Freescale Semiconductor, Inc.
Data Sheet: Technical Data
Document Number: KL17P64M48SF2
Rev. 5, 04/2015
Kinetis KL17 Microcontroller
MKL17Z32Vxx4(R)
MKL17Z64Vxx4(R)
48 MHz ARM® Cortex®-M0+ and 32/64 KB Flash
The KL17 series is optimized for cost-sensitive and batterypowered applications requiring low-power general purpose
connectivity. The product offers:
• Embedded ROM with boot loader for flexible program
upgrade
• High accuracy internal voltage and clock reference
• FlexIO to support any standard and customized serial
peripheral emulation
• Hardware CRC module
• Down to 46 µA/MHz in very low power run mode and 1.68
µA in stop mode (RAM + RTC retained)
Core Processor
• ARM® Cortex®-M0+ core up to 48 MHz
Memories
• 32/64 KB program flash memory
• 8/16 KB SRAM
• 16 KB ROM with build-in bootloader
• 32-byte backup register
System
• 4-channel asynchronous DMA controller
• Watchdog
• Low-leakage wakeup unit
• Two-pin SWD (serial wire debug) programming and
debug interface
• Micro trace buffer
• Bit manipulation engine
• Interrupt controller
Clocks
• 48 MHz high accuracy (up to 0.5%) internal reference
clock
• 8 MHz high accuracy (up to 3%) internal reference
clock
• 1 kHz reference clock active under all low power
modes (except VLLS0)
• 32–40 kHz and 3–32 MHz crystal oscillator
© 2014–2015 Freescale Semiconductor, Inc. All rights reserved.
64 LQFP (LH)
10x10x1.6 mm P .5
36 XFBGA (DA)
3.5x3.5x.5 mm P .5
48 & 32 QFN(FT&FM)
64 MAPBGA (MP)
7x7x.65 mm P .5(FT)
5x5x1.23 mm P .5 mm
5x5x.65 mm P .5(FM)
Peripherals
• One UART module supporting ISO7816, operating
up to 1.5 Mbit/s
• Two low-power UART modules supporting
asynchronous operation in low-power modes
• Two I2C modules supporting up to 1 Mbit/s
• Two 16-bit SPI modules supporting up to 24 Mbit/s
for SPI1 and 12 Mbit/s for SPI0
• One FlexIO module supporting emulation of
additional UART, SPI, I2C, I2S, PWM and other
serial modules, etc.
• One 16-bit ADC module with high accurate internal
voltage reference, up to 20 channels and up to 818
ksps at equal to or less than 13-bit mode
• High-speed analog comparator containing a 6-bit
DAC for programmable reference input
Timers
• One 6-channel Timer/PWM module
• Two 2-channel Timer/PWM modules
• One low-power timer
• Periodic interrupt timer
• Real time clock
Operating Characteristics
Security and Integrity
• 80-bit unique identification number per chip
• Advanced flash security
• Hardware CRC module
• Voltage range: 1.71 to 3.6 V
• Flash write voltage range: 1.71 to 3.6 V
• Temperature range: –40 to 105 °C
Packages
• 64 LQFP 10mm x 10mm, 0.5mm pitch, 1.6mm
thickness
• 36 XFBGA 3.5mm x 3.5mm, 0.5mm pitch, 0.5mm
thickness
• 32 QFN 5mm x 5mm, 0.5mm pitch, 0.65mm thickness
• 64 MAPBGA 5mm x 5mm, 0.5mm pitch, 1.23mm
thickness (Package Your Way)
• 48 QFN 7mm x 7mm, 0.5mm pitch, 0.65mm thickness
(Package Your Way)
I/O
• Up to 54 general-purpose input/output pins
Low Power
• Down to 46 µA/MHz in very low power run mode
• Down to 1.68 µA in stop mode (RAM + RTC
retained)
• Six flexible static modes
NOTE
The 48 QFN and 64 MAPBGA packages supporting MKLx7ZxxVFT4 and
MKLx7ZxxVMP4 part numbers for this product are not yet available. However, these
packages are included in Package Your Way program for Kinetis MCUs. Visit
Freescale.com/KPYW for more details.
Related Resources
Type
Description
Resource
Selector Guide
The Freescale Solution Advisor is a web-based tool that features
interactive application wizards and a dynamic product selector.
Solution Advisor
Product Brief
The Product Brief contains concise overview/summary information to KL1xPB1
enable quick evaluation of a device for design suitability.
Reference
Manual
The Reference Manual contains a comprehensive description of the
structure and function (operation) of a device.
KL17P64M48SF2RM1
Data Sheet
The Data Sheet includes electrical characteristics and signal
connections.
KL17P64M48SF21
Chip Errata
The chip mask set Errata provides additional or corrective
information for a particular device mask set.
xN87M2
Package
drawing
Package dimensions are provided in package drawings.
XFBGA 36-pin: 98ASA00708D
LQFP 64-pin: 98ASS23234W
QFN 32-pin: 98ASA00615D
QFN 48-pin: 98ASA00616D
MAPBGA 64-pin: 98ASA00420D
1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.
2. To find the associated resource, go to http://www.freescale.com and perform a search using this term with the “x”
replaced by the revision of the device you are using.
2
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Table of Contents
1 Ordering information............................................................. 4
2 Overview............................................................................... 4
2.1 System features............................................................. 5
2.1.1
ARM Cortex-M0+ core.....................................5
2.1.2
NVIC................................................................ 6
2.1.3
AWIC............................................................... 6
2.1.4
Memory............................................................7
2.1.5
Reset and boot................................................ 7
2.1.6
Clock options................................................... 9
2.1.7
Security............................................................12
2.1.8
Power management........................................ 12
2.1.9
LLWU...............................................................14
2.1.10 Debug controller.............................................. 15
2.1.11 COP................................................................. 15
2.2 Peripheral features........................................................ 16
2.2.1
BME................................................................. 16
2.2.2
DMA and DMAMUX.........................................16
2.2.3
TPM................................................................. 17
2.2.4
ADC................................................................. 17
2.2.5
VREF............................................................... 18
2.2.6
CMP.................................................................19
2.2.7
RTC................................................................. 19
2.2.8
PIT................................................................... 20
2.2.9
LPTMR............................................................ 20
2.2.10 CRC................................................................. 21
2.2.11 UART............................................................... 21
2.2.12 LPUART.......................................................... 22
2.2.13 SPI................................................................... 22
2.2.14 I2C................................................................... 23
2.2.15 FlexIO.............................................................. 23
2.2.16 Port control and GPIO..................................... 24
3 Memory map......................................................................... 26
4 Pinouts.................................................................................. 27
4.1 KL17 Signal Multiplexing and Pin Assignments.............27
4.2 Pin properties.................................................................30
4.3 Module Signal Description Tables................................. 33
4.3.1
Core modules.................................................. 33
4.3.2
System modules.............................................. 33
4.3.3
Clock modules................................................. 34
4.3.4
Analog............................................................. 34
4.3.5
Timer Modules................................................. 35
4.3.6
Communication interfaces............................... 36
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
4.3.7
Human-machine interfaces (HMI)....................38
4.4 KL17 Family Pinouts...................................................... 38
4.5 Package dimensions......................................................43
5 Electrical characteristics........................................................51
5.1 Ratings...........................................................................51
5.1.1
Thermal handling ratings................................. 51
5.1.2
Moisture handling ratings................................ 52
5.1.3
ESD handling ratings....................................... 52
5.1.4
Voltage and current absolute operating
ratings.............................................................. 52
5.2 General.......................................................................... 53
5.2.1
AC electrical characteristics............................ 53
5.2.2
Nonswitching electrical specifications............. 53
5.2.3
Switching specifications...................................68
5.2.4
Thermal specifications..................................... 69
5.3 Peripheral operating requirements and behaviors......... 70
5.3.1
Core modules.................................................. 70
5.3.2
System modules.............................................. 72
5.3.3
Clock modules................................................. 72
5.3.4
Memories and memory interfaces................... 75
5.3.5
Security and integrity modules........................ 77
5.3.6
Analog............................................................. 77
5.4 Timers............................................................................ 85
5.5 Communication interfaces............................................. 85
5.5.1
SPI switching specifications............................ 85
5.5.2
Inter-Integrated Circuit Interface (I2C) timing.. 89
5.5.3
UART............................................................... 91
6 Design considerations...........................................................91
6.1 Hardware design considerations................................... 91
6.1.1
Printed circuit board recommendations........... 92
6.1.2
Power delivery system.....................................92
6.1.3
Analog design.................................................. 93
6.1.4
Digital design................................................... 93
6.1.5
Crystal oscillator.............................................. 96
6.2 Software considerations................................................ 98
7 Part identification...................................................................99
7.1 Description..................................................................... 99
7.2 Format........................................................................... 99
7.3 Fields............................................................................. 99
7.4 Example......................................................................... 100
8 Revision history.....................................................................100
3
Freescale Semiconductor, Inc.
Ordering information
1 Ordering information
The following chips are available for ordering.
Table 1. Ordering information
Product
Part number
Memory
Marking
(Line1/Line2)
Package
IO and ADC channel
Flash
(KB)
SRAM
(KB)
Pin
count
Package
GPIOs
GPIOs
(INT/HD)1
ADC
channels
(SE/DP)
MKL17Z64VLH4
MKL17Z64 / VLH4
64
16
64
LQFP
54
54/6
20/4
MKL17Z32VLH4
MKL17Z32 / VLH4
32
8
64
LQFP
54
54/6
20/4
MKL17Z64VDA4
M17M6
64
16
36
XFBGA
32
32/6
15/4
MKL17Z32VDA4
M17M5
32
8
36
XFBGA
32
32/6
15/4
MKL17Z64VFM4
M17M6V
64
16
32
QFN
28
28/6
11/2
MKL17Z32VFM4
M17M5V
32
8
32
QFN
28
28/6
11/2
MKL17Z64VMP4
TBD
64
16
64
MAPBGA
54
54/6
20/4
MKL17Z32VMP4
TBD
32
8
64
MAPBGA
54
54/6
20/4
MKL17Z64VFT4
TBD
64
16
48
QFN
40
40/6
18/3
MKL17Z32VFT4
TBD
32
8
48
QFN
40
40/6
18/3
1. INT: interrupt pin numbers; HD: high drive pin numbers
NOTE
The 48 QFN and 64 MAPBGA packages supporting MKLx7ZxxVFT4 and
MKLx7ZxxVMP4 part numbers for this product are not yet available.
However, these packages are included in Package Your Way program for
Kinetis MCUs. Visit Freescale.com/KPYW for more details.
2 Overview
The following figure shows the system diagram of this device
4
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Overview
GPIOA
GPIOB
Slave
Master
GPIOC
Cortex M0+
GPIOD
GPIOE
IOPORT
CM0+ Core
M0
NVIC
DMA
MUX
64 KB
Flash
CMP
1.2 V Voltage reference
TPM0(6 channel)
S0
16 KB ROM
S1
16 KB RAM
S2
BME
TPM1(2 channel)
Peripheral Bridge(Bus Clock - Max 24MHZ)
4-ch
DMA
M2
Crossabar Switch(Platform Clock - Max 48MHZ)
Debug
(SWD)
ADC(16 bit 16ch)
FMC
TPM2(2 channel)
Low Power Timer
PIT
RTC
LPUART0
LPUART1
UART2
SPI0
SPI1
I2C0
I2C1
FlexIO
Watchdog(COP)
Register File(32 Bytes)
MCG - Lite
CRC
HIRC48M
LLWU
LIRC2M/8M
SMC
RCM
OSC
PMC
Figure 1. System diagram
The crossbar switch connects bus masters and slaves using a crossbar switch structure.
This structure allows up to four bus masters to access different bus slaves
simultaneously, while providing arbitration among the bus masters when they access
the same slave.
2.1 System features
The following sections describe the high-level system features.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
5
Freescale Semiconductor, Inc.
Overview
2.1.1 ARM Cortex-M0+ core
The enhanced ARM Cortex M0+ is the member of the Cortex-M series of processors
targeting microcontroller cores focused on very cost sensitive, low power applications.
It has a single 32-bit AMBA AHB-Lite interface and includes an NVIC component. It
also has hardware debug functionality including support for simple program trace
capability. The processor supports the ARMv6-M instruction set (Thumb) architecture
including all but three 16-bit Thumb opcodes (52 total) plus seven 32-bit instructions. It
is upward compatible with other Cortex-M profile processors.
2.1.2 NVIC
The Nested Vectored Interrupt Controller supports nested interrupts and 4 priority
levels for interrupts. In the NVIC, each source in the IPR registers contains two bits. It
also differs in number of interrupt sources and supports 32 interrupt vectors.
The Cortex-M family uses a number of methods to improve interrupt latency to up to 15
clock cycles for Cortex-M0+. It also can be used to wake the MCU core from Wait and
VLPW modes.
2.1.3 AWIC
The asynchronous wake-up interrupt controller (AWIC) is used to detect asynchronous
wake-up events in Stop mode and signal to clock control logic to resume system
clocking. After clock restarts, the NVIC observes the pending interrupt and performs
the normal interrupt or event processing. The AWIC can be used to wake MCU core
from Stop and VLPS modes.
Wake-up sources are listed as below:
Table 2. AWIC stop wake-up sources
Wake-up source
Description
Available system resets
RESET pin with filter mode disabled or enabled when LPO is its clock source, COP when its
clock source is enabled. COP can also work when its clock source is enabled during Stop
mode.
Low-voltage detect
Power management controller—functional in Stop mode
Low-voltage warning
Power management controller—functional in Stop mode
Pin interrupts
Port control module—any enabled pin interrupt is capable of waking the system
ADC
The ADC is functional when using internal clock source or external crystal clock
CMP0
Interrupt in normal or trigger mode
Table continues on the next page...
6
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Overview
Table 2. AWIC stop wake-up sources (continued)
Wake-up source
Description
I2Cx
Address match wakeup
LPUART0 , LPUART1
Any enabled interrupt can be a source as long as the module remains clocked
UART2
Active edge on RXD
RTC
Alarm or seconds interrupt
NMI
NMI pin
TPMx
Any enabled interrupt can be a source as long as the module remains clocked
LPTMR
Any enabled interrupt can be a source as long as the module remains clocked
SPIx
Slave mode interrupt
FlexIO
Any enabled interrupt can be a source as long as the module remains clocked
2.1.4 Memory
This device has the following features:
• 8/16 KB of embedded RAM accessible (read/write) at CPU clock speed with 0
wait states.
