0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MK60FX512VMD12

MK60FX512VMD12

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LBGA144

  • 描述:

    IC MCU 32B 512KB FLASH 144MAPBGA

  • 数据手册
  • 价格&库存
MK60FX512VMD12 数据手册
NXP Semiconductors Data Sheet: Technical Data K61 Sub-Family Document Number K61P256M150SF3 Rev. 7, 02/2018 K61P256M150SF3 Supports the following: MK61FX512VMJ15, MK61FN1M0VMJ15 Key features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 150 MHz Arm® Cortex®-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz • Memories and memory interfaces – Up to 1024 KB program flash memory on nonFlexMemory devices – Up to 512 KB program flash memory on FlexMemory devices – Up to 512 KB FlexNVM on FlexMemory devices – 16 KB FlexRAM on FlexMemory devices – Up to 128 KB RAM – Serial programming interface (EzPort) – FlexBus external bus interface – DDR controller interface – NAND flash controller interface • Clocks – 3 to 32 MHz crystal oscillator – 32 kHz crystal oscillator – Multi-purpose clock generator • System peripherals – Multiple low-power modes to provide power optimization based on application requirements – Memory protection unit with multi-master protection – 32-channel DMA controller, supporting up to 128 request sources – External watchdog monitor – Software watchdog – Low-leakage wakeup unit • Security and integrity modules – Hardware CRC module to support fast cyclic redundancy checks – Tamper detect and secure storage – Hardware random-number generator – Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms – 128-bit unique identification (ID) number per chip • Human-machine interface – Low-power hardware touch sensor interface (TSI) – General-purpose input/output • Analog modules – Four 16-bit SAR ADCs – Programmable gain amplifier (PGA) (up to x64) integrated into each ADC – Two 12-bit DACs – Four analog comparators (CMP) containing a 6-bit DAC and programmable reference input – Voltage reference • Timers – Programmable delay block – Two 8-channel motor control/general purpose/PWM timers – Two 2-channel quadrature decoder/general purpose timers – IEEE 1588 timers – Periodic interrupt timers – 16-bit low-power timer – Carrier modulator transmitter – Real-time clock NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. • Communication interfaces – Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability – USB high-/full-/low-speed On-the-Go controller with ULPI interface – USB full-/low-speed On-the-Go controller with on-chip transceiver – USB Device Charger detect (USBDCD) – Two Controller Area Network (CAN) modules – Three SPI modules – Two I2C modules – Six UART modules – Secure Digital Host Controller (SDHC) – Two I2S modules K61 Sub-Family, Rev. 7, 02/2018 2 NXP Semiconductors Table of Contents 1 Ordering parts.......................................................................................5 6.2 System modules........................................................................... 29 1.1 Determining valid orderable parts............................................... 5 6.3 Clock modules............................................................................. 29 2 Part identification................................................................................. 5 6.3.1 MCG specifications..................................................... 29 2.1 Description...................................................................................5 6.3.2 Oscillator electrical specifications...............................32 2.2 Format.......................................................................................... 5 6.3.3 32 kHz oscillator electrical characteristics.................. 34 2.3 Fields............................................................................................5 6.4 Memories and memory interfaces................................................34 2.4 Example....................................................................................... 6 6.4.1 Flash (FTFE) electrical specifications.........................34 3 Terminology and guidelines.................................................................6 6.4.2 EzPort switching specifications...................................39 3.1 Definitions................................................................................... 6 6.4.3 NAND flash controller specifications......................... 40 3.2 Examples......................................................................................6 6.4.4 DDR controller specifications..................................... 43 3.3 Typical-value conditions..............................................................7 6.4.5 Flexbus switching specifications.................................46 3.4 Relationship between ratings and operating requirements.......... 7 3.5 Guidelines for ratings and operating requirements......................8 4 Ratings..................................................................................................8 6.5 Security and integrity modules.................................................... 48 6.5.1 DryIce Tamper Electrical Specifications.....................48 6.6 Analog..........................................................................................49 4.1 Thermal handling ratings............................................................. 8 6.6.1 ADC electrical specifications...................................... 49 4.2 Moisture handling ratings............................................................ 9 6.6.2 CMP and 6-bit DAC electrical specifications............. 56 4.3 ESD handling ratings................................................................... 9 6.6.3 12-bit DAC electrical characteristics...........................58 4.4 Voltage and current operating ratings..........................................9 6.6.4 Voltage reference electrical specifications..................61 5 General................................................................................................. 10 6.7 Timers.......................................................................................... 62 5.1 AC electrical characteristics........................................................ 10 6.8 Communication interfaces........................................................... 62 5.2 Nonswitching electrical specifications........................................ 10 6.8.1 Ethernet switching specifications................................ 62 5.2.1 Voltage and current operating requirements............... 10 6.8.2 USB electrical specifications.......................................65 5.2.2 LVD and POR operating requirements....................... 12 6.8.3 USB DCD electrical specifications............................. 65 5.2.3 Voltage and current operating behaviors.....................13 6.8.4 USB VREG electrical specifications...........................66 5.2.4 Power mode transition operating behaviors................ 