0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MK64FX512VMD12

MK64FX512VMD12

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LBGA144

  • 描述:

    ICMCU32BIT512KBFLASH144BGA

  • 数据手册
  • 价格&库存
MK64FX512VMD12 数据手册
NXP Semiconductors Data Sheet: Technical Data K64P142M120SF5 Rev. 8, 10/2019 Kinetis K64 Sub-Family Data Sheet With 1 MB Flash MK64FN1M0CAJ12R 120 MHz Arm® Cortex®-M4-based Microcontroller with FPU The K64 product family features high memory densities, low power capabilities, optimized integration, in an ultra-small package. It shares the comprehensive enablement and scalability of the Kinetis family. This product offers: • Up to 1 MB flash, with 256 KB of embedded SRAM • 10/100 Mbit/s Ethernet MAC with MII and RMII interfaces • Run power consumption down to 250 μA/MHz. Static power consumption down to 5.8 μA with full state retention and 5 μs wakeup. Lowest Static mode down to 339 nA • USB LS/FS OTG 2.0 with embedded 3.3 V, 120 mA LDO voltage regulator with USB device crystal-less operation Performance • Up to 120 MHz Arm® Cortex®-M4 core with DSP instructions and Floating Point Unit delivering 1.25 Dhrystone MIPS per MHz Memories and memory interfaces • Up to 1 MB program flash memory and 256 KB RAM • FlexBus external bus interface System peripherals • Multiple low-power modes, low-leakage wakeup unit • Memory protection unit with multi-master protection • 16-channel DMA controller • External watchdog monitor and software watchdog Clocks • 3 to 32 MHz and 32 kHz crystal oscillator • Multi-purpose clock generator • 1 kHz, 32 kHz, and 4 MHz internal reference clock • 48 MHz internal reference Security and integrity modules • Hardware CRC module • Hardware random-number generator • Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms • 128-bit unique identification (ID) number per chip 142 WLCSP 4.84 x 5.58 x 0.60 mm Pitch 0.4 mm Communication interfaces • Ethernet controller with MII and RMII interface • USB full-/low-speed On-the-Go controller • Controller Area Network (CAN) module • Three SPI modules • Three I2C modules • Six UART modules • Secure Digital Host Controller (SDHC) • I2S module Timers • Programmable delay block • Two 8-channel FlexTimers (PWM/Motor Control) • Two 2-channel FlexTimer (Quad Decoder/PWM) • IEEE 1588 timers • PIT and 16-bit low-power timer • Carrier modulator transmitter • Real-time clock Analog modules • Two 16-bit SAR ADCs • Two 12-bit DACs • Three analog comparators (CMP) • Voltage reference Operating Characteristics • Voltage range: 1.71 to 3.6 V • Flash write voltage range: 1.71 to 3.6 V • Temperature range (ambient): –40 to 85°C NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. Ordering Information 1 Part Number MK64FN1M0CAJ12R Memory Maximum number of I\O's Flash SRAM (KB) 1 MB 256 100 1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search. Related Resources Type Description Resource Selector Guide The NXP Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector. Solution Advisor Product Brief The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability. K60PB1 Reference Manual The Reference Manual contains a comprehensive description of the structure and function (operation) of a device. K64P144M120SF5RM 1 Data Sheet The Data Sheet includes electrical characteristics and signal connections. This document Package drawing Package dimensions are provided in package drawings. • WLCSP 142-pin: 98ASA00639D1 1. To find the associated resource, go to http://www.nxp.com and perform a search using this term. 2 NXP Semiconductors Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 Kinetis K64 Family Arm ® Cortex™-M4 Core System Memories and Memory Interfaces Internal and external watchdogs Program flash RAM Phaselocked loop External bus Frequencylocked loop Debug interfaces DSP Memory protection FlexMemory Interrupt controller Floatingpoint unit DMA Serial programming interface Low/high frequency oscillators Internal reference clocks Low-leakage wakeup Security Analog Timers CRC 16-bit ADC x2 Timers x2 (8ch) x2 (2ch) Random number generator Analog comparator x3 Hardware encryption 6-bit DAC x3 and Integrity 12-bit DAC x2 Voltage reference Clocks Programmable delay block Periodic interrupt timers Low power timer Independent real-time clock Communication Interfaces 2 I C x3 I S UART x6 Secure Digital SPI x3 USB OTG LS/FS CAN x1 USB LS/FS transceiver IEEE 1588 Ethernet USB charger detect IEEE 1588 Timers 2 Human-Machine Interface (HMI) GPIO USB voltage regulator Figure 1. K64 block diagram Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 3 NXP Semiconductors Table of Contents 1 Ratings.................................................................................... 