• The non-volatile memory is divided into two arrays
• 32/64 KB of embedded program memory
• 16 KB ROM (built-in bootloader to support UART, I2C, and SPI interfaces)
The program flash memory contains a 16-byte flash configuration field that stores
default protection settings and security information. The page size of program
flash is 1 KB.
The protection setting can protect 32 regions of the program flash memory from
unintended erase or program operations.
The security circuitry prevents unauthorized access to RAM or flash contents
from debug port.
• System register file
This device contains a 32-byte register file that is powered in all power modes.
Also, it retains contents during low power modes and is reset only during a
power-on reset.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
7
Freescale Semiconductor, Inc.
Overview
2.1.5 Reset and boot
The following table lists all the reset sources supported by this device.
NOTE
In the following table, Y means the specific module, except
for the registers, bits or conditions mentioned in the footnote,
is reset by the corresponding Reset source. N means the
specific module is not reset by the corresponding Reset
source.
Table 3. Reset source
Reset
sources
Descriptions
POR reset
Power-on reset (POR)
PMC
SIM
SMC
RCM
LLWU
Reset pin
is
negated
RTC
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y1
Y
Y
Y
Y
Y
N
Y
Y
Low leakage wakeup
(LLWU) reset
N
Y2
N
Y
N
Y3
N
N
Y
External pin reset
(RESET)
Y1
Y2
Y4
Y
Y
Y
N
N
Y
Computer operating
properly (COP) watchdog
reset
Y1
Y2
Y4
Y5
Y
Y
N
N
Y
Stop mode acknowledge
error (SACKERR)
Y1
Y2
Y4
Y5
Y
Y
N
N
Y
Software reset (SW)
Y1
Y2
Y4
Y5
Y
Y
N
N
Y
Lockup reset (LOCKUP)
Y1
Y2
Y4
Y5
Y
Y
N
N
Y
MDM DAP system reset
Y1
Y2
Y4
Y5
Y
Y
N
N
Y
Debug reset
Y1
Y2
Y4
Y5
Y
Y
N
N
Y
System resets Low-voltage detect (LVD)
Debug reset
1.
2.
3.
4.
5.
Modules
LPTMR Others
Except PMC_LVDSC1[LVDV] and PMC_LVDSC2[LVWV]
Except SIM_SOPT1
Only if RESET is used to wake from VLLS mode.
Except SMC_PMCTRL, SMC_STOPCTRL, SMC_PMSTAT
Except RCM_RPFC, RCM_RPFW, RCM_FM
The CM0+ core adds support for a programmable Vector Table Offset Register
(VTOR) to relocate the exception vector table after reset. This device supports booting
from:
• internal flash
• boot ROM
8
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Overview
The Flash Option (FOPT) register in the Flash Memory module (FTFA_FOPT) allows
the user to customize the operation of the MCU at boot time. The register contains
read-only bits that are loaded from the NVM's option byte in the flash configuration
field. Below is boot flow chart for this device.
POR or Reset
N
RCM[FORCEROM] =00
Y
FOPT[BOOTPIN_OPT]=0
N
Y
BOOTCFG0 pin=0
Y
N
N
FOPT[BOOTSRC
_SEL]=10/11
Y
Boot from ROM
Boot from Flash
Figure 2. Boot flow chart
The blank chip is default to boot from ROM and remaps the vector table to ROM base
address, otherwise, it remaps to flash address.
2.1.6 Clock options
This chip provides a wide range of sources to generate the internal clocks. These
sources include internal resistor capacitor (IRC) oscillators, external oscillators,
external clock sources, and ceramic resonators. These sources can be configured to
provide the required performance and optimize the power consumption.
The IRC oscillators include the high-speed internal resister capacitor (HIRC)
oscillator, the low-speed internal resister capacitor (LIRC) oscillator, and the low
power oscillator (LPO).
The HIRC oscillator generates a 48 MHz clock.
The LIRC oscillator generates an 8 MHz or 2 MHz clock, and default to 8 MHz
system clock on reset. The LIRC oscillator cannot be used in any VLLS modes.
The LPO generates a 1 kHz clock and cannot be used in VLLS0 mode.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
9
Freescale Semiconductor, Inc.
Overview
The system oscillator supports low frequency crystals (32 kHz to 40 kHz), high
frequency crystals (1 MHz to 32 MHz), and ceramic resonators (1 MHz to 32 MHz). An
external clock source, DC to 48 MHz, can be used as the system clock through the
EXTAL0 pin. The external oscillator also supports a low speed external clock (32.768
kHz) on the RTC_CLKIN pin for use with the RTC.
For more details on the clock operations and configurations, see Reference Manual.
The following figure is a high level block diagram of the clock generation.
Multipurpose Clock
Generator Lite
IRC_TRIMs
System
Integration
MCGPCLK
HIRC48M
LIRC_DIV2
CG
MCGIRCLK
LIRC
8MHz/ 8MHz
2MHz
IRC
2MHz
FCRDIV
IRCS
MCGOUTCLK
CG
Core/Platform/System clock
OUTDIV4
CG
Bus/Flash clock
CLKS
System oscillator EREFS0
EXTAL0
OUTDIV1
OSCCLK
XTAL_CLK
XTAL0
OSC
logic OSC32KCLK
OSCERCLK
CG
ERCLK32K
RTC_CKLIN
OS32KSEL
RTC
Counter logic
RTCCLKOUTSEL
PMC PMC logic
LPO
RTC_CLKOUT
1Hz
CG — Clock gate
Figure 3. Clock block diagram
In order to provide flexibility, many peripherals can select from multiple clock sources
for operation. This enables the peripheral to select a clock that will always be available
during operation in various operational modes.
The following table summarizes the clocks associated with each module.
10
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Overview
Table 4. Module clocks
Module
Bus interface clock
Internal clocks
I/O interface clocks
—
Core modules
ARM Cortex-M0+ core
Platform clock
Core clock
NVIC
Platform clock
—
—
DAP
Platform clock
—
SWD_CLK
System modules
DMA
System clock
—
—
DMA Mux
Bus clock
—
—
Port control
Bus clock
—
—
Crossbar Switch
Platform clock
—
—
Peripheral bridges
System clock
Bus clock
—
LLWU, PMC, SIM, RCM
Bus clock
LPO
—
Mode controller
Bus clock
—
—
MCM
Platform clock
—
—
COP watchdog
Bus clock
LPO, Bus Clock,
MCGIRCLK, OSCERCLK
—
CRC
Bus clock
—
—
Clocks
MCG_Lite
Bus clock
MCGOUTCLK, MCGPCLK,
MCGIRCLK, OSCERCLK,
ERCLK32K
—
OSC
Bus clock
OSCERCLK
—
Memory and memory interfaces
Flash Controller
Platform clock
Flash memory
Flash clock
Flash clock
—
—
—
Analog
ADC
Bus clock
OSCERCLK
—
CMP
Bus clock
—
—
Internal Voltage Reference
(VREF)
Bus clock
—
—
Timers
TPM
Bus clock
TPM clock
TPM_CLKIN0, TPM_CLKIN1
PIT
Bus clock
—
—
LPTMR
Bus clock
LPO, OSCERCLK,
MCGPCLK, ERCLK32K
—
RTC
Bus clock
ERCLK32K
RTC_CLKOUT, RTC_CLKIN
Communication interfaces
SPI0
Bus clock
—
SPI0_SCK
SPI1
System clock
—
SPI1_SCK
I2C0
System Clock
—
I2C0_SCL
Table continues on the next page...
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
11
Freescale Semiconductor, Inc.
Overview
Table 4. Module clocks (continued)
Module
Bus interface clock
Internal clocks
I/O interface clocks
I2C1
System Clock
—
I2C1_SCL
LPUART0, LPUART1
Bus clock
LPUART0 clock
—
LPUART1 clock
UART2
Bus clock
—
—
FlexIO
Bus clock
FlexIO clock
—
GPIO
Platform clock
Human-machine interfaces
—
—
2.1.7 Security
Security state can be enabled via programming flash configuration field (0x40e). After
enabling device security, the SWD port cannot access the memory resources of the
MCU, and ROM boot loader is also limited to access flash and not allowed to read out
flash information via ROM boot loader commands.
Access interface
Secure state
Unsecure operation
SWD port
Cannot access memory source by SWD The debugger can write to the Flash
interface
Mass Erase in Progress field of the
MDM-AP Control register to trigger a
mass erase (Erase All Blocks)
command
ROM boot loader Interface (UART/I2C/
SPI)
Limit access to the flash, cannot read
out flash content
Send “FlashEraseAllUnsecureh"
command or attempt to unlock flash
security using the backdoor key
This device features 80-bit unique identification number, which is programmed in
factory and loaded to SIM register after power-on reset.
2.1.8 Power management
The Power Management Controller (PMC) expands upon ARM’s operational modes of
Run, Sleep, and Deep Sleep, to provide multiple configurable modes. These modes can
be used to optimize current consumption for a wide range of applications. The WFI or
WFE instruction invokes a Wait or a Stop mode, depending on the current
configuration. For more information on ARM’s operational modes, See the ARM®
Cortex User Guide.
12
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Overview
The PMC provides Run (Run), and Very Low Power Run (VLPR) configurations in
ARM’s Run operation mode. In these modes, the MCU core is active and can access
all peripherals. The difference between the modes is the maximum clock frequency of
the system and therefore the power consumption. The configuration that matches the
power versus performance requirements of the application can be selected.
The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in
ARM’s Sleep operation mode. In these modes, even though the MCU core is inactive,
all of the peripherals can be enabled and operate as programmed. The difference
between the modes is the maximum clock frequency of the system and therefore the
power consumption.
The PMC provides Stop (Stop), Very Low Power Stop (VLPS), Low Leakage Stop
(LLS), and Very Low Leakage Stop (VLLS) configurations in ARM’s Deep Sleep
operational mode. In these modes, the MCU core and most of the peripherals are
disabled. Depending on the requirements of the application, different portions of the
analog, logic, and memory can be retained or disabled to conserve power.
The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up
Interrupt Controller (AWIC), and the Low Leakage Wake-Up Controller (LLWU) are
used to wake up the MCU from low power states. The NVIC is used to wake up the
MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU
core from STOP and VLPS modes. The LLWU is used to wake up the MCU core
from LLS and VLLSx modes.
For additional information regarding operational modes, power management, the
NVIC, AWIC, or the LLWU, please refer to the Reference Manual.
The following table provides information about the state of the peripherals in the
various operational modes and the modules that can wake MCU from low power
modes.
Table 6. Peripherals states in different operational modes
Core mode
Run mode
Sleep mode
Device mode
Descriptions
Run
In Run mode, all device modules are operational.
Very Low Power Run
In VLPR mode, all device modules are operational at a reduced frequency
except the Low Voltage Detect (LVD) monitor, which is disabled.
Wait
In Wait mode, all peripheral modules are operational. The MCU core is
placed into Sleep mode.
Very Low Power Wait
In VLPW mode, all peripheral modules are operational at a reduced
frequency except the Low Voltage Detect (LVD) monitor, which is disabled.
The MCU core is placed into Sleep mode.
Table continues on the next page...
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
13
Freescale Semiconductor, Inc.
Overview
Table 6. Peripherals states in different operational modes (continued)
Core mode
Deep sleep
Device mode
Descriptions
Stop
In Stop mode, most peripheral clocks are disabled and placed in a static
state. Stop mode retains all registers and SRAMs while maintaining Low
Voltage Detection protection. In Stop mode, the ADC, CMP, LPTimer, RTC,
and pin interrupts are operational. The NVIC is disabled, but the AWIC can
be used to wake up from an interrupt.
Very Low Power Stop
In VLPS mode, the contents of the SRAM are retained. The CMP (low
speed), ADC, OSC, RTC, LPTMR, TPM, FlexIO, LPUART, and DMA are
operational, LVD and NVIC are disabled, AWIC is used to wake up from
interrupt.
Low Leakage Stop
In LLS mode, the contents of the SRAM and the 32-byte system register file
are retained. The CMP (low speed), LLWU, LPTMR, and RTC are
operational. The ADC, CRC, DMA, FlexIO, I2C, LPUART, MCG-Lite, NVIC,
PIT, SPI, TPM, UART, and COP are static, but retain their programming. The
GPIO, and VREF are static, retain their programming, and continue to drive
their previous values.
Very Low Leakage Stop In VLLS modes, most peripherals are powered off and will resume operation
from their reset state when the device wakes up. The LLWU, LPTMR, and
RTC are operational in all VLLS modes.
In VLLS3, the contents of the SRAM and the 32-byte system register file are
retained. The CMP (low speed), and PMC are operational. The GPIO, and
VREF are not operational but continue driving.
In VLLS1, the contents of the 32-byte system register file are retained. The
CMP (low speed), and PMC are operational. The GPIO, and VREF are not
operational but continue driving.
In VLLS0, the contents of the 32-byte system register file are retained. The
PMC is operational. The GPIO is not operational but continues driving. The
POR detection circuit can be enabled or disabled.
2.1.9 LLWU
The LLWU module is used to wake MCU from low leakage power mode (LLS and
VLLSx) and functional only on entry into a low-leakage power mode. After recovery
from LLS, the LLWU is immediately disabled. After recovery from VLLSx, the LLWU
continues to detect wake-up events until the user has acknowledged the wake-up event.
This device uses 8 external wakeup pin inputs and 4 internal modules as wakeup
sources to the LLWU module.
The following is internal peripheral and external pin inputs as wakeup sources to the
LLWU module.
14
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Overview
Table 7. Wakeup source
LLWU pin
Module source or pin name
LLWU_P5
PTB0
LLWU_P6
PTC1
LLWU_P7
PTC3
LLWU_P8
PTC4
LLWU_P9
PTC5
LLWU_P10
PTC6
LLWU_P14
PTD4
LLWU_P15
PTD6
LLWU_M0IF
LPTMR0
LLWU_M1IF
CMP0
LLWU_M2IF
Reserved
LLWU_M3IF
Reserved
LLWU_M4IF
Reserved
LLWU_M5IF
RTC alarm
LLWU_M6IF
Reserved
LLWU_M7IF
RTC seconds
2.1.10 Debug controller
This device supports standard ARM 2-pin SWD debug port. It provides register and
memory accessibility from the external debugger interface, basic run/halt control plus
2 breakpoints and 2 watchpoints.
