Freescale Semiconductor
Data Sheet: Technical Data
Document Number: K21P80M50SF4
Rev. 4.1, 08/2013
K21P80M50SF4
K21 Sub-Family
Supports the following:
MK21DX128VLK5, MK21DX256VLK5,
MK21DN512VLK5
Features
• Operating Characteristics
– Voltage range: 1.71 to 3.6 V
– Flash write voltage range: 1.71 to 3.6 V
– Temperature range (ambient): -40 to 105°C
• Performance
– Up to 50 MHz ARM Cortex-M4 core with DSP
instructions delivering 1.25 Dhrystone MIPS per
MHz
• Memories and memory interfaces
– Up to 512 KB of program flash for devices without
FlexNVM.
– Up to 256 KB program flash for devices with
FlexNVM.
– 64 KB FlexNVM on FlexMemory devices
– 4 KB FlexRAM on FlexMemory devices
– Up to 64 KB RAM
– Serial programming interface (EzPort)
• Clocks
– 3 to 32 MHz crystal oscillator
– 32 kHz crystal oscillator
– Multi-purpose clock generator
• System peripherals
– Multiple low-power modes to provide power
optimization based on application requirements
– 16-channel DMA controller, supporting up to 63
request sources
– External watchdog monitor
– Software watchdog
– Low-leakage wakeup unit
• Security and integrity modules
– Hardware CRC module to support fast cyclic
redundancy checks
– Tamper detect and secure storage
– Hardware random-number generator
– Hardware encryption supporting DES, 3DES, AES,
MD5, SHA-1, and SHA-256 algorithms
– 128-bit unique identification (ID) number per chip
• Human-machine interface
– General-purpose input/output
• Analog modules
– 16-bit SAR ADC
– Two analog comparators (CMP) containing a 6-bit
DAC and programmable reference input
• Timers
– Programmable delay block
– Eight-channel motor control/general purpose/PWM
timer
– Two 2-channel general purpose timers, one with
quadrature decoder functionality
– Periodic interrupt timers
– 16-bit low-power timer
– Carrier modulator transmitter
– Real-time clock
• Communication interfaces
– USB full-/low-speed On-the-Go controller with onchip transceiver
– USB Device Charger detect
– Two SPI modules
– Two I2C modules
– Four UART modules
– I2S module
Freescale reserves the right to change the detail specifications as may be
required to permit improvements in the design of its products.
© 2012–2013 Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................3
5.4.1
Thermal operating requirements...........................21
1.1 Determining valid orderable parts......................................3
5.4.2
Thermal attributes.................................................21
2 Part identification......................................................................3
6 Peripheral operating requirements and behaviors....................22
2.1 Description.........................................................................3
6.1 Core modules....................................................................22
2.2 Format...............................................................................3
6.1.1
JTAG electricals....................................................22
2.3 Fields.................................................................................3
6.2 System modules................................................................25
2.4 Example............................................................................4
6.3 Clock modules...................................................................25
2.5 Small package marking.....................................................4
6.3.1
MCG specifications...............................................25
3 Terminology and guidelines......................................................5
6.3.2
Oscillator electrical specifications.........................27
3.1 Definition: Operating requirement......................................5
6.3.3
32 kHz oscillator electrical characteristics.............30
3.2 Definition: Operating behavior...........................................5
6.4 Memories and memory interfaces.....................................30
3.3 Definition: Attribute............................................................6
6.4.1
Flash electrical specifications................................30
3.4 Definition: Rating...............................................................6
6.4.2
EzPort switching specifications.............................33
3.5 Result of exceeding a rating..............................................7
3.6 Relationship between ratings and operating
requirements......................................................................7
6.5 Security and integrity modules..........................................34
6.5.1
DryIce Tamper Electrical Specifications................34
6.6 Analog...............................................................................35
3.7 Guidelines for ratings and operating requirements............8
6.6.1
ADC electrical specifications.................................35
3.8 Definition: Typical value.....................................................8
6.6.2
CMP and 6-bit DAC electrical specifications.........39
3.9 Typical value conditions....................................................9
6.7 Timers................................................................................42
4 Ratings......................................................................................9
6.8 Communication interfaces.................................................42
4.1 Thermal handling ratings...................................................9
6.8.1
USB electrical specifications.................................42
4.2 Moisture handling ratings..................................................10
6.8.2
USB DCD electrical specifications........................42
4.3 ESD handling ratings.........................................................10
6.8.3
VREG electrical specifications..............................43
4.4 Voltage and current operating ratings...............................10
6.8.4
DSPI switching specifications (limited voltage
5 General.....................................................................................10
range)....................................................................43
5.1 AC electrical characteristics..............................................11
6.8.5
DSPI switching specifications (full voltage range).45
5.2 Nonswitching electrical specifications...............................11
6.8.6
I2C switching specifications..................................47
5.2.1
Voltage and current operating requirements.........11
6.8.7
UART switching specifications..............................47
5.2.2
LVD and POR operating requirements.................12
6.8.8
Normal Run, Wait and Stop mode performance
5.2.3
Voltage and current operating behaviors..............13
5.2.4
Power mode transition operating behaviors..........13
5.2.5
Power consumption operating behaviors..............14
over the full operating voltage range.....................49
5.2.6
EMC radiated emissions operating behaviors.......18
7 Dimensions...............................................................................51
5.2.7
Designing with radiated emissions in mind...........19
7.1 Obtaining package dimensions.........................................51
5.2.8
Capacitance attributes..........................................19
8 Pinout........................................................................................51
5.3 Switching specifications.....................................................19
8.1 K21 Signal Multiplexing and Pin Assignments..................51
over the full operating voltage range.....................47
6.8.9
VLPR, VLPW, and VLPS mode performance
5.3.1
Device clock specifications...................................19
8.2 K21 Pinouts.......................................................................54
5.3.2
General switching specifications...........................20
9 Revision History........................................................................56
5.4 Thermal specifications.......................................................21
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
2
Freescale Semiconductor, Inc.
