0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MKL28Z512VLL7

MKL28Z512VLL7

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LQFP100

  • 描述:

    MKL28Z512VLL7

  • 数据手册
  • 价格&库存
MKL28Z512VLL7 数据手册
NXP Semiconductors Data Sheet: Technical Data MKL28Z512Vxx7 Rev. 2.1, 06/2016 Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM MKL28Z512Vxx7 72 MHz Cortex-M0+ based Microcontroller Supports ultra low power ARM based microcontroller with crystal-less USB feature, large flash and RAM, evolutionary lowpower peripherals and security features. This is an ideal solution for Sensor Hub applications, Bluetooth, Wi-Fi connectivity, Smart Energy, Internet of Things, and Edge and Concentrator. This device offers: • 128KB SRAM for data processing and connectivity stack • Ultra low dynamic and static power consumption with smart peripherals for low power applications • Advanced LPI2C and LPSPI supporting asynchronous DMA master data transition • FlexIO for flexible and high performance interfaces • Crypto acceleration with AES/DES/3DES/MD5/SHA and TRNG • USB FS 2.0 device operation without need of external crystal Core • ARM® Cortex®-M0+ cores up to 72 MHz in Normal mode and 96 MHz in High Speed mode Memories • Up to 512 KB program flash memory • 128 KB SRAM • 32 KB ROM with built-in bootloader System peripherals • 8-channel DMA controller • Independent clocked Watchdog • Low-leakage wakeup unit • SWD debug interface and Micro Trace Buffer • Bit Manipulation Engine • Memory Mapped Divide and Square Root module (MMDDVSQ) • Cyclic Redundancy Check (CRC) module • Nested Vector Interrupt Controller (NVIC) supports 32 interrupt vectors • Additional peripheral interrupt support via Interrupt Multiplexer (INTMUX) Clocks • System Clock Generator module that includes the following clock sources: • 48 to 60 MHz high accuracy fast internal reference clock (FIRC) 121 XFBGA 100 LQFP 8 x 8 x 0.43 mm Pitch 14 x 14 x 1.4 mm Pitch 0.65 mm 0.5 mm Communication interfaces • Three 16-bit Low Power Serial Peripheral Interface (LPSPI) modules • One EMVSIM module supporting EMV version 4.3, ISO7816 • Three LPUART modules • Three LPI2C modules supporting up to 5 Mbit/s • One SAI module supporting I2S • One FlexIO module emulating UART, SPI, I2S, camera interface, and Motorola 68K/Intel 8080 bus • USB FS 2.0 device operation without need of external crystal Analog Modules • 16-bit, 24-channel SAR ADC with internal voltage reference • Two High-speed analog comparators each containing a 6-bit DAC and programmable reference input • One 12-bit DAC • 1.2 V and 2.1 V voltage references (Vref) Timers • One 6-channel Timer/PWM module • Two 2-channel Timer/PWM modules • Two low-power timers • Two periodic interrupt timers NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. • • • • 32–40 kHz, or 3–32 MHz crystal oscillator • Secure Real time clock 1 kHz LPO clock • 56-bit software time stamp timer at 1 MHz 8/2 MHz slow internal reference clock (SIRC) Security and integrity modules Peripheral Clock Control (PCC) module that • 80-bit unique identification number per chip supports asynchronous clocking and clock divide • MMCAU supports acceleration of the DES, 3DES, options for peripherals. AES, MD5, SHA-1, and SHA-256 algorithms Human-machine interface • True Random Number Generator (TRNG) • General-purpose input/output up to 97 Operating Characteristics • Low-power hardware touch sensor interface (TSI) • Voltage range: 1.71 to 3.6 V • Temperature range: –40 to 105 °C NOTE The 121-pin packages for this product is not yet available. However, it is included in a Package Your Way program for Kinetis MCUs. Visit nxp.com/KPYW for more details. Ordering Information 1 Part Number Memory Package IO and ADC channels Flash (KB) SRAM (KB) Pin count Package GPIOs GPIOs (INT/HD) ADC channels (SE/DP) MKL28Z512V LL7 512 128 100 LQFP 82 82/8 27/4 MKL28Z512V DC72 512 128 121 XFBGA 97 97/8 27/4 1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search. 2. Package Your Way. Related Resources Type Description Resource Selector Guide The NXP Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector. Solution Advisor Product Brief The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability. KL2XPB1 Reference Manual The Reference Manual contains a comprehensive description of the structure and function (operation) of a device. MKL28ZRM1 Data Sheet The Data Sheet includes electrical characteristics and signal connections. MKL28Z512Vxx71 Chip Errata The chip mask set Errata provides additional or corrective information for KINETIS_L_1N52N1 a particular device mask set. Package drawing Package dimensions are provided in package drawings. • 121-XFBGA: 98ASA00595D1 • 100-LQFP: 98ASS23308W1 1. To find the associated resource, go to http://www.nxp.com and perform a search using this term. 2 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 Timer Timer TSTMR 0 TPM 2 Timer Timer WDOG Reset SPI UART LPSPI 2 LPUART 2 Clocks/ Oscillators ANALOG SCG XTAL OSC ADC Inputs ADC0 Temp Monitor FIRC SIRC DAC Outputs DAC0 VREF PLL LPO1K CAU SIM s2 Cortex-M0+ Platform MTB IO Port SYSTICK CTI DBG AHB-AP0 NVIC s1 m0 MPU System Interrupts AWIC m2 UART BME mux TRG MUX FlexIO 8/16-bit Parallel I/F FlexIO0 Audio RGPIO GPIO SRAM 128KB EMVSIM LPUART 0/1 LPI2C 0/1 SAI0 AHB PCC I2C I2C FLASH 0 256KB FLASH 1 256KB FMC TRNG LPSPI 0/1 LPI2C 2 FTFA BME SPI TPM 0/1 TSI s3 M0+ DBG Timer TSI0 ROM 32KB s0 CTI AIPS1 SMC MSCM m1 AXBS Cortex-M0+ DWT MDM-AP LLWU 0 •• DMA • Requests DMAMux 0 Core DVSQ SWD-DP RCM DMA0 8-channel MCM USBVREG LPIT 0 SRAM +PPB CTRL USB SRTC SCG TRG MUX SWD LPTMR WDOG 0 0 PCC CMP0 CMP1 LPTMR 1 CRC INTMUX0 Reference Inputs PMC USB SRAM EMVSIM PortA Port A PortB Port B PortC Port C PortD Port D PortE Port E USB0 1x USB AIPS0 LEGEND: S DAP Synchronizer Reference sec Memory protection exsc Gaskets Bus Components Core MemoryMapped Module Other Module such as test/analog Platform Domain CM0+ Platform AHB32 AIPS0 IPBUS AIPS1 IPBUS Analog Domain Figure 1. KL28Z block diagram Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 3 NXP Semiconductors Table of Contents 1 Ratings.................................................................................. 5 1.1 Thermal handling ratings............................................... 5 1.2 Moisture handling ratings...............................................5 1.3 ESD handling ratings..................................................... 5 1.4 Voltage and current operating ratings............................5 2 General................................................................................. 6 2.1 AC electrical characteristics...........................................6 2.2 Nonswitching electrical specifications............................7 2.2.1 Voltage and current operating requirements..... 7 2.2.2 LVD, HVD, and POR operating requirements... 7 2.2.3 Voltage and current operating behaviors...........8 2.2.4 Power mode transition operating behaviors...... 9 2.2.5 Power consumption operating behaviors.......... 10 2.2.6 EMC radiated emissions operating behaviors... 19 2.2.7 Designing with radiated emissions in mind........20 2.2.8 Capacitance attributes.......................................20 2.3 Switching specifications.................................................20 2.3.1 Device clock specifications................................20 2.3.2 General switching specifications....................... 21 2.4 Thermal specifications................................................... 23 2.4.1 Thermal operating requirements....................... 23 2.4.2 Thermal attributes..............................................23 3 Peripheral operating requirements and behaviors................ 