It also supports trace function with the Micro Trace Buffer (MTB), which provides a
simple execution trace capability for the Cortex-M0+ processor.
2.1.11 COP
The COP monitors internal system operation and forces a reset in case of failure. It
can run from bus clock, LPO, 8/2 MHz internal oscillator or external crystal oscillator.
Optional window mode can detect deviations in program flow or system frequency.
The COP has the following features:
• Support multiple clock input, 1 kHz clock(LPO), bus clock, 8/2 MHz internal
reference clock, external crystal oscillator
• Can work in Stop/VLPS and Debug mode
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
15
Freescale Semiconductor, Inc.
Overview
• Configurable for short and long timeout values, the longest timeout is up to 262
seconds
• Support window mode
2.2 Peripheral features
The following sections describe the features of each peripherals of the chip.
2.2.1 BME
The Bit Manipulation Engine (BME) provides hardware support for atomic readmodify-write memory operations to the peripheral address space in Cortex-M0+ based
microcontrollers. It reduces up to 30% of the code size and up to 9% of the cycles for
bit-oriented operations to peripheral registers.
The BME supports unsigned bit field extract, load-and-set 1-bit, load-and-clear 1-bit,
bit field insert, logical AND/OR/XOR operations with byte, halfword or word-sized
data type.
2.2.2 DMA and DMAMUX
The DMA controller module enables fast transfers of data, which provides an efficient
way to move blocks of data with minimal processor interaction. The DMA controller in
this device implements four channels which can be routed from up to 63 DMA request
sources through DMA MUX module. Some of the peripheral request sources have
asynchronous DMA capability which can be used to wake MCU from Stop mode. The
peripherals which have such capability include LPUART0, LPUART1, FlexIO, TPM0TPM2, ADC0, CMP0, PORTA-PORTE. The DMA channel 0 and 1 can be periodically
triggered by PIT via DMA MUX.
Main features are listed below:
• Dual-address transfers via 32-bit master connection to the system bus and data
transfers in 8-, 16-, or 32-bit blocks
• Supports programmable source and destination address and transfer size, optional
modulo addressing from 16 bytes to 256 KB
• Automatic updates of source and destination addresses
16
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Overview
• Auto-alignment feature for source or destination accesses allows block transfers
to occur at the optimal size based on the address, byte count,and programmed
size, which significantly improves the speed of block transfer
• Automatic single or double channel linking allows the current DMA channel to
automatically trigger a DMA request to the linked channels without CPU
intervention
For more information on asynchronous DMA, see AN4631.
2.2.3 TPM
This device contains three low power TPM modules (TPM). All TPM modules are
functional in Stop/VLPS mode if the clock source is enabled.
The TPM features include:
• TPM clock mode is selectable from external clock input or internal clock source,
HIRC48M clock, external crystal input clock or LIRC2M/8M clock.
• Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128
• TPM includes a 16-bit counter
• Includes 6 channels that can be configured for input capture, output compare,
edge-aligned PWM mode, or center-aligned PWM mode
• Support the generation of an interrupt and/or DMA request per channel or counter
overflow
• Support selectable trigger input to optionally reset or cause the counter to start or
stop incrementing
• Support the generation of hardware triggers when the counter overflows and per
channel
2.2.4 ADC
this device contains one ADC module. This ADC module supports hardware triggers
from TPM, LPTMR, PIT, RTC, external trigger pin and CMP output. It supports
wakeup of MCU in low power mode when using internal clock source or external
crystal clock.
ADC module has the following features:
• Linear successive approximation algorithm with up to 16-bit resolution
• Up to four pairs of differential and 17 single-ended external analog inputs
• Support selectable 16-bit, 13-bit, 11-bit, and 9-bit differential output mode, or 16bit, 12-bit, 10-bit, and 8-bit single-ended output modes
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
17
Freescale Semiconductor, Inc.
Overview
•
•
•
•
•
•
•
•
•
•
•
Single or continuous conversion
Configurable sample time and conversion speed/power
Selectable clock source up to four
Operation in low-power modes for lower noise
Asynchronous clock source for lower noise operation with option to output the
clock
Selectable hardware conversion trigger
Automatic compare with interrupt for less-than, greater-than or equal-to, within
range, or out-of-range, programmable value
Temperature sensor
Hardware average function up to 32x
Selectable voltage reference: external or alternate
Self-Calibration mode
2.2.4.1
Temperature sensor
This device contains one temperature sensor internally connected to the input channel
of AD26, see Table 55 for details of the linearity factor.
The sensor must be calibrated to gain good accuracy, so as to provide good linearity,
see also AN3031. We recommend to use internal reference voltage as ADC reference
with long sample time.
2.2.5 VREF
The Voltage Reference (VREF) can supply an accurate voltage output (1.2V typically)
trimmed in 0.5 mV steps. It can be used in applications to provide a reference voltage to
external devices or used internally as a reference to analog peripherals such as the ADC
or CMP.
The VREF supports the following programmable buffer modes:
• Bandgap on only, used for stabilization and startup
• High power buffer mode
• Low-power buffer mode
• Buffer disabled
The VREF voltage output signal, bonded on VREFH for 48 QFN, 64 LQFP and 64
MAPBGA packages and on PTE30 for 32 QFN and 36 XFBGA packages, can be used
by both internal and external peripherals in low and high power buffer mode. A 100 nF
capacitor must always be connected between this pin and VSSA if the VREF is used.
This capacitor must be as close to VREFO pin as possible.
18
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Overview
2.2.6 CMP
The device contains one high-speed comparator and two 8-input multiplexers for both
the inverting and non-inverting inputs of the comparator. Each CMP input channel
connects to both muxes.
The CMP includes one 6-bit DAC, which provides a selectable voltage reference for
various user application cases. Besides, the CMP also has several module-to-module
interconnects in order to facilitate ADC triggering, TPM triggering, and interfaces.
The CMP has the following features:
• Inputs may range from rail to rail
• Programmable hysteresis control
• Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of
the comparator output
• Selectable inversion on comparator output
• Capability to produce a wide range of outputs such as sampled, digitally filtered
• External hysteresis can be used at the same time that the output filter is used for
internal functions
• Two software selectable performance levels: shorter propagation delay at the
expense of higher power and Low power with longer propagation delay
• DMA transfer support
• Functional in all modes of operation except in VLLS0 mode
• The filter functions are not available in Stop, VLPS, LLS, or VLLSx modes
• Integrated 6-bit DAC with selectable supply reference source and can be power
down to conserve power
• Two 8-to-1 channel mux
2.2.7 RTC
The RTC is an always powered-on block that remains active in all low power modes.
The time counter within the RTC is clocked by a 32.768 kHz clock sourced from an
external crystal using the oscillator or clock directly from RTC_CLKIN pin.
RTC is reset on power-on reset, and a software reset bit in RTC can also initialize all
RTC registers.
The RTC module has the following features
• 32-bit seconds counter with roll-over protection and 32-bit alarm
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
19
Freescale Semiconductor, Inc.
Overview
• 16-bit prescaler with compensation that can correct errors between 0.12 ppm and
3906 ppm
• Register write protection with register lock mechanism
• 1 Hz square wave or second pulse output with optional interrupt
2.2.8 PIT
The Periodic Interrupt Timer (PIT) is used to generate periodic interrupt to the CPU. It
has two independent channels and each channel has a 32-bit counter. Both channels can
be chained together to form a 64-bit counter.
Channel 0 can be used to periodically trigger DMA channel 0, and channel 1 can be
used to periodically trigger DMA channel 1. Either channel can be programmed as an
ADC trigger source, or TPM trigger source. Channel 0 can be programmed to trigger
DAC.
The PIT module has the following features:
• Each 32-bit timers is able to generate DMA trigger
• Each 32-bit timers is able to generate timeout interrupts
• Two timers can be cascaded to form a 64-bit timer
• Each timer can be programmed as ADC/TPM trigger source
• Timer 0 is able to trigger DAC
2.2.9 LPTMR
The low-power timer (LPTMR) can be configured to operate as a time counter with
optional prescaler, or as a pulse counter with optional glitch filter, across all power
modes, including the low-leakage modes. It can also continue operating through most
system reset events, allowing it to be used as a time of day counter.
The LPTMR module has the following features:
• 16-bit time counter or pulse counter with compare
• Optional interrupt can generate asynchronous wakeup from any low-power
mode
• Hardware trigger output
• Counter supports free-running mode or reset on compare
• Configurable clock source for prescaler/glitch filter
• Configurable input source for pulse counter
20
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Overview
2.2.10 CRC
This device contains one cyclic redundancy check (CRC) module which can generate
16/32-bit CRC code for error detection.
The CRC module provides a programmable polynomial, WAS, and other parameters
required to implement a 16-bit or 32-bit CRC standard.
The CRC module has the following features:
• Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift
register
• Programmable initial seed value and polynomial
• Option to transpose input data or output data (the CRC result) bitwise or bytewise.
• Option for inversion of final CRC result
• 32-bit CPU register programming interface
2.2.11 UART
This device contains a basic universal asynchronous receiver/transmitter (UART)
module with DMA function supported. Generally, this module is used in RS-232,
RS-485, and other communications and supports LIN slave operation and ISO7816.
The UART module has the following features:
• Full-duplex operation
• 13-bit baud rate selection with /32 fractional divide, based on the module clock
frequency
• Programmable 8-bit or 9-bit data format
• Programmable transmitter output polarity
• Programmable receive input polarity
• Up to 14-bit break character transmission.
• 11-bit break character detection option
• Two receiver wakeup methods with idle line or address mark wakeup
• Address match feature in the receiver to reduce address mark wakeup ISR
overhead
• Ability to select MSB or LSB to be first bit on wire
• Support for ISO 7816 protocol to interface with SIM cards and smart cards
• Receiver framing error detection
• Hardware parity generation and checking
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
21
Freescale Semiconductor, Inc.
Overview
• 1/16 bit-time noise detection
• DMA interface
2.2.12 LPUART
This product contains two Low-Power UART modules, both of their clock sources are
selectable from IRC48M, IRC8M/2M or external crystal clock, and can work in Stop
and VLPS modes. They also support 4× to 32× data oversampling rate to meet different
applications.
The LPUART module has the following features:
• Programmable baud rates (13-bit modulo divider) with configurable oversampling
ratio from 4× to 32×
• Transmit and receive baud rate can operate asynchronous to the bus clock and can
be configured independently of the bus clock frequency, support operation in Stop
mode
• Interrupt, DMA or polled operation
• Hardware parity generation and checking
• Programmable 8-bit, 9-bit or 10-bit character length
• Programmable 1-bit or 2-bit stop bits
• Three receiver wakeup methods
• Idle line wakeup
• Address mark wakeup
• Receive data match
• Automatic address matching to reduce ISR overhead:
• Address mark matching
• Idle line address matching
• Address match start, address match end
• Optional 13-bit break character generation / 11-bit break character detection
• Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle
characters
• Selectable transmitter output and receiver input polarity
2.2.13 SPI
This device contains two SPI modules. SPI modules support 8-bit and 16-bit modes.
FIFO function is available only on SPI1 module.
The SPI modules have the following features:
22
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Overview
•
•
•
•
•
•
•
•
•
•
•
•
Full-duplex or single-wire bidirectional mode
Programmable transmit bit rate
Double-buffered transmit and receive data register
Serial clock phase and polarity options
Slave select output
Mode fault error flag with CPU interrupt capability
Control of SPI operation during wait mode
Selectable MSB-first or LSB-first shifting
Programmable 8- or 16-bit data transmission length
Receive data buffer hardware match feature
64-bit FIFO mode for high speed/large amounts of data transfers
Support DMA
2.2.14 I2C
This device contains two I2C modules, which support up to 1 Mbits/s by dual buffer
features, and address match to wake MCU from the low power mode.
I2C modules support DMA transfer, and the interrupt condition can trigger DMA
request when DMA function is enabled.
The I2C modules have the following features:
• Support for system management bus (SMBus) Specification, version 2
• Software programmable for one of 64 different serial clock frequencies
• Software-selectable acknowledge bit
• Arbitration-lost interrupt with automatic mode switching from master to slave
• Calling address identification interrupt
• START and STOP signal generation and detection
• Repeated START signal generation and detection
• Acknowledge bit generation and detection
• Bus busy detection
• General call recognition
• 10-bit address extension
• Programmable input glitch filter
• Low power mode wakeup on slave address match
• Range slave address support
• DMA support
• Double buffering support to achieve higher baud rate
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
23
Freescale Semiconductor, Inc.
Overview
2.2.15 FlexIO
The FlexIO is a highly configurable module providing a wide range of protocols
including, but not limited to UART, I2C, SPI, I2S, Camera IF, LCD RGB, PWM/
Waveform generation. The module supports programmable baud rates independent of
bus clock frequency, with automatic start/stop bit generation.
The FlexIO module has the following features:
• Functional in VLPR/VLPW/Stop/VLPS mode provided the clock it is using
remains enabled
• Four 32-bit double buffered shift registers with transmit, receive, and data match
modes, and continuous data transfer
• The timing of the shifter’ shift, load and store events are controlled by the highly
flexible 16-bit timer assigned to the shifter
• Two or more shifter can be concatenated to support large data transfer sizes
• Each 16-bit timers operates independently, supports for reset, enable and disable on
a variety of internal or external trigger conditions with programmable trigger
polarity
• Flexible pin configuration supporting output disabled, open drain, bidirectional
output data and output mode
• Supports interrupt, DMA or polled transmit/receive operation
2.2.16 Port control and GPIO
The Port Control and Interrupt (PORT) module provides support for port control, digital
filtering, and external interrupt functions. The GPIO data direction and output data
registers control the direction and output data of each pin when the pin is configured for
the GPIO function. The GPIO input data register displays the logic value on each pin
when the pin is configured for any digital function, provided the corresponding Port
Control and Interrupt module for that pin is enabled.
The following figure shows the basic I/O pad structure. This diagram applies to all I/O
pins except PTA20/RESET_b and those configured as pseudo open-drain outputs.
PTA20/RESET_b is a true open-drain pin without p-channel output driver or diode to
the ESD bus. Pseudo open-drain pins have the p-channel output driver disabled when
configured for open-drain operation. None of the I/O pins, including open-drain and
pseudo open-drain pins, are allowed to go above VDD.