Ordering parts
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to freescale.com and perform a part number search for the
following device numbers: PK21 and MK21 .
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
K##
Kinetis family
• K21
A
Key attribute
• D = Cortex-M4 w/ DSP
• F = Cortex-M4 w/ DSP and FPU
M
Flash memory type
• N = Program flash only
• X = Program flash and FlexMemory
Table continues on the next page...
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
3
Part identification
Field
Description
Values
FFF
Program flash memory size
•
•
•
•
•
•
•
32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
2M0 = 2 MB
R
Silicon revision
• Z = Initial
• (Blank) = Main
• A = Revision after main
T
Temperature range (°C)
• V = –40 to 105
• C = –40 to 85
PP
Package identifier
•
•
•
•
•
•
•
•
•
•
FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
LH = 64 LQFP (10 mm x 10 mm)
MP = 64 MAPBGA (5 mm x 5 mm)
LK = 80 LQFP (12 mm x 12 mm)
LL = 100 LQFP (14 mm x 14 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
CC
Maximum CPU frequency (MHz)
•
•
•
•
•
•
5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
18 = 180 MHz
N
Packaging type
• R = Tape and reel
• (Blank) = Trays
2.4 Example
This is an example part number:
MK21DX128VLK5
2.5 Small package marking
In an effort to save space, small package devices use special marking on the chip. These
markings have the following format:
Q ## C F T PP
This table lists the possible values for each field in the part number for small packages
(not all combinations are valid):
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
4
Freescale Semiconductor, Inc.
Terminology and guidelines
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
##
Kinetis family
• 1# = K11/K12
• 2# = K21/K22
C
Speed
• G = 50 MHz
F
Flash memory configuration
• G = 128 KB + Flex
• H = 256 KB + Flex
• 9 = 512 KB
T
Temperature range (°C)
• V = –40 to 105
PP
Package identifier
• MC = 121 MAPBGA
This tables lists some examples of small package marking along with the original part
numbers:
Original part number
Alternate part number
MK21DX128VMC5
M21GGVMC
MK21DX256VMC5
M21GHVMC
MK21DN512VMC5
M21G9VMC
3 Terminology and guidelines
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
3.1.1 Example
This is an example of an operating requirement:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
0.9
Max.
1.1
Unit
V
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
5
Terminology and guidelines
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical
characteristic that are guaranteed during operation if you meet the operating requirements
and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior:
Symbol
IWP
Description
Min.
Digital I/O weak pullup/ 10
pulldown current
Max.
130
Unit
µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
3.3.1 Example
This is an example of an attribute:
Symbol
CIN_D
Description
Input capacitance:
digital pins
Min.
—
Max.
7
Unit
pF
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
6
Freescale Semiconductor, Inc.
Terminology and guidelines
3.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
Min.
1.0 V core supply
voltage
Max.
–0.3
Unit
1.2
V
3.5 Result of exceeding a rating
40
Failures in time (ppm)
30
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
20
10
0
Operating rating
Measured characteristic
3.6 Relationship between ratings and operating requirements
ra
pe
tin
gr
g
tin
(
in.
t (m
)
n.
mi
a
gr
tin
ra
pe
)
O
O
t (m
e
ir
qu
e
n
me
gr
tin
O
ra
pe
ax
.)
e
ir
qu
e
n
me
a
gr
tin
ra
pe
g
tin
ax
(m
.)
O
Fatal range
Degraded operating range
Normal operating range
Degraded operating range
Fatal range
Expected permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Expected permanent failure
–∞
∞
Operating (power on)
n
Ha
ng
dli
ng
ati
)
in.
(m
r
nd
Ha
g
lin
ing
rat
ax
(m
.)
Fatal range
Handling range
Fatal range
Expected permanent failure
No permanent failure
Expected permanent failure
–∞
Handling (power off)
∞
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
7
Terminology and guidelines
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol
IWP
Description
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
70
Max.
130
Unit
µA
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
8
Freescale Semiconductor, Inc.
Ratings
5000
4500
4000
TJ
IDD_STOP (μA)
3500
150 °C
3000
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.90
0.95
1.00
1.05
1.10
VDD (V)
3.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
4 Ratings
4.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
9
General
4.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
-2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device model
-500
+500
V
2
Latch-up current at ambient temperature of 105°C
-100
+100
mA
3
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
4.4 Voltage and current operating ratings
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
155
mA
VDIO
Digital input voltage (except RESET, EXTAL, and XTAL)
–0.3
VAIO
Analog1, RESET, EXTAL, and XTAL input voltage
–0.3
VDD + 0.3
V
Maximum current single pin limit (applies to all digital pins)
–25
25
mA
VDD – 0.3
VDD + 0.3
V
ID
VDDA
Analog supply voltage
V
VUSB0_DP
USB0_DP input voltage
–0.3
3.63
V
VUSB0_DM
USB0_DM input voltage
–0.3
3.63
V
VREGIN
USB regulator input
–0.3
6.0
V
RTC battery supply voltage
–0.3
3.8
V
VBAT
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
5 General
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
10
Freescale Semiconductor, Inc.
General
5.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
Figure 1. Input signal measurement reference
5.2 Nonswitching electrical specifications
5.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
1.71
3.6
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
VBAT
VIH
VIL
RTC battery supply voltage
Notes
Input high voltage
Input low voltage
VHYS
Input hysteresis
IICIO
I/O pin DC injection current — single pin
• VIN < VSS-0.3V (Negative current injection)
• VIN > VDD+0.3V (Positive current injection)
1
mA
-3
—
—
+3
Table continues on the next page...
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
11
General
Table 1. Voltage and current operating requirements (continued)
Symbol
IICcont
Description
Min.
Max.