24 3.1 Core modules................................................................ 24 3.1.1 SWD electricals ................................................ 24 3.2 System modules............................................................ 26 3.3 Clock modules............................................................... 26 3.3.1 System Clock Generation (SCG) specifications 26 3.3.2 Oscillator electrical specifications...................... 28 3.4 Memories and memory interfaces................................. 30 3.4.1 Flash electrical specifications............................ 30 3.5 Security and integrity modules.......................................32 3.6 Analog............................................................................32 3.6.1 ADC electrical specifications............................. 32 3.6.2 Voltage reference electrical specifications........ 36 3.6.3 CMP and 6-bit DAC electrical specifications..... 38 3.6.4 12-bit DAC electrical characteristics.................. 40 3.7 Timers............................................................................43 4 NXP Semiconductors 4 5 6 7 8 9 3.8 Communication interfaces............................................. 43 3.8.1 EMV SIM specifications.....................................43 3.8.2 USB electrical specifications............................. 48 3.8.3 USB VREG electrical specifications.................. 49 3.8.4 LPSPI switching specifications.......................... 49 3.8.5 LPI2C.................................................................54 3.8.6 LPUART............................................................ 54 3.8.7 I2S/SAI switching specifications........................ 55 3.9 Human-machine interfaces (HMI)..................................59 3.9.1 TSI electrical specifications............................... 59 Dimensions........................................................................... 59 4.1 Obtaining package dimensions......................................59 Pinouts and Packaging......................................................... 60 5.1 KL28Z Signal Multiplexing and Pin Assignments.......... 60 5.2 KL28Z Pinouts............................................................... 65 Ordering parts....................................................................... 67 6.1 Determining valid orderable parts..................................67 Design considerations...........................................................68 7.1 Hardware design considerations................................... 68 7.1.1 Printed circuit board recommendations............. 68 7.1.2 Power delivery system.......................................68 7.1.3 Analog design....................................................69 7.1.4 Digital design..................................................... 70 7.1.5 Crystal oscillator................................................ 74 7.2 Software considerations................................................ 75 Part identification...................................................................76 8.1 Description.....................................................................76 8.2 Format........................................................................... 76 8.3 Fields............................................................................. 76 8.4 Example.........................................................................77 Terminology and guidelines.................................................. 77 9.1 Definitions...................................................................... 77 9.2 Examples....................................................................... 78 9.3 Typical-value conditions................................................ 78 9.4 Relationship between ratings and operating requirements..................................................................79 9.5 Guidelines for ratings and operating requirements........79 10 Revision History.................................................................... 80 Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 Ratings 1 Ratings 1.1 Thermal handling ratings Table 1. Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.2 Moisture handling ratings Table 2. Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.3 ESD handling ratings Table 3. ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model –2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model –500 +500 V 2 Latch-up current at ambient temperature of 105 °C –100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 5 NXP Semiconductors General 1.4 Voltage and current operating ratings Table 4. Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 120 mA VIO IO pin input voltage –0.3 VDD + 0.3 V Instantaneous maximum current single pin limit (applies to all port pins) –25 25 mA ID VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V VUSB_DP USB_DP input voltage –0.3 3.63 V VUSB_DM USB_DM input voltage –0.3 3.63 V USB regulator input –0.3 6.0 V VREGIN 2 General 2.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. VIH Input Signal Low High 80% 50% 20% Midpoint1 Fall Time VIL Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 2. Input signal measurement reference All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics. • CL=30 pF loads • Slew rate disabled • Normal drive strength 6 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 General 2.2 Nonswitching electrical specifications 2.2.1 Voltage and current operating requirements Table 5. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.71 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.71 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V -5 — mA -25 — mA VIH VIL Input high voltage Input low voltage VHYS Input hysteresis IICIO IO pin negative DC injection current — single pin 1 • VIN < VSS-0.3V IICcont Notes Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins • Negative current injection VODPU Open drain pullup voltage level VDD VDD V VRAM VDD voltage required to retain RAM 1.2 — V 2 1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|. 2. Open drain outputs must be pulled to VDD. 2.2.2 LVD, HVD, and POR operating requirements Table 6. VDD supply LVD, HVD, and POR operating requirements Symbol VPOR Description Min. Typ. Max. Unit Notes Falling VDD POR detect voltage 0.8 1.1 1.5 V — Table continues on the next page... Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 7 NXP Semiconductors General Table 6. VDD supply LVD, HVD, and POR operating requirements (continued) Symbol VLVDH Description Min. Typ. Max. Unit Notes Falling low-voltage detect threshold — high range (LVDV = 01) 2.48 2.56 2.64 V — Low-voltage warning thresholds — high range VLVW1H • Level 1 falling (LVWV = 00) VLVW2H • Level 2 falling (LVWV = 01) VLVW3H • Level 3 falling (LVWV = 10) VLVW4H • Level 4 falling (LVWV = 11) VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) 1 2.62 2.70 2.78 V 2.72 2.80 2.88 V 2.82 2.90 2.98 V 2.92 3.00 3.08 V — ±60 — mV — 1.54 1.60 1.66 V — Low-voltage warning thresholds — low range VLVW1L • Level 1 falling (LVWV = 00) VLVW2L • Level 2 falling (LVWV = 01) VLVW3L • Level 3 falling (LVWV = 10) VLVW4L • Level 4 falling (LVWV = 11) VHYSL Low-voltage inhibit reset/recover hysteresis — low range 1 1.74 1.80 1.86 V 1.84 1.90 1.96 V 1.94 2.00 2.06 V 2.04 2.10 2.16 V — ±40 — mV — VBG Bandgap voltage reference 0.97 1.00 1.03 V — tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs — High voltage detect threshold — low range (HVDV=0) — Rising 3.4 3.5 3.6 V 2 High voltage detect threshold — low range (HVDV=0) — Falling 3.35 3.45 3.55 High voltage detect threshold — high range (HVDV=1) — Rising 3.65 3.75 3.85 V 2 High voltage detect threshold — high range (HVDV=1) — Falling 3.6 3.7 3.8 High voltage detect hysteresis — low range (HVDV=0) — 50 — mV — High voltage detect hysteresis — high range (HVDV=1) — 50 — VHVDL VHVDH VHYSH 1. Rising thresholds are falling threshold + hysteresis voltage 2. The selection of high voltage detect trip voltage is controlled by PMC_HVDSC1[HVDV]. 