24
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Overview
Digital input
IBE=1 whenever
MUX≠000
PFE
MUX
IBE
LPF
ESD
Bus
VDD
RPULL
PE
PS
Analog input
Digital output
DSE
SRE
Figure 4. I/O simplified block diagram
The PORT module has the following features:
• all PIN support interrupt enable .
• Configurable edge(rising,falling,both) or level sensitive interrupt type
• Support DMA request
• Asynchronous wake-up in low-power modes
• Configurable pullup, pulldown, and pull-disable on select pins
• Configurable high and low drive strength on selected pins
• Configurable fast and slow slew rates on selected pins
• Configurable passive filter on selected pins
• Individual mux control field supporting analog or pin disabled, GPIO, and up to
chip-specific digital functions
• Pad configuration fields are functional in all digital pin muxing modes.
The GPIO module has the following features:
• Port Data Input register visible in all digital pin-multiplexing modes
• Port Data Output register with corresponding set/clear/toggle registers
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
25
Freescale Semiconductor, Inc.
Memory map
• Port Data Direction register
• GPIO support single-cycle access via fast GPIO.
3 Memory map
This device contains various memories and memory-mapped peripherals which are
located in a 4 GB memory space. The following figure shows the system memory and
peripheral locations
0x4000_0000
0x4000_8000
0x4000_E000
0x4000_F000
0x0000_0000
Flash
0x0000_0000
0x07FF_FFFF
0x1C00_0000
Reserved
Boot ROM
0x1C00_4000
0x1FFF_F000
0x4002_1000
0x07FF_FFFF
Code space
0x4002_0000
0x4003_2000
0x1C00_0000
0x1C00_0000
ROM
0x1C00_3FFF
0x1C00_3FFF
Reserved
0x4003_7000
0x4003_8000
0x4003_9000
0x4003_A000
0x4003_B000
0x4003_D000
0x1FFF_F000
SRAM _L
Data Space
0x2000_0000
0x2000_3000
0x4000_0000
Reserved
Public
peripheral
0x400F_F000
0x4400_0000
0x6000_0000
0xE000_0000
SRAM _U
0x2000_2FFF
0x4000_0000
Reserved
0x4007_FFFF
0x400F_E000
BM E
0x400F_E1FF
0x400F_F000
Reserved
0x400F_FFFF
Private
peripherals
0xE010_0000
0xE010_0000
0xF000_0000
0xF000_1000
0xF000_2000
Others
0xF000_3000
AIPS
peripherals
Reserved
GPIO
Reserved
M TB
M TBDWT
ROM Table
M CM
0xF000_4000
0xFFFF_FFFF
0xF800_0000
Reserved
IOPORT
0xFFFF_FFFF
0x4004_0000
0x4004_1000
0x4004_7000
0x4004_8000
0x4004_9000
0x0000_A000
0x4004_B000
0x4004_C000
0x4004_D000
0x4005_4000
0x4005_5000
0x4005_F000
0x4006_4000
0x4006_5000
0x4006_6000
0x4006_7000
0x4006_C000
0x4007_2000
0x4007_3000
0x4007_4000
0x4007_6000
0x4007_7000
0x4007_C000
0x4007_D000
0x4007_E000
0x4007_F000
Reserved
DM A controller
Reserved
Reserved
GPIO controller(alias to 0x400F_F000)
Reserved
Flash m em ory
DM A Channel M ultiplexer
Reserved
CRC32
Reserved
PIT
LPTPM 0
LPTPM 1
LPTPM 2
ADC0
Reserved
RTC
Reserved
LPTM R
System register file
Reserved
SIM low power logic
SIM
PORT A
PORT B
PORT C
PORT D
PORT E
Reserved
LPUART0
LPUART1
Reserved
FlexIO
Reserved
M CG Lite
OSC
I2C0
I2C1
Reserved
UART2
Reserved
Reserved
CM P
VREF
Reserved
SPI0
SPI1
Figure 5. Memory map
26
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Pinouts
4 Pinouts
4.1 KL17 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is
responsible for selecting which ALT functionality is available on each pin.
NOTE
The 48 QFN and 64 MAPBGA packages for this product are
not yet available. However, these packages are included in
Package Your Way program for Kinetis MCUs. Visit
freescale.com/KPYW for more details.
64
36
LQFP XFB
GA
32
QFN
48
QFN
64
MAP
BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
—
F2
9
—
—
VREF0
VREF0_B
VREF0_B
—
—
—
—
C5
NC
NC
NC
1
A1
1
—
A1
PTE0
DISABLED
PTE0/
SPI1_MISO LPUART1_
CLKOUT32
TX
K
2
B1
2
—
B1
PTE1
DISABLED
PTE1
3
—
—
1
—
VDD
VDD
VDD
4
C4
—
2
C4
VSS
VSS
VSS
5
C2
3
3
E1
PTE16
ADC0_DP1/ ADC0_DP1/ PTE16
ADC0_SE1 ADC0_SE1
SPI0_PCS0 UART2_TX
6
C1
4
4
D1
PTE17
ADC0_
DM1/
ADC0_
SE5a
SPI0_SCK
7
D1
5
5
E2
PTE18
ADC0_DP2/ ADC0_DP2/ PTE18
ADC0_SE2 ADC0_SE2
SPI0_MOSI
I2C0_SDA
SPI0_MISO FXIO0_D2
8
D2
6
6
D2
PTE19
ADC0_
DM2/
ADC0_
SE6a
SPI0_MISO
I2C0_SCL
SPI0_MOSI FXIO0_D3
9
E3
—
7
G1
PTE20
ADC0_DP0/ ADC0_DP0/ PTE20
ADC0_SE0 ADC0_SE0
TPM1_CH0 LPUART0_
TX
FXIO0_D4
10
E2
—
8
F1
PTE21
ADC0_
DM0/
TPM1_CH1 LPUART0_
RX
FXIO0_D5
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
ADC0_
DM1/
ADC0_
SE5a
ADC0_
DM2/
ADC0_
SE6a
ADC0_
DM0/
PTE17
PTE19
PTE21
RTC_
CLKOUT
ALT7
CMP0_OUT I2C1_SDA
SPI1_MOSI LPUART1_
RX
SPI1_MISO I2C1_SCL
TPM_
CLKIN0
FXIO0_D0
UART2_RX TPM_
CLKIN1
LPTMR0_
ALT3
FXIO0_D1
27
Freescale Semiconductor, Inc.
Pinouts
64
36
LQFP XFB
GA
32
QFN
48
QFN
64
MAP
BGA
Pin Name
Default
ADC0_
SE4a
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
ADC0_
SE4a
11
E1
—
—
G2
PTE22
ADC0_DP3/ ADC0_DP3/ PTE22
ADC0_SE3 ADC0_SE3
TPM2_CH0 UART2_TX
FXIO0_D6
12
F1
—
—
F2
PTE23
ADC0_
DM3/
ADC0_
SE7a
ADC0_
DM3/
ADC0_
SE7a
TPM2_CH1 UART2_RX
FXIO0_D7
13
D3
7
9
F4
VDDA
VDDA
VDDA
14
D3
7
10
G4
VREFH
VREFH
VREFH
14
—
—
10
G4
VREFO
VREFO_A
VREFO_A
15
D4
8
11
G3
VREFL
VREFL
VREFL
16
D4
8
12
F3
VSSA
VSSA
VSSA
17
—
—
13
H1
PTE29
CMP0_IN5/ CMP0_IN5/ PTE29
ADC0_
ADC0_
SE4b
SE4b
TPM0_CH2 TPM_
CLKIN0
18
F2
9
14
H2
PTE30
ADC0_
SE23/
CMP0_IN4
PTE30
TPM0_CH3 TPM_
CLKIN1
19
—
—
—
H3
PTE31
DISABLED
PTE31
TPM0_CH4
20
—
—
15
H4
PTE24
DISABLED
PTE24
TPM0_CH0
I2C0_SCL
21
—
—
16
H5
PTE25
DISABLED
PTE25
TPM0_CH1
I2C0_SDA
22
F3
10
17
D3
PTA0
SWD_CLK
PTA0
TPM0_CH5
23
F4
11
18
D4
PTA1
DISABLED
PTA1
LPUART0_
RX
TPM2_CH0
24
E4
12
19
E5
PTA2
DISABLED
PTA2
LPUART0_
TX
TPM2_CH1
25
E5
13
20
D5
PTA3
SWD_DIO
PTA3
I2C1_SCL
TPM0_CH0
SWD_DIO
26
F5
14
21
G5
PTA4
NMI_b
PTA4
I2C1_SDA
TPM0_CH1
NMI_b
27
—
—
—
F5
PTA5
DISABLED
PTA5
TPM0_CH2
28
—
—
—
H6
PTA12
DISABLED
PTA12
TPM1_CH0
29
—
—
—
G6
PTA13
DISABLED
PTA13
TPM1_CH1
30
C3
15
22
G7
VDD
VDD
VDD
31
C4
16
23
H7
VSS
VSS
VSS
32
F6
17
24
H8
PTA18
EXTAL0
EXTAL0
PTA18
LPUART1_
RX
TPM_
CLKIN0
33
E6
18
25
G8
PTA19
XTAL0
XTAL0
PTA19
LPUART1_
TX
TPM_
CLKIN1
34
D5
19
26
F8
PTA20
RESET_b
35
D6
20
27
F7
PTB0/
LLWU_P5
ADC0_SE8
ADC0_SE8
PTB0/
LLWU_P5
I2C0_SCL
TPM1_CH0 SPI1_MOSI SPI1_MISO
36
C6
21
28
F6
PTB1
ADC0_SE9
ADC0_SE9
PTB1
I2C0_SDA
TPM1_CH1 SPI1_MISO SPI1_MOSI
28
Freescale Semiconductor, Inc.
ADC0_
SE23/
CMP0_IN4
PTE23
LPUART1_
TX
LPTMR0_
ALT1
SWD_CLK
PTA20
LPTMR0_
ALT1
RESET_b
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Pinouts
64
36
LQFP XFB
GA
32
QFN
48
QFN
64
MAP
BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
37
—
—
29
E7
PTB2
ADC0_
SE12
ADC0_
SE12
PTB2
I2C0_SCL
TPM2_CH0
38
—
—
30
E8
PTB3
ADC0_
SE13
ADC0_
SE13
PTB3
I2C0_SDA
TPM2_CH1
39
—
—
31
E6
PTB16
DISABLED
PTB16
SPI1_MOSI LPUART0_
RX
TPM_
CLKIN0
SPI1_MISO
40
—
—
32
D7
PTB17
DISABLED
PTB17
SPI1_MISO LPUART0_
TX
TPM_
CLKIN1
SPI1_MOSI
41
—
—
—
D6
PTB18
DISABLED
PTB18
TPM2_CH0
42
—
—
—
C7
PTB19
DISABLED
PTB19
TPM2_CH1
43
—
—
33
D8
PTC0
ADC0_
SE14
ADC0_
SE14
PTC0
EXTRG_IN
44
C5
22
34
C6
PTC1/
ADC0_
LLWU_P6/ SE15
RTC_CLKIN
ADC0_
SE15
PTC1/
I2C1_SCL
LLWU_P6/
RTC_CLKIN
TPM0_CH0
45
B6
23
35
B7
PTC2
ADC0_
SE11
ADC0_
SE11
PTC2
I2C1_SDA
TPM0_CH1
46
B5
24
36
C8
PTC3/
LLWU_P7
DISABLED
PTC3/
LLWU_P7
SPI1_SCK
47
—
—
—
E3
VSS
VSS
VSS
48
—
—
—
E4
VDD
VDD
VDD
49
A6
25
37
B8
PTC4/
LLWU_P8
DISABLED
PTC4/
LLWU_P8
SPI0_PCS0 LPUART1_
TX
50
A5
26
38
A8
PTC5/
LLWU_P9
DISABLED
PTC5/
LLWU_P9
SPI0_SCK
51
B4
27
39
A7
PTC6/
LLWU_P10
CMP0_IN0
CMP0_IN0
PTC6/
LLWU_P10
SPI0_MOSI EXTRG_IN
SPI0_MISO
52
A4
28
40
B6
PTC7
CMP0_IN1
CMP0_IN1
PTC7
SPI0_MISO
SPI0_MOSI
53
—
—
—
A6
PTC8
CMP0_IN2
CMP0_IN2
PTC8
I2C0_SCL
TPM0_CH4
54
—
—
—
B5
PTC9
CMP0_IN3
CMP0_IN3
PTC9
I2C0_SDA
TPM0_CH5
55
—
—
—
B4
PTC10
DISABLED
PTC10
I2C1_SCL
56
—
—
—
A5
PTC11
DISABLED
PTC11
I2C1_SDA
57
—
—
41
C3
PTD0
DISABLED
PTD0
SPI0_PCS0
TPM0_CH0
FXIO0_D0
58
—
—
42
A4
PTD1
ADC0_
SE5b
PTD1
SPI0_SCK
TPM0_CH1
FXIO0_D1
59
—
—
43
C2
PTD2
DISABLED
PTD2
SPI0_MOSI UART2_RX TPM0_CH2 SPI0_MISO FXIO0_D2
60
—
—
44
B3
PTD3
DISABLED
PTD3
SPI0_MISO UART2_TX
61
A3
29
45
A3
PTD4/
LLWU_P14
DISABLED
PTD4/
LLWU_P14
SPI1_PCS0 UART2_RX TPM0_CH4
FXIO0_D4
62
B3
30
46
C1
PTD5
ADC0_
SE6b
ADC0_
SE6b
PTD5
SPI1_SCK
FXIO0_D5
63
B2
31
47
B2
PTD6/
LLWU_P15
ADC0_
SE7b
ADC0_
SE7b
PTD6/
LLWU_P15
SPI1_MOSI LPUART0_
RX
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
ADC0_
SE5b
LPUART1_
RX
CMP0_OUT
TPM0_CH2 CLKOUT
TPM0_CH3 SPI1_PCS0
LPTMR0_
ALT2
UART2_TX
ALT7
CMP0_OUT
TPM0_CH3 SPI0_MOSI FXIO0_D3
TPM0_CH5
I2C1_SDA
SPI1_MISO FXIO0_D6
29
Freescale Semiconductor, Inc.