Unit
-25
—
mA
—
+25
1.2
—
V
VPOR_VBAT
—
V
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
• Negative current injection
• Positive current injection
VRAM
VRFVBAT
VDD voltage required to retain RAM
VBAT voltage required to retain the VBAT register file
Notes
1. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater
than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as
R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|IICAIO|. Select the
larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.
5.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
VLVDH
Falling low-voltage detect threshold — high
range (LVDV=01)
2.48
2.56
2.64
V
Low-voltage warning thresholds — high range
1
VLVW1H
• Level 1 falling (LVWV=00)
2.62
2.70
2.78
V
VLVW2H
• Level 2 falling (LVWV=01)
2.72
2.80
2.88
V
VLVW3H
• Level 3 falling (LVWV=10)
2.82
2.90
2.98
V
VLVW4H
• Level 4 falling (LVWV=11)
2.92
3.00
3.08
V
—
80
—
mV
1.54
1.60
1.66
V
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low range
(LVDV=00)
Low-voltage warning thresholds — low range
1
VLVW1L
• Level 1 falling (LVWV=00)
1.74
1.80
1.86
V
VLVW2L
• Level 2 falling (LVWV=01)
1.84
1.90
1.96
V
VLVW3L
• Level 3 falling (LVWV=10)
1.94
2.00
2.06
V
VLVW4L
• Level 4 falling (LVWV=11)
2.04
2.10
2.16
V
—
60
—
mV
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
Notes
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
12
Freescale Semiconductor, Inc.
General
1. Rising threshold is the sum of falling threshold and hysteresis voltage
Table 3. VBAT power operating requirements
Symbol
Description
VPOR_VBAT Falling VBAT supply POR detect voltage
Min.
Typ.
Max.
Unit
0.8
1.1
1.5
V
Notes
5.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol
VOH
Description
Min.
Max.
Unit
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = - 9 mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3 mA
VDD – 0.5
—
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2 mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6 mA
VDD – 0.5
—
V
—
100
mA
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3 mA
—
0.5
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6 mA
—
0.5
V
—
100
mA
• @ full temperature range
—
1.0
μA
• @ 25 °C
—
0.1
μA
Notes
Output high voltage — high drive strength
Output high voltage — low drive strength
IOHT
Output high current total for all ports
VOL
Output low voltage — high drive strength
Output low voltage — low drive strength
IOLT
IIN
Output low current total for all ports
Input leakage current (per pin)
1
IOZ
Hi-Z (off-state) leakage current (per pin)
—
1
μA
IOZ
Total Hi-Z (off-state) leakage current (all input pins)
—
4
μA
RPU
Internal pullup resistors
22
50
kΩ
2
RPD
Internal pulldown resistors
22
50
kΩ
3
1. Tested by ganged leakage method
2. Measured at Vinput = VSS
3. Measured at Vinput = VDD
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
13
General
5.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSx→RUN recovery times in the following table
assume this clock configuration:
•
•
•
•
CPU and system clocks = 50 MHz
Bus clock = 50 MHz
Flash clock = 25 MHz
MCG mode: FEI
Table 5. Power mode transition operating behaviors
Symbol
tPOR
Description
Min.
Max.
After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
• 1.71 V/(VDD slew rate) ≤ 300 μs
• 1.71 V/(VDD slew rate) > 300 μs
• VLLS0 → RUN
• VLLS1 → RUN
• VLLS2 → RUN
• VLLS3 → RUN
• LLS → RUN
• VLPS → RUN
• STOP → RUN
Unit
Notes
μs
1
—
300
—
1.7 V / (VDD
slew rate)
—
135
μs
—
135
μs
—
85
μs
—
85
μs
—
6
μs
—
5.2
μs
—
5.2
μs
1. Normal boot (FTFL_OPT[LPBOOT]=1)
5.2.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol
IDDA
IDD_RUN
Description
Analog supply current
Min.
Typ.
Max.
Unit
Notes
—
—
See note
mA
1
Run mode current — all peripheral clocks
disabled, code executing from flash
• @ 1.8 V
• @ 3.0 V
2
—
12.98
14
mA
—
12.93
13.8
mA
Table continues on the next page...
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
14
Freescale Semiconductor, Inc.
General
Table 6. Power consumption operating behaviors (continued)
Symbol
Description
Min.
IDD_RUN
Run mode current — all peripheral clocks
enabled, code executing from flash
• @ 1.8 V
Typ.
Max.
Unit
Notes
3, 4
—
17.04
19.3
mA
—
17.01
18.9
mA
—
19.8
21.3
mA
• @ 3.0 V
• @ 25°C
• @ 125°C
IDD_WAIT
Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
—
7.95
9.5
mA
2
IDD_WAIT
Wait mode reduced frequency current at 3.0 V —
all peripheral clocks disabled
—
5.88
7.4
mA
5
IDD_STOP
Stop mode current at 3.0 V
• @ –40 to 25°C
• @ 50°C
• @ 70°C
• @ 105°C
—
320
436
360
489
410
620
610
1100
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
—
754
—
μA
6
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
—
1.1
—
mA
7
IDD_VLPW
Very-low-power wait mode current at 3.0 V
—
437
—
μA
8
IDD_VLPS
Very-low-power stop mode current at 3.0 V
• @ –40 to 25°C
• @ 50°C
• @ 70°C
• @ 105°C
—
7.33
24.2
14
32
28
48
110
280
3.14
4.8
6.48
28.3
13.85
44.6
55.53
71.3
2.19
3.4
4.35
4.35
8.92
24.6
35.33
45.3
1.77
3.1
2.81
13.8
5.20
22.3
19.88
34.2
IDD_LLS
IDD_VLLS3
Low leakage stop mode current at 3.0 V
• @ –40 to 25°C
• @ 50°C
• @ 70°C
• @ 105°C
Very low-leakage stop mode 3 current at 3.0 V
•
•
•
•
IDD_VLLS2
—
—
@ –40 to 25°C
@ 50°C
@ 70°C
@ 105°C
Very low-leakage stop mode 2 current at 3.0 V
• @ –40 to 25°C
• @ 50°C
• @ 70°C
• @ 105°C
—
μA
μA
μA
μA
μA
Table continues on the next page...