8 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 General 2.2.3 Voltage and current operating behaviors Table 7. Voltage and current operating behaviors Symbol VOH Description • 1.71 V ≤ VDD ≤ 2.7 V, IOH = –2.5 mA Max. Unit • 1.71 V ≤ VDD ≤ 2.7 V, IOH = –10 mA IOHT Output high current total for all ports VOL Output low voltage — Normal drive pad Notes 1 VDD – 0.5 — V VDD – 0.5 — V Output high voltage — High drive pad • 2.7 V ≤ VDD ≤ 3.6 V, IOH = –20 mA VOL Typ. Output high voltage — Normal drive pad • 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA VOH Min. 1 VDD – 0.5 — V VDD – 0.5 — V — 100 mA 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA — 0.5 V Output low voltage — High drive pad 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA — 0.5 V Output low current total for all ports — 100 mA IIN Input leakage current (per pin) for full temperature range — 1 μA 2 IIN Input leakage current (per pin) at 25 °C — 0.025 μA 2 IIN Input leakage current (total all pins) for full temperature range — 41 μA 2 IOZ Hi-Z (off-state) leakage current (per pin) — 1 μA RPU Internal pullup resistors 20 50 kΩ IOLT 3 1. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7 I/O have both high drive and normal drive capability selected by the associated PORTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. PTD4, PTD5, PTD6, PTD7, PTE20, PTE21, PTE22, and PTE23 are also fast pins. 2. Measured at VDD = 3.6 V 3. Measured at VDD supply voltage = VDD min and Vinput = VSS 2.2.4 Power mode transition operating behaviors All specifications in the following table assume this clock configuration in Run mode: • CPU and system clocks = 48 MHz • Bus and flash clock = 24 MHz • SCG configured in FIRC mode; peripheral functional clocks from FIRCDIV3_CLK and USB clock from FIRCDIV1_CLK Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 9 NXP Semiconductors General Table 8. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip. Min. Typ. Max. Unit Notes — — 300 μs 1 — 188 193 μs — 188 193 μs — 125 130 μs — 125 130 μs — 5.5 6.1 μs — 5.5 6.1 μs — 5.5 6.1 μs — 5.5 6.1 μs • VLLS0 → RUN • VLLS1 → RUN • VLLS2 → RUN • VLLS3 → RUN • LLS3 → RUN • LLS2 → RUN • VLPS → RUN • STOP → RUN 1. Normal boot (FTFA_FOPT[LPBOOT]=11). 2.2.5 Power consumption operating behaviors NOTE The values in the following table are based on characterization data with a few samples. NOTE The actual power consumption measured in the related condition, with certain peripherals running, is the sum of related low power current consumption of the device listed in Table 9 and the related low power mode peripheral adders in Table 10. 10 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 General NOTE The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3σ). Table 9. Power consumption operating behaviors Symbol IDDA IDD_HSRUN IDD_HSRUN IDD_RUN Description Analog supply current IDD_RUN Max. Unit Notes — — See note mA 1 2 • at 1.8 V — 12.6 17.4 mA • at 3.0 V — 12.8 17.6 mA High speed run mode current at 96 MHz - all peripheral clocks enabled, code executing from flash, while(1) loop 3 • at 1.8 V — 15.5 20.4 mA • at 3.0 V — 15.7 20.6 mA Run mode current at 72 MHz - all peripheral clocks disabled, code executing from flash, while(1) loop • at 3.0 V IDD_RUN Typ. High speed run mode current at 96 MHz - all peripheral clocks disabled, code executing from flash, while(1) loop • at 1.8 V IDD_RUN Min. 4 — 9.4 13.6 mA — 9.6 13.8 mA Run mode current at 48 Mhz - all peripheral clocks disabled, code executing from flash, while(1) loop 5 • at 1.8 V — 7.3 11.4 mA • at 3.0 V — 7.4 11.5 mA Run mode current at 72 MHz - all peripheral clocks enabled, code executing from flash, while(1) loop 6 • at 1.8 V — 11.6 15.9 mA • at 3.0 V — 11.7 16.0 mA Run mode current at 48 Mhz - all peripheral clocks enabled, code executing from flash, while(1) loop 7 • at 1.8 V — 8.9 13.1 mA • at 3.0 V — 9.1 13.3 mA Table continues on the next page... Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 11 NXP Semiconductors General Table 9. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit Notes IDD_WAIT Wait mode high frequency current at 72 MHz, at 3.0 V - all peripheral clocks disabled, while(1) loop — 7.0 9.0 mA 4 IDD_WAIT Wait mode current at 3.0 V at 48 Mhz — all peripheral clocks disabled, while(1) loop — 5.7 10.4 mA 5 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled at 4 MHz, while(1) loop — 483.7 1011.7 μA 8 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled at 8 MHz, while(1) loop — 557.6 1720.2 μA 9 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled at 4 MHz, while(1) loop — 400.3 926.5 μA 10 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled at 8 MHz, while(1) loop — 415.2 941.1 μA 11 IDD_VLPW Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled at 4 MHz, while(1) loop — 285.9 1145.6 μA 10 IDD_VLPW Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled at 8 MHz, while(1) loop — 415.6 1498.7 μA 11 IDD_STOP Stop mode current at 3.0 V • -40 to 25 °C — 264.5 320.5 μA • at 50 °C — 287.0 356.1 • at 70 °C — 325.3 445.4 • at 85 °C — 374.7 590.8 • at 105 °C — 496.7 952.3 — 4.2 16.4 — 11.0 35.9 — 24.0 84.5 — 44.0 156.2 — 93.4 300.2 — 2.7 5.4 — 4.7 10.6 — 8.6 22.7 — 14.7 49.0 IDD_VLPS Very-low-power stop mode current at 3.0 V • -40 to 25 °C • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_LLS2 Low-leakage stop mode 2 current at 3.0 V • -40 to 25 °C • at 50 °C • at 70 °C μA μA Table continues on the next page... 12 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 General Table 9. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. — 30.4 88.6 — 3.0 5.9 — 5.9 14.5 — 11.4 32.0 — 19.7 65.2 — 40.9 122.0 • -40 to 25 °C — 2.2 5.1 • at 50 °C — 4.6 10.9 • at 70 °C — 9.0 24.4 • at 85 °C — 15.9 44.8 • at 105 °C — 33.1 91.0 — 1.8 3.4 — 3.3 6.8 — 6.1 14.5 — 10.4 26.4 — 21.6 54.4 — 0.65 0.88 • at 50 °C — 1.1 1.6 • at 70 °C — 2.1 3.3 • at 85 °C — 3.6 21.0 • at 105 °C — 8.5 32.2 — 372.0 598 — 768.6 1331 — 1734 3038 — 3291 20575 — 8025 27560 • at 85 °C Unit Notes • at 105 °C IDD_LLS3 Low-leakage stop mode 3 current at 3.0 V • -40 to 25 °C • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS3 IDD_VLLS2 Very-low-leakage stop mode 3 current at 3.0 V • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS0 μA Very-low-leakage stop mode 2 current at 3.0 V • -40 to 25 °C IDD_VLLS1 μA Very-low-leakage stop mode 1 current at 3.0V • -40 to 25 °C Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 0) at 3.0 V • -40 to 25 °C • at 50 °C • at 70 °C μA μA nA Table continues on the next page... Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 13 NXP Semiconductors General Table 9. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit Notes • at 85 °C • at 105 °C IDD_VLLS0 Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 1) at 3.0 V • -40 to 25 °C • at 50 °C • at 70 °C • at 85 °C • at 105 °C 12 — 94.1 311 — 480.9 1024 — 1416 2760 — 2970 19574 — 7642 27325 nA 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 96 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_HCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SOSCDIV and SCG_SPLLDIV registers. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN]. 3. 