0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MK10DN512VLK10

MK10DN512VLK10

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LQFP80

  • 描述:

    IC MCU 32BIT 512KB FLASH 80FQFP

  • 详情介绍
  • 数据手册
  • 价格&库存
MK10DN512VLK10 数据手册
Freescale Semiconductor, Inc. Data Sheet Document Number: K10P81M100SF2V2 Rev. 4, 09/2017 K10P81M100SF2V2, K10 Sub-Family Data Sheet with Addendum, Supports: MK10DN512VLK10 Revision 4 of the K10 Sub-Family Data Sheet has two parts: • • The addendum to Revision 3 of the data sheet, immediately after this cover page. Revision 3 of the data sheet, after the addendum. The changes described in the addendum have not been implemented in in Revision 3 of the data sheet. 9 Revision history Table 51. Revision History Rev. No. Date Substantial Changes 4 9/2017 In Thermal specifications / Thermal attributes section, the thermal resistance parameter (junction to case, RJC) is now 9°C/W (it was previously 8°C/W). © 2017 NXP Semiconductors, All rights reserved. Freescale Semiconductor, Inc. Data Sheet Addendum Document Number: K10P81M100SF2V2AD Rev. 0, 09/2017 Addendum to Rev. 3 of the K10P81M100SF2V2, K10 Sub-Family Data Sheet Supports: MK10DN512VLK10 This addendum identifies changes to Rev. 3 of the K10P81M100SF2V2, K10 Sub-Family Data Sheet. The change described in this addendum has not been implemented in the Rev. 3 data sheet. In the Thermal attributes section, the thermal resistance parameter (junction to case, RJC) is now 9°C/W (it was previously 8°C/W). 5.4.2 Thermal attributes Board type Symbol — RJC Description Thermal resistance, junction to case © 2017 Freescale Semiconductor, Inc. All rights reserved. 80 LQFP Unit Notes 9 C/W 4 Freescale Semiconductor Data Sheet: Technical Data K10 Sub-Family Document Number: K10P81M100SF2V2 Rev. 3, 6/2013 K10P81M100SF2V2 Supports the following: MK10DN512VLK10 Features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 100 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz • Memories and memory interfaces – Up to 512 KB program flash memory on nonFlexMemory devices – Up to 128 KB RAM – Serial programming interface (EzPort) – FlexBus external bus interface • Clocks – 3 to 32 MHz crystal oscillator – 32 kHz crystal oscillator – Multi-purpose clock generator • System peripherals – Multiple low-power modes to provide power optimization based on application requirements – Memory protection unit with multi-master protection – 16-channel DMA controller, supporting up to 63 request sources – External watchdog monitor – Software watchdog – Low-leakage wakeup unit • Human-machine interface – Low-power hardware touch sensor interface (TSI) – General-purpose input/output • Analog modules – Two 16-bit SAR ADCs – Programmable gain amplifier (PGA) (up to x64) integrated into each ADC – 12-bit DAC – Two transimpedance amplifiers – Three analog comparators (CMP) containing a 6-bit DAC and programmable reference input – Voltage reference • Timers – Programmable delay block – Eight-channel motor control/general purpose/PWM timer – Two 2-channel quadrature decoder/general purpose timers – Periodic interrupt timers – 16-bit low-power timer – Carrier modulator transmitter – Real-time clock • Communication interfaces – Two Controller Area Network (CAN) modules – Two SPI modules – Two I2C modules – Four UART modules – Secure Digital host controller (SDHC) – I2S module • Security and integrity modules – Hardware CRC module to support fast cyclic redundancy checks – 128-bit unique identification (ID) number per chip Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2012–2013 Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts...........................................................................3 5.4.2 Thermal attributes.................................................21 1.1 Determining valid orderable parts......................................3 6 Peripheral operating requirements and behaviors....................22 2 Part identification......................................................................3 6.1 Core modules....................................................................22 2.1 Description.........................................................................3 6.1.1 Debug trace timing specifications.........................22 2.2 Format...............................................................................3 6.1.2 JTAG electricals....................................................23 2.3 Fields.................................................................................3 6.2 System modules................................................................26 2.4 Example............................................................................4 6.3 Clock