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
15
General
Table 6. Power consumption operating behaviors (continued)
Symbol
IDD_VLLS1
IDD_VLLS0
IDD_VLLS0
IDD_VBAT
Description
Min.
Very low-leakage stop mode 1 current at 3.0 V
• @ –40 to 25°C
• @ 50°C
• @ 70°C
• @ 105°C
—
Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit enabled
• @ –40 to 25°C
• @ 50°C
• @ 70°C
• @ 105°C
—
Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit disabled
• @ –40 to 25°C
• @ 50°C
• @ 70°C
• @ 105°C
—
Average current when CPU is not accessing RTC
registers at 3.0 V
• @ –40 to 25°C
• @ 50°C
• @ 70°C
• @ 105°C
—
Typ.
Max.
1.03
1.8
1.92
7.5
4.03
15.9
17.43
28.7
0.543
1.1
1.36
7.58
3.39
14.3
16.52
24.1
0.359
0.95
1.03
6.8
2.87
15.4
15.20
25.3
0.91
1.1
1.1
1.35
1.5
1.85
4.3
5.7
Unit
Notes
μA
μA
μA
μA
9
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral
clocks disabled.
3. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral
clocks enabled, and peripherals are in active operation.
4. Max values are measured with CPU executing DSP instructions
5. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz flash clock. MCG configured for FEI mode.
6. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
Code executing from flash.
7. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled
but peripherals are not in active operation. Code executing from flash.
8. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
9. Includes 32 kHz oscillator current and RTC operation.
5.2.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
•
•
•
•
•
MCG in FBE mode
USB regulator disabled
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFL
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
16
Freescale Semiconductor, Inc.
General
Figure 2. Run mode supply current vs. core frequency
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
17
General
Figure 3. VLPR mode supply current vs. core frequency
5.2.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors 1
Symbol
Description
Frequency
band (MHz)
Typ.
Unit
Notes
2, 3
VRE1
Radiated emissions voltage, band 1
0.15–50
19
dBμV
VRE2
Radiated emissions voltage, band 2
50–150
21
dBμV
VRE3
Radiated emissions voltage, band 3
150–500
19
dBμV
VRE4
Radiated emissions voltage, band 4
500–1000
11
dBμV
IEC level
0.15–1000
L
—
VRE_IEC
3, 4
1. This data was collected on a MK20DN128VLH5 64pin LQFP device.
2. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
measured orientations in each frequency range.
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
18
Freescale Semiconductor, Inc.
General
3. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 48 MHz, fBUS = 48MHz
4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method
5.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to www.freescale.com.
2. Perform a keyword search for “EMC design.”
5.2.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol
Description
Min.
Max.
Unit
CIN_A
Input capacitance: analog pins
—
7
pF
CIN_D
Input capacitance: digital pins
—
7
pF
5.3 Switching specifications
5.3.1 Device clock specifications
Table 9. Device clock specifications
Symbol
Description
Min.
Max.
Unit
System and core clock
—
50
MHz
System and core clock when Full Speed USB in
operation
20
—
MHz
Bus clock
—
50
MHz
fFLASH
Flash clock
—
25
MHz
fLPTMR
LPTMR clock
—
25
MHz
Notes
Normal run mode
fSYS
fBUS
VLPR
mode1
fSYS
System and core clock
—
4
MHz
fBUS
Bus clock
—
4
MHz
fFLASH
Flash clock
—
1
MHz
fERCLK
External reference clock
—
16
MHz
LPTMR clock
—
25
MHz
fLPTMR_pin
Table continues on the next page...
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
19
General
Table 9. Device clock specifications (continued)
Symbol
Description
Min.
Max.
Unit
LPTMR external reference clock
—
16
MHz
fI2S_MCLK
I2S master clock
—
12.5
MHz
fI2S_BCLK
I2S bit clock
—
4
MHz
fLPTMR_ERCLK
Notes
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any
other module.
5.3.2 General switching specifications
These general purpose specifications apply to all pins configured for:
• GPIO signaling
• Other peripheral module signaling not explicitly stated elsewhere
Table 10. General switching specifications
Symbol
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5
—
Bus clock
cycles
1, 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous path
100
—
ns
3
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous path
50
—
ns
3
External reset pulse width (digital glitch filter disabled)
100
—
ns
3
Port rise and fall time (high drive strength)
4
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
13
ns
• 2.7 ≤ VDD ≤ 3.6V
—
7
ns
• 1.71 ≤ VDD ≤ 2.7V
—
36
ns
• 2.7 ≤ VDD ≤ 3.6V
—
24
ns
• Slew enabled
Port rise and fall time (low drive strength)
5
• Slew disabled
• 1.71 ≤ VDD ≤ 2.7V
—
12
ns
• 2.7 ≤ VDD ≤ 3.6V
—
6
ns
• 1.71 ≤ VDD ≤ 2.7V
—
36
ns
• 2.7 ≤ VDD ≤ 3.6V
—
24
ns
• Slew enabled
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or
may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be
recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
20
Freescale Semiconductor, Inc.
General
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and
VLLSx modes.