16 6.8.5 ULPI timing specifications..........................................66 5.2.5 Power consumption operating behaviors.....................17 6.8.6 CAN switching specifications..................................... 67 5.2.6 EMC radiated emissions operating behaviors............. 20 6.8.7 DSPI switching specifications (limited voltage 5.2.7 Designing with radiated emissions in mind.................21 5.2.8 Capacitance attributes..................................................21 6.8.8 DSPI switching specifications (full voltage range)..... 69 5.3 Switching specifications.............................................................. 21 6.8.9 Inter-Integrated Circuit Interface (I2C) timing............71 range)...........................................................................67 5.3.1 Device clock specifications......................................... 21 6.8.10 UART switching specifications...................................72 5.3.2 General switching specifications.................................22 6.8.11 SDHC specifications................................................... 72 5.4 Thermal specifications................................................................. 24 6.8.12 I2S/SAI switching specifications................................ 73 5.4.1 Thermal operating requirements..................................24 5.4.2 Thermal attributes........................................................24 6.9 Human-machine interfaces (HMI)...............................................80 6.9.1 TSI electrical specifications........................................ 80 5.5 Power sequencing........................................................................ 25 7 Dimensions...........................................................................................81 6 Peripheral operating requirements and behaviors................................ 25 7.1 Obtaining package dimensions.................................................... 81 6.1 Core modules............................................................................... 25 8 Pinout................................................................................................... 81 6.1.1 Debug trace timing specifications............................... 25 8.1 Pins with active pull control after reset....................................... 81 6.1.2 JTAG electricals.......................................................... 26 8.2 K61 Signal Multiplexing and Pin Assignments...........................82 K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 3 8.3 K61 Pinouts..................................................................................91 9 Revision History...................................................................................92 K61 Sub-Family, Rev. 7, 02/2018 4 NXP Semiconductors Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to nxp.com and perform a part number search for the following device numbers: PK61 and MK61 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q K## A M FFF T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K61 A Key attribute • F = Cortex-M4 w/ DSP and FPU M Flash memory type • N = Program flash only • X = Program flash and FlexMemory FFF Program flash memory size • 512 = 512 KB • 1M0 = 1 MB Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 5 Terminology and guidelines Field Description Values T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • MJ = 256 MAPBGA (17 mm x 17 mm) CC Maximum CPU frequency (MHz) • 15 = 150 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 2.4 Example This is an example part number: MK61FN1M0VMJ15 3 Terminology and guidelines 3.1 Definitions Key terms are defined in the following table: Term Rating Definition A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip Operating behavior A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions Typical value A specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed. K61 Sub-Family, Rev. 7, 02/2018 6 NXP Semiconductors Terminology and guidelines 3.2 Examples EX A M PL E Operating rating: EX AM PL E Operating requirement: EX AM PL E Operating behavior that includes a typical value: 3.3 Typical-value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD Supply voltage 3.3 V K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 7 Ratings 3.4 Relationship between ratings and operating requirements e Op ing rat r ( ng ati n. mi ) ing rat e Op e re ir qu ) in. t (m n me ing rat e Op e ir qu re t (m n me ax .) ing rat e Op (m ng ati .) ax r Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) ng dli n Ha n.) mi g( in rat ma g( ng dli n Ha in rat x.) Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) 3.5 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 4 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. K61 Sub-Family, Rev. 7, 02/2018 8 NXP Semiconductors Ratings 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 4.4 Voltage and current operating ratings Symbol Description Min. Max. Unit Digital supply voltage1 –0.3 3.8 V VDD_INT Core supply voltage –0.3 3.8 V VDD_DDR DDR I/O supply voltage –0.3 3.8 V Digital supply current — 300 mA IDD_INT Core supply current — 185 mA IDD_DDR DDR supply current — 220 mA Digital input voltage (except RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1) 2 –0.3 5.5 V DDR input voltage –0.3 VDD_DDR + 0.3 V Analog3, RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1 input voltage –0.3 VDD + 0.3 V Maximum current single pin limit (applies to all digital pins) –25 25 mA VDD – 0.3 VDD + 0.3 V VDD IDD VDIO VDDDR VAIO ID VDDA Analog supply voltage VUSB0_DP USB0_DP input voltage –0.3 3.63 V VUSB1_DP USB1_DP input voltage –0.3 3.63 V Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 9 General Symbol Description Min. Max. Unit VUSB0_DM USB0_DM input voltage –0.3 3.63 V VUSB1_DM USB1_DM input voltage –0.3 3.63 V VREGIN USB regulator input –0.3 6.0 V RTC battery supply voltage –0.3 3.8 V VBAT 1. It applies for all port pins except Tamper pins. 2. It covers digital pins except Tamper pins and DDR pins. 