NXP Semiconductors
Data Sheet: Technical Data
Kinetis K26 Sub-Family
180 MHz ARM® Cortex®-M4F Microcontroller.
The K26 sub-family members provide greater performance,
memory options up to 2 MB total flash and 256 KB of SRAM, as
well as higher peripheral integration with features such as Dual
USB. These devices maintain hardware and software
compatibility with the existing Kinetis family.
This product also offers:
• Integration of a High Speed USB Physical Transceiver
• Greater performance flexibility with a High Speed Run
mode
• Smarter peripherals with operation in Stop modes
K26P169M180SF5
Rev. 4, 04/2017
MK26FN2M0VMD18
MK26FN2M0VMI18
MK26FN2M0VLQ18
MK26FN2M0CAC18R
144 MAPBGA (MD)
144 LQFP (LQ)
13 mm x 13 mm Pitch 1 20 mm x 20 mm Pitch
mm
0.5 mm
169 MAPBGA (MI)
9 mm x 9 mm Pitch
0.65 mm
Performance
• Up to 180 MHz ARM Cortex-M4 based core with DSP
instructions and Single Precision Floating Point unit
169 WLCSP (AC)
5.6 mm x 5.5 mm Pitch
0.4 mm
System and Clocks
• Multiple low-power modes to provide power
optimization based on application requirements
• Memory protection unit with multi-master protection
Memories and memory expansion
• 3 to 32 MHz main crystal oscillator
• Up to 2 MB program flash memory on non-FlexMemory
• 32 kHz low power crystal oscillator
devices with 256 KB RAM
• 48 MHz internal reference
• Up to 1 MB program flash memory and 256 KB of
Security
FlexNVM on FlexMemory devices
• 4 KB FlexRAM on FlexMemory devices
• Hardware random-number generator
• FlexBus external bus interface and SDRAM controller
• Supports DES, AES, SHA accelerator (CAU)
• Multiple levels of embedded flash security
Analog modules
Timers
• Two 16-bit SAR ADCs and two 12-bit DAC
• Four analog comparators (CMP) containing a 6-bit
• Four Periodic interrupt timers
DAC and programmable reference input
• 16-bit low-power timer
• Voltage reference 1.2V
• Two 16-bit low-power timer PWM modules
• Two 8-channel motor control/general purpose/PWM
Communication interfaces
timers
• USB high-/full-/low-speed On-the-Go with on-chip high
• Two 2-ch quad decoder/general purpose timers
speed transceiver
• Real-time clock
• USB full-/low-speed OTG with on-chip transceiver
Operating Characteristics
• Two CAN, three SPI and four I2C modules
• Low Power Universal Asynchronous Receiver/
• Voltage/Flash write voltage range:1.71 to 3.6 V
Transmitter 0 (LPUART0) and five standard UARTs
• V-Temperature range (ambient): -40 to 105°C
• Secure Digital Host Controller (SDHC)
• C-Temperature range (ambient): -40 to 85°C
• I2S module
Human-machine interface
• Low-power hardware touch sensor interface (TSI)
• General-purpose input/output
NXP reserves the right to change the production detail specifications as may be
required to permit improvements in the design of its products.
Ordering Information 1
Part Number
Memory
Maximum number of I\O's
Flash
SRAM
MK26FN2M0VMD18
2 MB
256 KB
100
MK26FN2M0VLQ18
2 MB
256 KB
100
MK26FN2M0CAC18R
2 MB
256 KB
116
MK26FN2M0VMI18
2 MB
256 KB
116
1. To confirm current availability of orderable part numbers, go to http://www.nxp.com and perform a part number search.
Related Resources
Type
Description
Resource
Selector
Guide
The NXP Solution Advisor is a web-based tool that features interactive
application wizards and a dynamic product selector.
Solution Advisor
Reference
Manual
The Reference Manual contains a comprehensive description of the
structure and function (operation) of a device.
K26P169M180SF5RM
Data Sheet
The Data Sheet includes electrical characteristics and signal
connections.
This document.
Chip Errata
The chip mask set Errata provides additional or corrective information for Kinetis_K_0N65N 1
a particular device mask set.
Package
drawing
Package dimensions are provided in package drawings.
MAPBGA 144-pin :
98ASA00222D1
QFP 144-pin: 98ASS23177W1
MAPBGA 169-pin :
98ASA00628D1
WLCSP 169-pin:
98ASA00222D1
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.
2
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Kinetis K26 Sub-Family
ARM ® Cortex® -M4
Core
System
Memories and Memory Interfaces
Clocks
Internal
and external
watchdogs
Program
flash
RAM
Phaselocked loop
Debug
interfaces
DSP
Memory
protection
FlexMemory
Cache
Frequencylocked loop
Interrupt
controller
Floatingpoint unit
DMA
Serial
programming
interface
External
bus
Low/high
frequency
oscillators
Low-leakage
wakeup
SDRAM
controller
Internal
reference
clocks
Human-Machine
Interface (HMI)
Communication Interfaces
Security
Analog
Timers
CRC
16-bit ADC
x2
Timers
x4 (20ch)
I C
x4
I S
x1
GPIO
Random
number
generator
Analog
comparator
x4
Carrier
modulator
transmitter
UART
x5
Secure
Digital
Xtrinsic
touch-sensing
interface
Hardware
encryption
6-bit DAC
x4
Programmable
delay block
SPI
x3
12-bit DAC
x2
Periodic
interrupt
timers
CAN
x2
USB LS/FS
OTG
controller
with
transceiver
Voltage
reference
Low power
timer
LPUART
and Integrity
2
Independent
real-time
clock
Low power
TPM x 2 (4ch)
2
USB LS/FS/HS
OTG
controller
with
transceiver
USB DCD/
USBHSDCD
USB voltage
regulator
Figure 1. K26 Block Diagram
Kinetis K26 Sub-Family, Rev. 4, 04/2017
3
NXP Semiconductors
Table of Contents
1 Ratings.................................................................................... 5
1.1 Thermal handling ratings................................................. 5
1.2 Moisture handling ratings................................................ 5
1.3 ESD handling ratings....................................................... 5
1.4 Voltage and current operating ratings............................. 6
2 General................................................................................... 6
2.1 AC electrical characteristics.............................................6
2.2 Nonswitching electrical specifications..............................7
2.2.1
Voltage and current operating requirements.....7
2.2.2
LVD and POR operating requirements............. 8
2.2.3
Voltage and current operating behaviors.......... 9
2.2.4
Power mode transition operating behaviors......10
2.2.5
Power consumption operating behaviors.......... 12
2.2.6
EMC radiated emissions operating behaviors...17
2.2.7
Designing with radiated emissions in mind....... 18
2.2.8
Capacitance attributes...................................... 18
2.3 Switching specifications...................................................18
2.3.1
Device clock specifications............................... 18
2.3.2
General switching specifications....................... 19
2.4 Thermal specifications..................................................... 20
2.4.1
Thermal operating requirements....................... 20
2.4.2
Thermal attributes............................................. 20
3 Peripheral operating requirements and behaviors.................. 22
3.1 Core modules.................................................................. 22
3.1.1
Debug trace timing specifications..................... 22
3.1.2
JTAG electricals................................................ 23
3.2 System modules.............................................................. 26
3.3 Clock modules................................................................. 26
3.3.1
MCG specifications........................................... 26
3.3.2
IRC48M specifications...................................... 29
3.3.3
Oscillator electrical specifications..................... 30
3.3.4
32 kHz oscillator electrical characteristics.........32
3.4 Memories and memory interfaces................................... 33
3.4.1
Flash (FTFE) electrical specifications............... 33
3.4.2
EzPort switching specifications......................... 38
3.4.3
Flexbus switching specifications....................... 38
3.4.4
SDRAM controller specifications.......................41
3.5 Analog............................................................................. 44
3.5.1
ADC electrical specifications.............................44
3.5.2
CMP and 6-bit DAC electrical specifications.....48
3.5.3
12-bit DAC electrical characteristics................. 51
3.5.4
Voltage reference electrical specifications........ 54
4
NXP Semiconductors
4
5
6
7
3.6 Timers..............................................................................55
3.7 Communication interfaces............................................... 55
3.7.1
USB Voltage Regulator Electrical
Specifications.................................................... 56
3.7.2
USB Full Speed Transceiver and High Speed
PHY specifications............................................ 57
3.7.3
USB DCD electrical specifications.................... 57
3.7.4
CAN switching specifications............................ 58
3.7.5
DSPI switching specifications (limited voltage
range)................................................................58
3.7.6
DSPI switching specifications (full voltage
range)................................................................60
3.7.7
Inter-Integrated Circuit Interface (I2C) timing....61
3.7.8
UART switching specifications.......................... 63
3.7.9
Low Power UART switching specifications....... 63
3.7.10 SDHC specifications......................................... 63
3.7.11 I2S switching specifications.............................. 65
3.8 Human-machine interfaces (HMI)....................................71
3.8.1
TSI electrical specifications...............................71
Dimensions............................................................................. 71
4.1 Obtaining package dimensions....................................... 71
Pinout...................................................................................... 72
5.1 MK26 Signal Multiplexing and Pin Assignments..............72
5.2 Recommended connection for unused analog and
digital pins........................................................................81
5.3 MK26 Pinouts.................................................................. 82
Ordering parts......................................................................... 86
6.1 Determining valid orderable parts....................................86
Part identification.....................................................................87
7.1 Description.......................................................................87
7.2 Format............................................................................. 87
7.3 Fields............................................................................... 87
7.4 Example...........................................................................88
8 Terminology and guidelines.................................................... 88
8.1 Definitions........................................................................ 88
8.2 Examples......................................................................... 89
8.3 Typical-value conditions.................................................. 89
8.4 Relationship between ratings and operating
requirements....................................................................90
8.5 Guidelines for ratings and operating requirements..........90
9 Revision History...................................................................... 90
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Ratings
1 Ratings
1.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
—
Max.
• For Ctemp
varian
t: 1
• For Vtemp
varian
t :3
Unit
Notes
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
1.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
-2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device
model
-500
+500
V
2
Latch-up current at ambient temperature of 105°C
-100
+100
mA
3
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human
Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
Kinetis K26 Sub-Family, Rev. 4, 04/2017
5
NXP Semiconductors
General
1.4 Voltage and current operating ratings
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
300
mA
VDIO
Digital1 input voltage,including RESET_b
–0.3
VDD + 0.3
V
VAIO
Analog1 input voltage, including EXTAL32 and XTAL32
–0.3
VDD + 0.3
V
Maximum current single pin limit (digital output pins)
–25
25
mA
VDD – 0.3
VDD + 0.3
V
ID
VDDA
Analog supply voltage
VUSB0_DP
USB0_DP input voltage
–0.3
3.63
V
VUSB1_DP
USB1_DP input voltage
–0.3
3.63
V
VUSB0_DM
USB0_DM input voltage
–0.3
3.63
V
VUSB1_DM
USB1_DM input voltage
–0.3
3.63
V
VUSB1_VBUS
USB1_VBUS detect voltage
–0.3
6.0
V
VREG_IN0,
VREG_IN1
USB regulator input
–0.3
6.0
V
RTC battery supply voltage
–0.3
3.8
V
VBAT
1. Digital pins have a general purpose I/O port assigned (e.g. PTA0). Analog pins do not have an associated general
purpose I/O port.
2 General
2.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
6
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
General
Input Signal
High
Low
VIH
80%
50%
20%
Midpoint1
VIL
Fall Time
Rise Time
The midpoint is VIL + (VIH - VIL) / 2
Figure 2. Input signal measurement reference
2.2 Nonswitching electrical specifications
2.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
1.71
3.6
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.71 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.71 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
-5
—
mA
VBAT
VIH
VIL
RTC battery supply voltage
Notes
Input high voltage
Input low voltage
VHYS
Input hysteresis
IICDIO
Digital1
input pin negative DC injection current
(except RTC_WAKEUP pins) — single pin
2
• VIN < VSS-0.3V
IICAIO
Analog1 input pin DC injection current — single pin
• VIN < VSS-0.3V (Negative current injection)
IICcont
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents of 16
contiguous pin
2
mA
-5
—
-25
—
mA
Table continues on the next page...
Kinetis K26 Sub-Family, Rev. 4, 04/2017
7
NXP Semiconductors
General
Table 1. Voltage and current operating requirements (continued)
Symbol
Description
Min.
Max.
Unit
Notes
VDD
VDD
V
3
1.2
—
V
VPOR_VBAT
—
V
• Negative current injection
VODPU
Pseudo Open drain pullup voltage level
VRAM
VDD voltage required to retain RAM
VRFVBAT
VBAT voltage required to retain the VBAT register file
1. Digital pins have a general purpose I/O port assigned (e.g. PTA0). Analog pins do not have an associated general
purpose I/O port.
2. All digital and analog I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode
connection to VDD. If VIN is less than VSS-0.3V, a current limiting resistor is required. The minimum negative DC
injection current limiting resistor value is calculated as R=(-0.3-VIN)/|IICDIO| or R=(-0.3-VIN)/|IICAIO|. The actual resistor
should be an order of magnitude higher to tolerate transient voltages.
3. Open drain outputs must be pulled to VDD.
2.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
VLVDH
Falling low-voltage detect threshold — high
range (LVDV=01)
2.48
2.56
2.64
V
Low-voltage warning thresholds — high range
1
VLVW1H
• Level 1 falling (LVWV=00)
2.62
2.70
2.78
V
VLVW2H
• Level 2 falling (LVWV=01)
2.72
2.80
2.88
V
VLVW3H
• Level 3 falling (LVWV=10)
2.82
2.90
2.98
V
VLVW4H
• Level 4 falling (LVWV=11)
2.92
3.00
3.08
V
—
80
—
mV
1.54
1.60
1.66
V
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low
range (LVDV=00)
Low-voltage warning thresholds — low range
1
VLVW1L
• Level 1 falling (LVWV=00)
1.74
1.80
1.86
V
VLVW2L
• Level 2 falling (LVWV=01)
1.84
1.90
1.96
V
VLVW3L
• Level 3 falling (LVWV=10)
1.94
2.00
2.06
V
VLVW4L
• Level 4 falling (LVWV=11)
2.04
2.10
2.16
V
—
60
—
mV
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
8
NXP Semiconductors
Notes
Kinetis K26 Sub-Family, Rev. 4, 04/2017
General
1. Rising threshold is the sum of falling threshold and hysteresis voltage
Table 3. VBAT power operating requirements
Symbol
Description
VPOR_VBAT Falling VBAT supply POR detect voltage
Min.
Typ.
Max.
Unit
0.8
1.1
1.5
V
Notes
2.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol
VOH
Description
Min.
Typ.
Max.
Unit
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA
VDD – 0.5
—
—
V
• 1.71 V ≤VDD ≤ 2.7 V, IOH = -5mA
VDD – 0.5
—
—
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20mA
VDD – 0.5
—
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10mA
VDD – 0.5
—
—
V
—
—
100
mA
VBAT – 0.5
—
VBAT – 0.5
—
—
—
100
mA
—
—
0.5
V
—
—
0.5
V
—
—
0.5
V
—
—
0.5
V
—
—
100
mA
Notes
Output high voltage — normal drive pad
Output high voltage — High drive pad
IOHT
Output high current total for all ports
VOH_RTC_WAKEUP Output high voltage— normal drive pad
• 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -5 mA
• 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -2.5
mA
IOH_RTC_WAKEUP Output high current total for
RTC_WAKEUP pins
VOL
Output low voltage — normal drive pad
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10 mA
V
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 5 mA
Output low voltage — high drive pad
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA
IOLT
Output low current total for all ports
VOL_RTC_WAKEUP Output low voltage— normal drive pad
—
0.5
• 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 5 mA
—
0.5
V
V
• 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 2.5mA
IOL_RTC_WAKEUP Output low current total for
RTC_WAKEUPpins
IIN
Input leakage current, analog and digital
pins
—
—
100
mA
—
0.002
0.5
µA
1
Table continues on the next page...
Kinetis K26 Sub-Family, Rev. 4, 04/2017
9
NXP Semiconductors
General
Table 4. Voltage and current operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
—
—
0.25
µA
Notes
• VSS ≤ VIN ≤ VDD
IOZ_RTC_WAKEUP Hi-Z (off-state) leakage current (per
RTC_WAKEUP pin)
RPU
Internal pullup resistors
20
—
50
kΩ
2
RPD
Internal pulldown resistors
20
—
50
kΩ
3
1. Measured at VDD=3.6V
2. Measured at VDD supply voltage = VDD min and Vinput = VSS
3. Measured at VDD supply voltage = VDD min and Vinput = VDD
2.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSx –> RUN recovery times in the following
table assume this clock configuration:
•
•
•
•
•
CPU and system clocks = 100MHz
Bus clock = 50MHz
FlexBus clock = 50 MHz
Flash clock = 25 MHz
MCG mode=FEI
Table 5. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
• VLLS0 –> RUN
• VLLS1 –> RUN
• VLLS2 –> RUN
• VLLS3 –> RUN
• LLS2 –> RUN
• LLS3 –> RUN
• VLPS –> RUN
• STOP –> RUN
10
NXP Semiconductors
Min.