96 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_HCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks except USB = 24 MHz from SPLLDIV3_CLK. USB functional clock = 48 MHz from SPLLDIV1_CLK. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN]. 4. 72 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_RCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SOSCDIV and SCG_SPLLDIV registers. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN]. 5. 48 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as FIRC 48 MHz mode (SCG_RCCR[SCS]=0011). All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_FIRCDIV register. PLL, SOSC, and SIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_SIRCCSR[SIRCEN]. 6. 72 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as System PLL mode (SCG_RCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz crystal. All peripheral functional clocks except USB = 24 MHz from SPLLDIV3_CLK. USB functional clock = 48 MHz from SPLLDIV1_CLK. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN]. 7. 48 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock. SCG configured as FIRC 48 MHz mode (SCG_RCCR[SCS]=0011). All peripheral functional clocks except USB = 24 MHz from FIRCDIV3_CLK. USB functional clock = 48 MHz from FIRCDIV1_CLK. PLL, SOSC, and SIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_SIRCCSR[SIRCEN]. 8. 4 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks except USB = 1M Hz from SIRCDIV3_CLK. USB clock disabled. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN]. 9. 8 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks except USB = 1M Hz from SIRCDIV3_CLK. USB clock disabled. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN]. 10. 4 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SIRCDIV register. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN]. 11. 8 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks disabled by clearing all 14 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 General xxDIV3, xxDIV2, and xxDIV1 in SCG_SIRCDIV register. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN]. 12. No brownout Table 10. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) -40 IEREFSTEN8MHz External 8 MHz crystal clock adder with 402.9 System OSC. Measured by entering VLPS mode with the crystal enabled (SCG_SOSCCFG[RANGE] = 10, SCG_SOSCCFG[HGO] = 0, SCG_SOSCCFG[EREFS] = 1, and SC2P/SC4P/SC8P = 0). IEREFSTEN32KHz External 32 kHz crystal clock adder with System OSC by means of SCG_SOSCCFG[RANGE] = 01, SCG_SOSCCFG[HGO] = 0, SCG_SOSCCFG[EREFS] = 1, and SC2P/SC4P/SC8P = 0. Measured by entering all the following modes with the crystal enabled: • VLLS1 Unit 25 50 70 85 105 462.1 477.5 492 506.2 530.4 uA nA 373.9 539.2 612.3 644.9 523.7 1000 568.4 552.6 650.8 757.9 995.6 1400 • VLLS3 582.8 565.0 615.5 797.1 968.5 1700 • LLS3 472.4 635.2 776.9 425.6 1500 2800 • VLPS 528.0 534.1 636.6 9600 20300 40900 • STOP ILPTMR LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO clock. 151.0 7.7 21.8 7.6 174.0 31.0 nA ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. 18.8 19.6 19.9 20.0 20.4 20.5 µA IRTC RTC peripheral adder measured by placing the device in VLLS1 mode and the RTC ALARM set for 1 minute. Includes selected clock source power consumption. • OSC32KCLK (32KHz external crystal) • LPO (internal 1K Hz Low Power Oscillator) 116.0 1400 1400 1500 1500 120.0 nA 35.0 1400 1400 1600 1400 120.0 ILPUART LPUART peripheral adder measured by placing the device in STOP mode with selected clock source waiting for RX data at 115200 baud rate. Includes Table continues on the next page... Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 15 NXP Semiconductors General Table 10. Low power mode peripheral adders — typical value (continued) Symbol Description Temperature (°C) selected clock source power consumption. • Slow IRC clock from SCG (8 MHz internal reference clock) • OSCERCLK (8 MHz external crystal) ILPSPI ITPM ILPI2C IBG LPSPI peripheral adder measured by placing the device in VLPS mode with selected clock source, LPSPI is configured as master mode with bit rate of 4 Mbps. Includes selected clock source power consumption. • Slow IRC clock from SCG (8 MHz internal reference clock) • OSCERCLK (8 MHz external crystal) TPM peripheral adder measured by placing the device in STOP mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. • Slow IRC clock from SCG (8 MHz internal reference clock) • OSCERCLK (8 MHz external crystal) LPI2C peripheral adder measured by placing the device in VLPS mode with selected clock source, LPI2C is configured as master, and bit rate is 400 Kbps. Includes selected clock source power consumption. • Slow IRC clock from SCG (8 MHz internal reference clock) • OSCERCLK (8 MHz external crystal) Bandgap adder when BGEN bit is set and device is placed in VLPS mode. • Bandgap buffer disabled • Bandgap buffer enabled IADC ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP mode. ADC is configured for low power mode using the ADC asynchronous clock (ADACK) and continuous conversions. Unit -40 25 50 70 85 105 85.7 89.4 87.3 88.4 85.3 86.6 41.2 43.5 38.7 36.8 39.6 37.0 69.4 66.7 65.9 66.1 65.8 66.0 431.9 489.9 503.5 518.6 533.0 557.0 80.7 84.2 84.2 84.4 84.8 86.3 35.5 37.2 37.3 37.1 37.7 37.7 69.7 66.7 66.9 67.6 68.2 68.2 582.9 597.9 610.8 623.8 637.0 660.2 µA µA µA µA µA 96.8 95.4 96.4 98.2 98.2 98.5 137.5 129.6 133.0 135.5 136.9 139.6 372.9 380.5 384.0 388.3 392.2 394.6 µA Table continues on the next page... 16 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 General Table 10. Low power mode peripheral adders — typical value (continued) Symbol Description Temperature (°C) -40 IWDOG WDOG peripheral adder measured by placing the device in STOP mode, WDOG is configured to time out at 1 second. Includes selected clock source power consumption. • Slow IRC clock from SCG (8 MHz internal reference clock) • OSCERCLK (8 MHz external crystal) 25 50 70 Unit 85 105 µA 68.8 68.5 69.2 69.9 71.7 72.6 11.2 10.1 10.1 10.2 10.5 10.7 56.0 57.1 58.6 58.5 58.6 60.0 • LPO (internal 1 kHz Lower Power Oscillator) ISIRC_8MHz SIRC adder when SIRC is configured to 8 MHz. Measured by entering VLPS mode with 8 MHz IRC enabled, and SIRCDIV1, SIRCDIV2, SIRCDIV3 =000. 67.2 63.0 63.3 63.2 63.3 63.6 µA ISIRC_2MHz SIRC adder when SIRC is configured to 2 MHz. Measured by entering STOP or VLPS mode with 2 MHz IRC enabled, and SIRCDIV1, SIRCDIV2, SIRCDIV3 =000. 22.3 21.2 21.4 21.5 21.7 21.4 µA 2.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • SCG is configured as SPLL mode with SOSC as the clock source for RUN mode current measurement, and as SIRC mode for VLPR mode current measurement • USB regulator disabled • No GPIOs toggled • Code execution from flash with cache enabled • For the ALLOFF curve, all peripheral clocks are disabled except FTFA • For the ALLON curve, all peripheral clocks are enabled as specified in notes of Power consumption operating behaviors. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 17 NXP Semiconductors General Figure 3. Run mode supply current vs. core frequency 18 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 General Figure 4. VLPR mode supply current vs. core frequency 2.2.6 EMC radiated emissions operating behaviors Table 11. EMC radiated emissions operating behaviors Symbol Description Frequency band (MHz) Typ. Unit Notes 1, 2 VRE1 Radiated emissions voltage, band 1 0.15–50 18 dBμV VRE2 Radiated emissions voltage, band 2 50–150 21 dBμV VRE3 Radiated emissions voltage, band 3 150–500 21 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 24 dBμV IEC level 0.15–1000 L — VRE_IEC 2, 3 1. Determined according to IEC Standard 61967-2 (and SAE J1752/3), Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 19 NXP Semiconductors General 2. VDD = 3.3 V, VREGIN= 5V, TA = 25 °C, fOSC = 8 MHz (crystal), fSYS_CORE = 96 MHz, fBUS = 24 MHz 3. IEC/SAE level maximum: L≤24dB mV 2.