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 5 General 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. VIH Input Signal High Low 80% 50% 20% Midpoint1 Fall Time VIL Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 1. Input signal measurement reference All digital I/O switching characteristics assume: 1. output pins • have CL=30pF loads, • are configured for fast slew rate (PORTx_PCRn[SRE]=0), and • are configured for high drive strength (PORTx_PCRn[DSE]=1) 2. input pins • have their passive filter disabled (PORTx_PCRn[PFE]=0) 5.2 Nonswitching electrical specifications K61 Sub-Family, Rev. 7, 02/2018 10 NXP Semiconductors General 5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage max [VDD_DDR, 1.71 V] 3.6 V 1.71 VDD V • DDR1 2.3 2.7 V • DDR2/LPDDR1 1.71 1.9 V 0.49 × VDD_DDR VDD_DDR V 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V 0.7 × VDD — V 0.75 × VDD — V — 0.35 × VDD V — 0.3 × VDD V VREF_DDR + 0.15 — V VREF_DDR + 0.125 — V 0.7 × VDD_DDR — V — VREF_DDR – 0.15 V — VREF_DDR – 0.125 V VDD_INT Core supply voltage VDD_DDR DDR voltage — memory I/O buffers VREF_DDR VDDA VBAT VIH Input reference voltage (DDR1/DDR2/ LPDDR1) Analog supply voltage RTC battery supply voltage Input high voltage (digital pins except Tamper pins and DDR pins) • 2.7 V ≤ VDD ≤ 3.6 V • 1.7 V ≤ VDD ≤ 2.7 V VIL Input low voltage (digital pins except Tamper pins and DDR pins) • 2.7 V ≤ VDD ≤ 3.6 V • 1.7 V ≤ VDD ≤ 2.7 V VIH_DDR Input high voltage (DDR pins) • DDR1 • DDR2 • LPDDR1 VIL_DDR Input low voltage (DDR pins) • DDR1 • DDR2 • LPDDR1 VHYS Input hysteresis (digital pins except Tamper pins and DDR pins) IICDIO Digital pin (except Tamper pins) negative DC injection current — single pin — 0.3 × VDD_DDR V 0.06 × VDD — V -5 — mA Notes 1 2 • VIN < VSS-0.3V IICAIO Analog3, EXTAL0/XTAL0, and EXTAL1/ XTAL1 pin DC injection current — single pin • VIN < VSS-0.3V (Negative current injection) • VIN > VDD+0.3V (Positive current injection) 4 mA -5 — — +5 Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 11 General Table 1. Voltage and current operating requirements (continued) Symbol IICcont Description Contiguous pin DC injection current — regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection Min. Max. -25 — — +25 Unit Notes mA • Positive current injection VODPU Open drain pullup voltage level VDD VDD V VRAM VDD (VDD_INT) voltage required to retain RAM 1.2 — V VPOR_VBAT — V VRFVBAT VBAT voltage required to retain the VBAT register file 5 1. For DDR1/DDR2, connect VREF_DDR to the same reference voltage used for the memory. For LPDDR1, connect VREF_DDR to the VDD_DDR voltage. 2. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|. 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins. 4. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|IICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents. 5. Open drain outputs must be pulled to VDD. 5.2.2 LVD and POR operating requirements Table 2. LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V 2.62 2.70 2.78 V 2.72 2.80 2.88 V 2.82 2.90 2.98 V 2.92 3.00 3.08 V — ±80 — mV 1.54 1.60 1.66 V 1.74 1.80 1.86 V 1.84 1.90 1.96 V VLVW1H VLVW2H VLVW3H VLVW4H Low-voltage warning thresholds — high range • Level 1 falling (LVWV=00) • Level 2 falling (LVWV=01) • Level 3 falling (LVWV=10) Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) VLVW2L 1 • Level 4 falling (LVWV=11) VHYSH VLVW1L Notes Low-voltage warning thresholds — low range • Level 1 falling (LVWV=00) 1 Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 12 NXP Semiconductors General Table 2. LVD and POR operating requirements (continued) Symbol Description Min. Typ. Max. Unit VLVW3L • Level 2 falling (LVWV=01) 1.94 2.00 2.06 V VLVW4L • Level 3 falling (LVWV=10) 2.04 2.10 2.16 V — ±60 — mV Notes • Level 4 falling (LVWV=11) VHYSL Low-voltage inhibit reset/recover hysteresis — low range VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period 900 1000 1100 μs factory trimmed 1. Rising thresholds are falling threshold + hysteresis voltage Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit 0.8 1.1 1.5 V Notes 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol Min. Typ. • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA VDD – 0.5 — • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA VDD – 0.5 — • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA VDD – 0.5 — • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA VDD – 0.5 — Output high current total for all ports — — 100 mA IOHT_io60 Output high current total for fast digital ports — — 100 mA VOH_DDR Output high voltage for DDR pins VDD_DDR 0.36 — — V — — V — — V — — V — — V VOH Description Output high voltage — high drive strength • DDR1 (IOH = -16.2 mA) • DDR2 half strength (IOH = -5.36 mA) • DDR2 full strength (IOH = -13.4 mA) • LPDDR1 half strength (IOH = -0.1 mA) • LPDDR1 full strength (IOH = -0.1 mA) Unit Notes — Output high voltage — low drive strength IOHT Max. — V V — VDD_DDR 0.28 VDD_DDR 0.28 — V V 0.9 x VDD_DDR 0.9 x VDD_DDR Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 13 General Table 4. Voltage and current operating behaviors (continued) Symbol Description IOHT_DDR Output high current total for DDR pins • DDR1 • DDR2 Min. Typ. Max. Unit — — 100 mA — — 56 mA — — 39 mA VBAT – 0.5 — — V VBAT – 0.5 — — V VBAT – 0.5 — — V VBAT – 0.5 — — V — — 100 mA 0.5 V 0.5 V 0.5 V 0.5 V Notes • LPDDR1 VOH_Tamper Output high voltage — high drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -10mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -3mA Output high voltage — low drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -2mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -0.6mA IOH_Tamper Output high current total for Tamper pins VOL Output low voltage — high drive strength — • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10 mA — • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 5 mA — Output low voltage — low drive strength IOLT — — • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA — • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1 mA — — Output low current total for all ports — — 100 mA IOLT_io60 Output low current total for fast digital ports — — 100 mA VOL_DDR Output low voltage for DDR pins — — 0.37 V • DDR1 (IOL = 16.2 mA) — — 0.28 V • DDR2 half strength (IOL = 5.36 mA) — — 0.28 V • DDR2 full strength (IOL = 13.4 mA) — — — — 0.1 x VDD_DDR V • LPDDR1 half strength (IOL = 0.1 mA) • LPDDR1 full strength (IOL = 0.1 mA) IOLT_DDR Output low current total for DDR pins V 0.1 x VDD_DDR — — • DDR1 • DDR2 100 mA 56 mA 39 mA • LPDDR1 VOL_Tamper Output low voltage — high drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 10mA — — 0.5 V — — 0.5 V — — 0.5 V — — 0.5 V • 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 3mA Output low voltage — low drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 2mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 0.6mA Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 14 NXP Semiconductors General Table 4. Voltage and current operating behaviors (continued) Symbol Description IOL_Tamper Output low current total for Tamper pins IINA Min. Typ. Max. Unit — — 100 mA Input leakage current, analog pins and digital pins configured as analog inputs Notes 1, 2 • VSS ≤ VIN ≤ VDD • All pins except EXTAL32, XTAL32, EXTAL, XTAL • EXTAL (PTA18) and XTAL (PTA19) • EXTAL32, XTAL32 IIND — 0.002 0.5 μA — 0.004 1.5 μA — 0.075 10 μA Input leakage current, digital pins 2, 3 • VSS ≤ VIN ≤ VIL • All digital pins — 0.002 0.5 μA — 0.002 0.5 μA — 0.004 1 μA • VIN = VDD • All digital pins except PTD7 • PTD7 IIND Input leakage current, digital pins 2, 3, 4 • VIL < VIN < VDD IIND • VDD = 3.6 V — 18 26 μA • VDD = 3.0 V — 12 19 μA • VDD = 2.5 V — 8 13 μA • VDD = 1.7 V — 3 6 μA Input leakage current, digital pins • VDD < VIN < 5.5 V ZIND 2, 3 — 1 50 μA Input impedance examples, digital pins 2, 5 • VDD = 3.6 V — — 48 kΩ • VDD = 3.0 V — — 55 kΩ • VDD = 2.5 V — — 57 kΩ • VDD = 1.7 V — — 85 kΩ IIN_DDR Input leakage current (per DDR pin) for full temperature range — — 1 μA IIN_DDR Input leakage current (per DDR pin) at 25°C — — 0.025 μA IIN_Tamper Input leakage current (per Tamper pin) for full temperature range — — 1 μA IIN_Tamper Input leakage current (per Tamper pin) at 25°C — — 0.025 μA RPU Internal pullup resistors (except Tamper pins) 20 — 50 kΩ 6 RPD Internal pulldown resistors (except Tamper pins) 20 — 50 kΩ 7 RODT On-die termination (ODT) resistance for DDR2 60 — 90 Ω 120 — 180 Ω • Rtt1(eff) - 75 Ω • Rtt2(eff) - 150 Ω K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 15 General 1. 