NXP Semiconductors
Data Sheet: Technical Data
Document Number: IMXRT1160XEC
Rev. 3, 06/2023
MIMXRT1166XVM5A
i.MX RT1160 Crossover
Processors Data Sheet
for Extended Industrial
Products
MIMXRT1165XVM5A
Package Information
Plastic Package
289-pin MAPBGA, 14 x 14 mm, 0.8 mm pitch
Ordering Information
See Table 1 on page 6
1
i.MX RT1160 introduction
The i.MX RT1160 is a new high-end processor of the
i.MX RT family, which features NXP’s advanced
implementation of a high performance Arm
Cortex®-M7 core operating at speeds up to 500 MHz
and a power efficient Cortex®-M4 core up to 240 MHz.
The i.MX RT1160 processor has 1 MB on-chip RAM in
total, including a 768 KB RAM which can be flexibly
configured as TCM (512 KB RAM shared with M7 TCM
and 256 KB RAM shared with M4 TCM) or
general-purpose on-chip RAM. The i.MX RT1160
integrates advanced power management module with
DCDC and LDO regulators that reduce complexity of
external power supply and simplifies power sequencing.
The i.MX RT1160 also provides various memory
interfaces, including SDRAM, RAW NAND FLASH,
NOR FLASH, SD/eMMC, Quad/Octal SPI, Hyper
RAM/Flash, and a wide range of other interfaces for
connecting peripherals, such as WLAN, Bluetooth™,
NXP reserves the right to change the production detail specifications as may be required
to permit improvements in the design of its products.
© 2023 NXP B.V.
1. i.MX RT1160 introduction . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6
1.3. Package marking information . . . . . . . . . . . . . . . . 9
2. Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1. Special signal considerations . . . . . . . . . . . . . . . 20
3.2. Recommended connections for unused analog
interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 24
4.2. System power and clocks . . . . . . . . . . . . . . . . . . 33
4.3. I/O parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4. System modules . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5. External memory interface . . . . . . . . . . . . . . . . . 57
4.6. Display and graphics . . . . . . . . . . . . . . . . . . . . . . 66
4.7. Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.8. Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.9. Communication interfaces . . . . . . . . . . . . . . . . . . 83
4.10. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.
Boot mode configuration . . . . . . . . . . . . . . . . . . 101
5. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . 101
5.1. Boot mode configuration pins . . . . . . . . . . . . . . 101
5.2. Boot device interface allocation . . . . . . . . . . . . . 101
6. Package information and contact assignments . . . . . . 107
6.1. 14 x 14 mm package information . . . . . . . . . . . 107
7. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
i.MX RT1160 introduction
GPS, displays, and camera sensors. The i.MX RT1160 also has rich audio and video features, including
MIPI CSI/DSI, LCD display, graphic accelerator, camera interface, SPDIF, and I2S audio interface.
The i.MX RT1160 is specifically useful for applications such as:
• Industrial Human Machine Interfaces (HMI)
• Motor Control
• Home Appliance
• High-end Audio Appliance
• Low-end Instrument Cluster
• Point-of-Sale (PoS)
1.1
Features
The i.MX RT1160 processors are based on Arm Cortex®-M7 Core™ Platform, which has the following
features:
• The Arm Cortex-M7 Core Platform:
— 32 KB L1 Instruction Cache and 32 KB L1 Data Cache
— Floating Point Unit (FPU) with single-precision and double-precision support of Armv7-M
Architecture FPv5
— Support the Arm®v7-M Thumb instruction set, defined in the Armv7-M architecture
— Integrated Memory Protection Unit (MPU), up to 16 individual protection regions
— Up to 512 KB I-TCM and D-TCM in total
— Frequency of 500 MHz
— ECC support for both cache and TCM
— Frequency of the core, as per Table 11, "Operating ranges," on page 27.
• The Arm Cortex®-M4 Core platform:
— Cortex-M4 processor with single-precision FPU defined by Armv7-M architecture FPv4-SP
— Integrated MPU with 8 individual protection regions
— 16 KB Instruction Cache, 16 KB Data Cache, and 256 KB TCM
— Frequency of 240 MHz
— ECC support for TCM and parity check support for cache
The SoC-level memory system consists of the following additional components:
— Boot ROM (256 KB)
— On-chip RAM (1 MB in total)
– Configurable 512 KB RAM shared with M7 TCM
– 256 KB RAM shared with M4 TCM
– Dedicated 256 KB OCRAM
— Secure always-on RAM (4 KB)
• External memory interfaces:
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
2
NXP Semiconductors
i.MX RT1160 introduction
•
— 8/16/32-bit SDRAM, up to SDRAM-133/SDRAM-166/SDRAM-200
— 8/16-bit SLC NAND FLASH
— SD/eMMC
— SPI NOR/NAND FLASH
— Parallel NOR FLASH with XIP support
— Single/Dual channel Quad SPI FLASH with XIP support
— Hyper RAM/FLASH
— OCT FLASH
— Synchronization mode for all devices
Timers and PWMs:
— Six General Programmable Timer (GPT) modules
– 4-channel generic 32-bit resolution timer for each
– Each supports standard capture and compare operation
— Two Periodical Interrupt Timer (PIT) modules
– Four timers for each module
– Generic 32-bit resolution timer
– Periodical interrupt generation
— Four Quad Timer (QTimer) modules
– 4-channel generic 16-bit resolution timer for each
– Each supports standard capture and compare operation
– Quadrature decoder integrated
— Four FlexPWMs
– Up to 8 individual PWM channels for each
– 16-bit resolution PWM suitable for Motor Control applications
— Four Quadrature Decoders
— Four Watch Dog (WDOG) modules
Each i.MX RT1160 processor enables the following interfaces to external devices (some of them are
muxed and not available simultaneously):
• Display Interface:
— Parallel RGB LCD interface (eLCDIF)
– Support 8/16/24-bit interface
– Support up to WXGA resolution @60fps
– Support Index color with 256 entry x 24-bit color LUT
— Parallel RGB LCD Interface Version 2 (LCDIFv2)
– Enhanced based on LCDIF version
– Support up to 8 layers of alpha blending
— MIPI Display Serial Interface (MIPI DSI)
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
3
i.MX RT1160 introduction
•
•
•
•
– PHY integrated
– 2 data lanes interface with up to 1.5 GHz bit rate clock
— Smart LCD Display with 8080 interface through SEMC
Audio:
— SPDIF input and output
— Four Synchronous Audio Interface (SAI) modules supporting I2S, AC97, TDM, and
codec/DSP interfaces
— Medium Quality Sound (MQS) interface via GPIO pads
— PDM microphone interface with 4 pairs of inputs
— Asynchronous Sample Rate Converter (ASRC)
Graphics engine:
— Generic 2D (PXP)
– BitBlit
– Flexible image composition options—alpha, chroma key
– Porter-duff blending
– Image rotation (90, 180, 270)
– Image resize
– Color space conversion
– Multiple pixel format support (RGB, YUV444, YUV422, YUV420, YUV400)
– Standard 2D-DMA operation
— Vector Graphics Processing
– Real-time hardware curve tessellation of lines, quadratic, and cubic Bezier curves
– 16x Line Anti-aliasing
– OpenVG 1.1 support
– Vector Drawing
Camera Interface:
— Parallel Camera Sensor Interface (CSI)
– Support 24-bit, 16-bit, and 8-bit input
– Barcode binarization and histogram statistics
— MIPI Camera Serial Interface (MIPI CSI)
– PHY integrated
– 2 data lanes interface with up to 1.5 GHz bit rate clock
Connectivity:
— Two USB 2.0 OTG controllers with integrated PHY interfaces
— Two Ultra Secure Digital Host Controller (uSDHC) interfaces
– eMMC 5.0 compliance with HS400 support up to 400 MB/sec
– SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100 MB/sec
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
4
NXP Semiconductors
i.MX RT1160 introduction
•
•
– Support for SDXC (extended capacity)
— One 10M/100M Ethernet controller with support for IEEE1588
— One Gigabit Ethernet controller with support for AVB
— Twelve universal asynchronous receiver/transmitter (UARTs) modules
— Six I2C modules
— Six SPI modules
— Three FlexCAN (with Flexible Data-rate supported) modules
— Two EMV SIM modules
Analog:
— Two Analog-Digital-Converters (ADC), which supports both differential and single-end inputs
— One Digital-Analog-Converter (DAC)
— Four Analog Comparators (ACMP)
GPIO and Pin Multiplexing:
— General-purpose input/output (GPIO) modules with interrupt capability
— Input/output multiplexing controller (IOMUXC) to provide centralized pad control
— Two FlexIO modules
— 8 x 8 keypad
The i.MX RT1160 processors integrate advanced power management unit and controllers:
• Full PMIC integration, including on-chip DCDC and LDOs
• Temperature sensor with programmable trim points
• Hardware power management controller (GPC)
The i.MX RT1160 processors support the following system debug:
• Arm CoreSight debug and trace architecture
• Trace Port Interface Unit (TPIU) to support off-chip real-time trace
• Cross Triggering Interface (CTI)
• Support for 5-pin (JTAG) and SWD debug interfaces
Security functions are enabled and accelerated by the following hardware:
• High Assurance Boot (HAB)
• Cryptographic Acceleration and Assurance (CAAM) module:
— Public Key Cryptography Engine (PKHA)
— Symmetric Engines
— Cryptographic Hash Engine
— Random Number Generation (RNG4)
— Four Job Rings for use by processors
— Secure Hardware-Only Cryptographic Key Management
— Encrypted Boot
— Revision control check based on fuse values
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
5
i.MX RT1160 introduction
•
•
•
•
•
•
— DEK includes IV
— Side channel attack countermeasures
— 64 KB secure RAM
Inline Encryption Engine (IEE):
— External memory encryption/decryption
— I/O direct encrypted storage and retrieval (Stream Support)
— FlexSPI decryption only
On-the-Fly AES Decryption (OTFAD):
— AES-128 Counter Mode On-the-Fly Decryption
— Hardware support for unwrapping “key blobs”
— Functionally acts as a slave sub-module to the FlexSPI
Secure Non-Volatile Storage (SNVS):
— Secure real-time clock (SRTC)
— Zero Master Key (ZMK)
Secure always-on RAM (4 KB)
Secure key management and protection
— Physical Unclonable Function (PUF)
— UnDocumented Function (UDF)
— Built-in Manufacturing Protection Hardware
Secure and trusted access control
NOTE
The actual feature set depends on the part numbers as described in Table 1.
Functions such as display interfaces, camera interfaces, and connectivity
interfaces are not offered on all derivatives.
1.2
Ordering information
Table 1 provide examples of orderable part numbers covered by this Data Sheet.
Table 1. Order information
MIMXRT1166XVM5A
MIMXRT1165XVM5A
Qualification tier
Extended Industrial
M7 core
500 MHz
M4 core
240 MHz
SRAM
1 MB without ECC or 896 KB with ECC
Parallel LCD and CSI
Yes
—
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
6
NXP Semiconductors
i.MX RT1160 introduction
Table 1. Order information (continued)
MIMXRT1166XVM5A
MIMXRT1165XVM5A
MIPI DSI and CSI
Yes
—
GPU2D
Yes
—
PXP
Yes
—
ADC
x2
12-bit DAC
x1
ACMP
x4
CAN-FD
x3
1 Gb ENET with AVB
x1
10/100 Mb ENET with 1588
x1
USB OTG
x2
eMMC 5.0 / SD 3.0
x2
EMV SIM
x2
SAI
x4
DMIC
x8
FlexSPI
x2
UART
x12
I2C
x6
SPI
x6
GPT
x6
FlexIO
x2
PIT
x2
QTimer
x4
FlexPWM
x4
Security
Yes
Package
289 MAPBGA, 14 mm x14 mm, 0.8 mm pitch
Junction temperature Tj (C)
-40 to 125
Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be
identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The
primary characteristic which describes which data sheet applies to a specific part is the temperature grade
(junction) field.
• The i.MX RT1160 Crossover Processors for Extend Industrial Products Data Sheet
(IMXRT1160XEC) covers parts listed with a “X (Extend Industrial temp)”
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
7
i.MX RT1160 introduction
Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field
and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/IMXRT or
contact an NXP representative for details.
M
IMX
XX
@
## %
+ VV $ A
Qualification Level
M
Prototype Samples
P
Silicon Rev
A
Mass Production
M
A0
A
Special
S
Part # series
XX
i.MX RT
RT
Main Core Frequency
$
2xx MHz
2
500 MHz
5
Family
@
600 MHz
6
First Generation RT family
1
800 MHz
8
1 GHz
A
Reserved
2-8
Sub-Family
##
RT116x
16
RT117x
17
Package Type
Tie
%
Single Core Standard Feature
1
Single Core Enhanced Feature
2
Dual Core Enhanced Security
3
Dual Core Standard Feature
5
Dual Core Enhanced Feature
6
Dual Core Premium Feature
7
8MB Flash SIP
8
Dual Core Full Feature
9
Facial Recognition
F
Hybrid Solution with Vision & Voice
H
Local Voice Control (w/ Text2Model)
S
VV
289MAPBGA, 14 x 14 mm, 0.8 mm pitch
VM
144MAPBGA, 10 x 10 mm, 0.8 mm pitch
VP
196MAPBGA, 10 x 10 mm, 0.65 mm pitch
VL
Temperature (Tj)
+
Consumer: 0 to + 95 °C
D
Industrial: -40 to +105 °C
C
Extended Industrial: -40 to +125 °C
X
Automotive: -40 to + 125 eC
A
Figure 1. Part number nomenclature—i.MX RT11XX family
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
8
NXP Semiconductors
i.MX RT1160 introduction
1.3
Package marking information
Figure 2 describes the package marking format about the i.MX RT1160 Crossover Processors.
Figure 2. MAPBGA289 14 x 14 mm package marking format
The 14 x 14 mm of i.MX RT1160 MAPBGA289 package has the following top-side marking:
• First line: aaaaaaaaaaaaaaa
• Second line: mmmmm
• Third line: xxxyywwx
Table 2 lists the identifier decoder.
Table 2. Identifier decoder
Identifier
Description
a
Part number code, refer to Section 1.2, Ordering information
m
Mask set
y
Year
w
Work week
x
NXP internal use
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
9
Architectural overview
2
Architectural overview
The following subsections provide an architectural overview of the i.MX RT1160 processor system.
2.1
Block diagram
Figure 3 shows the functional modules in the i.MX RT1160 processor system1.
System Control
Connectivity
CPU Platform
JTAGC
eMMC5.0/ SD3.0 x2
Arm Cortex-M7
PLL,OSC
32KB I-cache
eDMA x2
FPU
WDOG x4, EWM x1
UART x12
32KB D-cache
MPU
I2C x6
NVIC
SPI x6
512KB TCM
8x8 Keypad x 1
GPT x6
ARM Cortex-M4
Quadrature Enc/Dec x4
16KB I-cache
QuadTimer x4
FPU
FlexPWM x4
I2S/SAI x4
16KB D-cache
MPU
SPDIF Tx/Rx x 1
NVIC
ASRC x 1
256KB TCM
8-ch DMIC x 1
PIT x2
Multimedia
RDC, SEMA4, MU
Power Mgmt
DCDC &LDO
CAN-FD x3
Parallel LCD
MIPI DSI
Parallel CSI
MIPI CSI
USB2.0 OTG
w/PHY x2
Vector GPU Acceleration
Temp Monitor
10M/100M ENET x1
w/IEEE 1588
2D Graphics Acceleration(PXP)
Resize, CSC, Overlay, Rotation
ADC/DAC
1Gbps ENETx1
w/ AVB
LPADC x2 (20-ch)
HSADCx3(24-ch)
External Memory
Dual-Channel QSPI FLASH x2
ACMPx8,DAC
x4, DACx2
x1
ACMP
GPIO / HS GPIO
HyperRAM/HyperFLASH
Internal Memory
1MB SRAM/TCM
EMVSIM x2
External Memory Controller
FlexIO x2
8/16/32-bit SDRAM
Parallel NAND/ NOR Flash
256KB ROM
Security
RNG4
Secure RTC
RSA4096
HAB
Crypto
Engine
Secure
RAM
SHA-1 /
SHA-2
eFUSE
AES-128/256
DES/3DES
PUF /
UDF
CDOG
Ellipse Curve
Encrypted
XIP
.
Figure 3. i.MX RT1160 system block diagram
1. Some modules shown in this block diagram are not offered on all derivatives. See Table 1 for details.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
10
NXP Semiconductors
Modules list
3
Modules list
The i.MX RT1160 processors contain a variety of digital and analog modules. Table 3 describes these
modules in alphabetical order.
Table 3. i.MX RT1160 modules list
Block Mnemonic
Block Name
Subsystem
Brief Description
ACMP1
ACMP2
ACMP3
ACMP4
Analog Comparator
Analog
The comparator (CMP) provides a circuit for comparing
two analog input voltages. The comparator circuit is
designed to operate across the full range of the supply
voltage (rail-to-rail operation).
ADC_ETC
ADC External Trigger
Control
Analog
ADC_ETC enables multiple users shares a ADC
module in a Time-Division-Multiplexing (TDM).
ADC1
ADC2
Analog to Digital
Converter
Analog
The ADC is a 12-bit general purpose analog to digital
converter.
AOI
And-Or-Inverter
Cross Trigger
The AOI provides a universal boolean function
generator using a four-term sum of products expression
with each product term containing true or complement
values of the four selected inputs (A, B, C, D).
Arm
Arm Platform
Arm
The Arm Core Platform includes one Cortex-M7 core. It
includes associated sub-blocks, such as Nested
Vectored Interrupt Controller (NVIC), Floating-Point Unit
(FPU), Memory Protection Unit (MPU), and CoreSight
debug modules.
The Cortex-M4 platform has following features:
• Cortex-M4 processor with FPU
• Local memory
– 16 KB instruction cache and 16 KB data cache
– 256 KB TCM
– TCM memories support ECC
– Cache memories support Parity Check
ASRC
Asynchronous Sample
Rate Converter
Multimedia
Peripherals
The ASRC can process groups of audio channels with
an independent time-based simultaneously.
CAAM
Cryptographic
Accelerator and
Assurance Module
Security
CAAM supports a set of standard hardware
accelerators, boot time acceleration of the hashing
function, crypto key protection, HDCP 2.x authentication
and protected video path support, manufacturing
protection and public key cryptographic acceleration,
and inter-operate with TrustZone, Resource Domain,
and system virtualization access controls.
CANFD1
CANFD2
CANFD3
Flexible Controller Area
Network
Connectivity
Peripherals
The CAN with Flexible Data rate (CAN FD) module is a
communication controller implementing the CAN
protocol according to the ISO11898-1 and CAN 2.0B
protocol specification.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
11
Modules list
Table 3. i.MX RT1160 modules list (continued)
Block Mnemonic
CCM
GPC
PGMC
PMU
SRC
Block Name
Subsystem
Brief Description
Clocks, Resets, and These modules are responsible for clock and reset
Clock Control Module,
Power Control
distribution in the system, and also for the system power
General Power Controller,
management.
Power Manage Unit,
Power Gating and
Memory Controller,
System Reset Controller
CSI
Parallel CSI
Multimedia
Peripherals
The CSI IP provides parallel CSI standard camera
interface port. The CSI parallel data ports are up to 24
bits. It is designed to support 24-bit RGB888/YUV444,
CCIR656 video interface, 8-bit YCbCr, YUV or RGB,
and 8-bit/10-bit/16-bit/24-bit Bayer data input.
CWT
Code Watchdog Timer
Timer peripherals
The CWT provides mechanisms for detecting
side-channel attacks and the execution of unexpected
instruction sequences.
DAC
Digital-Analog-Converter
Analog
The DAC is a 12-bit general purpose digital to analog
converter.
DAP
Debug Access Port
System Control
Peripherals
The DAP provides real-time access for the debugger
without halting the core to:
• System memory and peripheral registers
• All debug configuration registers
The DAP also provides debugger access to JTAG scan
chains. The DAP module is internal to the Cortex-M7
Core Platform.
DCDC
DCDC Converter
Analog
The DCDC module is used for generating power supply
for core logic. Main features are:
• Adjustable high efficiency regulator
• Two outputs: 1.0 V and 1.8 V
• Over current and over voltage detection
eDMA
eDMA_LPSR
enhanced Direct Memory
Access
System Control
Peripherals
There are two enhanced DMAs (eDMA).
• The eDMA is a 32-channel DMA engine, which is
capable of performing complex data transfers with
minimal intervention from a host processor.
• The DMA_MUX is capable of multiplexing up to 128
DMA request sources to the 32 DMA channels of
eDMA.
eLCDIF
LCD interface
Multimedia
Peripherals
The enhanced LCD controller provides flexible display
options and to drive a wide range of display devices
varying in size and capability. Major features are:
• Up to WXGA 60 Hz
• 8/16/18/24 bit LCD data bus support available
depending on I/O mux options.
• Programmable timing and parameters for LCD
interfaces to support a wide variety of displays.
• Index color with 256 entry x 24-bit color LUT
EMV SIM1
EMV SIM2
Europay, Master and Visa
Subscriber Identification
Module
Connectivity
Peripherals
EMV SIM is designed to facilitate communication to
Smart Cards compatible to the EMV version 4.3
standard (Book 1) and Smart Cards compatible with
ISO/IEC 7816-3 standard.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
12
NXP Semiconductors
Modules list
Table 3. i.MX RT1160 modules list (continued)
Block Mnemonic
Block Name
Subsystem
Brief Description
ENET
Ethernet Controller
Connectivity
Peripherals
The Ethernet Media Access Controller (MAC) is
designed to support 10/100 Mbit/s Ethernet/IEEE 802.3
networks. An external transceiver interface and
transceiver function are required to complete the
interface to the media. The module has dedicated
hardware to support the IEEE 1588 standard. See the
ENET chapter of the reference manual for details.
ENET 1G
Ethernet Controller
Connectivity
Peripherals
One 1G Ethernet is also integrated, which has following
features:
• RGMII/RMII/MII operation
• Support IEEE1588
• Support AVB
EWM
External Watchdog
Monitor
Timer Peripherals
The EWM modules is designed to monitor external
circuits, as well as the software flow. This provides a
back-up mechanism to the internal WDOG that can
reset the system. The EWM differs from the internal
WDOG in that it does not reset the system. The EWM, if
allowed to time-out, provides an independent trigger pin
that when asserted resets or places an external circuit
into a safe mode.
FlexIO1
FlexIO2
Flexible Input/output
Connectivity and
Communications
The FlexIO is capable of supporting a wide range of
protocols including, but not limited to: UART, I2C, SPI,
I2S, camera interface, display interface, PWM
waveform generation, etc. The module can remain
functional when the chip is in a low power mode
provided the clock it is using remain active.
FlexPWM1
FlexPWM2
FlexPWM3
FlexPWM4
Pulse Width Modulation
Timer Peripherals
The pulse-width modulator (PWM) contains four PWM
sub-modules, each of which is set up to control a single
half-bridge power stage. Fault channel support is
provided. The PWM module can generate various
switching patterns, including highly sophisticated
waveforms.
FlexRAM
RAM
Memories
The i.MX RT1160 has 512 KB of on-chip RAM which
could be flexible allocated to I-TCM, D-TCM, and
on-chip RAM (OCRAM) in a 32 KB granularity. The
FlexRAM is the manager of the 512 KB on-chip RAM
array. Major functions of this blocks are: interfacing to
I-TCM and D-TCM of CM7 and OCRAM controller;
dynamic RAM arrays allocation for I-TCM, D-TCM, and
OCRAM.
FlexSPI1
FlexSPI2
Flexible Serial Peripheral
Interface
Connectivity and
Communications
FlexSPI acts as an interface to one or two external serial
memory devices, FlexSPI2 has 8 bi-directional data
lines.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
13
Modules list
Table 3. i.MX RT1160 modules list (continued)
Block Mnemonic
Block Name
Subsystem
Brief Description
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7
GPIO8
GPIO9
GPIO10
GPIO11
GPIO12
GPIO13
General Purpose I/O
Modules
System Control
Peripherals
Used for general purpose input/output to external ICs.
Each GPIO module supports up to 32 bits of I/O.
Note: GPIO13 register access takes a long time (about
50s due to clocked by 32 KHz clock source). During the
period of registers access, the LPSR domain bus would
be on hold.
GPT1
GPT2
GPT3
GPT4
GPT5
GPT6
General Purpose Timer
Timer Peripherals
Each GPT is a 32-bit “free-running” or “set and forget”
mode timer with programmable prescaler and compare
and capture register. A timer counter value can be
captured using an external event and can be configured
to trigger a capture event on either the leading or trailing
edges of an input pulse. When the timer is configured to
operate in “set and forget” mode, it is capable of
providing precise interrupts at regular intervals with
minimal processor intervention. The counter has output
compare logic to provide the status and interrupt at
comparison. This timer can be configured to run either
on an external clock or on an internal clock.
GPU2D
Graphics Processing
Multimedia
Peripherals
The vector graphics processing supports following
features:
• Real-time hardware curve tessellation of lines,
quadratic, and cubic Bezier curves
• 16x line anti-aliasing
• OpenVG 1.1 support
• Vector drawing
IOMUXC
IOMUX Control
Mux control
This module enables flexible I/O multiplexing. Each IO
pad has a default as well as several alternate functions.
The alternate functions are software configurable.
JTAGC
JTAG Controller
System Control
Peripherals
The JTAG interface complies with JTAG TAP standards
to internal logic. The i.MX RT1160 processors use JTAG
port for production, testing, and system debugging. In
addition, the JTAG provides BSR (Boundary Scan
Register) standard support, which complies with IEEE
1149.1 and IEEE 1149.6 standards.
The JTAG port must be accessible during platform initial
laboratory bring-up, for manufacturing tests and
troubleshooting, as well as for software debugging by
authorized entities. The i.MX RT1160 JTAG
incorporates two security modes for protecting against
unauthorized accesses. Modes are selected through
eFUSE configuration.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
14
NXP Semiconductors
Modules list
Table 3. i.MX RT1160 modules list (continued)
Block Mnemonic
Block Name
Subsystem
Brief Description
KPP
Keypad Port
Human Machine
Interfaces
LCDIFv2
Parallel RGB LCD
interface version 2
Multimedia
Peripherals
LPI2C1
LPI2C2
LPI2C3
LPI2C4
LPI2C5
LPI2C6
Low Power
Inter-integrated Circuit
Connectivity and
Communications
The LPI2C is a low power Inter-Integrated Circuit (I2C)
module that supports an efficient interface to an I2C bus
as a master.
The I2C provides a method of communication between
a number of external devices. More detailed information,
see Section 4.9.2, LPI2C module timing parameters.
LPSPI1
LPSPI2
LPSPI3
LPSPI4
LPSPI5
LPSPI6
Low Power Serial
Peripheral Interface
Connectivity and
Communications
The LPSPI is a low power Serial Peripheral Interface
(SPI) module that support an efficient interface to an SPI
bus as a master and/or a slave.
• It can continue operating while the chip is in stop
modes, if an appropriate clock is available
• Designed for low CPU overhead, with DMA off
loading of FIFO register access
LPUART1
LPUART2
LPUART3
LPUART4
LPUART5
LPUART6
LPUART7
LPUART8
LPUART9
LPUART10
LPUART11
LPUART12
UART Interface
Connectivity
Peripherals
Each of the UART modules support the following serial
data transmit/receive protocols and configurations:
• 7- or 8-bit data words, 1 or 2 stop bits, programmable
parity (even, odd or none)
• Programmable baud rates up to 20 Mbps.