Max.
Unit
—
300
µs
—
172
µs
—
172
µs
—
94
µs
—
94
µs
—
5.8
µs
—
5.8
µs
—
5.4
µs
—
5.4
µs
Notes
Kinetis K26 Sub-Family, Rev. 4, 04/2017
General
Table 6. Low power mode peripheral adders — typical value
Symbol
Description
Temperature (°C)
Unit
-40
25
50
70
85
1051
IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder.
Measured by entering STOP or VLPS mode
with 4 MHz IRC enabled.
56
56
56
56
56
56
µA
IIREFSTEN32KH 32 kHz internal reference clock (IRC) adder.
Measured by entering STOP mode with the
z
32 kHz IRC enabled.
52
52
52
52
52
52
µA
IEREFSTEN4MH External 4 MHz crystal clock adder.
Measured by entering STOP or VLPS mode
z
with the crystal enabled.
206
228
237
245
251
258
uA
IEREFSTEN32K External 32 kHz crystal clock adder by
means of the OSC0_CR[EREFSTEN and
Hz
EREFSTEN] bits. Measured by entering all
modes with the crystal enabled.
nA
VLLS1
440
490
540
560
570
580
VLLS3
440
490
540
560
570
580
LLS2
490
490
540
560
570
680
LLS3
490
490
540
560
570
680
VLPS
510
560
560
560
610
680
STOP
510
560
560
560
610
680
48MHz IRC
511
520
545
556
563
576
µA
ICMP
CMP peripheral adder measured by placing
the device in VLLS1 mode with CMP
enabled using the 6-bit DAC and a single
external input for compare. Includes 6-bit
DAC power consumption.
22
22
22
22
22
22
µA
IRTC
RTC peripheral adder measured by placing
the device in VLLS1 mode with external 32
kHz crystal enabled by means of the
RTC_CR[OSCE] bit and the RTC ALARM
set for 1 minute. Includes ERCLK32K (32
kHz external crystal) power consumption.
432
357
388
475
532
810
nA
IUART
UART peripheral adder measured by placing
the device in STOP or VLPS mode with
selected clock source waiting for RX data at
115200 baud rate. Includes selected clock
source power consumption.
I48MIRC
µA
66
66
66
66
66
66
OSCERCLK (4 MHz external crystal)
214
234
246
254
260
268
IBG
Bandgap adder when BGEN bit is set and
device is placed in VLPx, LLS, or VLLSx
mode.
45
45
45
45
45
45
µA
IADC
ADC peripheral adder combining the
measured values at VDD and VDDA by placing
366
366
366
366
366
366
µA
MCGIRCLK (4 MHz internal reference clock)
Kinetis K26 Sub-Family, Rev. 4, 04/2017
11
NXP Semiconductors
General
Table 6. Low power mode peripheral adders — typical value
Symbol
Description
Temperature (°C)
-40
25
50
70
Unit
1051
85
the device in STOP or VLPS mode. ADC is
configured for low power mode using the
internal clock and continuous conversions.
1. Applicable to LQFP and BGA packages only
2.2.5 Power consumption operating behaviors
NOTE
The maximum values represent characterized results
equivalent to the mean plus three times the standard deviation
(mean + 3 sigma)
Table 7. Power consumption operating behaviors
Symbol
IDDA
IDD_RUN
Description
Analog supply current
Typ.
Max.
Unit
Notes
—
—
See note
mA
1
Run mode current — all peripheral clocks
disabled, code executing from flash
• @ 1.8V
• @ 3.0V
IDD_RUN
Min.
2
—
32.3
71.03
mA
—
32.4
71.81
mA
Run mode current — all peripheral clocks
enabled, code executing from flash
• @ 1.8V
• @ 3.0V
• @ 25°C
• @ 85°C
• @ 105°C
IDD_RUNC Run mode current in compute operation - 120
MHz core / 24 MHz flash / bus clock disabled,
O
code of while(1) loop executing from flash
3, 4
—
50.5
89.58
mA
—
50.6
55.95
mA
—
60.5
79.20
mA
—
69.7
99.85
mA
—
28.5
67.74
mA
5
• at 3.0 V
IDD_HSRUN Run mode current — all peripheral clocks
disabled, code executing from flash
• @ 1.8V
• @ 3.0V
6
—
47.2
91.25
mA
—
47.3
91.62
mA
IDD_HSRUN Run mode current — all peripheral clocks
enabled, code executing from flash
7, 4
—
71.4
103.58
mA
Table continues on the next page...
12
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
General
Table 7. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
71.5
79.13
mA
84.5
106.75
mA
93.3
115.08
mA
Notes
• @ 1.8V
—
• @ 3.0V
• @ 25°C
—
• @ 85°C
• @ 105°C
—
IDD_HSRUN HSRun mode current in compute operation – 168
MHz core/ 28 MHz flash / bus clock disabled,
CO
code of while(1) loop executing from flash at 3.0V
—
42.9
91.97
mA
5
IDD_WAIT Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
—
16.9
45.2
mA
8
IDD_WAIT Wait mode reduced frequency current at 3.0 V —
all peripheral clocks enabled
—
35
62.81
mA
8
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
—
1.1
9.56
mA
9
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
—
2
9.88
mA
10
—
986
9.47
μA
IDD_VLPW Very-low-power wait mode current at 3.0 V — all
peripheral clocks disabled
—
0.690
9.25
mA
IDD_VLPW Very-low-power wait mode current at 3.0 V — all
peripheral clocks enabled
—
1.5
10.00
mA
• @ –40 to 25°C
—
0.791
2.39
mA
• @ 70°C
—
3.8
6.91
mA
• @ 85°C
• @ 105°C
—
6.8
11.44
mA
—
13.2
18.91
mA
—
202
353.77
μA
—
1400
2464.54
μA
—
2700
4642.45
μA
—
5100
8949.06
μA
—
9.0
16.5
μA
—
76.3
88.63
μA
—
169.1
181.46
μA
—
402
656.08
μA
IDD_VLPRC Very-low-power run mode current in compute
operation - 4 MHz core / 1 MHz flash / bus clock
O
disabled, LPTMR running with 4 MHz internal
reference clock
• at 3.0 V
11
12
IDD_STOP Stop mode current at 3.0 V
IDD_VLPS Very-low-power stop mode current at 3.0 V
• @ –40 to 25°C
• @ 70°C
• @ 85°C
• @ 105°C
IDD_LLS3 Low leakage stop mode current at 3.0 V
• @ –40 to 25°C
• @ 70°C
• @ 85°C
• @ 105°C
Table continues on the next page...
Kinetis K26 Sub-Family, Rev. 4, 04/2017
13
NXP Semiconductors
General
Table 7. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
—
5.7
9.7
μA
—
41.3
55.80
—
92.4
120.01
μA
—
229
276.81
μA
• @ –40 to 25°C
—
5.5
7.31
μA
• @ 70°C
—
46.3
58.33
μA
• @ 85°C
• @ 105°C
—
104
196.02
μA
—
249
380.77
μA
• @ –40 to 25°C
—
2.7
3.24
μA
• @ 70°C
—
13.1
18.72
μA
• @ 85°C
• @ 105°C
—
29.6
37.49
μA
—
76.6
84.77
μA
• @ –40 to 25°C
—
0.847
1.48
μA
• @ 70°C
—
6.5
11.31
μA
• @ 85°C
• @ 105°C
—
16.2
28.31
μA
—
46.7
81.78
μA
—
0.551
.65
μA
—
6.3
7.12
μA
—
17.1
20.02
μA
—
49.6
53.68
μA
—
0.254
0.445
μA
—
6.3
10.99
μA
—
15.8
27.58
μA
—
48.7
85.27
μA
• @ –40 to 25°C
—
0.19
0.22
μA
• @ 70°C
—
0.49
0.64
μA
• @ 85°C
• @ 105°C
—
1.11
1.4
μA
—
2.2
3.2
μA
IDD_LLS2 Low leakage stop mode current at 3.0 V
• @ –40 to 25°C
Notes
μA
• @ 70°C
• @ 85°C
• @ 105°C
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit enabled
• @ –40 to 25°C
• @ 70°C
• @ 85°C
• @ 105°C
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V
with POR detect circuit disabled
• @ –40 to 25°C
• @ 70°C
• @ 85°C
• @ 105°C
IDD_VBAT Average current with RTC and 32kHz disabled at
3.0 V
Table continues on the next page...
14
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
General
Table 7. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
IDD_VBAT Average current when CPU is not accessing RTC
registers
Notes
13
• @ 1.8V
• @ –40 to 25°C
• @ 70°C
• @ 105°C
• @ 3.0V
• @ –40 to 25°C
• @ 70°C
• @ 85°C
• @ 105°C
—
0.68
0.8
—
1.2
1.56
—
3.6
5.3
μA
μA
μA
—
0.81
0.96
—
1.45
1.89
—
2.5
3.46
—
4.3
6.33
μA
μA
μA
μA
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.
See each module's specification for its supply current.
2. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE
mode. All peripheral clocks disabled.
3. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE
mode. All peripheral clocks enabled.
4. Max values are measured with CPU executing DSP instructions.
5. MCG configured for PEE mode.
6. 168 MHz core and system clock, 56 MHz bus and FlexBus clock, and 28 MHz flash clock. MCG configured for PEE
mode. All peripheral clocks disabled.
7. 168 MHz core and system clock, 56 MHz bus and FlexBus clock, and 28 MHz flash clock. MCG configured for PEE
mode. All peripheral clocks enabled.
8. 120 MHz core and system clock, 60MHz bus clock, and FlexBus. MCG configured for PEE mode.
9. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks disabled. Code executing from flash.
10. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks enabled but peripherals are not in active operation. Code executing from flash.
11. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high,
optimized for balanced.
12. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral
clocks disabled.
13. Includes 32kHz oscillator current and RTC operation.
2.2.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
•
•
•
•
USB regulator disabled
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFE
Kinetis K26 Sub-Family, Rev. 4, 04/2017
15
NXP Semiconductors
General
Figure 3. Run mode supply current vs. core frequency
16
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
General
Figure 4. VLPR mode supply current vs. core frequency
2.2.6 EMC radiated emissions operating behaviors
Table 8. EMC radiated emissions operating behaviors
Symbol
Description
Frequency
band
(MHz)
Typ.
Unit
Notes
1, 2
VRE1
Radiated emissions voltage, band 1
0.15–50
23
dBμV
VRE2
Radiated emissions voltage, band 2
50–150
27
dBμV
VRE3
Radiated emissions voltage, band 3
150–500
28
dBμV
VRE4
Radiated emissions voltage, band 4
500–1000
14
dBμV
IEC level
0.15–1000
K
—
VRE_IEC
2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions,
150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM
Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic
Kinetis K26 Sub-Family, Rev. 4, 04/2017
17
NXP Semiconductors
General
application code. The reported emission level is the value of the maximum measured emission, rounded up to the next
whole number, from among the measured orientations in each frequency range.
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = MHz, fBUS = MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and
Wideband TEM Cell Method
2.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions.
1. Go to nxp.com
2. Perform a keyword search for “EMC design.”
2.2.8 Capacitance attributes
Table 9. Capacitance attributes
Symbol
Description
Min.
Max.
Unit
CIN_A
Input capacitance: analog pins
—
7
pF
CIN_D
Input capacitance: digital pins
—
7
pF
2.3 Switching specifications
2.3.1 Device clock specifications
Table 10. Device clock specifications
Symbol
Description
Min.
Max.
Unit
—
180
MHz
Notes
High Speed run mode
fSYS
System and core clock
Normal run mode (and High Speed run mode unless otherwise specified above)
fSYS
fSYS_USBHS
fBUS
FB_CLK
fFLASH
System and core clock
—
120
MHz
System and core clock when Full Speed USB in
operation
20
—
MHz
System and core clock when High Speed USB in
operation
100
—
MHz
Bus clock
—
60
MHz
FlexBus clock
—
60
MHz
Flash clock
—
28
MHz
Table continues on the next page...
18
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
General
Table 10. Device clock specifications (continued)
Symbol
Description
fLPTMR
LPTMR clock
VLPR
Min.
Max.
Unit
—
25
MHz
mode1
fSYS
System and core clock
—
4
MHz
fBUS
Bus clock
—
4
MHz
FlexBus clock
—
4
MHz
fFLASH
Flash clock
—
1
MHz
fERCLK
External reference clock
—
16
MHz
LPTMR clock
—
25
MHz
—
8
MHz
FB_CLK
fLPTMR_pin
Notes
fFlexCAN_ERCLK FlexCAN external reference clock
fI2S_MCLK
I2S master clock
—
12.5
MHz
fI2S_BCLK
I2S bit clock
—
4
MHz
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for
any other module.
2.3.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
CAN, CMT, timers, and I2C signals.
Table 11. General switching specifications
Symbol
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5
—
Bus clock
cycles
1, 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous
path
100
—
ns
3
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous
path
50
—
ns
3
External reset pulse width (digital glitch filter
disabled)
100
—
ns
3
Mode select (EZP_CS) hold time after reset
deassertion
2
—
Bus clock
cycles
Port rise and fall time (high drive strength)
4
• Slew enabled
• 1.71 ≤ VDD ≤ 2.7V
—
25
ns
• 2.7 ≤ VDD ≤ 3.6V
—
15
ns
• Slew disabled
Table continues on the next page...
Kinetis K26 Sub-Family, Rev. 4, 04/2017
19
NXP Semiconductors
General
Table 11. General switching specifications (continued)
Symbol
Description
Min.
Max.
Unit
• 1.71 ≤ VDD ≤ 2.7V
—
7
ns
• 2.7 ≤ VDD ≤ 3.6V
—
7
ns
Port rise and fall time (low drive strength)
Notes
5
• Slew enabled
• 1.71 ≤ VDD ≤ 2.7V
—
25
ns
• 2.7 ≤ VDD ≤ 3.6V
—
15
ns
• 1.71 ≤ VDD ≤ 2.7V
—
7
ns
• 2.7 ≤ VDD ≤ 3.6V
—
7
ns
• Slew disabled
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may
or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can
be recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and
VLLSx modes.
4. 75 pF load
5. 15 pF load
2.4 Thermal specifications
2.4.1 Thermal operating requirements
Table 12. Thermal operating requirements
Symbol
Description
Min.
Max.
TJ
Die junction temperature
• For BGA and LQFP package
–40
125
TJ
Die junction temperature
• For CSP package
–40
95
TA
Ambient temperature
• For BGA and LQFP package
–40
105
TA
Ambient temperature
• For CSP package
–40
85
Unit
Notes
°C
°C
°C
1
°C
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to
determine TJ is: TJ = TA + RθJA x chip power dissipation.
20
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
General
2.4.2 Thermal attributes
Board
type
Symbol
Descripti 144 LQFP
144
169
on
MAPBGA MAPBGA
169
WLCSP
Unit
Notes
Singlelayer (1s)
RθJA
Thermal
45
resistance,
junction to
ambient
(natural
convection)
48
38
48.3
°C/W
1
Four-layer
(2s2p)
RθJA
Thermal
36
resistance,
junction to
ambient
(natural
convection)
29
21.9
24
°C/W
1
Singlelayer (1s)
RθJMA
Thermal
resistance,
junction to
ambient
(200 ft./
min. air
speed)
36
38
30
39.8
°C/W
1
Four-layer
(2s2p)
RθJMA
Thermal
resistance,
junction to
ambient
(200 ft./
min. air
speed)
30
25
18.6
19.5
°C/W
1
—
RθJB
Thermal
resistance,
junction to
board
24
16
14.4
21.4
°C/W
2
—
RθJC
Thermal
resistance,
junction to
case
9
9
8.2
0.1
°C/W
3
—
ΨJT
Thermal
2
characteriz
ation
parameter,
junction to
package
top outside
center
(natural
convection)
2
0.2
0.2
°C/W
4
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test
Method Environmental Conditions—Forced Convection (Moving Air).
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental
Conditions—Junction-to-Board.
Kinetis K26 Sub-Family, Rev. 4, 04/2017
21
NXP Semiconductors
Peripheral operating requirements and behaviors
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material between
the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
3 Peripheral operating requirements and behaviors
3.1 Core modules
3.1.1 Debug trace timing specifications
Table 13. Debug trace operating behaviors
Symbol
Description
Min.
Max.