2. 3. 4. 5. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL. Internal pull-up/pull-down resistors disabled. Characterized, not tested in production. Examples calculated using VIL relation, VDD, and max IIND: ZIND=VIL/IIND. This is the impedance needed to pull a high signal to a level below VIL due to leakage when VIL < VIN < VDD. These examples assume signal source low = 0 V. See Figure 2. 6. Measured at VDD supply voltage = VDD min and Vinput = VSS 7. Measured at VDD supply voltage = VDD min and Vinput = VDD Figure 2. 5 V Tolerant Input IIND Parameter 5.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • • • • • CPU and system clocks = 100 MHz Bus clock = 50 MHz FlexBus clock = 50 MHz Flash clock = 25 MHz MCG mode: FEI Table 5. Power mode transition operating behaviors Symbol tPOR Description Min. Max. After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. • VDD slew rate ≥ 5.7 kV/s • VDD slew rate < 5.7 kV/s • VLLS1 → RUN • VLLS2 → RUN Unit Notes 1 μs — 300 — 1.7 V / (VDD slew rate) — 160 μs — 114 μs Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 16 NXP Semiconductors General Table 5. Power mode transition operating behaviors (continued) Symbol Description • VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN Min. Max. Unit — 114 μs — 5.0 μs — 5 μs — 4.8 μs Notes 1. Normal boot (FTFE_FOPT[LPBOOT]=1) 5.2.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors Symbol IDDA IDD_RUN IDD_RUN Description Analog supply current Min. Typ. Max. Unit Notes — — See note mA 1 Run mode current — all peripheral clocks disabled, code executing from flash 2 • @ 1.8V — 58.01 83.95 mA • @ 3.0V — 57.93 84.14 mA Run mode current — all peripheral clocks enabled, code executing from flash 3 • @ 1.8V — 89.26 116.53 mA • @ 3.0V — 89.23 117.26 mA IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 40.18 65.25 mA 2 IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled — 18.08 42.96 mA 4 IDD_STOP Stop mode current at 3.0 V • @ –40 to 25°C — 1.25 1.62 mA • @ 70°C — 2.93 4.39 mA • @ 105°C — 7.08 10.74 mA IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 1.03 4.48 mA 5 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 1.58 4.96 mA 5 IDD_VLPW Very-low-power wait mode current at 3.0 V — 0.64 4.29 mA 5 IDD_VLPS Very-low-power stop mode current at 3.0 V — 0.22 0.38 mA — 0.78 1.33 mA • @ –40 to 25°C Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 17 General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit — 2.18 3.56 mA • @ –40 to 25°C — 0.22 0.37 mA • @ 70°C — 0.78 1.33 mA • @ 105°C — 2.16 3.52 mA • @ –40 to 25°C — 4.09 5.58 μA • @ 70°C — 20.98 28.93 μA • @ 105°C — 84.95 111.15 μA • @ –40 to 25°C — 2.68 4.22 μA • @ 70°C — 8.8 10.74 μA • @ 105°C — 37.28 43.61 μA • @ –40 to 25°C — 2.46 4.02 μA • @ 70°C — 7.04 8.99 μA • @ 105°C — 30.68 37.04 μA • @ 70°C Notes • @ 105°C IDD_LLS IDD_VLLS3 IDD_VLLS2 IDD_VLLS1 IDD_VBAT Low leakage stop mode current at 3.0 V Very low-leakage stop mode 3 current at 3.0 V Very low-leakage stop mode 2 current at 3.0 V Very low-leakage stop mode 1 current at 3.0 V Average current when CPU is not accessing RTC registers at 3.0 V 6 • @ –40 to 25°C — 0.89 1.10 μA • @ 70°C — 1.28 1.85 μA • @ 105°C — 3.10 4.30 μA 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 150 MHz core and system clock, 75 MHz bus, 50 MHz FlexBus clock, and 25 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled. 3. 150 MHz core and system clock, 75 MHz bus, 50 MHz FlexBus clock, and 25 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled, but peripherals are not in active operation. 4. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode. 5. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 6. Includes 32kHz oscillator current and RTC operation. 5.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies. MCG in PEE mode at greater than 100 MHz frequencies. K61 Sub-Family, Rev. 7, 02/2018 18 NXP Semiconductors General • • • • USB regulator disabled No GPIOs toggled Code execution from flash with cache enabled For the ALLOFF curve, all peripheral clocks are disabled except FTFE Figure 3. Run mode supply current vs. core frequency K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 19 General Figure 4. VLPR mode supply current vs. core frequency 5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 256MAPBGA Symbol Description Frequency band (MHz) Typ. Unit Notes 1, 2, 3 VRE1 Radiated emissions voltage, band 1 0.15–50 21 dBμV VRE2 Radiated emissions voltage, band 2 50–150 24 dBμV VRE3 Radiated emissions voltage, band 3 150–500 29 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 28 dBμV 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 72 MHz, fBUS = 72 MHz 3. Determined according to IEC Standard JESD78, IC Latch-Up Test K61 Sub-Family, Rev. 7, 02/2018 20 NXP Semiconductors General 5.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.nxp.com. 2. Perform a keyword search for “EMC design.” 5.2.8 Capacitance attributes Table 8. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF Input capacitance: fast digital pins — 9 pF CIN_D_io60 5.3 Switching specifications 5.3.1 Device clock specifications Table 9. Device clock specifications Symbol Description Min. Max. Unit System and core clock — 150 MHz fSYS_USBFS System and core clock when Full Speed USB in operation 20 — MHz fSYS_USBHS System and core clock when High Speed USB in operation 60 — MHz fENET System and core clock when ethernet in operation Notes Normal run mode fSYS • 10 Mbps • 100 Mbps MHz 5 — 50 — Bus clock — 75 MHz FlexBus clock — 50 MHz fFLASH Flash clock — 25 MHz fDDR DDR clock — 150 MHz — 25 MHz fBUS FB_CLK fLPTMR LPTMR clock VLPR mode1 Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 21 General Table 9. Device clock specifications (continued) Symbol Description Min. Max. Unit fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz FlexBus clock — 4 MHz fFLASH Flash clock — 0.5 MHz fLPTMR LPTMR clock — 4 MHz FB_CLK Notes 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. 