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.nxp.com. 2. Perform a keyword search for “EMC design.” 2.2.8 Capacitance attributes Table 12. Capacitance attributes Symbol CIN Description Input capacitance Min. Max. Unit — 7 pF 2.3 Switching specifications 2.3.1 Device clock specifications Table 13. Device clock specifications Symbol Description Run mode1 Min. Max. Unit — 96 MHz High speed run mode — 72 MHz Normal speed run mode — 8 MHz VLPR mode — 24 MHz High speed run mode and Normal speed run mode — 1 MHz VLPR mode — 24 MHz High speed run mode and Normal speed run mode — 1 MHz VLPR mode Normal run mode fSYS fBUS fFLASH System and core clock (DIVCORE_CLK) Bus clock/Slow clock (DIVSLOW_CLK) Flash clock fLLWU LLWU clock — 1 KHz All modes fRCM RCM clock — 1 KHz All modes Table continues on the next page... 20 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 General Table 13. Device clock specifications (continued) Symbol fWDOG, fTSI Description WDOG clock, TSI clock Run mode1 Min. Max. Unit — 24 MHz High speed run mode and Normal speed run mode — 1 MHz VLPR mode — 242 MHz High speed run mode and Normal speed run mode fADC ADC clock — 8 MHz VLPR mode fRTC RTC clock — 32.768 KHz All modes fTSTMR TSTMR clock — 1 MHz All modes fLPTMR LPTMR clock — 24 MHz All modes TPM clock, LPIT clock, LPSPI clock, LPI2C clock, LPUART clock, EMVSIM clock, SAI clock, FlexIO clock — 96 MHz High speed run mode — 72 MHz Normal speed run mode — 8 MHz VLPR mode — 48 MHz High speed run mode and Normal speed run mode — 0 MHz VLPR mode — 48 MHz High speed run mode and Normal speed run mode 16 MHz VLPR mode — 32 MHz High speed run mode and Normal speed run mode — 16 MHz VLPR mode — 96 MHz High speed run mode — 72 MHz Normal speed run mode — 8 MHz VLPR mode fTPM, fLPIT, fLPSPI, fLPI2C, fLPUART, fEMVSIM, fSAI, fFLEXIO fUSB fERCLK fosc_hi_2 fCAU, fGPIO USB clock External reference clock Oscillator crystal or resonator frequency — high frequency mode (high range) (SCG_SOSCCFG[RANGE]=11) CAU clock, GPIO clock 1. Normal run mode, High speed run mode, and VLPR mode. 2. See ADC electrical specifications 2.3.2 General switching specifications These general-purpose specifications apply to all signals configured for GPIO, LPI2C, and LPUART signals. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 21 NXP Semiconductors General Table 14. General switching specifications Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 50 — ns External RESET and NMI pin interrupt pulse width — Asynchronous path 100 — ns 2 GPIO pin interrupt pulse width — Asynchronous path 16 — ns 2 Port rise/fall time Normal drive pins • 2.7 ≤ VDD ≤ 3.6 V • Fast slew rate • Slow slew rate • 1.71 ≤ VDD ≤ 2.7 V • Fast slew rate • Slow slew rate 3 — 3 — 10.5 — 4 — 17 ns High drive pins Normal/low drive enabled • 2.7 ≤ VDD ≤ 3.6 V • Fast slew rate • Slow slew rate • 1.71 ≤ VDD ≤ 2.7 V • Fast slew rate 4 — 2.5 — 10.5 — 4 — 17 — 2 — 11 — 2.5 — 17 ns • Slow slew rate High drive enabled • 2.7 ≤ VDD ≤ 3.6 V • Fast slew rate • Slow slew rate • 1.71 ≤ VDD ≤ 2.7 V • Fast slew rate • Slow slew rate Normal drive fast pins • 2.7 ≤ VDD ≤ 3.6 V • Fast slew rate • Slow slew rate • 1.71 ≤ VDD ≤ 2.7 V • Fast slew rate • Slow slew rate 5 — 0.5 — 10 — 0.75 — 19 ns High drive fast pins Normal/low drive enabled • 2.7 ≤ VDD ≤ 3.6 V 22 NXP Semiconductors 6 — 0.5 ns Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 General Table 14. General switching specifications Description Min. Max. • Fast slew rate — 11 • Slow slew rate • 1.71 ≤ VDD ≤ 2.7 V • Fast slew rate — 1 — 19 — 2 — 13 — 4 — 21 Unit Notes • Slow slew rate High drive enabled • 2.7 ≤ VDD ≤ 3.6 V • Fast slew rate • Slow slew rate • 1.71 ≤ VDD ≤ 2.7 V • Fast slew rate • Slow slew rate 1. The synchronous and asynchronous timing must be met. 2. This is the shortest pulse that is guaranteed to be recognized. 3. For high drive pins with high drive enabled, load is 75pF; other pins load (normal/low drive) is 25pF. Fast slew rate is enabled by clearing PORTx_PCRn[SRE]. 4. High drive pins are PTB0,PTB1, PTC3, and PTC4. High drive capability is enabled by setting PORTx_PCRn[DSE]. 5. Normal drive fast pins are PTE20, PTE21, PTE22, and PTE23. 6. High drive fast pins are PTD4, PTD5, PTD6, and PTD7. High drive capability is enabled by setting PORTx_PCRn[DSE]. NOTE Only PTA4, PTA20, and PTB19 pins have analog/passive filter. 2.4 Thermal specifications 2.4.1 Thermal operating requirements Table 15. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C Notes 1 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to determine TJ is: TJ = TA + RθJA × chip power dissipation. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 23 NXP Semiconductors Peripheral operating requirements and behaviors 2.4.2 Thermal attributes Table 16. Thermal attributes Board type Symbol Single-layer (1S) RθJA Four-layer (2s2p) Description 100 LQFP 121 XFBGA Unit Notes Thermal resistance, junction to ambient (natural convection) 64 94 °C/W 1 RθJA Thermal resistance, junction to ambient (natural convection) 51 57 °C/W Single-layer (1S) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 54 81 °C/W Four-layer (2s2p) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 45 53 °C/W — RθJB Thermal resistance, junction to board 37 40 °C/W 2 — RθJC Thermal resistance, junction to case 19 30 °C/W 3 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) 4 8 °C/W 4 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 3 Peripheral operating requirements and behaviors 3.1 Core modules 3.1.1 SWD electricals Table 17. SWD full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V SWD_CLK frequency of operation Table continues on the next page... 24 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 Peripheral operating requirements and behaviors Table 17. SWD full voltage range electricals (continued) Symbol Description Min. Max. Unit 0 25 MHz 1/J1 — ns 20 — ns • Serial wire debug J2 SWD_CLK cycle period J3 SWD_CLK clock pulse width • Serial wire debug J4 SWD_CLK rise and fall times — 3 ns J9 SWD_DIO input data setup time to SWD_CLK rise 10 — ns J10 SWD_DIO input data hold time after SWD_CLK rise 0 — ns J11 SWD_CLK high to SWD_DIO data valid — 32 ns J12 SWD_CLK high to SWD_DIO high-Z 5 — ns J2 J3 J3 SWD_CLK (input) J4 J4 Figure 5. Serial wire clock input timing SWD_CLK J9 SWD_DIO J10 Input data valid J11 SWD_DIO Output data valid J12 SWD_DIO J11 SWD_DIO Output data valid Figure 6. Serial wire data timing Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 25 NXP Semiconductors System Clock Generation (SCG) specifications 3.2 System modules There are no specifications necessary for the device's system modules. 3.3 Clock modules 3.3.1 System Clock Generation (SCG) specifications 3.3.1.1 Fast IRC (FIRC) specifications Table 18. Fast IRC (FIRC) specifications Symbol Description Min. Typ. Max. Unit Vdd_firc Supply voltage 1.71 — 3.6 V — MHz ±0.5 ±1.0 %Ffirc_targe ±0.5 ±1.5 ±0.5 ±1.0 Ffirc_target IRC target frequency (nominal) — 52 Trim range = 01 56 Trim range = 10 60 Trim range = 11 Δffirc_ol_hv 1 48 Trim range = 00 Δffirc_ol_lv Notes Open loop total deviation of FIRC frequency at low voltage (VDD=1.71V-1.89V) over full temperature • Regulator disable (SCG_FIRCCSR[FIRCREGOFF]=1) • Regulator enable (SCG_FIRCCSR[FIRCREGOFF]=0) Open loop total deviation of FIRC frequency at high voltage (VDD=1.89V-3.6V) over full temperature — t — 2 %Ffirc_targe Regulator enable (SCG_FIRCCSR[FIRCREGOFF]=0) t Δffirc_cl Fine Trim Resolution — — ± 0.1 %Ffirc_targe Jcyc_firc Period Jitter (RMS) — 35 150 ps Tst_firc Startup time — 2 3 μs Idd_firc Current consumption: • 48 MHz — 350 400 • 52 MHz — 360 420 • 56 MHz — 380 460 • 60 MHz — 400 500 t 3 μA 1. FIRC trim range is programmable via SCG_FIRCCFG[RANGE]. 