Unit
Tcyc
Clock period
Frequency dependent
MHz
Twl
Low pulse width
2
—
ns
Twh
High pulse width
2
—
ns
Tr
Clock and data rise time
—
3
ns
Tf
Clock and data fall time
—
3
ns
Ts
Data setup
1.5
—
ns
Th
Data hold
1.0
—
ns
TRACECLK
Tr
Tf
Twh
Twl
Tcyc
Figure 5. TRACE_CLKOUT specifications
TRACE_CLKOUT
Ts
Th
Ts
Th
TRACE_D[3:0]
Figure 6. Trace data specifications
22
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
3.1.2 JTAG electricals
Table 14. JTAG limited voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
25
• Serial Wire Debug
0
50
1/J1
—
ns
• Boundary Scan
50
—
ns
• JTAG and CJTAG
20
—
ns
• Serial Wire Debug
10
—
ns
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
2.0
—
ns
J7
TCLK low to boundary scan output data valid
—
28
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1
—
ns
J11
TCLK low to TDO data valid
—
19
ns
J12
TCLK low to TDO high-Z
—
17
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
Unit
J2
TCLK cycle period
J3
TCLK clock pulse width
Table 15. JTAG full voltage range electricals
Symbol
J1
Description
Min.
Max.
Operating voltage
1.71
3.6
TCLK frequency of operation
V
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
20
• Serial Wire Debug
0
40
1/J1
—
ns
50
—
ns
J2
TCLK cycle period
J3
TCLK clock pulse width
• Boundary Scan
Table continues on the next page...
Kinetis K26 Sub-Family, Rev. 4, 04/2017
23
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 15. JTAG full voltage range electricals (continued)
Symbol
Description
Min.
Max.
Unit
• JTAG and CJTAG
25
—
ns
• Serial Wire Debug
12.5
—
ns
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
2.0
—
ns
J7
TCLK low to boundary scan output data valid
—
30.6
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1.0
—
ns
J11
TCLK low to TDO data valid
—
19.0
ns
J12
TCLK low to TDO high-Z
—
17.0
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
J2
J3
J3
TCLK (input)
J4
J4
Figure 7. Test clock input timing
24
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
TCLK
J5
Data inputs
J6
Input data valid
J7
Data outputs
Output data valid
J8
Data outputs
J7
Data outputs
Output data valid
Figure 8. Boundary scan (JTAG) timing
TCLK
J9
TDI/TMS
J10
Input data valid
J11
TDO
Output data valid
J12
TDO
J11
TDO
Output data valid
Figure 9. Test Access Port timing
Kinetis K26 Sub-Family, Rev. 4, 04/2017
25
NXP Semiconductors
Peripheral operating requirements and behaviors
TCLK
J14
J13
TRST
Figure 10. TRST timing
3.2 System modules
There are no specifications necessary for the device's system modules.
3.3 Clock modules
3.3.1 MCG specifications
Table 16. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
—
32.768
—
kHz
fints_t
Internal reference frequency (slow clock) —
user trimmed
31.25
—
39.0625
kHz
—
20
—
µA
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
—
± 0.3
± 0.6
%fdco
1
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM only
—
± 0.2
± 0.5
%fdco
1
Iints
Internal reference (slow clock) current
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
± 0.5
±2
%fdco
1
Δfdco_t
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
—
± 0.3
1.5
%fdco
1
fintf_ft
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
—
4
—
MHz
fintf_t
Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3
—
5
MHz
Internal reference (fast clock) current
—
25
—
µA
Iintf
Table continues on the next page...
26
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
Table 16. MCG specifications (continued)
Symbol
floc_low
Description
Loss of external clock minimum frequency —
RANGE = 00
Min.
Typ.
Max.
Unit
(3/5) x
fints_t
—
—
kHz
(16/5) x
fints_t
—
—
kHz
Notes
ext clk freq: above (3/5)fint never reset
ext clk freq: between (2/5)fint and (3/5)fint maybe
reset (phase dependency)
ext clk freq: below (2/5)fint always reset
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
ext clk freq: above (16/5)fint never reset
ext clk freq: between (15/5)fint and (16/5)fint
maybe reset (phase dependency)
ext clk freq: below (15/5)fint always reset
FLL
ffll_ref
FLL reference frequency range
31.25
—
39.0625
kHz
fdco_ut
DCO output
frequency range
— untrimmed
16.0
23.04
26.66
MHz
32.0
46.08
53.32
48.0
69.12
79.99
64.0
92.16
106.65
18.3
26.35
30.50
36.6
52.70
60.99
54.93
79.09
91.53
73.23
105.44
122.02
Low range
2
(DRS=00, DMX32=0)
640 × fints_ut
Mid range
(DRS=01, DMX32=0)
1280 × fints_ut
Mid-high range
(DRS=10, DMX32=0)
1920 × fints_ut
High range
(DRS=11, DMX32=0)
2560 × fints_ut
Low range
(DRS=00, DMX32=1)
732 × fints_ut
Mid range
(DRS=01, DMX32=1)
1464 × fints_ut
Mid-high range
(DRS=10, DMX32=1)
2197 × fints_ut
High range
(DRS=11, DMX32=1)
2929 × fints_ut
Table continues on the next page...
Kinetis K26 Sub-Family, Rev. 4, 04/2017
27
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 16. MCG specifications (continued)
Symbol
fdco
Description
DCO output
frequency range
Low range (DRS=00)
Min.
Typ.
Max.
Unit
Notes
20
20.97
25
MHz
3, 4
40
41.94
50
MHz
60
62.91
75
MHz
80
83.89
100
MHz
—
23.99
—
MHz
—
47.97
—
MHz
—
71.99
—
MHz
—
95.98
—
MHz
—
180
—
—
150
—
—
—
1
ms
8
—
16
MHz
640 × ffll_ref
Mid range (DRS=01)
1280 × ffll_ref
Mid-high range (DRS=10)
1920 × ffll_ref
High range (DRS=11)
2560 × ffll_ref
fdco_t_DMX3 DCO output
frequency
2
Low range (DRS=00)
5, 6
732 × ffll_ref
Mid range (DRS=01)
1464 × ffll_ref
Mid-high range (DRS=10)
2197 × ffll_ref
High range (DRS=11)
2929 × ffll_ref
Jcyc_fll
FLL period jitter
• fDCO = 48 MHz
• fDCO = 98 MHz
tfll_acquire
FLL target frequency acquisition time
ps
7
PLL
fpll_ref
PLL reference frequency range
fvcoclk_2x
VCO output frequency
fvcoclk
PLL output frequency
fvcoclk_90
180
90
PLL quadrature output frequency
Ipll
PLL operating current
• VCO @ 184 MHz (fosc_hi_1 = 32 MHz,
fpll_ref = 8 MHz, VDIV multiplier = 23)
Ipll
PLL operating current
• VCO @ 360 MHz (fosc_hi_1 = 32 MHz,
fpll_ref = 8 MHz, VDIV multiplier = 45)
Jcyc_pll
Jacc_pll
90
—
—
—
360
180
180
MHz
MHz
MHz
—
2.8
—
mA
—
3.6
—
mA
PLL period jitter (RMS)
8
8
9
• fvco = 180 MHz
—
100
—
ps
• fvco = 360 MHz
—
75
—
ps
PLL accumulated jitter over 1µs (RMS)
9
• fvco = 180 MHz
—
600
—
ps
• fvco = 360 MHz
—
300
—
ps
Table continues on the next page...
28
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
Table 16. MCG specifications (continued)
Symbol
Dunl
tpll_lock
Description
Lock exit frequency tolerance
Min.
Typ.
Max.
Unit
± 4.47
—
± 5.97
%
Lock detector detection time
—
10-6
—
150 ×
+ 1075(1/
fpll_ref)
s
Notes
10
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. This applies when SCTRIM at value (0x80) and SCFTRIM control bit at value (0x0).
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency
deviation (Δfdco_t) over voltage and temperature should be considered.
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
9. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this
specification assumes it is already running.
3.3.2 IRC48M specifications
Table 17. IRC48M specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDD48M
Supply current
—
520
—
μA
firc48m
Internal reference frequency
—
48
—
MHz
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at
low voltage (VDD=1.71V-1.89V) over full
temperature
• Regulator disable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=
0)
• Regulator enable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=
1)
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at
high voltage (VDD=1.89V-3.6V) over 0—70°C
• Regulator enable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=
1)
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at
high voltage (VDD=1.89V-3.6V) over full
temperature
Notes
1
—
± 0.4
± 1.0
—
± 0.5
± 1.5
%firc48m
1
—
± 0.2
± 0.5
%firc48m
1
—
± 0.4
± 1.0
%firc48m
Table continues on the next page...
Kinetis K26 Sub-Family, Rev. 4, 04/2017
29
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 17. IRC48M specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
2
• Regulator enable
(USB_CLK_RECOVER_IRC_EN[REG_EN]=
1)
Δfirc48m_cl
Closed loop total deviation of IRC48M frequency
over voltage and temperature
—
—
± 0.1
%fhost
Jcyc_irc48m
Period Jitter (RMS)
—
35
150
ps
Startup time
—
2
3
μs
tirc48mst
3
1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard
deviation (mean ± 3 sigma)
2. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It
is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover
function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1).
3. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the
clock by one of the following settings:
• USB_CLK_RECOVER_IRC_EN[IRC_EN]=1, or
• MCG_C7[OSCSEL]=10, or
• SIM_SOPT2[PLLFLLSEL]=11
3.3.3 Oscillator electrical specifications
3.3.3.1
Oscillator DC electrical specifications
Table 18. Oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDOSC
IDDOSC
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
600
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz (RANGE=01)
—
300
—
μA
• 16 MHz
—
950
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Supply current — high gain mode (HGO=1)
1
• 32 kHz
—
7.5
—
μA
• 4 MHz
—
500
—
μA
• 8 MHz (RANGE=01)
—
650
—
μA
• 16 MHz
—
2.5
—
mA
—
3.25
—
mA
Table continues on the next page...
30
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
Table 18. Oscillator DC electrical specifications (continued)
Symbol
Description
• 24 MHz
Min.
Typ.
Max.
Unit
—
4
—
mA
Notes
• 32 MHz
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain
mode (HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
RS
2, 4
Series resistor — high-frequency, high-gain
mode (HGO=1)
5
Vpp
1.
2.
3.
4.
5.
VDD=3.3 V, Temperature =25 °C, Internal capacitance = 20 pf
See crystal or resonator manufacturer's recommendation
Cx,Cy can be provided by using either the integrated capacitors or by using external components.
When low power mode is selected, RF is integrated and must not be attached externally.
The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to
any other devices.
Kinetis K26 Sub-Family, Rev. 4, 04/2017
31
NXP Semiconductors
Peripheral operating requirements and behaviors
3.3.3.2
Symbol
Oscillator frequency specifications
Table 19. Oscillator frequency specifications
Description
Min.
Typ.
Max.
Unit
fosc_lo
Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency — highfrequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fec_extal
Input clock frequency (external clock mode)
—
—
50
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
750
—
ms
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
250
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
0.6
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
1
—
ms
tcst
Notes
1, 2
3, 4
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
register being set.
NOTE
The 32 kHz oscillator works in low power mode by default
and cannot be moved into high power/gain mode.
3.3.4 32 kHz oscillator electrical characteristics
3.3.4.1
32 kHz oscillator DC electrical specifications
Table 20. 32kHz oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VBAT
Supply voltage
1.71
—
3.6
V
—
100
—
MΩ
RF
Internal feedback resistor
Table continues on the next page...
32
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
Table 20. 32kHz oscillator DC electrical specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Cpara
Parasitical capacitance of EXTAL32 and
XTAL32
—
5
7
pF
Vpp1
Peak-to-peak amplitude of oscillation
—
0.6
—
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to
required oscillator components and must not be connected to any other devices.
3.3.4.2
Symbol
32 kHz oscillator frequency specifications
Table 21. 32 kHz oscillator frequency specifications
Min.
Typ.
Max.
Unit
Oscillator crystal
—
32.768
—
kHz
Crystal start-up time
—
1000
—
ms
1
fec_extal32 Externally provided input clock frequency
—
32.768
—
kHz
2
vec_extal32 Externally provided input clock amplitude
700
—
VBAT
mV
2, 3
fosc_lo
tstart
Description
Notes
1. Proper PC board layout procedures must be followed to achieve specifications.
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input.
The oscillator remains enabled and XTAL32 must be left unconnected.
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the
applied clock must be within the range of VSS to VBAT.
3.4 Memories and memory interfaces
3.4.1 Flash (FTFE) electrical specifications
This section describes the electrical characteristics of the FTFE module.
3.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps
are active and do not include command overhead.
Table 22. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
thvpgm8
thversscr
Program Phrase high-voltage time
—
7.5
18
μs
Erase Flash Sector high-voltage time
—
13
113
ms
1
thversblk256k Erase Flash Block high-voltage time for 256 KB
—
208
1808
ms
1
thversblk512k Erase Flash Block high-voltage time for 512 KB
—
416
3616
ms
1
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Notes
33
NXP Semiconductors
Peripheral operating requirements and behaviors
1. Maximum time based on expectations at cycling end-of-life.
3.4.1.2
Symbol
Flash timing specifications — commands
Table 23. Flash command timing specifications
Description
Min.
Typ.
Max.
Unit
Notes
Read 1s Block execution time
trd1blk256k
• 256 KB data flash
—
—
1.0
ms
trd1blk512k
• 512 KB program flash
—
—
1.8
ms
trd1sec4k
Read 1s Section execution time (4 KB flash)
—
—
100
μs
1
tpgmchk
Program Check execution time
—
—
95
μs
1
trdrsrc
Read Resource execution time
—
—
40
μs
1
tpgm8
Program Phrase execution time
—
90
150
μs
Erase Flash Block execution time
2
tersblk256k
• 256 KB data flash
—
220
1850
ms
tersblk512k
• 512 KB program flash
—
435
3700
ms
Erase Flash Sector execution time
—
15
115
ms
Program Section execution time (1 KB flash)
—
5
—
ms
tersscr
tpgmsec1k
2
Read 1s All Blocks execution time
trd1allx
• FlexNVM devices
—
—
5.9
ms
trd1alln
• Program flash only devices
—
—
6.7
ms
Read Once execution time
—
—
30
μs
trdonce
tpgmonce
1
Program Once execution time
—
90
—
μs
tersall
Erase All Blocks execution time
—
1750
14,800
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
Swap Control execution time
tswapx01
• control code 0x01
—
200
—
μs
tswapx02
• control code 0x02
—
90
150
μs
tswapx04
• control code 0x04
—
90
150
μs
tswapx08
• control code 0x08
—
—
30
μs
tswapx10
• control code 0x10
—
90
150
μs
Program Partition for EEPROM execution time
tpgmpart32k
• 32 KB EEPROM backup
—
70
—
ms
tpgmpart256k
• 256 KB EEPROM backup
—
78
—
ms
• Control Code 0xFF
—
70
—
μs
tsetram32k
• 32 KB EEPROM backup
—
0.8
1.2
ms
tsetram64k
• 64 KB EEPROM backup
—
1.3
1.9
ms
Set FlexRAM Function execution time:
tsetramff
Table continues on the next page...
34
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
Table 23. Flash command timing specifications (continued)
Min.
Typ.
Max.
Unit
tsetram128k
Symbol
Description
• 128 KB EEPROM backup
—
2.4
3.1
ms
tsetram256k
• 256 KB EEPROM backup
—
4.5
5.5
ms
Notes
Byte-write to FlexRAM execution time:
teewr8b32k
• 32 KB EEPROM backup
—
385
1700
μs
teewr8b64k
• 64 KB EEPROM backup
—
475
2000
μs
teewr8b128k
• 128 KB EEPROM backup
—
650
2350
μs
teewr8b256k
• 256 KB EEPROM backup
—
1000
3250
μs
16-bit write to FlexRAM execution time:
teewr16b32k
• 32 KB EEPROM backup
—
385
1700
μs
teewr16b64k
• 64 KB EEPROM backup
—
475
2000
μs
teewr16b128k
• 128 KB EEPROM backup
—
650
2350
μs
teewr16b256k
• 256 KB EEPROM backup
—
1000
3250
μs
—
360
1500
μs
teewr32bers 32-bit write to erased FlexRAM location
execution time
32-bit write to FlexRAM execution time:
teewr32b32k
• 32 KB EEPROM backup
—
630
2000
μs
teewr32b64k
• 64 KB EEPROM backup
—
810
2250
μs
teewr32b128k
• 128 KB EEPROM backup
—
1200
2650
μs
teewr32b256k
• 256 KB EEPROM backup
—
1900
3500
μs
1. Assumes 25MHz or greater flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3.4.1.3
Flash high voltage current behaviors
Table 24. Flash high voltage current behaviors
Symbol
Description
IDD_PGM
IDD_ERS
3.4.1.4
Symbol
Min.
Typ.
Max.