5.3.2 General switching specifications These general purpose specifications apply to all pins configured for: • GPIO signaling • Other peripheral module signaling not explicitly stated elsewhere Table 10. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1, 2 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns 3 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 16 — ns 3 External reset pulse width (digital glitch filter disabled) 100 — ns 3 2 — Bus clock cycles Mode select (EZP_CS) hold time after reset deassertion Port rise and fall time (high drive strength) 4 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 14 ns • 2.7 ≤ VDD ≤ 3.6V — 8 ns • 1.71 ≤ VDD ≤ 2.7V — 36 ns • 2.7 ≤ VDD ≤ 3.6V — 24 ns • Slew enabled Port rise and fall time (low drive strength) 5 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 14 ns • 2.7 ≤ VDD ≤ 3.6V — 8 ns — 36 ns • Slew enabled Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 22 NXP Semiconductors General Table 10. General switching specifications (continued) Symbol Description • 1.71 ≤ VDD ≤ 2.7V Min. Max. Unit — 24 ns Notes • 2.7 ≤ VDD ≤ 3.6V tio50 Port rise and fall time (high drive strength) 6 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 7 ns — • 2.7 ≤ VDD ≤ 3.6V — 3 ns — • 1.71 ≤ VDD ≤ 2.7V — 28 ns — • 2.7 ≤ VDD ≤ 3.6V — 14 ns — • Slew enabled tio50 Port rise and fall time (low drive strength) -1 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 18 ns — • 2.7 ≤ VDD ≤ 3.6V — 9 ns — • 1.71 ≤ VDD ≤ 2.7V — 48 ns — • 2.7 ≤ VDD ≤ 3.6V — 24 ns — • Slew enabled tio60 Port rise and fall time (high drive strength) 6 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 6 ns — • 2.7 ≤ VDD ≤ 3.6V — 3 ns — • 1.71 ≤ VDD ≤ 2.7V — 28 ns — • 2.7 ≤ VDD ≤ 3.6V — 14 ns — • Slew enabled tio60 Port rise and fall time (low drive strength) -1 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 18 ns — • 2.7 ≤ VDD ≤ 3.6V — 6 ns — • 1.71 ≤ VDD ≤ 2.7V — 48 ns — • 2.7 ≤ VDD ≤ 3.6V — 24 ns — • Slew enabled 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case. 2. The greater synchronous and asynchronous timing must be met. 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes. 4. 75 pF load 5. 15 pF load 6. 25 pF load K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 23 General 5.4 Thermal specifications 5.4.1 Thermal operating requirements Table 11. Thermal operating requirements Symbol TJ TA Description Min. Max. Unit Die junction temperature –40 125 °C –40 105 °C Ambient temperature1 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to determine TJ is: TJ = TA + RθJA x chip power dissipation 5.4.2 Thermal attributes Board type Symbol Description 256 MAPBGA Unit Notes Single-layer (1s) RθJA Thermal 43 resistance, junction to ambient (natural convection) °C/W 1, 2 Four-layer (2s2p) RθJA Thermal 28 resistance, junction to ambient (natural convection) °C/W 1,2, 3 Single-layer (1s) RθJMA Thermal 36 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,3 Four-layer (2s2p) RθJMA Thermal 25 resistance, junction to ambient (200 ft./ min. air speed) °C/W 1,3 — RθJB Thermal 17 resistance, junction to board °C/W 4 — RθJC Thermal 8 resistance, junction to case °C/W 5 — ΨJT Thermal 2 characterization parameter, junction to package top outside center (natural convection) °C/W 6 K61 Sub-Family, Rev. 7, 02/2018 24 NXP Semiconductors Peripheral operating requirements and behaviors 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air) with the single layer board horizontal. Board meets JESD51-9 specification. 3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions —Forced Convection (Moving Air) with the board horizontal. 4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board. Board temperature is measured on the top surface of the board near the package. 5. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air). 5.5 Power sequencing Voltage supplies must be sequenced in the proper order to avoid damaging internal diodes. There is no limit on how long after one supply powers up before the next supply must power up. Note that VDD and VDD_INT can use the same power source. The power-up sequence is: 1. VDD/VDDA 2. VDD_INT 3. VDD_DDR The power-down sequence is the reverse: 1. VDD_DDR 2. VDD_INT 3. VDD/VDDA 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 Debug trace timing specifications Table 12. Debug trace operating behaviors Symbol Description Tcyc Clock period Twl Low pulse width Min. Max. Unit Frequency dependent MHz 2 — ns Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 25 Peripheral operating requirements and behaviors Table 12. Debug trace operating behaviors (continued) Symbol Min. Max. Unit High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 3 — ns Th Data hold 2 — ns Twh Description TRACECLK Tr Tf Twh Twl Tcyc Figure 5. TRACE_CLKOUT specifications TRACE_CLKOUT Ts Th Ts Th TRACE_D[3:0] Figure 6. Trace data specifications 6.1.2 JTAG electricals Table 13. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — ns 50 — ns 20 — ns J2 TCLK cycle period J3 TCLK clock pulse width • Boundary Scan Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 26 NXP Semiconductors Peripheral operating requirements and behaviors Table 13. JTAG limited voltage range electricals (continued) Symbol Description • JTAG and CJTAG Min. Max. Unit 10 — ns • Serial Wire Debug J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.4 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns Table 14. JTAG full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug 12.5 — ns J2 TCLK cycle period J3 TCLK clock pulse width J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.4 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.4 — ns J11 TCLK low to TDO data valid — 22.1 ns J12 TCLK low to TDO high-Z — 22.1 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 27 Peripheral operating requirements and behaviors J2 J3 J3 TCLK (input) J4 J4 Figure 7. Test clock input timing TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 8. Boundary scan (JTAG) timing K61 Sub-Family, Rev. 7, 02/2018 28 NXP Semiconductors Peripheral operating requirements and behaviors TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 9. Test Access Port timing TCLK J14 J13 TRST Figure 10. TRST timing 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 29 Peripheral operating requirements and behaviors 6.3.1 MCG specifications Table 15. MCG specifications Symbol Description Min. Typ. Max. Unit — 32.768 — kHz 31.25 — 39.0625 kHz Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 4.5 — %fdco 1 fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C fints_t Internal reference frequency (slow clock) — user trimmed Δfdco_t floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz — 180 — Notes FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 2, 3 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX32 DCO output frequency Low range (DRS=00) 4, 5 