MECC64
Error Correcting Code
The KPP is a 16-bit peripheral that can be used as a
keypad matrix interface or as general purpose
input/output (I/O). It supports 8 x 8 external key pad
matrix. Main features are:
• Multiple-key detection
• Long key-press detection
• Standby key-press detection
• Supports a 2-point and 3-point contact key matrix
The LCDIFv2 is an enhanced version of LCDIF.
Main features are:
• Eight layers of alpha blending
• CRC check for configurable region on the final
display output after alpha blending
• Write-back channel to save the final output into
memory
Memories and
MECC64 module supports Single Error Correction and
Memory Controllers Double Error Detection (SECDED) ECC function to
provide reliability for 4 banks On-Chip RAM (OCRAM)
access. When ECC function is disabled, ECC OCRAM
can be also used to store data.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
15
Modules list
Table 3. i.MX RT1160 modules list (continued)
Block Mnemonic
Block Name
Subsystem
Brief Description
MIPI-CSI
MIPI CSI Interface
Multimedia
Peripherals
Key features of MIPI CSI controller are listed as
following:
• Implements all three MIPI CSI-2 layers
• Supports CSI-2 Unidirectional Master operation
• Virtual Channel support
• Flexible pixel-based user interface
MIPI-DSI
MIPI DSI Interface
Multimedia
Peripherals
Key features of MIPI DSI controller are listed as
following:
• Implements all three DSI layers
• Supports Command and Video Modes
• Virtual Channel support
• Flexible packet based user interface
MQS
Medium Quality Sound
Multimedia
Peripherals
MQS is used to generate 2-channel medium quality
PWM-like audio via two standard digital GPIO pins.
MU
Messaging Unit
System Control
OCOTP_CTRL
OTP Controller
Security
OCRAM
On-Chip Memory
controller
PDM
Pulse Density Modulation
Multimedia
Peripherals
The PDM supports up to 8-channels (4 lanes) digital
MIC inputs.
PIT1
PIT2
Periodical Interrupt Timer
Timer Peripherals
The PIT features 32-bit counter timer, programmable
count modules, clock division features, interrupt
generation, and a slave mode to synchronize count
enable for multiple PITs.
The Messaging Unit module enables two processors
within the SoC to communicate and coordinate by
passing messages (e.g. data, status, and control)
through the MU interface.
The MU also provides the ability for one processor to
signal the other processor using interrupts.
The On-Chip OTP controller (OCOTP_CTRL) provides
an interface for reading, programming, and/or overriding
identification and control information stored in on-chip
fuse elements. The module supports electrically
programmable poly fuses (eFUSEs). The
OCOTP_CTRL also provides a set of volatile
software-accessible signals that can be used for
software control of hardware elements, not requiring
non volatility. The OCOTP_CTRL provides the primary
user-visible mechanism for interfacing with on-chip fuse
elements. Among the uses for the fuses are unique chip
identifiers, mask revision numbers, cryptographic keys,
JTAG secure mode, boot characteristics, and various
control signals requiring permanent non volatility.
Memories and
The On-Chip Memory controller (OCRAM) module is
Memory Controllers designed as an interface between the system’s AXI bus
and the internal (on-chip) SRAM memory module.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
16
NXP Semiconductors
Modules list
Table 3. i.MX RT1160 modules list (continued)
Block Mnemonic
Block Name
Subsystem
Brief Description
PXP
Pixel Processing Pipeline
Multimedia
Peripherals
A high-performance pixel processor capable of 1
pixel/clock performance for combined operations, such
as color-space conversion, alpha blending, and rotation.
The PXP is enhanced
with features specifically for gray scale applications. In
addition, the PXP supports traditional pixel/frame
processing paths for still-image and video processing
applications.
Quadrature DEC1
Quadrature DEC2
Quadrature DEC3
Quadrature DEC4
Quadrature Decoder
Timer Peripherals
The enhanced quadrature decoder module provides
interfacing capability to position/speed sensors. There
are five input signals: PHASEA, PHASEB, INDEX,
TRIGGER, and HOME. This module is used to decode
shaft position, revolution count, and speed.
QuadTimer1
QuadTimer2
QuadTimer3
QuadTimer4
QuadTimer
Timer Peripherals
The quad-timer provides four time channels with a
variety of controls affecting both individual and
multi-channel features.Specific features include
up/down count, cascading of counters, programmable
module, count once/repeated, counter preload,
compare registers with preload, shared use of input
signals, prescaler controls, independent
capture/compare, fault input control, programmable
input filters, and multi-channel synchronization.
RDC
Resource Domain
Controller
Security
The RDC provides robust support for the isolation of
processing domain to prevent one core from accessing
another’s peripherals, to control access rights to
common memory and provide hardware enforcement of
semaphore based locking of shared peripherals.
For single system use case, RDC can be disabled and
AIPS-TZ/DEXSC can be bypassed. For dual system
case, RDC can be configured and locked each core
starts their own image.
ROMCP
ROM Controller with
Patch
RTC OSC
Real Time Clock
Oscillator
Clock Sources and
Control
The RTC OSC provides the clock source for the
Real-Time Clock module and low speed clock source for
CCM/SRC/GPC modules. The RTC OSC module, in
conjunction with an external crystal, generates a 32.768
kHz reference clock.
SAI1
SAI2
SAI3
SAI4
Synchronous Audio
Interface
Multimedia
Peripherals
The SAI module provides a synchronous audio interface
(SAI) that supports full duplex serial interfaces with
frame synchronization, such as I2S, AC97, TDM, and
codec/DSP interfaces.
SEMA4
Semaphores
System Control
The SEMA4 module implements hardware-enforced
semaphores as an IPS-mapped slave peripheral device
and provides 16 hardware-enforced gates in a
dual-processor configuration.
Memories and
The ROMCP acts as an interface between the Arm
Memory Controllers advanced high-performance bus and the ROM. The
on-chip ROM is only used by the Cortex-M7 core during
boot up. Size of the ROM is 256 KB.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
17
Modules list
Table 3. i.MX RT1160 modules list (continued)
Block Mnemonic
Block Name
Subsystem
Brief Description
SEMC
Smart External Memory
Controller
Memory and
Memory Controller
The SEMC is a multi-standard memory controller
optimized for both high-performance and low pin-count.
It can support multiple external memories in the same
application with shared address and data pins. The
interface supported includes SDRAM, NOR Flash,
SRAM, and NAND Flash, as well as 8080 display
interface.
SNVS
Secure Non-Volatile
Storage
Security
SPDIF
Sony Philips Digital
Interconnect Format
Multimedia
Peripherals
SSARC
State Save and Restore
Controller
Memories and
The SSARC saves the registers of functional modules in
Memory Controllers memory before power down, and restores registers from
memory after the module is powered up.
SYS OSC
System Clock Oscillator
Clock Sources and
Control
TEMP SENSE
Temperature Sensor
Analog
USB1
USB2
Universal Serial Bus 2.0
Connectivity
Peripherals
Secure Non-Volatile Storage, including Secure Real
Time Clock, Security State Machine and Master Key
Control.
A standard audio file transfer format, developed jointly
by the Sony and Phillips corporations. Has Transmitter
and Receiver functionality.
The SYS OSC provides the primary clock source for all
the PLLs to generate the clock for CPU, BUS, and
high-speed interfaces. The SYS OSC module, in
conjunction with an external crystal, generates a 24
MHz reference clock.
The temperature sensor implements a temperature
sensor/conversion function based on a
temperature-dependent voltage to time conversion.
USB 2.0 OTG modules (USB OTG1 and USB OTG2)
contains:
• Two high-speed OTG 2.0 modules with integrated HS
USB PHYs
• Support eight Transmit (TX) and eight Receive (Rx)
endpoints, including endpoint 0
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
18
NXP Semiconductors
Modules list
Table 3. i.MX RT1160 modules list (continued)
Block Mnemonic
Block Name
Subsystem
Brief Description
uSDHC1
uSDHC2
SD/MMC and SDXC
Enhanced Multi-Media
Card / Secure Digital Host
Controller
Connectivity
Peripherals
i.MX RT1160 specific SoC characteristics:
All four MMC/SD/SDIO controllers are identical and are
based on the uSDHC. They are:
• Fully compliant with MMC command/response sets
and Physical Layer as defined in the Multimedia Card
System Specification.
• Fully compliant with SD command/response sets and
Physical Layer as defined in the SD Memory Card
Specifications, v3.0 including high-capacity SDXC
cards up to 2 TB.
• Fully compliant with SDIO command/response sets
and interrupt/read-wait mode as defined in the SDIO
Card Specification, Part E1, v3.0
Two ports support:
• 1-bit or 4-bit transfer mode specifications for SD and
SDIO cards up to UHS-I SDR104 mode (104 MB/s
max)
• 1-bit, 4-bit, or 8-bit transfer mode specifications for
MMC cards up to 52 MHz in both SDR and DDR
modes (104 MB/s max)
• 4-bit or 8-bit transfer mode specifications for eMMC
chips up to 200 MHz in HS200 mode (200 MB/s max)
VIDMUX
Video mux
Mux control
Video mux are mux control for Parallel CSI (IO PADs),
MIPI CSI-2, MIPI DSI, Parallel LCDIF (IO PADs) and
CSI, LCDIF-V2, eLCDIF control. It also includes the
DCIC of MIPI DSI and Parallel DSI.
WDOG1
WDOG2
WDOG3
WDOG4
Watch Dog
Timer Peripherals
WDOG1 and WDOG2 Timer support two comparison
points during each counting period. Each of the
comparison points is configurable to evoke an interrupt
to the Arm core, and a second point evokes an external
event on the WDOG line.
WDOG3 and WDOG4 modules are high reliability
independent timers that are available for system to use.
They provide a safety feature to ensure software is
executing as planned and the CPU is not stuck in an
infinite loop or executing unintended code. If the WDOG
module is not serviced (refreshed) within a certain
period, it resets the MCU. Windowed refresh mode is
supported as well.
XBARA
XBARB
Cross BAR
Cross Trigger
Each crossbar switch is an array of muxes with shared
inputs. Each mux output provides one output of the
crossbar. The number of inputs and the number of
muxes/outputs are user configurable and registers are
provided to select which of the shared inputs are routed
to each output.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
19
Modules list
Table 3. i.MX RT1160 modules list (continued)
Block Mnemonic
Block Name
XECC
External ECC Controller
XRDC
Extended Resource
Domain Controller
3.1
Subsystem
Brief Description
Memories and
XECC can be used as a gasket module on AXI bus to
Memory Controllers support ECC function for external memory.
Security
The XRDC provides an integrated, scalable
architectural framework for access control, system
memory protection, and peripheral isolation. It allows
software to assign chip resources including processor
cores, non-core bus masters, memory regions, and
slave peripherals to processing domains to support
enforcement of robust operational environments.
Special signal considerations
Table 4 lists special signal considerations for the i.MX RT1160 processors. The signal names are listed in
alphabetical order.
The package contact assignments can be found in Section 6, Package information and contact
assignments.” Signal descriptions are provided in the i.MX RT1160 Reference Manual
(IMXRT1160RM).
Table 4. Special signal considerations
Signal Name
Remarks
GPIO_LPSR_02,
GPIO_LPSR_03,
GPIO_DISP_B1_06,
GPIO_DISP_B1_07,
GPIO_DISP_B1_08,
GPIO_DISP_B1_09,
GPIO_DISP_B1_10,
GPIO_DISP_B1_11,
GPIO_DISP_B2_00,
GPIO_DISP_B2_01,
GPIO_DISP_B2_02,
GPIO_DISP_B2_03,
GPIO_DISP_B2_04,
GPIO_DISP_B2_05
If not using eFuse setting, these I/Os level determine the boot mode and boot device configuration.
In case of boot mode pins immediately change state after POR_B released, user must ensure
POR_B remains asserted until the last power rail reach its working voltage.
CLK1_P/ CLK1_N
This differential output is reserved for NXP internal use. For users, this output must be a no
connect.
DCDC_PSWITCH
PAD is in DCDC_IN domain and connected to ground to bypass DCDC.
To enable DCDC function, assert DCDC_IN with at least 1ms delay for DCDC_IN rising edge.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
20
NXP Semiconductors
Modules list
Table 4. Special signal considerations (continued)
Signal Name
Remarks
RTC_XTALI/RTC_XTALO To hit the exact oscillation frequency, the board capacitors must be reduced to account for the
board and chip parasitics. The integrated oscillation amplifier is self-biasing, but relatively weak.
Care must be taken to limit the parasitic leakage from RTC_XTALI and RTC_XTALO to either the
power or the ground (> 100 M). This de-biases the amplifier and reduces the start-up margin.
If you want to feed an external low-frequency clock into RTC_XTALI, the RTC_XTALO pin must
remain unconnected or driven by a complementary signal. The logic level of this forcing clock must
not exceed the VDD_SNVS_ANA level and the frequency shall be < 100 kHz under the typical
conditions.
It is recommended to tie RTC_XTALI to GND if external crystal is not used. When a high-accuracy
real-time clock is not required, the system may use the on-chip 32 kHz oscillator. The tolerance is
±25%. The ring oscillator starts faster than the external crystal and is used until the external crystal
reaches a stable oscillation. The ring oscillator also starts automatically if no clock is detected at
RTC_XTALI.
XTALI/XTALO
JTAG_nnnn
The SDK software requires 24 MHz on XTALI/XTALO. The crystal can be eliminated if an external
24 MHz oscillator is available in the system. In this case, refer to section of Bypass Configuration
(24 MHz) from the reference manual. There are three configurations that can be utilized, but
configuration 2 is recommended.
The logic level of this forcing clock must not exceed the VDD_LPSR_ANA level.
If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter
requirements. See Section 4.2.6, On-chip oscillators and relevant interface specifications chapters
for details.
External resistors can be used with all JTAG signals except for JTAG_TDO, but they are not
required. See Table 5 for a summary of the JTAG interface.
JTAG_TDO is configured with an on-chip keeper circuit, such that the floating condition is actively
eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is
detrimental. See Table 5 for a summary of the JTAG interface.
When JTAG_MOD is low, the JTAG interface is configured for a common software debug, adding
all the system TAPs to the chain.
When JTAG_MOD is high, the JTAG interface is configured to a mode compliant with the IEEE
1149.1 standard.
NC
These signals are No Connect (NC) and should not be connected by the user.
POR_B
See the System Boot chapter in the reference manual for the correct boot configuration. Note that
an incorrect setting may result from an improper boot sequence.
POR_B signal has internal 100 k pull up to SNVS domain, should pull up to VDD_SNVS_ANA if
need to add external pull up resistor, otherwise it will cause additional leakage during SNVS mode.
It is recommended to add the external reset IC to the circuit to guarantee POR_B is properly
processed during power up/down, please refer to the EVK design for details.
Note:
• As the Low DCDC_IN detection threshold is 2.6 V, the reset IC’s reset threshold must be higher
than 2.6 V, then the whole chip is reset before the internal DCDC module reset to guarantee the
chip safety during power down.
• For power on reset, on any conditions ones need to make sure the voltage on DCDC_PSWITCH
pin is below 0.5 V before power up.
ONOFF
A brief connection to GND in the OFF mode causes the internal power management state machine
to change the state to ON. In the ON mode, a brief connection to GND generates an interrupt
(intended to be a software-controllable power-down). Approximately five seconds (or more) to GND
causes a forced OFF. Both boot mode inputs can be disconnected.
TEST_MODE
This input is reserved for NXP manufacturing use. The user must tie this pin directly to GND.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
21
Modules list
Table 4. Special signal considerations (continued)
Signal Name
Remarks
WAKEUP
A GPIO powered by SNVS domain power supply which can be configured as wakeup source in
SNVS mode.
Table 5. JTAG controller interface summary
3.2
JTAG
I/O Type
On-chip Termination
JTAG_TCK
Input
20–50 kpull-down
JTAG_TMS
Input
20–50 kpull-up
JTAG_TDI
Input
20–50 kpull-up
JTAG_TDO
3-state output
None
JTAG_TRSTB
Input
20–50 kpull-up
JTAG_MOD
Input
20–50 kpull-down
Recommended connections for unused analog interfaces
Table 6 shows the recommended connections for unused analog interfaces.
Table 6. Recommended connections for unused analog interfaces
hi
Module
32 kHz
OSC
ADC
Pad Name
RTC_XTALI, RTC_XTALO
Recommendations
if Unused
Not connected
It is recommended that
RTC_XTALI ties to GND if
external crystal is not
connected.
ADC_VREFH
10 K resistor to ground
VDDA_ADC_1P8
10 K resistor to ground
VDDA_ADC_3P3
10 K resistor to ground
CCM
CLK1_N, CLK1_P
Not connected
DAC
DAC_OUT
Not connected
MIPI
VDD_MIPI_1P0
10 K resistor to ground
VDD_MIPI_1P8
10 K resistor to ground
DCDC
MIPI_DSI_CKN, MIPI_DSI_CKP, MIPI_DSI_DN0, MIPI_DSI_DP0,
MIPI_DSI_DN1, MIPI_DSI_DP1
Not connected
MIPI_CSI_CKN, MIPI_CSI_CKP, MIPI_CSI_DN0, MIPI_CSI_DP0,
MIPI_CSI_DN1, MIPI_CSI_DP1
Not connected
DCDC_IN, DCDC_IN_Q, DCDC_DIG, DCDC_ANA
Not connected
DCDC_DIG_SENSE, DCDC_ANA_SENSE, DCDC_LP, DCDC_LN
Not connected
DCDC_PSWITCH, DCDC_MODE
To ground
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
22
NXP Semiconductors
Modules list
Table 6. Recommended connections for unused analog interfaces (continued)
Module
USB
Pad Name
USB1_DN, USB1_DP, USB1_VBUS, USB2_DN, USB2_DP, USB2_VBUS
Recommendations
if Unused
Not connected
VDD_USB_1P8
Powered with 1.8 V
VDD_USB_3P3
Powered with 3.3 V
SYS OSC XTALI, XTALO
Not connected
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
23
Electrical characteristics
4
Electrical characteristics
This section provides the device and module-level electrical characteristics for the i.MX RT1160
processors.
4.1
Chip-level conditions
This section provides the device-level electrical characteristics for the IC. See Table 7 for a quick reference
to the individual tables and sections.
Table 7. i.MX RT1160 chip-Level conditions
For these characteristics
Topic appears
Absolute maximum ratings
on page 24
Thermal characteristics
on page 26
Operating ranges
on page 26
Maximum supply currents
on page 29
Typical power mode supply currents
on page 30
System power and clocks
on page 33
4.1.1
Absolute maximum ratings
CAUTION
Stress beyond those listed under Table 8 may cause permanent damage to the device. These are stress
ratings only. Functional operation of the device at these or any other conditions beyond those indicated
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated
conditions for extended periods may affect device reliability.
Table 8 shows the absolute maximum operating ratings.
Table 8. Absolute maximum ratings
Parameter Description
Symbol
Min
Max
Unit
Core supplies input voltage
VDD_SOC_IN
-0.3
1.2
V
Power for LPSR domain
VDD_LPSR_IN
-0.3
3.96
V
DCDC_IN
-0.3
3.96
V
Power for PLL, OSC, and LDOs
VDDA_1P8_IN
-0.3
1.98
V
Supply input voltage to Secure Non-Volatile Storage
and Real Time Clock
VDD_SNVS_IN
-0.3
3.96
V
USB1_VBUS
USB2_VBUS
-0.3
5.6
V
Power for DCDC
USB VBUS supply
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
24
NXP Semiconductors
Electrical characteristics
Table 8. Absolute maximum ratings (continued)
Power for USB OTG PHYs
Power for ADC, DAC, and ACMP
Power for MIPI CSI/DSI PHY
IO supply for GPIO in SDIO1 bank (3.3 V mode)
VDD_USB_1P8
-0.3
1.98
V
VDD_USB_3P3
-0.3
3.96
V
VDDA_ADC_1P8
-0.3
1.98
V
VDDA_ADC_3P3
-0.3
3.96
V
VDD_MIPI_1P8
-0.3
1.98
V
VDD_MIPI_1P0
-0.3
1.2
V
NVCC_SD1
-0.3
3.96
V
-0.3
1.98
V
-0.3
3.96
V
-0.3
1.98
V
-0.3
3.96
V
-0.3
1.98
V
-0.3
3.96
V
-0.3
1.98
V
-0.3
3.96
V
-0.3
1.98
V
-0.3
3.96
V
-0.3
1.98
V
-0.3
3.96
V
-0.3
1.98
V
-0.3
3.96
V
-0.3
1.98
V
-0.3
1.98
IO supply for GPIO in SDIO1 bank (1.8 V mode)
IO supply for GPIO in SDIO2 bank (3.3 V mode)
NVCC_SD2
IO supply for GPIO in SDIO2 bank (1.8 V mode)
IO supply for GPIO in EMC bank1 (3.3 V mode)
NVCC_EMC1
IO supply for GPIO in EMC bank1 (1.8 V mode)
IO supply for GPIO in EMC bank2 (3.3 V mode)
NVCC_EMC2
IO supply for GPIO in EMC bank2 (1.8 V mode)
IO power for GPIO in GPIO AD bank (3.3 V mode)
NVCC_GPIO
IO power for GPIO in GPIO AD bank (1.8 V mode)
IO supply for GPIO in DISP1 bank (3.3 V mode)
NVCC_DISP1
IO supply for GPIO in DISP1 bank1 (1.8 V mode)
IO supply for GPIO in DISP2 bank (3.3 V mode)
NVCC_DISP2
IO supply for GPIO in DISP2 bank1 (1.8 V mode)
IO power for GPIO in LPSR bank (3.3 V mode)
NVCC_LPSR
IO power for GPIO in LPSR bank (1.8 V mode)
IO power for GPIO in SNVS bank (1.8 V mode)
NVCC_SNVS
V
1
Input/Output Voltage range
Vin/Vout
-0.5
NVCC + 0.3
Storage Temperature range
TSTORAGE
-40
150
1
V
o
C
NVCC is the I/O supply voltage.
Table 9. Electrostatic discharge and latch-up characteristics
Symbol
VHBM
Description
Min
Max
Unit
Notes
Electrostatic discharge voltage, human body model
-2000
+2000
V
1
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
25
Electrical characteristics
Table 9. Electrostatic discharge and latch-up characteristics (continued)
Symbol
VESD
ILAT
1
Description
Min
Max
Unit
Notes
All pins except the corner pins
-500
+500
V
2
Corner pins only
-750
+750
V
Immunity level
• Class II @125 oC ambient temperature
-100
+100
mA
Electrostatic discharge voltage, charged-device model
3
Determined according to JEDEC Standard JS001, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model
(HBM).
Determined according to JEDEC Standard JS002, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
Determined according to JEDEC Standard JESD78, IC Latch-up Test.
2
3
4.1.2
Thermal characteristics
Table 10 displays the 14 x 14 mm package thermal characteristics.
Table 10. 14 x 14 mm thermal characteristics
Rating
Board Type1
Symbol
Value
Unit
Junction to Ambient Thermal Resistance2
JESD51-9, 2s2p
RJA3
31.6
o
Junction to Top of Package
Thermal Characterization Parameter2
JESD51-9, 2s2p
JT4
1.4
o
Junction to Case Thermal Resistance5
JESD51-9, 1s
RJC6
10
o
1
2
3
4
5
6
C/W
C/W
C/W
Thermal test board meets JEDEC specification for this package (JESD51-9).
Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not
meant to predict the performance of a package in an application-specific environment.
RJA = (Tj - Ta)/P [unit: oC/W], where Tj = junction temperature, Ta = ambient temperature, P = device power.
JT = (Tj - Tt)/P [unit: oC/W], where Tj = junction temperature, Tt = temperature at top of package, P = device power.
Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature is taken at the package top
side centre surface temperature.
RJC = (Tj - Tc)/P [unit: oC/W], where Tj = junction temperature, Tc = case temperature, P = device power.
4.1.3
Operating ranges
Table 11 provides the operating ranges of the i.MX RT1160 processors. For details on the chip's power
structure, see the “Power Management Unit (PMU)” chapter of the i.MX RT1160 Reference Manual
(IMXRT1160RM).
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
26
NXP Semiconductors
Electrical characteristics
Table 11. Operating ranges
Parameter
Description
Operating
Conditions
Min
Max1
Unit
M7 core at 500
MHz
0.975
1.15
V
Powered by external power supply
M7 core at 500
MHz
0.975
1.025
V
Powered by on-chip DCDC
M7 core at 240
MHz
0.9
1.15
V
—
M4 core at 240
MHz
0.975
1.15
V
—
M4 core at 120
MHz
0.9
1.15
V
—
VDD_SOC_IN
M7 core
0.8
1.15
V
—
VDD_LPSR_DIG
M4 core
0.8
1.15
V
—
Power for DCDC
DCDC_IN
—
3.0
3.6
V
—
Power for PLL,
OSC, and LDOs
VDDA_1P8_IN
—
1.71
1.89
V
—
Power for LPSR
domain
VDD_LPSR_IN
—
3.0
3.6
V
—
Power for SNVS
and RTC
VDD_SNVS_IN
—
2.4
3.6
V
—
Power for USB
OTG PHYs
VDD_USB_1P8
—
1.65
1.95
V
—
VDD_USB_3P3
—
3.0
3.6
V
—
USB1_VBUS
USB2_VBUS
—
2.4
5.5
V
—
VDDA_ADC_1P8
—
1.65
1.95
V
—
VDDA_ADC_3P3
—
3.0
3.6
V
—
ADC_VREFH
—
1.0
1.89
V
—
VDD_MIPI_1P8
—
1.65
1.95
V
—
VDD_MIPI_1P0
—
0.9
1.1
V
—
Run Mode
Symbol
VDD_SOC_IN
VDD_LPSR_DIG
STANDBY Mode
USB VBUS supply
Power for ADC,
DAC, and ACMP
Power for MIPI
CSI/DSI PHY
Comment
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
27
Electrical characteristics
Table 11. Operating ranges (continued)
GPIO supplies
NVCC_SD1
NVCC_SD2
NVCC_EMC1
NVCC_EMC2
NVCC_GPIO
NVCC_DISP1
NVCC_DISP2
NVCC_LPSR
NVCC_SNVS
—
3.0
3.6
V
IO power for GPIO in SDIO1 bank
(3.3 V mode)
—
1.65
1.95
V
IO power for GPIO in SDIO1 bank
(1.8 V mode)
—
3.0
3.6
V
IO power for GPIO in SDIO2 bank
(3.3 V mode)
—
1.65
1.95
V
IO power for GPIO in SDIO2 bank
(1.8 V mode)
—
3.0
3.6
V
IO power for GPIO in EMC bank1 (3.3
V mode)
—
1.65
1.95
V
IO power for GPIO in EMC bank1 (1.8
V mode)
—
3.0
3.6
V
IO power for GPIO in EMC bank2 (3.3
V mode)
—
1.65
1.95
V
IO power for GPIO in EMC bank2 (1.8
V mode)
—
3.0
3.6
V
IO power for GPIO in GPIO AD bank
(3.3 V mode)
—
1.65
1.95
V
IO power for GPIO in GPIO AD bank
(1.8 V mode)
—
3.0
3.6
V
IO power for GPIO in DISP1 bank
(3.3 V mode)
—
1.65
1.95
V
IO power for GPIO in DISP1 bank
(1.8 V mode)
—
3.0
3.6
V
IO power for GPIO in DISP2 bank
(3.3 V mode)
—
1.65
1.95
V
IO power for GPIO in DISP2 bank
(1.8 V mode)
—
3.0
3.6
V
IO power for GPIO in LPSR bank (3.3
V mode)
—
1.65
1.95
V
IO power for GPIO in LPSR bank (1.8
V mode)
—
1.65
1.95
V
IO power for GPIO in SNVS bank (1.8
V mode)
Temperature Operating Ranges
Junction
temperature
1
Tj
Extended
Industrial
-40
125
o
C
See the application note, i.MX
RT1160 Product Lifetime Usage
Estimates for information on product
lifetime (power-on years) for this
processor.
Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set
point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
28
NXP Semiconductors
Electrical characteristics
4.1.4
Maximum supply currents
The data shown in Table 12 represent a use case designed specifically to show the maximum current
consumption possible. All cores are running at the defined maximum frequency and are limited to L1
cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited
practical use case, if at all, and be limited to an extremely low duty cycle unless the intention were to
specifically show the worst case power consumption.
Table 12. Maximum supply currents
Power Rail
Comments
Max Current
Unit
DCDC_IN
Max current for chip at 125 oC
1000
mA
VDDA_1P8_IN
1.8 V power supply for PLL, OSC, and
LDOs
100
mA
VDD_SOC_IN
Power supply for digital logic
850
mA
VDD_LPSR_IN
3.3 V power supply for LPSR domain
75
mA
VDD_SNVS_IN
Power supply for SNVS domain
1
mA
VDD_USB_1P8
1.8 V power supply for USB OTG PHYs
50
mA
VDD_USB_3P3
3.3 V power supply for USB OTG PHYs
60
mA
VDDA_ADC_1P8
1.8 V power supply for ADC, DAC, and
ACMP
10
mA
VDDA_ADC_3P3
ADC_VREFH
3.3 V power supply for ADC, DAC, and
ACMP
2
mA
VDD_MIPI_1P8
1.8 V power supply for MIPI CSI/DSI PHY
4
mA
VDD_MIPI_1P0
1.0 V power supply for MIPI CSI/DSI PHY
30
mA
NVCC_SD1
NVCC_SD2
NVCC_EMC1
NVCC_EMC2
NVCC_GPIO
NVCC_DISP1
NVCC_DISP2
NVCC_LPSR
NVCC_SNVS
Imax = N x C x V x (0.5 x F)
Where:
N—Number of IO pins supplied by the power line
C—Equivalent external capacitive load
V—IO voltage
(0.5 x F)—Data change rate. Up to 0.5 of the clock rate (F)
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
29
Electrical characteristics
4.1.5
Typical power mode supply currents
Table 13 shows the current and power consumption (not including I/O) of i.MX RT1160 processors in
selected power modes.
Table 13. Typical power modes current and power consumption (Dual core)
Modes
Test conditions
Set Point #0
Active
• CM7 runs at 500 MHz, drive voltage to 1.0 V; CM4
runs at 240 MHz, drive voltage to 1.0 V
• CM7 domain bus frequency at 200 MHz; CM4
domain bus frequency at 120 MHz
• Enables ECC for cache, TCM, and OCRAM
• LDO_LPSR_ANA and LDO_LPSR_DIG are
bypassed
• 16 MHz, 400 MHz, external 24 MHz crystal, and
external 32 kHz crystal are enabled
• All PLLs are enabled
• All peripherals are enabled and run at their
maximum clock root frequency under normal
drive mode
Set Point #5
Active
Set Point #7
Active
• CM7 runs at 240 MHz, lower voltage to 0.9 V;
CM4 runs at 120 MHz, lower voltage to 0.9 V
• CM7 domain bus frequency at 100 MHz; CM4
domain bus frequency at 60 MHz
• Enables ECC for cache, TCM, and OCRAM
• LDO_LPSR_ANA and LDO_LPSR_DIG are
bypassed
• 16 MHz, 400 MHz, external 24 MHz crystal, and
external 32 kHz crystal are enabled
• All PLLs are enabled
• All peripherals are enabled and run at their
maximum clock root frequency under underdrive
mode
• CM7 runs at 200 MHz, lower voltage to 0.9 V;
CM4 is clock gated, lower voltage to 0.9 V
• CM7 domain bus frequency at 100 MHz
• Enables ECC for cache, TCM, and OCRAM
• LDO_LPSR_ANA and LDO_LPSR_DIG are
bypassed
• 16 MHz, 400 MHz, and external 32 kHz crystal
are enabled
• All PLLs are power gated
• All peripherals controlled by CM4 core are clock
gated, but remain powered
Power supplies at 3.3 V (Typical)1
Units
25 oC Tj
125 oC Tj
DCDC_IN
83.4
174.8
mA
VDD_LPSR_IN
28.1
34.2
A
VDD_SNVS_IN
4
22.1
A
Total
275.326
577.026
mW
DCDC_IN
43.3
97.6
mA
VDD_LPSR_IN
28.1
33.6
A
VDD_SNVS_IN
3.9
20.4
A
Total
142.996
322.258
mW
DCDC_IN
24.9
74.4
mA
VDD_LPSR_IN
28.1
33.1
A
VDD_SNVS_IN
3.9
19.7
A
Total
82.276
245.694
mW
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
30
NXP Semiconductors
Electrical characteristics
Table 13. Typical power modes current and power consumption (Dual core) (continued)
Set Point #9
Active
Set Point
#11 Active
Set Point
#12 Active
Set Point #0
Standby
Suspend
• CM7 is clock gated, lower voltage to 0.9 V; CM4
runs at 100 MHz, lower voltage to 0.9 V
• CM4 domain bus frequency at 50 MHz
• Enables ECC for cache, TCM, and OCRAM
• LDO_LPSR_ANA and LDO_LPSR_DIG are
bypassed
• 16 MHz, 400 MHz, and external 32 kHz crystal
are enabled
• All PLLs are power gated
• All peripherals controlled by CM7 core are clock
gated, but remain powered
• CM7 is power off; CM4 runs at 200 MHz, drive
voltage to 1.0 V
• CM4 domain bus frequency at 100 MHz
• Enables ECC for CM4 TCM and OCRAM
• DCDC is off, LDO_LPSR_ANA and
LDO_LPSR_DIG are active
• 16 MHz, 400 MHz, and external 32 kHz crystal
are enabled
• All PLLs are power gated
• The WAKEUPMIX domain, MEGAMIX domain,
and DISPLAYMIX domain are power gated
• All peripherals in LPSRMIX domain are clocked
• CM7 is power off; CM4 runs at 100 MHz, lower
voltage to 0.9 V
• CM4 domain bus frequency at 50 MHz
• Enables ECC for CM4 TCM and OCRAM
• DCDC is off, LDO_LPSR_ANA and
LDO_LPSR_DIG are active
• 16 MHz, 400 MHz, and external 32 kHz crystal
are enabled
• All PLLs are power gated
• The WAKEUPMIX domain, MEGAMIX domain,
and DISPLAYMIX domain are power gated
• All peripherals in LPSRMIX domain are clocked
•
•
•
•
System is on STANDBY mode
Both CM7 and CM4 are on SUSPEND mode
TCM with ECC is on retention
LDO_LPSR_ANA and LDO_LPSR_DIG are
bypassed
• All clock sources are turned off except for 32 kHz
RTC
• All PLLs are power gated
• All peripherals are clock gated, but remain
powered
DCDC_IN
14.5
59.9
mA
VDD_LPSR_IN
28.2
33.1
A
VDD_SNVS_IN
3.9
19.4
A
Total
47.956
197.843
mW
DCDC_IN
26.5
54.3
A
VDD_LPSR_IN
38.2
52.6
mA
VDD_SNVS_IN
3.9
19.8
A
Total
126.160
173.825
mW
DCDC_IN
26.2
53.2
A
VDD_LPSR_IN
22.9
33.3
mA
VDD_SNVS_IN
3.9
19
A
Total
75.669
110.128
mW
DCDC_IN
3
33.1
mA
VDD_LPSR_IN
29.9
43.5
A
VDD_SNVS_IN
3.9
18.8
A
Total
10.012
109.436
mW
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
31
Electrical characteristics
Table 13. Typical power modes current and power consumption (Dual core) (continued)
Set Point #5
Standby
Suspend
Set Point #7
Standby
Suspend
Set Point
#10 Standby
Suspend
Set Point
#11 Standby
Suspend
•
•
•
•
System is on STANDBY mode
Both CM7 and CM4 are on SUSPEND mode
TCM with ECC is on retention
LDO_LPSR_ANA and LDO_LPSR_DIG are
bypassed
• All clock sources are turned off except for 32 kHz
RTC
• All PLLs are power gated
• All peripherals are clock gated, but remain
powered
•
•
•
•
System is on STANDBY mode
Both CM7 and CM4 are on SUSPEND mode
TCM with ECC is on retention
LDO_LPSR_ANA and LDO_LPSR_DIG are
bypassed
• All clock sources are turned off except for 32 kHz
RTC
• All PLLs are power gated
• All peripherals are clock gated, but remain
powered
• Lower voltage to 0.8 V with RBB mode for both
SOC and LPSR domains
• System is on STANDBY mode
• Both CM7 and CM4 are on SUSPEND mode
• TCM with ECC is on retention
• LDO_LPSR_ANA and LDO_LPSR_DIG are
bypassed
• All clock sources are turned off except for 32 kHz
RTC
• All PLLs are power gated
• All peripherals are clock gated, but remain
powered
•
•
•
•
•
•
•
•
System is on STANDBY mode
CM7 is power off, CM4 is on SUSPEND mode
CM4 TCM with ECC is on retention
DCDC is off, LDO_LPSR_ANA and
LDO_LPSR_DIG are active
All clock sources are turned off except for 32 kHz
RTC
All PLLs are power gated
The WAKEUPMIX domain, MEGAMIX domain,
and DISPLAYMIX domain are power gated
All peripherals in LPSRMIX domain are clock
gated, but remain powered
DCDC_IN
2.3
24.8
mA
VDD_LPSR_IN
29.8
43.5
A
VDD_SNVS_IN
3.8
18.6
A
Total
7.701
82.045
mW
DCDC_IN
2.3
24.8
mA
VDD_LPSR_IN
29.8
43.5
A
VDD_SNVS_IN
3.8
18.6
A
Total
7.701
82.045
mW
DCDC_IN
1.8
18.7
mA
VDD_LPSR_IN
29.7
43.5
A
VDD_SNVS_IN
3.8
18.4
A
Total
6.051
61.914
mW
DCDC_IN
26.1
52.6
A
VDD_LPSR_IN
0.893
11.8
mA
VDD_SNVS_IN
3.8
18.2
A
Total
3.046
39.174
mW
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
32
NXP Semiconductors
Electrical characteristics
Table 13. Typical power modes current and power consumption (Dual core) (continued)
Set Point
#15 Standby
Suspend
SNVS
1
• Lower voltage to 0.8 V with RBB mode for LPSR
domain
• System is on STANDBY mode
• CM7 is power off, CM4 is on SUSPEND mode
• CM4 TCM with ECC is on retention
• DCDC is off, LDO_LPSR_ANA and
LDO_LPSR_DIG are active
• All clock sources are turned off except for 32 kHz
RTC
• All PLLs are power gated
• The WAKEUPMIX domain, MEGAMIX domain,
and DISPLAYMIX domain are power gated
• All peripherals in LPSRMIX domain are clock
gated, but remain powered
• Only SNVS domain is powered
• 32 kHz RTC is alive
• DCDC_IN and VDD_LPSR_IN are power gated
DCDC_IN
26.1
52.4
A
VDD_LPSR_IN
0.503
7.9
mA
VDD_SNVS_IN
3.8
18.1
A
Total
1.759
26.303
mW
DCDC_IN
0
0
A
VDD_LPSR_IN
0
0
A
VDD_SNVS_IN
3.8
18.4
A
Total
12.54
60.72
W
Code runs in the ITCM; typical values are the average values on typical process wafers.
Table 14 shows the typical wakeup time.
Table 14. Typical wakeup time1
1
Description
Typical wakeup time
Unit
From Set Point #0 Standby Suspend to Set Point #0 normal drive RUN
4.13
ms
From Set Point #5 Standby Suspend to Set Point #0 normal drive RUN
4.79
ms
From Set Point #10 Standby Suspend to Set Point #0 normal drive RUN
5.47
ms
From Set Point #15 Standby Stop to Set Point #0 normal drive RUN
7.6
ms
From SNVS mode to ROM exit
8.97
ms
Please refer to Table 13 for Set Point modes definition, and the only difference between Set Point #15 Standby Suspend mode
and Set Point #15 Standby Stop mode is the Suspend mode versus Stop mode on CM4 core.
4.2
System power and clocks
This section provides the information about the system power and clocks.
4.2.1
Power supplies requirements and restrictions
The system design must comply with power-up sequence, power-down sequence, and steady state
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation
from these sequences may result in the following situations:
• Excessive current during power-up phase
• Prevention of the device from booting
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
33
Electrical characteristics
•
Irreversible damage to the processor (worst-case scenario)
Figure 4 shows the power sequence.
VDD_SNVS_IN
VDD_SNVS_ANA
VDD_SNVS_DIG
VDD_LPSR_IN
VDD_LPSR_ANA
VDD_LPSR_DIG
DCDC_IN
1ms
DCDC_PSWITCH
VDDA_1P8
VDD_SOC_IN
ONOFF
Figure 4. Power sequence
4.2.1.1
Power-up sequence
The below restrictions must be followed:
• VDD_SNVS_IN supply must be turned on before any other power supply or be connected
(shorted) with VDD_LPSR_IN and DCDC_IN supply.
• If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other
supply is switched on.
• An RC delay circuit is recommended for providing the delay between DCDC_IN stable and
DCDC_PSWITCH. The total RC delay should be 5 – 40 ms.
• DCDC_IN must reach a minimum 3.0 V within 0.3 x RC.
• Delay from DCDC_IN stable at 3.0 V min to DCDC_PSWITCH reaching 0.5 x DCDC_IN (1.5 V)
must be at least 1 ms.
• Power up slew rate specification for other power domains is 360 V/s – 36 KV/s.
• Ensure VDD_LPSR_DIG powered prior to VDD_SOC_IN.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
34
NXP Semiconductors
Electrical characteristics
NOTE
If expect to release MCU by POR_B signal, the POR_B input must be
immediately asserted at power-up and remain asserted until the last power
rail reaches its working voltage. In the absence of an external reset feeding
the POR_B input, the internal POR module takes control. See the i.MX
RT1160 Reference Manual (IMXRT1160RM) for further details and to
ensure that all necessary requirements are being met.
NOTE
The voltage on DCDC_PSWITCH pin should be below 0.5 V before
ramping up the voltage on DCDC_PSWITCH.
NOTE
The power rail VDD_SNVS_DIG is controlled by software.
NOTE
Need to ensure that there is no back voltage (leakage) from any supply on
the board towards the 3.3 V supply (for example, from the external
components that use both the 1.8 V and 3.3 V supplies).
NOTE
USB1_VBUS, USB2_VBUS, and VDDA_ADC_3P3 are not part of the
power supply sequence and may be powered at any time.
4.2.1.2
Power-down sequence
The following restrictions must be followed:
• VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted)
with VDD_LPSR_IN and DCDC_IN supply.
• If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply
is switched off.
4.2.1.3
Power supplies usage
I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_XXXX) is OFF.
This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O
power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, Package information
and contact assignments.”
4.2.2
Internal POR and power detect
Internal detector monitors VDD_SOC_IN and VDD_LPSR_DIG. Internal POR will be asserted whenever
VDD_SOC_IN or VDD_LPSR_DIG are lower than the valid voltage values shown in the Table 15.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
35
Electrical characteristics
Table 15. Internal POR and power detect
Symbol
Description
Value
Unit
Vdetlpsr1p0_H
1.0 V supply valid
0.75
V
Vdetsoc1p0_H
1.0 V supply valid
0.75
V
The detector hysteresis
100
mV
Hystdet1p0
4.2.3
Integrated LDO voltage regulator parameters
Various internal supplies can be powered ON from internal LDO voltage regulators. The on-chip LDOs
are intended for internal use only and should not be used to power any external circuitry. See the i.MX
RT1160 Reference Manual (IMXRT1160RM) for details on the power tree scheme.
4.2.3.1
LDO_SNVS_ANA
Table 16 shows the parameters of LDO_SNVS_ANA.
Table 16. LDO_SNVS_ANA specification
Specification
Min
Typ
Max
Unit
VDD_SNVS_IN
2.4
3
3.6
V
VDD_SNVS_ANA
1.65
1.75
1.95
V
I_out
—
—
1
mA
External decoupling capacitor
—
2.2
—
F
4.2.3.2
LDO_SNVS_DIG
Table 17 shows the parameters of LDO_SNVS_DIG.
Table 17. LDO_SNVS_DIG specification
Specification
Min
Typ
Max
Unit
VDD_SNVS_ANA
1.65
1.75
1.95
V
VDD_SNVS_DIG
0.65
0.85
0.95
V
I_out
—
—
1
mA
External decoupling capacitor
—
0.22
—
F
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
36
NXP Semiconductors
Electrical characteristics
4.2.3.3
LDO_PLL
Table 18 shows the parameters of LDO_PLL.
Table 18. LDO_PLL specification
Specification
Min
Typ
Max
Unit
VDDA_1P8_IN
1.71
1.8
1.89
V
VDDA_1P0
0.9
1
1.2
V
I_out
—
—
70
mA
External decoupling capacitor
—
2.2
—
F
4.2.3.4
LPSR_LDO_DIG
LPSR_LDO_DIG provides 1.0 V power source (VDD_LPSR_DIG) from 1.8V power domain
(VDD_LPSR_ANA). The trim voltage range of LDO output is from 0.7 V to 1.15 V. There are two work
modes: Low Power mode and High Power mode. In typical PVT case, the static current consumption is
less than 3 A in Low Power mode. The maximum drive strength of this LDO regulator is 50 mA in High
Power mode.
Table 19. LPSR_LDO_DIG specification
Specification
Min
Typ
Max
Unit
VDD_LPSR_ANA
1.71
1.8
1.89
V
VDD_LPSR_DIG
0.7
1
1.15
V
I_out
—
—
50
mA
External decoupling capacitor
—
2.2
—
F
4.2.3.5
LPSR_LDO_ANA
LPSR_LDO_ANA provides 1.8 V power source (VDD_LPSR_ANA) from 3.3 V power domain
(VDD_LPSR_IN). Its default output value is 1.8 V. Two work modes are supported by this LDO: Low
Power mode and High Power mode. In Low Power mode, the LDO provides 2 mA (maximum value) by
consuming only 4 A current. In High Power mode, the LDO provides 75 mA current capacity with 40 A
static power dissipation.
Table 20. LPSR_LDO_ANA specification
Specification
Min
Typ
Max
Unit
VDD_LPSR_IN
3
3.3
3.6
V
VDD_LPSR_ANA
—
1.8
—
V
I_out
—
—
75
mA
External decoupling capacitor
—
4.7
—
F
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
37
Electrical characteristics
4.2.4
DCDC
DCDC can be configured to operate on power-save mode when the load current is less than 50 mA. During
the power-save mode, the converter operates with reduced switching frequency in PFM mode and with a
minimum quiescent current to maintain high efficiency.
DCDC can detect the peak current in the P-channel switch. When the peak current exceeds the threshold,
DCDC will give an alert signal, and the threshold can be configured. By this way, DCDC can roughly
detect the current loading.
DCDC also includes the following protection functions:
• Over current protection. In run mode, DCDC shuts down when detecting abnormal large current in
the P-type power switch.
• Over voltage protection. DCDC shuts down when detecting the output voltage is too high.
• Low voltage detection. DCDC shuts down when detecting the input voltage is too low.
On-chip regulators are designed to power on-chip load only. Do not use on-chip regulators to power
external loads. DCDC_DIG is used to power VDD_SOC_IN. DCDC_ANA is a low-noise power rail used
to power on-chip analog loads only.
Table 21 shows DCDC characteristics.
Input voltage refers to DCDC_IN balls. 1.0 V output refers to DCDC_DIG balls. 1.8 V output refers to
DCDC_ANA balls.
Table 21. DCDC characteristics1
Description
Input voltage
Min
Typ
Max
Unit
Comments
3
3.3
3.6
V
—
• 1.0 V output
0.6
1
1.375
V
25 mV per step
• 1.8 V output
1.5
1.8
2.275
V
25 mV per step
• 1.0 V output
—
150
850
mA
—
• 1.8 V output
—
80
150
mA
Consider 1.8 V supply
currents in Table 12 to
ensure no DCDC
overload. Add currents
for active modules per
use case.
• DCDC run mode
—
80%
—
—
150 mA@vdd1p0
80 mA@vdd1p8
• DCDC low power mode
—
80%
—
—
300 A@vdd1p0
300 A@vdd1p8
Output voltage
Loading
Efficiency
Output voltage accuracy
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
38
NXP Semiconductors
Electrical characteristics
Table 21. DCDC characteristics1
Description
Min
Typ
Max
Unit
Comments
• DCDC Run mode
-2.5%
—
2.5%
—
Maximum 50 mV
Vp-p@vdd1p0
• DCDC Low power mode
-6%
—
6%
—
—
Over current detection
—
1.5
—
A
The typical value can be
configured as 1.5 A and
2 A by register.
• Output 1.8 V
—
2.5
2.75
V
—
• Output 1.0 V
—
1.5
1.65
V
—
• Low DCDC_IN detection
—
2.6
2.8
V
—
Leakage current
—
3
—
A
DCDC off
• DCDC Run mode
—
150
—
A
—
• DCDC Low power mode
—
5
—
A
—
Capacitor value
—
33
(DCDC_ANA)
66
(DCDC_DIG)
—
F
High frequency
capacitor are also
required.
Inductor value
—
4.7
—
H
—
• Saturation current
—
1
—
A
—
Over voltage detection
Quiescent current
1
Values in this table are based on CZ test with limited matrix samples in lab environment.
For additional information, see the i.MX RT1160 Reference Manual (IMXRT1160RM).
4.2.5
PLL’s electrical characteristics
This section provides PLL electrical characteristics.
4.2.5.1
Audio/Video PLL’s electrical parameters
Table 22. Audio/Video PLL’s electrical parameters
Parameter
Min
Typ
Max
Unit
650
—
1300
MHz
Reference clock
—
24
—
MHz
Lock time
—
—
11250
reference cycles
Clock output range
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
39
Electrical characteristics
Table 22. Audio/Video PLL’s electrical parameters (continued)
Parameter
Min
Typ
Max
Unit
—
50
—
ps
48.5
—
51.5
%
Period jitter (p2p)
Duty cycle
4.2.5.2
528 MHz PLL
Table 23. 528 MHz PLL’s electrical parameters
Parameter
Min
Typ
Max
Unit
Clock output range
—
—
528
MHz
Reference clock
—
24
—
MHz
Lock time
—
—
11250
reference cycles
Period jitter (p2p)
—
50
—
ps
PFD period jitter (p2p)
—
100
—
ps
Duty cycle
45
—
55
%
4.2.5.3
Ethernet PLL
Table 24. Ethernet PLL’s electrical parameters
Parameter
Min
Typ
Max
Unit
Clock output range
—
—
1000
MHz
Reference clock
—
24
—
MHz
Lock time
—
—
11250
reference cycles
Period jitter (p2p)
—
50
—
ps
47.5
—
52.5
%
Duty cycle
4.2.5.4
480 MHz PLL
Table 25. 480 MHz PLL’s electrical parameters
Parameter
Min
Typ
Max
Unit
Clock output range
—
—
480
MHz
Reference clock
—
24
—
MHz
Lock time
—
—
383
reference cycles
Period jitter (p2p)
—
40
—
ps
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
40
NXP Semiconductors
Electrical characteristics
Table 25. 480 MHz PLL’s electrical parameters (continued)
Parameter
Min
Typ
Max
Unit
PFD period jitter (p2p)
—
125
—
ps
Duty cycle
45
—
55
%
4.2.5.5
Arm PLL
Table 26. Arm PLL’s electrical parameters
Parameter
Min
Typ
Max
Unit
156
—
2496
MHz
Reference clock
—
24
—
MHz
Lock time
—
—
2250
reference cycles
Period jitter (p2p)
—
15
—
ps
Duty cycle
45
—
55
%
Clock output range
4.2.6
On-chip oscillators
The system oscillator (SYS OSC) is a crystal oscillator. The SYS OSC, in conjunction with an external
crystal or resonator, generates a reference clock for this chip. It also provides the option for an external
input clock to XTALI signal directly.
Table 27. 24 MHz system oscillator frequency specifications
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
24 MHz
—
0.5
—
mA
24 MHz
—
1.3
—
mA
IVDDA (Low power mode) Analog supply current
IVDDA (High gain mode)
RF
RS
Analog supply current
Feedback resistor
Low-power mode
High-gain mode
—
1
—
M
—
—
0
—
k
Series resistor1
CXCY
XTALI/XTALO load capacitance
Cpara
Parasitically capacitance of
XTALI and XTALO
No need
See crystal or resonator manufacture’s recommendation
—
—
1.5
2.0
pF
Clock output
FOSC
Oscillator crystal or resonator
frequency
—
—
24
—
MHz
tdcy
Duty-cycle of the output clock
—
40
50
60
%
Dynamic parameters
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
41
Electrical characteristics
Table 27. 24 MHz system oscillator frequency specifications (continued)
Symbol
VPP
tstart
1
2
Parameter
Peak-peak amplitude of
oscillation
Start-up time from
OSC_24M_CNTL[OSC_EN] set
to oscillator stable2
Conditions
Min
Typ
Max
Unit
Low-power mode
—
0.8
—
V
High gain mode
0.75x
VDDA_
1P8_IN
0.8 x
VDDA_
1P8_IN
—
V
24 MHz low-power
mode
—
250
—
s
24 MHz high-gain
mode
—
250
—
s
Depends on the drive level of external crystal device
Oscillator hardware default is OFF at power-up, so requires firmware or software to enable.
Each i.MX RT1160 processor has two external input system clocks: a low frequency (RTC_XTALI) and
a high frequency (XTALI).
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,
power-down real time clock operation, and slow system and watch-dog counters. The clock input can be
connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is
an internal ring oscillator, which can be used instead of the clock source from RTC_XTALI. The internal
ring oscillator does not provide an accurate frequency and is affected by process, voltage, and temperature
variations. NXP recommends using an external crystal as the clock source for RTC_XTALI. If the internal
clock oscillator is used instead, careful consideration should be given to the timing implications on all of
the SoC modules dependent on this clock.
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other
peripherals. The system clock input can be connected to either external oscillator or a crystal using internal
oscillator amplifier.
Table 28. 32 kHz oscillator specifications
Symbol
Cpara
Vpp
fosc_lo
tstart
Vec_extal32
1
2
Description
Min
Typ
Max
Unit
Note
Parasitically capacitance of RTC_XTALI
and RTC_XTALO
—
1.5
2.0
pF
—
Peak-to-peak amplitude of oscillator
—
0.6
—
V
1
Oscillator crystal
—
32.768
—
kHz
—
Crystal startup time from VDD_SNVS_ANA
ramp-up to minimum operating voltage to
oscillator stable
—
500
—
ms
1
Externally provided input clock amplitude
0.7
—
VDD_SNVS
_ANA
V
2,3
Proper PCB layout procedures must be followed to achieve specifications.
This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The
oscillator remains enabled and XTAL32 must be left unconnected.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
42
NXP Semiconductors
Electrical characteristics
3
The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock
must be within the range of VSS to VDD_SNVS_ANA.
