory Controllers advanced high-performance bus and the ROM. The on-chip ROM is only used by the Cortex-M7 core during boot up. Size of the ROM is 96 KB. RTC OSC Real Time Clock Oscillator Clock Sources and The RTC OSC provides the clock source for the Control Real-Time Clock module. The RTC OSC module, in conjunction with an external crystal, generates a 32.678 kHz reference clock for the RTC. RTWDOG Watch Dog Timer Peripherals The RTWDG module is a high reliability independent timer that is available for system to use. It provides a safety feature to ensure software is executing as planned and the CPU is not stuck in an infinite loop or executing unintended code. If the WDOG module is not serviced (refreshed) within a certain period, it resets the MCU. Windowed refresh mode is supported as well. SAI1 SAI2 SAI3 Synchronous Audio Interface Multimedia Peripherals The SAI module provides a synchronous audio interface (SAI) that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces. SA-TRNG Standalone True Random Number Generator Security The SA-TRNG is hardware accelerator that generates a 512-bit entropy as needed by an entropy consuming module or by other post processing functions. SEMC Smart External Memory Controller Memory and Memory Controller The SEMC is a multi-standard memory controller optimized for both high-performance and low pin-count. It can support multiple external memories in the same application with shared address and data pins. The interface supported includes SDRAM, NOR Flash, SRAM, and NAND Flash, as well as 8080 display interface. SJC System JTAG Controller System Control Peripherals The SJC provides JTAG interface, which complies with JTAG TAP standards, to internal logic. The i.MX RT1050 processors use JTAG port for production, testing, and system debugging. In addition, the SJC provides BSR (Boundary Scan Register) standard support, which complies with IEEE 1149.1 and IEEE 1149.6 standards. The JTAG port is accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX RT1050 SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration. SNVS Secure Non-Volatile Storage Security Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 12 NXP Semiconductors Modules list Table 2. i.MX RT1050 modules list (continued) Block Mnemonic Block Name Subsystem Brief Description SPDIF Sony Philips Digital Interconnect Format Multimedia Peripherals A standard audio file transfer format, developed jointly by the Sony and Phillips corporations. Has Transmitter and Receiver functionality. Temp Monitor Temperature Monitor Analog TSC Touch Screen Human Machine Interfaces USBO2 Universal Serial Bus 2.0 Connectivity Peripherals USBO2 (USB OTG1 and USB OTG2) contains: • Two high-speed OTG 2.0 modules with integrated HS USB PHYs • Support eight Transmit (TX) and eight Receive (Rx) endpoints, including endpoint 0 uSDHC1 uSDHC2 SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller Connectivity Peripherals i.MX RT1050 specific SoC characteristics: All four MMC/SD/SDIO controller IPs are identical and are based on the uSDHC IP. They are: • Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification, v4.5/4.2/4.3/4.4/4.41/ including high-capacity (size > 2 GB) cards HC MMC. • Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDXC cards up to 2 TB. • Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v3.0 Two ports support: • 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) • 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) • 4-bit or 8-bit transfer mode specifications for eMMC chips up to 200 MHz in HS200 mode (200 MB/s max) WDOG1 WDOG2 Watch Dog Timer Peripherals The watchdog (WDOG) Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the Arm core, and a second point evokes an external event on the WDOG line. XBAR Cross BAR Cross Trigger Each crossbar switch is an array of muxes with shared inputs. Each mux output provides one output of the crossbar. The number of inputs and the number of muxes/outputs are user configurable and registers are provided to select which of the shared inputs are routed to each output. The temperature sensor implements a temperature sensor/conversion function based on a temperature-dependent voltage to time conversion. With touch controller to support 4-wire and 5-wire resistive touch panel. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 13 Modules list 3.1 Special signal considerations Table 3 lists special signal considerations for the i.MX RT1050 processors. The signal names are listed in alphabetical order. The package contact assignments can be found in Section 6, “Package information and contact assignments.” Signal descriptions are provided in the i.MX RT1050 Reference Manual (IMXRT1050_RM). Table 3. Special signal considerations Signal Name Remarks CCM_CLK1_P/ CCM_CLK1_N One general purpose differential high speed clock Input/output (LVDS I/O) is provided. It can be used: • To feed external reference clock to the PLLs and further to the modules inside SoC. • To output internal SoC clock to be used outside the SoC as either reference clock or as a functional clock for peripherals. See the i.MX RT1050 Reference Manual (IMX6ULRM) for details on the respective clock trees. Alternatively one may use single ended signal to drive CLK1_P input. In this case corresponding CLK1_N input should be tied to the constant voltage level equal 1/2 of the input signal swing. Termination should be provided in case of high frequency signals. After initialization, the CLK1 input/output can be disabled (if not used). If unused either or both of the CLK1_N/P pairs may remain unconnected. DCDC_PSWITCH PAD is in DCDC_IN domain and connected the ground to bypass DCDC. To enable DCDC function, assert to DCDC_IN with at least 1ms delay for DCDC_IN rising edge. RTC_XTALI/RTC_XTALO If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz crystal, (100 k ESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO. Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO to either power or ground (>100 M). This will debias the amplifier and cause a reduction of startup margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V. If it is desired to feed an external low frequency clock into RTC_XTALI the RTC_XTALO pin must remain unconnected or driven with a complimentary signal. The logic level of this forcing clock should not exceed VDD_SNVS_CAP level and the frequency should be @ ,QWHUQDO6DPSOH&ORFN Figure 17. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0, 0X1 NOTE Timing shown is based on the memory generating read data on the SCK falling edge, and FlexSPI controller sampling read data on the falling edge. 4.5.2.1.2 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 There are two cases when the memory provides both read data and the read strobe in SDR mode: • A1 - Memory generates both read data and read strobe on SCK rising edge (or falling edge) • A2 - Memory generates read data on SCK falling edge and generates read strobe on SCK rising edgeSCK rising edge Table 37. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A1) Value Symbol Parameter Unit Min Max Frequency of operation — 166 MHz TSCKD Time from SCK to data valid — — ns TSCKDQS Time from SCK to DQS — — ns TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -2 2 ns 6&. 76&.' 76&.' 6,2>@ 76&.'46 76&.'46 '46 Figure 18. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A1) i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 43 Electrical characteristics NOTE Timing shown is based on the memory generating read data and read strobe on the SCK rising edge. The FlexSPI controller samples read data on the DQS falling edge. Table 38. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A2) Value Symbol Parameter Unit Min Max Frequency of operation — 166 MHz TSCKD Time from SCK to data valid — — ns TSCKDQS Time from SCK to DQS — — ns TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -2 2 ns 6&. 76&.' 76&.' 76&.' 6,2>@ 76&.'46 76&.'46 76&.'46 '46 ,QWHUQDO6DPSOH&ORFN Figure 19. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A2) NOTE Timing shown is based on the memory generating read data on the SCK falling edge and read strobe on the SCK rising edge. The FlexSPI controller samples read data on a half cycle delayed DQS falling edge. 4.5.2.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 Table 39. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0 Symbol Parameter Frequency of operation Min Max Unit — 30 MHz TIS Setup time for incoming data 8.67 — ns TIH Hold time for incoming data 0 — ns i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 44 NXP Semiconductors Electrical characteristics Table 40. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1 Symbol Parameter Min Max Unit Frequency of operation — 66 MHz TIS Setup time for incoming data 2 — ns TIH Hold time for incoming data 1 — ns 6&/. 7,6 7,+ 7,6 7,+ 6,2>@ ,QWHUQDO6DPSOH&ORFN Figure 20. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1 4.5.2.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3 There are two cases when the memory provides both read data and the read strobe in DDR mode: • B1 - Memory generates both read data and read strobe on SCK edge • B2 - Memory generates read data on SCK edge and generates read strobe on SCK2 edge Table 41. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1) Symbol Parameter Min Max Unit Frequency of operation — 166 MHz TSCKD Time from SCK to data valid — — ns TSCKDQS Time from SCK to DQS — — ns TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -1 1 ns i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 45 Electrical characteristics 6&. 76&.' 6,2>@ 76&.'46 '46 Figure 21. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1) Table 42. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2) Symbol Parameter Min Max Unit Frequency of operation — 166 MHz TSCKD Time from SCK to data valid — — ns TSCKD - TSCKDQS Time delta between TSCKD and TSCKDQS -1 1 ns 6&. 76&.' 6,2>@ 6&. 76&.'46 '46 Figure 22. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2) 4.5.2.2 FlexSPI output/write timing The following sections describe output signal timing for the FlexSPI controller including control signals and data outputs. 4.5.2.2.1 SDR mode Table 43. FlexSPI output timing in SDR mode Symbol Parameter Min Max Unit Frequency of operation — 1661 MHz Tck SCK clock period 6.0 — ns TDVO Output data valid time — 1 ns TDHO Output data hold time -1 — ns i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 46 NXP Semiconductors Electrical characteristics Table 43. FlexSPI output timing in SDR mode (continued) Symbol Parameter Min Max Unit TCSS Chip select output setup time 3 x TCK - 1 — ns TCSH Chip select output hold time 3 x TCK + 2 — ns 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing specifications. NOTE TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. Please refer to the i.MX RT1050 Reference Manual (IMXRT1050_RM) for more details. 6&. 7&66 7&6+ 7&. &6 7'92 7'92 6,2>@ 7'+2 7'+2 Figure 23. FlexSPI output timing in SDR mode 4.5.2.2.2 DDR mode Table 44. FlexSPI output timing in DDR mode Symbol Parameter Min Max Unit Frequency of operation1 — 166 MHz Tck SCK clock period 6.0 — ns TDVO Output data valid time — 2.2 ns TDHO Output data hold time 0.8 — ns TCSS Chip select output setup time 3 x TCK / 2 - 0.7 — ns TCSH Chip select output hold time 3 x TCK / 2 + 0.8 — ns 1 The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing specifications. NOTE TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the default values are shown above. Please refer to the i.MX RT1050 Reference Manual (IMXRT1050_RM) for more details. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 47 Electrical characteristics 6&. 7&66 7&. 7&6+ &6 7'92 7'92 6,2>@ 7'+2 7'+2 Figure 24. FlexSPI output timing in DDR mode 4.6 Display and graphics The following sections provide information on display and graphic interfaces. 4.6.1 CMOS Sensor Interface (CSI) timing parameters The following sections describe the CSI timing in gated and ungated clock modes. 4.6.1.0.1 Gated clock mode timing Figure 25 and Figure 26 shows the gated clock mode timings for CSI, and Table 45 describes the timing parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC (VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock, CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted. CSI_VSYNC P1 CSI_HSYNC P7 P2 P5 P6 CSI_PIXCLK P3 P4 CSI_DATA[23:00] Figure 25. CSI Gated clock mode—sensor data at falling edge, latch data at rising edge i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 48 NXP Semiconductors Electrical characteristics CSI_VSYNC P1 CSI_HSYNC P7 P2 P6 P5 CSI_PIXCLK P3 P4 CSI_DATA[23:00] Figure 26. CSI Gated clock mode—sensor data at rising edge, latch data at falling edge Table 45. CSI gated clock mode timing parameters ID Parameter Symbol Min. Max. Units P1 CSI_VSYNC to CSI_HSYNC time tV2H 33.5 — ns P2 CSI_HSYNC setup time tHsu 1 — ns P3 CSI DATA setup time tDsu 1 — ns P4 CSI DATA hold time tDh 1 — ns P5 CSI pixel clock high time tCLKh 3.75 — ns P6 CSI pixel clock low time tCLKl 3.75 — ns P7 CSI pixel clock frequency fCLK — 80 MHz i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 49 Electrical characteristics 4.6.1.0.2 Ungated clock mode timing Figure 27 shows the ungated clock mode timings of CSI, and Table 46 describes the timing parameters (P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are used, and the CSI_HSYNC signal is ignored. CSI_VSYNC P1 P6 P4 P5 CSI_PIXCLK P2 P3 CSI_DATA[23:00] Figure 27. CSI ungated clock mode—sensor data at falling edge, latch data at rising edge Table 46. CSI ungated clock mode timing parameters ID Parameter Symbol Min. Max. Units tVSYNC 33.5 — ns P1 CSI_VSYNC to pixel clock time P2 CSI DATA setup time tDsu 1 — ns P3 CSI DATA hold time tDh 1 — ns P4 CSI pixel clock high time tCLKh 3.75 — ns P5 CSI pixel clock low time tCLKl 3.75 — ns P6 CSI pixel clock frequency fCLK — 80 MHz The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as dumb or smart as follows: • Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync (HSYNC)) and output-only Bayer and statistics data. • Smart sensors support CCIR656 video decoder formats and perform additional processing of the image (for example, image compression, image pre-filtering, and various data output formats). i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 50 NXP Semiconductors Electrical characteristics 4.6.2 LCD Controller (LCDIF) timing parameters Figure 28 shows the LCDIF timing and Table 47 lists the timing parameters. / / / /&'QB&/. IDOOLQJHGJHFDSWXUH /&'QB&/. ULVLQJHGJHFDSWXUH /&'QB'$7$>@ /&'Q&RQWURO6LJQDOV / / / / Figure 28. LCD timing Table 47. LCD timing parameters ID Parameter Symbol Min Max Unit tCLK(LCD) — 75 MHz L1 LCD pixel clock frequency L2 LCD pixel clock high (falling edge capture) tCLKH(LCD) 3 — ns L3 LCD pixel clock low (rising edge capture) tCLKL(LCD) 3 — ns L4 LCD pixel clock high to data valid (falling edge capture) td(CLKH-DV) -1 1 ns L5 LCD pixel clock low to data valid (rising edge capture) td(CLKL-DV) -1 1 ns L6 LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV) -1 1 ns L7 LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV) -1 1 ns 4.7 Audio This section provide information about SAI/I2S and SPDIF. 