Pinouts
64
36
LQFP XFB
GA
64
A2
32
QFN
48
QFN
64
MAP
BGA
32
48
A2
Pin Name
PTD7
Default
ALT0
DISABLED
ALT1
ALT2
PTD7
ALT3
ALT4
SPI1_MISO LPUART0_
TX
ALT5
I2C1_SCL
ALT6
ALT7
SPI1_MOSI FXIO0_D7
4.2 Pin properties
Pin interrupt
Open drain
Passive pin filter after POR
Slew rate after POR
Pullup/ pulldown setting after POR
Default status after POR
Driver strength
Pin name
64 MAPBGA
48 QFN
32 QFN
36
XFBGA
64 LQFP
The following table lists the pin properties.
—
F2
9
—
—
VREF0
—
—
—
—
—
—
—
—
—
—
—
C5
NC
—
—
—
—
—
—
—
1
A1
1
—
A1
PTE0
ND
Hi-Z
—
FS
N
N
Y
2
B1
2
—
B1
PTE1
ND
Hi-Z
—
FS
N
N
Y
3
—
—
1
—
VDD
—
—
—
—
—
—
—
4
C4
—
2
C4
VSS
—
—
—
—
—
—
—
5
C2
3
3
E1
PTE16
ND
Hi-Z
—
FS
N
N
Y
6
C1
4
4
D1
PTE17
ND
HI-Z
—
FS
N
N
Y
7
D1
5
5
E2
PTE18
ND
Hi-Z
—
FS
N
N
Y
8
D2
6
6
D2
PTE19
ND
HI-Z
—
FS
N
N
Y
9
E3
—
7
G1
PTE20
ND
Hi-Z
—
SS
N
N
Y
10
E2
—
8
F1
PTE21
ND
Hi-Z
—
SS
N
N
Y
11
E1
—
—
G2
PTE22
ND
Hi-Z
—
SS
N
N
Y
12
F1
—
—
F2
PTE23
ND
Hi-Z
—
SS
N
N
Y
13
D3
7
9
F4
VDDA
—
—
—
—
—
—
—
14
D3
7
10
G4
VREFH
—
—
—
—
—
—
—
14
—
—
10
G4
VREFO
—
—
—
—
—
—
—
15
D4
8
11
G3
VREFL
—
—
—
—
—
—
—
16
D4
8
12
F3
VSSA
—
—
—
—
—
—
—
17
—
—
13
H1
PTE29
ND
Hi-Z
—
SS
N
N
Y
Table continues on the next page...
30
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Pin interrupt
Open drain
Passive pin filter after POR
Slew rate after POR
Pullup/ pulldown setting after POR
Default status after POR
Driver strength
Pin name
64 MAPBGA
48 QFN
32 QFN
36
XFBGA
64 LQFP
Pinouts
18
F2
9
14
H2
PTE30
ND
Hi-Z
—
SS
N
N
Y
19
—
—
—
H3
PTE31
ND
Hi-Z
—
SS
N
N
Y
20
—
—
15
H4
PTE24
ND
Hi-Z
—
SS
N
N
Y
21
—
—
16
H5
PTE25
ND
Hi-Z
—
SS
N
N
Y
22
F3
10
17
D3
PTA0
ND
L
PD
SS
N
N
Y
23
F4
11
18
D4
PTA1
ND
Hi-Z
—
SS
N
N
Y
24
E4
12
19
E5
PTA2
ND
Hi-Z
—
SS
N
N
Y
25
E5
13
20
D5
PTA3
ND
H
PU
FS
N
N
Y
26
F5
14
21
G5
PTA4
ND
H
PU
SS
Y
N
Y
27
—
—
—
F5
PTA5
ND
Hi-Z
—
SS
N
N
Y
28
—
—
—
H6
PTA12
ND
Hi-Z
—
SS
N
N
Y
29
—
—
—
G6
PTA13
ND
Hi-Z
—
SS
N
N
Y
30
C3
15
22
G7
VDD
ND
—
—
—
—
—
—
31
C4
16
23
H7
VSS
ND
—
—
—
—
—
—
32
F6
17
24
H8
PTA18
ND
Hi-Z
—
SS
N
N
Y
33
E6
18
25
G8
PTA19
ND
Hi-Z
—
SS
N
N
Y
34
D5
19
26
F8
PTA20
ND
H
PU
SS
N
Y
Y
35
D6
20
27
F7
PTB0/LLWU_P5
HD
Hi-Z
—
FS
N
N
Y
36
C6
21
28
F6
PTB1
HD
Hi-Z
—
FS
N
N
Y
37
—
—
29
E7
PTB2
ND
Hi-Z
—
SS
N
N
Y
38
—
—
30
E8
PTB3
ND
Hi-Z
—
SS
N
N
Y
39
—
—
31
E6
PTB16
ND
Hi-Z
—
FS
N
N
Y
40
—
—
32
D7
PTB17
ND
Hi-Z
—
FS
N
N
Y
41
—
—
—
D6
PTB18
ND
Hi-Z
—
SS
N
N
Y
42
—
—
—
C7
PTB19
ND
Hi-Z
—
SS
N
N
Y
43
—
—
33
D8
PTC0
ND
Hi-Z
—
SS
N
N
Y
44
C5
22
34
C6
PTC1/
LLWU_P6/
RTC_CLKIN
ND
Hi-Z
—
SS
N
N
Y
45
B6
23
35
B7
PTC2
ND
Hi-Z
—
SS
N
N
Y
Table continues on the next page...
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
31
Freescale Semiconductor, Inc.
Pin interrupt
Open drain
Passive pin filter after POR
Slew rate after POR
Pullup/ pulldown setting after POR
Default status after POR
Driver strength
Pin name
64 MAPBGA
48 QFN
32 QFN
36
XFBGA
64 LQFP
Pinouts
46
B5
24
36
C8
PTC3/
LLWU_P7
HD
Hi-Z
—
FS
N
N
Y
47
—
—
—
E3
VSS
—
—
—
—
—
—
—
48
—
—
—
E4
VDD
—
—
—
—
—
—
—
49
A6
25
37
B8
PTC4/
LLWU_P8
HD
Hi-Z
—
FS
N
N
Y
50
A5
26
38
A8
PTC5/
LLWU_P9
ND
Hi-Z
—
FS
N
N
Y
51
B4
27
39
A7
PTC6/
LLWU_P10
ND
Hi-Z
—
FS
N
N
Y
52
A4
28
40
B6
PTC7
ND
Hi-Z
—
FS
N
N
Y
53
—
—
—
A6
PTC8
ND
Hi-Z
—
SS
N
N
Y
54
—
—
—
B5
PTC9
ND
Hi-Z
—
SS
N
N
Y
55
—
—
—
B4
PTC10
ND
Hi-Z
—
SS
N
N
Y
56
—
—
—
A5
PTC11
ND
Hi-Z
—
SS
N
N
Y
57
—
—
41
C3
PTD0
ND
Hi-Z
—
FS
N
N
Y
58
—
—
42
A4
PTD1
ND
Hi-Z
—
FS
N
N
Y
59
—
—
43
C2
PTD2
ND
Hi-Z
—
FS
N
N
Y
60
—
—
44
B3
PTD3
ND
Hi-Z
—
FS
N
N
Y
61
A3
29
45
A3
PTD4/
LLWU_P14
ND
Hi-Z
—
FS
N
N
Y
62
B3
30
46
C1
PTD5
ND
Hi-Z
—
FS
N
N
Y
63
B2
31
47
B2
PTD6/
LLWU_P15
HD
Hi-Z
—
FS
N
N
Y
64
A2
32
48
A2
PTD7
HD
Hi-Z
—
FS
N
N
Y
Properties
Driver strength
Default status after POR
Abbreviation
Descriptions
ND
Normal drive
HD
High drive
Hi-Z
High impendence
Table continues on the next page...
32
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Pinouts
Properties
Pullup/ pulldown setting
after POR
Slew rate after POR
Abbreviation
Descriptions
H
High level
L
Low level
PD
Pullup
PU
Pulldown
FS
Fast slew rate
SS
Slow slew rate
Passive Pin Filter after
POR
N
Disabled
Y
Enabled
Open drain
N
Disabled1
Y
Enabled2
Y
Yes
Pin interrupt
1. When I2C module is enabled and a pin is functional for I2C, this pin is (pseudo-) open drain enabled. When UART or
LPUART module is enabled and a pin is functional for UART or LPUART, this pin is (pseudo-) open drain
configurable.
2. PTA20 is a true open drain pin that must never be pulled above VDD.
4.3 Module Signal Description Tables
The following sections correlate the chip-level signal name with the signal name used
in the module's chapter. They also briefly describe the signal function and direction.
4.3.1 Core modules
Table 9. SWD signal descriptions
Chip signal name
Module signal
name
SWD_DIO
SWD_DIO
Description
I/O
Serial Wire Debug Data Input/Output
The SWD_DIO pin is used by an external debug tool for
communication and device control. This pin is pulled up
internally.
SWD_CLK
SWD_CLK
Serial Wire Clock
Input /
Output
Input
This pin is the clock for debug logic when in the Serial Wire
Debug mode. This pin is pulled down internally.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
33
Freescale Semiconductor, Inc.
Pinouts
4.3.2 System modules
Table 10. System signal descriptions
Chip signal name
Module signal
name
NMI
—
Description
I/O
Non-maskable interrupt
I
NOTE: Driving the NMI signal low forces a non-maskable
interrupt, if the NMI function is selected on the
corresponding pin.
RESET
—
Reset bidirectional signal
I/O
VDD
—
MCU power
I
VSS
—
MCU ground
I
Table 11. LLWU signal descriptions
Chip signal name
Module signal
name
LLWU_Pn
LLWU_Pn
Description
I/O
Wakeup inputs (n = 5, 6, 7, 8, 9, 10, 14, 15)
I
4.3.3 Clock modules
Table 12. OSC signal descriptions
Chip signal name
Module signal
name
EXTAL0
EXTAL
XTAL0
XTAL
Description
I/O
External clock/Oscillator input
I
Oscillator output
O
4.3.4 Analog
This table presents the signal descriptions of the ADC0 module.
Table 13. ADC0 signal descriptions
Chip signal name
Module signal
name
Description
I/O
ADC0_DPn
DADP3–DADP0
Differential Analog Channel Inputs
I
ADC0_DMn
DADM3–DADM0
Differential Analog Channel Inputs
I
ADC0_SEn
ADn
Single-Ended Analog Channel Inputs
I
VREFH
VREFSH
Voltage Reference Select High
I
Table continues on the next page...
34
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Pinouts
Table 13. ADC0 signal descriptions (continued)
Chip signal name
Module signal
name
VREFL
VREFSL
VDDA
VSSA
EXTRG_IN
ADHWT
Description
I/O
Voltage Reference Select Low
I
VDDA
Analog Power Supply
I
VSSA
Analog Ground
I
Hardware trigger
I
This table presents the signal descriptions of the CMP0 module.
Table 14. CMP0 signal descriptions
Chip signal name
Module signal
name
Description
I/O
CMP0_IN[5:0]
IN[5:0]
Analog voltage inputs
I
CMP0_OUT
CMPO
Comparator output
O
Table 15. VREF signal descriptions
Chip signal name
Module signal
name
Description
I/O
VREF_OUT
VREF_OUT
Internally-generated voltage reference output
O
4.3.5 Timer Modules
Table 16. TPM0 signal descriptions
Chip signal name
Module signal
name
Description
TPM_CLKIN[1:0]
TPM_EXTCLK
External clock. TPM external clock can be selected to increment
the TPM counter on every rising edge synchronized to the
counter clock.
I
TPM0_CH[5:0]
TPM_CHn
TPM channel (n = 5 to 0). A TPM channel pin is configured as
output when configured in an output compare or PWM mode and
the TPM counter is enabled, otherwise the TPM channel pin is an
input.
I/O
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
I/O
35
Freescale Semiconductor, Inc.
Pinouts
Table 17. TPM1 signal descriptions
Chip signal name
Module signal
name
Description
I/O
TPM_CLKIN[1:0]
TPM_EXTCLK
External clock. TPM external clock can be selected to increment
the TPM counter on every rising edge synchronized to the counter
clock.
I
TPM1_CH[1:0]
TPM_CHn
TPM channel (n = 1 to 0). A TPM channel pin is configured as
output when configured in an output compare or PWM mode and
the TPM counter is enabled, otherwise the TPM channel pin is an
input.
I/O
Table 18. TPM2 signal descriptions
Chip signal name
Module signal
name
Description
I/O
TPM_CLKIN[1:0]
TPM_EXTCLK
External clock. TPM external clock can be selected to increment
the TPM counter on every rising edge synchronized to the counter
clock.
I
TPM2_CH[1:0]
TPM_CHn
TPM channel (n = 1 to 0). A TPM channel pin is configured as
output when configured in an output compare or PWM mode and
the TPM counter is enabled, otherwise the TPM channel pin is an
input.
I/O
Table 19. LPTMR0 signal descriptions
Chip signal name
Module signal
name
Description
LPTMR0_ALT[3:1]
LPTMR0_ALTn
Pulse Counter Input pin
I/O
I
Table 20. RTC signal descriptions
Chip signal name
Module signal
name
Description
I/O
RTC_CLKOUT1
RTC_CLKOUT
1 Hz square-wave output or OSCERCLK
O
1. RTC_CLKOUT can also be driven with OSCERCLK via SIM control bit SIM_SOPT[RCTCLKOUTSEL]
4.3.6 Communication interfaces
Table 21. SPI0 signal descriptions
Chip signal name
Module signal
name
SPI0_MISO
MISO
Description
I/O
Master Data In, Slave Data Out
I/O
Table continues on the next page...
36
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Pinouts
Table 21. SPI0 signal descriptions (continued)
Chip signal name
Module signal
name
SPI0_MOSI
MOSI
SPI0_SCLK
SPSCK
SPI0_PCS0
SS
Description
I/O
Master Data Out, Slave Data In
I/O
SPI Serial Clock
I/O
Slave Select
I/O
Table 22. SPI1 signal descriptions
Chip signal name
Module signal
name
Description
I/O
SPI1_MISO
MISO
Master Data In, Slave Data Out
I/O
SPI1_MOSI
MOSI
Master Data Out, Slave Data In
I/O
SPI1_SCLK
SPSCK
SPI Serial Clock
I/O
SPI1_PCS0
SS
Slave Select
I/O
Table 23. I2C0 signal descriptions
Chip signal name
Module signal
name
I2C0_SCL
SCL
I2C0_SDA
Description
I/O
Bidirectional serial clock line of the I2C system.