The RTC OSC module provides the clock source for the Real-Time Clock module. The RTC OSC module,
in conjunction with an external crystal, generates a 32.768 kHz reference clock for the RTC.
Table 29. RC oscillator with 16 MHz internal reference frequency
Symbol
Parameter
Condition
Min
Typ
Max
Unit
—
15.1
16
16.9
MHz
Start-up time from
VDD_LPSR_ANA ramp-up to
minimum operating voltage to
oscillator stable
—
—
50
—
s
Supply current in power-down
—
1
2
95
nA
Clock output
Fclkout_16M
Clock frequency
Dynamic parameters
Tstart_16M
Power-down mode
IVDDA
Table 30. RC oscillator with 48 MHz internal reference frequency
Symbol
Parameter
Condition
Min
Typ
Max
Unit
Analog supply current
—
—
350
500
A
Clock frequency
—
—
48
—
MHz
Start-up time from
VDD_LPSR_ANA ramp-up to
minimum operating voltage to
oscillator stable
—
—
2.5
—
s
Trimmed
—
-2
—
2
%
General
IVDDA
Clock output
Fclkout
Dynamic parameters
Tstart
Accuracy
Ttarget
Table 31. RC oscillator with 400 MHz internal reference frequency
Symbol
Parameter
Condition
Min
Typ
Max
Unit
General
IVDD_1P8V_ON
Analog supply current
—
—
60
—
A
IVDD_ON
Digital supply current
—
—
80
—
A
Clock output
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
43
Electrical characteristics
Table 31. RC oscillator with 400 MHz internal reference frequency (continued)
Symbol
Condition
Min
Typ
Max
Unit
Tuned clock frequency
—
—
400
—
MHz
Frequency error after tuning
—
—
0.1
—
%
Peak-peak, period jitter
—
—
50
—
ps
tstart
Start-up time from
OSC_400M_CTRL1[PWD] is
cleared to oscillator stable1
—
—
1
—
s
ttune
Tuning time
—
1
—
256
s
F_tuned
ΔF/F
Parameter
Dynamic parameters
JPP-CC
1
Oscillator hardware default is OFF at power-up, so requires firmware or software to enable.
Table 32. RC oscillator with 32 kHz internal reference frequency
Symbol
firc32k
Internal reference frequency
Δfirc32k
4.3
Description
Deviation of IRC32K frequency
Min
Typ
Max
Unit
Note
—
32
—
kHz
—
-25%
—
25%
%firc32k
—
I/O parameters
This section provides parameters on I/O interfaces.
4.3.1
I/O DC parameters
This section includes the DC parameters of the following I/O types:
• XTALI and RTC_XTALI (Clock Inputs) DC Parameters
• General Purpose I/O (GPIO)
NOTE
The term ‘NVCC_XXXX’ in this section refers to the associated supply rail
of an input or output.
NOTE
When enable the open drain for I/O pad, the external pull-up voltage cannot
exceed the associated supply rail.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
44
NXP Semiconductors
Electrical characteristics
Figure 5. Circuit for parameters Voh and Vol for I/O cells
4.3.1.1
XTALI and RTC_XTALI (clock inputs) DC parameters
Table 33 shows the DC parameters for the clock inputs.
Table 33. XTALI and RTC_XTALI DC parameters1
Parameter
Symbol
Test Conditions
Min
Max
Unit
XTALI high-level DC input voltage
Vih
—
VDDA_1P8_IN - 0.5
VDDA_1P8_IN
V
XTALI low-level DC input voltage
Vil
—
0
0.5
V
RTC_XTALI high-level DC input voltage
Vih
—
VDD_SNVS_ANA - 0.5
VDD_SNVS_ANA
V
RTC_XTALI low-level DC input voltage
Vil
—
0
0.5
V
1
The DC parameters are for external clock input only.
4.3.1.2
General purpose I/O (GPIO) DC parameters
Following section introduces the GPIO DC parameters, respectively, for GPIO pads. These parameters are
guaranteed per the operating ranges in Table 11 unless otherwise noted.
Table 34. DC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1
bank
Parameter
Symbol
Value
Min
Typ
Max
Unit
Condition
Receiver 3.3 V
High level input voltage
VIH
0.625 x NVCC
—
NVCC + 0.3
V
—
Low level input voltage
VIL
-0.3
—
0.25 x NVCC
V
—
Receiver 1.8 V
High level input voltage
VIH
0.65 x NVCC
—
NVCC + 0.3
V
—
Low level input voltage
VIL
-0.3
—
0.35 x NVCC
V
—
Driver 3.3 V and driver 1.8 V for PDRV = L and PDRV = H
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
45
Electrical characteristics
Table 34. DC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1
bank (continued)
Parameter
Symbol
Output high current
Value
Unit
Condition
—
mA
VOH = 0.8 x NVCC
—
—
mA
VOL = 0.2 x NVCC
—
100
mA
—
Min
Typ
Max
IOH
-6
—
Output low current
IOL
6
Output low/high current total
for each IO bank
IOCT
—
Weak pull-up and pull-down
Pull-up / pull-down resistance
RHigh
10
—
100
k
High voltage range
(2.7 V - 3.6 V)
Pull-up / pull-down resistance
RLow
20
—
50
k
Low voltage range
(1.65 V - 1.95 V)
Table 35. DC specification for GPIO_SNVS bank1
Parameter
Symbol
Min
Typ2
Max
Unit
Condition
High level input voltage
VIH
0.7 x
NVCC_SNVS
—
NVCC_SNVS +
0.1
V
—
Low level input voltage
VIL
-0.3
—
0.3 x
NVCC_SNVS
V
—
Output high current
IOH
—
-45
—
A
VOH =
NVCC_SNVS - 0.3
Output low current
IOL
—
50
—
A
VOL = 0.3
Output low/high current total for
GPIO_SNVS bank
IOCT
—
—
1
mA
—
600
k
—
Weak pull-up and pull-down
Pull-up and pull-down
resistance
1
2
RHigh/
RLow
100
200
By default, functionality of GPIO_SNVS_XX port is determined by the part number. Tamper function is available only on
tamper-enabled parts, and GPIO is the only available function on parts which do not support tamper.
Typical numbers are not guaranteed.
Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank
NO.
Characteristics
Test Conditions
Min
Max
Units
1
Input high voltage (VIH)
Normal voltage range
0.7 x NVCC
NVCC + 0.1
V
Derated voltage range
0.75 x NVCC
NVCC + 0.1
V
Derated2 voltage range
0.75 x NVCC
NVCC + 0.1
V
Low voltage range
0.7 x NVCC
NVCC + 0.1
V
High voltage range
0.7 x NVCC
NVCC + 0.1
V
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
46
NXP Semiconductors
Electrical characteristics
Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)
NO.
Characteristics
Test Conditions
Min
Max
Units
2
Input low voltage (VIL)
Normal voltage range
- 0.3
0.3 x NVCC
V
Derated voltage range
- 0.3
0.25 x NVCC
V
Derated2 voltage range
- 0.3
0.25 x NVCC
V
Low voltage range
- 0.3
0.3 x NVCC
V
High voltage range
- 0.3
0.3 x NVCC
V
3
Input Hysteresis (VHYSN)
All voltage range
0.06 x NVCC
—
V
4
Output high voltage (VOH)
DSE = 1
Normal voltage range
IOH = -10 mA
NVCC - 0.5
—
V
Derated voltage range
IOH = -6 mA
NVCC - 0.5
—
V
Derated2 voltage range
IOH = -5 mA
NVCC - 0.5
—
V
Low voltage range
IOH = -10 mA
NVCC - 0.5
—
V
High voltage range
IOH = -10 mA
NVCC - 0.5
—
V
Normal voltage range
IOH = -5 mA
NVCC - 0.5
—
V
Derated voltage range
IOH = -3 mA
NVCC - 0.5
—
V
Derated2 voltage range
IOH = -2.5 mA
NVCC - 0.5
—
V
Low voltage range
IOH = -5 mA
NVCC - 0.5
—
V
High voltage range
IOH = -5 mA
NVCC - 0.5
—
V
Normal voltage range
IOL = 10 mA
—
0.5
V
Derated voltage range
IOL = 6 mA
—
0.5
V
Derated2 voltage range
IOL = 5 mA
—
0.5
V
Low voltage range
IOL = 10 mA
—
0.5
V
High voltage range
IOL = 10 mA
—
0.5
V
5
6
Output high voltage (VOH)
DSE = 0
Output low voltage (VOL)
DSE = 1
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
47
Electrical characteristics
Table 36. DC specification for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)
NO.
Characteristics
Test Conditions
Min
Max
Units
7
Output low voltage (VOL)
DSE = 0
Normal voltage range
IOL = 5 mA
—
0.5
V
Derated voltage range
IOL = 3 mA
—
0.5
V
Derated2 voltage range
IOL = 2.5 mA
—
0.5
V
Low voltage range
IOL = 5 mA
—
0.5
V
High voltage range
IOL = 5 mA
—
0.5
V
Normal voltage range
2.7
3.6
V
Derated voltage range
1.98
2.7
V
Derated2 voltage range
1.71
1.98
V
Low voltage range
1.71
1.98
V
High voltage range
3
3.6
V
8
NVCC
11
Pull-up resistor range (RPU)
Measure @VDD
All voltage range
25
50
k
12
Pull-down resistor range
(RPD)
Measure @VSS
All voltage range
25
50
k
13
Input leakage current
All voltage range
—
1
A
14
Output capacitance (CL)
All voltage range
—
15
pF
15
Input capacitance (Cin)
All voltage range
—
5
pF
16
Output low/high current
total for each IO bank (IOCT)
All voltage range
—
100
mA
4.3.2
I/O AC parameters
The GPIO and DDR I/O load circuit and output transition time waveform are shown in Figure 6 and
Figure 7.
From Output
Under Test
Test Point
CL
CL includes package, probe and fixture capacitance
Figure 6. Load circuit for output
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
48
NXP Semiconductors
Electrical characteristics
80%
80%
20%
0V
20%
Output (at pad)
tf
tr
OVDD
Figure 7. Output transition time waveform
4.3.2.1
General purpose I/O (GPIO) AC parameters
The I/O AC parameters for GPIO are presented in the Table 37 and Table 38, respectively.
Table 37. AC specification for GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1
bank
Symbol
Parameter
Test Condition
Min
Typ
Max
Unit
208
MHz
Driver 1.8 V application
fmax
Maximum frequency
Load = 21 pF (PDRV = L, high drive,
33
Load = 15 pF (PDRV = H, low drive,
50
—
—
tr
Rise time
Measured between VOL and VOH
0.4
—
1.32
ns
tf
Fall time
Measured between VOH and VOL
0.4
—
1.32
ns
Load = 20 pF
—
—
200
MHz
Driver 3.3 V application
fmax
Maximum frequency
tr
Rise time
Measured between VOL and VOH
—
—
3
ns
tf
Fall time
Measured between VOH and VOL
—
—
3
ns
Table 38. Dynamic input characteristics for
GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank
Symbol
Test Condition1, 2
Parameter
Min
Max
Unit
—
200
MHz
—
208
MHz
Dynamic Input Characteristics for 3.3 V Application
fop
Input frequency of operation
—
Dynamic Input Characteristics for 1.8 V Application
fop
1
2
Input frequency of operation
—
For all supply ranges of operation.
The dynamic input characteristic specifications are applicable for the digital bidirectional cells.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
49
Electrical characteristics
Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank
NO.
Characteristic
1
fmax
2
Pad rise/fall time (DSE = 0, SRE = 0)
3
4
Pad rise/fall time (DSE = 0, SRE = 1)
Pad rise/fall time (DSE = 1, SRE = 0)
Condition
Min
Max
Unit
Cload = 15 pF
—
104
MHz
Normal voltage range
(Cload = 15 pF)
—
3
ns
Derated voltage range
(Cload = 15 pF)
—
5
ns
Derated2 voltage range
(Cload = 15 pF)
—
6
ns
Low voltage range
(Cload = 15 pF)
—
3
ns
High voltage range
(Cload = 15 pF)
—
3
ns
Normal voltage range
(Cload = 15 pF)
—
6
ns
Derated voltage range
(Cload = 15 pF)
—
10
ns
Derated2 voltage range
(Cload = 15 pF)
—
12
ns
Low voltage range
(Cload = 15 pF)
—
6
ns
High voltage range
(Cload = 15 pF)
—
6
ns
Normal voltage range
(Cload = 15 pF)
—
2.5
ns
Derated voltage range
(Cload = 15 pF)
—
4.5
ns
Derated2 voltage range
(Cload = 15 pF)
—
5
ns
Low voltage range
(Cload = 15 pF)
—
2.5
ns
High voltage range
(Cload = 15 pF)
—
2.5
ns
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
50
NXP Semiconductors
Electrical characteristics
Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)
NO.
Characteristic
Condition
Min
Max
Unit
5
Pad rise/fall time (DSE = 1, SRE = 1)
Normal voltage range
(Cload = 15 pF)
—
5
ns
Derated voltage range
(Cload = 15 pF)
—
9
ns
Derated2 voltage range
(Cload = 15 pF)
—
10
ns
Low voltage range
(Cload = 15 pF)
—
5
ns
High voltage range
(Cload = 15 pF)
—
5
ns
Normal voltage range
(Cload = 15 pF)
—
2.5
ns
Derated voltage range
(Cload = 15 pF)
—
4.5
ns
Derated2 voltage range
(Cload = 15 pF)
—
5
ns
Low voltage range
(Cload = 15 pF)
—
2.5
ns
High voltage range
(Cload = 15 pF)
—
4
ns
Normal voltage range
(Cload = 15 pF)
—
7
ns
Derated voltage range
(Cload = 15 pF)
—
12
ns
Derated2 voltage range
(Cload = 15 pF)
—
14
ns
Low voltage range
(Cload = 15 pF)
—
7
ns
High voltage range
(Cload = 15 pF)
—
8.5
ns
Normal voltage range
(Cload = 15 pF)
—
2
ns
Derated voltage range
(Cload = 15 pF)
—
3.6
ns
Derated2 voltage range
(Cload = 15 pF)
—
4
ns
Low voltage range
(Cload = 15 pF)
—
2
ns
High voltage range
(Cload = 15 pF)
—
4
ns
6
7
8
IPP_DO to pad propagation delay:
(DSE = 0, SRE = 0)
IPP_DO to pad propagation delay:
(DSE = 0, SRE = 1)
IPP_DO to pad propagation delay:
(DSE = 1, SRE = 0)
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
51
Electrical characteristics
Table 39. AC specifications for GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank (continued)
NO.
9
Characteristic
IPP_DO to pad propagation delay:
(DSE = 1, SRE = 1)
Condition
Min
Max
Unit
Normal voltage range
(Cload = 15 pF)
—
6
ns
Derated voltage range
(Cload = 15 pF)
—
11
ns
Derated2 voltage range
(Cload = 15 pF)
—
12
ns
Low voltage range
(Cload = 15 pF)
—
6
ns
High voltage range
(Cload = 15 pF)
—
7.5
ns
Figure 8 is the GPIO block diagram.
IPP_OBE
IPP_DSE
OUTPUT
DRIVER
IPP_DO
Pad
IPP_SRE
IPP_PUE
IPP_PUS
IOMUX/IOMUXC
PU/PD logic
PU/PD device
IPP_IBE
IPP_IND
IPP_HYS
INPUT RECEIVER
Figure 8. GPIO block diagram
4.4
System modules
This section contains the timing and electrical parameters for the modules in the i.MX RT1160 processor.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
52
NXP Semiconductors
Electrical characteristics
4.4.1
Reset timing parameters
Figure 9 shows the POR reset timing and Table 40 lists the timing parameters.
POR_B
(Input)
CC1
Figure 9. POR reset timing diagram
Table 40. POR reset timing parameters
ID
CC1
4.4.2
Parameter
Duration of POR_B to be qualified as valid.
Min
Max
Unit
1
—
RTC_XTALI cycle
WDOG reset timing parameters
Figure 10 shows the WDOG reset timing and Table 41 lists the timing parameters.
WDOG_B
(Output)
CC3
Figure 10. WDOG_B timing diagram
Table 41. WDOG_B timing parameters
ID
CC3
Parameter
Duration of WDOG_B Assertion
Min
Max
Unit
1
—
RTC_XTALI cycle
NOTE
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or
approximately 30 s.
NOTE
WDOG_B output signals (for each one of the Watchdog modules) do not have
dedicated pins, but are muxed out through the IOMUX. See the IOMUX
manual for detailed information.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
53
Electrical characteristics
4.4.3
JTAG Controller timing parameters
Figure 11 depicts the JTAG controller timing. Figure 12 depicts the JTAG TRST_B timing.
Figure 11. JTAG controller timing
Figure 12. JTAG_TRST_B timing
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
54
NXP Semiconductors
Electrical characteristics
Table 42. JTAG timing parameters
ID
Parameter
Value
Min
Max
Unit
J0
TCK frequency
—
25
MHz
J1
TCK cycle time
40
—
ns
J2
TCK pulse width
20
—
ns
J3
Input data setup time
5
—
ns
J4
Input data hold time
5
—
ns
J5
Output data valid time
—
15.2
ns
J6
Output high impedance time
—
15.2
ns
J7
TRST_B assert time
100
—
ns
J8
TRST_B setup time to TCK edge
18
—
ns
4.4.4
SWD timing parameters
Figure 13 depicts the SWD timing.
Figure 13. SWD timing
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
55
Electrical characteristics
Table 43. SWD timing parameters
Symbol
Description
Min
Max
Unit
S0
SWD_CLK frequency
—
50
MHz
S1
SWD_CLK cycle time
20
—
ns
S2
SWD_CLK pulse width
10
—
ns
S3
Input data setup time
5
—
ns
S4
Input data hold time
1
—
ns
S5
Output data valid time
—
14.4
ns
S6
Output high impedance time
—
14.4
ns
Min
Max
Unit
4.4.5
Trace timing parameters
Figure 14 depicts the trace timing.
T1
T2
T2
TRACE_CLK (output)
T3
T4
T3
T4
TRACE0-3 (output)
Figure 14. Trace timing
Table 44. Trace timing parameters
Symbol
Description
T0
TRACE_CLK frequency
—
70
MHz
T1
TRACE_CLK cycle time
1/T0
—
ns
T2
TRACE_CLK pulse width
6
—
ns
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
56
NXP Semiconductors
Electrical characteristics
Table 44. Trace timing parameters (continued)
Symbol
Description
Min
Max
Unit
T3
TRACE data setup time
2
—
ns
T4
TRACE data hold time
0.7
—
ns
4.5
External memory interface
The following sections provide information about external memory interfaces.
4.5.1
SEMC specifications
The following sections provide information on SEMC interface.
Measurements are with a load of 15 pf and an input slew rate of 1 V/ns.
4.5.1.1
SEMC output timing
There are ASYNC and SYNC modes for SEMC output timing.
4.5.1.1.1
SEMC output timing in ASYNC mode
Table 45 shows SEMC output timing in ASYNC mode.
Table 45. SEMC output timing in ASYNC mode
Symbol
Min.
Max.
Unit
Frequency of operation
—
200
MHz
TCK
Internal clock period
5
—
ns
TAVO
Address output valid time
—
2
ns
—
ns
2
ns
—
ns
2
3
1
TAHO
Address output hold time
(TCK - 2)
TADVL
Active low time
(TCK - 1) 2
TDVO
Data output valid time
—
TDHO
Data output hold time
(TCK - 2) 3
TWEL
1
Parameter
WE# low time
(TCK - 1)
4
ns
Comment
These timing parameters
apply to Address and ADV#
for NOR/PSRAM in ASYNC
mode.
These timing parameters
apply to Data/CLE/ALE and
WE# for NAND, apply to
Data/DM/CRE for
NOR/PSRAM, apply to
Data/DCX and WRX for DBI
interface.
Address output hold time is configurable by SEMC_*CR0.AH. AH field setting value is 0x0 in above table. When AH is set
with value N, TAHO min time should be ((N + 1) x TCK). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more
detail about SEMC_*CR0.AH register field.
ADV# low time is configurable by SEMC_*CR0.AS. AS field setting value is 0x0 in above table. When AS is set with value N,
TADL min time should be ((N + 1) x TCK - 1). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail about
SEMC_*CR0.AS register field.
Data output hold time is configurable by SEMC_*CR0.WEH. WEH field setting value is 0x0 in above table. When WEH is set
with value N, TDHO min time should be ((N + 1) x TCK). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more
detail about SEMC_*CR0.WEH register field.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
57
Electrical characteristics
4
WE# low time is configurable by SEMC_*CR0.WEL. WEL field setting value is 0x0 in above table. When WEL is set with value
N, TWEL min time should be ((N + 1) x TCK - 1). See the i.MX RT1160 Reference Manual (IMXRT1160RM) for more detail
about SEMC_*CR0.WEL register field.
Figure 15 shows the output timing in ASYNC mode.
4#+
)NTERNALCLOCK
!$$2
!
4!(/
4!6/
!$6
$
$!4!
4$(/
4$6/
7%
Figure 15. SEMC output timing in ASYNC mode
4.5.1.1.2
SEMC output timing in SYNC mode
Table 46 shows SEMC output timing in SYNC mode.
Table 46. SEMC output timing in SYNC mode
Symbol
Min.
Max.
Unit
Comment
Frequency of operation
—
200
MHz
—
Internal clock period
5
—
ns
—
TDVO
Data output valid time
—
0.6
ns
TDHO
Data output hold time
-0.7
—
ns
TCK
Parameter
These timing parameters apply to
Address/Data/DM/CKE/control
signals with SEMC_CLK for
SDRAM.
Figure 16 shows the output timing in SYNC mode.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
58
NXP Semiconductors
Electrical characteristics
3%-#?#,+
4$6/
$!4!
4$(/
$
Figure 16. SEMC output timing in SYNC mode
4.5.1.2
SEMC input timing
There are ASYNC and SYNC modes for SEMC input timing.
4.5.1.2.1
SEMC input timing in ASYNC mode
Table 47 shows SEMC input timing in ASYNC mode.
Table 47. SEMC input timing in ASYNC mode
Symbol
Parameter
Min.
Max.
Unit
Comment
For NAND/NOR/PSRAM/DBI,
these timing parameters apply
to RE# and Read Data.
TIS
Data input setup
7.1
—
ns
TIH
Data input hold
0
—
ns
Figure 17 shows the input timing in ASYNC mode.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
59
Electrical characteristics
.!.$NON
%$/MODEAND./2032!-TIMING
/%
$!4!
$
4)3
$
4)(
.!.$%$/MODETIMING
/%
$!4!
$
$
4)3 4)(
Figure 17. SEMC input timing in ASYNC mode
4.5.1.2.2
SEMC input timing in SYNC mode
Table 48 and Table 49 show SEMC input timing in SYNC mode.
Table 48. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x0)
Symbol
Parameter
Min.
Max.
Unit
TIS
Data input setup
8.67
—
ns
TIH
Data input hold
0
—
ns
Comment
—
Table 49. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1)
Symbol
Parameter
Min.
Max.
Unit
TIS
Data input setup
0.6
—
ns
TIH
Data input hold
1
—
ns
Comment
—
Figure 18 shows the input timing in SYNC mode.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
60
NXP Semiconductors
Electrical characteristics
3%-#?#,+
$!4!
3%-#?$13
$
4)3
4)(
Figure 18. SEMC input timing in SYNC mode
4.5.2
FlexSPI parameters
Measurements are with a load 15 pf and input slew rate of 1 V/ns.
4.5.2.1
FlexSPI input/read timing
There are three sources for the internal sample clock for FlexSPI read data:
• Dummy read strobe generated by FlexSPI controller and looped back internally
(FlexSPIn_MCR0[RXCLKSRC] = 0x0)
• Dummy read strobe generated by FlexSPI controller and looped back through the
DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1)
• Read strobe provided by memory device and input from DQS pad
(FlexSPIn_MCR0[RXCLKSRC] = 0x3)
The following sections describe input signal timing for each of these three internal sample clock sources.
4.5.2.1.1
SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1
Table 50. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0
Symbol
Parameter
Frequency of operation
Min
Max
Unit
—
60
MHz
TIS
Setup time for incoming data
8.67
—
ns
TIH
Hold time for incoming data
0
—
ns
Table 51. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1
Symbol
Parameter
Min
Max
Unit
Frequency of operation
—
133
MHz
TIS
Setup time for incoming data
2
—
ns
TIH
Hold time for incoming data
1
—
ns
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
61
Electrical characteristics
SCK
TIS
TIH
TIS
TIH
SIO[0:7]
Internal Sample Clock
Figure 19. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0, 0X1
NOTE
Timing shown is based on the memory generating read data on the SCK
falling edge, and FlexSPI controller sampling read data on the falling edge.
4.5.2.1.2
SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3
There are two cases when the memory provides both read data and the read strobe in SDR mode:
• A1—Memory generates both read data and read strobe on SCK rising edge (or falling
edge)
• A2—Memory generates read data on SCK falling edge and generates read strobe on
SCK rising edge
Table 52. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A1)
Symbol
TSCKD - TSCKDQS
Value
Parameter
Min
Unit
Max
Frequency of operation
—
166
MHz
Time delta between TSCKD and TSCKDQS
-2
2
ns
SCK
TSCKD
TSCKD
SIO[0:7]
TSCKDQS
TSCKDQS
DQS
Figure 20. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A1)
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
62
NXP Semiconductors
Electrical characteristics
NOTE
Timing shown is based on the memory generating read data and read strobe
on the SCK rising edge. The FlexSPI controller samples read data on the
DQS falling edge.
Table 53. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case A2)
Symbol
TSCKD - TSCKDQS
Value
Parameter
Min
Unit
Max
Frequency of operation
—
166
MHz
Time delta between TSCKD and TSCKDQS
-2
2
ns
SCK
TSCKD
TSCKD
TSCKD
SIO[0:7]
TSCKDQS
TSCKDQS
TSCKDQS
DQS
Internal Sample Clock
Figure 21. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (case A2)
NOTE
Timing shown is based on the memory generating read data on the SCK
falling edge and read strobe on the SCK rising edge. The FlexSPI controller
samples read data on a half cycle delayed DQS falling edge.
4.5.2.1.3
DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1
Table 54. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0
Symbol
Parameter
Frequency of operation
Min
Max
Unit
—
30
MHz
TIS
Setup time for incoming data
8.67
—
ns
TIH
Hold time for incoming data
0
—
ns
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
63
Electrical characteristics
Table 55. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1
Symbol
Parameter
Min
Max
Unit
Frequency of operation
—
66
MHz
TIS
Setup time for incoming data
2
—
ns
TIH
Hold time for incoming data
1
—
ns
SCLK
TIS
TIH
TIS
TIH
SIO[0:7]
Internal Sample Clock
Figure 22. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1
4.5.2.1.4
DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3
There are two cases when the memory provides both read data and the read strobe in DDR mode:
• B1—Memory generates both read data and read strobe on SCK edges
• B2—Memory generates read data on SCK edges and generates read strobe on SCK2
edges
Table 56. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1)
Symbol
TSCKD - TSCKDQS
Parameter
Min
Max
Unit
Frequency of operation
—
166
MHz
Time delta between TSCKD and TSCKDQS
-1
1
ns
SCK
TSCKD
SIO[0:7]
TSCKDQS
DQS
Figure 23. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1)
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
64
NXP Semiconductors
Electrical characteristics
Table 57. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2)
Symbol
TSCKD - TSCKDQS
Parameter
Min
Max
Unit
Frequency of operation
—
166
MHz
Time delta between TSCKD and TSCKDQS
-1
1
ns
SCK
TSCKD
SIO[0:7]
SCK2
TSCK2DQS
DQS
Figure 24. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2)
4.5.2.2
FlexSPI output/write timing
The following sections describe output signal timing for the FlexSPI controller including control signals
and data outputs.