4.7.1 SAI/I2S switching specifications This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes. All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 51 Electrical characteristics Table 48. Master mode SAI timing Num Characteristic Min Max Unit S1 SAI_MCLK cycle time 2 x tsys — ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 4 x tsys — ns S4 SAI_BCLK pulse width high/low 40% 60% BCLK period S5 SAI_BCLK to SAI_FS output valid — 15 ns S6 SAI_BCLK to SAI_FS output invalid 0 — ns S7 SAI_BCLK to SAI_TXD valid — 15 ns S8 SAI_BCLK to SAI_TXD invalid 0 — ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 15 — ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 — ns Figure 29. SAI timing—Master modes Table 49. Slave mode SAI timing Num Characteristic Min Max Unit S11 SAI_BCLK cycle time (input) 4 x tsys — ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period S13 SAI_FS input setup before SAI_BCLK 10 — ns S14 SAI_FA input hold after SAI_BCLK 2 — ns S15 SAI_BCLK to SAI_TXD/SAI_FS output valid — 20 ns S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 — ns i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 52 NXP Semiconductors Electrical characteristics Table 49. Slave mode SAI timing Num Characteristic Min Max Unit S17 SAI_RXD setup before SAI_BCLK 10 — ns S18 SAI_RXD hold after SAI_BCLK 2 — ns Figure 30. SAI timing—Slave mode 4.7.2 SPDIF timing parameters The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. Table 50 and Figure 31 and Figure 32 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode. Table 50. SPDIF timing parameters Timing Parameter Range Characteristics Symbol Unit Min Max SPDIF_IN Skew: asynchronous inputs, no specs apply — — 0.7 ns SPDIF_OUT output (Load = 50pf) • Skew • Transition rising • Transition falling — — — — — — 1.5 24.2 31.3 ns SPDIF_OUT1 output (Load = 30pf) • Skew • Transition rising • Transition falling — — — — — — 1.5 13.6 18.0 40.0 — Modulating Rx clock (SPDIF_SR_CLK) period srckp ns ns i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 53 Electrical characteristics Table 50. SPDIF timing parameters (continued) Timing Parameter Range Characteristics Symbol Unit Min Max SPDIF_SR_CLK high period srckph 16.0 — ns SPDIF_SR_CLK low period srckpl 16.0 — ns Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 — ns SPDIF_ST_CLK high period stclkph 16.0 — ns SPDIF_ST_CLK low period stclkpl 16.0 — ns srckp srckpl SPDIF_SR_CLK srckph VM VM (Output) Figure 31. SPDIF_SR_CLK timing diagram stclkp stclkpl SPDIF_ST_CLK VM stclkph VM (Input) Figure 32. SPDIF_ST_CLK timing diagram 4.8 Analog The following sections provide information about analog interfaces. 4.8.1 DCDC Table 51 introduces the DCDC electrical specifications. Table 51. DCDC electrical specifications Mode Buck mode, one output Notes Input voltage 2.9 V (A0); 3.3 V (A1) Min = 2.8 V Max = 3.0 V (A0) and 3.6 V A1) Output voltage 1.1 V Configurable 0.8 ~ 1.575 V with 25 mV one step in the Run mode Max loading 500 mA — i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 54 NXP Semiconductors Electrical characteristics Table 51. DCDC electrical specifications (continued) Mode Buck mode, one output Notes Loading in low power modes 200 A ~ 30 mA — Efficiency 90% max @150 mA Low power mode Open loop mode Ripple is about 15 mV in Run mode Run mode • Always continuous mode • Support discontinuous mode Configurable by register Inductor 4.7 H — Capacitor 33 F — Over voltage protection 1.55 V Detect VDDSOC, when the voltage is higher than 1.6 V, shutdown DCDC. Over Current protection 1A Detect the peak current • Run mode: when the current is larger than 1 A, shutdown DCDC. Low DCDC_IN detection 2.6 V Detect the DCDC_IN, when battery is lower than 2.6 V, shutdown DCDC. 4.8.2 A/D converter This section introduces information about A/D converter. 4.8.2.1 12-bit ADC electrical characteristics The section provide information about 12-bit ADC electrical characteristics. 4.8.2.1.1 12-bit ADC operating conditions Table 52. 12-bit ADC operating conditions Characteristic Supply voltage Conditions Symb Typ1 Min Max Unit Comment Absolute VDDA 3.0 - 3.6 V — Delta to VDD (VDD-VDDA)2 VDDA -100 0 100 mV — Ground voltage Delta to VSS (VSS-VSSAD) VSSAD -100 0 100 mV — Ref Voltage High — VDDA 1.13 VDDA VDDA V — Ref Voltage Low — VSS VSSAD VSSAD VSSAD V — Input Voltage — VADIN VREFL — VREFH V — Input Capacitance 8/10/12 bit modes CADIN — 1.5 2 pF — i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 55 Electrical characteristics Table 52. 12-bit ADC operating conditions (continued) Characteristic Input Resistance Analog Source Resistance Conditions ADLPC=0, ADHSC=1 Symb RADIN Typ1 Min Max Unit Comment — 5 7 kohms — ADLPC=0, ADHSC=0 — 12.5 15 kohms — ADLPC=1, ADHSC=0 — 25 30 kohms — RAS 12 bit mode fADCK = 40MHz ADLSMP=0, ADSTS=10, ADHSC=1 — — 1 kohms Tsamp=150 ns RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum Sample Time vs RAS ADC Conversion Clock ADLPC=0, ADHSC=1 Frequency 12 bit mode fADCK 4 — 40 MHz — ADLPC=0, ADHSC=0 12 bit mode 4 — 30 MHz — ADLPC=1, ADHSC=0 12 bit mode 4 — 20 MHz — 1 Typical values assume VDDAD = 3.0 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2 DC potential differences Figure 33. 12-bit ADC input impedance equivalency diagram i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 56 NXP Semiconductors Electrical characteristics 12-bit ADC characteristics Table 53. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSAD) Characteristic Supply Current Conditions1 ADLPC=1, ADHSC=0 Symb IDDA Typ2 Min — 350 ADLPC=0, ADHSC=0 460 ADLPC=0, ADHSC=1 750 Max Unit Comment — µA ADLSMP=0 ADSTS=10 ADCO=1 Supply Current Stop, Reset, Module Off IDDA — 1.4 2 µA — ADC Asynchronous Clock Source ADHSC=0 fADACK — 10 — MHz tADACK = 1/fADACK — 20 — — 2 — cycles — Sample Cycles ADHSC=1 ADLSMP=0, ADSTS=00 Csamp ADLSMP=0, ADSTS=01 4 ADLSMP=0, ADSTS=10 6 ADLSMP=0, ADSTS=11 8 ADLSMP=1, ADSTS=00 12 ADLSMP=1, ADSTS=01 16 ADLSMP=1, ADSTS=10 20 ADLSMP=1, ADSTS=11 24 i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 57 Electrical characteristics Table 53. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSAD) (continued) Characteristic Conversion Cycles Conversion Time Total Unadjusted Error Differential Non-Linearity Conditions1 ADLSMP=0 ADSTS=00 Symb Cconv Typ2 Min — 28 ADLSMP=0 ADSTS=01 30 ADLSMP=0 ADSTS=10 32 ADLSMP=0 ADSTS=11 34 ADLSMP=1 ADSTS=00 38 ADLSMP=1 ADSTS=01 42 ADLSMP=1 ADSTS=10 46 ADLSMP=1, ADSTS=11 50 ADLSMP=0 ADSTS=00 Tconv — 0.7 ADLSMP=0 ADSTS=01 0.75 ADLSMP=0 ADSTS=10 0.8 ADLSMP=0 ADSTS=11 0.85 ADLSMP=1 ADSTS=00 0.95 ADLSMP=1 ADSTS=01 1.05 ADLSMP=1 ADSTS=10 1.15 ADLSMP=1, ADSTS=11 1.25 12 bit mode Comment cycles — — µs Fadc=40 MHz LSB 1 LSB = (VREFH VREFL)/2 N AVGE = 1, AVGS = 11 LSB AVGE = 1, AVGS = 11 3.4 — 10 bit mode — 1.5 — 8 bit mode — 1.2 — — 0.76 — 10bit mode — 0.36 — 8 bit mode — 0.14 — DNL Unit — — 12 bit mode TUE Max i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 58 NXP Semiconductors Electrical characteristics Table 53. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSAD) (continued) Conditions1 Characteristic Integral Non-Linearity 12 bit mode Zero-Scale Error Typ2 Max 2.78 — 10bit mode — 0.61 — 8 bit mode — 0.14 — — -1.14 — 10bit mode — -0.25 — 8 bit mode — -0.19 — — -1.06 — 10bit mode — -0.03 — 8 bit mode — -0.02 — 10.7 — 12 bit mode INL Min — 12 bit mode Full-Scale Error Symb EZS EFS Effective Number of Bits 12 bit mode ENOB 10.1 Signal to Noise plus Distortion See ENOB SINAD SINAD = 6.02 x ENOB + 1.76 1 2 Unit Comment LSB AVGE = 1, AVGS = 11 LSB AVGE = 1, AVGS = 11 LSB AVGE = 1, AVGS = 11 Bits AVGE = 1, AVGS = 11 dB AVGE = 1, AVGS = 11 All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD Typical values assume VDDAD = 3.0 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. NOTE The ADC electrical spec would be met with the calibration enabled configuration. 4.8.3 ACMP Table 54 lists the ACMP electrical specifications. Table 54. Comparator and 6-bit DAC electrical specifications Symbol Description VDD Supply voltage IDDHS Min. 3.0 Typ. Max. Unit — 3.6 V Supply current, High-speed mode — (EN = 1, PMODE = 1) 347 — A IDDLS Supply current, Low-speed mode (EN = 1, PMODE = 0) — 42 — A VAIN Analog input voltage VSS — VDD V VAIO Analog input offset voltage — — 21 mV i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 59 Electrical characteristics Table 54. Comparator and 6-bit DAC electrical specifications (continued) Symbol VH Description Min. Typ. Max. Analog comparator hysteresis1 Unit mV • CR0[HYSTCTR] = 00 — 1 2 • CR0[HYSTCTR] = 01 — 21 54 • CR0[HYSTCTR] = 10 — 42 108 • CR0[HYSTCTR] = 11 — 64 184 VCMPOH Output high VDD - 0.5 — — V VCMPOI Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN = 1, PMODE = 1)2 — 25 40 ns tDLS Propagation delay, low-speed mode (EN = 1, PMODE = 0)2 — 50 90 ns tDInit Analog comparator initialization delay3 — 1.5 — s IDAC6b 6-bit DAC current adder (enabled) — 5 — A RDAC6b 6-bit DAC reference inputs — VDD — V INLDAC6b 6-bit DAC integral non-linearity -0.3 — 0.3 LSB4 DNLDAC6b 6-bit DAC differential non-linearity -0.15 — 0.15 LSB4 1 Typical hysteresis is measured with input voltage range limited to 0.7 to VDD - 0.7 V in high speed mode. Signal swing is 100 mV. 3 Comparator initialization delay is defined as the time between software writes to the enable comparator module and the comparator output setting to a stable level. 