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter ps Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 30 NXP Semiconductors Peripheral operating requirements and behaviors Table 15. MCG specifications (continued) Symbol Description • fVCO = 48 MHz • fVCO = 98 MHz tfll_acquire FLL target frequency acquisition time Min. Typ. Max. Unit Notes — 150 — — — 1 ms 6 8 — 16 MHz PLL0,1 fpll_ref PLL reference frequency range fvcoclk_2x VCO output frequency fvcoclk PLL output frequency fvcoclk_90 180 90 PLL quadrature output frequency Ipll PLL0 operating current • VCO @ 184 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 23) Ipll PLL0 operating current • VCO @ 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 45) Ipll PLL1 operating current • VCO @ 184 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 23) Ipll PLL1 operating current • VCO @ 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref = 8 MHz, VDIV multiplier = 45) tpll_lock Lock detector detection time Jcyc_pll PLL period jitter (RMS) Jacc_pll 90 — — — 360 180 180 MHz MHz MHz — 2.8 — mA — 4.7 — mA — 2.3 — mA — 3.6 — mA — — 100 × 10-6 + 1075(1/ fpll_ref) s 7 7 7 8 9 • fvco = 180 MHz — 100 — ps • fvco = 360 MHz — 75 — ps PLL accumulated jitter over 1µs (RMS) 10 • fvco = 180 MHz — 600 — ps • fvco = 360 MHz — 300 — ps 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 7. Excludes any oscillator currents that are also consuming power while PLL is in operation. 8. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 10. Accumulated jitter depends on VCO frequency and VDIV. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 31 Peripheral operating requirements and behaviors 6.3.2 Oscillator electrical specifications 6.3.2.1 Oscillator DC electrical specifications Table 16. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high-gain mode (HGO=1) 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 32 NXP Semiconductors Peripheral operating requirements and behaviors Table 16. Oscillator DC electrical specifications (continued) Symbol Vpp5 1. 2. 3. 4. 5. Description Min. Typ. Max. Unit Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V Notes VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx and Cy can be provided by using either integrated capacitors or external components. When low-power mode is selected, RF is integrated and must not be attached externally. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device. 6.3.2.2 Symbol Oscillator frequency specifications Table 17. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — highfrequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 60 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 1000 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 500 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1 2, 3 4, 5 1. Frequencies less than 8 MHz are not in the PLL range. 2. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL. 3. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 33 Peripheral operating requirements and behaviors 4. Proper PC board layout procedures must be followed to achieve specifications. 5. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. NOTE The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode. 6.3.3 32 kHz oscillator electrical characteristics 6.3.3.1 32 kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VBAT Supply voltage 1.71 — 3.6 V Internal feedback resistor — 100 — MΩ Cpara Parasitical capacitance of EXTAL32 and XTAL32 — 5 7 pF Vpp1 Peak-to-peak amplitude of oscillation — 0.6 — V RF 1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.3.2 Symbol fosc_lo tstart 32 kHz oscillator frequency specifications Table 19. 32 kHz oscillator frequency specifications Description Min. Typ. Max. Unit Oscillator crystal — 32.768 — kHz Crystal start-up time — 1000 — ms 1 700 — VBAT mV 2, 3 vec_extal32 Externally provided input clock amplitude Notes 1. Proper PC board layout procedures must be followed to achieve specifications. 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected. 3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied clock must be within the range of VSS to VBAT. 6.4 Memories and memory interfaces 6.4.1 Flash (FTFE) electrical specifications This section describes the electrical characteristics of the FTFE module. K61 Sub-Family, Rev. 7, 02/2018 34 NXP Semiconductors Peripheral operating requirements and behaviors 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 20. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit thvpgm8 thversscr Notes Program Phrase high-voltage time — 7.5 18 μs Erase Flash Sector high-voltage time — 13 113 ms 1 thversblk128k Erase Flash Block high-voltage time for 128 KB — 104 1808 ms 1 thversblk256k Erase Flash Block high-voltage time for 256 KB — 208 3616 ms 1 Notes 1. Maximum time based on expectations at cycling end-of-life. 6.4.1.2 Symbol Flash timing specifications — commands Table 21. Flash command timing specifications Description Min. Typ. Max. Unit Read 1s Block execution time trd1blk128k • 128 KB data flash — — 0.5 ms trd1blk256k • 256 KB program flash — — 1.0 ms 256 KB data flash trd1sec4k Read 1s Section execution time (4 KB flash) — — 100 μs 1 tpgmchk Program Check execution time — — 80 μs 1 trdrsrc Read Resource execution time — — 40 μs 1 tpgm8 Program Phrase execution time — 70 150 μs Erase Flash Block execution time 2 tersblk128k • 128 KB data flash — 110 925 ms tersblk256k • 256 KB program flash — 220 1850 ms Erase Flash Sector execution time — 15 115 ms Program Section execution time (4KB flash) — 20 — ms 256 KB data flash tersscr tpgmsec4k 2 Read 1s All Blocks execution time trd1allx • FlexNVM devices — — 3.4 ms trd1alln • Program flash only devices — — 3.4 ms Read Once execution time — — 30 μs Program Once execution time — 70 — μs tersall Erase All Blocks execution time — 650 5600 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 trdonce tpgmonce 1 Swap Control execution time Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 35 Peripheral operating requirements and behaviors Table 21. Flash command timing specifications (continued) Symbol Description Min. Typ. Max. Unit tswapx01 • control code 0x01 — 200 — μs tswapx02 • control code 0x02 — 70 150 μs tswapx04 • control code 0x04 — 70 150 μs tswapx08 • control code 0x08 — — 30 μs Notes Program Partition for EEPROM execution time tpgmpart64k • 64 KB EEPROM backup — 235 — ms tpgmpart256k • 256 KB EEPROM backup — 240 — ms • Control Code 0xFF — 205 — μs tsetram64k • 64 KB EEPROM backup — 1.6 2.5 ms tsetram128k • 128 KB EEPROM backup — 2.7 3.8 ms tsetram256k • 256 KB EEPROM backup — 4.8 6.2 ms — 140 225 μs Set FlexRAM Function execution time: tsetramff t eewr8bers Byte-write to erased FlexRAM location execution time 3 Byte-write to FlexRAM execution time: teewr8b64k • 64 KB EEPROM backup — 400 1700 μs teewr8b128k • 128 KB EEPROM backup — 450 1800 μs teewr8b256k • 256 KB EEPROM backup — 525 2000 μs — 140 225 μs t eewr16bers 16-bit write to erased FlexRAM location execution time 16-bit write to FlexRAM execution time: teewr16b64k • 64 KB EEPROM backup — 400 1700 μs teewr16b128k • 128 KB EEPROM backup — 450 1800 μs teewr16b256k • 256 KB EEPROM backup — 525 2000 μs — 180 275 μs teewr32bers 32-bit write to erased FlexRAM location execution time 32-bit write to FlexRAM execution time: teewr32b64k • 64 KB EEPROM backup — 475 1850 μs teewr32b128k • 128 KB EEPROM backup — 525 2000 μs teewr32b256k • 256 KB EEPROM backup — 600 2200 μs 1. Assumes 25MHz or greater flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased. K61 Sub-Family, Rev. 7, 02/2018 36 NXP Semiconductors Peripheral operating requirements and behaviors 6.