4.5.2.2.1
SDR mode
Table 58. FlexSPI output timing in SDR mode
Symbol
Parameter
Min
Max
Unit
Frequency of operation
—
1661
MHz
Tck
SCK clock period
6.0
—
ns
TDVO
Output data valid time
—
4
ns
TDHO
Output data hold time
2
—
ns
TCSS
Chip select output setup time
3 x TCK - 1
—
ns
TCSH
Chip select output hold time
3 x TCK + 2
—
ns
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing
specifications.
NOTE
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the
default values are shown above. Please refer to the i.MXRT1160 Reference
Manual (IMXRT1160RM) for more details.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
65
Electrical characteristics
SCK
T CSS
TCSH
T CK
CS
TDVO
TDVO
SIO[0:7]
TDHO
TDHO
Figure 25. FlexSPI output timing in SDR mode
4.5.2.2.2
DDR mode
Table 59. FlexSPI output timing in DDR mode
Symbol
Parameter
Min
Max
Unit
Frequency of operation1
—
166
MHz
Tck
SCK clock period (FlexSPIn_MCR0[RXCLKSRC] = 0x0)
6.0
—
ns
TDVO
Output data valid time
—
2.2
ns
TDHO
Output data hold time
0.8
—
ns
TCSS
Chip select output setup time
3 x TCK / 2 - 0.7
—
ns
TCSH
Chip select output hold time
3 x TCK / 2 + 0.8 —
ns
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing
specifications.
NOTE
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1 register, the
default values are shown above. Please refer to the i.MXRT1160 Reference
Manual (IMXRT1160RM) for more details.
SCK
T CSS
T CK
TCSH
CS
TDVO
SIO[0:7]
TDHO
TDVO
TDHO
Figure 26. FlexSPI output timing in DDR mode
4.6
Display and graphics
The following sections provide information about display and graphic interfaces.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
66
NXP Semiconductors
Electrical characteristics
4.6.1
MIPI D-PHY electrical characteristics
The i.MX RT1160 conforms to the MIPI CSI-2 and D-PHY standards for protocol and electrical
specifications.
Compliant with standards:
• MIPI Alliance Specification for Display Serial Interface Version 1.1 (MIPI DSI controller)
• MIPI Standard 1.1 for D-PHY (MIPI DSI D-PHY)
• Compatible with MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.1
4.6.1.1
MIPI HS-TX specifications
Table 60. MIPI high-speed transmitter DC specifications
Symbol
Parameter
VCMTX1
1
|VOD|
Max
Unit
150
200
250
mV
—
—
5
mV
140
200
270
mV
VOD mismatch when Output is Differential-1 or Differential-0
—
—
14
mV
High Speed Output High Voltage
—
—
360
mV
Single Ended Output Impedance
40
50
62.5
Single Ended Output Impedance Mismatch
—
—
10
%
VCMTX mismatch when Output is Differential-1 or Differential-0
High Speed Transmit Differential Voltage
|VOD|
1
ZOS
ZOS
1
Typ
High Speed Transmit Static Common Mode Voltage
|VCMTX|(1,0)
VOHHS
Min
Value when driving into load impedance anywhere in the ZID (Differential input impedance) range.
Table 61. MIPI high-speed transmitter AC specifications
Symbol
Min
Typ
Max
Unit
VCMTX(HF)
Common-level variations above 450 MHz
—
—
15
mVRMS
VCMTX(LF)
Common-level variation between 50-450 MHz
—
—
25
mVPEAK
150
—
0.3 x UI
ps
Min
Typ
Max
Unit
tF1
tR and
1
Parameter
Rise Time and Fall Time (20% to 80%)
UI is the long-term average unit interval.
4.6.1.2
MIPI LP-TX specifications
Table 62. MIPI low-power transmitter DC specifications
Symbol
VOH1
Thevenin Output High Level
1.1
1.2
1.3
V
VOL
Thevenin Output Low Level
-50
—
50
mV
Output Impedance of Low Power Transmitter
110
—
—
ZOLP2
1
Parameter
This specification can only be met when limiting the core supply variation from 1.1 V to 1.3 V.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
67
Electrical characteristics
2
Though there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification
is met.
Table 63. MIPI low-power transmitter AC specifications
Symbol
Parameter
—
—
25
ns
30% to 85% Rise Time and Fall Time
—
—
35
ns
Pulse width of the LP exclusive-OR clock: First LP exclusive-OR
clock pulse after Stop state or last pulse before Stop state
40
—
—
ns
Pulse width of the LP exclusive-OR clock: All other pulses
20
—
—
ns
Period of the LP exclusive-OR clock
90
—
—
ns
Slew Rate @ CLOAD = 0 pF
30
—
500
mV/ns
Slew Rate @ CLOAD = 5 pF
30
—
200
mV/ns
Slew Rate @ CLOAD = 20 pF
30
—
150
mV/ns
Slew Rate @ CLOAD = 70 pF
30
—
100
mV/ns
Load Capacitance
0
—
70
pF
CLOAD1
4
5
6
7
Unit
15% to 85% Rise Time and Fall Time
V/tSR1,5,6,7
3
Max
TREOT1,2,3
TLP-PER-TX
2
Typ
TRLP /TFLP1
TLP-PULSE-TX4
1
Min
CLOAD includes the low equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be
< 10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay.
The rise-time of TREOT starts from the HS common-level at the moment of the differential amplitude drops below 70 mV, due
to stopping of the differential drive.
With an additional load capacitance CCM between 0 to 60 pF on the termination center tap at RX side of the lane.
This parameter value can be lower than TLPX (MIPI D-PHY low power states), due to differences in rise vs. fall signal slopes,
trip levels, and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT
(transition from HS level to LP-11) is glitch behavior as described in Low-Power Receiver section.
When the output voltage is between 15% and 85% of the fully settled LP signal levels.
Measured as average across any 50 mV segment of the output signal transition.
This value represents a corner point in a piecewise linear curve.
4.6.1.3
MIPI LP-RX specifications
Table 64. MIPI low power receiver DC specifications
Symbol
Parameter
Min
Typ
Max
Unit
880
—
1300
mV
VIH
Logic 1 input voltage
VIL
Logic 0 input voltage, not in ULP state
—
—
550
mV
Logic 0 input voltage, ULP state
—
—
300
mV
Input hysteresis
25
—
—
mV
Min
Typ
Max
Unit
—
—
300
V.ps
VIL-ULPS
VHYST
Table 65. MIPI low power receiver AC specifications
Symbol
eSPIKE1,2
Parameter
Input pulse rejection
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
68
NXP Semiconductors
Electrical characteristics
Table 65. MIPI low power receiver AC specifications (continued)
TMIN-RX3
1
2
3
Minimum pulse width response
20
—
—
ns
VINT
Peak Interference amplitude
—
—
200
mV
fINT
Interference frequency
450
—
—
MHz
Time-voltage integration of a spike above VIL when being in LP-0 state or below VIH when being in LP-1 state.
An impulse below this value will not change the receiver state.
An input pulse greater than this value will toggle the output.
4.6.1.4
MIPI LP-CD specifications
Table 66. MIPI contention detector DC specifications
Symbol
Parameter
Min
Typ
Max
Unit
VIHCD
Logic 1 contention threshold
450
—
—
mV
VILCD
Logic 0 contention threshold
—
—
200
mV
Min
Typ
Max
Unit
Pad signal voltage range
-50
—
1350
mV
Pin leakage current
-10
—
10
A
Ground shift
-50
—
50
mV
-0.15
—
1.45
V
—
—
20
ns
4.6.1.5
MIPI DC specifications
Table 67. MIPI input characteristics DC specifications
Symbol
Parameter
VPIN
ILEAK1
VGNDSH
1
2
3
VPIN(absmax)2
Maximum pin voltage level
TVPIN(absmax)3
Maximum transient time above VPIN(max) or below VPIN(min)
When the pad voltage is within the signal voltage range between VGNDSH(min) to VOH + VGNDSH(max) and the Lane Module is
in LP receive mode.
This value includes ground shift.
The voltage overshoot and undershoot beyond the VPIN is only allowed during a single 20 ns window after any LP-0 to LP-1
transition or vice versa. For all other situations it must stay within the VPIN range.
4.6.2
CMOS Sensor Interface (CSI) timing parameters
The following sections describe the CSI timing in gated and ungated clock modes.
4.6.2.1
Gated clock mode timing
Figure 27 and Figure 28 shows the gated clock mode timings for CSI, and Table 68 describes the timing
parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
69
Electrical characteristics
(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock,
CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.
CSI_VSYNC
P1
CSI_HSYNC
P7
P2
P5
P6
CSI_PIXCLK
P3
P4
CSI_DATA[23:00]
Figure 27. CSI Gated clock mode—sensor data at falling edge, latch data at rising edge
CSI_VSYNC
P1
CSI_HSYNC
P7
P2
P6
P5
CSI_PIXCLK
P3
P4
CSI_DATA[23:00]
Figure 28. CSI Gated clock mode—sensor data at rising edge, latch data at falling edge
Table 68. CSI gated clock mode timing parameters
ID
Parameter
Symbol
Min.
Max.
Units
P1
CSI_VSYNC to CSI_HSYNC time
tV2H
33.5
—
ns
P2
CSI_HSYNC setup time
tHsu
2.6
—
ns
P3
CSI DATA setup time
tDsu
2.6
—
ns
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
70
NXP Semiconductors
Electrical characteristics
Table 68. CSI gated clock mode timing parameters (continued)
ID
Parameter
Symbol
Min.
Max.
Units
tDh
0
—
ns
P4
CSI DATA hold time
P5
CSI pixel clock high time
tCLKh
3.75
—
ns
P6
CSI pixel clock low time
tCLKl
3.75
—
ns
P7
CSI pixel clock frequency
fCLK
—
80
MHz
4.6.2.2
Ungated clock mode timing
Figure 29 shows the ungated clock mode timings of CSI, and Table 69 describes the timing parameters
(P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are
used, and the CSI_HSYNC signal is ignored.
CSI_VSYNC
P1
P6
P4
P5
CSI_PIXCLK
P2
P3
CSI_DATA[23:00]
Figure 29. CSI ungated clock mode—sensor data at falling edge, latch data at rising edge
Table 69. CSI ungated clock mode timing parameters
ID
Parameter
Symbol
Min.
Max.
Units
tVSYNC
33.5
—
ns
P1
CSI_VSYNC to pixel clock time
P2
CSI DATA setup time
tDsu
2.6
—
ns
P3
CSI DATA hold time
tDh
0
—
ns
P4
CSI pixel clock high time
tCLKh
3.75
—
ns
P5
CSI pixel clock low time
tCLKl
3.75
—
ns
P6
CSI pixel clock frequency
fCLK
—
80
MHz
The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as
dumb or smart as follows:
• Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync
(HSYNC)) and output-only Bayer and statistics data.
• Smart sensors support CCIR656 video decoder formats and perform additional processing of the
image (for example, image compression, image pre-filtering, and various data output formats).
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
71
Electrical characteristics
4.6.3
LCD Controller timing parameters
Figure 30 shows the LCD timing and Table 70 lists the timing parameters.
L1
L2
L3
LCDn_CLK
(falling edge capture)
LCDn_CLK
(rising edge capture)
LCDn_DATA[23:00]
LCDn Control Signals
L4
L5
L6
L7
Figure 30. LCD timing
Table 70. LCD timing parameters
ID
1
Parameter
Symbol
Min
Max
Unit
tCLK(LCD)
—
75/1501
MHz
L1
LCD pixel clock frequency
L2
LCD pixel clock high (falling edge capture)
tCLKH(LCD)
3
—
ns
L3
LCD pixel clock low (rising edge capture)
tCLKL(LCD)
3
—
ns
L4
LCD pixel clock high to data valid (falling edge capture)
td(CLKH-DV)
-1
1
ns
L5
LCD pixel clock low to data valid (rising edge capture)
td(CLKL-DV)
-1
1
ns
L6
LCD pixel clock high to control signal valid (falling edge capture)
td(CLKH-CTRLV)
-1
1
ns
L7
LCD pixel clock low to control signal valid (rising edge capture)
td(CLKL-CTRLV)
-1
1
ns
For eLCDIF or LCDIFv2, the maximum pixel clock frequency of parallel IO interface is 75 MHz, while it is 150 MHz for MIPI
DSI interface.
4.7
Audio
This section provides information about SAI/I2S.
4.7.1
SAI/I2S switching specifications
This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes.
All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]
= 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
72
NXP Semiconductors
Electrical characteristics
Table 71. Master mode SAI timing
Num
Characteristic
Min
Max
Unit
S1
SAI_MCLK cycle time
15
—
ns
S2
SAI_MCLK pulse width high/low
40%
60%
MCLK period
S3
SAI_BCLK cycle time
40
—
ns
S4
SAI_BCLK pulse width high/low
40%
60%
BCLK period
S5
SAI_BCLK to SAI_FS output valid
—
8.4
ns
S6
SAI_BCLK to SAI_FS output invalid
0
—
ns
S7
SAI_BCLK to SAI_TXD valid
—
10
ns
S8
SAI_BCLK to SAI_TXD invalid
1
—
ns
S9
SAI_RXD/SAI_FS input setup before SAI_BCLK
14
—
ns
S10
SAI_RXD/SAI_FS input hold after SAI_BCLK
0
—
ns
Figure 31. SAI timing—Master modes
Table 72. Slave mode SAI timing
Num
Characteristic
Min
Max
Unit
S11
SAI_BCLK cycle time (input)
40
—
ns
S12
SAI_BCLK pulse width high/low (input)
40%
60%
BCLK period
S13
SAI_FS input setup before SAI_BCLK
6
—
ns
S14
SAI_FA input hold after SAI_BCLK
2
—
ns
S15
SAI_BCLK to SAI_TXD/SAI_FS output valid
—
20
ns
S16
SAI_BCLK to SAI_TXD/SAI_FS output invalid
-1.5
—
ns
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
73
Electrical characteristics
Table 72. Slave mode SAI timing
Num
Characteristic
Min
Max
Unit
S17
SAI_RXD setup before SAI_BCLK
6
—
ns
S18
SAI_RXD hold after SAI_BCLK
2
—
ns
Figure 32. SAI timing—Slave mode
4.8
Analog
The following sections provide information about analog interfaces.
4.8.1
12-bit ADC electrical specifications
All ADC channels meet the 12-bit single-ended accuracy specifications.
Table 73. ADC electrical specifications (VREFH = VDDA_ADC_1P81 and VADINmax ≤ VREFH)2
Symbol
Description
Min
Typ
Max
Unit
Notes
VADIN
Input voltage
VREFL
—
VREFH
V
—
CADIN
Input capacitance
—
4.5
—
pF
—
RADIN
Input resistance
—
500
—
—
RAS
Analog source resistance
—
—
5
K
3
fADCK
ADC conversion clock
frequency
8
—
88
MHz
—
Csample
Sample cycles
3.5
—
131.5
Cycles
4
Ccompare
Fixed compare cycles
—
17.5
—
Cycles
—
Cconversion
Conversion cycles
Cconversion = Csample + Ccompare
Cycles
—
DNL
Differential nonlinearity
—
±0.7
±1
LSB
5,6,7
INL
Integral nonlinearity
—
±0.8
±1
LSB
5,6,7
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
74
NXP Semiconductors
Electrical characteristics
Table 73. ADC electrical specifications (VREFH = VDDA_ADC_1P81 and VADINmax ≤ VREFH)2 (continued)
Symbol
ENOB
Description
Min
Typ
Max
Unit
Notes
8,9,10
Effective number of bits
Single-ended mode
Avg = 1
10.0
10.4
—
—
Avg = 2
10.4
10.6
—
—
Avg = 16
11.2
11.3
—
—
Avg = 1
11.0
11.2
—
—
Avg = 2
—
—
—
—
Avg = 16
—
—
—
—
Differential mode
SINAD
Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76
11
dB
—
EG
Gain error
—
-0.16
-0.56
%FSV
12
EO
Offset error
—
±0.01
±0.02
%FSV
13
lin_ext_leak
External channel leakage
current
—
30
500
nA
—
EIL
Input leakage error
RAS * lin_ext_leak
mV
—
tADCSTUP
Setup time
—
s
—
5
—
1
The range is from 1.71 V to 1.89 V.
Values in this table are based on test with limited matrix samples in lab environment.
3
This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance.
4
See Figure 33, "Sample time VS. RAS".
5
1 LSB = (VREFH - VREFL) / 2^N, N = 12
6
ADC conversion clock at max frequency and using linear histogram.
7
No missing code
8
Input data used for test is 1 kHz sine wave.
9
Measured at VREFH = 1.8 V and pwrsel = 2.
10
ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling
may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling
becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content.
11
Gain error is FSE-ZSE (same as FSE-EO).
12
Error measured at full scale at 1.8 V.
13
Offset error is same as ZSE, error measured at 0 V with zero scale.
2
Table 74. ADC electrical specifications (VREFH = 1.68 V and VADINmax ≤ NVCC_GPIOmax)1
Symbol
Description
Typ2
Min
Max
Unit
Notes
VADIN
Input voltage
VREFL
—
NVCC_GPIOmax
V
—
CADIN
Input capacitance
—
2.25
—
pF
—
RADIN
Input resistance
—
1
—
K
—
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
75
Electrical characteristics
Table 74. ADC electrical specifications (VREFH = 1.68 V and VADINmax ≤ NVCC_GPIOmax)1 (continued)
Symbol
Description
Typ2
Min
Max
Unit
Notes
RAS
Analog source resistance
—
—
5
K
3
fADCK
ADC conversion clock
frequency
8
—
88
MHz
—
Csample
Sample cycles
3.5
—
131.5
Cycles
4
Ccompare
Fixed compare cycles
—
17.5
—
Cycles
—
Cconversion
Conversion cycles
Cconversion = Csample + Ccompare
Cycles
—
DNL
Differential nonlinearity
—
±0.7
±1
LSB
5,6,7
INL
Integral nonlinearity
—
±0.8
±1
LSB
5,6,7
ENOB
Effective number of bits
8,9,10
Single-ended mode
Avg = 1
10.0
10.3
—
—
Avg = 2
10.4
10.6
—
—
Avg = 16
11.2
11.3
—
—
Avg = 1
11.0
11.2
—
—
Avg = 2
—
—
—
—
Avg = 16
—
—
—
—
SINAD
Signal to noise plus distortion
SINAD = 6.02 x ENOB + 1.76
EG
Gain error11
—
-0.16
EO
Offset error
—
lin_ext_leak
External channel leakage
current
—
EIL
Input leakage error
RAS * lin_ext_leak
tADCSTUP
Setup time
—
Differential mode
dB
—
-0.56
%FSV
12
±0.01
±0.02
%FSV
13
30
500
nA
—
mV
—
s
—
5
—
1
Values in this table are based on test with limited matrix samples in lab environment.
Typical values assume Temp = 25 °C and fACLK = Max, unless otherwise stated. Typical values are for reference only, and are
not tested in production.
3
This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance.
4
See Figure 33, "Sample time VS. RAS".
5
1 LSB = (VREFH - VREFL) / 2^N, N = 12
6
ADC conversion clock at max frequency and using linear histogram.
7 No missing code
8 Input data used for test is 1 kHz sine wave.
9
Measured at VREFH = 1.68 V and pwrsel = 2.
10
ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling
may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling
becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content.
2
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
76
NXP Semiconductors
Electrical characteristics
11
Gain error is FSE-ZSE (same as FSE-EO).
measured at full scale at 3.6 V.
13
Offset error is same as ZSE, error measured at 0 V with zero scale.
12 Error
Table 75. ADC electrical specifications (1 V ≤ VREFH < 1.71 V and VADINmax ≤ VREFH)1
Symbol
Description
Typ2
Min
Max
Unit
Notes
VADIN
Input voltage
VREFL
—
VREFH
V
—
CADIN
Input capacitance
—
4.5
—
pF
—
RADIN
Input resistance
—
500
—
—
RAS
Analog source resistance
—
—
5
K
3
fADCK
ADC conversion clock
frequency
8
—
88
MHz
—
Csample
Sample cycles
3.5
—
131.5
Cycles
4
Ccompare
Fixed compare cycles
—
17.5
—
Cycles
—
Cconversion
Conversion cycles
Cconversion = Csample + Ccompare
Cycles
—
DNL
Differential nonlinearity
—
±0.7
±1
LSB
5,6,7
INL
Integral nonlinearity
—
±0.8
±1
LSB
5,6,7
ENOB
Effective number of bits
8,9,10
Single-ended mode
Avg = 1
10.0
10.3
—
—
Avg = 2
10.4
10.6
—
—
Avg = 16
11.2
11.3
—
—
Avg = 1
11.0
11.2
—
—
Avg = 2
—
—
—
—
Avg = 16
—
—
—
—
Differential mode
SINAD
Signal to noise plus distortion SINAD = 6.02 x ENOB + 1.76
dB
—
EG
Gain error
—
-0.16
-0.56
%FSV
12
EO
Offset error
—
±0.01
±0.02
%FSV
13
lin_ext_leak
External channel leakage
current
—
30
500
nA
—
EIL
Input leakage error
RAS * lin_ext_leak
mV
—
tADCSTUP
Setup time
—
s
—
1
2
3
11
5
—
Values in this table are based on test with limited matrix samples in lab environment.
Typical values assume Temp = 25 °C and fACLK = Max, unless otherwise stated. Typical values are for reference only, and are
not tested in production.
This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
77
Electrical characteristics
4
See Figure 33, "Sample time VS. RAS".
1 LSB = (VREFH - VREFL) / 2^N, N = 12
6
ADC conversion clock at max frequency and using linear histogram.
7
No missing code
8
Input data used for test is 1 kHz sine wave.
9 Measured at VREFH = 1.0 V and pwrsel = 2.
10
ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling
may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling
becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content.
11
Gain error is FSE-ZSE (same as FSE-EO).
12
Error measured at full scale at 1.0 V.
13 Offset error is same as ZSE, error measured at 0 V with zero scale.
5
The following figure shows a plot of the ADC sample time versus RAS.
Figure 33. Sample time VS. RAS
4.8.1.1
12-bit ADC input impedance equivalent circuit diagram
There is an additional RIOMUX of 350 (from 295 to 405 ) resistance if an input goes through the MUX
inside the IO and CP of 2.5 pF as shown in Figure 34.
To calculate the sample request time, using the following equation where RADCtotal = RADIN + RIOMUX,
RIOMUX = 350 , CP = 2.5 pF and B = 11 for 1/4 LSB settling.
Tsmp_req = B [RAS (CAS + CP + CADIN) + (RAS + RADCtotal) CADIN]
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
78
NXP Semiconductors
Electrical characteristics
SIMPLIFIED INPUT PIN
EQUIVALENT CIRCUIT
RIOMUX
ZADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad leakage
due to input
protection
ZAS
RAS
ADC SAR
ENGINE
RADIN
VADIN
Ilkg
CAS
VAS
CP
RADIN
INPUT PIN
RADIN
INPUT PIN
RADIN
INPUT PIN
CADIN
Figure 34. ADC input impedance equivalent circuit diagram
4.8.2
12-bit DAC electrical characteristics
4.8.2.1
12-bit DAC operating requirements
Table 76. 12-bit DAC operating conditions
Symbol
Description
Min
Typ
Max
Unit
Notes
CL
Output load capacitance
—
50
100
pF
1
IL
Output load current
—
—
1
mA
2
1
2
The DAC output can drive R and C loading. The user should consider both DC and dynamic application requirements. 50 pF
CL provides the best dynamic performance, while 100 pF provides the best DC performance.
Sink or source current ability.
Table 77. DAC characteristics
Symbol
Description
VDACOUTL
DAC low level output
voltage
VDACOUTH DAC high level output
voltage
DNL
Differential nonlinearity
error
Test Conditions
Min
Typ
ADC_VREFH selected,
VSS
—
Rload = 18 k, Cload = 50
pF
VDDA_AD —
C_1P8 0.15
Code 100h — F00h best fit —
curve
±0.5
Max
Unit
0.15
V
VDDA_AD
C_1P8
V
±1
LSB
Notes
1
—
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
79
Electrical characteristics
Table 77. DAC characteristics (continued)
Symbol
Description
Test Conditions
Min
Typ
Max
Unit
Notes
Integral nonlinearity error Code 100h — F00h best fit —
curve
—
±1
—
LSB
2
±2
—
LSB
3
EO
Offset error
Code 100h
—
±0.6
—
%FSR
(Full-sc
ale
range)
—
TEO
Offset error temperature Code 100h
coefficient
—
±30
—
V/oC
—
EG
Gain error
Code F00h
—
±0.4
—
%FSR
—
TEG
Gain error temperature
coefficient
Code F00h
—
±10
—
ppm of —
FSR/oC
INL
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
80
NXP Semiconductors
Electrical characteristics
Table 77. DAC characteristics (continued)
Symbol
TFS_LS
TFS_MS
TFS_HS
TCC_LS
TCC_MS
TCC_HS
Description
Full scale setting time in
Low Speed mode
Test Conditions
Min
Typ
Max
Code 100h — F00h or
F00h — 100h @ZTC
current
—
5
—
Code 100h — F00h or
F00h —100h @PTAT
current
—
5
—
Code 100h — F00h or
F00h — 100h @ZTC
current
—
1
—
Code 100h — F00h or
F00h — 100h @PTAT
current
—
1
—
Code 100h — F00h or
F00h — 100h @ZTC
current
—
0.5
—
Code 100h — F00h or
F00h — 100h @PTAT
current
—
0.5
—
Code to code setting
Code 7F7h — 807h or
time in Low Speed mode 807h — 7F7h @ZTC
current
—
1
—
Code 7F7h — 807h or
807h — 7F7h @PTAT
current
—
1
—
Code 7F7h — 807h or
807h — 7F7h @ZTC
current
—
0.5
—
Code 7F7h — 807h or
807h — 7F7h @PTAT
current
—
0.5
—
Code 7F7h — 807h or
807h — 7F7h @ZTC
current
—
0.3
—
Code 7F7h — 807h or
807h — 7F7h @PTAT
current
—
0.3
—
Full scale setting time in
Middle Speed mode
Full scale setting time in
High Speed mode
Code to code setting
time in Middle Speed
mode
Code to code setting
time in Middle Speed
mode
Unit
s
Notes
4
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
81
Electrical characteristics
Table 77. DAC characteristics (continued)
Symbol
SR_LS
SR_MS
SR_HS
Description
Slew rate in Low Speed
mode
Test Conditions
Min
Typ
Max
Code 100h — F00h or
F00h — 100h @ZTC
current
—
0.24
—
Code 100h — F00h or
F00h —100h @PTAT
current
—
0.24
—
Code 100h — F00h or
F00h — 100h @ZTC
current
—
1.2
—
Code 100h — F00h or
F00h —100h @PTAT
current
—
1.2
—
Slew rate in High Speed Code 100h — F00h or
mode
F00h — 100h @ZTC
current
—
2.4
—
Code 100h — F00h or
F00h —100h @PTAT
current
—
2.4
—
Slew rate in Middle
Speed mode
Unit
Notes
V/s
5
PSRR
Power supply rejection
ratio
Code 800h,
—
ΔVDD_ANA18 = 100 mV,
VREFH_ANA12 selected
70
—
dB
6
Glitch
Glitch energy
Code 100h — F00h —
100h
—
30
—
nV-s
—
Code 7FFh — 800h —
7FFh
—
30
—
CT
Channel to channel
crosstalk
—
—
—
-80
dB
7
ROP
Output resistance
Code 100h — F00h and
Rload = 18 k
—
200
—
8
1
2
3
4
5
6
7
8
It is recommended to operate the DAC in the output voltage range between 0.15 V and (VDDA_ADC_1P8 - 0.15 V) for best
accuracy. Linearity of the output voltage outside this range will be affected as current load increases.