Unit
Average current adder during high voltage flash
programming operation
—
3.5
7.5
mA
Average current adder during high voltage flash
erase operation
—
1.5
4.0
mA
Reliability specifications
Table 25. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
Table continues on the next page...
Kinetis K26 Sub-Family, Rev. 4, 04/2017
35
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 25. NVM reliability specifications (continued)
Min.
Typ.1
Max.
Unit
tnvmretp10k Data retention after up to 10 K cycles
5
50
—
years
tnvmretp1k
Data retention after up to 1 K cycles
20
100
—
years
nnvmcycp
Cycling endurance
10 K
50 K
—
cycles
tnvmretd10k Data retention after up to 10 K cycles
5
50
—
years
tnvmretd1k
Data retention after up to 1 K cycles
20
100
—
years
nnvmcycd
Cycling endurance
10 K
50 K
—
cycles
Symbol
Description
Notes
2
Data Flash
2
FlexRAM as EEPROM
tnvmretee100 Data retention up to 100% of write endurance
5
50
—
years
tnvmretee10 Data retention up to 10% of write endurance
20
100
—
years
20 K
50 K
—
cycles
nnvmcycee Cycling endurance for EEPROM backup
Write endurance
2
3
nnvmwree16
• EEPROM backup to FlexRAM ratio = 16
140 K
400 K
—
writes
nnvmwree128
• EEPROM backup to FlexRAM ratio = 128
1.26 M
3.2 M
—
writes
nnvmwree512
• EEPROM backup to FlexRAM ratio = 512
5M
12.8 M
—
writes
nnvmwree2k
• EEPROM backup to FlexRAM ratio = 2,048
20 M
50 M
—
writes
nnvmwree8k
• EEPROM backup to FlexRAM ratio = 8,192
80 M
200 M
—
writes
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the
cycling endurance of the FlexNVM and the allocated EEPROM backup per subsystem. Minimum and typical values
assume all 16-bit or 32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance.
3.4.1.5
Write endurance to FlexRAM for EEPROM
When the FlexNVM partition code is not set to full data flash, the EEPROM data set
size can be set to any of several non-zero values.
The bytes not assigned to data flash via the FlexNVM partition code are used by the
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in
EEPROM record management system raises the number of program/erase cycles that
can be attained prior to device wear-out by cycling the EEPROM data through a larger
EEPROM NVM storage space.
While different partitions of the FlexNVM are available, the intention is that a single
choice for the FlexNVM partition code and EEPROM data set size is used throughout
the entire lifetime of a given application. The EEPROM endurance equation and graph
shown below assume that only one configuration is ever used.
36
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
Writes_subsystem =
EEPROM – 2 × EEESPLIT × EEESIZE
EEESPLIT × EEESIZE
× Write_efficiency × n nvmcycee
where
Average Writes per FlexRAM Location
• Writes_subsystem — minimum number of writes to each FlexRAM location for
subsystem (each subsystem can have different endurance)
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on
DEPART; entered with the Program Partition command
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program
Partition command
• EEESIZE — allocated FlexRAM based on DEPART; entered with the Program
Partition command
• Write_efficiency —
• 0.25 for 8-bit writes to FlexRAM
• 0.50 for 16-bit or 32-bit writes to FlexRAM
• nnvmcycee — EEPROM-backup cycling endurance
16/32-bit
8-bit
Ratio of EEPROM Backup to FlexRAM
Figure 11. EEPROM backup writes to FlexRAM
Kinetis K26 Sub-Family, Rev. 4, 04/2017
37
NXP Semiconductors
Peripheral operating requirements and behaviors
3.4.2 EzPort switching specifications
Table 26. EzPort full voltage range switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
EP1
EZP_CK frequency of operation (all commands except
READ)
—
fSYS/2
MHz
EP1a
EZP_CK frequency of operation (READ command)
—
fSYS/8
MHz
EP2
EZP_CS negation to next EZP_CS assertion
2 x tEZP_CK
—
ns
EP3
EZP_CS input valid to EZP_CK high (setup)
5
—
ns
EP4
EZP_CK high to EZP_CS input invalid (hold)
5
—
ns
EP5
EZP_D input valid to EZP_CK high (setup)
2
—
ns
EP6
EZP_CK high to EZP_D input invalid (hold)
5
—
ns
EP7
EZP_CK low to EZP_Q output valid
—
14
ns
EP8
EZP_CK low to EZP_Q output invalid (hold)
0
—
ns
EP9
EZP_CS negation to EZP_Q tri-state
—
12
ns
EZP_CK
EP3
EP2
EP4
EZP_CS
EP9
EP7
EP8
EZP_Q (output)
EP5
EP6
EZP_D (input)
Figure 12. EzPort Timing Diagram
38
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
3.4.3 Flexbus switching specifications
All processor bus timings are synchronous; input setup/hold and output delay are
given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK
frequency may be the same as the internal system bus frequency or an integer divider
of that frequency.
The following timing numbers indicate when data is latched or driven onto the
external bus, relative to the Flexbus output clock (FB_CLK). All other timing
relationships can be derived from these values.
Table 27. Flexbus limited voltage range switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
FB_CLK
MHz
1/FB_CLK
—
ns
FB1
Clock period
FB2
Address, data, and control output valid
—
11.8
ns
FB3
Address, data, and control output hold
1.0
—
ns
FB4
Data and FB_TA input setup
11.9
—
ns
FB5
Data and FB_TA input hold
0.0
—
ns
Notes
1
2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],
FB_ALE, and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Table 28. Flexbus full voltage range switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
—
FB_CLK
MHz
1/FB_CLK
—
ns
Frequency of operation
FB1
Clock period
FB2
Address, data, and control output valid
—
12.6
ns
FB3
Address, data, and control output hold
1.0
—
ns
FB4
Data and FB_TA input setup
12.5
—
ns
FB5
Data and FB_TA input hold
0
—
ns
Notes
1
2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],
FB_ALE, and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Kinetis K26 Sub-Family, Rev. 4, 04/2017
39
NXP Semiconductors
Peripheral operating requirements and behaviors
Read Timing Parameters
S0
S1
S2
S3
S0
FB1
FB_CLK
FB5
FB_A[Y]
Address
FB4
FB2
FB_D[X]
FB3
Address
Data
FB_RW
FB_TS
FB_ALE
AA=1
FB_CSn
AA=0
FB_OEn
electricals_read.svg
FB4
FB_BEn
FB5
AA=1
FB_TA
AA=0
FB_TSIZ[1:0]
TSIZ
S0
S1
S2
S3
S0
Figure 13. FlexBus read timing diagram
40
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
Write Timing Parameters
FB1
FB_CLK
FB2
FB3
FB_A[Y]
FB_D[X]
Address
Address
Data
FB_RW
FB_TS
FB_ALE
AA=1
FB_CSn
AA=0
FB_OEn
FB_BEn
FB5
AA=1
FB_TA
FB_TSIZ[1:0]
AA=0
electricals_write.svg
FB4
TSIZ
Figure 14. FlexBus write timing diagram
3.4.4 SDRAM controller specifications
Following figure shows SDRAM read cycle.
Kinetis K26 Sub-Family, Rev. 4, 04/2017
41
NXP Semiconductors
Peripheral operating requirements and behaviors
0
1
D0
2
3
4
5
6
7
8
9
10
11
12
13
CLKOUT
D3
D1
Row
A[23:0]
Column
D4
SRAS
D2
SCAS1
D4
DRAMW
D5
D[31:0]2
D6
SDRAM_CS[1:0]
D4
BS[3:0]
ACTV
NOP
READ
NOP
PRE
DACR[CASL] = 2
D[31:16] for 144-pin packages
1
2
Figure 15. SDRAM read timing diagram
Table 29. SDRAM Timing (Full voltage range)
NUM
Characteristic 1
Symbol
MIn
Max
Operating voltage
1.71
3.6
V
—
CLKOUT
MHz
1/CLKOUT
—
ns
2
-
11.2
ns
11.1
ns
1.0
-
ns
Frequency of operation
Unit
D0
Clock period
D1
CLKOUT high to SDRAM address valid
tCHDAV
D2
CLKOUT high to SDRAM control valid
tCHDCV
D3
CLKOUT high to SDRAM address invalid
tCHDAI
D4
CLKOUT high to SDRAM control invalid
tCHDCI
1.0
-
ns
D5
SDRAM data valid to CLKOUT high
tDDVCH
12.0
-
ns
D6
CLKOUT high to SDRAM data invalid
tCHDDI
1.0
-
ns
D73
CLKOUT high to SDRAM data valid
tCHDDVW
-
12.0
ns
D83
CLKOUT high to SDRAM data invalid
tCHDDIW
1.0
-
ns
1. All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.
42
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
2. CLKOUT is same as FB_CLK, maximum frequency can be 60 MHz
3. D7 and D8 are for write cycles only.
Table 30. SDRAM Timing (Limited voltage range)
NUM
Characteristic 1
Symbol
MIn
Max
Operating voltage
2.7
3.6
V
Frequency of operation
—
CLKOUT
MHz
1/CLKOUT
—
ns
2
-
11.1
ns
11.1
ns
Unit
D0
Clock period
D1
CLKOUT high to SDRAM address valid
tCHDAV
D2
CLKOUT high to SDRAM control valid
tCHDCV
D3
CLKOUT high to SDRAM address invalid
tCHDAI
1.0
-
ns
D4
CLKOUT high to SDRAM control invalid
tCHDCI
1.0
-
ns
D5
SDRAM data valid to CLKOUT high
tDDVCH
11.3
-
ns
D6
CLKOUT high to SDRAM data invalid
tCHDDI
1.0
-
ns
D73
CLKOUT high to SDRAM data valid
tCHDDVW
-
11.1
ns
D83
CLKOUT high to SDRAM data invalid
tCHDDIW
1.0
-
ns
1. All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.
2. CLKOUT is same as FB_CLK, maximum frequency can be 60 MHz
3. D7 and D8 are for write cycles only.
Following figure shows an SDRAM write cycle.
Kinetis K26 Sub-Family, Rev. 4, 04/2017
43
NXP Semiconductors
Peripheral operating requirements and behaviors
0
D0
1
2
3
4
5
6
7
8
9
10
11
12
CLKOUT
D3
D1
Row
A[23:0]
Column
SRAS
D2
SCAS1
D4
DRAMW
D7
D[31:0]2
D8
SDRAM_CS[1:0]
D2
D4
D4
BS[3:0]
D4
ACTV
NOP
WRITE
NOP
PALL
DACR[CASL]=2
D[31:16] for 144-pin packages
1
2
Figure 16. SDRAM write timing diagram
3.5 Analog
3.5.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 31 and Table 32 are achievable on the
differential pins ADCx_DP0, ADCx_DM0.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
44
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
3.5.1.1
16-bit ADC operating conditions
Table 31. 16-bit ADC operating conditions
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
Notes
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
—
ΔVDDA
Supply voltage
Delta to VDD (VDD – VDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSS – VSSA)
-100
0
+100
mV
2
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
VREFL
ADC reference
voltage low
VSSA
VSSA
VSSA
V
VADIN
Input voltage
• 16-bit differential mode
VREFL
—
31/32 *
VREFH
V
—
• All other modes
VREFL
—
• 16-bit mode
—
8
10
pF
—
• 8-bit / 10-bit / 12-bit
modes
—
4
5
—
2
5
kΩ
—
—
—
5
kΩ
3
CADIN
RADIN
RAS
Input
capacitance
Input series
resistance
Analog source
resistance
(external)
13-bit / 12-bit modes
VREFH
fADCK < 4 MHz
fADCK
ADC conversion ≤ 13-bit mode
clock frequency
1.0
—
24
MHz
4
fADCK
ADC conversion 16-bit mode
clock frequency
2.0
—
12.0
MHz
4
Crate
ADC conversion ≤ 13-bit modes
rate
No ADC hardware averaging
20.000
—
1200
kS/s
37.037
—
461.467
kS/s
5
Continuous conversions
enabled, subsequent
conversion time
Crate
ADC conversion 16-bit mode
rate
No ADC hardware averaging
5
Continuous conversions
enabled, subsequent
conversion time
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The
RAS/CAS time constant should be kept to < 1 ns.
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
Kinetis K26 Sub-Family, Rev. 4, 04/2017
45
NXP Semiconductors
Peripheral operating requirements and behaviors
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
ZADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
ZAS
RAS
ADC SAR
ENGINE
RADIN
VADIN
CAS
VAS
RADIN
INPUT PIN
RADIN
INPUT PIN
RADIN
INPUT PIN
CADIN
Figure 17. ADC input impedance equivalency diagram
3.5.1.2
16-bit ADC electrical characteristics
Table 32. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol Description
Conditions1
IDDA_ADC Supply current
ADC asynchronous
clock source
fADACK
Sample Time
TUE
DNL
INL
Min.
Typ.2
Max.
Notes
0.215
—
1.7
mA
3
• ADLPC = 1, ADHSC = 0
1.2
2.4
3.9
MHz
• ADLPC = 1, ADHSC = 1
2.4
4.0
6.1
MHz
tADACK = 1/
fADACK
• ADLPC = 0, ADHSC = 0
3.0
5.2
7.3
MHz
• ADLPC = 0, ADHSC = 1
4.4
6.2
9.5
MHz
LSB4
5
LSB4
5
LSB4
5
See Reference Manual chapter for sample times
Total unadjusted
error
• 12-bit modes
—
±4
±6.8
• programmed output
target voltage + VDROPOUT
3
4
• Run mode
• Standby mode
COUT
External output capacitor
ESR
External output capacitor equivalent series
resistance
ILIM
Short circuit current
—
350
—
mA
5
IINRUSH
Inrush current limit
40
—
100
mA
6, 7, 8,
9, 10
1. Typical values assume the selected input supply is 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operation range is 2.7 V to 5.5 V; tolerance voltage is up to 6 V.
3. 150mA is inclusive of the run mode current of the on-chip USB modules. Available load outside of the chip depends on
USB operation and device power dissipation limits.
4. The target voltage for the regulator is programmable, accounting for the range of the max and min values
5. Current limit disabled.
6. Current limit should be disabled after the powers have stabilized to allow full functionality of the regulator.
7. Limited Characterization
8. IINRUSH with VREGINx=4.0 V to 5.5 V
9. The minimum value of IINRUSH is stated for operation when only one of VREG_IN0 / VREG_IN1 is powered, or when
VREG_IN0 and VREG_IN1 both have the same voltage level. When VREG_IN0 and VREG_IN1 are operated at
56
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
different voltage levels with the selected VREG_IN lower than the non-selected VREG_IN, the minumum value of
IINRUSH may decrease to a lower value.
10. Total current load on startup should be less than IINRUSH min over full input voltage range of the regulator.
3.7.2 USB Full Speed Transceiver and High Speed PHY
specifications
This section describes the USB0 port Full Speed/Low Speed transceiver and USB1
port USB-PHY High Speed Phy parameters. The high speed phy is capable of full and
low speed signalling as well.
The USB0 (FS/LS Transceiver) and USB1 ((USB HS/FS/LS) meet the electrical
compliance requirements defined in the Universal Serial Bus Revision 2.0
Specification with the amendments below.
• USB ENGINEERING CHANGE NOTICE
• Title: 5V Short Circuit Withstand Requirement Change
• Applies to: Universal Serial Bus Specification, Revision 2.0
• Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
• USB ENGINEERING CHANGE NOTICE
• Title: Pull-up/Pull-down resistors
• Applies to: Universal Serial Bus Specification, Revision 2.0
• USB ENGINEERING CHANGE NOTICE
• Title: Suspend Current Limit Changes
• Applies to: Universal Serial Bus Specification, Revision 2.0
• On-The-Go and Embedded Host Supplement to the USB Revision 2.0
Specification
• Revision 2.0 version 1.1a July 27, 2012
• Battery Charging Specification (available from USB-IF)
• Revision 1.2 (including errata and ECNs through March 15, 2012), March 15,
2012
USB1_VBUS pin is a detector function which is 5v tolerant and complies with the
above specifications without needing any external voltage division components.
Kinetis K26 Sub-Family, Rev. 4, 04/2017
57
NXP Semiconductors
Peripheral operating requirements and behaviors
3.7.3 USB DCD electrical specifications
Table 41. USB DCD electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDP_SRC,
VDM_SRC
USB_DP and USB_DM source voltages (up to 250
μA)
0.5
—
0.7
V
Threshold voltage for logic high
0.8
—
2.0
V
VLGC
IDP_SRC
USB_DP source current
7
10
13
μA
IDM_SINK,
IDP_SINK
USB_DM and USB_DP sink currents
50
100
150
μA
RDM_DWN
D- pulldown resistance for data pin contact detect
14.25
—
24.8
kΩ
VDAT_REF
Data detect voltage
0.25
0.33
0.4
V
3.7.4 CAN switching specifications
See General switching specifications.