5 1.1 Thermal handling ratings................................................. 5 1.2 Moisture handling ratings................................................ 5 1.3 ESD handling ratings....................................................... 5 1.4 Voltage and current operating ratings............................. 5 2 General................................................................................... 6 2.1 AC electrical characteristics.............................................6 2.2 Nonswitching electrical specifications..............................6 2.2.1 Voltage and current operating requirements.....6 2.2.2 LVD and POR operating requirements............. 8 2.2.3 Voltage and current operating behaviors.......... 8 2.2.4 Power mode transition operating behaviors......10 2.2.5 Power consumption operating behaviors.......... 11 2.2.6 EMC radiated emissions operating behaviors...16 2.2.7 Designing with radiated emissions in mind....... 17 2.2.8 Capacitance attributes...................................... 17 2.3 Switching specifications...................................................17 2.3.1 Device clock specifications............................... 17 2.3.2 General switching specifications....................... 18 2.4 Thermal specifications..................................................... 19 2.4.1 Thermal operating requirements....................... 19 2.4.2 Thermal attributes............................................. 20 3 Peripheral operating requirements and behaviors.................. 21 3.1 Core modules.................................................................. 21 3.1.1 Debug trace timing specifications..................... 21 3.1.2 JTAG electricals................................................ 21 3.2 System modules.............................................................. 24 3.3 Clock modules................................................................. 24 3.3.1 MCG specifications........................................... 24 3.3.2 IRC48M specifications...................................... 27 3.3.3 Oscillator electrical specifications..................... 27 3.3.4 32 kHz oscillator electrical characteristics.........30 3.4 Memories and memory interfaces................................... 30 3.4.1 Flash (FTFE) electrical specifications............... 30 3.4.2 EzPort switching specifications......................... 32 3.4.3 Flexbus switching specifications....................... 33 3.5 Security and integrity modules........................................ 36 3.6 Analog............................................................................. 36 3.6.1 ADC electrical specifications.............................37 4 NXP Semiconductors 4 5 6 7 8 3.6.2 CMP and 6-bit DAC electrical specifications.....41 3.6.3 12-bit DAC electrical characteristics................. 43 3.6.4 Voltage reference electrical specifications........ 46 3.7 Timers..............................................................................47 3.8 Communication interfaces............................................... 47 3.8.1 Ethernet switching specifications...................... 48 3.8.2 USB electrical specifications............................. 49 3.8.3 USB DCD electrical specifications.................... 50 3.8.4 USB VREG electrical specifications..................50 3.8.5 CAN switching specifications............................ 51 3.8.6 DSPI switching specifications (limited voltage range)................................................................51 3.8.7 DSPI switching specifications (full voltage range)................................................................53 3.8.8 Inter-Integrated Circuit Interface (I2C) timing....54 3.8.9 UART switching specifications.......................... 56 3.8.10 SDHC specifications......................................... 56 3.8.11 I2S switching specifications.............................. 57 Dimensions............................................................................. 63 4.1 Obtaining package dimensions....................................... 63 Pinout...................................................................................... 63 5.1 K64 Signal Multiplexing and Pin Assignments.................63 5.2 Unused analog interfaces................................................ 69 5.3 K64 Pinouts..................................................................... 70 Ordering parts......................................................................... 