SDA
Bidirectional serial data line of the
I2C
system.
I/O
I/O
Table 24. I2C1 signal descriptions
Chip signal name
Module signal
name
I2C1_SCL
SCL
I2C1_SDA
SDA
Description
I/O
Bidirectional serial clock line of the I2C system.
Bidirectional serial data line of the
I2C
system.
I/O
I/O
Table 25. LPUART0 signal descriptions
Chip signal name
Module signal
name
Description
I/O
LPUART0_TX
TxD
Transmit data
I/O
LPUART0_RX
RxD
Receive data
I
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
37
Freescale Semiconductor, Inc.
Pinouts
Table 26. LPUART1 signal descriptions
Chip signal name
Module signal
name
Description
I/O
LPUART1_TX
TxD
Transmit data
I/O
LPUART1_RX
RxD
Receive data
I
Table 27. UART2 signal descriptions
Chip signal name
Module signal
name
Description
I/O
UART2_TX
TxD
Transmit data
O
UART2_RX
RxD
Receive data
I
Table 28. FlexIO signal descriptions
Chip signal name
Module signal name
FXIO0_Dx
FXIO_Dn (n=0...7)
Description
Bidirectional FlexIO Shifter
and Timer pin inputs/outputs
I/O
I/O
4.3.7 Human-machine interfaces (HMI)
Table 29. GPIO Signal Descriptions
Chip signal name
Module signal
name
Description
I/O
PTA[31:0]
PORTA31–PORTA0 General-purpose input/output
I/O
PTB[31:0]
PORTB31–PORTB0 General-purpose input/output
I/O
PTC[11:0]
PORTC11–PORTC0 General-purpose input/output
I/O
PTD[7:0]
PORTD7–PORTD0 General-purpose input/output
I/O
PTE[31:0]
PORTE31–PORTE0 General-purpose input/output
I/O
4.4 KL17 Family Pinouts
The figure below shows the 32 QFN pinouts.
38
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
32
31
30
29
28
27
26
25
Pinouts
4
21
PTB1
PTE18
5
20
PTB0/LLWU_P5
PTE19
6
19
PTA20
VDDA VREFH
7
18
PTA19
VREFL VSSA
8
17
PTA18
10
PTA0
VREF0 PTE30
16
PTE17
VSS
PTC1/LLWU_P6/RTC_CLKIN
15
22
VDD
3
14
PTE16
PTA4
PTC2
13
23
PTA3
2
12
PTE1
PTA2
PTC3/LLWU_P7
11
24
PTA1
1
9
PTE0
Figure 6. 32 QFN Pinout diagram (transparent top view)
The figure below shows the 48 QFN pinouts.
NOTE
The 48 QFN package for this product is not yet available.
However, it is included in Package Your Way program for
Kinetis MCUs. Visit freescale.com/KPYW for more details.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
39
Freescale Semiconductor, Inc.
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
48
47
46
45
44
43
42
41
40
39
38
37
Pinouts
PTB16
PTE20
7
30
PTB3
PTE21
8
29
PTB2
VDDA
9
28
PTB1
VREFH VREFO
10
27
PTB0/LLWU_P5
VREFL
11
26
PTA20
VSSA
12
25
PTA19
PTA18
24
31
23
6
VSS
PTE19
22
PTB17
VDD
32
21
5
PTA4
PTE18
20
PTC0
PTA3
33
19
4
PTA2
PTE17
18
PTC1/LLWU_P6/RTC_CLKIN
PTA1
34
17
3
PTA0
PTE16
16
PTC2
PTE25
35
15
2
PTE24
VSS
14
PTC3/LLWU_P7
PTE30
36
13
1
PTE29
VDD
Figure 7. 48 QFN Pinout diagram (transparent top view)
The figure below shows the 64 MAPBGA pinouts.
NOTE
The 64 MAPBGA package for this product is not yet
available. However, it is included in Package Your Way
program for Kinetis MCUs. Visit freescale.com/KPYW for
more details.
40
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Pinouts
1
2
3
4
5
6
A
PTE0
PTD7
PTD4/
LLWU_P14
PTD1
PTC11
PTC8
B
PTE1
PTD6/
LLWU_P15
PTD3
PTC10
PTC9
PTC7
C
PTD5
PTD2
PTD0
VSS
NC
D
PTE17
PTE19
PTA0
PTA1
E
PTE16
PTE18
VSS
F
PTE21
PTE23
G
PTE20
H
7
8
PTC6/
PTC5/
LLWU_P10 LLWU_P9
A
PTC2
PTC4/
LLWU_P8
B
PTC1/
LLWU_P6/
RTC_CLKIN
PTB19
PTC3/
LLWU_P7
C
PTA3
PTB18
PTB17
PTC0
D
VDD
PTA2
PTB16
PTB2
PTB3
E
VSSA
VDDA
PTA5
PTB1
PTB0/
LLWU_P5
PTA20
F
PTE22
VREFL
VREFH
VREFO
PTA4
PTA13
VDD
PTA19
G
PTE29
PTE30
PTE31
PTE24
PTE25
PTA12
VSS
PTA18
H
1
2
3
4
5
6
7
8
Figure 8. 64 MAPBGA Pinout diagram (transparent top view)
The figure below shows the 64 LQFP pinouts:
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
41
Freescale Semiconductor, Inc.
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC11
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Pinouts
PTE20
9
40
PTB17
PTE21
10
39
PTB16
PTE22
11
38
PTB3
PTE23
12
37
PTB2
VDDA
13
36
PTB1
VREFH VREFO
14
35
PTB0/LLWU_P5
VREFL
15
34
PTA20
VSSA
16
33
PTA19
32
PTB18
PTA18
41
31
8
VSS
PTE19
30
PTB19
VDD
42
29
7
PTA13
PTE18
28
PTC0
PTA12
43
27
6
PTA5
PTE17
26
PTC1/LLWU_P6/RTC_CLKIN
PTA4
44
25
5
PTA3
PTE16
24
PTC2
PTA2
45
23
4
PTA1
VSS
22
PTC3/LLWU_P7
PTA0
46
21
3
PTE25
VDD
20
VSS
PTE24
47
19
2
PTE31
PTE1
18
VDD
PTE30
48
17
1
PTE29
PTE0
Figure 9. 64 LQFP Pinout diagram (top view)
The figure below shows the 36 XFBGA pinouts:
42
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Pinouts
1
2
3
4
5
6
A
PTE0
PTD7
PTD4/
LLWU_P14
PTC7
PTC5/
LLWU_P9
PTC4/
LLWU_P8
A
B
PTE1
PTD6/
LLWU_P15
PTD5
PTC2
B
C
PTE17
PTE16
VDD
VSS
PTC1/
LLWU_P6/
RTC_CLKIN
PTB1
C
D
PTE18
PTE19
VDDA/
VREFH
VREFL/
VSSA
PTA20
PTB0/
LLWU_P5
D
E
PTE22
PTE21
PTE20
PTA2
PTA3
PTA19
E
F
PTE23
VREF0/
PTE30
PTA0
PTA1
PTA4
PTA18
F
1
2
3
4
5
6
PTC6/
PTC3/
LLWU_P10 LLWU_P7
Figure 10. 36 XFBGA Pinout diagram (transparent top view)
4.5 Package dimensions
The following figures show the dimensions of the package options for the devices
supported by this document.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
43
Freescale Semiconductor, Inc.
Pinouts
Figure 11. 64-pin LQFP package dimensions 1
44
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Pinouts
Figure 12. 64-pin LQFP package dimensions 2
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
45
Freescale Semiconductor, Inc.
Pinouts
Figure 13. 64-pin MAPBGA package dimension
46
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Pinouts
Figure 14. 48-pin QFN package dimension 1
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
47
Freescale Semiconductor, Inc.
Pinouts
Figure 15. 48-pin QFN package dimension 2
48
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Pinouts
Figure 16. 36-pin XFBGA package dimension
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
49
Freescale Semiconductor, Inc.
Pinouts
Figure 17. 32-pin QFN package dimension 1
50
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
Figure 18. 32-pin QFN package dimension 2
5 Electrical characteristics
5.1 Ratings
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
51
Freescale Semiconductor, Inc.
Electrical characteristics
5.1.1 Thermal handling ratings
Table 30. Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
5.1.2 Moisture handling ratings
Table 31. Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
5.1.3 ESD handling ratings
Table 32. ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
–2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device
model
–500
+500
V
2
Latch-up current at ambient temperature of 105 °C
–100
+100
mA
3
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human
Body Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
5.1.4 Voltage and current absolute operating ratings
Table 33. Voltage and current absolute operating ratings
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
120
mA
Table continues on the next page...
52
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
Table 33. Voltage and current absolute operating ratings (continued)
Symbol
VIO
ID
VDDA
Description
Min.
Max.
Unit
IO pin input voltage
–0.3
VDD + 0.3
V
Instantaneous maximum current single pin limit (applies to
all port pins)
–25
25
mA
VDD – 0.3
VDD + 0.3
V
Analog supply voltage
5.2 General
5.2.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
Input Signal
High
Low
VIH
80%
50%
20%
Midpoint1
VIL
Fall Time
Rise Time
The midpoint is VIL + (VIH - VIL) / 2
Figure 19. Input signal measurement reference
All digital I/O switching characteristics, unless otherwise specified, assume that the
output pins have the following characteristics.
• CL=30 pF loads
• Slew rate disabled
• Normal drive strength
5.2.2 Nonswitching electrical specifications
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
53
Freescale Semiconductor, Inc.
Electrical characteristics
5.2.2.1
Voltage and current operating requirements
Table 34. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
-3
—
mA
-25
—
mA
VIH
VIL
Input high voltage
Input low voltage
VHYS
Input hysteresis
IICIO
IO pin negative DC injection current — single pin
1
• VIN < VSS-0.3V
IICcont
Notes
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents of 16
contiguous pins
• Negative current injection
VODPU
Open drain pullup voltage level
VDD
VDD
V
VRAM
VDD voltage required to retain RAM
1.2
—
V
2
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.
2. Open drain outputs must be pulled to VDD.
5.2.2.2
Symbol
LVD and POR operating requirements
Table 35. VDD supply LVD and POR operating requirements
Description
Min.
Typ.
Max.
Unit
Notes
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
—
VLVDH
Falling low-voltage detect threshold — high
range (LVDV = 01)
2.48
2.56
2.64
V
—
Low-voltage warning thresholds — high range
VLVW1H
• Level 1 falling (LVWV = 00)
VLVW2H
• Level 2 falling (LVWV = 01)
VLVW3H
1
2.62
2.70
2.78
V
2.72
2.80
2.88
V
2.82
2.90
2.98
V
Table continues on the next page...
54
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
Table 35. VDD supply LVD and POR operating requirements (continued)
Symbol
VLVW4H
Description
• Level 3 falling (LVWV = 10)
Min.
Typ.
Max.
Unit
2.92
3.00
3.08
V
Notes
—
±60
—
mV
—
1.54
1.60
1.66
V
—
• Level 4 falling (LVWV = 11)
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low
range (LVDV=00)
Low-voltage warning thresholds — low range
VLVW1L
• Level 1 falling (LVWV = 00)
VLVW2L
• Level 2 falling (LVWV = 01)
VLVW3L
• Level 3 falling (LVWV = 10)
VLVW4L
• Level 4 falling (LVWV = 11)
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
1
1.74
1.80
1.86
V
1.84
1.90
1.96
V
1.94
2.00
2.06
V
2.04
2.10
2.16
V
—
±40
—
mV
—
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
—
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
—
1. Rising thresholds are falling threshold + hysteresis voltage
5.2.2.3
Symbol
VOH
VOH
Voltage and current operating behaviors
Table 36. Voltage and current operating behaviors
Description
Min.
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –2.5 mA
VDD – 0.5
—
V
Output high voltage — high drive pad
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –20 mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –10 mA
VDD – 0.5
—
V
—
100
mA
VOL
Output low voltage — normal drive pad
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA
—
0.5
V
Output low voltage — high drive pad
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA
—
0.5
V
—
100
mA
Output low current total for all ports
Notes
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA
Output high current total for all ports
IOLT
Unit
Output high voltage — normal drive pad
IOHT
VOL
Max.
Table continues on the next page...
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
55
Freescale Semiconductor, Inc.
Electrical characteristics
Table 36. Voltage and current operating behaviors (continued)
Symbol
Description
Min.
Max.
Unit
Notes
IIN
Input leakage current (per pin) for full temperature
range
—
1
μA
2
IIN
Input leakage current (per pin) at 25 °C
—
0.025
μA
2
IIN
Input leakage current (total all pins) for full
temperature range
—
64
μA
2
IOZ
Hi-Z (off-state) leakage current (per pin)
—
1
μA
RPU
Internal pullup resistors
20
50
kΩ
3
1. PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the
associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
2. Measured at VDD = 3.6 V
3. Measured at VDD supply voltage = VDD min and Vinput = VSS
5.2.2.4
Power mode transition operating behaviors
All specifications except tPOR and VLLSx → RUN recovery times in the following table
assume this clock configuration:
• CPU and system clocks = 48 MHz
• Bus and flash clock = 24 MHz
• HIRC clock mode
Table 37. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the
point VDD reaches 1.8 V to execution of the first
instruction across the operating temperature
range of the chip.
Min.
Typ.
Max.
Unit
—
—
300
μs
—
152
166
μs
—
152
166
μs
—
93
104
μs
—
7.5
8
μs
—
7.5
8
μs
—
7.5
8
μs
Notes
• VLLS0 → RUN
• VLLS1 → RUN
• VLLS3 → RUN
• LLS → RUN
• VLPS → RUN
• STOP → RUN
56
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
5.2.2.5
Power consumption operating behaviors
The maximum values stated in the following table represent the characterized results
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).
NOTE
The while(1) test is executed with flash cache enabled.
Table 38. Power consumption operating behaviors
Symbol
IDDA
Description
Analog supply current
IDD_RUNCO Running CoreMark in flash in compute
operation mode—48M HIRC mode, 48 MHz
core / 24 MHz flash, VDD = 3.0 V
• at 25 °C
Min.
Typ.
Max.