3.7.5 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The
tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to
the DSPI chapter of the Reference Manual for information on the modified transfer
formats used for communicating with slower peripheral devices.
Table 42. Master mode DSPI timing (limited voltage range)
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
30
MHz
2 x tBUS
—
ns
Notes
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) − 2
(tSCK/2) + 2
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
2
—
ns
1
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
2
—
ns
2
DS5
DSPI_SCK to DSPI_SOUT valid
—
15.0
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
1.0
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
15.8
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
58
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
DSPI_PCSn
DS3
DSPI_SCK
(CPOL=0)
DS4
DS8
DS7
DSPI_SIN
DS1
DS2
First data
DSPI_SOUT
Data
Last data
DS5
First data
DS6
Data
Last data
Figure 24. DSPI classic SPI timing — master mode
Table 43. Slave mode DSPI timing (limited voltage range)
Num
Description
Operating voltage
Min.
Max.
Unit
2.7
3.6
V
Frequency of operation
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
DS12
DSPI_SCK to DSPI_SOUT invalid
DS13
DSPI_SIN to DSPI_SCK input setup
DS14
DSPI_SCK to DSPI_SIN input hold
DS15
DS16
15
1
MHz
4 x tBUS
—
ns
(tSCK/2) − 2
(tSCK/2) + 2
ns
—
23.0
ns
0
—
ns
2.7
—
ns
7.0
—
ns
DSPI_SS active to DSPI_SOUT driven
—
13
ns
DSPI_SS inactive to DSPI_SOUT not driven
—
13
ns
1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with
continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of bus clock, for example,
when bus clock is 60MHz, SPI clock should not be greater than 10MHz.
Kinetis K26 Sub-Family, Rev. 4, 04/2017
59
NXP Semiconductors
Peripheral operating requirements and behaviors
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Last data
Data
DS14
First data
Data
Last data
Figure 25. DSPI classic SPI timing — slave mode
3.7.6 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer
to the DSPI chapter of the Reference Manual for information on the modified transfer
formats used for communicating with slower peripheral devices.
Table 44. Master mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
Notes
1.71
3.6
V
1
—
15
MHz
4 x tBUS
—
ns
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS3
DSPI_PCSn valid to DSPI_SCK delay
(tBUS x 2) −
4
—
ns
2
DS4
DSPI_SCK to DSPI_PCSn invalid delay
(tBUS x 2) −
4
—
ns
3
DS5
DSPI_SCK to DSPI_SOUT valid
—
15
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
1.0
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
15.8
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
60
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
DSPI_PCSn
DS3
DS4
DS8
DS7
(CPOL=0)
DS1
DS2
DSPI_SCK
DSPI_SIN
Data
First data
DSPI_SOUT
Last data
DS5
DS6
First data
Data
Last data
Figure 26. DSPI classic SPI timing — master mode
Table 45. Slave mode DSPI timing (full voltage range)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
1.71
3.6
V
—
7.5
MHz
8 x tBUS
—
ns
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
23.1
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2.6
—
ns
DS14
DSPI_SCK to DSPI_SIN input hold
7.0
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
13.0
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
13.0
ns
DSPI_SS
DS10
DS9
DSPI_SCK
(CPOL=0)
DS15
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Data
Last data
DS14
First data
Data
Last data
Figure 27. DSPI classic SPI timing — slave mode
Kinetis K26 Sub-Family, Rev. 4, 04/2017
61
NXP Semiconductors
Peripheral operating requirements and behaviors
3.7.7 Inter-Integrated Circuit Interface (I2C) timing
Table 46. I 2C timing
Characteristic
Symbol
Standard Mode
Fast Mode
Minimum
Maximum
Minimum
Maximum
Unit
SCL Clock Frequency
fSCL
0
100
0
400
kHz
Hold time (repeated) START condition.
After this period, the first clock pulse is
generated.
tHD; STA
4
—
0.6
—
µs
LOW period of the SCL clock
tLOW
4.7
—
1.25
—
µs
HIGH period of the SCL clock
tHIGH
4
—
0.6
—
µs
Set-up time for a repeated START
condition
tSU; STA
4.7
—
0.6
—
µs
Data hold time for I2C bus devices
tHD; DAT
01
3.452
03
0.91
µs
tSU; DAT
2504
—
1002, 5
Data set-up time
Rise time of SDA and SCL signals
tr
Fall time of SDA and SCL signals
tf
—
1000
—
ns
6
300
ns
5
20 +0.1Cb
—
300
20 +0.1Cb
300
ns
Set-up time for STOP condition
tSU; STO
4
—
0.6
—
µs
Bus free time between STOP and
START condition
tBUF
4.7
—
1.3
—
µs
Pulse width of spikes that must be
suppressed by the input filter
tSP
N/A
N/A
0
50
ns
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
3. Input signal Slew = 10 ns and Output Load = 50 pF
4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such
a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU;
2
DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification) before the SCL line is released.
6. Cb = total capacitance of the one bus line in pF.
Table 47. I 2C 1 Mbps timing
Characteristic
Symbol
Minimum
Maximum
Unit
MHz
SCL Clock Frequency
fSCL
0
11
Hold time (repeated) START condition. After this
period, the first clock pulse is generated.
tHD; STA
0.26
—
µs
LOW period of the SCL clock
tLOW
0.5
—
µs
HIGH period of the SCL clock
tHIGH
0.26
—
µs
Set-up time for a repeated START condition
tSU; STA
0.26
—
µs
Data hold time for I2C bus devices
tHD; DAT
0
—
µs
Data set-up time
tSU; DAT
50
—
ns
Rise time of SDA and SCL signals
tr
20 +0.1Cb, 2
120
ns
Table continues on the next page...
62
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
Table 47. I 2C 1 Mbps timing (continued)
Characteristic
Symbol
Minimum
2
Maximum
Unit
120
ns
Fall time of SDA and SCL signals
tf
20 +0.1Cb
Set-up time for STOP condition
tSU; STO
0.26
—
µs
Bus free time between STOP and START condition
tBUF
0.5
—
µs
Pulse width of spikes that must be suppressed by
the input filter
tSP
0
50
ns
1. The maximum SCL clock frequency of 1 Mbps can support maximum bus loading when using the High drive pins
across the full voltage range.
2. Cb = total capacitance of the one bus line in pF.
SDA
tf
tSU; DAT
tr
tLOW
tf
tHD; STA
tr
tSP
tBUF
SCL
S
HD; STA
tHD; DAT
tHIGH
tSU; STA
tSU; STO
SR
P
S
Figure 28. Timing definition for devices on the I2C bus
3.7.8 UART switching specifications
See General switching specifications.
3.7.9 Low Power UART switching specifications
See General switching specifications.
3.7.10 SDHC specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
Table 48. SDHC full voltage range switching specifications
Num
Symbol
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
Table continues on the next page...
Kinetis K26 Sub-Family, Rev. 4, 04/2017
63
NXP Semiconductors
Peripheral operating requirements and behaviors
Table 48. SDHC full voltage range switching specifications
(continued)
Num
Symbol
Description
Min.
Max.
Unit
Card input clock
SD1
fpp
Clock frequency (low speed)
0
400
kHz
fpp
Clock frequency (SD\SDIO full speed\high speed)
0
25\50
MHz
fpp
Clock frequency (MMC full speed\high speed)
0
20\50
MHz
fOD
Clock frequency (identification mode)
0
400
kHz
SD2
tWL
Clock low time
7
—
ns
SD3
tWH
Clock high time
7
—
ns
SD4
tTLH
Clock rise time
—
3
ns
SD5
tTHL
Clock fall time
—
3
ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6
tOD
SDHC output delay (output valid)
-5
8.6 8.3
ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7
tISU
SDHC input setup time
5
—
ns
SD8
tIH
SDHC input hold time
0
—
ns
Table 49. SDHC limited voltage range switching specifications
Num
Symbol
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Card input clock
SD1
fpp
Clock frequency (low speed)
0
400
kHz
fpp
Clock frequency (SD\SDIO full speed\high speed)
0
25\50
MHz
fpp
Clock frequency (MMC full speed\high speed)
0
20\50
MHz
fOD
Clock frequency (identification mode)
0
400
kHz
tWL
Clock low time
7
—
ns
SD3
tWH
Clock high time
7
—
ns
SD4
tTLH
Clock rise time
—
3
ns
SD5
tTHL
Clock fall time
—
3
ns
SD2
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6
tOD
SDHC output delay (output valid)
-5
7.6 8.3
ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7
tISU
SDHC input setup time
5
—
ns
SD8
tIH
SDHC input hold time
0
—
ns
64
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
SD3
SD2
SD1
SDHC_CLK
SD6
Output SDHC_CMD
Output SDHC_DAT[3:0]
SD7
SD8
Input SDHC_CMD
Input SDHC_DAT[3:0]
Figure 29. SDHC timing
3.7.11 I2S switching specifications
This section provides the AC timings for the I2S in master (clocks driven) and slave
modes (clocks input). All timings are given for non-inverted serial clock polarity
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] =
0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been
inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or
the frame sync (I2S_FS) shown in the figures below.
Table 50. I2S master mode timing (limited voltage range)
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
S1
I2S_MCLK cycle time
40
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_BCLK cycle time
S4
I2S_BCLK pulse width high/low
S5
80
—
ns
45%
55%
BCLK period
I2S_BCLK to I2S_FS output valid
—
15
ns
S6
I2S_BCLK to I2S_FS output invalid
0
—
ns
S7
I2S_BCLK to I2S_TXD valid
—
15
ns
S8
I2S_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_FS input setup before I2S_BCLK
15
—
ns
S10
I2S_RXD/I2S_FS input hold after I2S_BCLK
0
—
ns
Kinetis K26 Sub-Family, Rev. 4, 04/2017
65
NXP Semiconductors
Peripheral operating requirements and behaviors
S1
S2
S2
I2S_MCLK (output)
S3
I2S_BCLK (output)
S4
S4
S6
S5
I2S_FS (output)
S10
S9
I2S_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 30. I2S timing — master mode
Table 51. I2S slave mode timing (limited voltage range)
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
S11
I2S_BCLK cycle time (input)
80
—
ns
S12
I2S_BCLK pulse width high/low (input)
45%
55%
MCLK period
S13
I2S_FS input setup before I2S_BCLK
4.5
—
ns
S14
I2S_FS input hold after I2S_BCLK
2
—
ns
S15
I2S_BCLK to I2S_TXD/I2S_FS output valid
—
20
ns
S16
I2S_BCLK to I2S_TXD/I2S_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_BCLK
4.5
—
ns
S18
I2S_RXD hold after I2S_BCLK
2
—
ns
S19
I2S_TX_FS input assertion to I2S_TXD output valid1
25
ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
66
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
S11
S12
I2S_BCLK (input)
S12
S15
S16
I2S_FS (output)
S13
I2S_FS (input)
S14
S15
S19
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 31. I2S timing — slave modes
3.7.11.1
Normal Run, Wait and Stop mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 52. I2S/SAI master mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
40
—
ns
S2
I2S_MCLK (as an input) pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
80
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
15
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
15
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
15
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after
I2S_RX_BCLK
0
—
ns
Kinetis K26 Sub-Family, Rev. 4, 04/2017
67
NXP Semiconductors
Peripheral operating requirements and behaviors
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 32. I2S/SAI timing — master modes
Table 53. I2S/SAI slave mode timing
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
80
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
4.5
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
23.1
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
4.5
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
2
—
ns
—
25
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
68
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Peripheral operating requirements and behaviors
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 33. I2S/SAI timing — slave modes
3.7.11.2
VLPR, VLPW, and VLPS mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in VLPR, VLPW, and VLPS modes.
Table 54. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S1
I2S_MCLK cycle time
62.5
—
ns
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)
250
—
ns
S4
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
—
45
ns
S6
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0
—
ns
S7
I2S_TX_BCLK to I2S_TXD valid
—
45
ns
S8
I2S_TX_BCLK to I2S_TXD invalid
0
—
ns
S9
I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
45
—
ns
S10
I2S_RXD/I2S_RX_FS input hold after
I2S_RX_BCLK
0
—
ns
Kinetis K26 Sub-Family, Rev. 4, 04/2017
69
NXP Semiconductors
Peripheral operating requirements and behaviors
S1
S2
S2
I2S_MCLK (output)
S3
I2S_TX_BCLK/
I2S_RX_BCLK (output)
S4
S4
S6
S5
I2S_TX_FS/
I2S_RX_FS (output)
S10
S9
I2S_TX_FS/
I2S_RX_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 34. I2S/SAI timing — master modes
Table 55. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)
Num.
Characteristic
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
S11
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)
250
—
ns
S12
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45%
55%
MCLK period
S13
I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
30
—
ns
S14
I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
5
—
ns
S15
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
—
56.5
ns
S16
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0
—
ns
S17
I2S_RXD setup before I2S_RX_BCLK
30
—
ns
S18
I2S_RXD hold after I2S_RX_BCLK
5
—
ns
—
72
ns
S19
I2S_TX_FS input assertion to I2S_TXD output
valid1
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
70
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Dimensions
S11
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
S12
S15
S16
I2S_TX_FS/
I2S_RX_FS (output)
S13
I2S_TX_FS/
I2S_RX_FS (input)
S19
S14
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 35. I2S/SAI timing — slave modes
3.8 Human-machine interfaces (HMI)
3.8.1 TSI electrical specifications
Table 56. TSI electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
TSI_RUNF
Fixed power consumption in run mode
—
100
—
µA
TSI_RUNV
Variable power consumption in run mode
(depends on oscillator's current selection)
1.0
—
128
µA
TSI_EN
Power consumption in enable mode
—
100
—
µA
TSI_DIS
Power consumption in disable mode
—
1.2
—
µA
TSI_TEN
TSI analog enable time
—
66
—
µs
TSI_CREF
TSI reference capacitor
—
1.0
—
pF
TSI_DVOLT
Voltage variation of VP & VM around nominal
values
0.19
—
1.03
V
4 Dimensions
4.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
Kinetis K26 Sub-Family, Rev. 4, 04/2017
71
NXP Semiconductors
Pinout
To find a package drawing, go to nxp.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package
Then use this document number
144-pin LQFP
98ASS23177W
144-pin MAPBGA
98ASA00222D
169-pin MAPBGA
98ASA00628D
169-pin WLCSP
98ASA00640D
5 Pinout
5.1 MK26 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
NOTE
The pin functions SDRAM_D12, SDRAM_D13,
SDRAM_D14, and SDRAM_D15 don't exist on 144 LQFP
and 144 MAPBGA packages.