4 1 LSB = V reference / 64 2 4.9 Communication interfaces The following sections provide the information about communication interfaces. 4.9.1 LPSPI timing parameters The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes. All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 60 NXP Semiconductors Electrical characteristics Table 55. LPSPI Master mode timing Number Symbol 1 fOP 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 Description Min. Max. Units Note fperiph / 2048 fperiph / 2 Hz 1 2 x tperiph 2048 x tperiph ns 2 Enable lead time 1/2 — tSPSCK — Enable lag time 1/2 — tSPSCK — tperiph - 30 1024 x tperiph ns — Data setup time (inputs) 18 — ns — tHI Data hold time (inputs) 0 — ns — 8 tV Data valid (after SPSCK edge( — 15 ns — 9 tHO Data hold time (outputs) 0 — ns — 10 tRI tFI Rise time input Fall time input — tperiph - 25 ns — 11 tRO tFO Rise time output Fall time output — 25 ns — Frequency of operation SPSCK period Clock (SPSCK) high or low time 1 Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be guaranteed this limit is not exceeded. 2 t periph = 1 / fperiph  66 287387   636&. &32/  287387       06%,1 %,7 /6%,1  026, 287387   636&. &32/  287387 0,62 ,1387    06%287 %,7  /6%287 ,IFRQILJXUHGDVDQRXWSXW /6%) )RU/6%) ELWRUGHULV/6%ELWELW06% Figure 34. LPSPI Master mode timing (CPHA = 0) i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 61 Electrical characteristics  66 287387        636&. &32/  287387  636&. &32/  287387   0,62 ,1387   06%,1 %,7   026, 287387  3257'$7$ 0$67(506%287 ,IFRQILJXUHGDVRXWSXW /6%,1 %,7 0$67(5/6%287 3257'$7$  /6%) )RU/6%) ELWRUGHULV/6%ELWELW06% Figure 35. LPSPI Master mode timing (CPHA = 1) Table 56. LPSPI Slave mode timing Number Symbol 1 fOP 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 Description Min. Max. Units Note 0 fperiph / 2 Hz 1 4 x tperiph — ns 2 Enable lead time 1 — tperiph — Enable lag time 1 — tperiph — tperiph - 30 — ns — Data setup time (inputs) 2.5 — ns — tHI Data hold time (inputs) 3.5 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tV Data valid (after SPSCK edge) — 31 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI tFI Rise time input Fall time input — tperiph - 25 ns — 13 tRO tFO Rise time input Fall time input — 25 ns — Frequency of operation SPSCK period Clock (SPSCK) high or low time 1 Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be guaranteed this limit is not exceeded. 2 t periph = 1 / fperiph 3 Time to data active from high-impedance state 4 Hold time to high-impedance state i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 62 NXP Semiconductors Electrical characteristics 66 ,1387       636&. &32/  ,1387   636&. &32/  ,1387    0,62 287387 VHH QRWH 6/$9(06%  026, ,1387    %,7 6/$9(/6%287 6(( 127(  06%,1 %,7 /6%,1 Figure 36. LPSPI Slave mode timing (CPHA = 0) 66 ,1387        636&. &32/  ,1387   636&. &32/  ,1387   0,62 287387 VHH QRWH  026, ,1387 6/$9( 06%287   %,7 6/$9(/6%287 %,7 /6%,1  06%,1 Figure 37. LPSPI Slave mode timing (CPHA = 1) i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 63 Electrical characteristics 4.9.2 LPI2C module timing parameters This section describes the timing parameters of the LPI2C module. Table 57. LPI2C module timing parameters Symbol fSCL 1 2 Description SCL clock frequency Min Max Standard mode (Sm) 0 100 Fast mode (Fm) 0 400 Fast mode Plus (Fm+) 0 1000 Ultra Fast mode (UFm) 0 5000 High speed mode (Hs-mode) 0 3400 Unit kHz Notes 1, 2 Hs-mode is only supported in slave mode. See General switching specifications. 4.9.3 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC timing This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single Data Rate) timing, eMMC4.4/4.41/4.5 (Dual Date Rate) timing and SDR104/50(SD3.0) timing. 4.9.3.1 SD/eMMC4.3 (single data rate) AC timing Figure 38 depicts the timing of SD/eMMC4.3, and Table 58 lists the SD/eMMC4.3 timing characteristics. SD4 SD2 SD1 SD5 SDx_CLK SD3 SD6 Output from uSDHC to card SDx_DATA[7:0] SD7 SD8 Input from card to uSDHC SDx_DATA[7:0] Figure 38. SD/eMMC4.3 timing i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 64 NXP Semiconductors Electrical characteristics Table 58. SD/eMMC4.3 interface timing specification ID Parameter Symbols Min Max Unit Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2 0 25/50 MHz Clock Frequency (MMC Full Speed/High Speed) fPP3 0 20/52 MHz Clock Frequency (Identification Mode) fOD 100 400 kHz SD2 Clock Low Time tWL 7 — ns SD3 Clock High Time tWH 7 — ns SD4 Clock Rise Time tTLH — 3 ns SD5 Clock Fall Time tTHL — 3 ns 3.6 ns Card Input Clock SD1 uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD6 uSDHC Output Delay tOD -6.6 uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD7 uSDHC Input Setup Time tISU 2.5 — ns SD8 uSDHC Input Hold Time4 tIH 1.5 — ns 1 In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz. 3 In normal (full) speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In high-speed mode, clock frequency can be any value between 0–52 MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns. 2 4.9.3.2 eMMC4.4/4.41 (dual data rate) AC timing Figure 39 depicts the timing of eMMC4.4/4.41. Table 59 lists the eMMC4.4/4.41 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD). i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 65 Electrical characteristics SD1 SDx_CLK SD2 SD2 Output from eSDHCv3 to card SDx_DATA[7:0] ...... SD3 SD4 Input from card to eSDHCv3 SDx_DATA[7:0] ...... Figure 39. eMMC4.4/4.41 timing Table 59. eMMC4.4/4.41 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency (eMMC4.4/4.41 DDR) fPP 0 52 MHz SD1 Clock Frequency (SD3.0 DDR) fPP 0 50 MHz uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD2 uSDHC Output Delay tOD 2.5 7.1 ns uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD3 uSDHC Input Setup Time tISU 1.7 — ns SD4 uSDHC Input Hold Time tIH 1.5 — ns i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 66 NXP Semiconductors Electrical characteristics 4.9.3.3 SDR50/SDR104 AC timing Figure 40 depicts the timing of SDR50/SDR104, and Table 60 lists the SDR50/SDR104 timing characteristics. 6' 6' 6' 6&. 6'6' ELWRXWSXWIURPX6'+&WRFDUG 6' 6' ELWLQSXWIURPFDUGWRX6'+& 6' Figure 40. SDR50/SDR104 timing Table 60. SDR50/SDR104 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 5.0 — ns SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD4 uSDHC Output Delay tOD –3 1 ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) SD5 uSDHC Output Delay tOD –1.6 1 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD6 uSDHC Input Setup Time tISU 2.5 — ns SD7 uSDHC Input Hold Time tIH 1.5 — ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1 SD8 1Data Card Output Data Window tODW 0.5 x tCLK — ns window in SDR104 mode is variable. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 67 Electrical characteristics 4.9.3.4 HS200 mode timing Figure 41 depicts the timing of HS200 mode, and Table 61 lists the HS200 timing characteristics. 6' 6' 6' 6&. 6'6' ELWRXWSXWIURPX6'+&WRH00& ELWLQSXWIURPH00&WRX6'+& 6' Figure 41. HS200 mode timing Table 61. HS200 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 5.0 — ns SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK) uSDHC Output Delay SD5 tOD –1.6 0.74 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1 Card Output Data Window SD8 1HS200 4.9.3.5 tODW 0.5 x tCLK — ns is for 8 bits while SDR104 is for 4 bits. Bus operation condition for 3.3 V and 1.8 V signaling Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1 supply are identical to those shown in Table 21, "Single voltage GPIO DC parameters," on page 30. 