71 6.1 Determining valid orderable parts....................................71 Part identification.....................................................................71 7.1 Description.......................................................................71 7.2 Format............................................................................. 71 7.3 Fields............................................................................... 71 7.4 Example...........................................................................72 Terminology and guidelines.................................................... 72 8.1 Definitions........................................................................ 72 8.2 Examples......................................................................... 73 8.3 Typical-value conditions.................................................. 73 8.4 Relationship between ratings and operating requirements....................................................................74 8.5 Guidelines for ratings and operating requirements..........74 9 Revision History...................................................................... 74 Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 Ratings 1 Ratings 1.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 Solder temperature, leaded — 245 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 1 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 105°C -100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 1.4 Voltage and current operating ratings Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 5 NXP Semiconductors General Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 185 mA –0.3 5.5 V –0.3 VBAT + 0.3 V Analog1, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V Maximum current single pin limit (applies to all digital pins) –25 25 mA VDD – 0.3 VDD + 0.3 V VDIO Digital input voltage (except RESET, EXTAL, and XTAL) VDRTC_WAKEU RTC Wakeup input voltage P VAIO ID VDDA Analog supply voltage VUSB0_DP USB0_DP input voltage –0.3 3.63 V VUSB0_DM USB0_DM input voltage –0.3 3.63 V USB regulator input –0.3 6.0 V RTC battery supply voltage –0.3 3.8 V VREGIN VBAT 1. Analog pins are defined as pins that do not have an associated general purpose I/O port function. 2 General 2.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. VIH Input Signal High Low 80% 50% 20% Midpoint1 Fall Time VIL Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 2. Input signal measurement reference 2.2 Nonswitching electrical specifications 6 NXP Semiconductors Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 General 2.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V -5 — mA VBAT VIH VIL RTC battery supply voltage Input high voltage Input low voltage VHYS Input hysteresis IICDIO Digital pin negative DC injection current — single pin 1 • VIN < VSS-0.3V IICAIO IICcont Analog2, EXTAL, and XTAL pin DC injection current — single pin 3 mA • VIN < VSS-0.3V (Negative current injection) -5 — • VIN > VDD+0.3V (Positive current injection) — +5 -25 — — +25 Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection • Positive current injection mA VODPU Open drain pullup voltage level VDD VDD V VRAM VDD voltage required to retain RAM 1.2 — V VPOR_VBAT — V VRFVBAT Notes VBAT voltage required to retain the VBAT register file 4 1. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|. 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins. 3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VINVAIO_MAX)/|IICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents. 4. Open drain outputs must be pulled to VDD. Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 7 NXP Semiconductors General 2.2.2 LVD and POR operating requirements Table 2. VDD supply LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) 2.48 2.56 2.64 V Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV=01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV=10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV=11) 2.92 3.00 3.08 V — 80 — mV 1.54 1.60 1.66 V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV=01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV=10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV=11) 2.04 2.10 2.16 V — 60 — mV VHYSL Low-voltage inhibit reset/recover hysteresis — low range Notes VBG Bandgap voltage reference 0.97 1.00 1.03 V tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs 1. Rising threshold is the sum of falling threshold and hysteresis voltage Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit 0.8 1.1 1.5 V Notes 2.