4. 75 pF load
5. 15 pF load
5.4 Thermal specifications
5.4.1 Thermal operating requirements
Table 11. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
5.4.2 Thermal attributes
Board type
Symbol
Description
Single-layer (1s)
RθJA
Four-layer (2s2p)
80 LQFP
Unit
Notes
Thermal
50
resistance, junction
to ambient (natural
convection)
°C/W
1, 2
RθJA
Thermal
35
resistance, junction
to ambient (natural
convection)
°C/W
1, 3
Single-layer (1s)
RθJMA
Thermal
39
resistance, junction
to ambient (200 ft./
min. air speed)
°C/W
1,3
Four-layer (2s2p)
RθJMA
Thermal
29
resistance, junction
to ambient (200 ft./
min. air speed)
°C/W
1,3
—
RθJB
Thermal
19
resistance, junction
to board
°C/W
4
—
RθJC
Thermal
8
resistance, junction
to case
°C/W
5
Table continues on the next page...
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
21
Peripheral operating requirements and behaviors
Board type
Symbol
Description
—
ΨJT
Thermal
2
characterization
parameter, junction
to package top
outside center
(natural
convection)
1.
2.
3.
4.
5.
6.
80 LQFP
Unit
Notes
°C/W
6
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the
JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.
Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental
Conditions—Forced Convection (Moving Air) with the board horizontal.
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material
between the top of the package and the cold plate.
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
6 Peripheral operating requirements and behaviors
6.1 Core modules
6.1.1 JTAG electricals
Table 12. JTAG limited voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
TCLK frequency of operation
• Boundary Scan
0
10
• JTAG and CJTAG
0
25
• Serial Wire Debug
0
50
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
20
—
ns
• Serial Wire Debug
10
—
ns
TCLK rise and fall times
—
3
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
J4
MHz
Table continues on the next page...
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
22
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 12. JTAG limited voltage range electricals (continued)
Symbol
Description
Min.
Max.
Unit
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
0
—
ns
J7
TCLK low to boundary scan output data valid
—
25
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1
—
ns
J11
TCLK low to TDO data valid
—
17
ns
J12
TCLK low to TDO high-Z
J13
TRST assert time
J14
TRST setup time (negation) to TCLK high
—
17
ns
100
—
ns
8
—
ns
Table 13. JTAG full voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
20
• Serial Wire Debug
0
40
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
25
—
ns
• Serial Wire Debug
12.5
—
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
0
—
ns
J7
TCLK low to boundary scan output data valid
—
25
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1.4
—
ns
J11
TCLK low to TDO data valid
—
22.1
ns
J12
TCLK low to TDO high-Z
—
22.1
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
23
Peripheral operating requirements and behaviors
J2
J3
J3
TCLK (input)
J4
J4
Figure 4. Test clock input timing
TCLK
J5
Data inputs
J6
Input data valid
J7
Data outputs
Output data valid
J8
Data outputs
J7
Data outputs
Output data valid
Figure 5. Boundary scan (JTAG) timing
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
24
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
TCLK
J9
TDI/TMS
J10
Input data valid
J11
TDO
Output data valid
J12
TDO
J11
TDO
Output data valid
Figure 6. Test Access Port timing
TCLK
J14
J13
TRST
Figure 7. TRST timing
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
25
Peripheral operating requirements and behaviors
6.3.1 MCG specifications
Table 14. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
—
32.768
—
kHz
31.25
—
39.0625
kHz
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
—
± 0.3
± 0.6
%fdco
1
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM only
—
± 0.2
± 0.5
%fdco
1
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
fints_t
Internal reference frequency (slow clock) — user
trimmed
Notes
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
+0.5/-0.7
±2
%fdco
1, 2
Δfdco_t
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
—
± 0.3
±1
%fdco
1, 2
fintf_ft
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
—
4
—
MHz
fintf_t
Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3
—
5
MHz
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
50
MHz
60
62.91
75
MHz
80
83.89
100
MHz
—
23.99
—
MHz
—
47.97
—
MHz
—
71.99
—
MHz
—
95.98
—
MHz
FLL
ffll_ref
fdco
FLL reference frequency range
DCO output
frequency range
Low range (DRS=00)
3, 4
640 × ffll_ref
Mid range (DRS=01)
1280 × ffll_ref
Mid-high range (DRS=10)
1920 × ffll_ref
High range (DRS=11)
2560 × ffll_ref
fdco_t_DMX32 DCO output
frequency
Low range (DRS=00)
5, 6
732 × ffll_ref
Mid range (DRS=01)
1464 × ffll_ref
Mid-high range (DRS=10)
2197 × ffll_ref
High range (DRS=11)
2929 × ffll_ref
Table continues on the next page...
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
26
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 14. MCG specifications (continued)
Symbol
Jcyc_fll
Description
FLL period jitter
• fDCO = 48 MHz
• fDCO = 98 MHz
tfll_acquire
FLL target frequency acquisition time
Min.
Typ.
Max.
Unit
—
180
—
—
150
—
—
—
1
ms
48.0
—
100
MHz
—
1060
—
µA
—
600
—
µA
2.0
—
4.0
MHz
Notes
ps
7
PLL
fvco
VCO operating frequency
Ipll
PLL operating current
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 48)
Ipll
PLL operating current
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref =
2 MHz, VDIV multiplier = 24)
fpll_ref
PLL reference frequency range
Jcyc_pll
PLL period jitter (RMS)
Jacc_pll
• fvco = 48 MHz
—
120
—
ps
• fvco = 100 MHz
—
50
—
ps
PLL accumulated jitter over 1µs (RMS)
9
• fvco = 48 MHz
—
1350
—
ps
• fvco = 100 MHz
—
600
—
ps
Lock entry frequency tolerance
± 1.49
—
± 2.98
%
Dunl
Lock exit frequency tolerance
± 4.47
—
± 5.97
%
Lock detector detection time
8
9
Dlock
tpll_lock
8
—
—
10-6
150 ×
+ 1075(1/
fpll_ref)
s
10
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. 2 V 3.6 V
• Run mode
• Standby mode
VReg33out
Notes
2
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
43
Peripheral operating requirements and behaviors
6.8.4 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 29. Master mode DSPI timing (limited voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
2.7
3.6
V
Notes
—
25
MHz
2 x tBUS
—
ns
DSPI_SCK output high/low time
(tSCK/2) − 2
(tSCK/2) + 2
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
2
—
ns
1
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
2
—
ns
2
DS5
DSPI_SCK to DSPI_SOUT valid
—
8.5
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
−2
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
15
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
DS1
DSPI_SCK output cycle time
DS2
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DS1
DS2
DS4
DSPI_SCK
DS8
DS7
(CPOL=0)
DSPI_SIN
Data
First data
Last data
DS5
DSPI_SOUT
First data
DS6
Data
Last data
Figure 14. DSPI classic SPI timing — master mode
Table 30. Slave mode DSPI timing (limited voltage range)
Num
Description
Operating voltage
Min.