4.9.4 Ethernet controller (ENET) AC electrical specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 68 NXP Semiconductors Electrical characteristics 4.9.4.1 ENET MII mode timing This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings. 4.9.4.1.1 MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK) The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency. Figure 42 shows MII receive signal timings. Table 62 describes the timing parameters (M1–M4) shown in the figure. M3 ENET_RX_CLK (input) M4 ENET_RX_DATA3,2,1,0 (inputs) ENET_RX_EN ENET_RX_ER M1 M2 Figure 42. MII receive signal timing diagram Table 62. MII receive signal timing Characteristic1 ID Min. Max. Unit M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup 5 — ns M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold 5 — ns M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period 1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode. 4.9.4.1.2 MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK) The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 69 Electrical characteristics Figure 43 shows MII transmit signal timings. Table 63 describes the timing parameters (M5–M8) shown in the figure. M7 ENET_TX_CLK (input) M5 M8 ENET_TX_DATA3,2,1,0 (outputs) ENET_TX_EN ENET_TX_ER M6 Figure 43. MII transmit signal timing diagram Table 63. MII transmit signal timing Characteristic1 ID Min. Max. Unit M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER invalid 5 — ns M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER valid — 20 ns M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period 1 ENET_TX_EN, 4.9.4.1.3 ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode. MII asynchronous inputs signal timing (ENET_CRS and ENET_COL) Figure 44 shows MII asynchronous input timings. Table 64 describes the timing parameter (M9) shown in the figure. ENET_CRS, ENET_COL M9 Figure 44. MII asynchronous inputs timing diagram Table 64. MII asynchronous inputs signal timing ID 1 M9 1 Characteristic ENET_CRS to ENET_COL minimum pulse width Min. Max. Unit 1.5 — ENET_TX_CLK period ENET_COL has the same timing in 10-Mbit 7-wire interface mode. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 70 NXP Semiconductors Electrical characteristics 4.9.4.1.4 MII serial management channel timing (ENET_MDIO and ENET_MDC) The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz. Figure 45 shows MII asynchronous input timings. Table 65 describes the timing parameters (M10–M15) shown in the figure. M14 M15 ENET_MDC (output) M10 ENET_MDIO (output) M11 ENET_MDIO (input) M12 M13 Figure 45. MII serial management channel timing diagram Table 65. MII serial management channel timing ID Characteristic Min. Max. Unit M10 ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay) 0 — ns M11 ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay) — 5 ns M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 — ns M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 — ns M14 ENET_MDC pulse width high 40% 60% ENET_MDC period M15 ENET_MDC pulse width low 40% 60% ENET_MDC period 4.9.4.2 RMII mode timing In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 71 Electrical characteristics Figure 46 shows RMII mode timings. Table 66 describes the timing parameters (M16–M21) shown in the figure. M16 M17 ENET_CLK (input) M18 ENET_TX_DATA (output) ENET_TX_EN M19 ENET_RX_EN (input) ENET_RX_DATA[1:0] ENET_RX_ER M20 M21 Figure 46. RMII mode signal timing diagram Table 66. RMII signal timing ID Characteristic Min. Max. Unit M16 ENET_CLK pulse width high 35% 65% ENET_CLK period M17 ENET_CLK pulse width low 35% 65% ENET_CLK period M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 — ns M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid — 13 ns M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup 2 — ns M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 — ns 4.9.5 Flexible Controller Area Network (FLEXCAN) AC electrical specifications Please refer to Section 4.3.2.1, “General purpose I/O AC parameters. 4.9.6 LPUART electrical specifications Please refer to Section 4.3.2.1, “General purpose I/O AC parameters. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 72 NXP Semiconductors Electrical characteristics 4.9.7 USB PHY parameters This section describes the USB-OTG PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG with the following amendments. • USB ENGINEERING CHANGE NOTICE — Title: 5V Short Circuit Withstand Requirement Change — Applies to: Universal Serial Bus Specification, Revision 2.0 • Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 • USB ENGINEERING CHANGE NOTICE — Title: Pull-up/Pull-down resistors — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE — Title: Suspend Current Limit Changes — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE — Title: USB 2.0 Phase Locked SOFs — Applies to: Universal Serial Bus Specification, Revision 2.0 • On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification — Revision 2.0 plus errata and ecn June 4, 2010 • Battery Charging Specification (available from USB-IF) — Revision 1.2, December 7, 2010 — Portable device only 4.10 Timers This section provide information on timers. 4.10.1 Pulse Width Modulator (PWM) characteristics This section describes the electrical information of the PWM. Table 67. PWM timing parameters Parameter Symbo Min Typ Max Unit PWM Clock Frequency — 80 — 120 MHz Power-up Time tpu — 25 — s 4.10.2 Quad timer timing Table 68 listed the timing parameters. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 73 Electrical characteristics Table 68. Quad timer timing Symbo Min1 Max Unit TIN 2T + 6 — ns Timer input high/low period TINHL 1T + 3 — ns Timer output period TOUT 33 — ns TOUTHL 16.7 — ns Characteristic Timer input period Timer output high/low period 1 See Figure T = clock cycle. For 60 MHz operation, T = 16.7 ns. 4IMER)NPUTS 4 ). 4 ).(, 4 ).(, 4 /54 4 /54(, 4 /54(, 4IMER/UTPUTS Figure 47. Quad timer timing i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 74 NXP Semiconductors Boot mode configuration 5 Boot mode configuration This section provides information on boot mode configuration pins allocation and boot devices interfaces allocation. 5.1 Boot mode configuration pins Table 69 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX RT1050 Fuse Map document and the System Boot chapter in i.MX RT1050 Reference Manual (IMXRT1050_RM). Table 69. Fuses and associated pins used for boot Pad 5.2 Default setting on reset eFuse name GPIO_AD_B0_04 100 K pull-down BOOT_MODE0 GPIO_AD_B0_05 100 K pull-down BOOT_MODE1 GPIO_B0_04 100 K pull-down BT_CFG[0] GPIO_B0_05 100 K pull-down BT_CFG[1] GPIO_B0_06 100 K pull-down BT_CFG[2] GPIO_B0_07 100 K pull-down BT_CFG[3] GPIO_B0_08 100 K pull-down BT_CFG[4] GPIO_B0_09 100 K pull-down BT_CFG[5] GPIO_B0_10 100 K pull-down BT_CFG[6] GPIO_B0_11 100 K pull-down BT_CFG[7] GPIO_B0_12 100 K pull-down BT_CFG[8] GPIO_B0_13 100 K pull-down BT_CFG[9] GPIO_B0_14 100 K pull-down BT_CFG[10] GPIO_B0_15 100 K pull-down BT_CFG[11] Details Boot Options, Pin value overrides fuse settings for BT_FUSE_SEL = ‘0’. Signal Configuration as Fuse Override Input at Power Up. These are special I/O lines that control the boot up configuration during product development. In production, the boot configuration can be controlled by fuses. Boot device interface allocation The following tables list the interfaces that can be used by the boot process in accordance with the specific boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 70. Boot trough NAND PAD Name IO Function ALT Comments GPIO_EMC_00 semc.DATA[0] ALT 0 — GPIO_EMC_01 semc.DATA[1] ALT 0 — GPIO_EMC_02 semc.DATA[2] ALT 0 — i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 