When ADC_VREFH is selected as the reference (DAC_CR[DACRFS] = 0b).
When the internal 1.2 V source is selected as the reference (DAC_CR[DACRFS] = 1b).
The DAC output remains within ±0.5 LSB of the final measured value for digital input code change. Noise on the power supply
can cause this performance to degrade to ±1 LSB. This parameter represents both rising edge and falling edge settling time.
Time for the DAC output to transition from 10% to 90% signal amplitude (rising edge or falling edge).
PSRR = 20 x log{ΔVDD_ANA18 /ΔVDAC_OUT}
If two DACs are used and sharing the same VREFH.
Based on design simulation.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
82
NXP Semiconductors
Electrical characteristics
4.8.3
ACMP electrical specifications
Table 78. ACMP operating conditions
Symbol
Description
Min
Typ
Max
Unit
VREFH_EXT
External reference voltage
1
—
1.98
V
VREFH_INT1
Internal reference voltage
—
1.3
—
V
1
This is an internal reference voltage generated by PMC0.
Table 79. ACMP characteristics
Symbol
Description
Condition
Min
Typ
Max
Unit
VAIN
Analog input voltage
—
0
—
NVCC_GPIO1 V
VAIO
Analog input offset
voltage
—
—
—
20
mV
VH
Analog comparator
hysteresis
Hystrl[1:0] = 00
—
5
—
mV
Hystrl[1:0] = 01
—
10
—
mV
Hystrl[1:0] = 10
—
20
—
mV
Hystrl[1:0] = 11
—
30
—
mV
TDHS
Propagation delay,
high-speed mode
Normal supply
—
—
50
ns
TDHS
Propagation delay,
low-speed mode
—
—
—
5
s
—
Analog comparator
initialization delay
—
—
—
20
s
INL
8-bit DAC integral
non-linearity
—
-1
—
1
LSB
DNL
8-bit DAC differential
non-linearity
—
-1
—
1
LSB
1
The maximum input voltage for CMP analog inputs associated with GPIO_AD bank is NVCC_GPIO.
4.8.4
Temperature sensor
Table 80 lists the parameters of temperature sensor.
Table 80. Temperature sensor parameters
Parameter
Temperature range1
1
Min
Max
Unit
-40
125
C
Accuracy of measurement: ± 5C for 25C and above, while ± 10C for below 25C.
4.9
Communication interfaces
The following sections provide the information about communication interfaces.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
83
Electrical characteristics
4.9.1
LPSPI timing parameters
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and
slave operations. Many of the transfer attributes are programmable. The following tables provide timing
characteristics for classic LPSPI timing modes.
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input
signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.
Table 81. LPSPI Master mode timing
Number
Symbol
1
fSCK
Frequency of operation
2
tSCK
SCK period
3
tLead
4
tLag
5
tWSCK
6
tSU
7
1
2
Description
Min.
Max.
Units
Note
—
fperiph / 2
MHz
1
2 x tperiph
—
ns
2
Enable lead time
1
—
tperiph
—
Enable lag time
1
—
tperiph
—
tSCK / 2 - 3
—
ns
—
Data setup time (inputs)
10
—
ns
—
tHI
Data hold time (inputs)
2
—
ns
—
8
tV
Data valid (after SCK edge)
—
8
ns
—
9
tHO
Data hold time (outputs)
0
—
ns
—
Clock (SCK) high or low time
Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must guaranteed
this limit is not exceeded.
tperiph = 1000 / fperiph
1
PCS
(OUTPUT)
3
2
SCK
(CPOL=0)
(OUTPUT)
4
5
5
SCK
(CPOL=1)
(OUTPUT)
6
SIN
(INPUT)
7
MSB IN
2
BIT 6 . . . 1
LSB IN
8
SOUT
(OUTPUT)
MSB OUT
2
BIT 6 . . . 1
9
LSB OUT
1. If configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 35. LPSPI Master mode timing (CPHA = 0)
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
84
NXP Semiconductors
Electrical characteristics
1
PCS
(OUTPUT)
2
3
4
SCK
(CPOL=0)
(OUTPUT)
5
SCK
(CPOL=1)
(OUTPUT)
5
6
SIN
(INPUT)
7
2
MSB IN
LSB IN
9
8
SOUT
(OUTPUT)
BIT 6 . . . 1
PORT DATA MASTER MSB OUT
BIT 6 . . . 1
PORT DATA
MASTER LSB OUT
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 36. LPSPI Master mode timing (CPHA = 1)
Table 82. LPSPI Slave mode timing
s
1
2
3
4
Number
Symbol
Description
Min.
Max.
Units
Note
1
fSCK
Frequency of operation
0
fperiph / 2
MHz
1
2
tSCK
SCK period
2 x tperiph
—
ns
2
3
tLead
Enable lead time
1
—
tperiph
—
4
tLag
Enable lag time
1
—
tperiph
—
5
tWSCK
tSCK / 2 - 5
—
ns
—
6
tSU
Data setup time (inputs)
2.7
—
ns
—
7
tHI
Data hold time (inputs)
3.8
—
ns
—
8
ta
Slave access time
—
tperiph
ns
3
9
tdis
Slave MISO disable time
—
tperiph
ns
4
10
tV
Data valid (after SCK edge)
—
14.5
ns
—
11
tHO
Data hold time (outputs)
0
—
ns
—
Clock (SCK) high or low time
Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be
guaranteed this limit is not exceeded.
tperiph = 1000 / fperiph
Time to data active from high-impedance state
Hold time to high-impedance state
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
85
Electrical characteristics
PCS
(INPUT)
2
4
SCK
(CPOL=0)
(INPUT)
5
3
SCK
(CPOL=1)
(INPUT)
5
9
8
10
see
note
SIN
(OUTPUT)
6
SOUT
(INPUT)
BIT 6 . . . 1
SLAVE MSB
11
11
SEE
NOTE
SLAVE LSB OUT
7
MSB IN
LSB IN
BIT 6 . . . 1
NOTE: Not defined
Figure 37. LPSPI Slave mode timing (CPHA = 0)
PCS
(INPUT)
4
2
3
SCK
(CPOL=0)
(INPUT)
5
5
SCK
(CPOL=1)
(INPUT)
11
10
SIN
(OUTPUT)
see
note
8
SOUT
(INPUT)
SLAVE
MSB OUT
6
9
BIT 6 . . . 1
SLAVE LSB OUT
BIT 6 . . . 1
LSB IN
7
MSB IN
NOTE: Not defined
Figure 38. LPSPI Slave mode timing (CPHA = 1)
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
86
NXP Semiconductors
Electrical characteristics
4.9.2
LPI2C module timing parameters
This section describes the timing parameters of the LPI2C module.
Table 83. LPI2C module timing parameters
Symbol
fSCL
1
Description
SCL clock frequency
Min
Max
Standard mode (Sm)
0
100
Fast mode (Fm)
0
400
Fast mode Plus (Fm+)
0
1000
High speed mode (Hs-mode)
0
3400
Ultra Fast mode (UFm)
0
5000
Unit
kHz
Notes
1
Hs-mode and Ultra Fast mode are supported in slave mode.
4.9.3
Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC
timing
This section describes the electrical information of the uSDHC, which includes SD3.0 (Single Data Rate)
timing and eMMC5.0 (up to 200 MHz) timing.
4.9.3.1
SD3.0/eMMC4.3 (Single Data Rate) specifications
Figure 39 depicts the timing of SD3.0/eMMC4.3, and Table 84 lists the SD/eMMC4.3 timing
characteristics.
SD4
SD2
SD1
SD5
SDx_CLK
SD3
SD6
Output from uSDHC to card
SDx_DATA[7:0]
SD7
SD8
Input from card to uSDHC
SDx_DATA[7:0]
Figure 39. SD/eMMC4.3 timing
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
87
Electrical characteristics
Table 84. SD/eMMC4.3 interface timing specification
ID
Parameter
Symbols
Min
Max
Unit
Clock Frequency (Low Speed)
fPP1
0
400
kHz
Clock Frequency (SD/SDIO Full Speed/High Speed)
fPP2
0
25/50
MHz
Clock Frequency (MMC Full Speed/High Speed)
fPP3
0
20/52
MHz
Clock Frequency (Identification Mode)
fOD
100
400
kHz
SD2
Clock Low Time
tWL
7
—
ns
SD3
Clock High Time
tWH
7
—
ns
SD4
Clock Rise Time
tTLH
—
3
ns
SD5
Clock Fall Time
tTHL
—
3
ns
3.6
ns
Card Input Clock
SD1
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD6
uSDHC Output Delay
tOD
-6.6
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
1
2
3
4
SD7
uSDHC Input Setup Time
tISU
2.5
—
ns
SD8
Time4
tIH
1.5
—
ns
uSDHC Input Hold
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode,
clock frequency can be any value between 0–50 MHz.
In normal (full) speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In high-speed mode, clock
frequency can be any value between 0–52 MHz.
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
4.9.3.2
eMMC4.4/4.41/SD3.0 (Dual Data Rate) AC timing)
Figure 40 depicts the timing of eMMC4.4/4.41/SD3.0. Table 85 lists the eMMC4.4/4.41/SD3.0 timing
characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
88
NXP Semiconductors
Electrical characteristics
SD1
SDx_CLK
SD2
SD2
Output from eSDHCv3 to card
SDx_DATA[7:0]
......
SD3
SD4
Input from card to eSDHCv3
SDx_DATA[7:0]
......
Figure 40. eMMC4.4/4.41/SD3.0 timing
Table 85. eMMC4.4/4.41/SD3.0 interface timing specification
ID
Parameter
Symbols
Min
Max
Unit
Card Input Clock
SD1
Clock Frequency (eMMC4.4/4.41 DDR)
fPP
0
52
MHz
SD1
Clock Frequency (SD3.0 DDR)
fPP
0
50
MHz
6.8
ns
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD2
uSDHC Output Delay
tOD
2.8
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
SD3
uSDHC Input Setup Time
tISU
2.4
—
ns
SD4
uSDHC Input Hold Time
tIH
1.2
—
ns
4.9.3.3
SDR50/SDR104 AC timing
Figure 41 depicts the timing of SDR50/SDR104, and Table 86 lists the SDR50/SDR104 timing
characteristics.
SD1
SD2
SD3
SCK
SD4/SD5
4-bit output from uSDHC to card
SD6
SD7
4-bit input from card to uSDHC
SD8
Figure 41. SDR50/SDR104 timing
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
89
Electrical characteristics
Table 86. SDR50/SDR104 interface timing specification
ID
Parameter
Symbols
Min
Max
Unit
Card Input Clock
SD1
Clock Frequency Period
tCLK
5.0
—
ns
SD2
Clock Low Time
tCL
0.46 x tCLK
0.54 x tCLK
ns
SD3
Clock High Time
tCH
0.46 x tCLK
0.54 x tCLK
ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD4
uSDHC Output Delay
tOD
–3
1
ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)
SD5
uSDHC Output Delay
tOD
–1.6
1
ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD6
uSDHC Input Setup Time
tISU
2.5
—
ns
SD7
uSDHC Input Hold Time
tIH
1.5
—
ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1
SD8
Card Output Data Window
tODW
0.5 x tCLK
—
ns
1
Data window in SDR104 mode is variable.
4.9.3.4
HS200 mode timing
Figure 42 depicts the timing of HS200 mode, and Table 87 lists the HS200 timing characteristics.
SD1
SD2
SD3
SCK
SD5
8-bit output from uSDHC to eMMC
8-bit input from eMMC to uSDHC
SD8
Figure 42. HS200 mode timing
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
90
NXP Semiconductors
Electrical characteristics
Table 87. HS200 interface timing specification
ID
Parameter
Symbols
Min
Max
Unit
Card Input Clock
SD1
Clock Frequency Period
tCLK
5.0
—
ns
SD2
Clock Low Time
tCL
0.46 x tCLK
0.54 x tCLK
ns
SD3
Clock High Time
tCH
0.46 x tCLK
0.54 x tCLK
ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)
uSDHC Output Delay
SD5
tOD
–1.6
0.74
ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1
Card Output Data Window
SD8
tODW
0.5 x tCLK
—
ns
1
HS200 is for 8 bits while SDR104 is for 4 bits.
4.9.3.5
HS400 specifications - eMMC 5.0 only
Be aware that only data are sampled on both edges of the clock (not applicable to CMD). The CMD
input/output timing for HS400 mode is the same as CMD input/output timing for HS200 mode. Check SD5
and SD8 parameters in the HS200 interface timing specifications table for CMD input/output timing of
HS400 mode.
Table 87 lists the HS400 timing characteristics.
Table 88. HS400 interface timing specification
Symbol
Description
Operating voltage
Min
Max
Unit
1.71
1.95
V
0
200
MHz
5.0
—
ns
Card input clock
Clock frequency
SD1
Clock period
SD2
Clock Low time
0.46 x SD1
0.54 x SD1
ns
SD3
Clock High time
0.46 x SD1
0.54 x SD1
ns
SDHC output / card Inputs SDHC_CMD, SDHC_Dn (reference to SDHC_CLK)
SD4
Output skew from data to edge of SCK
0.45
—
ns
SD5
Output skew from edge of SCK to data
0.45
—
ns
SDHC input / card outputs (reference to strobe)
SD6
SDHC input skew
—
0.45
ns
SD7
SDHC hold skew
—
0.45
ns
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
91
Electrical characteristics
Figure 42 depicts the timing of HS400.
SD1
SD3
SD2
SCK
SD4
SD5
SD4
SD5
DAT0
DAT1
...
Output from
uSDHC to eMMC DAT7
Strobe
Input from
4.9.3.6
DAT0
DAT1
SD6
SD7
Figure 43. HS400 timing
Bus operation condition for 3.3 V and 1.8 V signaling
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of
SDR104/SDR50/HS200/HS400 mode is 1.8 V.
4.9.4
4.9.4.1
Ethernet controller (ENET) AC electrical specifications
ENET MII mode timing
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal
timings.
4.9.4.1.1
MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER, and ENET_RX_CLK)
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the
ENET_RX_CLK frequency.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
92
NXP Semiconductors
Electrical characteristics
Figure 44 shows MII receive signal timings. Table 89 describes the timing parameters (M1–M4) shown in
the figure.
M3
ENET_RX_CLK (input)
M4
ENET_RX_DATA3,2,1,0
(inputs)
ENET_RX_EN
ENET_RX_ER
M1
M2
Figure 44. MII receive signal timing diagram
Table 89. MII receive signal timing
Characteristic1
ID
Min.
Max.
Unit
M1
ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to
ENET_RX_CLK setup
5
—
ns
M2
ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER hold
5
—
ns
M3
ENET_RX_CLK pulse width high
35%
65%
ENET_RX_CLK period
M4
ENET_RX_CLK pulse width low
35%
65%
ENET_RX_CLK period
1
ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.
4.9.4.1.2
MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER, and ENET_TX_CLK)
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed
twice the ENET_TX_CLK frequency.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
93
Electrical characteristics
Figure 45 shows MII transmit signal timings. Table 90 describes the timing parameters (M5–M8) shown
in the figure.
M7
ENET_TX_CLK (input)
M5
ENET_TX_DATA3,2,1,0
(outputs)
ENET_TX_EN
ENET_TX_ER
M8
M6
Figure 45. MII transmit signal timing diagram
Table 90. MII transmit signal timing
Characteristic1
ID
Min.
Max.
Unit
M5
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER invalid
5
—
ns
M6
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER valid
—
20
ns
M7
ENET_TX_CLK pulse width high
35%
65%
ENET_TX_CLK period
M8
ENET_TX_CLK pulse width low
35%
65%
ENET_TX_CLK period
1
ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.
4.9.4.1.3
MII asynchronous inputs signal timing (ENET_CRS and ENET_COL)
Figure 46 shows MII asynchronous input timings. Table 91 describes the timing parameter (M9) shown in
the figure.
ENET_CRS, ENET_COL
M9
Figure 46. MII asynchronous inputs timing diagram
Table 91. MII asynchronous inputs signal timing
ID
M91
1
Characteristic
ENET_CRS to ENET_COL minimum pulse width
Min.
Max.
Unit
1.5
—
ENET_TX_CLK period
ENET_COL has the same timing in 10-Mbit 7-wire interface mode.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
94
NXP Semiconductors
Electrical characteristics
4.9.4.1.4
MII serial management channel timing (ENET_MDIO and ENET_MDC)
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3
MII specification. However the ENET can function correctly with a maximum MDC frequency of
15 MHz.
Figure 47 shows MII asynchronous input timings. Table 92 describes the timing parameters (M10–M15)
shown in the figure.
M14
M15
ENET_MDC (output)
M10
ENET_MDIO (output)
M11
ENET_MDIO (input)
M12
M13
Figure 47. MII serial management channel timing diagram
Table 92. MII serial management channel timing
ID
Characteristic
Min.
Max.
Unit
M10
ENET_MDC falling edge to ENET_MDIO output invalid (min.
propagation delay)
0
—
ns
M11
ENET_MDC falling edge to ENET_MDIO output valid (max.
propagation delay)
—
5
ns
M12
ENET_MDIO (input) to ENET_MDC rising edge setup
18
—
ns
M13
ENET_MDIO (input) to ENET_MDC rising edge hold
0
—
ns
M14
ENET_MDC pulse width high
40%
60%
ENET_MDC period
M15
ENET_MDC pulse width low
40%
60%
ENET_MDC period
4.9.4.2
RMII mode timing
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference
clock.
Figure 48 shows RMII mode timings. Table 93 describes the timing parameters (M16–M21) shown in the
figure.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
95
Electrical characteristics
M16
M17
ENET_CLK (input)
M18
ENET_TX_DATA (output)
ENET_TX_EN
M19
ENET_RX_EN (input)
ENET_RX_DATA[1:0]
ENET_RX_ER
M20
M21
Figure 48. RMII mode signal timing diagram
Table 93. RMII signal timing
ID
Characteristic
Min.
Max.
Unit
M16
ENET_CLK pulse width high
35%
65%
ENET_CLK period
M17
ENET_CLK pulse width low
35%
65%
ENET_CLK period
M18
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid
4
—
ns
M19
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid
—
13
ns
M20
ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER
to ENET_CLK setup
2
—
ns
M21
ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER
hold
2
—
ns
4.9.4.3
RGMII signal switching specifications
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver
devices.
Table 94. RGMII signal switching specifications1
Symbol
Tcyc2
Description
Clock cycle duration
TskewT3
Data to clock output skew at transmitter
Min.
Max.
Unit
7.2
8.8
ns
-500
500
ps
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
96
NXP Semiconductors
Electrical characteristics
Table 94. RGMII signal switching specifications1 (continued)
Symbol
TskewR3
2
3
4
Min.
Max.
Unit
Data to clock input skew at receiver
1
2.6
ns
4
Duty cycle for Gigabit
45
85
%
4
Duty_T
Duty cycle for 10/100T
40
90
%
Tr/Tf
Rise/fall time (20–80%)
—
0.98
ns
Duty_G
1
Description
The timings assume the following configuration:
DDR_SEL = (11)b
DSE (drive-strength) = (111)b
For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.
For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value
is unspecified.
Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned
between.
2'-))?48#ATTRANSMITTER
4SKEW4
2'-))?48$NNTO
2'-))?48?#4,
48%.
48%22
4SKEW2
2'-))?48#ATRECEIVER
Figure 49. RGMII transmit signal timing diagram
2'-))?28#ATTRANSMITTER
4SKEW4
2'-))?28$NNTO
2'-))?28?#4,
28$6
28%22
4SKEW2
2'-))?28#ATRECEIVER
Figure 50. RGMII receive signal timing diagram
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
97
Electrical characteristics
2'-))?28#SOURCEOFDATA
)NTERNALDELAY
4SETUP4
4HOLD4
4SETUP2
4HOLD2
2'-))?28$NNTO
2'-))?28?#4,
28$6
28%22
2'-))?28#ATRECEIVER
Figure 51. RGMII receive signal timing diagram with internal delay
4.9.5
Controller Area Network (CAN) AC electrical specifications
The Controller Area Network (CAN) module is a communication controller implementing the CAN
protocol according to the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0B protocol
specification. The processor has three CAN modules available. Tx and Rx ports are multiplexed with other
I/O pins. See the IOMUXC chapter of the device reference manual to see which pins expose Tx and Rx
pins; these ports are named CAN_TX and CAN_RX, respectively.
Please refer to Section 4.3.2.1, General purpose I/O (GPIO) AC parameters.
4.9.6
LPUART electrical specifications
Please refer to Section 4.3.2.1, General purpose I/O (GPIO) AC parameters.
4.9.7
USB PHY parameters
This section describes the USB-OTG PHY parameters.
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision
2.0 OTG with the following amendments.
• USB ENGINEERING CHANGE NOTICE
— Title: 5V Short Circuit Withstand Requirement Change
— Applies to: Universal Serial Bus Specification, Revision 2.0
• Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
• USB ENGINEERING CHANGE NOTICE
— Title: Pull-up/Pull-down resistors
— Applies to: Universal Serial Bus Specification, Revision 2.0
• USB ENGINEERING CHANGE NOTICE
— Title: Suspend Current Limit Changes
— Applies to: Universal Serial Bus Specification, Revision 2.0
• USB ENGINEERING CHANGE NOTICE
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
98
NXP Semiconductors
Electrical characteristics
•
•
— Title: USB 2.0 Phase Locked SOFs
— Applies to: Universal Serial Bus Specification, Revision 2.0
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
— Revision 2.0 plus errata and ecn June 4, 2010
Battery Charging Specification (available from USB-IF)
— Revision 1.2, December 7, 2010
— Portable device only
4.10
Timers
This section provides information on timers.
4.10.1
Pulse Width Modulator (PWM) characteristics
This section describes the electrical information of the PWM.
Table 95. PWM timing parameters
Parameter
Symbol
Typ
Max
Unit
PWM Clock Frequency
—
—
240
MHz
Output skew
—
—
2
ns
4.10.2
Quad timer timing
Table 96 lists the quad timer parameters.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
99
Electrical characteristics
Table 96. Quad timer timing
Symbo
Min1
Max
Unit
TIN
2T + 6
—
ns
Timer input high/low period
TINHL
1T + 3
—
ns
Timer output period
TOUT
33
—
ns
TOUTHL
16.7
—
ns
Characteristic
Timer input period
Timer output high/low period
1
See Figure
T = clock cycle. For 60 MHz operation, T = 16.7 ns.
4IMER)NPUTS
4 ).
4 ).(,
4 ).(,
4 /54
4 /54(,
4 /54(,
4IMER/UTPUTS
Figure 52. Quad timer timing
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
100
NXP Semiconductors
Boot mode configuration
5
Boot mode configuration
This section provides information on boot mode configuration pins allocation and boot devices interfaces
allocation.
5.1
Boot mode configuration pins
Table 97 provides boot options, functionality, fuse values, and associated pins. Several input pins are also
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX RT1160
Fuse Map and the System Boot chapter in i.MX RT1160 Reference Manual (IMXRT1160RM).
Table 97. Fuses and associated pins used for boot
Pad
Default setting on reset
eFuse name
GPIO_LPSR_02
35 K pull-down
BOOT_MODE[0]
GPIO_LPSR_03
35 K pull-down
BOOT_MODE[1]
GPIO_DISP_B1_06
HighZ
BT_CFG[0]
GPIO_DISP_B1_07
HighZ
BT_CFG[1]
GPIO_DISP_B1_08
HighZ
BT_CFG[2]
GPIO_DISP_B1_09
HighZ
BT_CFG[3]
GPIO_DISP_B1_10
HighZ
BT_CFG[4]
GPIO_DISP_B1_11
HighZ
BT_CFG[5]
GPIO_DISP_B2_00
HighZ
BT_CFG[6]
GPIO_DISP_B2_01
HighZ
BT_CFG[7]
GPIO_DISP_B2_02
HighZ
BT_CFG[8]
GPIO_DISP_B2_03
HighZ
BT_CFG[9]
GPIO_DISP_B2_04
HighZ
BT_CFG[10]
GPIO_DISP_B2_05
HighZ
BT_CFG[11]
5.2
Details
Boot Options, Pin value overrides
fuse settings for BT_FUSE_SEL = ‘0’.
Signal Configuration as Fuse
Override Input at Power Up.
These are special I/O lines that
control the boot up configuration
during product development. In
production, the boot configuration can
be controlled by fuses.
Boot device interface allocation
The following tables list the interfaces that can be used by the boot process in accordance with the specific
boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC allocation,
which are configured during boot when appropriate.