modules...................................................................26 3 Terminology and guidelines......................................................4 6.3.1 MCG specifications...............................................26 3.1 Definition: Operating requirement......................................4 6.3.2 Oscillator electrical specifications.........................28 3.2 Definition: Operating behavior...........................................5 6.3.3 32 kHz oscillator electrical characteristics.............30 3.3 Definition: Attribute............................................................5 6.4 Memories and memory interfaces.....................................31 3.4 Definition: Rating...............................................................6 6.4.1 Flash electrical specifications................................31 3.5 Result of exceeding a rating..............................................6 6.4.2 EzPort switching specifications.............................33 3.6 Relationship between ratings and operating 6.4.3 Flexbus switching specifications...........................34 requirements......................................................................6 6.5 Security and integrity modules..........................................37 3.7 Guidelines for ratings and operating requirements............7 6.6 Analog...............................................................................37 3.8 Definition: Typical value.....................................................7 6.6.1 ADC electrical specifications.................................37 3.9 Typical value conditions....................................................8 6.6.2 CMP and 6-bit DAC electrical specifications.........45 4 Ratings......................................................................................9 6.6.3 12-bit DAC electrical characteristics.....................48 4.1 Thermal handling ratings...................................................9 6.6.4 Voltage reference electrical specifications............51 4.2 Moisture handling ratings..................................................9 6.7 Timers................................................................................52 4.3 ESD handling ratings.........................................................9 6.8 Communication interfaces.................................................52 4.4 Voltage and current operating ratings...............................9 6.8.1 CAN switching specifications................................52 5 General.....................................................................................10 6.8.2 DSPI switching specifications (limited voltage 5.1 AC electrical characteristics..............................................10 5.2 Nonswitching electrical specifications...............................10 range)....................................................................53 6.8.3 DSPI switching specifications (full voltage range).54 5.2.1 Voltage and current operating requirements.........10 6.8.4 Inter-Integrated Circuit Interface (I2C) timing........56 5.2.2 LVD and POR operating requirements.................11 6.8.5 UART switching specifications..............................57 5.2.3 Voltage and current operating behaviors..............12 6.8.6 SDHC specifications.............................................57 5.2.4 Power mode transition operating behaviors..........14 6.8.7 I2S/SAI switching specifications............................58 5.2.5 Power consumption operating behaviors..............15 5.2.6 EMC radiated emissions operating behaviors.......18 5.2.7 Designing with radiated emissions in mind...........19 7 Dimensions...............................................................................65 5.2.8 Capacitance attributes..........................................19 7.1 Obtaining package dimensions.........................................65 5.3 Switching specifications.....................................................19 8 Pinout........................................................................................65 6.9 Human-machine interfaces (HMI)......................................64 6.9.1 TSI electrical specifications...................................64 5.3.1 Device clock specifications...................................19 8.1 K10 signal multiplexing and pin assignments....................65 5.3.2 General switching specifications...........................20 8.2 K10 pinouts.......................................................................69 5.4 Thermal specifications.......................................................21 9 Revision history.........................................................................70 5.4.1 Thermal operating requirements...........................21 K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 2 Freescale Semiconductor, Inc. Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK10 and MK10 . 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q K## A M FFF R T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K10 A Key attribute • D = Cortex-M4 w/ DSP • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 3 Terminology and guidelines Field Description Values FFF Program flash memory size • • • • • • • 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB 2M0 = 2 MB R Silicon revision • Z = Initial • (Blank) = Main • A = Revision after main T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • • • • • • • • • • • FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MJ = 256 MAPBGA (17 mm x 17 mm) CC Maximum CPU frequency (MHz) • • • • • 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 2.4 Example This is an example part number: MK10DN512ZVMD10 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 4 Freescale Semiconductor, Inc. Terminology and guidelines 3.1.1 Example This is an example of an operating requirement: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. 1.1 Unit V 3.2 Definition: Operating behavior An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior: Symbol IWP Description Min. Digital I/O weak pullup/ 10 pulldown current Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 5 Terminology and guidelines 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. 3.4.1 Example This is an example of an operating rating: Symbol VDD Description 1.0 V core supply voltage Min. –0.3 Max. 1.2 Unit V 3.5 Result of exceeding a rating Failures in time (ppm) 40 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 6 Freescale Semiconductor, Inc. Terminology and guidelines 3.6 Relationship between ratings and operating requirements g tin ng ati ( n me r a (m nt me e Op e uir eq gr n i rat era Op x.) ) in. t (m n.) mi t era Op ing x.) e uir req ng ati gr tin a (m ra e Op Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) g lin nd ing rat (m x.) ) in. a (m ng ati r g dlin n Ha Ha Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ Handling (power off) ∞ 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 7 Terminology and guidelines 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol Description IWP Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: 5000 4500 4000 TJ IDD_STOP (μA) 3500 150 °C 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.00 1.05 1.10 VDD (V) 3.9 Typical value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 8 Freescale Semiconductor, Inc. Ratings 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 4.4 Voltage and current operating ratings K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 9 General Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 185 mA VDIO Digital input voltage (except RESET, EXTAL, and XTAL) –0.3 5.5 V VAIO Analog1, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V Maximum current single pin limit (applies to all digital pins) –25 25 mA VDD – 0.3 VDD + 0.3 V –0.3 3.8 V ID VDDA Analog supply voltage VBAT RTC battery supply voltage 1. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 5 General 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Figure 1. Input signal measurement reference All digital I/O switching characteristics assume: 1. output pins • have CL=30pF loads, • are configured for fast slew rate (PORTx_PCRn[SRE]=0), and • are configured for high drive strength (PORTx_PCRn[DSE]=1) 2. input pins • have their passive filter disabled (PORTx_PCRn[PFE]=0) 5.2 Nonswitching electrical specifications K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 10 Freescale Semiconductor, Inc. General 5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V -5 — mA VBAT VIH VIL RTC battery supply voltage Input high voltage Input low voltage VHYS Input hysteresis IICDIO Digital pin negative DC injection current — single pin • VIN < VSS-0.3V IICAIO IICcont 1 Analog2, EXTAL, and XTAL pin DC injection current — single pin 3 mA • VIN < VSS-0.3V (Negative current injection) -5 — • VIN > VDD+0.3V (Positive current injection) — +5 -25 — — +25 Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection • Positive current injection mA VODPU Open drain pullup voltage level VDD VDD V VRAM VDD voltage required to retain RAM 1.2 — V VPOR_VBAT — V VRFVBAT Notes VBAT voltage required to retain the VBAT register file 4 1. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|. 