Unit
Notes
—
—
See note
mA
1
2
—
• at 105 °C
IDD_RUNCO Running While(1) loop in flash in compute
operation mode—48M HIRC mode, 48 MHz
core / 24 MHz flash, VDD = 3.0 V
• at 25 °C
—
• at 105 °C
IDD_RUN
Run mode current—48M HIRC mode, running
CoreMark in Flash all peripheral clock disable
48 MHz core/24 MHz flash, VDD = 3.0 V
• at 25 °C
• at 105 °C
IDD_RUN
4.79
4.98
4.94
5.14
2.73
2.87
2.9
3.05
mA
mA
2
—
5.45
5.67
—
5.6
5.82
mA
Run mode current—48M HIRC mode, running
CoreMark in flash all peripheral clock disable,
24 MHz core/12 MHz flash, VDD = 3.0 V
2
• at 25 °C
• at 105 °C
IDD_RUN
Run mode current—48M HIRC mode, running
CoreMark in Flash all peripheral clock disable
12 MHz core/6 MHz flash, VDD = 3.0 V
• at 25 °C
—
3.41
3.55
mA
—
3.56
3.70
mA
2
—
• at 105 °C
IDD_RUN
Run mode current—48M HIRC mode, running
CoreMark in Flash all peripheral clock enable
48 MHz core/24 MHz flash, VDD = 3.0 V
• at 25 °C
• at 105 °C
2.37
2.49
2.52
2.65
mA
2
—
7.05
7.33
7.2
7.49
mA
Table continues on the next page...
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
57
Freescale Semiconductor, Inc.
Electrical characteristics
Table 38. Power consumption operating behaviors (continued)
Symbol
Description
IDD_RUN
Run mode current—48M HIRC mode, running
While(1) loop in flash all peripheral clock
disable, 48 MHz core/24 MHz flash, VDD = 3.0
V
• at 25 °C
Min.
Typ.
Max.
Unit
—
3.39
3.53
mA
3.57
3.71
2.36
2.48
2.53
2.66
1.84
1.93
2
2.10
4.98
5.18
5.16
5.37
Notes
• at 105 °C
IDD_RUN
Run mode current—48M HIRC mode, running
While(1) loop in Flash all peripheral clock
disable, 24 MHz core/12 MHz flash, VDD = 3.0
V
• at 25 °C
—
mA
• at 105 °C
IDD_RUN
Run mode current—48M HIRC mode, Running
While(1) loop in Flash all peripheral clock
disable, 12 MHz core/6 MHz flash, VDD = 3.0 V
• at 25 °C
—
• at 105 °C
IDD_RUN
Run mode current—48M HIRC mode, Running
While(1) loop in Flash all peripheral clock
enable, 48 MHz core/24 MHz flash, VDD = 3.0
V
• at 25 °C
—
mA
mA
• at 105 °C
IDD_VLPRCO Very-low-power run core mark in flash in
compute operation mode— 8 MHz LIRC mode,
4 MHz core/1 MHz flash, VDD = 3.0 V
• at 25 °C
—
710
752.6
μA
IDD_VLPRCO Very-low-power-run While(1) loop in SRAM in
compute operation mode— 8 MHz LIRC mode,
4 MHz core / 1 MHz flash, VDD = 3.0 V
• at 25 °C
—
251
376.5
μA
IDD_VLPRCO Very-low-power run While(1) loop in SRAM in
compute operation mode:—2 MHz LIRC mode,
2 MHz core / 0.5 MHz flash, VDD = 3.0 V
• at 25 °C
—
115
143.75
μA
—
91
136.5
μA
—
34
51
μA
IDD_VLPR
IDD_VLPR
Very-low-power run mode current— 2 MHz
LIRC mode, While(1) loop in flash all peripheral
clock disable, 2 MHz core / 0.5 MHz flash, VDD
= 3.0 V
• at 25 °C
Very-low-power run mode current— 2 MHz
LIRC mode, While(1) loop in flash all peripheral
clock disable, 125 kHz core / 31.25 kHz flash,
VDD = 3.0 V
• at 25 °C
Table continues on the next page...
58
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
Table 38. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
IDD_VLPR
Very-low-power run mode current— 8 MHz
LIRC mode, While(1) loop in flash all peripheral
clock disable, 4 MHz core / 1 MHz flash, VDD =
3.0 V
• at 25 °C
—
212
318
μA
—
302
392.6
μA
—
1.81
2.12
mA
—
1.27
1.46
mA
IDD_VLPW Very-low-power wait mode current, core
disabled, 4 MHz system/ 1 MHz bus and flash,
all peripheral clocks disabled, VDD = 3.0 V
• at 25 °C
—
156
193.2
μA
IDD_VLPW Very-low-power wait mode current, core
disabled, 2 MHz system/ 0.5 MHz bus and
flash, all peripheral clocks disabled, VDD = 3.0
V
• at 25 °C
—
63
100.8
μA
IDD_VLPW Very-low-power wait mode current, core
disabled, 125 kHz system/ 31.25 kHz bus and
flash, all peripheral clocks disabled, VDD = 3.0
V
• at 25 °C
—
32
48
μA
—
1.68
2.05
mA
—
1.05
1.26
mA
—
158.1
175.81
—
171
180.24
—
203.8
228.64
—
251.7
300.06
IDD_VLPR
IDD_WAIT
IDD_WAIT
Very-low-power run mode current—8 MHz
LIRC mode, While(1) loop in flash all peripheral
clock enable, 4 MHz core / 1 MHz flash, VDD =
3.0 V
• at 25 °C
Wait mode current—core disabled, 48 MHz
system/24 MHz bus, flash disabled (flash doze
enabled), all peripheral clocks disabled,
MCG_Lite under HIRC mode, VDD = 3.0 V
• at 25 °C
Wait mode current—core disabled, 24 MHz
system/12 MHz bus, flash disabled (flash doze
enabled), all peripheral clocks disabled,
MCG_Lite under HIRC mode, VDD = 3.0 V
• at 25 °C
Notes
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,
12 MHz bus and flash, VDD = 3.0 V
• at 25 °C
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,
flash doze enabled, 12 MHz bus, VDD = 3.0 V
• at 25 °C
IDD_STOP
Stop mode current at 3.0 V
• at 25 °C and below
• at 50 °C
• at 85 °C
• at 105 °C
μA
Table continues on the next page...
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
59
Freescale Semiconductor, Inc.
Electrical characteristics
Table 38. Power consumption operating behaviors (continued)
Symbol
Description
IDD_VLPS
Very-low-power stop mode current at 3.0 V
• at 25 °C and below
• at 50 °C
• at 85 °C
• at 105 °C
IDD_VLPS
Very-low-power stop mode current at 1.8 V
• at 25 °C and below
• at 50 °C
• at 85 °C
• at 105 °C
IDD_LLS
Low-leakage stop mode current, all peripheral
disable, at 3.0 V
• at 25 °C and below
• at 50 °C
• at 70 °C
• at 85 °C
• at 105 °C
IDD_LLS
Low-leakage stop mode current with RTC
current, at 3.0 V
• at 25 °C and below
• at 50 °C
• at 70 °C
• at 85 °C
• at 105 °C
IDD_LLS
Low-leakage stop mode current with RTC
current, at 1.8 V
• at 25 °C and below
• at 50 °C
• at 70 °C
• at 85 °C
• at 105 °C
IDD_VLLS3 Very-low-leakage stop mode 3 current, all
peripheral disable, at 3.0 V
• at 25 °C and below
• at 50 °C
• at 70 °C
Min.
Typ.
Max.
—
2.34
3.80
—
5.04
8.03
—
20.48
31.97
—
42.34
65.78
—
2.33
3.80
—
4.95
7.94
—
20.18
31.57
—
41.93
65.17
—
1.71
1.96
—
2.59
3.30
—
4.46
7.06
—
7.55
10.15
—
17.03
22.67
Unit
Notes
μA
μA
μA
3
—
2.27
2.52
—
3.1
3.81
—
4.99
7.59
—
8.1
10.70
—
17.32
22.96
μA
3
—
2.1
2.35
—
2.89
3.60
—
4.65
7.25
—
7.61
10.21
—
16.38
22.02
—
1.43
1.58
—
2.06
2.52
—
3.51
5.20
—
5.91
7.60
—
13.36
17.08
μA
μA
Table continues on the next page...
60
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
Table 38. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
• at 85 °C
• at 105 °C
IDD_VLLS3 Very-low-leakage stop mode 3 current with
RTC current, at 3.0 V
• at 25 °C and below
• at 50 °C
• at 70 °C
• at 85 °C
• at 105 °C
IDD_VLLS3 Very-low-leakage stop mode 3 current with
RTC current, at 1.8 V
• at 25 °C and below
• at 50 °C
• at 70 °C
• at 85 °C
• at 105 °C
IDD_VLLS1 Very-low-leakage stop mode 1 current all
peripheral disabled at 3.0 V
• at 25 °C and below
• at 50°C
• at 70°C
• at 85°C
• at 105 °C
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC
enabled at 3.0 V
• at 25 °C and below
• at 50°C
• at 70°C
• at 85°C
• at 105 °C
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC
enabled at 1.8 V
• at 25 °C and below
• at 50°C
• at 70°C
• at 85°C
• at 105 °C
3
—
1.83
1.98
—
2.47
2.93
—
3.96
5.65
—
6.44
8.13
—
13.84
17.56
μA
3
—
1.68
1.83
—
2.27
2.73
—
3.66
5.35
—
5.97
7.66
—
12.92
16.64
—
0.84
1.06
—
1.19
1.33
—
2.03
2.62
—
3.54
4.13
—
8.53
9.98
μA
μA
3
—
1.26
1.48
—
1.61
1.75
—
2.5
3.09
—
4.07
4.66
—
9
10.45
μA
3
—
1.08
1.30
—
1.42
1.56
—
2.21
2.80
—
3.59
4.18
—
8.02
9.47
μA
Table continues on the next page...
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
61
Freescale Semiconductor, Inc.
Electrical characteristics
Table 38. Power consumption operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
—
262
360
—
593
725
• at 50 °C
—
1430
2014
• at 70 °C
—
2930
3514
7930
9895
IDD_VLLS0 Very-low-leakage stop mode 0 current all
peripheral disabled
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V
• at 25 °C and below
• at 85 °C
Unit
Notes
nA
• at 105 °C
IDD_VLLS0 Very-low-leakage stop mode 0 current all
peripheral disabled
(SMC_STOPCTRL[PORPO] = 1) at 3 V
• at 25 °C and below
4
—
87
185
—
417
549
• at 50 °C
—
1230
1230
• at 70 °C
—
2720
3304
7780
9745
• at 85 °C
nA
• at 105 °C
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high,
optimized for balanced.
3. RTC uses external 32 kHz crystal as clock source, and the current includes ERCLK32K power consumption.
4. No brownout
Table 39. Low power mode peripheral adders — typical value
Symbol
Description
Temperature (°C)
Unit
-40
25
50
70
85
105
IIRC8MHz
8 MHz internal reference clock (IRC)
adder. Measured by entering STOP or
VLPS mode with 8 MHz IRC enabled,
MCG_SC[FCRDIV]=000b,
MCG_MC[LIRC_DIV2]=000b.
77
77
77
77
77
77
µA
IIRC2MHz
2 MHz internal reference clock (IRC)
adder. Measured by entering STOP
mode with the 2 MHz IRC enabled,
MCG_SC[FCRDIV]=000b,
MCG_MC[LIRC_DIV2]=000b.
25
25
25
25
25
25
µA
IEREFSTEN4MHz
[C: ] External 4 MHz crystal clock adder.
Measured by entering STOP or VLPS
mode with the crystal enabled.
206
224
230
238
245
253
µA
IEREFSTEN32KHz
External 32 kHz crystal clock adder by
means of the OSC0_CR[EREFSTEN
and EREFSTEN] bits. Measured by
440
490
540
560
570
580
Table continues on the next page...
62
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
Table 39. Low power mode peripheral adders — typical value (continued)
Symbol
Description
Temperature (°C)
entering all modes with the crystal
enabled.
• VLLS1
• VLLS3
• LLS
• VLPS
• STOP
ILPTMR
Unit
-40
25
50
70
85
105
440
490
540
560
570
580
490
490
540
560
570
680
510
560
560
560
610
680
510
560
560
560
610
680
30
30
30
85
100
200
nA
LPTMR peripheral adder measured by
placing the device in VLLS1 mode with
LPTMR enabled using LPO.
nA
ICMP
CMP peripheral adder measured by
placing the device in VLLS1 mode with
CMP enabled using the 6-bit DAC and a
single external input for compare.
Includes 6-bit DAC power consumption.
16
16
16
16
16
16
µA
IRTC
RTC peripheral adder measured by
placing the device in VLLS1 mode with
external 32 kHz crystal enabled by
means of the RTC_CR[OSCE] bit and
the RTC ALARM set for 1 minute.
Includes ERCLK32K (32 kHz external
crystal) power consumption.
430
500
500
530
530
760
nA
IUART
UART peripheral adder measured by
placing the device in STOP or VLPS
mode with selected clock source waiting
for RX data at 115200 baud rate.
Includes selected clock source power
consumption.
• IRC8M (8 MHz internal reference
clock)
• IRC2M (2 MHz internal reference
clock)
96
96
96
96
96
96
µA
31
31
31
31
31
31
ITPM
TPM peripheral adder measured by
placing the device in STOP or VLPS
mode with selected clock source
configured for output compare
generating 100 Hz clock signal. No load
is placed on the I/O generating the
clock signal. Includes selected clock
source and I/O switching currents.
• IRC8M (8 MHz internal reference
clock)
• IRC2M (2 MHz internal reference
clock)
µA
130
130
130
130
130
130
Table continues on the next page...
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
63
Freescale Semiconductor, Inc.
Electrical characteristics
Table 39. Low power mode peripheral adders — typical value (continued)
Symbol
Description
Temperature (°C)
Unit
-40
25
50
70
85
105
40
40
40
40
40
40
IBG
Bandgap adder when BGEN bit is set
and device is placed in VLPx or VLLSx
mode.
45
45
45
45
45
45
µA
IADC
ADC peripheral adder combining the
measured values at VDD and VDDA by
placing the device in STOP or VLPS
mode. ADC is configured for low power
mode using the internal clock and
continuous conversions.