169
CSP
169 144 144
BGA LQFP BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
C11
A1
1
D3
PTE0
ADC1_
SE4a
ADC1_
SE4a
PTE0
SPI1_PCS1 UART1_TX SDHC0_D1 TRACE_
CLKOUT
A13
B1
2
D2
PTE1/
LLWU_P0
ADC1_
SE5a
ADC1_
SE5a
PTE1/
LLWU_P0
B12
—
—
—
PTE2/
LLWU_P1
ADC1_
SE6a
ADC1_
SE6a
B13
—
—
—
PTE3
ADC1_
SE7a
—
C1
3
D1
PTE2/
LLWU_P1
—
D1
4
E4
F9
G5
5
—
C3
C12
D11
ALT6
ALT7
I2C1_SDA
RTC_
CLKOUT
SPI1_
SOUT
UART1_RX SDHC0_D0 TRACE_D3 I2C1_SCL
SPI1_SIN
PTE2/
LLWU_P1
SPI1_SCK
UART1_
CTS_b
SDHC0_
DCLK
TRACE_D2
ADC1_
SE7a
PTE3
SPI1_SIN
UART1_
RTS_b
SDHC0_
CMD
TRACE_D1
ADC1_
SE6a
ADC1_
SE6a
PTE2/
LLWU_P1
SPI1_SCK
UART1_
CTS_b
SDHC0_
DCLK
TRACE_D2
PTE3
ADC1_
SE7a
ADC1_
SE7a
PTE3
SPI1_SIN
UART1_
RTS_b
SDHC0_
CMD
TRACE_D1
E5
VDD
VDD
VDD
6
H3
VSS
VSS
VSS
E1
7
E3
PTE4/
LLWU_P2
DISABLED
PTE4/
LLWU_P2
SPI1_PCS0 UART3_TX SDHC0_D3 TRACE_D0
D2
8
E2
PTE5
DISABLED
PTE5
SPI1_PCS2 UART3_RX SDHC0_D2
72
NXP Semiconductors
EZPORT
SPI1_
SOUT
SPI1_
SOUT
FTM3_CH0
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Pinout
169
CSP
169 144 144
BGA LQFP BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
C13
E2
9
E1
PTE6/
DISABLED
LLWU_P16
PTE6/
SPI1_PCS3 UART3_
LLWU_P16
CTS_b
I2S0_MCLK
FTM3_CH1 USB0_
SOF_OUT
E10
E3
10
F4
PTE7
DISABLED
PTE7
I2S0_RXD0
FTM3_CH2
D12
E4
11
F3
PTE8
DISABLED
PTE8
D13
F3
12
F2
F10
F4
13
E11
G4
E12
UART3_
RTS_b
I2S0_RXD1
I2S0_RX_
FS
LPUART0_ FTM3_CH3
TX
PTE9/
DISABLED
LLWU_P17
PTE9/
I2S0_TXD1
LLWU_P17
I2S0_RX_
BCLK
LPUART0_ FTM3_CH4
RX
F1
PTE10/
DISABLED
LLWU_P18
PTE10/
I2C3_SDA
LLWU_P18
I2S0_TXD0 LPUART0_ FTM3_CH5 USB1_ID
CTS_b
14
G4
PTE11
DISABLED
PTE11
I2S0_TX_
FS
LPUART0_ FTM3_CH6
RTS_b
H4
15
G3
PTE12
DISABLED
PTE12
I2S0_TX_
BCLK
FTM3_CH7
E13
G6
16
E6
VDD
VDD
VDD
G8
G8
17
F7
VSS
VSS
VSS
G9
H3
—
—
PTE16
ADC0_
SE4a
ADC0_
SE4a
PTE16
F11
F5
—
—
PTE17/
ADC0_
LLWU_P19 SE5a
ADC0_
SE5a
PTE17/
SPI0_SCK
LLWU_P19
UART2_RX FTM_
CLKIN1
G10
F6
—
—
PTE18/
ADC0_
LLWU_P20 SE6a
ADC0_
SE6a
PTE18/
SPI0_
LLWU_P20 SOUT
UART2_
CTS_b
I2C0_SDA
F12
F7
—
—
PTE19
ADC0_
SE7a
ADC0_
SE7a
PTE19
UART2_
RTS_b
I2C0_SCL
F13
G3
18
F6
VSS
VSS
VSS
G13
G1
19
H1
USB0_DP
USB0_DP
USB0_DP
H13
F1
20
H2
USB0_DM
USB0_DM
USB0_DM
G11
G2
21
G1
VREG_
OUT
VREG_
OUT
VREG_
OUT
G12
F2
22
G2
VREG_IN0
VREG_IN0
VREG_IN0
H12
H2
23
J2
VREG_IN1
DISABLED
VREG_IN1
J12
K1
24
K2
USB1_VSS DISABLED
USB1_VSS
J13
J1
25
J1
USB1_DP
DISABLED
USB1_DP
K13
H1
26
K1
USB1_DM
DISABLED
USB1_DM
K12
J2
27
L1
USB1_
VBUS
DISABLED
USB1_
VBUS
J11
L1
—
—
ADC1_DP1 ADC1_DP1 ADC1_DP1
K11
M1
—
—
ADC1_DM1 ADC1_DM1 ADC1_DM1
L13
M2
—
—
ADC0_DP0/ ADC0_DP0/ ADC0_DP0/
ADC1_DP3 ADC1_DP3 ADC1_DP3
M13
L2
28
L2
ADC0_
ADC0_
ADC0_
DM0/
DM0/
DM0/
ADC1_DM3 ADC1_DM3 ADC1_DM3
L12
N1
29
M1
ADC1_DP0/ ADC1_DP0/ ADC1_DP0/
ADC0_DP3 ADC0_DP3 ADC0_DP3
Kinetis K26 Sub-Family, Rev. 4, 04/2017
I2C3_SCL
SPI0_PCS0 UART2_TX FTM_
CLKIN0
SPI0_SIN
FTM0_
FLT3
TPM_
CLKIN0
LPTMR0_
ALT3
TPM_
CLKIN1
EZPORT
CMP3_OUT
73
NXP Semiconductors
Pinout
169
CSP
169 144 144
BGA LQFP BGA
Pin Name
Default
ALT0
M12
N2
30
M2
ADC1_
ADC1_
ADC1_
DM0/
DM0/
DM0/
ADC0_DM3 ADC0_DM3 ADC0_DM3
L11
J3
31
H5
VDDA
VDDA
VDDA
M11
K3
32
G5
VREFH
VREFH
VREFH
N12
K4
33
G6
VREFL
VREFL
VREFL
N13
J4
34
H6
VSSA
VSSA
VSSA
H11
M3
35
K3
ADC1_
SE16/
CMP2_IN2/
ADC0_
SE22
ADC1_
SE16/
CMP2_IN2/
ADC0_
SE22
ADC1_
SE16/
CMP2_IN2/
ADC0_
SE22
K10
L3
36
J3
ADC0_
SE16/
CMP1_IN2/
ADC0_
SE21
ADC0_
SE16/
CMP1_IN2/
ADC0_
SE21
ADC0_
SE16/
CMP1_IN2/
ADC0_
SE21
L10
N3
37
M3
VREF_
OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_
SE18
VREF_
OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_
SE18
VREF_
OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_
SE18
M10
M4
38
L3
DAC0_
OUT/
CMP1_IN3/
ADC0_
SE23
DAC0_
OUT/
CMP1_IN3/
ADC0_
SE23
DAC0_
OUT/
CMP1_IN3/
ADC0_
SE23
N11
N4
39
L4
DAC1_
OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_
SE23
DAC1_
OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_
SE23
DAC1_
OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_
SE23
J10
M5
—
L5
RTC_
WAKEUP_
B
RTC_
WAKEUP_
B
RTC_
WAKEUP_
B
H10
L4
—
—
NC
NC
NC
H9
L5
—
—
NC
NC
NC
J9
K5
—
—
NC
NC
NC
N10
L6
—
—
NC
NC
NC
K9
K6
—
—
NC
NC
NC
M9
N5
40
M7
XTAL32
XTAL32
XTAL32
N9
N6
41
M6
EXTAL32
EXTAL32
EXTAL32
L9
M6
42
L6
VBAT
VBAT
VBAT
H8
J6
—
—
NC
NC
NC
J8
J5
—
—
NC
NC
NC
74
NXP Semiconductors
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
EZPORT
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Pinout
169
CSP
169 144 144
BGA LQFP BGA
Pin Name
Default
ALT2
ALT3
K8
G7
43
—
VDD
VDD
VDD
H7
N7
44
—
VSS
VSS
VSS
N8
L7
45
M4
PTE24
ADC0_
SE17
ADC0_
SE17
PTE24
CAN1_TX
UART4_TX
I2C0_SCL
EWM_
OUT_b
M8
K7
46
K5
PTE25/
ADC0_
LLWU_P21 SE18
ADC0_
SE18
PTE25/
CAN1_RX
LLWU_P21
UART4_RX
I2C0_SDA
EWM_IN
L8
K8
47
K4
PTE26/
DISABLED
CLKOUT32
K
PTE26/
CLKOUT32
K
UART4_
CTS_b
J7
L8
48
J4
PTE27
DISABLED
PTE27
UART4_
RTS_b
K7
M7
49
H4
PTE28
DISABLED
PTE28
N7
N8
50
J5
PTA0
JTAG_
TSI0_CH1
TCLK/
SWD_CLK/
EZP_CLK
PTA0
UART0_
CTS_b/
UART0_
COL_b
FTM0_CH5
LPUART0_
CTS_b
JTAG_
TCLK/
SWD_CLK
EZP_CLK
M7
N9
51
J6
PTA1
JTAG_TDI/
EZP_DI
TSI0_CH2
PTA1
UART0_RX FTM0_CH6 I2C3_SDA
LPUART0_
RX
JTAG_TDI
EZP_DI
L7
M9
52
K6
PTA2
JTAG_
TDO/
TRACE_
SWO/
EZP_DO
TSI0_CH3
PTA2
UART0_TX FTM0_CH7 I2C3_SCL
LPUART0_
TX
JTAG_
TDO/
TRACE_
SWO
EZP_DO
J6
M8
53
K7
PTA3
JTAG_
TMS/
SWD_DIO
TSI0_CH4
PTA3
UART0_
RTS_b
LPUART0_
RTS_b
JTAG_
TMS/
SWD_DIO
K6
L9
54
L7
PTA4/
LLWU_P3
NMI_b/
EZP_CS_b
TSI0_CH5
PTA4/
LLWU_P3
N6
N10
55
M8
PTA5
DISABLED
M6
H5
56
E7
VDD
VDD
VDD
H6
H8
57
G7
VSS
VSS
VSS
N5
M10
58
J7
PTA6
DISABLED
L6
L10
59
J8
PTA7
ADC0_
SE10
M5
K9
60
K8
PTA8
ADC0_
SE11
J5
K10
61
L8
PTA9
DISABLED
K5
N11
62
M9
PTA10/
DISABLED
LLWU_P22
Kinetis K26 Sub-Family, Rev. 4, 04/2017
ALT0
ALT1
PTA5
FTM0_CH0
ALT4
ALT5
ALT6
RTC_
CLKOUT
FTM0_CH1
USB0_
CLKIN
ALT7
EZPORT
USB0_
CLKIN
NMI_b
FTM0_CH2
CMP2_OUT I2S0_TX_
BCLK
JTAG_
TRST_b
PTA6
FTM0_CH3
CLKOUT
TRACE_
CLKOUT
ADC0_
SE10
PTA7
FTM0_CH4
TRACE_D3
ADC0_
SE11
PTA8
FTM1_CH0
FTM1_QD_ TRACE_D2
PHA/
TPM1_CH0
PTA9
FTM1_CH1
FTM1_QD_ TRACE_D1
PHB/
TPM1_CH1
PTA10/
LLWU_P22
FTM2_CH0
FTM2_QD_ TRACE_D0
PHA/
TPM2_CH0
EZP_CS_b
75
NXP Semiconductors
Pinout
169
CSP
169 144 144
BGA LQFP BGA
Pin Name
ALT5
ALT6
N4
M11
63
L9
PTA11/
DISABLED
LLWU_P23
FTM2_CH1
I2C2_SDA
FTM2_QD_
PHB/
TPM2_CH1
M4
L12
64
K9
PTA12
CMP2_IN0
CMP2_IN0
PTA12
CAN0_TX
FTM1_CH0
I2C2_SCL
I2S0_TXD0 FTM1_QD_
PHA/
TPM1_CH0
L5
L11
65
J9
PTA13/
LLWU_P4
CMP2_IN1
CMP2_IN1
PTA13/
LLWU_P4
CAN0_RX
FTM1_CH1
I2C2_SDA
I2S0_TX_
FS
FTM1_QD_
PHB/
TPM1_CH1
N3
K13
66
L10
PTA14
DISABLED
PTA14
SPI0_PCS0 UART0_TX
I2C2_SCL
I2S0_RX_
BCLK
I2S0_TXD1
L4
K12
67
L11
PTA15
CMP3_IN1
CMP3_IN1
PTA15
SPI0_SCK
UART0_RX
I2S0_RXD0
K4
J13
68
K10
PTA16
CMP3_IN2
CMP3_IN2
PTA16
SPI0_
SOUT
UART0_
CTS_b/
UART0_
COL_b
I2S0_RX_
FS
L3
J12
69
K11
PTA17
ADC1_
SE17
ADC1_
SE17
PTA17
SPI0_SIN
UART0_
RTS_b
I2S0_MCLK
M3
N12
70
E8
VDD
VDD
VDD
M2
M12
71
G8
VSS
VSS
VSS
N1
N13
72
M12 PTA18
EXTAL0
EXTAL0
PTA18
FTM0_
FLT2
FTM_
CLKIN0
N2
M13
73
M11 PTA19
XTAL0
XTAL0
PTA19
FTM1_
FLT0
FTM_
CLKIN1
M1
L13
74
L12
RESET_b
RESET_b
RESET_b
K3
K11
75
K12
PTA24
CMP3_IN4
CMP3_IN4
PTA24
FB_A15/
SDRAM_
D15
FB_A29
J4
J11
76
J12
PTA25
CMP3_IN5
CMP3_IN5
PTA25
FB_A14/
SDRAM_
D14
FB_A28
J3
J10
77
J11
PTA26
DISABLED
PTA26
FB_A13/
SDRAM_
D13
FB_A27
L2
H13
78
J10
PTA27
DISABLED
PTA27
FB_A12/
SDRAM_
D12
FB_A26
L1
H12
79
H12 PTA28
DISABLED
PTA28
FB_A25
K2
H11
80
H11 PTA29
DISABLED
PTA29
FB_A24
K1
H10
—
—
PTA30
DISABLED
PTA30
CAN0_TX
FB_A11/
SDRAM_
D11
H5
J9
—
—
PTA31
DISABLED
PTA31
CAN0_RX
FB_A10/
SDRAM_
D10
76
NXP Semiconductors
Default
ALT0
ALT1
ALT2
PTA11/
LLWU_P23
ALT3
ALT4
ALT7
EZPORT
I2S0_RXD1
TPM_
CLKIN0
LPTMR0_
ALT1
TPM_
CLKIN1
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Pinout
169
CSP
169 144 144
BGA LQFP BGA
Pin Name
H4
G13
81
H10 PTB0/
LLWU_P5
J2
G12
82
H9
ALT2
ALT3
ADC0_SE8/ ADC0_SE8/ PTB0/
ADC1_SE8/ ADC1_SE8/ LLWU_P5
TSI0_CH0 TSI0_CH0
I2C0_SCL
FTM1_CH0
SDRAM_
CAS_b
FTM1_QD_
PHA/
TPM1_CH0
ADC0_SE9/ ADC0_SE9/ PTB1
ADC1_SE9/ ADC1_SE9/
TSI0_CH6 TSI0_CH6
I2C0_SDA
FTM1_CH1
SDRAM_
RAS_b
FTM1_QD_
PHB/
TPM1_CH1
J1
G11
83
G12 PTB2
ADC0_
SE12/
TSI0_CH7
ADC0_
SE12/
TSI0_CH7
PTB2
I2C0_SCL
UART0_
RTS_b
SDRAM_
WE
FTM0_
FLT3
H3
G10
84