Max.
Unit
2.7
3.6
V
12.5
MHz
—
ns
Frequency of operation
DS9
DSPI_SCK input cycle time
4 x tBUS
Table continues on the next page...
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
44
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 30. Slave mode DSPI timing (limited voltage range) (continued)
Num
Description
Min.
Max.
Unit
(tSCK/2) − 2
(tSCK/2) + 2
ns
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
10
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
14
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
14
ns
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DS12
DSPI_SOUT
First data
DS13
DS16
DS11
Last data
Data
DS14
DSPI_SIN
First data
Data
Last data
Figure 15. DSPI classic SPI timing — slave mode
6.8.5 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 31. Master mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
Notes
1.71
3.6
V
1
—
12.5
MHz
4 x tBUS
—
ns
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
4
—
ns
2
Table continues on the next page...
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
45
Peripheral operating requirements and behaviors
Table 31. Master mode DSPI timing (full voltage range) (continued)
Num
Description
Min.
Max.
Unit
Notes
(tBUS x 2) −
4
—
ns
3
—
10
ns
DS4
DSPI_SCK to DSPI_PCSn invalid delay
DS5
DSPI_SCK to DSPI_SOUT valid
DS6
DSPI_SCK to DSPI_SOUT invalid
-4.5
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
20.5
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DS1
DS2
DS4
DSPI_SCK
DS8
DS7
(CPOL=0)
DSPI_SIN
Data
First data
Last data
DS5
DSPI_SOUT
First data
DS6
Data
Last data
Figure 16. DSPI classic SPI timing — master mode
Table 32. Slave mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
1.71
3.6
V
—
6.25
MHz
8 x tBUS
—
ns
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
20
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
19
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
19
ns
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
46
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DS12
DSPI_SOUT
First data
DS13
DS16
DS11
Last data
Data
DS14
DSPI_SIN
First data
Data
Last data
Figure 17. DSPI classic SPI timing — slave mode
6.8.6 I2C switching specifications
See General switching specifications.
6.8.7 UART switching specifications
See General switching specifications.
6.8.8 Normal Run, Wait and Stop mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 33. I2S/SAI master mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
40
—
ns
S2
I2S_MCLK (as an input) pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
80
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
15
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
15
ns
Table continues on the next page...
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
47
Peripheral operating requirements and behaviors
Table 33. I2S/SAI master mode timing (continued)
Num.
Characteristic
Min.
Max.
Unit
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
25
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK
0
—
ns
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 18. I2S/SAI timing — master modes
Table 34. I2S/SAI slave mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
80
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
10
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
29
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
10
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
S19
I2S_TX_FS input assertion to I2S_TXD output valid1
—
21
ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
48
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 19. I2S/SAI timing — slave modes
6.8.9 VLPR, VLPW, and VLPS mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in VLPR, VLPW, and VLPS modes.
Table 35. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
62.5
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
250
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
45
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
45
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
75
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK
0
—
ns
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
49
Peripheral operating requirements and behaviors
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 20. I2S/SAI timing — master modes
Table 36. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full
voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
250
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
30
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
87
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
30
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
—
72
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
50
Freescale Semiconductor, Inc.
Dimensions
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 21. I2S/SAI timing — slave modes
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to freescale.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package
80-pin LQFP
Then use this document number
98ASS23174W
8 Pinout
8.1 K21 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
NOTE
• The analog input signals ADC0_SE10, ADC0_SE11,
ADC0_DP1, and ADC0_DM1 are available only for K11,
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
51
Pinout
•
•
•
•
•
80
LQFP
K12, K21, and K22 devices and are not present on K10 and
K20 devices.
The TRACE signals on PTE0, PTE1, PTE2, PTE3, and
PTE4 are available only for K11, K12, K21, and K22
devices and are not present on K10 and K20 devices.
If the VBAT pin is not used, the VBAT pin should be left
floating. Do not connect VBAT pin to VSS.
The FTM_CLKIN signals on PTB16 and PTB17 are
available only for K11, K12, K21, and K22 devices and is
not present on K10 and K20 devices. For K22D devices
this signal is on ALT4, and for K22F devices, this signal is
on ALT7.
The FTM0_CH2 signal on PTC5/LLWU_P9 is available
only for K11, K12, K21, and K22 devices and is not
present on K10 and K20 devices.
The I2C0_SCL signal on PTD2/LLWU_P13 and
I2C0_SDA signal on PTD3 are available only for K11,
K12, K21, and K22 devices and are not present on K10 and
K20 devices.