75 Boot mode configuration Table 70. Boot trough NAND GPIO_EMC_03 semc.DATA[3] ALT 0 — GPIO_EMC_04 semc.DATA[4] ALT 0 — GPIO_EMC_05 semc.DATA[5] ALT 0 — GPIO_EMC_06 semc.DATA[6] ALT 0 — GPIO_EMC_07 semc.DATA[7] ALT 0 — GPIO_EMC_30 semc.DATA[8] ALT 0 — GPIO_EMC_31 semc.DATA[9] ALT 0 — GPIO_EMC_32 semc.DATA[10] ALT 0 — GPIO_EMC_33 semc.DATA[11] ALT 0 — GPIO_EMC_34 semc.DATA[12] ALT 0 — GPIO_EMC_35 semc.DATA[13] ALT 0 — GPIO_EMC_36 semc.DATA[14] ALT 0 — GPIO_EMC_37 semc.DATA[15] ALT 0 — GPIO_EMC_18 semc.ADDR[9] ALT 0 — GPIO_EMC_19 semc.ADDR[11] ALT 0 — GPIO_EMC_20 semc.ADDR[12] ALT 0 — GPIO_EMC_22 semc.BA1 ALT 0 — GPIO_EMC_41 semc.CSX[0] ALT 0 — Table 71. Boot trough NOR PAD Name IO Function ALT Comments GPIO_EMC_00 semc.DATA[0] ALT 0 — GPIO_EMC_01 semc.DATA[1] ALT 0 — GPIO_EMC_02 semc.DATA[2] ALT 0 — GPIO_EMC_03 semc.DATA[3] ALT 0 — GPIO_EMC_04 semc.DATA[4] ALT 0 — GPIO_EMC_05 semc.DATA[5] ALT 0 — GPIO_EMC_06 semc.DATA[6] ALT 0 — GPIO_EMC_07 semc.DATA[7] ALT 0 — GPIO_EMC_30 semc.DATA[8] ALT 0 — GPIO_EMC_31 semc.DATA[9] ALT 0 — GPIO_EMC_32 semc.DATA[10] ALT 0 — GPIO_EMC_33 semc.DATA[11] ALT 0 — i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 76 NXP Semiconductors Boot mode configuration Table 71. Boot trough NOR GPIO_EMC_34 semc.DATA[12] ALT 0 — GPIO_EMC_35 semc.DATA[13] ALT 0 — GPIO_EMC_36 semc.DATA[14] ALT 0 — GPIO_EMC_37 semc.DATA[15] ALT 0 — GPIO_EMC_09 semc.ADDR[0] ALT 0 — GPIO_EMC_10 semc.ADDR[1] ALT 0 — GPIO_EMC_11 semc.ADDR[2] ALT 0 — GPIO_EMC_12 semc.ADDR[3] ALT 0 — GPIO_EMC_13 semc.ADDR[4] ALT 0 — GPIO_EMC_14 semc.ADDR[5] ALT 0 — GPIO_EMC_15 semc.ADDR[6] ALT 0 — GPIO_EMC_16 semc.ADDR[7] ALT 0 — GPIO_EMC_19 semc.ADDR[11] ALT 0 — GPIO_EMC_20 semc.ADDR[12] ALT 0 — GPIO_EMC_21 semc.BA0 ALT 0 — GPIO_EMC_22 semc.BA1 ALT 0 — GPIO_EMC_41 semc.CSX[0] ALT 0 — Table 72. Boot through FlexSPI PAD Name IO Function Mux Mode Comments GPIO_SD_B1_00 flexspi.B_DATA[3] ALT 1 — GPIO_SD_B1_01 flexspi.B_DATA[2] ALT 1 — GPIO_SD_B1_02 flexspi.B_DATA[1] ALT 1 — GPIO_SD_B1_03 flexspi.B_DATA[0] ALT 1 — GPIO_SD_B1_04 flexspi.B_SCLK ALT 1 — GPIO_SD_B0_05 flexspi.B_DQS ALT 4 — GPIO_SD_B0_04 flexspi.B_SS0_B ALT 4 — GPIO_SD_B0_01 flexspi.B_SS1_B ALT 6 — GPIO_SD_B1_05 flexspi.A_DQS ALT 1 — GPIO_SD_B1_06 flexspi.A_SS0_B ALT 1 — GPIO_SD_B0_00 flexspi.A_SS1_B ALT 6 — GPIO_SD_B1_07 flexspi.A_SCLK ALT 1 — GPIO_SD_B1_08 flexspi.A_DATA[0] ALT 1 — GPIO_SD_B1_09 flexspi.A_DATA[1] ALT 1 — i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 77 Boot mode configuration Table 72. Boot through FlexSPI (continued) PAD Name IO Function Mux Mode Comments GPIO_SD_B1_10 flexspi.A_DATA[2] ALT 1 — GPIO_SD_B1_11 flexspi.A_DATA[3] ALT 1 — Table 73. Boot through SD1 PAD Name IO Function Mux Mode Comments GPIO_SD_B0_00 usdhc1.CMD ALT 0 — GPIO_SD_B0_01 usdhc1.CLK ALT 0 — GPIO_SD_B0_02 usdhc1.DATA0 ALT 0 — GPIO_SD_B0_03 usdhc1.DATA1 ALT 0 — GPIO_SD_B0_04 usdhc1.DATA2 ALT 0 — GPIO_SD_B0_05 usdhc1.DATA3 ALT 0 — Table 74. Boot through SD2 PAD Name IO Function Mux Mode Comments GPIO_SD_B1_00 usdhc2.DATA3 ALT 0 — GPIO_SD_B1_01 usdhc2.DATA2 ALT 0 — GPIO_SD_B1_02 usdhc2.DATA1 ALT 0 — GPIO_SD_B1_03 usdhc2.DATA0 ALT 0 — GPIO_SD_B1_04 usdhc2.CLK ALT 0 — GPIO_SD_B1_05 usdhc2.CMD ALT 0 — GPIO_SD_B1_06 usdhc2.RESET_B ALT 0 — GPIO_SD_B1_08 usdhc2.DATA4 ALT 0 — GPIO_SD_B1_09 usdhc2.DATA5 ALT 0 — GPIO_SD_B1_10 usdhc2.DATA6 ALT 0 — GPIO_SD_B1_11 usdhc2.DATA7 ALT 0 — Table 75. Boot through SPI-1 PAD Name IO Function Mux Mode Comments GPIO_SD_B0_00 lpspi1.SCK ALT 4 — GPIO_SD_B0_02 lpspi1.SDO ALT 4 — GPIO_SD_B0_03 lpspi1.SDI ALT 4 — GPIO_SD_B0_01 lpspi1.PCS0 ALT 4 — i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 78 NXP Semiconductors Boot mode configuration Table 76. Boot through SPI-2 PAD Name IO Function Mux Mode Comments GPIO_SD_B1_07 lpspi2.SCK ALT 4 — GPIO_SD_B1_08 lpspi2.SDO ALT 4 — GPIO_SD_B1_09 lpspi2.SDI ALT 4 — GPIO_SD_B1_06 lpspi2.PCS0 ALT 4 — Table 77. Boot through SPI-3 PAD Name IO Function Mux Mode Comments GPIO_AD_B0_00 lpspi3.SCK ALT 7 — GPIO_AD_B0_01 lpspi3.SDO ALT 7 — GPIO_AD_B0_02 lpspi3.SDI ALT 7 — GPIO_SD_B0_03 lpspi3.PCS0 ALT 7 — Table 78. Boot through SPI-4 PAD Name IO Function Mux Mode Comments GPIO_B0_03 lpspi4.SCK ALT 3 — GPIO_B0_02 lpspi4.SDO ALT 3 — GPIO_B0_01 lpspi4.SDI ALT 3 — GPIO_B0_00 lpspi4.PCS0 ALT 3 — Table 79. Boot through UART1 PAD Name IO Function Mux Mode Comments GPIO_AD_B0_12 lpuart1.TX ALT 2 — GPIO_AD_B0_13 lpuart1.RX ALT 2 — GPIO_AD_B0_14 lpuart1.CTS_B ALT 2 — GPIO_AD_B0_15 lpuart1.RTS_B ALT 2 — Table 80. Boot through UART2 PAD Name IO Function Mux Mode Comments GPIO_AD_B1_00 lpuart2.CTS_B ALT 2 — GPIO_AD_B1_01 lpuart2.RTS_B ALT 2 — GPIO_AD_B1_02 lpuart2.TX ALT 2 — GPIO_AD_B1_03 lpuart2.RX ALT 2 — i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 79 Package information and contact assignments 6 Package information and contact assignments This section includes the contact assignment information and mechanical package drawing. 6.1 6.1.1 10 x 10 mm package information 10 x 10 mm, 0.65 mm pitch, ball matrix Figure 48 shows the top, bottom, and side views of the 10 x 10 mm MAPBGA package. i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 80 NXP Semiconductors Package information and contact assignments Figure 48. 10 x 10 mm BGA, case x package top, bottom, and side Views i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 81 Package information and contact assignments 6.1.2 10 x 10 mm supplies contact assignments and functional contact assignments Table 81 shows the device connection list for ground, sense, and reference contact signals. Table 81. 10 x 10 mm supplies contact assignment Supply Rail Name Ball(s) Position(s) Remark DCDC_IN L1, L2 — DCDC_IN_Q K4 — DCDC_GND N1, N2 — DCDC_LP M1, M2 — DCDC_PSWITCH K3 — DCDC_SENSE J5 — GPANAIO N10 — NGND_KEL0 K9 — NVCC_EMC E6, F5 — NVCC_GPIO E9, F10, J10 — NVCC_PLL P10 — NVCC_SD0 J6 — NVCC_SD1 K5 — VDDA_ADC_3P3 N14 — VDD_HIGH_CAP P8 — VDD_HIGH_IN P12 — VDD_SNVS_CAP M10 — VDD_SNVS_IN M9 — VDD_SOC_IN F6, F7, F8, F9, G6, G9, H6, H9, J9 — VDD_USB_CAP K8 — VSS A1, A14, B5, B10, E2, E13, G7, G8, H7, H8, J7, J8, K2, K13, L9, N5, N8, P1, P14 — Table 82 shows an alpha-sorted list of functional contact assignments for the 10 x 10 mm package. Table 82. 10 x 10 mm functional contact assignments Default Setting 10 x 10 Ball Power Group Ball Type CCM_CLK1_N P13 — CCM_CLK1_P N13 — Ball Name Default Mode Default Function Input/ Output Value — — CCM_CLK1_N — — — — CCM_CLK1_P — — i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 82 NXP Semiconductors Package information and contact assignments Table 82. 10 x 10 mm functional contact assignments (continued) GPIO_AD_B0_00 M14 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[0] Input Keeper GPIO_AD_B0_01 H10 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[1] Input Keeper GPIO_AD_B0_02 M11 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[2] Input Keeper GPIO_AD_B0_03 G11 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[3] Input Keeper GPIO_AD_B0_04 F11 NVCC_GPIO Digital GPIO ALT0 SRC.BOOT.MODE[0] Input 100 K PD GPIO_AD_B0_05 G14 NVCC_GPIO Digital GPIO ALT0 SRC.BOOT.MODE[1] Input 100 K PD GPIO_AD_B0_06 E14 NVCC_GPIO Digital GPIO ALT0 JTAG.MUX.TMS Input 47 K PU GPIO_AD_B0_07 F12 NVCC_GPIO Digital GPIO ALT0 JTAG.MUX.TCK Input 47 K PU GPIO_AD_B0_08 F13 NVCC_GPIO Digital GPIO ALT0 JTAG.MUX.MOD Input 100 K PU GPIO_AD_B0_09 F14 NVCC_GPIO Digital GPIO ALT0 JTAG.MUX.TDI Input 47 K PU GPIO_AD_B0_10 G13 NVCC_GPIO Digital GPIO ALT0 JTAG.MUX.TDO Input Keeper GPIO_AD_B0_11 G10 NVCC_GPIO Digital GPIO ALT0 JTAG.MUX.TRSTB Input 47 K PU GPIO_AD_B0_12 K14 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[12] Input Keeper GPIO_AD_B0_13 L14 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[13] Input Keeper GPIO_AD_B0_14 H14 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[14] Input Keeper GPIO_AD_B0_15 L10 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[15] Input Keeper GPIO_AD_B1_00 J11 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[16] Input Keeper GPIO_AD_B1_01 K11 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[17] Input Keeper GPIO_AD_B1_02 L11 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[18] Input Keeper GPIO_AD_B1_03 M12 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[19] Input Keeper GPIO_AD_B1_04 L12 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[20] Input Keeper i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 83 Package information and contact assignments Table 82. 