26 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 System Clock Generation (SCG) specifications 2. Closed loop operation of the FIRC is only usable for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting FIRC as USB clock source, and enabling the clock recover function (USBn_CLK_RECOVER_CTRL[CLOCK_RECOVER_EN]=1, SCG_FIRCCSR[FIRCREGOFF]=0). 3. FIRC startup time is defined as the time between clock enablement and clock availability for system use. 3.3.1.2 Slow IRC (SIRC) specifications Table 19. Slow IRC specifications Symbol Description IDD_sirc2M IDD_sirc8M fsirc Δfsirc Min. Typ. Max. Unit Supply current in 2 MHz mode — 14 17 μA Supply current in 8 MHz mode — 25 35 μA Output frequency — 2 — MHz — 8 — Total deviation of trimmed frequency over voltage and temperature • 0 to 105 °C • -40 to 0 °C Δfsirc_t Notes 1 2 — — ±3 — — ±4 %fsirc Total deviation of trimmed frequency over temperature @VDD=3.3V 2 — — ±3 %fsirc Tsu_sirc Startup time — — 12.5 μs Jcyc_sirc Period jitter (RMS) • fsirc = 2 MHz • fsirc = 8 Mhz — 350 — — 100 — ps 3 1. Selection of output frequency for Slow IRC between 2 MHz and 8 MHz is controlled by SCG_ SIRCCFG[RANGE]. 2. Maximum deviation occurs at cold temperature (-40 °C) and hot temperature (105 °C). 3. This specification was obtained using a NXP developed PCB. Jitter is dependent on the noise characteristics of each PCB and results will vary. 3.3.1.3 Symbol fpll_ref System PLL specifications Table 20. System PLL Specifications Description PLL reference frequency range Min. Typ. Max. Unit 8 — 16 MHz fvcoclk_2x VCO output frequency 180 — 288 MHz fvcoclk PLL output frequency 90 — 144 MHz Ipll Jcyc_pll PLL operating current — VCO @ 180 MHz (f osc_hi_2 = 10 MHz , f pll_ref = 10 MHz ,VDIV multiplier = 18) — 1.1 — PLL operating current — VCO @ 288 MHz (f osc_hi_2 = 32 MHz , f pll_ref = 8 MHz ,VDIV multiplier = 36) — 2.0 — — 120 — — 80 — PLL period jitter (RMS) • fvco = 180 MHz • fvco = 288 MHz Notes 1 mA ps 2 Table continues on the next page... Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 27 NXP Semiconductors System Clock Generation (SCG) specifications Table 20. System PLL Specifications (continued) Symbol Description Jacc_pll PLL accumilated jitter over 1 μs (RMS) • fvco = 180 MHz Min. Typ. Max. Unit — 600 — ps — 300 — ±4.47 — ±5.97 2 • fvco = 288 MHz Dunl tpll_lock Notes Lock exit frequency tolerance Lock detector detection time — — 150 × % 10-6 s 3 + 1075(1/ f pll_ref ) 1. Excludes any oscillator currents that are also consuming power while PLL is in operation. 2. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 3. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled to PLL enabled. If a crystal/resonator is being used as the reference, this specification assumes it is already running. 3.3.2 Oscillator electrical specifications 3.3.2.1 Oscillator DC electrical specifications Table 21. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high gain mode (HGO=1) 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Table continues on the next page... 28 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 System Clock Generation (SCG) specifications Table 21. Oscillator DC electrical specifications (continued) Symbol Description Min. Typ. Max. Unit Notes Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 1.0 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) 5 Vpp 1. VDD=3.3 V, Temperature =25 °C 2. See crystal or resonator manufacturer's recommendation 3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used. 4. When low power mode is selected, RF is integrated and must not be attached externally. 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 29 NXP Semiconductors System Clock Generation (SCG) specifications 3.3.2.2 Symbol Oscillator frequency specifications Table 22. Oscillator frequency specifications Min. Typ. Max. Unit Oscillator crystal or resonator frequency — lowfrequency range (SCG_SOSCCFG[RANGE]=01) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — medium frequency range (SCG_SOSCCFG[RANGE]=10) 1 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency range (SCG_SOSCCFG[RANGE]=11) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 48 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz medium frequency (SCG_SOSCCFG[RANGE]=11), lowpower mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz medium frequency (SCG_SOSCCFG[RANGE]=10), high-gain mode (HGO=1) — 1 — ms fosc_lo tcst Description Notes 1, 2 3, 4, 5 1. Other frequency limits may apply when external clock is being used as a reference for the PLL. 2. When transitioning to system PLL mode, restrict the frequency of the input clock so that, when it is divided by PREDIV, it remains within the limits of the PLL reference input clock frequency. 3. Proper PC board layout procedures must be followed to achieve specifications. 4. Crystal startup time is defined as the time between the oscillator being enabled and the SCG_SOSCCSR[SOSCVLD] being set. 5. Crystal startup time is dependent on external crystal and/or resonator and loading capacitance as well as series resistance. 3.4 Memories and memory interfaces 3.4.1 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 3.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. 30 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 System Clock Generation (SCG) specifications Table 23. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit Notes thvpgm4 Longword Program high-voltage time — 7.5 18 μs — thversscr Sector Erase high-voltage time — 13 113 ms 1 — 52 452 ms 1 — 104 904 ms 1 Unit Notes thversblk128k Erase Block high-voltage time for 128 KB thversall Erase All high-voltage time 1. Maximum time based on expectations at cycling end-of-life. 3.4.1.2 Symbol Flash timing specifications — commands Table 24. Flash command timing specifications Description Min. Typ. Max. Read 1s Block execution time trd1blk128k • 128 KB program flash 1 — — 1.7 ms trd1sec1k Read 1s Section execution time (flash sector) — — 60 μs 1 tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs — Erase Flash Block execution time tersblk128k • 128 KB program flash 2 — 88 600 ms tersscr Erase Flash Sector execution time — 14 114 ms 2 trd1all Read 1s All Blocks execution time — — 1.8 ms 1 trdonce Read Once execution time — — 25 μs 1 Program Once execution time — 65 — μs — tersall Erase All Blocks execution time — 175 1300 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 tpgmonce 1. Assumes 25 MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3.4.1.3 Flash high voltage current behaviors Table 25. Flash high voltage current behaviors Symbol Description Min. Typ. Max. Unit IDD_PGM Average current adder during high voltage flash programming operation — 2.5 6.0 mA IDD_ERS Average current adder during high voltage flash erase operation — 1.5 4.0 mA Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 31 NXP Semiconductors ADC electrical specifications 3.4.1.4 Symbol Reliability specifications Table 26. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years — tnvmretp1k Data retention after up to 1 K cycles 20 100 — years — nnvmcycp Cycling endurance 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C. 3.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 3.6 Analog 3.6.1 ADC electrical specifications 3.6.1.1 16-bit ADC operating conditions Table 27. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit Notes VDDA Supply voltage Absolute 1.71 — 3.6 V — ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VADIN Input voltage • 16-bit differential mode VREFL — 31/32 × VREFH V — • All other modes VREFL — • 16-bit mode — 8 10 pF — • 8-bit / 10-bit / 12-bit modes — 4 5 — 2 5 kΩ — CADIN RADIN RAS Input capacitance Input series resistance Analog source resistance VREFH 16-bit modes 3, 4 • fADCK > 8 MHz — — 0.5 kΩ Table continues on the next page... 32 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 ADC electrical specifications Table 27. 16-bit ADC operating conditions (continued) Symbol Description Min. Typ.1 Max. Unit • fADCK = 4–8 MHz — — 1 kΩ • fADCK < 4 MHz — — 2 kΩ — — 0.5 kΩ — — 1 kΩ — — 2 kΩ — — 5 kΩ • fADCK = 4–8 MHz — — 2 kΩ • fADCK < 4MHz — — 5 kΩ — — 10 kΩ — — 5 kΩ — — 10 kΩ Conditions Notes 13-bit / 12-bit modes • fADCK > 16 MHz • fADCK > 8 MHz • fADCK = 4–8 MHz • fADCK < 4 MHz 11-bit / 10-bit modes • fADCK > 8 MHz 9-bit / 8-bit modes • fADCK > 8 MHz • fADCK < 8 MHz fADCK ADC conversion clock frequency ≤ 13-bit mode 1.0 — 24.0 MHz 16-bit mode 2.0 — 12.0 MHz Crate ADC conversion rate ≤ 13-bit modes No ADC hardware averaging 5 6 20.000 — 1200 ksps Continuous conversions enabled, subsequent conversion time Crate ADC conversion rate 16-bit mode No ADC hardware averaging 6 37.037 — 461.467 ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. Assumes ADLSMP=0 4. This resistance is external to the MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS * CAS time constant should be kept to < 1 ns. 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 33 NXP Semiconductors ADC electrical specifications SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS RAS ADC SAR ENGINE RADIN VADIN CAS VAS RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 7. ADC input impedance equivalency diagram 3.6.1.2 16-bit ADC electrical characteristics Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description Conditions1 Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 IDDA_ADC Supply current ADC asynchronous clock source fADACK Sample Time TUE DNL INL See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 • 3.6 V • Run mode • Standby mode VReg33out Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode COUT External output capacitor ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Short circuit current — 290 — mA 2 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated. 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 49 NXP Semiconductors ADC electrical specifications 3.8.4 LPSPI switching specifications The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins. NOTE • Slew rate disabled pads are those pins with PORTx_PCRn[SRE] bit cleared. Slew rate enabled pads are those pins with PORTx_PCRn[SRE] bit set. • To achieve high bit rate, it is recommended to use fast pins (PTE20, PTE21, PTE22, PTE23, PTD4, PTD5, PTD6, and PTD7) and/or high drive pins (PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7). Table 41. LPSPI master mode timing on slew rate disabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU Data setup time (inputs) 7 tHI Data hold time (inputs) 8 tv Data valid (after SPSCK edge) 9 tHO Data hold time (outputs) 10 tRI Rise time input tFI Fall time input tRO Rise time output tFO Fall time output 11 Description Min. Max. Unit Note fperiph/2048 fperiph/2 Hz 1 2 x tperiph 2048 x tperiph ns 2 Enable lead time 1/2 — tSPSCK — Enable lag time 1/2 — tSPSCK — tperiph - 30 1024 x tperiph ns — 18 — ns — 0 — ns — — 15 ns — 0 — ns — — tperiph - 25 ns — — 25 ns — Frequency of operation SPSCK period Clock (SPSCK) high or low time 1. fperiph is the LPSPI peripheral functional clock. 2. tperiph = 1/fperiph Table 42. LPSPI master mode timing on slew rate enabled pads Num. Symbol 1 fop Description Frequency of operation Min. Max. Unit Note fperiph/2048 fperiph/2 Hz 1 Table continues on the next page... 50 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 ADC electrical specifications Table 42. LPSPI master mode timing on slew rate enabled pads (continued) Num. Symbol Description Min. Max. Unit Note 2 tSPSCK SPSCK period 2 x tperiph 2048 x tperiph ns 2 3 tLead Enable lead time 1/2 — tSPSCK — 4 tLag Enable lag time 1/2 — tSPSCK — 5 tWSPSCK tperiph - 30 1024 x tperiph ns — 6 tSU Data setup time (inputs) 96 — ns — 7 tHI Data hold time (inputs) 0 — ns — 8 tv Data valid (after SPSCK edge) — 52 ns — 9 tHO Data hold time (outputs) 0 — ns — 10 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 36 ns — tFO Fall time output 11 Clock (SPSCK) high or low time 1. fperiph is the LPSPI peripheral functional clock 2. tperiph = 1/fperiph SS1 (OUTPUT) 3 2 SPSCK (CPOL=0) (OUTPUT) 11 10 11 5 6 7 MSB IN2 BIT 6 . . . 1 LSB IN 8 MOSI (OUTPUT) 4 5 SPSCK (CPOL=1) (OUTPUT) MISO (INPUT) 10 MSB OUT2 BIT 6 . . . 1 9 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 18. LPSPI master mode timing (CPHA = 0) Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 51 NXP Semiconductors ADC electrical specifications SS1 (OUTPUT) 2 3 SPSCK (CPOL=0) (OUTPUT) 5 SPSCK (CPOL=1) (OUTPUT) 5 6 MISO (INPUT) 11 4 10 11 7 MSB IN2 BIT 6 . . . 1 LSB IN 9 8 MOSI (OUTPUT) 10 PORT DATA MASTER MSB OUT2 BIT 6 . . . 1 PORT DATA MASTER LSB OUT 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 19. LPSPI master mode timing (CPHA = 1) Table 43. LPSPI slave mode timing on slew rate disabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 Enable lead time 1 — tperiph — Enable lag time 1 — tperiph — tperiph - 30 — ns — Data setup time (inputs) 2.5 — ns — tHI Data hold time (inputs) 3.5 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 31 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 25 ns — tFO Fall time output 13 1. 2. 3. 4. Description Frequency of operation SPSCK period Clock (SPSCK) high or low time fperiph is the LPSPI peripheral functional clock tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state 38 52 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 ADC electrical specifications Table 44. LPSPI slave mode timing on slew rate enabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead Enable lead time 4 tLag Enable lag time 5 tWSPSCK 6 tSU 7 Frequency of operation SPSCK period Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 1 — tperiph — 1 — tperiph — tperiph - 30 — ns — Data setup time (inputs) 2 — ns — tHI Data hold time (inputs) 7 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 122 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 36 ns — tFO Fall time output 13 1. 2. 3. 4. Description Clock (SPSCK) high or low time fperiph is the LPSPI peripheral functional clock tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state SS (INPUT) 2 12 13 12 13 4 SPSCK (CPOL=0) (INPUT) 5 3 SPSCK (CPOL=1) (INPUT) 5 9 8 MISO (OUTPUT) see note SLAVE MSB 6 MOSI (INPUT) 10 11 11 BIT 6 . . . 1 SLAVE LSB OUT SEE NOTE 7 MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined Figure 20. LPSPI slave mode timing (CPHA = 0) Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 53 NXP Semiconductors ADC electrical specifications SS (INPUT) 4 2 3 SPSCK (CPOL=0) (INPUT) 5 SPSCK (CPOL=1) (INPUT) 5 see note 8 MOSI (INPUT) SLAVE 13 12 13 11 10 MISO (OUTPUT) 12 MSB OUT 6 9 BIT 6 . . . 1 SLAVE LSB OUT BIT 6 . . . 1 LSB IN 7 MSB IN NOTE: Not defined Figure 21. LPSPI slave mode timing (CPHA = 1) 3.8.5 LPI2C Table 45. LPI2C specifications Symbol fSCL Description SCL clock frequency Min. Max. Unit Notes Standard mode (Sm) 0 100 kHz 1 Fast mode (Fm) 0 400 1, 2 Fast mode Plus (Fm+) 0 1000 1, 3 Ultra Fast mode (UFm) 0 5000 1, 4 High speed mode (Hs-mode) 0 3400 1, 5 1. See General switching specifications, measured at room temperature. 