Default
ALT0
1
ADC0_SE10
ADC0_SE10
2
ADC0_SE11
3
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
PTE0
SPI1_PCS1
UART1_TX
TRACE_CLKOUT I2C1_SDA
RTC_CLKOUT
ADC0_SE11
PTE1/
LLWU_P0
SPI1_SOUT
UART1_RX
TRACE_D3
SPI1_SIN
ADC0_DP1
ADC0_DP1
PTE2/
LLWU_P1
SPI1_SCK
UART1_CTS_b
TRACE_D2
4
ADC0_DM1
ADC0_DM1
PTE3
SPI1_SIN
UART1_RTS_b
TRACE_D1
5
DISABLED
PTE4/
LLWU_P2
SPI1_PCS0
UART3_TX
TRACE_D0
6
DISABLED
PTE5
SPI1_PCS2
UART3_RX
7
VDD
VDD
8
VSS
VSS
9
USB0_DP
USB0_DP
10
USB0_DM
USB0_DM
11
VOUT33
VOUT33
12
VREGIN
VREGIN
13
ADC0_DP0
ADC0_DP0
14
ADC0_DM0
ADC0_DM0
15
ADC0_DP3
ADC0_DP3
16
ADC0_DM3
ADC0_DM3
17
VDDA
VDDA
18
VREFH
VREFH
19
VREFL
VREFL
I2C1_SCL
ALT7
EzPort
SPI1_SOUT
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
52
Freescale Semiconductor, Inc.
Pinout
80
LQFP
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
EzPort
20
VSSA
VSSA
21
TAMPER0/
RTC_WAKEUP_
B
TAMPER0/
RTC_WAKEUP_
B
22
TAMPER1
TAMPER1
23
XTAL32
XTAL32
24
EXTAL32
EXTAL32
25
VBAT
VBAT
26
JTAG_TCLK/
SWD_CLK/
EZP_CLK
PTA0
UART0_CTS_b/
UART0_COL_b
FTM0_CH5
JTAG_TCLK/
SWD_CLK
EZP_CLK
27
JTAG_TDI/
EZP_DI
PTA1
UART0_RX
FTM0_CH6
JTAG_TDI
EZP_DI
28
JTAG_TDO/
TRACE_SWO/
EZP_DO
PTA2
UART0_TX
FTM0_CH7
JTAG_TDO/
TRACE_SWO
EZP_DO
29
JTAG_TMS/
SWD_DIO
PTA3
UART0_RTS_b
FTM0_CH0
JTAG_TMS/
SWD_DIO
30
NMI_b/
EZP_CS_b
PTA4/
LLWU_P3
FTM0_CH1
NMI_b
31
DISABLED
PTA5
FTM0_CH2
I2S0_TX_BCLK
JTAG_TRST_b
32
DISABLED
PTA12
FTM1_CH0
I2S0_TXD0
FTM1_QD_PHA
33
DISABLED
PTA13/
LLWU_P4
FTM1_CH1
I2S0_TX_FS
FTM1_QD_PHB
34
DISABLED
PTA14
SPI0_PCS0
UART0_TX
I2S0_RX_BCLK
I2S0_TXD1
35
DISABLED
PTA15
SPI0_SCK
UART0_RX
I2S0_RXD0
36
DISABLED
PTA16
SPI0_SOUT
UART0_CTS_b/
UART0_COL_b
I2S0_RX_FS
37
DISABLED
PTA17
SPI0_SIN
UART0_RTS_b
I2S0_MCLK
38
VDD
VDD
39
VSS
VSS
40
EXTAL0
EXTAL0
PTA18
FTM0_FLT2
FTM_CLKIN0
41
XTAL0
XTAL0
PTA19
FTM1_FLT0
FTM_CLKIN1
42
RESET_b
RESET_b
43
ADC0_SE8
ADC0_SE8
PTB0/
LLWU_P5
I2C0_SCL
FTM1_CH0
FTM1_QD_PHA
44
ADC0_SE9
ADC0_SE9
PTB1
I2C0_SDA
FTM1_CH1
FTM1_QD_PHB
45
ADC0_SE12
ADC0_SE12
PTB2
I2C0_SCL
UART0_RTS_b
FTM0_FLT3
46
ADC0_SE13
ADC0_SE13
PTB3
I2C0_SDA
UART0_CTS_b/
UART0_COL_b
FTM0_FLT0
47
DISABLED
PTB10
SPI1_PCS0
UART3_RX
FTM0_FLT1
48
DISABLED
PTB11
SPI1_SCK
UART3_TX
FTM0_FLT2
49
DISABLED
PTB12
UART3_RTS_b
FTM1_CH0
FTM0_CH4
FTM1_QD_PHA
50
DISABLED
PTB13
UART3_CTS_b
FTM1_CH1
FTM0_CH5
FTM1_QD_PHB
51
DISABLED
PTB16
SPI1_SOUT
UART0_RX
USB_CLKIN
EZP_CS_b
I2S0_RXD1
LPTMR0_ALT1
EWM_IN
FTM_CLKIN0
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
53
Pinout
80
LQFP
Default
ALT0
ALT1
ALT2
ALT4
ALT5
UART0_TX
ALT6
52
DISABLED
PTB17
53
DISABLED
PTB18
FTM2_CH0
I2S0_TX_BCLK
54
DISABLED
PTB19
FTM2_CH1
I2S0_TX_FS
55
ADC0_SE14
ADC0_SE14
PTC0
SPI0_PCS4
PDB0_EXTRG
56
ADC0_SE15
ADC0_SE15
PTC1/
LLWU_P6
SPI0_PCS3
UART1_RTS_b
FTM0_CH0
I2S0_TXD0
57
ADC0_SE4b/
CMP1_IN0
ADC0_SE4b/
CMP1_IN0
PTC2
SPI0_PCS2
UART1_CTS_b
FTM0_CH1
I2S0_TX_FS
58
CMP1_IN1
CMP1_IN1
PTC3/
LLWU_P7
SPI0_PCS1
UART1_RX
FTM0_CH2
59
VSS
VSS
60
VDD
VDD
61
DISABLED
PTC4/
LLWU_P8
SPI0_PCS0
UART1_TX
FTM0_CH3
CMP1_OUT
62
DISABLED
PTC5/
LLWU_P9
SPI0_SCK
LPTMR0_ALT2
I2S0_RXD0
CMP0_OUT
63
CMP0_IN0
CMP0_IN0
PTC6/
LLWU_P10
SPI0_SOUT
PDB0_EXTRG
I2S0_RX_BCLK
I2S0_MCLK
64
CMP0_IN1
CMP0_IN1
PTC7
SPI0_SIN
USB_SOF_OUT
I2S0_RX_FS
65
CMP0_IN2
CMP0_IN2
PTC8
I2S0_MCLK
66
CMP0_IN3
CMP0_IN3
PTC9
I2S0_RX_BCLK
67
DISABLED
PTC10
I2C1_SCL
I2S0_RX_FS
68
DISABLED
PTC11/
LLWU_P11
I2C1_SDA
I2S0_RXD1
69
DISABLED
PTC12
70
DISABLED
PTC13
71
DISABLED
PTC16
UART3_RX
72
DISABLED
PTC17
UART3_TX
73
DISABLED
PTD0/
LLWU_P12
SPI0_PCS0
UART2_RTS_b
74
ADC0_SE5b
PTD1
SPI0_SCK
UART2_CTS_b
75
DISABLED
PTD2/
LLWU_P13
SPI0_SOUT
UART2_RX
I2C0_SCL
76
DISABLED
PTD3
SPI0_SIN
UART2_TX