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol VOH Description Min. Max. Unit Notes Output high voltage — high drive strength Table continues on the next page... 8 NXP Semiconductors Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 General Table 4. Voltage and current operating behaviors (continued) Symbol Description Min. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -8mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA VDD – 0.5 — V • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA VDD – 0.5 — V — 100 mA VBAT – 0.5 — V VBAT – 0.5 — V VBAT – 0.5 — V VBAT – 0.5 — V — 100 mA • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA — 0.5 V • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA — 0.5 V — 100 mA — 0.5 V — 0.5 V — 0.5 V — 0.5 V — 100 mA Notes Output high voltage — low drive strength IOHT Output high current total for all ports VOH_RTC_WA Output high voltage — high drive strength KEUP • 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -10mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -3mA Output high voltage — low drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -2mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -0.6mA IOH_RTC_WAK Output high current total for RTC_WAKEUP pins EUP VOL Output low voltage — high drive strength Output low voltage — low drive strength IOLT Output low current total for all ports VOL_RTC_WA Output low voltage — high drive strength KEUP • 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 10mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 3mA Output low voltage — low drive strength • 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 2mA • 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 0.6mA IOL_RTC_WAK Output low current total for RTC_WAKEUP pins EUP IIN Input leakage current (per pin) for full temperature range — 1 μA 1 IIN Input leakage current (per pin) at 25°C — 0.025 μA 1 IIN_RTC_WAK Input leakage current (per RTC_WAKEUP pin) for full temperature range EUP — 1 μA IIN_RTC_WAK Input leakage current (per RTC_WAKEUP pin) at 25°C EUP — 0.025 μA Table continues on the next page... Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 9 NXP Semiconductors General Table 4. Voltage and current operating behaviors (continued) Symbol IOZ Description Hi-Z (off-state) leakage current (per pin) IOZ_RTC_WAK Hi-Z (off-state) leakage current (per RTC_WAKEUP pin) EUP Min. Max. Unit — 0.25 μA — 0.25 μA Notes RPU Internal pullup resistors (except RTC_WAKEUP pins) 20 50 kΩ 2 RPD Internal pulldown resistors (except RTC_WAKEUP pins) 20 50 kΩ 3 1. Measured at VDD=3.6V 2. Measured at VDD supply voltage = VDD min and Vinput = VSS 3. Measured at VDD supply voltage = VDD min and Vinput = VDD 2.2.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • • • • CPU and system clocks = 100 MHz Bus clock = 50 MHz FlexBus clock = 50 MHz Flash clock = 25 MHz Table 5. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. • VLLS0 → RUN • VLLS1 → RUN • VLLS2 → RUN • VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN 10 NXP Semiconductors Min. Max. Unit — 300 μs — 156 μs — 156 μs — 78 μs — 78 μs — 4.8 μs — 4.5 μs — 4.5 μs Notes Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 General 2.2.5 Power consumption operating behaviors NOTE The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma). Table 6. Power consumption operating behaviors Symbol IDDA IDD_RUN Description Analog supply current Typ. Max. Unit Notes — — See note mA 1 Run mode current — all peripheral clocks disabled, code executing from flash • @ 1.8V • @ 3.0V IDD_RUN Min. 2 — 31.1 35.3 mA — 31 35.3 mA Run mode current — all peripheral clocks enabled, code executing from flash 3, 4 — 42.7 46.95 mA • @ 25°C — 40 41.6 mA • @ 85°C — 41.6 44.1 mA • @ 1.8V • @ 3.0V IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 17.9 — mA 2 IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled — 6.9 — mA 5 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 1 — mA 6 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — 1.7 — mA 7 — 0.678 — mA 8 • @ –40 to 25°C — 0.49 1.24 mA • @ 70°C — 1.18 4.3 mA • @ 85°C — 1.76 7.7 mA • @ –40 to 25°C — 57 139.31 μA • @ 70°C — 291 679.33 μA • @ 85°C — 494.5 850.6 μA IDD_VLPW Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled IDD_STOP IDD_VLPS IDD_LLS Stop mode current at 3.0 V Very-low-power stop mode current at 3.0 V Low leakage stop mode current at 3.0 V 9 Table continues on the next page... Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 11 NXP Semiconductors General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit • @ –40 to 25°C — 5.8 10.48 μA • @ 70°C — 26.7 47.99 μA • @ 85°C — 50.2 88.55 μA • @ –40 to 25°C — 4.4 5.54 μA • @ 70°C — 21 36.46 μA • @ 85°C — 39.5 67.45 μA • @ –40 to 25°C — 2.1 2.34 μA • @ 70°C — 6.84 10.36 μA • @ 85°C — 12.6 19.0 μA • @ –40 to 25°C — 0.817 0.86 μA • @ 70°C — 3.97 5.77 μA • @ 85°C — 8.23 12.47 μA — 0.520 0.62 μA — 3.67 5.7 μA — 7.94 11.7 μA — 0.339 0.412 μA — 3.36 4.2 μA — 7.55 9.96 μA — 0.16 0.19 μA — 0.55 0.72 μA — 1.28 1.88 μA — 0.18 0.21 μA • @ 70°C 0.66 0.86 μA • @ 85°C 1.52 2.24 μA Notes IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled • @ –40 to 25°C • @ 70°C • @ 85°C IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled • @ –40 to 25°C • @ 70°C • @ 85°C IDD_VBAT Average current with RTC and 32kHz disabled • @ 1.8V • @ –40 to 25°C • @ 70°C • @ 85°C • @ 3.0V • @ –40 to 25°C Table continues on the next page... 12 NXP Semiconductors Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 General Table 6. Power consumption operating behaviors (continued) Symbol Description Min. IDD_VBAT Average current when CPU is not accessing RTC registers Typ. Max. Unit Notes 10 • @ 1.8V • @ –40 to 25°C • @ 70°C • @ 85°C — 0.59 0.70 μA — 1.0 1.30 μA — 1.76 2.59 μA — 0.71 0.84 μA — 1.22 1.59 μA — 2.08 3.06 μA • @ 3.0V • @ –40 to 25°C • @ 70°C • @ 85°C 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 120 MHz core and system clock, 60 MHz bus, 40 Mhz FlexBus clock, and 25 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled. 3. 120 MHz core and system clock, 60 MHz bus clock, 40 MHz Flexbus clock, and 25 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled. 4. Max values are measured with CPU executing DSP instructions. 5. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode. 6. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash. 7. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 8. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. 9. Data reflects devices with 256 KB of RAM. 10. Includes 32kHz oscillator current and RTC operation. Table 7. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled. 56 56 56 56 56 µA IIREFSTEN32KHz 32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled. 52 52 52 52 52 µA IEREFSTEN4MHz External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled. 206 228 237 245 251 uA IEREFSTEN32KHz External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled. Table continues on the next page... Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 13 NXP Semiconductors General Table 7. Low power mode peripheral adders — typical value (continued) Symbol Description Temperature (°C) Unit -40 25 50 70 85 VLLS3 440 490 540 560 570 LLS 440 490 540 560 570 VLPS 440 490 540 560 570 STOP 510 560 560 560 610 510 560 560 560 610 48 Mhz internal reference clock 350 350 350 350 350 µA ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. 22 22 22 22 22 µA IRTC RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption. 432 357 388 475 532 nA IUART UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. 66 66 66 66 66 µA 214 237 246 254 260 VLLS1 I48MIRC MCGIRCLK (4 MHz internal reference clock) nA OSCERCLK (4 MHz external crystal) 2.2.5.1 IBG Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode. 45 45 45 45 45 µA IADC ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions. 42 42 42 42 42 µA Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • No GPIOs toggled 14 NXP Semiconductors Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 General • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFE Run Mode Current Consumption vs Core Frequency Temp (C)=25, VDD=3.6V, CACHE=ENABLE, Code Residence=Flash 40.00E-03 35.00E-03 Current Consumption on VDD (A) 30.00E-03 25.00E-03 All Peripheral Clk Gates 20.00E-03 ALLOFF ALLON 15.00E-03 10.00E-03 5.00E-03 000.00E+00 '1-1-1 '1-1-1 '1-1-1 '1-1-1 '1-1-1 '1-1-1 '1-1-2 '1-2-3 '1-2-4 '1-2-5 1 2 4 6.25 12.5 25 50 75 100 120 Clk Ratio Core-BusFlaxbus-Flash Core Freq (MHz) Figure 3. Run mode supply current vs. core frequency Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 15 NXP Semiconductors General Very Low Power Run (VLPR) Current vs Core Frequency Temp (C)=25, VDD=3.6V, CACHE=ENABLE, Code Residence=Flash 1.40E-03 1.20E-03 Current Consumption on VDD (A) 1.00E-03 800.00E-06 All Peripheral Clk Gates ALLOFF ALLON 600.00E-06 400.00E-06 200.00E-06 000.00E+00 '1-1-2 '1-1-1 '1-2-4 1 '1-1-4 '1-1-2 '1-2-4 2 '1-1-4 Clk Ratio Core-Bus-Flash Core Freq (MHz) 4 Figure 4. VLPR mode supply current vs. core frequency 2.2.6 EMC radiated emissions operating behaviors Table 8. EMC radiated emissions operating behaviors Symbol Description Frequency band (MHz) Typ. Unit Notes 1, 2 144 LQFP VRE1 Radiated emissions voltage, band 1 0.15–50 16 dBμV VRE2 Radiated emissions voltage, band 2 50–150 22 dBμV VRE3 Radiated emissions voltage, band 3 150–500 21 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 16 dBμV IEC level 0.15–1000 L — VRE_IEC 2, 3 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and 16 NXP Semiconductors Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 General Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48MHz 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method 2.