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors Symbol Description IDD_PGM IDD_ERS 6.4.1.4 Symbol Min. Typ. Max. Unit Average current adder during high voltage flash programming operation — 3.5 7.5 mA Average current adder during high voltage flash erase operation — 1.5 4.0 mA Reliability specifications Table 23. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years tnvmretp1k Data retention after up to 1 K cycles 20 100 — years nnvmcycp Cycling endurance 10 K 50 K — cycles tnvmretd10k Data retention after up to 10 K cycles 5 50 — years tnvmretd1k Data retention after up to 1 K cycles 20 100 — years nnvmcycd Cycling endurance 10 K 50 K — cycles 2 Data Flash 2 FlexRAM as EEPROM tnvmretee100 Data retention up to 100% of write endurance 5 50 — years tnvmretee10 Data retention up to 10% of write endurance 20 100 — years 20 K 50 K — cycles nnvmcycee Cycling endurance for EEPROM backup Write endurance 2 3 nnvmwree16 • EEPROM backup to FlexRAM ratio = 16 70 K 175 K — writes nnvmwree128 • EEPROM backup to FlexRAM ratio = 128 630 K 1.6 M — writes nnvmwree512 • EEPROM backup to FlexRAM ratio = 512 2.5 M 6.4 M — writes nnvmwree2k • EEPROM backup to FlexRAM ratio = 2,048 10 M 25 M — writes 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM and the allocated EEPROM backup per subsystem. Minimum and typical values assume all 16bit or 32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance. 6.4.1.5 Write endurance to FlexRAM for EEPROM When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values. K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 37 Peripheral operating requirements and behaviors The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFE to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space. While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used. Writes_subsystem = EEPROM – 2 × EEESPLIT × EEESIZE EEESPLIT × EEESIZE × Write_efficiency × n nvmcycee where • Writes_subsystem — minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance) • EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command • EEESPLIT — FlexRAM split factor for subsystem; entered with the Program Partition command • EEESIZE — allocated FlexRAM based on DEPART; entered with the Program Partition command • Write_efficiency — • 0.25 for 8-bit writes to FlexRAM • 0.50 for 16-bit or 32-bit writes to FlexRAM • nnvmcycee — EEPROM-backup cycling endurance K61 Sub-Family, Rev. 7, 02/2018 38 NXP Semiconductors Peripheral operating requirements and behaviors Figure 11. EEPROM backup writes to FlexRAM 6.4.2 EzPort switching specifications Table 24. EzPort switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V EP1 EZP_CK frequency of operation (all commands except READ) — fSYS/2 MHz EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid — 16 ns EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 39 Peripheral operating requirements and behaviors EZP_CK EP3 EP2 EP4 EZP_CS EP9 EP7 EP8 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 12. EzPort Timing Diagram 6.4.3 NAND flash controller specifications The NAND flash controller (NFC) implements the interface to standard NAND flash memory devices. This section describes the timing parameters of the NFC. In the following table: • TH is the flash clock high time and • TL is flash clock low time, which are defined as: T NFC = T L + T H = T input clock SCALER The SCALER value is derived from the fractional divider specified in the SIM's CLKDIV4 register: SCALER = SIM_CLKDIV4[NFCFRAC] + 1 SIM_CLKDIV4[NFCDIV] + 1 In case the reciprocal of SCALER is an integer, the duty cycle of NFC clock is 50%, means TH = TL. In case the reciprocal of SCALER is not an integer: T L = (1 + SCALER / 2) x T NFC 2 K61 Sub-Family, Rev. 7, 02/2018 40 NXP Semiconductors Peripheral operating requirements and behaviors T H = (1 – SCALER / 2) x T NFC 2 For example, if SCALER is 0.2, then TH = TL = TNFC/2. TNFC TH TL However, if SCALER is 0.667, then TL = 2/3 x TNFC and TH = 1/3 x TNFC. TNFC TH TL NOTE The reciprocal of SCALER must be a multiple of 0.5. For example, 1, 1.5, 2, 2.5, etc. Table 25. NFC specifications Num Description Min. Max. Unit tCLS NFC_CLE setup time 2TH + TL – 1 — ns tCLH NFC_CLE hold time TH + TL – 1 — ns tCS NFC_CEn setup time 2TH + TL – 1 — ns tCH NFC_CEn hold time TH + TL — ns tWP NFC_WP pulse width TL – 1 — ns tALS NFC_ALE setup time 2TH + TL — ns tALH NFC_ALE hold time TH + TL — ns tDS Data setup time TL – 1 — ns tDH Data hold time TH – 1 — ns tWC Write cycle time TH + TL – 1 — ns tWH NFC_WE hold time TH – 1 — ns tRR Ready to NFC_RE low 4TH + 3TL + 90 — ns tRP NFC_RE pulse width TL + 1 — ns tRC Read cycle time TL + TH – 1 — ns tREH NFC_RE high hold time TH – 1 — ns tIS Data input setup time 11 — ns K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 41 Peripheral operating requirements and behaviors NFC_CLE tCLS tCLH NFC_CEn tCS tWP tCH NFC_WE tDS tDH NFC_IOn Figure 13. Command latch cycle timing NFC_ALE tALS tALH NFC_CEn tCS tWP tCH NFC_WE tDS NFC_IOn tDH address Figure 14. Address latch cycle timing tCS tCH tWC NFC_CEn tWP tWH tDS tDH NFC_WE NFC_IOn data data data Figure 15. Write data latch cycle timing K61 Sub-Family, Rev. 7, 02/2018 42 NXP Semiconductors Peripheral operating requirements and behaviors tCH tRC NFC_CEn tREH tRP NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 16. Read data latch cycle timing in Slow mode tCH tRC NFC_CEn tRP tREH NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 17. Read data latch cycle timing in Fast mode and EDO mode 6.4.4 DDR controller specifications The following timing numbers must be followed to properly latch or drive data onto the DDR memory bus. All timing numbers are relative to the DQS byte lanes. Table 26. DDR controller — AC timing specifications Symbol Description Min. Max. Unit Frequency of operation tDDRCK 2 • DDR1 83.3 150 MHz • DDR2 1251 150 MHz 50 150 MHz 6.6 12 ns 6.6 8 ns • LPDDR Notes Clock period • DDR1 Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 43 Peripheral operating requirements and behaviors Table 26. DDR controller — AC timing specifications (continued) Symbol Description • DDR2 Min. Max. Unit 6.6 20 ns 0.5 x VDD_DDR – 0.2 V 0.5 x VDD_DDR + 0.2 V V 0.5 x VDD_DDR – 0.125 V 0.5 x VDD_DDR + 0.125 V 0.4 x VDD_DDR 0.4 x VDD_DDR Notes • LPDDR VOX-AC DDRCK AC differential cross point voltage • DDR1 • DDR2 • LPDDR 1. 