10 x 10 mm functional contact assignments (continued) GPIO_AD_B1_05 K12 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[21] Input Keeper GPIO_AD_B1_06 J12 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[22] Input Keeper GPIO_AD_B1_07 K10 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[23] Input Keeper GPIO_AD_B1_08 H13 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[24] Input Keeper GPIO_AD_B1_09 M13 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[25] Input Keeper GPIO_AD_B1_10 L13 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[26] Input Keeper GPIO_AD_B1_11 J13 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[27] Input Keeper GPIO_AD_B1_12 H12 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[28] Input Keeper GPIO_AD_B1_13 H11 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[29] Input Keeper GPIO_AD_B1_14 G12 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[30] Input Keeper GPIO_AD_B1_15 J14 NVCC_GPIO Digital GPIO ALT5 GPIO1.IO[31] Input Keeper GPIO_B0_00 D7 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[0] Input Keeper GPIO_B0_01 E7 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[1] Input Keeper GPIO_B0_02 E8 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[2] Input Keeper GPIO_B0_03 D8 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[3] Input Keeper GPIO_B0_04 C8 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[4] Input Keeper GPIO_B0_05 B8 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[5] Input Keeper GPIO_B0_06 A8 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[6] Input Keeper GPIO_B0_07 A9 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[7] Input Keeper GPIO_B0_08 B9 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[8] Input Keeper GPIO_B0_09 C9 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[9] Input Keeper i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 84 NXP Semiconductors Package information and contact assignments Table 82. 10 x 10 mm functional contact assignments (continued) GPIO_B0_10 D9 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[10] Input Keeper GPIO_B0_11 A10 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[11] Input Keeper GPIO_B0_12 C10 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[12] Input Keeper GPIO_B0_13 D10 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[13] Input Keeper GPIO_B0_14 E10 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[14] Input Keeper GPIO_B0_15 E11 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[15] Input Keeper GPIO_B1_00 A11 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[16] Input Keeper GPIO_B1_01 B11 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[17] Input Keeper GPIO_B1_02 C11 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[18] Input Keeper GPIO_B1_03 D11 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[19] Input Keeper GPIO_B1_04 E12 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[20] Input Keeper GPIO_B1_05 D12 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[21] Input Keeper GPIO_B1_06 C12 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[22] Input Keeper GPIO_B1_07 B12 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[23] Input Keeper GPIO_B1_08 A12 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[24] Input Keeper GPIO_B1_09 A13 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[25] Input Keeper GPIO_B1_10 B13 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[26] Input Keeper GPIO_B1_11 C13 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[27] Input Keeper GPIO_B1_12 D13 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[28] Input Keeper GPIO_B1_13 D14 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[29] Input Keeper GPIO_B1_14 C14 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[30] Input Keeper i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 85 Package information and contact assignments Table 82. 10 x 10 mm functional contact assignments (continued) GPIO_B1_15 B14 NVCC_GPIO Digital GPIO ALT5 GPIO2.IO[31] Input Keeper GPIO_EMC_00 E3 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[0] Input Keeper GPIO_EMC_01 F3 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[1] Input Keeper GPIO_EMC_02 F4 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[2] Input Keeper GPIO_EMC_03 G4 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[3] Input Keeper GPIO_EMC_04 F2 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[4] Input Keeper GPIO_EMC_05 G5 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[5] Input Keeper GPIO_EMC_06 H5 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[6] Input Keeper GPIO_EMC_07 H4 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[7] Input Keeper GPIO_EMC_08 H3 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[8] Input Keeper GPIO_EMC_09 C2 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[9] Input Keeper GPIO_EMC_10 G1 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[10] Input Keeper GPIO_EMC_11 G3 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[11] Input Keeper GPIO_EMC_12 H1 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[12] Input Keeper GPIO_EMC_13 A6 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[13] Input Keeper GPIO_EMC_14 B6 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[14] Input Keeper GPIO_EMC_15 B1 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[15] Input Keeper GPIO_EMC_16 A5 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[16] Input Keeper GPIO_EMC_17 A4 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[17] Input Keeper GPIO_EMC_18 B2 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[18] Input Keeper GPIO_EMC_19 B4 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[19] Input Keeper i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 86 NXP Semiconductors Package information and contact assignments Table 82. 10 x 10 mm functional contact assignments (continued) GPIO_EMC_20 A3 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[20] Input Keeper GPIO_EMC_21 C1 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[21] Input Keeper GPIO_EMC_22 F1 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[22] Input Keeper GPIO_EMC_23 G2 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[23] Input Keeper GPIO_EMC_24 D3 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[24] Input Keeper GPIO_EMC_25 D2 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[25] Input Keeper GPIO_EMC_26 B3 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[26] Input Keeper GPIO_EMC_27 A2 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[27] Input 100 K PD GPIO_EMC_28 D1 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[28] Input Keeper GPIO_EMC_29 E1 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[29] Input Keeper GPIO_EMC_30 C6 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[30] Input Keeper GPIO_EMC_31 C5 NVCC_EMC Digital GPIO ALT5 GPIO4.IO[31] Input Keeper GPIO_EMC_32 D5 NVCC_EMC Digital GPIO ALT5 GPIO3.IO[18] Input Keeper GPIO_EMC_33 C4 NVCC_EMC Digital GPIO ALT5 GPIO3.IO[19] Input Keeper GPIO_EMC_34 D4 NVCC_EMC Digital GPIO ALT5 GPIO3.IO[20] Input Keeper GPIO_EMC_35 E5 NVCC_EMC Digital GPIO ALT5 GPIO3.IO[21] Input Keeper GPIO_EMC_36 C3 NVCC_EMC Digital GPIO ALT5 GPIO3.IO[22] Input Keeper GPIO_EMC_37 E4 NVCC_EMC Digital GPIO ALT5 GPIO3.IO[23] Input Keeper GPIO_EMC_38 D6 NVCC_EMC Digital GPIO ALT5 GPIO3.IO[24] Input Keeper GPIO_EMC_39 B7 NVCC_EMC Digital GPIO ALT5 GPIO3.IO[25] Input Keeper GPIO_EMC_40 A7 NVCC_EMC Digital GPIO ALT5 GPIO3.IO[26] Input Keeper i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 87 Package information and contact assignments Table 82. 