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins. 3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|IICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents. 4. Open drain outputs must be pulled to VDD. K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 11 General 5.2.2 LVD and POR operating requirements Table 2. VDD supply LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — ±80 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — ±60 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range Notes VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs 1. Rising thresholds are falling threshold + hysteresis voltage Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit 0.8 1.1 1.5 V Notes K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 12 Freescale Semiconductor, Inc. General 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol VOH Min. Typ.1 Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA VDD – 0.5 — — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA VDD – 0.5 — — V • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA VDD – 0.5 — — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA VDD – 0.5 — — V — — 100 mA Description Notes Output high voltage — high drive strength Output high voltage — low drive strength IOHT Output high current total for all ports VOL Output low voltage — high drive strength 2 • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10mA — — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 5mA — — 0.5 V • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA — — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1mA — — 0.5 V — — 100 mA Output low voltage — low drive strength IOLT Output low current total for all ports IINA Input leakage current, analog pins and digital pins configured as analog inputs 3, 4 • VSS ≤ VIN ≤ VDD • All pins except EXTAL32, XTAL32, EXTAL, XTAL • EXTAL (PTA18) and XTAL (PTA19) • EXTAL32, XTAL32 IIND — 0.002 0.5 μA — 0.004 1.5 μA — 0.075 10 μA Input leakage current, digital pins 4, 5 • VSS ≤ VIN ≤ VIL • All digital pins — 0.002 0.5 μA — 0.002 0.5 μA — 0.004 1 μA • VIN = VDD • All digital pins except PTD7 • PTD7 IIND Input leakage current, digital pins 4, 5, 6 • VIL < VIN < VDD • VDD = 3.6 V — 18 26 μA • VDD = 3.0 V — 12 49 μA • VDD = 2.5 V — 8 13 μA • VDD = 1.7 V — 3 6 μA Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 13 General Table 4. Voltage and current operating behaviors (continued) Symbol IIND Description Min. Max. Unit Input leakage current, digital pins • VDD < VIN < 5.5 V ZIND Typ.1 Notes 4, 5 — 1 50 μA Input impedance examples, digital pins 4, 7 • VDD = 3.6 V — — 48 kΩ • VDD = 3.0 V — — 55 kΩ • VDD = 2.5 V — — 57 kΩ • VDD = 1.7 V — — 85 kΩ RPU Internal pullup resistors 20 35 50 kΩ 8 RPD Internal pulldown resistors 20 35 50 kΩ 9 1. 2. 3. 4. 5. 6. 7. Typical values characterized at 25°C and VDD = 3.6 V unless otherwise noted. Open drain outputs must be pulled to VDD. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL. Internal pull-up/pull-down resistors disabled. Characterized, not tested in production. Examples calculated using VIL relation, VDD, and max IIND: ZIND=VIL/IIND. This is the impedance needed to pull a high signal to a level below VIL due to leakage when VIL < VIN < VDD. These examples assume signal source low = 0 V. 8. Measured at VDD supply voltage = VDD min and Vinput = VSS 9. Measured at VDD supply voltage = VDD min and Vinput = VDD I IND Digital input Source + – Z IND 5.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • • • • • CPU and system clocks = 100 MHz Bus clock = 50 MHz FlexBus clock = 50 MHz Flash clock = 25 MHz MCG mode: FEI K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 14 Freescale Semiconductor, Inc. General Table 5. Power mode transition operating behaviors Symbol tPOR Description Min. Max. After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. Unit Notes 1 • VDD slew rate ≥ 5.7 kV/s • VDD slew rate < 5.7 kV/s • VLLS1 → RUN • VLLS2 → RUN • VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN μs — 300 — 1.7 V / (VDD slew rate) — 130 μs — 92 μs — 92 μs — 5.9 μs — 5.0 μs — 5.0 μs 1. Normal boot (FTFL_OPT[LPBOOT]=1) 5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors Symbol IDDA IDD_RUN Description Analog supply current Typ. Max. Unit Notes — — See note mA 1 Run mode current — all peripheral clocks disabled, code executing from flash • @ 1.8V • @ 3.0V IDD_RUN Min. 2 — 37 63 mA — 38 64 mA Run mode current — all peripheral clocks enabled, code executing from flash • @ 1.8V • @ 3.0V • @ 25°C 3, 4 — 46 77 mA — 47 63 mA — 58 79 mA • @ 125°C IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 20 — mA 2 IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled — 9 — mA 5 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 1.12 — mA 6 Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 15 General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit Notes IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 1.71 — mA 7 IDD_VLPW Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled — 0.77 — mA 8 IDD_STOP Stop mode current at 3.0 V • @ –40 to 25°C — 0.74 1.41 mA • @ 70°C — 2.45 11.5 mA • @ 105°C — 6.61 30 mA • @ –40 to 25°C — 83 435 μA • @ 70°C — 425 2000 μA • @ 105°C — 1280 4000 μA IDD_VLPS IDD_LLS IDD_VLLS3 IDD_VLLS2 IDD_VLLS1 IDD_VBAT Very-low-power stop mode current at 3.0 V Low leakage stop mode current at 3.0 V 9 • @ –40 to 25°C — 4.58 19.9 μA • @ 70°C — 30.6 105 μA • @ 105°C — 137 500 μA Very low-leakage stop mode 3 current at 3.0 V 9 • @ –40 to 25°C — 3.0 23 μA • @ 70°C — 18.6 43 μA • @ 105°C — 84.9 230 μA • @ –40 to 25°C — 2.2 5.4 μA • @ 70°C — 9.3 35 μA • @ 105°C — 41.4 128 μA • @ –40 to 25°C — 2.1 9 μA • @ 70°C — 7.6 28 μA • @ 105°C — 33.5 95.5 μA — 0.19 0.22 μA — 0.49 0.64 μA — 2.2 3.2 μA Very low-leakage stop mode 2 current at 3.0 V Very low-leakage stop mode 1 current at 3.0 V Average current with RTC and 32kHz disabled at 3.0 V • @ –40 to 25°C • @ 70°C • @ 105°C Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 16 Freescale Semiconductor, Inc. General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. IDD_VBAT Average current when CPU is not accessing RTC registers Typ. Max. Unit Notes 10 • @ 1.8V • @ –40 to 25°C • @ 70°C • @ 105°C — 0.57 0.67 μA — 0.90 1.2 μA — 2.4 3.5 μA — 0.67 0.94 μA — 1.0 1.4 μA — 2.7 3.9 μA • @ 3.0V • @ –40 to 25°C • @ 70°C • @ 105°C 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled. 3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled. 4. Max values are measured with CPU executing DSP instructions. 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode. 6. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash. 7. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 8. 4 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 9. Data reflects devices with 128 KB of RAM. 10. Includes 32kHz oscillator current and RTC operation. 5.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies. • No GPIOs toggled • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFL K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 17 General Figure 2. Run mode supply current vs. core frequency 5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 144LQFP and 144MAPBGA Symbol Description Frequency band (MHz) 144LQFP 144MAPBGA Unit Notes 1, 2 VRE1 Radiated emissions voltage, band 1 0.15–50 23 12 dBμV VRE2 Radiated emissions voltage, band 2 50–150 27 24 dBμV VRE3 Radiated emissions voltage, band 3 150–500 28 27 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 14 11 dBμV IEC level 0.15–1000 K K — VRE_IEC 2, 3 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 18 Freescale Semiconductor, Inc. General 2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48 MHz 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method 5.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.2.8 Capacitance attributes Table 8. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 5.3 Switching specifications 5.3.1 Device clock specifications Table 9. Device clock specifications Symbol Description Min. Max. Unit Notes Normal run mode fSYS System and core clock — 100 MHz fBUS Bus clock — 50 MHz FB_CLK FlexBus clock — 50 MHz fFLASH Flash clock — 25 MHz fLPTMR LPTMR clock — 25 MHz VLPR mode1 fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz FlexBus clock — 4 MHz fFLASH Flash clock — 1 MHz fERCLK External reference clock — 16 MHz LPTMR clock — 25 MHz FB_CLK fLPTMR_pin Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 19 General Table 9. Device clock specifications (continued) Symbol Description fLPTMR_ERCLK LPTMR external reference clock fFlexCAN_ERCLK FlexCAN external reference clock Min. Max. Unit — 16 MHz — 8 MHz fI2S_MCLK I2S master clock — 12.5 MHz fI2S_BCLK I2S bit clock — 4 MHz Notes 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. 5.3.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I2C signals. Table 10. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1, 2 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns 3 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 16 — ns 3 External reset pulse width (digital glitch filter disabled) 100 — ns 3 2 — Bus clock cycles Mode select (EZP_CS) hold time after reset deassertion Port rise and fall time (high drive strength) 4 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 12 ns • 2.7 ≤ VDD ≤ 3.6V — 6 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled Port rise and fall time (low drive strength) 5 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 12 ns • 2.7 ≤ VDD ≤ 3.6V — 6 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 20 Freescale Semiconductor, Inc. General 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case. 2. The greater synchronous and asynchronous timing must be met. 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes. 4. 