Table 98. Boot through NAND
PAD Name
IO Function
ALT
Comments
GPIO_EMC_B1_00
semc.DATA[0]
ALT 0
—
GPIO_EMC_B1_01
semc.DATA[1]
ALT 0
—
GPIO_EMC_B2_02
semc.DATA[2]
ALT 0
—
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
101
Boot mode configuration
Table 98. Boot through NAND
GPIO_EMC_B1_03
semc.DATA[3]
ALT 0
—
GPIO_EMC_B1_04
semc.DATA[4]
ALT 0
—
GPIO_EMC_B1_05
semc.DATA[5]
ALT 0
—
GPIO_EMC_B1_06
semc.DATA[6]
ALT 0
—
GPIO_EMC_B1_07
semc.DATA[7]
ALT 0
—
GPIO_EMC_B1_30
semc.DATA[8]
ALT 0
—
GPIO_EMC_B1_31
semc.DATA[9]
ALT 0
—
GPIO_EMC_B1_32
semc.DATA[10]
ALT 0
—
GPIO_EMC_B1_33
semc.DATA[11]
ALT 0
—
GPIO_EMC_B1_34
semc.DATA[12]
ALT 0
—
GPIO_EMC_B1_35
semc.DATA[13]
ALT 0
—
GPIO_EMC_B1_36
semc.DATA[14]
ALT 0
—
GPIO_EMC_B1_37
semc.DATA[15]
ALT 0
—
GPIO_EMC_B1_18
semc.ADDR[9]
ALT 0
—
GPIO_EMC_B1_19
semc.ADDR[11]
ALT 0
—
GPIO_EMC_B1_20
semc.ADDR[12]
ALT 0
—
GPIO_EMC_B1_22
semc.BA1
ALT 0
—
GPIO_EMC_B1_41
semc.CSX[0]
ALT 0
—
Table 99. Boot through FlexSPI1
PAD Name
IO Function
Mux Mode
Comments
GPIO_SD_B2_00
flexspi1.B_DATA[3]
ALT 1
—
GPIO_SD_B2_01
flexspi1.B_DATA[2]
ALT 1
—
GPIO_SD_B2_02
flexspi1.B_DATA[1]
ALT 1
—
GPIO_SD_B2_03
flexspi1.B_DATA[0]
ALT 1
—
GPIO_SD_B2_04
flexspi1.B_SCLK
ALT 1
—
GPIO_SD_B1_05
flexspi1.B_DQS
ALT 8
—
GPIO_SD_B1_04
flexspi1.B_SS0_B
ALT 8
—
GPIO_SD_B1_03
flexspi1.B_SS1_B
ALT 9
—
GPIO_SD_B2_05
flexspi1.A_DQS
ALT 1
—
GPIO_EMC_B2_18
flexspi1.A_DQS
ALT 6
Secondary
option for DQS
GPIO_SD_B2_06
flexspi1.A_SS0_B
ALT 1
—
GPIO_SD_B1_02
flexspi1.A_SS1_B
ALT 9
—
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
102
NXP Semiconductors
Boot mode configuration
Table 99. Boot through FlexSPI1 (continued)
PAD Name
IO Function
Mux Mode
Comments
GPIO_SD_B2_07
flexspi1.A_SCLK
ALT 1
—
GPIO_SD_B2_08
flexspi1.A_DATA[0]
ALT 1
—
GPIO_SD_B2_09
flexspi1.A_DATA[1]
ALT 1
—
GPIO_SD_B2_10
flexspi1.A_DATA[2]
ALT 1
—
GPIO_SD_B2_11
flexspi1.A_DATA[3]
ALT 1
—
Table 100. Boot through FlexSPI2 (QSPI/HyperFLASH)
PAD Name
IO Function
ALT
Comments
GPIO_EMC_B1_41
flexspi2.B_DATA[7]
ALT 4
—
GPIO_EMC_B2_00
flexspi2.B_DATA[6]
ALT 4
—
GPIO_EMC_B2_01
flexspi2.B_DATA[5]
ALT 4
—
GPIO_EMC_B2_02
flexspi2.B_DATA[4]
ALT 4
—
GPIO_EMC_B2_03
flexspi2.B_DATA[3]
ALT 4
—
GPIO_EMC_B2_04
flexspi2.B_DATA[2]
ALT 4
—
GPIO_EMC_B2_05
flexspi2.B_DATA[1]
ALT 4
—
GPIO_EMC_B2_06
flexspi2.B_DATA[0]
ALT 4
—
GPIO_EMC_B2_07
flexspi2.B_DQS
ALT 4
—
GPIO_EMC_B2_08
flexspi2.B_SS0_B
ALT 4
—
GPIO_EMC_B2_09
flexspi2.B_SCLK
ALT 4
—
GPIO_EMC_B2_10
flexspi2.A_SCLK
ALT 4
—
GPIO_EMC_B2_11
flexspi2.A_SS0_B
ALT 4
—
GPIO_EMC_B2_12
flexspi2.A_DQS
ALT 4
—
GPIO_EMC_B2_13
flexspi2.A_DATA[0]
ALT 4
—
GPIO_EMC_B2_14
flexspi2.A_DATA[1]
ALT 4
—
GPIO_EMC_B2_15
flexspi2.A_DATA[2]
ALT 4
—
GPIO_EMC_B2_16
flexspi2.A_DATA[3]
ALT 4
—
GPIO_EMC_B2_17
flexspi2.A_DATA[4]
ALT 4
—
GPIO_EMC_B2_18
flexspi2.A_DATA[5]
ALT 4
—
GPIO_EMC_B2_19
flexspi2.A_DATA[6]
ALT 4
—
GPIO_EMC_B2_20
flexspi2.A_DATA[7]
ALT 4
—
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
103
Boot mode configuration
Table 101. FlexSPI reset
PAD Name
IO Function
Mux Mode
Comments
GPIO_SD_B1_00
gpio_mux4.IO[3]
ALT 5
—
GPIO_EMC_B1_40
gpio_mux2.IO[8]
ALT 5
Secondary
option
Table 102. Boot through SAI1
PAD Name
IO Function
Mux Mode
Comments
GPIO_AD_17
sai1.MCLK
ALT 0
—
GPIO_AD_18
sai1.RX_SYNC
ALT 0
—
GPIO_AD_19
sai1.RX_BCLK
ALT 0
—
GPIO_AD_20
sai1.RX_DATA[0]
ALT 0
—
GPIO_AD_21
sai1.TX_DATA[0]
ALT 0
—
GPIO_AD_22
sai1.TX_BCLK
ALT 0
—
GPIO_AD_23
sai1.TX_SYNC
ALT 0
—
Table 103. Boot through SD1
PAD Name
IO Function
Mux Mode
Comments
GPIO_AD_32
usdhc1.CD_B
ALT 4
—
GPIO_AD_33
usdhc1.WP
ALT 4
—
GPIO_AD_34
usdhc1.VSELECT
ALT 4
—
GPIO_AD_35
usdhc1.RESET_B
ALT 4
—
GPIO_SD_B1_00
usdhc1.CMD
ALT 0
—
GPIO_SD_B1_01
usdhc1.CLK
ALT 0
—
GPIO_SD_B1_02
usdhc1.DATA0
ALT 0
—
GPIO_SD_B1_03
usdhc1.DATA1
ALT 0
—
GPIO_SD_B1_04
usdhc1.DATA2
ALT 0
—
GPIO_SD_B1_05
usdhc1.DATA3
ALT 0
—
Table 104. Boot through SD2
PAD Name
IO Function
Mux Mode
Comments
GPIO_AD_26
usdhc2.CD_B
ALT 11
—
GPIO_AD_27
usdhc2.WP
ALT 11
—
GPIO_AD_28
usdhc2.VSELECT
ALT 11
—
GPIO_SD_B2_00
usdhc2.DATA3
ALT 0
—
GPIO_SD_B2_01
usdhc2.DATA2
ALT 0
—
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
104
NXP Semiconductors
Boot mode configuration
Table 104. Boot through SD2 (continued)
PAD Name
IO Function
Mux Mode
Comments
GPIO_SD_B2_02
usdhc2.DATA1
ALT 0
—
GPIO_SD_B2_03
usdhc2.DATA0
ALT 0
—
GPIO_SD_B2_04
usdhc2.CLK
ALT 0
—
GPIO_SD_B2_05
usdhc2.CMD
ALT 0
—
GPIO_SD_B2_06
usdhc2.RESET_B
ALT 0
—
GPIO_SD_B2_08
usdhc2.DATA4
ALT 0
—
GPIO_SD_B2_09
usdhc2.DATA5
ALT 0
—
GPIO_SD_B2_10
usdhc2.DATA6
ALT 0
—
GPIO_SD_B2_11
usdhc2.DATA7
ALT 0
—
Table 105. Boot through SPI1
PAD Name
IO Function
Mux Mode
Comments
GPIO_AD_28
lpspi1.SCK
ALT 0
—
GPIO_AD_29
lpspi1.PCS0
ALT 0
—
GPIO_AD_30
lpspi1.SDO
ALT 0
—
GPIO_AD_31
lpspi1.SDI
ALT 0
—
Table 106. Boot through SPI2
PAD Name
IO Function
Mux Mode
Comments
GPIO_SD_B2_07
lpspi2.SCK
ALT 6
—
GPIO_SD_B2_08
lpspi2.PCS0
ALT 6
—
GPIO_SD_B2_09
lpspi2.SDO
ALT 6
—
GPIO_SD_B2_10
lpspi2.SDI
ALT 6
—
Table 107. Boot through SPI3
PAD Name
IO Function
Mux Mode
Comments
GPIO_DISP_B1_04
lpspi3.SCK
ALT 9
—
GPIO_DISP_B1_07
lpspi3.PCS0
ALT 9
—
GPIO_DISP_B1_06
lpspi3.SDO
ALT 9
—
GPIO_DISP_B1_05
lpspi3.SDI
ALT 9
—
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
105
Boot mode configuration
Table 108. Boot through SPI4
PAD Name
IO Function
Mux Mode
Comments
GPIO_DISP_B2_12
lpspi4.SCK
ALT 9
—
GPIO_DISP_B2_15
lpspi4.PCS0
ALT 9
—
GPIO_DISP_B2_14
lpspi4.SDO
ALT 9
—
GPIO_DISP_B2_13
lpspi4.SDI
ALT 9
—
Table 109. Boot through UART1
PAD Name
IO Function
Mux Mode
Comments
GPIO_AD_24
lpuart1.TX
ALT 0
—
GPIO_AD_25
lpuart1.RX
ALT 0
—
GPIO_AD_26
lpuart1.CTS_B
ALT 0
—
GPIO_AD_27
lpuart1.RTS_B
ALT 0
—
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
106
NXP Semiconductors
Package information and contact assignments
6
Package information and contact assignments
This section includes the contact assignment information and mechanical package drawing.
6.1
6.1.1
14 x 14 mm package information
14 x 14 mm, 0.8 mm pitch, ball matrix
Figure 53 shows the top, bottom, and side views of the 14 x 14 mm MAPBGA package.
Figure 53. 14 x 14 mm BGA, case x package top, bottom, and side Views
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
107
Package information and contact assignments
6.1.2
14 x 14 mm supplies contact assignments and functional contact
assignments
Table 110 shows the device connection list for ground, sense, and reference contact signals.
Table 110. 14 x 14 mm supplies contact assignment
Supply Rail Name
Ball(s) Position(s)
Remark
ADC_VREFH
G16
—
DAC_OUT
H16
—
DCDC_ANA
M7, M8
—
DCDC_ANA_SENSE
M6
—
DCDC_DIG
K8, K9, L8
—
DCDC_DIG_SENSE
L7
—
DCDC_GND
K6, K7, L6
—
DCDC_IN
M5, N5
—
DCDC_IN_Q
L5
—
DCDC_LN
T4, U4
—
DCDC_LP
T3, U3
—
DCDC_MODE
N4
—
DCDC_PSWITCH
P3
—
NVCC_DISP1
D12
—
NVCC_DISP2
E7
—
NVCC_EMC1
F6, F7, G6
—
NVCC_EMC2
H6, J6
—
NVCC_GPIO
M12
—
NVCC_LPSR
P7
—
NVCC_SNVS
U11
—
NVCC_SD1
D14
—
NVCC_SD2
G13
—
VDD_LPSR_ANA
P12
—
VDD_LPSR_DIG
P11
—
VDD_LPSR_IN
R12
—
VDD_MIPI_1P0
F10
—
VDD_MIPI_1P8
F9
—
VDD_USB_1P8
H12
—
VDD_USB_3P3
G12
—
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
108
NXP Semiconductors
Package information and contact assignments
Table 110. 14 x 14 mm supplies contact assignment (continued)
Supply Rail Name
Ball(s) Position(s)
Remark
VDD_SOC_IN
H8, H9, H10, J8, J9, J10, K10
VDD_SNVS_ANA
U14
—
VDD_SNVS_DIG
T14
—
VDD_SNVS_IN
U12
—
VDDA_1P0
N11
—
VDDA_1P8_IN
M11
—
VDDA_ADC_1P8
K15
VDDA_ADC_3P3
J13
—
VSS
A1, A17, B7, C8, C10, C12, C14, D4, F11, F12, F13, G3, G7, G8, G9,
G10, G11, G15, H7, H11, J7, J11, K11, L3, L10, L11, L15, P4, P14, R4,
R7, T12, U1, U17
—
Table 111 shows an alpha-sorted list of functional contact assignments of the 14 x 14 mm package.
Table 111. 14 x 14 mm functional contact assignment
Ball name
14 x 14
ball
Power group
Ball
Types
Default setting
Default
modes
Default function
Input/
output
Nominal
value
CLK1_N
T15
—
—
—
—
—
CLK1_P
U15
—
—
—
—
—
GPIO_AD_00
N12
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX2_IO31
Input
35K PU1
GPIO_AD_01
R14
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO0
Input
35K PU
GPIO_AD_02
R13
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO1
Input
35K PD2
GPIO_AD_03
P15
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO2
Input
35K PD
GPIO_AD_04
M13
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO3
Input
35K PD
GPIO_AD_05
P13
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO4
Input
35K PD
GPIO_AD_06
N13
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO5
Input
35K PD
GPIO_AD_07
T17
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO6
Input
35K PD
GPIO_AD_08
R15
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO7
Input
35K PD
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
109
Package information and contact assignments
Table 111. 14 x 14 mm functional contact assignment (continued)
Ball name
14 x 14
ball
Power group
Ball
Types
Default setting
Default
modes
Default function
Input/
output
Nominal
value
GPIO_AD_09
R16
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO8
Input
35K PD
GPIO_AD_10
R17
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO9
Input
35K PD
GPIO_AD_11
P16
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO10
Input
35K PD
GPIO_AD_12
P17
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO11
Input
35K PD
GPIO_AD_13
L12
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO12
Input
35K PD
GPIO_AD_14
N14
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO13
Input
35K PD
GPIO_AD_15
M14
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO14
Input
35K PD
GPIO_AD_16
N17
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO15
Input
35K PD
GPIO_AD_17
N15
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO16
Input
35K PD
GPIO_AD_18
M16
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO17
Input
35K PU
GPIO_AD_19
L16
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO18
Input
35K PD
GPIO_AD_20
K13
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO19
Input
35K PD
GPIO_AD_21
K14
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO20
Input
35K PD
GPIO_AD_22
K12
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO21
Input
35K PD
GPIO_AD_23
J12
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO22
Input
35K PD
GPIO_AD_24
L13
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO23
Input
35K PD
GPIO_AD_25
M15
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO24
Input
35K PD
GPIO_AD_26
L14
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO25
Input
35K PU
GPIO_AD_27
N16
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO26
Input
35K PU
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
110
NXP Semiconductors
Package information and contact assignments
Table 111. 14 x 14 mm functional contact assignment (continued)
Ball name
14 x 14
ball
Power group
Ball
Types
Default setting
Default
modes
Default function
Input/
output
Nominal
value
GPIO_AD_28
L17
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO27
Input
35K PD
GPIO_AD_29
M17
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO28
Input
35K PD
GPIO_AD_30
K17
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO29
Input
35K PD
GPIO_AD_31
J17
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO30
Input
35K PD
GPIO_AD_32
K16
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX3_IO31
Input
35K PD
GPIO_AD_33
H17
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX4_IO0
Input
35K PD
GPIO_AD_34
J16
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX4_IO1
Input
35K PD
GPIO_AD_35
G17
NVCC_GPIO
Digital
GPIO
ALT 5
GPIO_MUX4_IO2
Input
35K PU
GPIO_DISP_B1_00
E13
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX4_IO21
Input
50/35K
PD3
GPIO_DISP_B1_01
D13
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX4_IO22
Input
50/35K
PD
GPIO_DISP_B1_02
D11
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX4_IO23
Input
50/35K
PD
GPIO_DISP_B1_03
E11
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX4_IO24
Input
50/35K
PD
GPIO_DISP_B1_04
E10
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX4_IO25
Input
50/35K
PD
GPIO_DISP_B1_05
C11
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX4_IO26
Input
50/35K
PD
GPIO_DISP_B1_06
D10
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX4_IO27
Input
Highz
GPIO_DISP_B1_07
E12
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX4_IO28
Input
Highz
GPIO_DISP_B1_08
A15
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX4_IO29
Input
Highz
GPIO_DISP_B1_09
C13
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX4_IO30
Input
Highz
GPIO_DISP_B1_10
B14
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX4_IO31
Input
Highz
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
111
Package information and contact assignments
Table 111. 14 x 14 mm functional contact assignment (continued)
Ball name
14 x 14
ball
Power group
Ball
Types
Default setting
Default
modes
Default function
Input/
output
Nominal
value
GPIO_DISP_B1_11
A14
NVCC_DISP1
Digital
GPIO
ALT 5
GPIO_MUX5_IO0
Input
Highz
GPIO_DISP_B2_00
E8
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO1
Input
Highz
GPIO_DISP_B2_01
F8
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO2
Input
Highz
GPIO_DISP_B2_02
E9
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO3
Input
Highz
GPIO_DISP_B2_03
D7
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO4
Input
Highz
GPIO_DISP_B2_04
C7
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO5
Input
Highz
GPIO_DISP_B2_05
C9
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO6
Input
Highz
GPIO_DISP_B2_06
C6
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO7
Input
35K PD
GPIO_DISP_B2_07
D6
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO8
Input
35K PD
GPIO_DISP_B2_08
B5
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO9
Input
35K PD
GPIO_DISP_B2_09
D8
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO10
Input
35K PD
GPIO_DISP_B2_10
D9
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO11
Input
35K PD
GPIO_DISP_B2_11
A6
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO12
Input
35K PD
GPIO_DISP_B2_12
B6
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO13
Input
35K PD
GPIO_DISP_B2_13
A5
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO14
Input
35K PD
GPIO_DISP_B2_14
A7
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO15
Input
35K PD
GPIO_DISP_B2_15
A4
NVCC_DISP2
Digital
GPIO
ALT 5
GPIO_MUX5_IO16
Input
35K PU
GPIO_EMC_B1_00
F3
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO0
Input
50/35K
PD
GPIO_EMC_B1_01
F2
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO1
Input
50/35K
PD
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
112
NXP Semiconductors
Package information and contact assignments
Table 111. 14 x 14 mm functional contact assignment (continued)
Ball name
14 x 14
ball
Power group
Ball
Types
Default setting
Default
modes
Default function
Input/
output
Nominal
value
GPIO_EMC_B1_02
G4
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO2
Input
50/35K
PD
GPIO_EMC_B1_03
E4
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO3
Input
50/35K
PD
GPIO_EMC_B1_04
H5
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO4
Input
50/35K
PD
GPIO_EMC_B1_05
F4
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO5
Input
50/35K
PD
GPIO_EMC_B1_06
H4
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO6
Input
50/35K
PD
GPIO_EMC_B1_07
H3
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO7
Input
50/35K
PD
GPIO_EMC_B1_08
F5
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO8
Input
50/35K
PD
GPIO_EMC_B1_09
A3
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO9
Input
50/35K
PD
GPIO_EMC_B1_10
A2
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO10
Input
50/35K
PD
GPIO_EMC_B1_11
C2
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO11
Input
50/35K
PD
GPIO_EMC_B1_12
C5
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO12
Input
50/35K
PD
GPIO_EMC_B1_13
D5
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO13
Input
50/35K
PD
GPIO_EMC_B1_14
B1
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO14
Input
50/35K
PD
GPIO_EMC_B1_15
C1
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO15
Input
50/35K
PD
GPIO_EMC_B1_16
D3
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO16
Input
50/35K
PD
GPIO_EMC_B1_17
B3
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO17
Input
50/35K
PD
GPIO_EMC_B1_18
B4
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO18
Input
50/35K
PD
GPIO_EMC_B1_19
C4
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO19
Input
50/35K
PD
GPIO_EMC_B1_20
C3
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO20
Input
50/35K
PD
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
113
Package information and contact assignments
Table 111. 14 x 14 mm functional contact assignment (continued)
Ball name
14 x 14
ball
Power group
Ball
Types
Default setting
Default
modes
Default function
Input/
output
Nominal
value
GPIO_EMC_B1_21
G2
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO21
Input
50/35K
PD
GPIO_EMC_B1_22
H2
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO22
Input
50/35K
PD
GPIO_EMC_B1_23
B2
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO23
Input
50/35K
PD
GPIO_EMC_B1_24
J5
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO24
Input
50/35K
PD
GPIO_EMC_B1_25
J4
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO25
Input
50/35K
PD
GPIO_EMC_B1_26
J3
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO26
Input
50/35K
PD
GPIO_EMC_B1_27
G5
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO27
Input
50/35K
PD
GPIO_EMC_B1_28
E5
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO28
Input
50/35K
PD
GPIO_EMC_B1_29
E6
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO29
Input
50/35K
PD
GPIO_EMC_B1_30
E3
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO30
Input
50/35K
PD
GPIO_EMC_B1_31
D2
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX1_IO31
Input
50/35K
PD
GPIO_EMC_B1_32
D1
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX2_IO0
Input
50/35K
PD
GPIO_EMC_B1_33
E2
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX2_IO1
Input
50/35K
PD
GPIO_EMC_B1_34
E1
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX2_IO2
Input
50/35K
PD
GPIO_EMC_B1_35
F1
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX2_IO3
Input
50/35K
PD
GPIO_EMC_B1_36
G1
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX2_IO4
Input
50/35K
PD
GPIO_EMC_B1_37
H1
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX2_IO5
Input
50/35K
PD
GPIO_EMC_B1_38
J1
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX2_IO6
Input
50/35K
PD
GPIO_EMC_B1_39
J2
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX2_IO7
Input
50/35K
PD
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
114
NXP Semiconductors
Package information and contact assignments
Table 111. 14 x 14 mm functional contact assignment (continued)
Ball name
14 x 14
ball
Power group
Ball
Types
Default setting
Default
modes
Default function
Input/
output
Nominal
value
GPIO_EMC_B1_40
K1
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX2_IO8
Input
50/35K
PD
GPIO_EMC_B1_41
L1
NVCC_EMC1
Digital
GPIO
ALT 5
GPIO_MUX2_IO9
Input
50/35K
PD
GPIO_EMC_B2_00
K2
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO10
Input
50/35K
PD
GPIO_EMC_B2_01
K4
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO11
Input
50/35K
PD
GPIO_EMC_B2_02
K3
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO12
Input
50/35K
PD
GPIO_EMC_B2_03
R1
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO13
Input
50/35K
PD
GPIO_EMC_B2_04
M1
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO14
Input
50/35K
PD
GPIO_EMC_B2_05
N1
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO15
Input
50/35K
PD
GPIO_EMC_B2_06
T1
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO16
Input
50/35K
PD
GPIO_EMC_B2_07
M3
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO17
Input
50/35K
PD
GPIO_EMC_B2_08
P1
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO18
Input
50/35K
PU
GPIO_EMC_B2_09
N2
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO19
Input
50/35K
PD
GPIO_EMC_B2_10
R2
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO20
Input
50/35K
PD
GPIO_EMC_B2_11
L4
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO21
Input
50/35K
PU
GPIO_EMC_B2_12
M2
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO22
Input
50/35K
PD
GPIO_EMC_B2_13
K5
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO23
Input
50/35K
PD
GPIO_EMC_B2_14
M4
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO24
Input
50/35K
PD
GPIO_EMC_B2_15
L2
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO25
Input
50/35K
PD
GPIO_EMC_B2_16
P2
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO26
Input
50/35K
PD
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
115
Package information and contact assignments
Table 111. 14 x 14 mm functional contact assignment (continued)
Ball name
14 x 14
ball
Power group
Ball
Types
Default setting
Default
modes
Default function
Input/
output
Nominal
value
GPIO_EMC_B2_17
T2
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO27
Input
50/35K
PD
GPIO_EMC_B2_18
N3
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO28
Input
50/35K
PD
GPIO_EMC_B2_19
U2
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO29
Input
50/35K
PD
GPIO_EMC_B2_20
R3
NVCC_EMC2
Digital
GPIO
ALT 5
GPIO_MUX2_IO30
Input
50/35K
PD
GPIO_LPSR_00
N6
NVCC_LPSR
Digital
GPIO
ALT 10
GPIO12_IO0
Input
35K PD
GPIO_LPSR_01
R6
NVCC_LPSR
Digital
GPIO
ALT 10
GPIO12_IO1
Input
35K PD
GPIO_LPSR_02
P6
NVCC_LPSR
Digital
GPIO
ALT 0
BOOT_MODE0
Input
35K PD
GPIO_LPSR_03
T7
NVCC_LPSR
Digital
GPIO
ALT 0
BOOT_MODE1
Input
35K PD
GPIO_LPSR_04
N7
NVCC_LPSR
Digital
GPIO
ALT 10
GPIO12_IO4
Input
35K PD
GPIO_LPSR_05
N8
NVCC_LPSR
Digital
GPIO
ALT 10
GPIO12_IO5
Input
35K PD
GPIO_LPSR_06
P8
NVCC_LPSR
Digital
GPIO
ALT 10
GPIO12_IO6
Input
35K PD
GPIO_LPSR_07
R8
NVCC_LPSR
Digital
GPIO
ALT 10
GPIO12_IO7
Input
35K PD
GPIO_LPSR_08
U8
NVCC_LPSR
Digital
GPIO
ALT 10
GPIO12_IO8
Input
35K PD
GPIO_LPSR_09
P5
NVCC_LPSR
Digital
GPIO
ALT 10
GPIO12_IO9
Input
35K PD
GPIO_LPSR_10
R5
NVCC_LPSR
Digital
GPIO
ALT 0
JTAG_MUX_TRSTB
Input
35K PU
GPIO_LPSR_11
T5
NVCC_LPSR
Digital
GPIO
ALT 0
JTAG_MUX_TDO
Input
Highz
GPIO_LPSR_12
U5
NVCC_LPSR
Digital
GPIO
ALT 0
JTAG_MUX_TDI
Input
35K PU
GPIO_LPSR_13
U6
NVCC_LPSR
Digital
GPIO
ALT 0
JTAG_MUX_MOD
Input
35K PD
GPIO_LPSR_14
T6
NVCC_LPSR
Digital
GPIO
ALT 0
JTAG_MUX_TCK
Input
35K PD
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
116
NXP Semiconductors
Package information and contact assignments
Table 111. 14 x 14 mm functional contact assignment (continued)
Ball name
14 x 14
ball
Power group
Ball
Types
Default setting
Default
modes
Default function
Input/
output
Nominal
value
GPIO_LPSR_15
U7
NVCC_LPSR
Digital
GPIO
ALT 0
JTAG_MUX_TMS
Input
35K PU
GPIO_SD_B1_00
B16
NVCC_SD1
Digital
GPIO
ALT 5
GPIO_MUX4_IO3
Input
50/35K
PU
GPIO_SD_B1_01
D15
NVCC_SD1
Digital
GPIO
ALT 5
GPIO_MUX4_IO4
Input
50/35K
PD
GPIO_SD_B1_02
C15
NVCC_SD1
Digital
GPIO
ALT 5
GPIO_MUX4_IO5
Input
50/35K
PU
GPIO_SD_B1_03
B17
NVCC_SD1
Digital
GPIO
ALT 5
GPIO_MUX4_IO6
Input
50/35K
PU
GPIO_SD_B1_04
B15
NVCC_SD1
Digital
GPIO
ALT 5
GPIO_MUX4_IO7
Input
50/35K
PU
GPIO_SD_B1_05
A16
NVCC_SD1
Digital
GPIO
ALT 5
GPIO_MUX4_IO8
Input
50/35K
PD
GPIO_SD_B2_00
J15
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO9
Input
50/35K
PD
GPIO_SD_B2_01
J14
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO10
Input
50/35K
PD
GPIO_SD_B2_02
H13
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO11
Input
50/35K
PD
GPIO_SD_B2_03
E15
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO12
Input
50/35K
PD
GPIO_SD_B2_04
F14
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO13
Input
50/35K
PU
GPIO_SD_B2_05
E14
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO14
Input
50/35K
PU
GPIO_SD_B2_06
F17
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO15
Input
50/35K
PU
GPIO_SD_B2_07
G14
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO16
Input
50/35K
PD
GPIO_SD_B2_08
F15
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO17
Input
50/35K
PD
GPIO_SD_B2_09
H15
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO18
Input
50/35K
PD
GPIO_SD_B2_10
H14
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO19
Input
50/35K
PD
GPIO_SD_B2_11
F16
NVCC_SD2
Digital
GPIO
ALT 5
GPIO_MUX4_IO20
Input
50/35K
PD
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
117
Package information and contact assignments
Table 111. 14 x 14 mm functional contact assignment (continued)
Ball name
14 x 14
ball
Power group
Ball
Types
Default setting
Default
modes
Default function
Input/
output
Nominal
value
GPIO_SNVS_00
R10
NVCC_SNVS
ANALOG ALT 5
GPIO
GPIO13_IO3
Input
PD
GPIO_SNVS_01
P10
NVCC_SNVS
ANALOG ALT 5
GPIO
GPIO13_IO4
Input
PD
GPIO_SNVS_02
L9
NVCC_SNVS
ANALOG ALT 5
GPIO
GPIO13_IO5
Input
PD
GPIO_SNVS_03
M10
NVCC_SNVS
ANALOG ALT 5
GPIO
GPIO13_IO6
Input
PD
GPIO_SNVS_04
N10
NVCC_SNVS
ANALOG ALT 5
GPIO
GPIO13_IO7
Input
PD
GPIO_SNVS_05
P9
NVCC_SNVS
ANALOG ALT 5
GPIO
GPIO13_IO8
Input
PD
GPIO_SNVS_06
M9
NVCC_SNVS
ANALOG ALT 5
GPIO
GPIO13_IO9
Input
PD
GPIO_SNVS_07
R9
NVCC_SNVS
ANALOG ALT 5
GPIO
GPIO13_IO10
Input
PD
GPIO_SNVS_08
N9
NVCC_SNVS
ANALOG ALT 5
GPIO
GPIO13_IO11
Input
PD
GPIO_SNVS_09
R11
NVCC_SNVS
ANALOG ALT 5
GPIO
GPIO13_IO12
Input
PD
MIPI_CSI_CKP
B12
VDD_MIPI_1P8
CSI
—
—
—
—
MIPI_CSI_CKN
A12
VDD_MIPI_1P8
CSI
—
—
—
—
MIPI_CSI_DN0
A11
VDD_MIPI_1P8
CSI
—
—
—
—
MIPI_CSI_DN1
A13
VDD_MIPI_1P8
CSI
—
—
—
—
MIPI_CSI_DP0
B11
VDD_MIPI_1P8
CSI
—
—
—
—
MIPI_CSI_DP1
B13
VDD_MIPI_1P8
CSI
—
—
—
—
MIPI_DSI_CKP
B9
VDD_MIPI_1P8
DSI
—
—
—
—
MIPI_DSI_CKN
A9
VDD_MIPI_1P8
DSI
—
—
—
—
MIPI_DSI_DN0
A8
VDD_MIPI_1P8
DSI
—
—
—
—
MIPI_DSI_DN1
A10
VDD_MIPI_1P8
DSI
—
—
—
—
MIPI_DSI_DP0
B8
VDD_MIPI_1P8
DSI
—
—
—
—
MIPI_DSI_DP1
B10
VDD_MIPI_1P8
DSI
—
—
—
—
ONOFF
U10
NVCC_SNVS
ANALOG ALT 0
GPIO
RESET_B
Input
PU
PMIC_ON_REQ
U9
NVCC_SNVS
ANALOG ALT 0
GPIO
SNVS_LP_PMIC_ON
_REQ
Output
Output
high
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
118
NXP Semiconductors
Package information and contact assignments
Table 111. 14 x 14 mm functional contact assignment (continued)
Ball name
14 x 14
ball
Power group
Ball
Types
Default setting
Default
modes
Default function
Input/
output
PMIC_STBY_REQ
T9
NVCC_SNVS
ANALOG ALT 0
GPIO
CCM_PMIC_VSTBY_
REQ
POR_B
T10
NVCC_SNVS
ANALOG ALT 0
GPIO
POR_B
RTC_XTALI
T13
—
—
—
—
—
—
RTC_XTALO
U13
—
—
—
—
—
—
TEST_MODE
T11
USB1_DN
E16
—
—
—
—
—
—
USB1_DP
E17
—
—
—
—
—
—
USB2_DN
C16
—
—
—
—
—
—
USB2_DP
C17
—
—
—
—
—
—
USB1_VBUS
D17
—
—
—
—
—
—
USB2_VBUS
D16
—
—
—
—
—
—
XTALI
U16
—
—
—
—
—
—
XTALO
T16
—
—
—
—
—
—
WAKEUP
T8
ANALOG ALT 5
GPIO
GPIO13_IO0
1
2
3
NVCC_SNVS
NVCC_SNVS
ANALOG ALT 0
GPIO
Output
Nominal
value
—
TEST_MODE
Input
Input
Output
low
PU
PD
PU
Pull-up
Pull-down
Typical resistance value is 50 k for 3.3 V and 35 k for 1.8 V. The range is from 10 k to 100 k (3.3 V) and 20 k to 50 k
(1.8 V).