2. 3. 4. 5. 6. 7. 8. V V tDDRCKH Pulse width high 0.45 0.55 tDDRCK 3 tDDRCKL Pulse width low 0.45 0.55 tDDRCK 3 4 tCMV Address, DDR_CKE, DDR_CAS, DDR_RAS, DDR_WE, DDR_CSn — output setup 0.5 x tDDRCK – 1 — ns tCMH Address, DDR_CKE, DDR_CAS, DDR_RAS, DDR_WE, DDR_CSn — output hold 0.5 x tDDRCK – 1 — ns tDQSS DQS rising edge to CK rising edge -0.2 x tDDRCK 0.2 x tDDRCK ns tQS Data and data mask output setup (DQ→DQS) relative to DQS (DDR write mode) 0.25 x tDDRCK – 1 — ns 5, 6 tQH Data and data mask output hold (DQS→DQ) relative to DQS (DDR write mode) 0.25 x tDDRCK – 1 — ns 7 tDQSQ DQS-DQ skew for DQS and associated DQ signals – (0.25 x tDDRCK – 1) 0.25 x tDDRCK – 1 ns 8 This is minimum frequency of operation according to JEDEC DDR2 specification. DDR data rate = 2 x DDR clock frequency Pulse width high plus pulse width low cannot exceed min and max clock period. Command output setup should be 1/2 the memory bus clock (tDDRCK) plus some minor adjustments for process, temperature, and voltage variations. This specification relates to the required input setup time of DDR memories. The microprocessor's output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation. DDR_DQ[15:8] is relative to DDR_DQS[1]; DDR_DQ[7:0] is relative to DDR_DQS[0]. The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge. This specification relates to the required hold time of DDR memories. DDR_DQ[15:8] is relative to DDR_DQS[1]; DDR_DQ[7:0] is relative to DDR_DQS[0] Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors). K61 Sub-Family, Rev. 7, 02/2018 44 NXP Semiconductors Peripheral operating requirements and behaviors 1 2 3 4 5 6 7 8 tDDRCKH tDDRCK 9 10 tDDRCKL DDR_CLK DDR__CLK tCMH tCMV DDR_CSn, DDR_WE DDR_CAS, DDR_RAS DDR_An CMD CMD ROW COL tDQSS DDR_DQSn tQH tQS DDR_DMn DDR_DQn WD1 WD2 WD3 WD4 Figure 18. DDR write timing 1 2 3 4 5 tDDRCK 6 7 8 tDDRCHH 9 10 11 12 10 11 12 tDDRCKL DDR_CLK tCMH DDR__CLK tCMV DDR_CSn, DDR_WE DDR_CAS, DDR_RAS DDR_An CMD CMD ROW COL CL=2.5 DDR_DQS DQS read preamble (CL=2.5 ) RD2 RD3 RD4 RD3RD4 RD1 DDR_DQn CL=3.0 DDR_DQS DQS read preamble RD1 RD1 DDR_DQn 2 3 4 5 6 7 RD2 RD3 8 RD4 9 RD3 1 RD2RD3RD4 (CL=3.0 ) Figure 19. DDR read timing K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 45 Peripheral operating requirements and behaviors Figure 20. DDR read timing, DQ vs. DQS 6.4.5 Flexbus switching specifications All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values. Table 27. Flexbus limited voltage range switching specifications Num Description Min. Max. Unit Notes Operating voltage 2.7 3.6 V Frequency of operation — FB_CLK MHz FB1 Clock period 20 — ns FB2 Address, data, and control output valid — 11.5 ns 1 FB3 Address, data, and control output hold 0.5 — ns 1 FB4 Data and FB_TA input setup 8.5 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. Table 28. Flexbus full voltage range switching specifications Num Description Min. Max. Unit Operating voltage 1.71 3.6 V — FB_CLK MHz Frequency of operation Notes FB1 Clock period 1/FB_CLK — ns FB2 Address, data, and control output valid — 13.5 ns 1 FB3 Address, data, and control output hold 0 — ns 1 Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 46 NXP Semiconductors Peripheral operating requirements and behaviors Table 28. Flexbus full voltage range switching specifications (continued) Num Description Min. Max. Unit Notes FB4 Data and FB_TA input setup 13.7 — ns 2 FB5 Data and FB_TA input hold 0.5 — ns 2 1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS. 2. Specification is valid for all FB_AD[31:0] and FB_TA. Read Timing Parameters S0 S1 S2 S3 S0 FB1 FB_CLK FB5 FB_A[Y] Address FB4 FB2 FB_D[X] FB3 Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn electricals_read.svg FB4 FB_BEn FB5 AA=1 FB_TA AA=0 FB_TSIZ[1:0] TSIZ S0 S1 S2 S3 S0 Figure 21. FlexBus read timing diagram K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 47 Peripheral operating requirements and behaviors Write Timing Parameters FB1 FB_CLK FB2 FB3 FB_A[Y] FB_D[X] Address Address Data FB_RW FB_TS FB_ALE AA=1 FB_CSn AA=0 FB_OEn FB_BEn FB5 AA=1 FB_TA FB_TSIZ[1:0] AA=0 electricals_write.svg FB4 TSIZ Figure 22. FlexBus write timing diagram 6.5 Security and integrity modules 6.5.1 DryIce Tamper Electrical Specifications Information about security-related modules is not included in this document and is available only after a nondisclosure agreement (NDA) has been signed. To request an NDA, please contact your local NXP sales representative. K61 Sub-Family, Rev. 7, 02/2018 48 NXP Semiconductors Peripheral operating requirements and behaviors 6.6 Analog 6.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 29 and Table 30 are achievable on the differential pins ADCx_DP0, ADCx_DM0. The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 31 and Table 32. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1 16-bit ADC operating conditions Table 29. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL ADC reference voltage low VSSA VSSA VSSA V VADIN Input voltage • 16-bit differential mode VREFL — 31/32 × VREFH V • All other modes VREFL — • 16-bit mode — 8 10 • 8-bit / 10-bit / 12-bit modes — 4 5 — 2 5 CADIN RADIN RAS Input capacitance Input series resistance Notes VREFH pF kΩ Analog source resistance (external) 13-bit / 12-bit modes 3 fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion clock frequency ≤ 13-bit mode 1.0 — 18.0 MHz 4 fADCK ADC conversion clock frequency 16-bit mode 2.0 — 12.0 MHz 4 Crate ADC conversion rate ≤ 13-bit modes 5 Table continues on the next page... K61 Sub-Family, Rev. 7, 02/2018 NXP Semiconductors 49 Peripheral operating requirements and behaviors Table 29. 16-bit ADC operating conditions (continued) Symbol Description Min. Typ.1 Max. Unit 20.000 — 818.330 kS/s Conditions No ADC hardware averaging Notes Continuous conversions enabled, subsequent conversion time Crate ADC conversion rate 16-bit mode 5 No ADC hardware averaging 37.037 — 461.467 kS/s Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns. 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN Pad leakage ZAS RAS SIMPLIFIED CHANNEL SELECT CIRCUIT RADIN ADC SAR ENGINE VADIN VAS CAS RADIN INPUT PIN INPUT PIN RADIN RADIN INPUT PIN CADIN Figure 23. ADC input impedance equivalency diagram 6.6.1.2 16-bit ADC electrical characteristics K61 Sub-Family, Rev. 7, 02/2018 50 NXP Semiconductors Peripheral operating requirements and behaviors Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 LSB4 VADIN = VDDA5 IDDA_ADC Supply current ADC asynchronous clock source fADACK Sample Time TUE DNL INL EFS EQ ENOB See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 •
MK60FX512VMD12 价格&库存

很抱歉,暂时无法提供与“MK60FX512VMD12”相匹配的价格&库存,您可以联系我们找货

免费人工找货