75 pF load 5. 15 pF load 5.4 Thermal specifications 5.4.1 Thermal operating requirements Table 11. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C 5.4.2 Thermal attributes Board type Symbol Description Single-layer (1s) RθJA Four-layer (2s2p) 80 LQFP Unit Notes Thermal 50 resistance, junction to ambient (natural convection) °C/W 1 RθJA Thermal 35 resistance, junction to ambient (natural convection) °C/W 1 Single-layer (1s) RθJMA Thermal 39 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1 Four-layer (2s2p) RθJMA Thermal 29 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1 — RθJB Thermal 19 resistance, junction to board °C/W 2 — RθJC Thermal 8 resistance, junction to case °C/W 3 Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 21 Peripheral operating requirements and behaviors Board type Symbol Description — ΨJT Thermal 2 characterization parameter, junction to package top outside center (natural convection) 1. 2. 3. 4. 80 LQFP Unit Notes °C/W 4 Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 Debug trace timing specifications Table 12. Debug trace operating behaviors Symbol Description Min. Max. Unit Tcyc Clock period Frequency dependent MHz Twl Low pulse width 2 — ns Twh High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 3 — ns Th Data hold 2 — ns Figure 3. TRACE_CLKOUT specifications K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 22 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TRACE_CLKOUT Ts Th Ts Th TRACE_D[3:0] Figure 4. Trace data specifications 6.1.2 JTAG electricals Table 13. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 10 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J2 TCLK cycle period J3 TCLK clock pulse width J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns Table 14. JTAG full voltage range electricals Symbol Description Min. Max. Unit Operating voltage 1.71 3.6 V Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 23 Peripheral operating requirements and behaviors Table 14. JTAG full voltage range electricals (continued) Symbol J1 Description Min. Max. TCLK frequency of operation Unit MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug 12.5 — ns J2 TCLK cycle period J3 TCLK clock pulse width J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.4 — ns J11 TCLK low to TDO data valid — 22.1 ns J12 TCLK low to TDO high-Z — 22.1 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 J3 J3 TCLK (input) J4 J4 Figure 5. Test clock input timing K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 24 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 6. Boundary scan (JTAG) timing TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 7. Test Access Port timing K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 25 Peripheral operating requirements and behaviors TCLK J14 J13 TRST Figure 8. TRST timing 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules 6.3.1 MCG specifications Table 15. MCG specifications Symbol Description Min. Typ. Max. Unit — 32.768 — kHz 31.25 — 39.0625 kHz Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C fints_t Internal reference frequency (slow clock) — user trimmed Notes Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — +0.5/-0.7 ±3 %fdco 1, Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 0.3 ±3 %fdco 1 fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 26 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 15. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz — 180 — — 150 — — — 1 ms 48.0 — 100 MHz — 1060 — µA — 600 — µA 2.0 — 4.0 MHz Notes FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 2, 3 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX32 DCO output frequency Low range (DRS=00) 4, 5 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter • fDCO = 48 MHz • fDCO = 98 MHz tfll_acquire FLL target frequency acquisition time ps 6 PLL fvco VCO operating frequency Ipll PLL operating current • PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 48) Ipll PLL operating current • PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 24) fpll_ref PLL reference frequency range Jcyc_pll PLL period jitter (RMS) Jacc_pll 7 7 8 • fvco = 48 MHz — 120 — ps • fvco = 100 MHz — 50 — ps PLL accumulated jitter over 1µs (RMS) 8 • fvco = 48 MHz — 1350 — ps • fvco = 100 MHz — 600 — ps Dlock Lock entry frequency tolerance ± 1.49 — ± 2.98 % Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 27 Peripheral operating requirements and behaviors Table 15. MCG specifications (continued) Symbol tpll_lock Description Lock detector detection time Min. Typ. Max. Unit Notes — — 150 × 10-6 + 1075(1/ fpll_ref) s 9 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 7. Excludes any oscillator currents that are also consuming power while PLL is in operation. 