G11 PTB3
ADC0_
SE13/
TSI0_CH8
ADC0_
SE13/
TSI0_CH8
PTB3
I2C0_SDA
UART0_
CTS_b/
UART0_
COL_b
SDRAM_
CS0_b
FTM0_
FLT0
G7
—
—
—
VSS
VSS
VSS
G6
—
—
—
VDD
VDD
VDD
H2
H9
85
G10 PTB4
ADC1_
SE10
ADC1_
SE10
PTB4
SDRAM_
CS1_b
FTM1_
FLT0
H1
F13
86
G9
PTB5
ADC1_
SE11
ADC1_
SE11
PTB5
G5
F12
87
F12
PTB6
ADC1_
SE12
ADC1_
SE12
PTB6
FB_AD23/
SDRAM_
D23
G4
F11
88
F11
PTB7
ADC1_
SE13
ADC1_
SE13
PTB7
FB_AD22/
SDRAM_
D22
G3
F10
89
F10
PTB8
DISABLED
PTB8
UART3_
RTS_b
FB_AD21/
SDRAM_
D21
G2
F9
90
F9
PTB9
DISABLED
PTB9
SPI1_PCS1 UART3_
CTS_b
FB_AD20/
SDRAM_
D20
G1
G9
91
E12
PTB10
ADC1_
SE14
ADC1_
SE14
PTB10
SPI1_PCS0 UART3_RX
FB_AD19/
SDRAM_
D19
FTM0_
FLT1
F5
E13
92
E11
PTB11
ADC1_
SE15
ADC1_
SE15
PTB11
SPI1_SCK
UART3_TX
FB_AD18/
SDRAM_
D18
FTM0_
FLT2
F4
E12
—
—
PTB12
DISABLED
PTB12
UART3_
RTS_b
FTM1_CH0 FTM0_CH4 FB_A9/
FTM1_QD_
SDRAM_D9 PHA/
TPM1_CH0
F3
E11
—
—
PTB13
DISABLED
PTB13
UART3_
CTS_b
FTM1_CH1 FTM0_CH5 FB_A8/
FTM1_QD_
SDRAM_D8 PHB/
TPM1_CH1
F2
E10
—
—
PTB14
DISABLED
PTB14
CAN1_TX
FB_A7/
SDRAM_D7
F1
E9
—
—
PTB15
DISABLED
PTB15
CAN1_RX
FB_A6/
SDRAM_D6
—
—
93
H7
VSS
VSS
PTB1
Default
Kinetis K26 Sub-Family, Rev. 4, 04/2017
ALT0
ALT1
ALT4
ALT5
ALT6
ALT7
EZPORT
FTM2_
FLT0
VSS
77
NXP Semiconductors
Pinout
169
CSP
169 144 144
BGA LQFP BGA
Pin Name
Default
ALT0
—
—
94
F5
VDD
VDD
VDD
E1
F8
95
E10
PTB16
TSI0_CH9
TSI0_CH9
E2
D13
96
E9
PTB17
E3
D12
97
E4
D11
E5
ALT1
ALT3
ALT4
ALT5
ALT6
ALT7
SPI1_
SOUT
UART0_RX FTM_
CLKIN0
FB_AD17/
SDRAM_
D17
EWM_IN
TPM_
CLKIN0
TSI0_CH10 TSI0_CH10 PTB17
SPI1_SIN
UART0_TX FTM_
CLKIN1
FB_AD16/
SDRAM_
D16
EWM_
OUT_b
TPM_
CLKIN1
D12 PTB18
TSI0_CH11 TSI0_CH11 PTB18
CAN0_TX
FTM2_CH0 I2S0_TX_
BCLK
FB_AD15/
SDRAM_
A23
FTM2_QD_
PHA/
TPM2_CH0
98
D11 PTB19
TSI0_CH12 TSI0_CH12 PTB19
CAN0_RX
FTM2_CH1 I2S0_TX_
FS
FB_OE_b
FTM2_QD_
PHB/
TPM2_CH1
D10
99
D10 PTB20
DISABLED
PTB20
SPI2_PCS0
FB_AD31/
SDRAM_
D31
CMP0_OUT
D1
D9
100
D9
PTB21
DISABLED
PTB21
SPI2_SCK
FB_AD30/
SDRAM_
D30
CMP1_OUT
D2
C13
101
C12 PTB22
DISABLED
PTB22
SPI2_
SOUT
FB_AD29/
SDRAM_
D29
CMP2_OUT
D3
C12
102
C11 PTB23
DISABLED
PTB23
SPI2_SIN
FB_AD28/
SDRAM_
D28
CMP3_OUT
C1
B13
103
B12
PTC0
ADC0_
ADC0_
PTC0
SE14/
SE14/
TSI0_CH13 TSI0_CH13
SPI0_PCS4 PDB0_
EXTRG
USB0_
SOF_OUT
FB_AD14/
SDRAM_
A22
I2S0_TXD1
C2
B12
104
B11
PTC1/
LLWU_P6
ADC0_
ADC0_
PTC1/
SE15/
SE15/
LLWU_P6
TSI0_CH14 TSI0_CH14
SPI0_PCS3 UART1_
RTS_b
FTM0_CH0 FB_AD13/
SDRAM_
A21
I2S0_TXD0
D4
A13
105
A12
PTC2
ADC0_
SE4b/
CMP1_IN0/
TSI0_CH15
ADC0_
PTC2
SE4b/
CMP1_IN0/
TSI0_CH15
SPI0_PCS2 UART1_
CTS_b
FTM0_CH1 FB_AD12/
SDRAM_
A20
I2S0_TX_
FS
B1
A12
106
A11
PTC3/
LLWU_P7
CMP1_IN1
CMP1_IN1
PTC3/
LLWU_P7
SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT
I2S0_TX_
BCLK
F6
C11
107
H8
VSS
VSS
VSS
E6
H6
108
—
VDD
VDD
VDD
A1
B11
109
A9
PTC4/
LLWU_P8
DISABLED
PTC4/
LLWU_P8
SPI0_PCS0 UART1_TX FTM0_CH3 FB_AD11/
SDRAM_
A19
CMP1_OUT
B2
A11
110
D8
PTC5/
LLWU_P9
DISABLED
PTC5/
LLWU_P9
SPI0_SCK
C3
A10
111
C8
PTC6/
CMP0_IN0
LLWU_P10
78
NXP Semiconductors
CMP0_IN0
PTB16
ALT2
PTC6/
SPI0_
LLWU_P10 SOUT
SPI0_PCS5
LPTMR0_
ALT2
I2S0_RXD0 FB_AD10/
SDRAM_
A18
CMP0_OUT FTM0_CH2
PDB0_
EXTRG
I2S0_RX_
BCLK
I2S0_MCLK
FB_AD9/
SDRAM_
A17
EZPORT
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Pinout
169
CSP
169 144 144
BGA LQFP BGA
Pin Name
Default
ALT0
D5
B10
112
B8
C4
C10
113
A2
C9
B3
PTC7
CMP0_IN1
CMP0_IN1
PTC7
A8
PTC8
ADC1_
SE4b/
CMP0_IN2
ADC1_
SE4b/
CMP0_IN2
PTC8
FTM3_CH4 I2S0_MCLK FB_AD7/
SDRAM_
A15
114
D7
PTC9
ADC1_
SE5b/
CMP0_IN3
ADC1_
SE5b/
CMP0_IN3
PTC9
FTM3_CH5 I2S0_RX_
BCLK
FB_AD6/
SDRAM_
A14
A8
115
C7
PTC10
ADC1_
SE6b
ADC1_
SE6b
PTC10
FTM3_CH6 I2S0_RX_
FS
FB_AD5/
SDRAM_
A13
D6
A9
116
B7
PTC11/
ADC1_
LLWU_P11 SE7b
ADC1_
SE7b
PTC11/
I2C1_SDA
LLWU_P11
FTM3_CH7 I2S0_RXD1 FB_RW_b
C5
B9
117
A7
PTC12
DISABLED
PTC12
UART4_
RTS_b
FTM_
CLKIN0
FB_AD27/
SDRAM_
D27
A3
B8
118
D6
PTC13
DISABLED
PTC13
UART4_
CTS_b
FTM_
CLKIN1
FB_AD26/
SDRAM_
D26
B4
C8
119
C6
PTC14
DISABLED
PTC14
UART4_RX
FB_AD25/
SDRAM_
D25
A4
D8
120
B6
PTC15
DISABLED
PTC15
UART4_TX
FB_AD24/
SDRAM_
D24
F7
—
121
—
VSS
VSS
VSS
E7
—
122
—
VDD
VDD
VDD
A5
E8
123
A6
PTC16
DISABLED
PTC16
CAN1_RX
UART3_RX
FB_CS5_b/
FB_TSIZ1/
FB_BE23_
16_BLS15_
8_b/
SDRAM_
DQM2
B5
E7
124
D5
PTC17
DISABLED
PTC17
CAN1_TX
UART3_TX
FB_CS4_b/
FB_TSIZ0/
FB_BE31_
24_BLS7_
0_b/
SDRAM_
DQM3
C6
D7
125
C5
PTC18
DISABLED
PTC18
UART3_
RTS_b
FB_TBST_
b/
FB_CS2_b/
FB_BE15_
8_BLS23_
16_b/
SDRAM_
DQM1
Kinetis K26 Sub-Family, Rev. 4, 04/2017
ALT1
ALT2
SPI0_SIN
I2C1_SCL
ALT3
ALT4
USB0_
SOF_OUT
I2S0_RX_
FS
ALT5
ALT6
ALT7
EZPORT
FB_AD8/
SDRAM_
A16
FTM2_
FLT0
FTM3_
FLT0
TPM_
CLKIN0
TPM_
CLKIN1
79
NXP Semiconductors
Pinout
169
CSP
169 144 144
BGA LQFP BGA
Pin Name
B6
C7
126
B5
PTC19
DISABLED
PTC19
UART3_
CTS_b
FB_CS3_b/ FB_TA_b
FB_BE7_0_
BLS31_24_
b/
SDRAM_
DQM0
A6
B7
—
—
PTC24
DISABLED
PTC24
LPUART0_
TX
FB_A5/
SDRAM_D5
D7
A7
—
—
PTC25
DISABLED
PTC25
LPUART0_
RX
FB_A4/
SDRAM_D4
E8
E6
—
—
PTC26
DISABLED
PTC26
LPUART0_
CTS_b
FB_A3/
SDRAM_D3
A7
D6
—
—
PTC27
DISABLED
PTC27
LPUART0_
RTS_b
FB_A2/
SDRAM_D2
B7
C6
—
—
PTC28
DISABLED
PTC28
I2C3_SDA
FB_A1/
SDRAM_D1
C7
B6
—
—
PTC29
DISABLED
PTC29
I2C3_SCL
FB_A0/
SDRAM_D0
D8
A6
127
A5
PTD0/
DISABLED
LLWU_P12
A8
A5
128
D4
PTD1
B8
A4
129
C4
PTD2/
DISABLED
LLWU_P13
PTD2/
SPI0_
LLWU_P13 SOUT
UART2_RX FTM3_CH2 FB_AD4/
SDRAM_
A12
I2C0_SCL
C8
B4
130
B4
PTD3
PTD3
UART2_TX FTM3_CH3 FB_AD3/
SDRAM_
A11
I2C0_SDA
F8
B5
131
A4
PTD4/
DISABLED
LLWU_P14
A9
C4
132
A3
PTD5
ADC0_
SE6b
B9
C5
133
A2
PTD6/
ADC0_
LLWU_P15 SE7b
—
J8
134
M10 VSS
VSS
VSS
E9
H7
135
F8
VDD
VDD
VDD
A10
E5
136
A1
PTD7
DISABLED
C9
D5
137
C9
PTD8/
DISABLED
LLWU_P24
PTD8/
I2C0_SCL
LLWU_P24
LPUART0_ FB_A16
RX
B10
D4
138
B9
PTD9
DISABLED
PTD9
LPUART0_ FB_A17
TX
A11
D3
139
B3
PTD10
DISABLED
PTD10
80
NXP Semiconductors
Default
ADC0_
SE5b
ALT0
ADC0_
SE5b
DISABLED
ALT1
ALT2
ALT3
ALT4
ALT5
PTD0/
SPI0_PCS0 UART2_
LLWU_P12
RTS_b
FTM3_CH0 FB_ALE/
FB_CS1_b/
FB_TS_b
PTD1
FTM3_CH1 FB_CS0_b
SPI0_SCK
SPI0_SIN
UART2_
CTS_b
ALT6
PTD4/
SPI0_PCS1 UART0_
LLWU_P14
RTS_b
FTM0_CH4 FB_AD2/
SDRAM_
A10
ADC0_
SE6b
PTD5
FTM0_CH5 FB_AD1/
EWM_
SDRAM_A9 OUT_b
ADC0_
SE7b
PTD6/
SPI0_PCS3 UART0_RX FTM0_CH6 FB_AD0
LLWU_P15
FTM0_
FLT0
SPI1_
SOUT
PTD7
FTM0_
FLT1
SPI1_SIN
SPI0_PCS2 UART0_
CTS_b/
UART0_
COL_b
CMT_IRO
I2C0_SDA
UART0_TX FTM0_CH7 SDRAM_
CKE
EWM_IN
ALT7
EZPORT
SPI1_PCS0
SPI1_SCK
LPUART0_ FB_A18
RTS_b
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Pinout
169
CSP
169 144 144
BGA LQFP BGA
Pin Name
Default
ALT0
ALT1
ALT2
D9
C2
140
B2
PTD11/
DISABLED
LLWU_P25
PTD11/
SPI2_PCS0
LLWU_P25
C10
B2
141
B1
PTD12
DISABLED
PTD12
SPI2_SCK
A12
B3
142
C3
PTD13
DISABLED
PTD13
ALT3
ALT4
SDHC0_
CLKIN
FTM3_
FLT0
ALT5
ALT6
ALT7
EZPORT
LPUART0_ FB_A19
CTS_b
SDHC0_D4
FB_A20
SPI2_
SOUT
SDHC0_D5
FB_A21
B11
A2
143
C2
PTD14
DISABLED
PTD14
SPI2_SIN
SDHC0_D6
FB_A22
D10
A3
144
C1
PTD15
DISABLED
PTD15
SPI2_PCS1
SDHC0_D7
FB_A23
—
K2
—
—
NC
NC
NC
—
J7
—
M5
NC
NC
NC
—
—
—
A10
NC
NC
NC
—
—
—
B10
NC
NC
NC
—
—
—
C10 NC
NC
NC
5.2 Recommended connection for unused analog and digital
pins
Table 57 shows the recommended connections for analog interface pins if those
analog interfaces are not used in the customer's application
Table 57. Recommended connection for unused analog interfaces
Pin Type
K26
Short recommendation
Detailed recommendation
Analog/non GPIO
ADCx/CMPx
Float
Analog input - Float
Analog/non GPIO
VREF_OUT
Float
Analog output - Float
Analog/non GPIO
DAC0_OUT, DAC1_OUT
Float
Analog output - Float
Analog/non GPIO
RTC_WAKEUP_B
Float
Analog output - Float
Analog/non GPIO
XTAL32
Float
Analog output - Float
Analog/non GPIO
EXTAL32
Float
Analog input - Float
GPIO/Analog
PTA18/EXTAL0
Float
Analog input - Float
GPIO/Analog
PTA19/XTAL0
Float
Analog output - Float
GPIO/Analog
PTx/ADCx
Float
Float (default is analog input)
GPIO/Analog
PTx/CMPx
Float
Float (default is analog input)
GPIO/Analog
PTx/TSIOx
Float
Float (default is analog input)
GPIO/Digital
PTA0/JTAG_TCLK
Float
Float (default is JTAG with
pulldown)
GPIO/Digital
PTA1/JTAG_TDI
Float
Float (default is JTAG with
pullup)
GPIO/Digital
PTA2/JTAG_TDO
Float
Float (default is JTAG with
pullup)
Table continues on the next page...