I2C0_SDA
77
ADC0_SE21
ADC0_SE21
PTD4/
LLWU_P14
SPI0_PCS1
UART0_RTS_b
FTM0_CH4
EWM_IN
78
ADC0_SE6b
ADC0_SE6b
PTD5
SPI0_PCS2
UART0_CTS_b/
UART0_COL_b
FTM0_CH5
EWM_OUT_b
79
ADC0_SE7b
ADC0_SE7b
PTD6/
LLWU_P15
SPI0_PCS3
UART0_RX
FTM0_CH6
FTM0_FLT0
80
ADC0_SE22
ADC0_SE22
PTD7
CMT_IRO
UART0_TX
FTM0_CH7
FTM0_FLT1
ADC0_SE5b
SPI1_SIN
ALT3
EWM_OUT_b
ALT7
EzPort
FTM_CLKIN1
I2S0_TXD1
CLKOUT
I2S0_TX_BCLK
FTM0_CH2
FTM2_FLT0
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
54
Freescale Semiconductor, Inc.
Pinout
8.2 K21 Pinouts
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2/LLWU_P13
PTD1
PTD0/LLWU_P12
PTC17
PTC16
PTC13
PTC12
PTC11/LLWU_P11
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
VOUT33
11
50
PTB13
VREGIN
12
49
PTB12
ADC0_DP0
13
48
PTB11
ADC0_DM0
14
47
PTB10
ADC0_DP3
15
46
PTB3
ADC0_DM3
16
45
PTB2
VDDA
17
44
PTB1
VREFH
18
43
PTB0/LLWU_P5
VREFL
19
42
RESET_b
VSSA
20
41
PTA19
40
PTB16
PTA18
51
39
10
VSS
USB0_DM
38
PTB17
VDD
52
37
9
PTA17
USB0_DP
36
PTB18
PTA16
53
35
8
PTA15
VSS
34
PTB19
PTA14
54
33
7
PTA13/LLWU_P4
VDD
PTA12
PTC0
32
55
31
6
PTA5
PTE5
30
PTC1/LLWU_P6
PTA4/LLWU_P3
56
29
5
PTA3
PTE4/LLWU_P2
28
PTC2
PTA2
57
27
4
PTA1
PTE3
26
PTC3/LLWU_P7
PTA0
58
25
3
VBAT
PTE2/LLWU_P1
24
VSS
EXTAL32
59
23
2
XTAL32
PTE1/LLWU_P0
22
VDD
TAMPER1
60
21
1
TAMPER0/RTC_WAKEUP_B
PTE0
Figure 22. K21 80 LQFP Pinout Diagram
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
Freescale Semiconductor, Inc.
55
Revision History
9 Revision History
The following table provides a revision history for this document.
Table 37. Revision History
Rev. No.
Date
Substantial Changes
1
6/2012
Alpha customer release.
1.1
6/2012
In Table 6, "Power consumption operating behaviors", changed the units of IDD_VLLS2,
IDD_VLLS1, IDD_VLLS0, and IDD_VBAT from nA to μA.
2
7/2012
•
•
•
•
•
•
Updated section "Power consumption operating behaviors".
Updated section "Flash timing specifications — program and erase".
Updated section "Flash timing specifications — commands".
Removed the 32K ratio from "Write endurance" in section "Reliability specifications".
Updated IDDstby maximum value in section "VREG electrical specifications".
Added the charts in section "Diagram: Typical IDD_RUN operating behavior".
3
8/2012
•
•
•
•
Updated section "Power consumption operating behaviors".
Updated section "EMC radiated emissions operating behaviors".
Updated section "MCG specifications".
Added applicable notes in section "Signal Multiplexing and Pin Assignments".
4
12/2012
• Updated section "Power consumption operating behaviors"
• Updated section "MCG specifications"
• Updated section "16-bit ADC operating conditions"
4.1
08/2013
• Added section "Small package marking"
• To section "MCG Specifications", added row for "Total deviation of trimmed average
DCO output frequency over fixed voltage and temperature range of 0–70°C"
K21 Sub-Family Data Sheet, Rev. 4.1, 08/2013.
56
Freescale Semiconductor, Inc.
How to Reach Us:
Information in this document is provided solely to enable system and software
Home Page:
freescale.com
implementers to use Freescale products. There are no express or implied copyright
Web Support:
freescale.com/support
information in this document.
licenses granted hereunder to design or fabricate any integrated circuits based on the
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.
Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other
product or service names are the property of their respective owners. ARM and Cortex
are the registered trademarks of ARM Limited.
© 2012-2013 Freescale Semiconductor, Inc.
Document Number: K21P80M50SF4
Rev. 4.1
08/2013