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 6.3.2 Oscillator electrical specifications This section provides the electrical characteristics of the module. 6.3.2.1 Oscillator DC electrical specifications Table 16. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 28 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 16. Oscillator DC electrical specifications (continued) Symbol Description Min. IDDOSC Supply current — high gain mode (HGO=1) Typ. Max. Unit Notes 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) Vpp5 1. 2. 3. 4. 5. — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx,Cy can be provided by using either the integrated capacitors or by using external components. When low power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 29 Peripheral operating requirements and behaviors 6.3.2.2 Symbol Oscillator frequency specifications Table 17. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 50 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1, 2 3, 4 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL. 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 3. Proper PC board layout procedures must be followed to achieve specifications. 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. NOTE The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode. 6.3.3 32 kHz oscillator electrical characteristics This section describes the module electrical characteristics. 6.3.3.1 32 kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VBAT Supply voltage 1.71 — 3.6 V — 100 — MΩ RF Internal feedback resistor Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 30 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 18. 32kHz oscillator DC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit Cpara Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V 1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.3.2 Symbol fosc_lo tstart fec_extal32 32 kHz oscillator frequency specifications Table 19. 32 kHz oscillator frequency specifications Description Min. Typ. Max. Unit Oscillator crystal — 32.768 — kHz Crystal start-up time — 1000 — ms 1 Externally provided input clock frequency — 32.768 — kHz 2 700 — VBAT mV 2, 3 vec_extal32 Externally provided input clock amplitude Notes 1. Proper PC board layout procedures must be followed to achieve specifications. 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VBAT. 6.4 Memories and memory interfaces 6.4.1 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 20. NVM program/erase timing specifications Symbol Description Min. Typ. thvpgm4 thversscr Longword Program high-voltage time — 7.5 18 μs Sector Erase high-voltage time — 13 113 ms 1 — 104 904 ms 1 thversblk256k Erase Block high-voltage time for 256 KB Max. Unit Notes 1. Maximum time based on expectations at cycling end-of-life. K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 31 Peripheral operating requirements and behaviors 6.4.1.2 Symbol Flash timing specifications — commands Table 21. Flash command timing specifications Description Min. Typ. Max. Unit — — 1.7 ms Notes Read 1s Block execution time trd1blk256k • 256 KB program/data flash trd1sec2k Read 1s Section execution time (flash sector) — — 60 μs 1 tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs Erase Flash Block execution time tersblk256k tersscr • 256 KB program/data flash Erase Flash Sector execution time 2 — 122 985 ms — 14 114 ms 2 Program Section execution time tpgmsec512 • 512 bytes flash — 2.4 — ms tpgmsec1k • 1 KB flash — 4.7 — ms tpgmsec2k • 2 KB flash — 9.3 — ms trd1all Read 1s All Blocks execution time — — 1.8 ms trdonce Read Once execution time — — 25 μs tpgmonce 1 Program Once execution time — 65 — μs tersall Erase All Blocks execution time — 250 2000 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 Swap Control execution time tswapx01 • control code 0x01 — 200 — μs tswapx02 • control code 0x02 — 70 150 μs tswapx04 • control code 0x04 — 70 150 μs tswapx08 • control code 0x08 — — 30 μs 1. Assumes 25 MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 6.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors Symbol Description Min. Typ. Max. Unit IDD_PGM Average current adder during high voltage flash programming operation — 2.5 6.0 mA IDD_ERS Average current adder during high voltage flash erase operation — 1.5 4.0 mA K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 32 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.4.1.4 Symbol Reliability specifications Table 23. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years tnvmretp1k Data retention after up to 1 K cycles 20 100 — years nnvmcycp Cycling endurance 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 6.4.2 EzPort switching specifications Table 24. EzPort switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V EP1 EZP_CK frequency of operation (all commands except READ) — fSYS/2 MHz EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid — 16 ns EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 33 Peripheral operating requirements and behaviors EZP_CK EP2 EP4 EP3 EZP_CS EP9 EP7 EP8 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 9. EzPort Timing Diagram 6.4.3 Flexbus switching specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 25. Flexbus limited voltage range switching specifications Num Description Min. Max. Unit Notes Operating voltage 2.7 3.6 V Frequency of operation — FB_CLK MHz FB1 Clock period 20 — ns FB2 Address, data, and control output valid — 11.5 ns 1 FB3 Address, data, and control output hold 0.5 — ns 1 FB4 Data and FB_TA input setup 8.5 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 34 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 2. Specification is valid for all FB_AD[31:0] and FB_TA. Table 26. Flexbus full voltage range switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V Frequency of operation Notes — FB_CLK MHz 1/FB_CLK — ns Address, data, and control output valid — 13.5 ns 1 FB3 Address, data, and control output hold 0 — ns 1 FB4 Data and FB_TA input setup 13.7 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 FB1 Clock period FB2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 35 Peripheral operating requirements and behaviors FB1 FB_CLK FB3 FB5 FB_A[Y] Address FB2 FB_D[X] FB4 Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 10. FlexBus read timing diagram K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 36 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors FB1 FB_CLK FB2 FB3 FB_A[Y] FB_D[X] Address Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB4 FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 TSIZ Figure 11. FlexBus write timing diagram 6.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 6.6 Analog K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 37 Peripheral operating requirements and behaviors 6.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DM3. The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 29 and Table 30. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL ADC reference voltage low VSSA VSSA VSSA V VADIN Input voltage • 16-bit differential mode VREFL — 31/32 * VREFH V • All other modes VREFL — • 16-bit mode — 8 10 • 8-bit / 10-bit / 12-bit modes — 4 5 — 2 5 CADIN RADIN RAS Input capacitance Input resistance Notes VREFH pF kΩ Analog source resistance 13-bit / 12-bit modes fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion clock frequency ≤ 13-bit mode 1.0 — 18.0 MHz 4 fADCK ADC conversion clock frequency 16-bit mode 2.0 — 12.0 MHz 4 Crate ADC conversion rate ≤ 13-bit modes No ADC hardware averaging 3 5 20.000 — 818.330 Ksps Continuous conversions enabled, subsequent conversion time Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. 38 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 27. 16-bit ADC operating conditions (continued) Symbol Crate Description Conditions ADC conversion rate 16-bit mode Min. Typ.1 Max. Unit Notes 5 No ADC hardware averaging 37.037 — 461.467 Ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns. 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Z ADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection Z AS R AS ADC SAR ENGINE R ADIN V ADIN C AS V AS R ADIN INPUT PIN R ADIN INPUT PIN R ADIN INPUT PIN C ADIN Figure 12. ADC input impedance equivalency diagram 6.6.1.2 16-bit ADC electrical characteristics Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description IDDA_ADC Supply current Conditions1. Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 Table continues on the next page... K10 Sub-Family Data Sheet, Rev. 3, 6/2013. Freescale Semiconductor, Inc. 39 Peripheral operating requirements and behaviors Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol fADACK Description ADC asynchronous clock source Sample Time TUE DNL INL EFS Conditions1. Min. Typ.2 Max. Unit Notes • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 LSB4 VADIN = VDDA See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 •
MK10DN512VLK10
PDF文档中包含以下信息:

1. 物料型号:型号为EL817 2. 器件简介:EL817是一款光耦器件,用于隔离输入和输出电路,保护电路不受外部干扰。

3. 引脚分配:EL817共有6个引脚,分别为1脚阳极,2脚阴极,3脚集电极,4脚发射极,5脚GND,6脚VCC。

4. 参数特性:工作温度范围为-40℃至+85℃,隔离电压为5000Vrms。

5. 功能详解:EL817通过光电效应实现信号传输,具有抗干扰能力强,响应速度快等特点。

6. 应用信息:广泛应用于工业控制、仪器仪表、医疗设备等领域。

7. 封装信息:采用DIP6封装,尺寸为9.1mm x 3.6mm。
MK10DN512VLK10 价格&库存

很抱歉,暂时无法提供与“MK10DN512VLK10”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MK10DN512VLK10
    •  国内价格
    • 1+85.49280
    • 10+82.68480

    库存:3

    MK10DN512VLK10
      •  国内价格
      • 480+79.32600

      库存:960