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.nxp.com. 2. Perform a keyword search for “EMC design.” 2.2.8 Capacitance attributes Table 9. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 2.3 Switching specifications 2.3.1 Device clock specifications Table 10. Device clock specifications Symbol Description Min. Max. Unit System and core clock — 120 MHz System and core clock when Full Speed USB in operation 20 — MHz Notes Normal run mode fSYS fENET System and core clock when ethernet in operation • 10 Mbps • 100 Mbps fBUS FB_CLK fFLASH MHz 5 — 50 — Bus clock — 60 MHz FlexBus clock — 50 MHz Flash clock — 25 MHz Table continues on the next page... Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 17 NXP Semiconductors General Table 10. Device clock specifications (continued) Symbol Description fLPTMR LPTMR clock VLPR Min. Max. Unit — 25 MHz mode1 fSYS System and core clock — 4 MHz fBUS Bus clock — 4 MHz FlexBus clock — 4 MHz fFLASH Flash clock — 0.8 MHz fERCLK External reference clock — 16 MHz LPTMR clock — 25 MHz fLPTMR_ERCLK LPTMR external reference clock — 16 MHz fFlexCAN_ERCLK FlexCAN external reference clock — 8 MHz FB_CLK fLPTMR_pin Notes fI2S_MCLK I2S master clock — 12.5 MHz fI2S_BCLK I2S bit clock — 4 MHz 1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module. 2.3.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, IEEE 1588 timer, timers, and I2C signals. Table 11. General switching specifications Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1, 2 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 50 — ns 3 External reset pulse width (digital glitch filter disabled) 100 — ns 3 2 — Bus clock cycles • 1.71 ≤ VDD ≤ 2.7V — 8 ns • 2.7 ≤ VDD ≤ 3.6V — 6 ns — 18 ns Mode select (EZP_CS) hold time after reset deassertion Port rise and fall time (high drive strength) - 3 V • Slew disabled • Slew enabled Table continues on the next page... 18 NXP Semiconductors Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 General Table 11. General switching specifications (continued) Symbol Description • 1.71 ≤ VDD ≤ 2.7V Min. Max. Unit — 12 ns Notes • 2.7 ≤ VDD ≤ 3.6V Port rise and fall time (high drive strength) - 5 V 4 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 6 ns • 2.7 ≤ VDD ≤ 3.6V — 4 ns • 1.71 ≤ VDD ≤ 2.7V — 24 ns • 2.7 ≤ VDD ≤ 3.6V — 14 ns • 1.71 ≤ VDD ≤ 2.7V — 12 ns • 2.7 ≤ VDD ≤ 3.6V — 6 ns • 1.71 ≤ VDD ≤ 2.7V — 24 ns • 2.7 ≤ VDD ≤ 3.6V — 16 ns • Slew enabled Port rise and fall time (low drive strength) - 3 V • Slew disabled • Slew enabled Port rise and fall time (low drive strength) - 5 V 5 • Slew disabled • 1.71 ≤ VDD ≤ 2.7V — 17 ns • 2.7 ≤ VDD ≤ 3.6V — 10 ns • 1.71 ≤ VDD ≤ 2.7V — 23 ns • 2.7 ≤ VDD ≤ 3.6V — 20 ns • Slew enabled 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case. 2. The greater synchronous and asynchronous timing must be met. 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes. 4. 25 pF load 5. 15 pF load 2.4 Thermal specifications Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 19 NXP Semiconductors General 2.4.1 Thermal operating requirements Table 12. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 95 °C TA Ambient temperature1 –40 85 °C 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to determine TJ is: TJ = TA + RθJA x chip power dissipation 2.4.2 Thermal attributes Board type Symbol Description 142 WLCSP Unit Notes Single-layer (1s) RθJA Thermal 83 resistance, junction to ambient (natural convection) °C/W 1, 2 Four-layer (2s2p) RθJA Thermal 37 resistance, junction to ambient (natural convection) °C/W 1, 2, 3 — RθJB Thermal 11 resistance, junction to board °C/W 4 — RθJC Thermal 2.4 resistance, junction to case °C/W 5 — ΨJT Thermal 3 characterization parameter, junction to package top outside center (natural convection) °C/W 6 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. Board meets JESD51-9 specification. 3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions—Forced Convection (Moving Air) with the board horizontal. 4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. 5. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 20 NXP Semiconductors Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 Peripheral operating requirements and behaviors 3 Peripheral operating requirements and behaviors 3.1 Core modules 3.1.1 Debug trace timing specifications Table 14. Debug trace operating behaviors Symbol Description Min. Max. Unit Tcyc Clock period Frequency dependent MHz Twl Low pulse width 2 — ns Twh High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 1.5 — ns Th Data hold 1 — ns TRACECLK Tr Tf Twh Twl Tcyc Figure 5. TRACE_CLKOUT specifications TRACE_CLKOUT Ts Th Ts Th TRACE_D[3:0] Figure 6. Trace data specifications Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 21 NXP Semiconductors Peripheral operating requirements and behaviors 3.1.2 JTAG electricals Table 15. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 20 — ns • Serial Wire Debug 10 — ns J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 2.6 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns Unit J2 TCLK cycle period J3 TCLK clock pulse width Table 16. JTAG full voltage range electricals Symbol J1 Description Min. Max. Operating voltage 1.71 3.6 TCLK frequency of operation V MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 1/J1 — ns • Boundary Scan 50 — ns • JTAG and CJTAG 25 — ns • Serial Wire Debug 12.5 — ns J2 TCLK cycle period J3 TCLK clock pulse width Table continues on the next page... 22 NXP Semiconductors Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 Peripheral operating requirements and behaviors Table 16. JTAG full voltage range electricals (continued) Symbol Description Min. Max. Unit J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 2.9 — ns J11 TCLK low to TDO data valid — 22.1 ns J12 TCLK low to TDO high-Z — 22.1 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 J3 J3 TCLK (input) J4 J4 Figure 7. Test clock input timing TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 8. Boundary scan (JTAG) timing Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 23 NXP Semiconductors Peripheral operating requirements and behaviors TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 9. Test Access Port timing TCLK J14 J13 TRST Figure 10. TRST timing 3.2 System modules There are no specifications necessary for the device's system modules. 3.3 Clock modules 24 NXP Semiconductors Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 Peripheral operating requirements and behaviors 3.3.1 MCG specifications Table 17. MCG specifications Symbol Description Min. Typ. Max. Unit fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C — 32.768 — kHz fints_t Internal reference frequency (slow clock) — user trimmed 31.25 — 39.0625 kHz Iints Internal reference (slow clock) current Notes — 20 — µA Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.3 ± 0.6 %fdco 1 Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — ± 0.5 ±2 %fdco Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 0.3 ±1 %fdco fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C — 4 — MHz fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz Internal reference (fast clock) current — 25 — µA Iintf floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz 1 ,2 1 FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 3, 4 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX3 DCO output frequency 2 Low range (DRS=00) 5, 6 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) Table continues on the next page... Kinetis K64 Sub-Family Data Sheet With 1 MB Flash, Rev. 8, 10/2019 25 NXP Semiconductors Peripheral operating requirements and behaviors Table 17. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit — 95.98 — MHz — 180 — — 150 — — — 1 ms 48.0 — 120 MHz — 1060 — µA — 600 — µA 2.0 — 4.0 MHz Notes 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter • fDCO = 48 MHz • fDCO = 98 MHz tfll_acquire FLL target frequency acquisition time ps 7 PLL fvco VCO operating frequency Ipll PLL operating current • PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 48) Ipll PLL operating current • PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 24) fpll_ref PLL reference frequency range Jcyc_pll PLL period jitter (RMS) Jacc_pll • fvco = 48 MHz — 120 — ps • fvco = 120 MHz — 80 — ps PLL accumulated jitter over 1µs (RMS) 9 • fvco = 48 MHz — 1350 — ps • fvco = 120 MHz — 600 — ps Lock entry frequency tolerance ± 1.49 — ± 2.98 % Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % Lock detector detection time 8 9 Dlock tpll_lock 8 — — 10-6 150 × + 1075(1/ fpll_ref) s 10 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. 2 V
MK64FX512VMD12 价格&库存

很抱歉,暂时无法提供与“MK64FX512VMD12”相匹配的价格&库存,您可以联系我们找货

免费人工找货