Kinetis K26 Sub-Family, Rev. 4, 04/2017
81
NXP Semiconductors
Pinout
Table 57. Recommended connection for unused analog interfaces (continued)
Pin Type
K26
Short recommendation
Detailed recommendation
GPIO/Digital
PTA3/JTAG_TMS
Float
Float (default is JTAG with
pullup)
GPIO/Digital
PTA4/NMI_b
10kΩ pullup or disable and
float
Pull high or disable in PCR &
FOPT and float
GPIO/Digital
PTx
Float
Float (default is disabled)
USB
USB0_DP
Float
Float
USB
USB0_DM
Float
Float
USB
VREG_OUT
Tie to input and ground
through 10kΩ
Tie to input and ground
through 10kΩ
USB
VREG_IN0
Tie to output and ground
through 10kΩ
Tie to output and ground
through 10kΩ
USB
VREG_IN1
Tie to output and ground
through 10kΩ
Tie to output and ground
through 10kΩ
USB
USB1_VSS
Always connect to VSS
Always connect to VSS
USB
USB1_DP
Float
Float
USB
USB1_DM
Float
Float
USB
USB1_VBUS
Float
Float
VBAT
VBAT
Float
Float
VDDA
VDDA
Always connect to VDD
potential
Always connect to VDD
potential
VREFH
VREFH
Always connect to VDD
potential
Always connect to VDD
potential
VREFL
VREFL
Always connect to VSS
potential
Always connect to VSS
potential
VSSA
VSSA
Always connect to VSS
potential
Always connect to VSS
potential
5.3 MK26 Pinouts
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
82
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
111
110
109
PTC13
PTC8
PTC14
118
112
PTC15
119
PTC9
VSS
120
113
VDD
121
PTC10
PTC16
122
115
PTC17
123
114
PTC18
124
PTC12
PTC19
125
PTC11/LLWU_P11
PTD0/LLWU_P12
126
116
PTD1
127
117
PTD2/LLWU_P13
VSS
134
128
VDD
135
PTD3
PTD7
136
129
PTD8/LLWU_P24
137
PTD4/LLWU_P14
PTD9
138
131
PTD10
139
130
PTD11/LLWU_P25
140
PTD6/LLWU_P15
PTD12
141
PTD5
PTD13
142
132
PTD14
143
133
PTD15
144
Pinout
PTE0
1
108
VDD
PTE1/LLWU_P0
2
107
VSS
PTE2/LLWU_P1
3
106
PTC3/LLWU_P7
PTE3
4
105
PTC2
VDD
5
104
PTC1/LLWU_P6
VSS
6
103
PTC0
PTE4/LLWU_P2
7
102
PTB23
PTE5
8
101
PTB22
PTE6/LLWU_P16
9
100
PTB21
PTB20
PTE7
10
99
PTE8
11
98
PTB19
PTE9/LLWU_P17
12
97
PTB18
PTE10/LLWU_P18
13
96
PTB17
PTE11
14
95
PTB16
PTE12
15
94
VDD
VDD
16
93
VSS
VSS
17
92
PTB11
VSS
18
91
PTB10
USB0_DP
19
90
PTB9
USB0_DM
20
89
PTB8
VREG_OUT
21
88
PTB7
VREG_IN0
22
87
PTB6
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
VDD
VSS
PTA6
PTA7
PTA8
PTA9
PTA10/LLWU_P22
PTA11/LLWU_P23
PTA12
PTA13/LLWU_P4
PTA14
PTA15
PTA16
PTA17
VDD
VSS
PTA18
PTA19
55
RESET_b
73
PTA5
74
36
54
35
PTA4/LLWU_P3
ADC1_SE16/CMP2_IN2/ADC0_SE22
ADC0_SE16/CMP1_IN2/ADC0_SE21
53
PTA24
PTA3
75
52
34
PTA2
PTA25
VSSA
51
PTA26
76
50
77
33
PTA1
32
VREFL
PTA0
VREFH
49
PTA27
PTE28
78
48
31
PTE27
PTA28
VDDA
47
79
PTE26/CLKOUT32K
30
46
PTA29
ADC1_DM0/ADC0_DM3
PTE25/LLWU_P21
80
45
29
PTE24
PTB0/LLWU_P5
ADC1_DP0/ADC0_DP3
44
81
VSS
28
43
PTB1
ADC0_DM0/ADC1_DM3
VDD
82
42
27
VBAT
PTB2
USB1_VBUS
41
83
EXTAL32
26
40
PTB3
USB1_DM
XTAL32
84
39
25
DAC1_OUT/CMP0_IN4/CMP2_IN3/ADC1_SE23
PTB4
USB1_DP
38
PTB5
85
37
86
24
DAC0_OUT/CMP1_IN3/ADC0_SE23
23
VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18
VREG_IN1
USB1_VSS
Figure 36. MK26 144 LQFP Pinout Diagram
Kinetis K26 Sub-Family, Rev. 4, 04/2017
83
NXP Semiconductors
Pinout
1
2
3
4
5
6
7
8
9
10
11
12
A
PTD7
PTD6/
LLWU_P15
PTD5
PTD4/
LLWU_P14
PTD0/
LLWU_P12
PTC16
PTC12
PTC8
PTC4/
LLWU_P8
NC
PTC3/
LLWU_P7
PTC2
A
B
PTD12
PTD11/
LLWU_P25
PTD10
PTD3
PTC19
PTC15
PTC7
PTD9
NC
PTC1/
LLWU_P6
PTC0
B
C
PTD15
PTD14
PTD13
PTD2/
LLWU_P13
PTC18
PTC14
PTC10
PTC6/
LLWU_P10
PTD8/
LLWU_P24
NC
PTB23
PTB22
C
D
PTE2/
LLWU_P1
PTE1/
LLWU_P0
PTE0
PTD1
PTC17
PTC13
PTC9
PTC5/
LLWU_P9
PTB21
PTB20
PTB19
PTB18
D
E
PTE6/
LLWU_P16
PTE5
PTE4/
LLWU_P2
PTE3
VDD
VDD
VDD
VDD
PTB17
PTB16
PTB11
PTB10
E
F
PTE10/
LLWU_P18
PTE9/
LLWU_P17
PTE8
PTE7
VDD
VSS
VSS
VDD
PTB9
PTB8
PTB7
PTB6
F
G
VREG_OUT
VREG_IN0
PTE12
PTE11
VREFH
VREFL
VSS
VSS
PTB5
PTB4
PTB3
PTB2
G
H
USB0_DP
USB0_DM
VSS
PTE28
VDDA
VSSA
VSS
VSS
PTB1
PTB0/
LLWU_P5
PTA29
PTA28
H
J
USB1_DP
VREG_IN1
PTE27
PTA0
PTA1
PTA6
PTA7
PTA13/
LLWU_P4
PTA27
PTA26
PTA25
J
K
USB1_DM
USB1_VSS
CMP2_IN2/
ADC0_SE22
CLKOUT32K
PTE25/
LLWU_P21
PTA2
PTA3
PTA8
PTA12
PTA16
PTA17
PTA24
K
ADC0_DM0/
L USB1_VBUS ADC1_DM3
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23
RTC_
WAKEUP_B
VBAT
PTA4/
LLWU_P3
PTA9
PTA11/
LLWU_P23
PTA14
PTA15
RESET_b
L
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
PTE24
NC
EXTAL32
XTAL32
PTA5
PTA10/
LLWU_P22
VSS
PTA19
PTA18
M
3
4
5
6
7
8
9
10
11
12
PTC11/
LLWU_P11
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
ADC1_SE16/
ADC1_DP0/
M ADC0_DP3
1
ADC1_DM0/
ADC0_DM3
2
PTE26/
Figure 37. MK26 144 BGA Pinout Diagram
84
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Pinout
1
2
3
4
5
6
7
8
A
PTE0
PTD14
PTD15
PTD2/
LLWU_P13
PTD1
PTD0/
LLWU_P12
PTC25
PTC10
B
PTE1/
LLWU_P0
PTD12
PTD13
PTD3
PTD4/
LLWU_P14
PTC29
PTC24
PTC13
PTC12
PTC7
C
PTE2/
PTD11/
LLWU_P1 LLWU_P25
VSS
PTD5
PTD6/
LLWU_P15
PTC28
PTC19
PTC14
PTC9
PTD10
PTD9
PTD8/
LLWU_P24
PTC27
PTC18
PTC15
PTE7
PTE8
PTD7
PTC26
PTC17
D
PTE3
PTE5
9
10
11
12
13
PTC3/
LLWU_P7
PTC2
A
PTC4/
LLWU_P8
PTC1/
LLWU_P6
PTC0
B
PTC8
VSS
PTB23
PTB22
C
PTB21
PTB20
PTB19
PTB18
PTB17
D
PTC16
PTB15
PTB14
PTB13
PTB12
PTB11
E
PTE19
PTB16
PTB9
PTB8
PTB7
PTB6
PTB5
F
PTC11/
PTC6/
PTC5/
LLWU_P11 LLWU_P10 LLWU_P9
E
PTE4/
PTE6/
LLWU_P2 LLWU_P16
F
USB0_DM VREG_IN0
G
USB0_DP VREG_OUT
VSS
PTE11
VDD
VDD
VDD
VSS
PTB10
PTB3
PTB2
PTB1
PTB0/
LLWU_P5
G
H
USB1_DM VREG_IN1
PTE16
PTE12
VDD
VDD
VDD
VSS
PTB4
PTA30
PTA29
PTA28
PTA27
H
J
USB1_DP USB1_VBUS
VDDA
VSSA
NC
NC
NC
VSS
PTA31
PTA26
PTA25
PTA17
PTA16
J
VREFH
VREFL
NC
NC
PTA8
PTA9
PTA24
PTA15
PTA14
K
NC
NC
NC
PTE24
PTE27
PTA4/
LLWU_P3
PTA7
PTA13/
LLWU_P4
PTA12
RESET_b
L
ADC0_DP0/ ADC1_SE16/ DAC0_OUT/
RTC_
CMP2_IN2/ CMP1_IN3/
ADC1_DP3 ADC0_SE22 ADC0_SE23 WAKEUP_B
VBAT
PTE28
PTA3
PTA2
PTA6
PTA11/
LLWU_P23
VSS
PTA19
M
VREF_OUT/ DAC1_OUT/
CMP1_IN5/ CMP0_IN4/
CMP0_IN5/ CMP2_IN3/
ADC1_SE18 ADC1_SE23
XTAL32
EXTAL32
VSS
PTA0
PTA1
PTA5
PTA10/
LLWU_P22
VDD
PTA18
N
5
6
7
8
9
10
11
12
13
NC
PTE9/
PTE10/
PTE17/
PTE18/
LLWU_P17 LLWU_P18 LLWU_P19 LLWU_P20
K
USB1_VSS
L
ADC1_DP1 ADC0_DM0/ CMP1_IN2/
M
ADC1_DM1
N
ADC1_DP0/ ADC1_DM0/
ADC0_DP3 ADC0_DM3
PTE25/
PTE26/
LLWU_P21 CLKOUT32K
ADC0_SE16/
ADC1_DM3 ADC0_SE21
1
2
3
4
Figure 38. MK26 169 BGA Pinout Diagram
Kinetis K26 Sub-Family, Rev. 4, 04/2017
85
NXP Semiconductors
Ordering parts
1
2
3
4
5
6
7
8
9
10
11
12
13
A
PTC4/
LLWU_P8
PTC9
PTC13
PTC15
PTC16
PTC24
PTC27
PTD1
PTD5
PTD7
PTD10
PTD13
PTE1/
LLWU_P0
A
B
PTC3/
LLWU_P7
PTC5/
LLWU_P9
PTC10
PTC14
PTC17
PTC19
PTC28
PTD9
PTD14
PTE2/
LLWU_P1
PTE3
B
C
PTC0
PTC8
PTC12
PTC18
PTC29
PTD8/
LLWU_P24
PTD12
PTE0
PTE4/
PTE6/
LLWU_P2 LLWU_P16
D
PTB21
PTB22
PTB23
PTC2
PTC7
PTC11/
LLWU_P11
PTC25
PTD0/
PTD11/
LLWU_P12 LLWU_P25
PTD15
PTE5
PTE8
PTE9/
LLWU_P17
D
E
PTB16
PTB17
PTB18
PTB19
PTB20
VDD
VDD
PTC26
VDD
PTE7
PTE11
PTE12
VDD
E
F
PTB15
PTB14
PTB13
PTB12
PTB11
VSS
VSS
PTD4/
LLWU_P14
VDD
PTE19
VSS
F
G
PTB10
PTB9
PTB8
PTB7
PTB6
VDD
VSS
VSS
PTE16
H
PTB5
PTB4
PTB3
PTB0/
LLWU_P5
PTA31
VSS
VSS
NC
NC
J
PTB2
PTB1
PTA26
PTA25
PTA9
PTA3
PTE27
NC
NC
K
PTA30
PTA29
PTA24
PTA16
PTA10/
LLWU_P22
PTA4/
LLWU_P3
PTE28
VDD
NC
L
PTA28
PTA27
PTA17
PTA15
PTA13/
LLWU_P4
PTA7
PTA2
PTE26/
CLKOUT32K
VBAT
M
RESET_b
VSS
VDD
PTA12
PTA8
VDD
PTA1
PTE25/
LLWU_P21
XTAL32
N
PTA18
PTA19
PTA14
PTA11/
LLWU_P23
PTA6
PTA5
PTA0
PTE24
EXTAL32
NC
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23
VREFL
VSSA
1
2
3
4
5
6
7
8
9
10
11
12
13
PTC1/
PTC6
LLWU_P6 /LLWU_P10
PTD2/
PTD6/
LLWU_P13 LLWU_P15
PTD3
PTE10/
PTE17/
LLWU_P18 LLWU_P19
PTE18/ VREG_OUT VREG_IN0 USB0_DP
LLWU_P20
NC
ADC1_SE16/
CMP2_IN2/ VREG_IN1 USB0_DM
ADC0_SE22
RTC_
ADC1_DP1 USB1_VSS USB1_DP
WAKEUP_B
C
G
H
J
ADC0_SE16/
CMP1_IN2/ ADC1_DM1 USB1_VBUS USB1_DM
ADC0_SE21
K
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
L
VDDA
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
VREFH
ADC1_DP0/ ADC0_DP0/
ADC0_DP3 ADC1_DP3
ADC1_DM0/ ADC0_DM0/
ADC0_DM3 ADC1_DM3
M
N
Figure 39. MK26 169 CSP Pinout Diagram
6 Ordering parts
86
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Part identification
6.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable
part numbers for this device, go to nxp.com and perform a part number search for the
following device numbers: MK26
7 Part identification
7.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
7.2 Format
Part numbers for this device have the following format:
Q K## A M FFF R T PP CC N
7.3 Fields
This table lists the possible values for each field in the part number (not all
combinations are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
K##
Kinetis family
• K26
A
Key attribute
• D = Cortex-M4 w/ DSP
• F = Cortex-M4 w/ DSP and FPU
M
Flash memory type
• N = Program flash only
• X = Program flash and FlexMemory
FFF
Program flash memory size
•
•
•
•
•
•
•
32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
2M0 = 2 MB
Table continues on the next page...
Kinetis K26 Sub-Family, Rev. 4, 04/2017
87
NXP Semiconductors
Terminology and guidelines
Field
Description
Values
R
Silicon revision
• Z = Initial
• (Blank) = Main
• A = Revision after main
T
Temperature range (°C)
• V = –40 to 105
• C = –40 to 85
PP
Package identifier
•
•
•
•
•
•
•
•
•
•
FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
LH = 64 LQFP (10 mm x 10 mm)
MP = 64 MAPBGA (5 mm x 5 mm)
LK = 80 LQFP (12 mm x 12 mm)
LL = 100 LQFP (14 mm x 14 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
CC
Maximum CPU frequency (MHz)
•
•
•
•
•
•
•
5 = 50 MHz
7 = 72 MHz
10 = 100 MHz
12 = 120 MHz
15 = 150 MHz
16 = 168 MHz
18 = 180 MHz
N
Packaging type
• R = Tape and reel
• (Blank) = Trays
7.4 Example
This is an example part number:
MK26FN2M0CAC18R
8 Terminology and guidelines
8.1 Definitions
Key terms are defined in the following table:
Term
Rating
Definition
A minimum or maximum value of a technical characteristic that, if exceeded, may cause
permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
Table continues on the next page...
88
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Terminology and guidelines
Term
Definition
NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic
begins to exceed one of its operating ratings.
Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during
operation to avoid incorrect operation and possibly decreasing the useful life of the chip
Operating behavior
A specified value or range of values for a technical characteristic that are guaranteed during
operation if you meet the operating requirements and any other specified conditions
Typical value
A specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Is representative of that characteristic during operation when you meet the typical-value
conditions or other specified conditions
NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.
8.2 Examples
EX
AM
PL
E
Operating rating:
EX
AM
PL
E
Operating requirement:
EX
AM
PL
E
Operating behavior that includes a typical value:
8.3 Typical-value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Kinetis K26 Sub-Family, Rev. 4, 04/2017
89
NXP Semiconductors
Revision History
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
Supply voltage
3.3
V
8.4 Relationship between ratings and operating requirements
O
a
gr
tin
ra
pe
g
tin
(
)
in.
(m
nt
me
n.)
mi
t
era
Op
ing
e
uir
req
g
tin
era
Op
t
en
em
uir
req
ax
(m
.)
rat
pe
g
tin
ra
ing
ax
(m
.)
O
Fatal range
Degraded operating range
Normal operating range
Degraded operating range
Fatal range
Expected permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Expected permanent failure
–∞
∞
Operating (power on)
dli
n
Ha
ng
ra
g
tin
x.)
)
in.
(m
li
nd
Ha
ma
g(
tin
a
r
ng
Fatal range
Handling range
Fatal range
Expected permanent failure
No permanent failure
Expected permanent failure
–∞
∞
Handling (power off)
8.5 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
9 Revision History
The following table provides a revision history for this document.
90
NXP Semiconductors
Kinetis K26 Sub-Family, Rev. 4, 04/2017
Revision History
Table 58. Revision History
Rev. No.
Date
Substantial Changes
0
02/2015
1
04/2015
• Editorial change
• Updated OTG/EH and BC rev. 1.2 specification references in USB Full Speed
Transceiver and High Speed PHY specifications section
• Updated USBDCD electrical specifications table
• Updated the typical values and maximum values of specs in Power consumption
operating behaviors table
• Removed PSTOP2 current from Power consumption operating behaviors table
• Updated the values of DS5 and DS7 in Master mode DSPI timing (full voltage
range) table
• Updated the footnote and description of VDIO, VAIO and ID in Voltage and current
operating ratings table
• Updated the values and description of specs in Voltage and current operating
requirements table
• Updated the leakage current specs in Voltage and current operating behaviors table
• Added Notes column in Thermal operating requirements
• Updated the values of 48 MHz IRC in Low power mode peripheral adders table
2
05/2015
• Added new footnotes for IINRUSH in USB VREG electrical specifications table to
better document operation.
• Added a footnote to the figures, "SDRAM write timing diagram" and "SDRAM read
timing diagram," for 144-pin packages, in the section "SDRAM controller
specifications."
• Added a note to the section "Pinouts" for pin functions not available in 144-pin
packages.
3
01/2016
•
•
•
•
•
•
4
03/2017
• Removed the verbiage of "except RTC_WAKEUP pins" from the description for RPU
and RPD in Voltage and current operating behaviors table
• Updated the unit of ADC conversion rate from "Kbps" to "kS/s" in 16-bit ADC
operating conditions table
• Updated I2C switching specifications section
• Updated the minimum and maximum value of Voltage reference output with factory
trim in VREF full-range operating requirements table in Voltage reference electrical
specifications section
Initial Release
Updated the symbol in footnote of Thermal operating spec
Updated description of PLL operating current in MCG specification table.
Added the USB FS and USB HS logo in front matter
Updated IRC48M specifications
Updated Terminology and guidelines section
Updated the maximum values of IDD_LLS2 and IDD_LLS3 in Power consumption
operating behaviors table
Kinetis K26 Sub-Family, Rev. 4, 04/2017
91
NXP Semiconductors
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer's technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V.
All other product or service names are the property of their respective owners.
ARM, the ARM powered logo, and Cortex are registered trademarks of ARM
Limited (or its subsidiaries) in the EU and/or elsewhere. The USB-IF Logo is a
registered trademark of USB Implementers Forum, Inc. All rights reserved.
© 2013–2017 NXP B.V.
Document Number K26P169M180SF5
Revision 4, 04/2017