320
320
320
320
320
320
µA
5.2.2.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
•
•
•
•
MCG-Lite in HIRC for run mode, and LIRC for VLPR mode
No GPIOs toggled
Code execution from flash
For the ALLOFF curve, all peripheral clocks are disabled except FTFA
64
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
Figure 20. Run mode supply current vs. core frequency
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
65
Freescale Semiconductor, Inc.
Electrical characteristics
66
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
Figure 21. VLPR mode current vs. core frequency
5.2.2.6 EMC performance
Electromagnetic compatibility (EMC) performance is highly dependent on the
environment in which the MCU resides. Board design and layout, circuit topology
choices, location and characteristics of external components, and MCU software
operation play a significant role in the EMC performance. The system designer can
consult the following Freescale applications notes, available on freescale.com for
advice and guidance specifically targeted at optimizing EMC performance.
• AN2321: Designing for Board Level Electromagnetic Compatibility
• AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS
Microcontrollers
• AN1263: Designing for Electromagnetic Compatibility with Single-Chip
Microcontrollers
• AN2764: Improving the Transient Immunity Performance of MicrocontrollerBased Applications
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
67
Freescale Semiconductor, Inc.
Electrical characteristics
• AN1259: System Design and Layout Techniques for Noise Reduction in MCUBased Systems
• KL-QRUG (Kinetis L-series Quick Reference).
5.2.2.7
Symbol
CIN
Capacitance attributes
Table 40. Capacitance attributes
Description
Input capacitance
Min.
Max.
Unit
—
7
pF
Min.
Max.
Unit
5.2.3 Switching specifications
5.2.3.1
Symbol
Device clock specifications
Table 41. Device clock specifications
Description
Normal run mode
fSYS
System and core clock
—
48
MHz
fBUS
Bus clock
—
24
MHz
fFLASH
Flash clock
—
24
MHz
fLPTMR
LPTMR clock
—
24
MHz
VLPR and VLPS
modes1
fSYS
System and core clock
—
4
MHz
fBUS
Bus clock
—
1
MHz
fFLASH
Flash clock
—
1
MHz
fLPTMR
LPTMR clock2
—
24
MHz
fERCLK
External reference clock
—
16
MHz
—
16
MHz
Oscillator crystal or resonator frequency — high frequency
mode (high range) (MCG_C2[RANGE]=1x)
—
16
MHz
TPM asynchronous clock
—
8
MHz
UART0 asynchronous clock
—
8
MHz
fLPTMR_ERCLK LPTMR external reference clock
fosc_hi_2
fTPM
fUART0
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN
or from VLPR.
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.
68
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
5.2.3.2
General switching specifications
These general-purpose specifications apply to all signals configured for GPIO and
UART signals.
Table 42. General switching specifications
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter disabled)
— Synchronous path
1.5
—
Bus clock
cycles
1
External RESET and NMI pin interrupt pulse width —
Asynchronous path
100
—
ns
2
GPIO pin interrupt pulse width — Asynchronous path
16
—
ns
2
Port rise and fall time
—
36
ns
3
1. The synchronous and asynchronous timing must be met.
2. This is the shortest pulse that is guaranteed to be recognized.
3. 75 pF load
5.2.4 Thermal specifications
5.2.4.1
Symbol
Thermal operating requirements
Table 43. Thermal operating requirements
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
Notes
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to
determine TJ is: TJ = TA + RθJA × chip power dissipation.
5.2.4.2
Thermal attributes
NOTE
The 48 QFN and 64 MAPBGA packages for this product are
not yet available. However, it is included in Package Your
Way program for Kinetis MCUs. Visit freescale.com/
KPYW for more details.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
69
Freescale Semiconductor, Inc.
Electrical characteristics
Table 44. Thermal attributes
Board type
Symbol
Single-layer (1S)
RθJA
Four-layer (2s2p)
Description
32 QFN
36
XFBGA
64 LQFP
Unit
Notes
Thermal resistance, junction to
ambient (natural convection)
101
81.5
71
°C/W
1, 2, 3
RθJA
Thermal resistance, junction to
ambient (natural convection)
33
54.7
53
°C/W
1, 2, 3,4
Single-layer (1S)
RθJMA
Thermal resistance, junction to
ambient (200 ft./min. air speed)
84
71.3
60
°C/W
1, 4, 5
Four-layer (2s2p)
RθJMA
Thermal resistance, junction to
ambient (200 ft./min. air speed)
28
50.0
47
°C/W
1, 4, 5
—
RθJB
Thermal resistance, junction to
board
13
58.0
35
°C/W
6
—
RθJC
Thermal resistance, junction to
case
1.7
45.3
21
°C/W
7
—
ΨJT
Thermal characterization
parameter, junction to package
top outside center (natural
convection)
3
1.2
5
°C/W
8
—
ΨJB
Thermal characterization
parameter, junction to package
bottom (natural convection)
-
44.5
-
°C/W
9
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
3. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for
1s or 2s2p board, respectively.
4. Per JEDEC JESD51-6 with the board horizontal.
5. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s
or 2s2p board, respectively.
6. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
7. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
8. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is
written as Psi-JT.
9. Thermal characterization parameter indicating the temperature difference between package bottom center and the
junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization
parameter is written as Psi-JB.
5.3 Peripheral operating requirements and behaviors
5.3.1 Core modules
70
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
5.3.1.1
Symbol
J1
SWD electricals
Table 45. SWD full voltage range electricals
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
0
25
MHz
1/J1
—
ns
20
—
ns
SWD_CLK frequency of operation
• Serial wire debug
J2
SWD_CLK cycle period
J3
SWD_CLK clock pulse width
• Serial wire debug
J4
SWD_CLK rise and fall times
—
3
ns
J9
SWD_DIO input data setup time to SWD_CLK rise
10
—
ns
J10
SWD_DIO input data hold time after SWD_CLK rise
0
—
ns
J11
SWD_CLK high to SWD_DIO data valid
—
32
ns
J12
SWD_CLK high to SWD_DIO high-Z
5
—
ns
J2
J3
J3
SWD_CLK (input)
J4
J4
Figure 22. Serial wire clock input timing
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
71
Freescale Semiconductor, Inc.
Electrical characteristics
SWD_CLK
J9
SWD_DIO
J10
Input data valid
J11
SWD_DIO
Output data valid
J12
SWD_DIO
J11
SWD_DIO
Output data valid
Figure 23. Serial wire data timing
5.3.2 System modules
There are no specifications necessary for the device's system modules.
5.3.3 Clock modules
5.3.3.1
MCG-Lite specifications
Table 46. IRC48M specifications
Symbol
Description
Min.
Typ.
Max.
Unit
IDD48M
Supply current
—
400
500
μA
firc48m
Internal reference frequency
—
48
—
MHz
—
± 0.5
± 1.5
%firc48m
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at low
voltage (VDD=1.71V-1.89V) over temperature
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at
high voltage (VDD=1.89V-3.6V) over temperature
Jcyc_irc48m
tirc48mst
1
—
± 0.5
± 1.0
%firc48m
Period Jitter (RMS)
—
35
150
ps
Startup time
—
2
3
μs
72
Freescale Semiconductor, Inc.
Notes
2
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
1. The maximum value represents characterized results equivalent to the mean plus or minus three times the standard
deviation (mean±3 sigma).
2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable
the clock by one of the following settings:
• MCG operating in an external clocking mode and MCG_C7[OSCSEL]=10, or
• SIM_SOPT2[PLLFLLSEL]=11
Table 47. IRC8M/2M specification
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
IDD_2M
Supply current in 2 MHz mode
—
14
17
µA
—
IDD_8M
Supply current in 8 MHz mode
—
30
35
µA
—
fIRC_2M
Output frequency
—
2
—
MHz
—
fIRC_8M
Output frequency
—
8
—
MHz
—
fIRC_T_2M
Output frequency range (trimmed)
—
—
±3
%fIRC
—
fIRC_T_8M
Output frequency range (trimmed)
—
—
±3
%fIRC
—
Tsu_2M
Startup time
—
—
12.5
µs
—
Tsu_8M
Startup time
—
—
12.5
µs
—
5.3.3.2
5.3.3.2.1
Oscillator electrical specifications
Oscillator DC electrical specifications
Table 48. Oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDOSC
IDDOSC
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz (RANGE=01)
—
300
—
μA
• 16 MHz
—
950
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Supply current — high gain mode (HGO=1)
1
• 32 kHz
—
25
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz (RANGE=01)
—
500
—
μA
• 16 MHz
—
2.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Table continues on the next page...
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
73
Freescale Semiconductor, Inc.
Electrical characteristics
Table 48. Oscillator DC electrical specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, lowpower mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain
mode (HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
RS
2, 4
Series resistor — high-frequency, high-gain
mode (HGO=1)
5
Vpp
1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For
all other cases external capacitors must be used.
4. When low power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to
any other devices.
74
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
5.3.3.2.2
Symbol
Oscillator frequency specifications
Table 49. Oscillator frequency specifications
Min.
Typ.
Max.
Unit
Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency —
high-frequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency —
high frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fec_extal
Input clock frequency (external clock mode)
—
—
48
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
750
—
ms
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
250
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
0.6
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
1
—
ms
fosc_lo
tcst
Description
Notes
1, 2
3, 4
1. Other frequency limits may apply when external clock is being used as a reference for the FLL
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
register being set.
5.3.4 Memories and memory interfaces
5.3.4.1
Flash electrical specifications
This section describes the electrical characteristics of the flash memory module.
5.3.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps
are active and do not include command overhead.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
75
Freescale Semiconductor, Inc.
Electrical characteristics
Table 50. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
thvpgm4
Longword Program high-voltage time
—
7.5
18
μs
—
thversscr
Sector Erase high-voltage time
—
13
113
ms
1
thversall
Erase All high-voltage time
—
52
452
ms
1
1. Maximum time based on expectations at cycling end-of-life.
5.3.4.1.2
Flash timing specifications — commands
Table 51. Flash command timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
trd1sec1k
Read 1s Section execution time (flash sector)
—
—
60
μs
1
tpgmchk
Program Check execution time
—
—
45
μs
1
trdrsrc
Read Resource execution time
—
—
30
μs
1
tpgm4
Program Longword execution time
—
65
145
μs
—
tersscr
Erase Flash Sector execution time
—
14
114
ms
2
trd1all
Read 1s All Blocks execution time
—
—
0.9
ms
1
trdonce
Read Once execution time
—
—
25
μs
1
Program Once execution time
—
65
—
μs
—
tersall
Erase All Blocks execution time
—
70
575
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
tersallu
Erase All Blocks Unsecure execution time
—
70
575
ms
2
tpgmonce
1. Assumes 25 MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
5.3.4.1.3
Flash high voltage current behaviors
Table 52. Flash high voltage current behaviors
Symbol
Description
IDD_PGM
IDD_ERS
5.3.4.1.4
Symbol
Min.
Typ.
Max.
Unit
Average current adder during high voltage
flash programming operation
—
2.5
6.0
mA
Average current adder during high voltage
flash erase operation
—
1.5
4.0
mA
Reliability specifications
Table 53. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
Table continues on the next page...
76
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
Table 53. NVM reliability specifications (continued)
Min.
Typ.1
Max.
Unit
Notes
tnvmretp10k Data retention after up to 10 K cycles
5
50
—
years
—
tnvmretp1k
Data retention after up to 1 K cycles
20
100
—
years
—
nnvmcycp
Cycling endurance
10 K
50 K
—
cycles
2
Symbol
Description
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in
Engineering Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.
5.3.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
5.3.6 Analog
5.3.6.1
ADC electrical specifications
Using differential inputs can achieve better system accuracy than using single-end
inputs.
5.3.6.1.1
16-bit ADC operating conditions
Table 54. 16-bit ADC operating conditions
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
Notes
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
—
ΔVDDA
Supply voltage
Delta to VDD (VDD – VDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSS – VSSA)
-100
0
+100
mV
2
VADIN
Input voltage
• 16-bit differential mode
VREFL
—
31/32 ×
VREFH
V
—
• All other modes
VREFL
—
• 16-bit mode
—
8
10
pF
—
• 8-bit / 10-bit / 12-bit
modes
—
4
5
—
2
5
kΩ
—
CADIN
RADIN
RAS
Input
capacitance
Input series
resistance
Analog source
resistance
(external)
VREFH
13-bit / 12-bit modes
fADCK < 4 MHz
3
—
—
5
kΩ
Table continues on the next page...
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
77
Freescale Semiconductor, Inc.
Electrical characteristics
Table 54. 16-bit ADC operating conditions (continued)
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
Notes
fADCK
ADC conversion ≤ 13-bit mode
clock frequency
1.0
—
18.0
MHz
4
fADCK
ADC conversion 16-bit mode
clock frequency
2.0
—
12.0
MHz
4
Crate
ADC conversion ≤ 13-bit modes
rate
No ADC hardware averaging
5
20.000
—
818.330
ksps
Continuous conversions
enabled, subsequent
conversion time
Crate
ADC conversion 16-bit mode
rate
No ADC hardware averaging
5
37.037
—
461.467
ksps
Continuous conversions
enabled, subsequent
conversion time
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The
RAS/CAS time constant should be kept to < 1 ns.
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
Pad
leakage
due to
input
protection
ZAS
RAS
ZADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
RADIN
ADC SAR
ENGINE
VADIN
CAS
VAS
RADIN
INPUT PIN
INPUT PIN
RADIN
RADIN
INPUT PIN
CADIN
Figure 24. ADC input impedance equivalency diagram
78
Freescale Semiconductor, Inc.
Kinetis KL17 Microcontroller, Rev. 5, 04/2015
Electrical characteristics
5.3.6.1.2
16-bit ADC electrical characteristics
Table 55. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol
Description
Conditions1
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
• ADLPC = 1, ADHSC = 0
1.2
2.4
3.9
MHz
• ADLPC = 1, ADHSC = 1
2.4
4.0
6.1
MHz
tADACK =
1/fADACK
• ADLPC = 0, ADHSC = 0
3.0
5.2
7.3
MHz
• ADLPC = 0, ADHSC = 1
4.4
6.2
9.5
MHz
LSB4
5
LSB4
5
LSB4
5
LSB4
VADIN =
VDDA5
IDDA_ADC Supply current
fADACK
ADC
asynchronous
clock source
Sample Time
TUE
DNL
See Reference Manual chapter for sample times
Total
unadjusted
error
• 12-bit modes
—
±2
±6.8
•