10 x 10 mm functional contact assignments (continued) GPIO_EMC_41 C7 NVCC_EMC Digital GPIO ALT5 GPIO3.IO[27] Input Keeper GPIO_SD_B0_00 J4 NVCC_SD0 Digital GPIO ALT5 GPIO3.IO[12] Input Keeper GPIO_SD_B0_01 J3 NVCC_SD0 Digital GPIO ALT5 GPIO3.IO[13] Input Keeper GPIO_SD_B0_02 J1 NVCC_SD0 Digital GPIO ALT5 GPIO3.IO[14] Input Keeper GPIO_SD_B0_03 K1 NVCC_SD0 Digital GPIO ALT5 GPIO3.IO[15] Input Keeper GPIO_SD_B0_04 H2 NVCC_SD0 Digital GPIO ALT5 GPIO3.IO[16] Input Keeper GPIO_SD_B0_05 J2 NVCC_SD0 Digital GPIO ALT5 GPIO3.IO[17] Input Keeper GPIO_SD_B1_00 L5 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[0] Input Keeper GPIO_SD_B1_01 M5 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[1] Input Keeper GPIO_SD_B1_02 M3 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[2] Input Keeper GPIO_SD_B1_03 M4 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[3] Input Keeper GPIO_SD_B1_04 P2 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[4] Input Keeper GPIO_SD_B1_05 N3 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[5] Input Keeper GPIO_SD_B1_06 L3 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[6] Input Keeper GPIO_SD_B1_07 L4 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[7] Input Keeper GPIO_SD_B1_08 P3 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[8] Input Keeper GPIO_SD_B1_09 N4 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[9] Input Keeper GPIO_SD_B1_10 P4 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[01] Input Keeper GPIO_SD_B1_11 P5 NVCC_SD1 Digital GPIO ALT5 GPIO3.IO[11] Input Keeper ONOFF M6 VDD_SNVS_IN Digital GPIO ALT0 ONOFF Input 100 K PU PMIC_ON_REQ K7 VDD_SNVS_IN Digital GPIO ALT0 SNVS_LP.PMIC_ON_RE Q Output 100 K PU i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 88 NXP Semiconductors Package information and contact assignments Table 82. 10 x 10 mm functional contact assignments (continued) PMIC_STBY_REQ L7 VDD_SNVS_IN Digital GPIO ALT0 CCM.PMIC_VSTBY_RE Q Output 100 K PU (PKE disabled) POR_B M7 VDD_SNVS_IN Digital GPIO ALT0 SRC.POR_B Input 100 K PU RTC_XTALI N9 — — — — — — RTC_XTALO P9 — — — — — — TEST_MODE K6 VDD_SNVS_IN Digital GPIO ALT0 TCU.TEST_MODE Input 100 K PU USB_OTG1_CHD_B N12 — — — — — — USB_OTG1_DN M8 — — — — — — USB_OTG1_DP L8 — — — — — — USB_OTG1_VBUS N6 — — — — — — USB_OTG2_DN N7 — — — — — — USB_OTG2_DP P7 — — — — — — USB_OTG2_VBUS P6 — — — — — — XTALI P11 — — — — — — XTALO N11 — — — — — — L6 VDD_SNVS_IN Digital GPIO ALT5 GPIO5.IO[0] Input 100 K PU WAKEUP i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors 89 90 GPIO_B0_14 NVCC_GPIO GPIO_AD_B0_11 VSS A VSS GPIO_EMC_16 D GPIO_B1_12 GPIO_B1_05 GPIO_B1_03 GPIO_B0_13 GPIO_B0_10 GPIO_B0_03 GPIO_B0_00 C GPIO_B1_14 GPIO_B1_11 GPIO_B1_06 GPIO_B1_02 GPIO_B0_12 GPIO_B0_09 GPIO_B0_04 B GPIO_B1_15 GPIO_B1_10 GPIO_B1_07 GPIO_B1_01 VSS GPIO_B0_08 GPIO_B0_05 A VSS GPIO_B1_09 GPIO_B1_08 GPIO_B1_00 GPIO_B0_11 GPIO_B0_07 GPIO_B0_06 GPIO_EMC_41 GPIO_EMC_39 GPIO_EMC_40 GPIO_EMC_38 GPIO_EMC_30 GPIO_EMC_14 GPIO_EMC_13 GPIO_EMC_32 GPIO_EMC_31 GPIO_EMC_34 GPIO_EMC_33 GPIO_EMC_19 GPIO_EMC_17 GPIO_EMC_24 GPIO_EMC_36 GPIO_EMC_26 GPIO_EMC_20 F E B GPIO_EMC_25 GPIO_EMC_09 GPIO_EMC_18 GPIO_EMC_27 GPIO_B1_13 G C GPIO_EMC_28 GPIO_EMC_21 GPIO_EMC_15 D GPIO_AD_B0_05 GPIO_AD_B0_09 GPIO_AD_B0_06 VSS NVCC_GPIO VDD_SOC_IN VDD_SOC_IN GPIO_AD_B0_10 GPIO_AD_B0_08 GPIO_B0_02 VDD_SOC_IN VSS GPIO_B1_04 GPIO_B0_01 VDD_SOC_IN VSS GPIO_AD_B1_14 GPIO_AD_B0_07 NVCC_EMC VDD_SOC_IN VDD_SOC_IN GPIO_B0_15 GPIO_EMC_35 NVCC_EMC GPIO_EMC_05 GPIO_AD_B0_03 GPIO_AD_B0_04 GPIO_EMC_37 GPIO_EMC_02 GPIO_EMC_03 VSS GPIO_EMC_00 GPIO_EMC_04 GPIO_EMC_23 GPIO_EMC_29 GPIO_EMC_01 GPIO_EMC_22 GPIO_EMC_10 E 14 13 12 11 10 9 8 7 6 5 4 3 2 1 6.1.3 GPIO_EMC_11 F G Package information and contact assignments 10 x 10 mm, 0.65 mm pitch, ball map Table 83 shows the 10 x 10 mm, 0.65 mm pitch ball map for the i.MX RT1050. Table 83. 10 x 10 mm, 0.65 mm pitch, ball map i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 NXP Semiconductors NXP Semiconductors 14 13 12 11 10 9 8 7 6 5 4 3 2 1 USB_OTG1_DN VDD_SNVS_IN USB_OTG1_VBUS USB_OTG2_DN VSS RTC_XTALI GPANAIO XTALO USB_OTG2_VBUS USB_OTG2_DP VDD_HIGH_CAP RTC_XTALO NVCC_PLL XTALI VSS USB_OTG1_DP PMIC_STBY_REQ WAKEUP GPIO_SD_B1_00 GPIO_SD_B1_07 GPIO_AD_B0_00 M VDDA_ADC_3P3 N VSS P L GPIO_AD_B0_13 GPIO_AD_B1_10 GPIO_AD_B1_04 USB_OTG1_CHD_B GPIO_AD_B1_03 GPIO_AD_B1_09 GPIO_AD_B1_02 GPIO_AD_B0_02 CCM_CLK1_P J VSS NVCC_GPIO VDD_SOC_IN VSS VSS NVCC_SD0 DCDC_SENSE GPIO_SD_B0_00 GPIO_AD_B0_01 VDD_SOC_IN VSS VSS VDD_SOC_IN GPIO_EMC_06 GPIO_EMC_07 GPIO_EMC_08 GPIO_AD_B1_11 GPIO_AD_B1_08 K J H GPIO_AD_B0_12 GPIO_AD_B1_15 GPIO_AD_B0_14 VSS GPIO_AD_B1_05 GPIO_AD_B1_06 GPIO_AD_B1_12 GPIO_AD_B1_01 GPIO_AD_B1_00 GPIO_AD_B1_13 GPIO_AD_B1_07 NGND_KEL0 VDD_USB_CAP PMIC_ON_REQ TEST_MODE NVCC_SD1 DCDC__IN_Q GPIO_EMC_12 H GPIO_SD_B0_05 GPIO_SD_B0_04 GPIO_SD_B0_03 GPIO_SD_B0_02 K GPIO_SD_B1_06 DCDC_PSWITCH GPIO_SD_B0_01 DCDC_IN DCDC_IN L VDD_SNVS_CAP GPIO_AD_B0_15 ONOFF GPIO_SD_B1_01 CCM_CLK1_N VDD_HIGH_IN POR_B VSS GPIO_SD_B1_11 GPIO_SD_B1_03 GPIO_SD_B1_09 GPIO_SD_B1_02 DCDC_LP GPIO_SD_B1_10 DCDC_GND GPIO_SD_B1_04 DCDC_LP GPIO_SD_B1_05 DCDC_GND VSS M GPIO_SD_B1_08 N P Package information and contact assignments Table 83. 10 x 10 mm, 0.65 mm pitch, ball map (continued) i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 91 Revision history 7 Revision history Table 84 provides a revision history for this data sheet. Table 84. i.MX RT1050 Data Sheet document revision history Rev. Number Rev. 1 Date 03/2018 Substantive Change(s) • • • • • • • • • • • • • Rev. 0 10/2017 Updated the frequency and LCD display resolution in the Section 1.1, “Features Updated the Table 1 Ordering information Updated the Figure 1, "Part number nomenclature—i.MX RT1050" Added 24-bit Parallel CSI in the Figure 2, "i.MX RT1050 system block diagram" Updated the SJC description and DCDC input voltage in the Table 2 i.MX RT1050 modules list Removed ADC_VREF from the Table 5 Recommended connections for unused analog interfaces Updated the DCDC power supply in the Table 7 Absolute maximum ratings and Table 9 Operating ranges Updated the test conditions DCDC supply voltage in the Table 12 Low power mode current and power consumption Updated the Table 34 SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1) Updated the parameters in the Section 4.5.2, “FlexSPI parameters Updated the Table 51 DCDC electrical specifications Updated the Table 52 12-bit ADC operating conditions Updated the notes of the Table 55 LPSPI Master mode timing and the Table 56 LPSPI Slave mode timing • Initial version i.MX RT1050 Crossover Processors for Industrial Products, Rev. 1, 03/2018 92 NXP Semiconductors How to Reach Us: Information in this document is provided solely to enable system and software Home Page: nxp.com implementers to use NXP products. There are no express or implied copyright licenses Web Support: nxp.com/support information in this document. NXP reserves the right to make changes without further granted hereunder to design or fabricate any integrated circuits based on the notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals” must be validated for each customer application by customer‚ customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, Freescale, the Freescale logo, and the Energy Efficient Solutions logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm and Cortex are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2017-2018 NXP B.V. Document Number: IMXRT1050IEC Rev. 1 03/2018
MIMXRT1052CVL5B 价格&库存

很抱歉,暂时无法提供与“MIMXRT1052CVL5B”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MIMXRT1052CVL5B

    库存:2400

    MIMXRT1052CVL5B

    库存:0

    MIMXRT1052CVL5B
      •  国内价格
      • 1+55.49780
      • 10+49.22610
      • 30+41.83410
      • 100+38.63480

      库存:1499