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
119
Package information and contact assignments
6.1.3
14 x 14 mm, 0.8 mm pitch, ball map
Table 112 shows the 14 x 14 mm, 0.8 mm pitch ball map for the i.MX RT1160.
Table 112. 14 x 14 mm, 0.8 mm pitch, ball map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
VSS
GPIO_
EMC_
B1_10
GPIO_
EMC_
B1_09
GPIO_
DISP_
B2_15
GPIO_
DISP_
B2_13
GPIO_
DISP_
B2_11
GPIO_
DISP_
B2_14
MIPI_
DSI_
DN0
MIPI_
DSI_
CKN
MIPI_
DSI_
DN1
MIPI_
CSI_
DN0
MIPI_
CSI_
CKN
MIPI_
CSI_
DN1
GPIO_
DISP_
B1_11
GPIO_
DISP_
B1_08
GPIO_
SD_
B1_05
VSS
B
GPIO_
EMC_
B1_14
GPIO_
EMC_
B1_23
GPIO_
EMC_
B1_17
GPIO_
EMC_
B1_18
GPIO_
DISP_
B2_08
GPIO_
DISP_
B2_12
VSS
MIPI_
DSI_
DP0
MIPI_
DSI_
CKP
MIPI_
DSI_
DP1
MIPI_
CSI_
DP0
MIPI_
CSI_
CKP
MIPI_
CSI_
DP1
GPIO_
DISP_
B1_10
GPIO_
SD_
B1_04
GPIO_
SD_
B1_00
GPIO_
SD_
B1_03
C
GPIO_
EMC_
B1_15
GPIO_
EMC_
B1_11
GPIO_
EMC_
B1_20
GPIO_
EMC_
B1_19
GPIO_
EMC_
B1_12
GPIO_
DISP_
B2_06
GPIO_
DISP_
B2_04
VSS
GPIO_
DISP_
B2_05
VSS
GPIO_
DISP_
B1_05
VSS
GPIO_
DISP_
B1_09
VSS
GPIO_
SD_
B1_02
USB2_
DN
USB2_
DP
D
GPIO_
EMC_
B1_32
GPIO_
EMC_
B1_31
GPIO_
EMC_
B1_16
VSS
GPIO_
EMC_
B1_13
GPIO_
DISP_
B2_07
GPIO_
DISP_
B2_03
GPIO_
DISP_
B2_09
GPIO_
DISP_
B2_10
GPIO_
DISP_
B1_06
GPIO_
DISP_
B1_02
NVCC_
DISP1
GPIO_
DISP_
B1_01
NVCC_
SD1
GPIO_
SD_
B1_01
USB2_
VBUS
USB1_
VBUS
E
GPIO_
EMC_
B1_34
GPIO_
EMC_
B1_33
GPIO_
EMC_
B1_30
GPIO_
EMC_
B1_03
GPIO_
EMC_
B1_28
GPIO_
EMC_
B1_29
NVCC_
DISP2
GPIO_
DISP_
B2_00
GPIO_
DISP_
B2_02
GPIO_
DISP_
B1_04
GPIO_
DISP_
B1_03
GPIO_
DISP_
B1_07
GPIO_
DISP_
B1_00
GPIO_
SD_
B2_05
GPIO_
SD_
B2_03
USB1_
DN
USB1_
DP
F
GPIO_
EMC_
B1_35
GPIO_
EMC_
B1_01
GPIO_
EMC_
B1_00
GPIO_
EMC_
B1_05
GPIO_
EMC_
B1_08
NVCC_
EMC1
NVCC_
EMC1
GPIO_
DISP_
B2_01
VDD_
MIPI_
1P8
VDD_M
IPI_
1P0
VSS
VSS
VSS
GPIO_
SD_
B2_04
GPIO_
SD_
B2_08
GPIO_
SD_
B2_11
GPIO_
SD_
B2_06
G
GPIO_
EMC_
B1_36
GPIO_
EMC_
B1_21
VSS
GPIO_
EMC_
B1_02
GPIO_
EMC_
B1_27
NVCC_
EMC1
VSS
VSS
VSS
VSS
VSS
VDD_
USB_
3P3
NVCC_
SD2
GPIO_
SD_
B2_07
VSS
ADC_
VREFH
GPIO_
AD_35
H
GPIO_
EMC_
B1_37
GPIO_
EMC_
B1_22
GPIO_
EMC_
B1_07
GPIO_
EMC_
B1_06
GPIO_
EMC_
B1_04
NVCC_
EMC2
VSS
VDD_
SOC_
IN
VDD_
SOC_
IN
VDD_
SOC_
IN
VSS
VDD_
USB_
1P8
GPIO_
SD_
B2_02
GPIO_
SD_
B2_10
GPIO_
SD_
B2_09
DAC_
OUT
GPIO_
AD_33
J
GPIO_
EMC_
B1_38
GPIO_
EMC_
B1_39
GPIO_
EMC_
B1_26
GPIO_
EMC_
B1_25
GPIO_
EMC_
B1_24
NVCC_
EMC2
VSS
VDD_
SOC_
IN
VDD_
SOC_
IN
VDD_
SOC_
IN
VSS
GPIO_
AD_23
VDDA_
ADC_
3P3
GPIO_
SD_
B2_01
GPIO_
SD_
B2_00
GPIO_
AD_34
GPIO_
AD_31
A
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
120
NXP Semiconductors
Package information and contact assignments
Table 112. 14 x 14 mm, 0.8 mm pitch, ball map (continued)
K
GPIO_
EMC_
B1_40
GPIO_
EMC_
B2_00
GPIO_
EMC_
B2_02
GPIO_
EMC_
B2_01
GPIO_
EMC_
B2_13
DCDC
_GND
DCDC
_GND
DCDC
_DIG
DCDC
_DIG
VDD_
SOC_
IN
VSS
GPIO_
AD_22
GPIO_
AD_20
GPIO_
AD_21
VDDA_
ADC_
1P8
GPIO_
AD_32
GPIO_
AD_30
L
GPIO_
EMC_
B1_41
GPIO_
EMC_
B2_15
VSS
GPIO_
EMC_
B2_11
DCDC
_IN_Q
DCDC
_GND
DCDC
_DIG_
SENSE
DCDC
_DIG
GPIO_
SNVS_
02
VSS
VSS
GPIO_
AD_13
GPIO_
AD_24
GPIO_
AD_26
VSS
GPIO_
AD_19
GPIO_
AD_28
M
GPIO_
EMC_
B2_04
GPIO_
EMC_
B2_12
GPIO_
EMC_
B2_07
GPIO_
EMC_
B2_14
DCDC
_IN
DCDC
_ANA_
SENSE
DCDC
_ANA
DCDC
_ANA
GPIO_
SNVS_
06
GPIO_
SNVS_
03
VDDA_
1P8_IN
NVCC_
GPIO
GPIO_
AD_04
GPIO_
AD_15
GPIO_
AD_25
GPIO_
AD_18
GPIO_
AD_29
N
GPIO_
EMC_
B2_05
GPIO_
EMC_
B2_09
GPIO_
EMC_
B2_18
DCDC_
MODE
DCDC
_IN
GPIO_
LPSR_
00
GPIO_
LPSR_
04
GPIO_
LPSR_
05
GPIO_
SNVS_
08
GPIO_
SNVS_
04
VDDA_
1P0
GPIO_
AD_00
GPIO_
AD_06
GPIO_
AD_14
GPIO_
AD_17
GPIO_
AD_27
GPIO_
AD_16
P
GPIO_
EMC_
B2_08
GPIO_
EMC_
B2_16
DCDC
_PSWI
TCH
VSS
GPIO_
LPSR_
09
GPIO_
LPSR_
02
NVCC_
LPSR
GPIO_
LPSR_
06
GPIO_
SNVS_
05
GPIO_
SNVS_
01
VDD_
LPSR_
DIG
VDD_
LPSR_
ANA
GPIO_
AD_05
VSS
GPIO_
AD_03
GPIO_
AD_11
GPIO_
AD_12
R
GPIO_
EMC_
B2_03
GPIO_
EMC_
B2_10
GPIO_
EMC_
B2_20
VSS
GPIO_
LPSR_
10
GPIO_
LPSR_
01
VSS
GPIO_
LPSR_
07
GPIO_
SNVS_
07
GPIO_
SNVS_
00
GPIO_
SNVS_
09
VDD_
LPSR_
IN
GPIO_
AD_02
GPIO_
AD_01
GPIO_
AD_08
GPIO_
AD_09
GPIO_
AD_10
T
GPIO_
EMC_
B2_06
GPIO_
EMC_
B2_17
DCDC
_LP
DCDC_
LN
GPIO_
LPSR_
11
GPIO_
LPSR_
14
GPIO_
LPSR_
03
WAKE
UP
PMIC_
STBY_
REQ
POR_B
TEST_
MODE
VSS
RTC_
XTALI
VDD_
SNVS_
DIG
CLK1_
N
XTALO
GPIO_
AD_07
VSS
GPIO_
EMC_
B2_19
DCDC
_LP
DCDC_
LN
GPIO_
LPSR_
12
GPIO_
LPSR_
13
GPIO_
LPSR_
15
GPIO_
LPSR_
08
PMIC_
ON_
REQ
ONOFF
NVCC_
SNVS
VDD_
SNVS_
IN
RTC_
XTALO
VDD_
SNVS_
ANA
CLK1_
P
XTALI
VSS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
U
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
121
Revision history
7
Revision history
Table 113 provides a revision history for this data sheet.
Table 113. i.MX RT1160 Data Sheet document revision history (continued)
Rev.
Number
Date
Substantive Change(s)
Rev 3
06/2023
• From Section 5.2, Boot device interface allocation, removed the table describing UART12
as a boot interface.
• In Table 58. FlexSPI output timing in SDR mode, updated the value of TDVO max to 4ns
and TDHO min to 2ns.
• Removed “Pad to IPP_IND” and “IPP_IND” specs from Table 39, AC specifications for
GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank.
Rev 2.1
01/2023
• Updated the Figure 3.
• Changed ‘Power’ to Current’ for DCDC_IN in Table 12, Maximum supply currents.
Rev 2
04.2022
• In Table 49, SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1), changed the
TIS Min value from 2 to 0.6.
• In Table 4. Special signal considerations, in the signal “RTC_XTALI/RTC_XTALO” changed
the tolerance from ±10% to ±25%.
• In Table 4. Special signal considerations, for the signal “RTX_XTALI/RTX_XTALO” changed
VDD_SNVS_DIG to VDD_SNVS_ANA.
• Updated the Figure 3, "i.MX RT1160 system block diagram".
• Updated the Table 1. Order information.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
122
NXP Semiconductors
Revision history
Rev.
Number
Rev. 1
Date
11/2021
Substantive Change(s)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Updated the note in Section 1.1, Features
Updated the format of Table 1. Order information
Updated Figure 3, "i.MX RT1160 system block diagram"
Updated the SYS OSC and RTC OSC in Table 3. i.MX RT1160 modules list
Added Boot_mode/Boot CFG in Table 4. Special signal considerations
Updated the on-chip termination of JTAG_TDO in Table 5. JTAG controller interface
summary
Added the USB VBUS supply in Table 11. Operating ranges
Updated the maximum current of DCDC_IN and VDD_MIPI_1P8 in Table 12. Maximum
supply currents
Updated Figure 4, "Power sequence"
Updated the restrictions and first note in Section 4.2.1.1, Power-up sequence
Updated the descriptions about on-chip regulators, input voltages, and output voltages in
Section 4.2.4, DCDC
Updated the comments of loading 1.8 V supply currents and footnote in Table 21. DCDC
characteristics
Updated the clock output range in Table 26. Arm PLL’s electrical parameters
Updated the descriptions about the RTC_XTALI in Section 4.2.6, On-chip oscillators
Updated the title and tstart descriptions in Table 27. 24 MHz system oscillator frequency
specifications
Updated the title and tstart descriptions in Table 28. 32 kHz oscillator specifications
Updated the tstart descriptions in Table 29. RC oscillator with 16 MHz internal reference
frequency
Updated the tstart descriptions in Table 30. RC oscillator with 48 MHz internal reference
frequency
Updated the tstart descriptions and unit of JPP-CC in Table 31. RC oscillator with 400 MHz
internal reference frequency
Updated Table 35. DC specification for GPIO_SNVS bank
Removed the INPSL values in Table 38. Dynamic input characteristics for
GPIO_EMC_B1/GPIO_EMC_B2/GPIO_SD_B1/GPIO_SD_B2/GPIO_DISP_B1 bank
Added the maximum frequency in Table 39. AC specifications for
GPIO_AD/GPIO_LPSR/GPIO_DISP_B2 bank
Changed the WDOGn_B to WDOG_B in Section 4.4.2, WDOG reset timing parameters
Changed the VDD_ANA_18 to VDDA_ADC_1P8 in Table 73. ADC electrical specifications
(VREFH = VDDA_ADC_1P8 and VADINmax ≤ VREFH); removed the values of VREFH,TUE,
FSE, and ZSE from Table 73. ADC electrical specifications (VREFH = VDDA_ADC_1P8
and VADINmax ≤ VREFH); added gain error, offset error, and footnote in Table 73. ADC
electrical specifications (VREFH = VDDA_ADC_1P8 and VADINmax ≤ VREFH); updated
INL, DNL, ENOB, and footnote in Table 73. ADC electrical specifications (VREFH =
VDDA_ADC_1P8 and VADINmax ≤ VREFH)
Removed the values of VREFH, TUE, FSE, and ZSE from Table 74. ADC electrical
specifications (VREFH = 1.68 V and VADINmax ≤ NVCC_GPIOmax); updated the typical
value of CADIN, INL, DNL, min values of ENOB, and footnote in Table 74. ADC electrical
specifications (VREFH = 1.68 V and VADINmax ≤ NVCC_GPIOmax); added gain error,
offset error, and footnote in Table 74. ADC electrical specifications (VREFH = 1.68 V and
VADINmax ≤ NVCC_GPIOmax)
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
NXP Semiconductors
123
Revision history
Rev.
Number
Date
Substantive Change(s)
Rev. 1
11/2021
• Updated the table title and footnote of Table 75. ADC electrical specifications (1 V ≤ VREFH
< 1.71 V and VADINmax ≤ VREFH); removed the values of VREFH,TUE, FSE, ZSE, and a
footnote from Table 75. ADC electrical specifications (1 V ≤ VREFH < 1.71 V and VADINmax
≤ VREFH); added gain error, offset error, and footnote in Table 75. ADC electrical
specifications (1 V ≤ VREFH < 1.71 V and VADINmax ≤ VREFH); updated the min values
of ENOB, INL and ENL in Table 75. ADC electrical specifications (1 V ≤ VREFH < 1.71 V
and VADINmax ≤ VREFH)
• Updated Figure 34. ADC input impedance equivalent circuit diagram and added equations
in Section 4.8.1.1, 12-bit ADC input impedance equivalent circuit diagram
Rev. 0
04/2021
• Initial version
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
124
NXP Semiconductors
NXP Semiconductors
Legal information
1 Legal information
Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product
development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
[2]
[3]
Please consult the most recently issued document before initiating or completing a design.
The term 'short data sheet' is explained in section "Definitions".
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices.
The latest product status information is available on the Internet at URL http://www.nxp.com.
Definitions
Disclaimers
Draft — A draft status on a document indicates that the content is still
Limited warranty and liability — Information in this document is believed
under internal review and subject to formal approval, which may result
to be accurate and reliable. However, NXP Semiconductors does not give
in modifications or additions. NXP Semiconductors does not give any
any representations or warranties, expressed or implied, as to the accuracy
representations or warranties as to the accuracy or completeness of
or completeness of such information and shall have no liability for the
information included in a draft version of a document and shall have no
consequences of use of such information. NXP Semiconductors takes no
liability for the consequences of use of such information.
responsibility for the content in this document if provided by an information
Short data sheet — A short data sheet is an extract from a full data sheet with
the same product type number(s) and title. A short data sheet is intended for
quick reference only and should not be relied upon to contain detailed and full
information. For detailed and full information see the relevant full data sheet,
which is available on request via the local NXP Semiconductors sales office.
In case of any inconsistency or conflict with the short data sheet, the full data
sheet shall prevail.
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages
are based on tort (including negligence), warranty, breach of contract or any
other legal theory.
Notwithstanding any damages that customer might incur for any reason
Product specification — The information and data provided in a Product data
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
sheet shall define the specification of the product as agreed between NXP
customer for the products described herein shall be limited in accordance with
Semiconductors and its customer, unless NXP Semiconductors and customer
the Terms and conditions of commercial sale of NXP Semiconductors.
have explicitly agreed otherwise in writing. In no event however, shall an
agreement be valid in which the NXP Semiconductors product is deemed to
Right to make changes — NXP Semiconductors reserves the right to make
offer functions and qualities beyond those described in the Product data sheet.
changes to information published in this document, including without limitation
specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the
publication hereof.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical
or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or
use of NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
Data Sheet: Technical Data
4/7
NXP Semiconductors
Legal information
Applications — Applications that are described herein for any of these
Bare die — All die are tested on compliance with their related technical
products are for illustrative purposes only. NXP Semiconductors makes no
specifications as stated in this data sheet up to the point of wafer sawing
representation or warranty that such applications will be suitable for the
and are handled in accordance with the NXP Semiconductors storage and
specified use without further testing or modification.
transportation conditions. If there are data sheet limits not guaranteed, these
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
will be separately indicated in the data sheet. There are no post-packing tests
performed on individual die or wafers.
accepts no liability for any assistance with applications or customer product
NXP Semiconductors has no control of third party procedures in the sawing,
design. It is customer’s sole responsibility to determine whether the NXP
handling, packing or assembly of the die. Accordingly, NXP Semiconductors
Semiconductors product is suitable and fit for the customer’s applications and
assumes no liability for device functionality or performance of the die or
products planned, as well as for the planned application and use of customer’s
systems after third party sawing, handling, packing or assembly of the die. It is
third party customer(s). Customers should provide appropriate design and
the responsibility of the customer to test and qualify their application in which
operating safeguards to minimize the risks associated with their applications
the die is used.
and products.
All die sales are conditioned upon and subject to the customer entering
NXP Semiconductors does not accept any liability related to any default,
into a written die sale agreement with NXP Semiconductors through its
damage, costs or problem which is based on any weakness or default in the
legal department.
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing
for the customer’s applications and products using NXP Semiconductors
products in order to avoid a default of the applications and the products or of the
application or use by customer’s third party customer(s). NXP does not accept
any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those
given in the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect the
quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors products
Quick reference data — The Quick reference data is an extract of the product
data given in the Limiting values and Characteristics sections of this document,
and as such is not complete, exhaustive or legally binding.
Export control — This document as well as the item(s) described herein may be
subject to export control regulations. Export might require a prior authorization
from competent authorities.
Suitability for use in non-automotive qualified products — Unless this
data sheet expressly states that this specific NXP Semiconductors product
is automotive qualified, the product is not suitable for automotive use.
It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in automotive
are sold subject to the general terms and conditions of commercial sale,
applications to automotive specifications and standards, customer (a) shall use
as published at http://www.nxp.com/profile/terms, unless otherwise agreed
the product without NXP Semiconductors’ warranty of the product for such
in a valid written individual agreement. In case an individual agreement
automotive applications, use and specifications, and (b) whenever customer
is concluded only the terms and conditions of the respective agreement
uses the product for automotive applications beyond NXP Semiconductors’
shall apply. NXP Semiconductors hereby expressly objects to applying the
specifications such use shall be solely at customer’s own risk, and (c) customer
customer’s general terms and conditions with regard to the purchase of NXP
fully indemnifies NXP Semiconductors for any liability, damages or failed
Semiconductors products by customer.
product claims resulting from customer design and use of the product for
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
automotive applications beyond NXP Semiconductors’ standard warranty and
NXP Semiconductors’ product specifications.
conveyance or implication of any license under any copyrights, patents or other
Translations — A non-English (translated) version of a document, including
industrial or intellectual property rights.
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
Data Sheet: Technical Data
5/7
NXP Semiconductors
Legal information
Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
Kinetis — is a trademark of NXP B.V.
Layerscape — is a trademark of NXP B.V.
MagniV — is a trademark of NXP B.V.
Mantis — is a trademark of NXP B.V.
MIFARE — is a trademark of NXP B.V.
applications. NXP accepts no liability for any vulnerability. Customer should
MIFARE Classic — is a trademark of NXP B.V.
regularly check security updates from NXP and follow up appropriately.
MIFARE4Mobile — is a trademark of NXP B.V.
Customer shall select products with security features that best meet rules,
MIFARE Plus — is a trademark of NXP B.V.
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
MiGLO — wordmark and logo are trademarks of NXP B.V.
for compliance with all legal, regulatory, and security related requirements
Mobileye — M, M Mobileye and other Mobileye trademarks or logos appearing
concerning its products, regardless of any information or support that may be
herein are trademarks of Mobileye Vision Technologies Ltd. in the United
provided by NXP.
States, the EU and/or other jurisdictions.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
NTAG — is a trademark of NXP B.V.
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
NXP SECURE CONNECTIONS FOR A SMARTER WORLD — is a trademark
release to security vulnerabilities of NXP products.
of NXP B.V.
NXP B.V. - NXP B.V. is not an operating company and it does not distribute or
sell products.
PEG — is a trademark of NXP B.V.
Processor Expert — is a trademark of NXP B.V.
QorIQ — is a trademark of NXP B.V.
Trademarks
QorIQ Qonverge — is a trademark of NXP B.V.
Notice: All referenced brands, product names, service names, and
RoadLINK — wordmark and logo are trademarks of NXP B.V.
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,
Versatile — are trademarks and/or registered trademarks of Arm Limited (or its
subsidiaries or affiliates) in the US and/or elsewhere. The related technology
SafeAssure — is a trademark of NXP B.V.
SafeAssure — logo is a trademark of NXP B.V.
SmartMX — is a trademark of NXP B.V.
Tower — is a trademark of NXP B.V.
UCODE — is a trademark of NXP B.V.
VortiQa — is a trademark of NXP B.V.
may be protected by any or all of patents, copyrights, designs and trade
secrets. All rights reserved.
Airfast — is a trademark of NXP B.V.
CodeWarrior — is a trademark of NXP B.V.
ColdFire — is a trademark of NXP B.V.
ColdFire+ — is a trademark of NXP B.V.
CoolFlux — is a trademark of NXP B.V.
EdgeLock — is a trademark of NXP B.V.
EdgeScale — is a trademark of NXP B.V.
eIQ — is a trademark of NXP B.V.
Freescale — is a trademark of NXP B.V.
GreenChip — is a trademark of NXP B.V.
HITAG — is a trademark of NXP B.V.
ICODE and I-CODE — are trademarks of NXP B.V.
JCOP — is a trademark of NXP B.V.
i.MX RT1160 Crossover Processors Data Sheet for Extended Industrial Products, Rev. 3, 06/2023
Data Sheet: Technical Data
6/7
Please be aware that important notices concerning this document and the product(s) described
herein, have been included in section 'Legal information'.
©
NXP B.V. 2023.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 06/2023
Document identifier: IMXRT1160XEC