2. Measured with the maximum bus loading of 400pF at 3.3V VDD with pull-up Rp = 580Ω on normal drive pins or 350Ω on high drive pins, and at 1.8V VDD with Rp = 880Ω. For all other cases, select appropriate Rp per I2C Bus Specification and the pin drive capability. 3. Fm+ is only supported on high drive pin with high drive enabled. It is measured with the maximum bus loading of 400pF at 3.3V VDD with Rp = 350Ω. For all other cases, select appropriate Rp per I2C Bus Specification and the pin drive capability. 4. UFm is only supported on high drive pin with high drive enabled and push-pull output only mode. It is measured at 3.3V VDD with the maximum bus loading of 400pF. For 1.8V VDD, the maximum speed is 4Mbps. 5. Hs-mode is only supported in slave mode and on the high drive pins with high drive enabled. 3.8.6 LPUART See General switching specifications. 54 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 ADC electrical specifications 3.8.7 I2S/SAI switching specifications This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures. 3.8.7.1 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. Table 46. I2S/SAI master mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK (as an input) pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15.5 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 19 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 26 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 55 NXP Semiconductors ADC electrical specifications S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 22. I2S/SAI timing — master modes Table 47. I2S/SAI slave mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 10 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 33 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 10 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 28 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear 56 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 ADC electrical specifications S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 23. I2S/SAI timing — slave modes 3.8.7.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 48. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 45 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid — ns S7 I2S_TX_BCLK to I2S_TXD valid 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK — ns — 0 Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 57 NXP Semiconductors ADC electrical specifications S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 24. I2S/SAI timing — master modes Table 49. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 30 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK — ns S18 I2S_RXD hold after I2S_RX_BCLK — ns 72 ns S19 I2S_TX_FS input assertion to I2S_TXD output — 30 valid1 — ns 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear 58 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 Dimensions S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 25. I2S/SAI timing — slave modes 3.9 Human-machine interfaces (HMI) 3.9.1 TSI electrical specifications Table 50. TSI electrical specifications Symbol Description Min. Typ. Max. Unit TSI_RUNF Fixed power consumption in run mode — 100 — µA TSI_RUNV Variable power consumption in run mode (depends on oscillator's current selection) 1.0 — 128 µA TSI_EN Power consumption in enable mode — 100 — µA TSI_DIS Power consumption in disable mode — 1.2 — µA TSI_TEN TSI analog enable time — 66 — µs TSI_CREF TSI reference capacitor — 1.0 — pF TSI_DVOLT Voltage variation of VP & VM around nominal values 0.19 — 1.03 V 4 Dimensions 4.1 Obtaining package dimensions Package dimensions are provided in package drawings. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 59 NXP Semiconductors Pinouts and Packaging To find a package drawing, go to nxp.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 100-pin LQFP 98ASS23308W 121-pin XFBGA 98ASA00595D 5 Pinouts and Packaging 5.1 KL28Z Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT function is available on each pin. NOTE The 121-pin XFBGA package for this product is not yet available. However, it is included in a Package Your Way program for Kinetis MCUs. Visit nxp.com/KPYW for more details. NOTE • A pull-up resistor (typically 4.7 KΩ) must be connected to the EMVSIM0_IO pin if this pin is configured as EMV SIM function. • PTB0/1, PTC3/4, PTD4/5/6/7 have both high drive and normal/low drive capability. PTD4, PTD5, PTD6, PTD7, PTE20, PTE21, PTE22, PTE23 are also fast pins. When a high bit rate is required on the communication interface pins, it is recommended to use fast pins. In case of high bus loading, the high drive strength of high drive pins must be enabled by setting the corresponding PORTx_PCRn[DSE] bit. • RESET_b pin is open drain with internal pullup device and passive analog filter when configured as RESET pin (default state after POR). When this pin is configured to other shared functions, the passive analog filter is disabled. 60 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 Pinouts and Packaging • NMI0_b pin has pullup device enabled and passive analog filter disabled after POR. • SWD_DIO pin has pullup device enabled after POR. SWD_CLK has pulldown device enabled after POR. 121 100 XFB LQFP GA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 CMP0_OUT ALT6 E4 1 PTE0 ADC0_SE16 ADC0_SE16 PTE0/ LPSPI1_SIN RTC_CLKOUT LPUART1_TX E3 2 PTE1/ LLWU_P0 ADC0_SE17 ADC0_SE17 PTE1/ LLWU_P0 LPSPI1_ SOUT LPUART1_RX LPI2C1_SCL E2 3 PTE2/ LLWU_P1 ADC0_SE18 ADC0_SE18 PTE2/ LLWU_P1 LPSPI1_SCK LPUART1_ CTS_b LPI2C1_SDAS F4 4 PTE3 ADC0_SE19 ADC0_SE19 PTE3 LPSPI1_SIN LPUART1_ RTS_b LPI2C1_SCLS H7 5 PTE4/ LLWU_P2 DISABLED PTE4/ LLWU_P2 LPSPI1_PCS0 G4 6 PTE5 DISABLED PTE5 LPSPI1_PCS1 F3 7 PTE6/ LLWU_P16 DISABLED PTE6/ LLWU_P16 LPSPI1_PCS2 I2S0_MCLK LPI2C1_SDA USB_SOF_ OUT E6 8 VDD VDD VDD G7 9 VSS VSS VSS L6 — VSS VSS VSS F1 10 USB0_DP USB0_DP USB0_DP F2 11 USB0_DM USB0_DM USB0_DM G1 12 VOUT33 VOUT33 VOUT33 G2 13 VREGIN VREGIN VREGIN H1 14 PTE16 ADC0_DP1/ ADC0_SE1 ADC0_DP1/ ADC0_SE1 PTE16 LPSPI0_PCS0 LPUART2_TX TPM0_CLKIN LPSPI1_PCS3 FXIO0_D0 H2 15 PTE17/ LLWU_P19 ADC0_DM1/ ADC0_SE5a ADC0_DM1/ ADC0_SE5a PTE17/ LLWU_P19 LPSPI0_SCK LPUART2_RX TPM1_CLKIN LPTMR0_ ALT3/ LPTMR1_ ALT3 J1 16 PTE18/ LLWU_P20 ADC0_DP2/ ADC0_SE2 ADC0_DP2/ ADC0_SE2 PTE18/ LLWU_P20 LPSPI0_ SOUT LPUART2_ CTS_b LPI2C0_SDA FXIO0_D2 J2 17 PTE19 ADC0_DM2/ ADC0_SE6a ADC0_DM2/ ADC0_SE6a PTE19 LPSPI0_SIN LPUART2_ RTS_b LPI2C0_SCL FXIO0_D3 K1 18 PTE20 ADC0_DP0/ ADC0_SE0 ADC0_DP0/ ADC0_SE0 PTE20 LPSPI2_SCK TPM1_CH0 LPUART0_TX FXIO0_D4 K2 19 PTE21 ADC0_DM0/ ADC0_SE4a ADC0_DM0/ ADC0_SE4a PTE21 LPSPI2_ SOUT TPM1_CH1 LPUART0_RX FXIO0_D5 L1 20 PTE22 ADC0_DP3/ ADC0_SE3 ADC0_DP3/ ADC0_SE3 PTE22 LPSPI2_SIN TPM2_CH0 LPUART2_TX FXIO0_D6 L2 21 PTE23 ADC0_DM3/ ADC0_SE7a ADC0_DM3/ ADC0_SE7a PTE23 LPSPI2_PCS0 TPM2_CH1 LPUART2_RX FXIO0_D7 F5 22 VDDA VDDA VDDA Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 ALT7 FXIO0_D1 61 NXP Semiconductors Pinouts and Packaging 121 100 XFB LQFP GA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 G5 23 VREFH/ VREF_OUT VREFH/ VREF_OUT VREFH/ VREF_OUT G6 24 VREFL VREFL VREFL F6 25 VSSA VSSA VSSA L3 26 PTE29 CMP1_IN5/ CMP0_IN5/ ADC0_SE4b CMP1_IN5/ CMP0_IN5/ ADC0_SE4b PTE29 EMVSIM0_ CLK TPM0_CH2 TPM0_CLKIN K5 27 PTE30 DAC0_OUT/ CMP1_IN3/ ADC0_SE23/ CMP0_IN4 DAC0_OUT/ CMP1_IN3/ ADC0_SE23/ CMP0_IN4 PTE30 EMVSIM0_ RST TPM0_CH3 TPM1_CLKIN L4 28 PTE31 DISABLED PTE31 EMVSIM0_ VCCEN TPM0_CH4 TPM2_CLKIN L5 29 VSS VSS VSS K6 30 VDD VDD VDD H5 31 PTE24 ADC0_SE20 ADC0_SE20 PTE24 EMVSIM0_IO TPM0_CH0 LPI2C0_SCL J5 32 PTE25/ LLWU_P21 ADC0_SE21 ADC0_SE21 PTE25/ LLWU_P21 EMVSIM0_PD TPM0_CH1 LPI2C0_SDA H6 33 PTE26 DISABLED J6 34 PTA0 SWD_CLK TSI0_CH1 PTA0 LPUART0_ CTS_b H8 35 PTA1 DISABLED TSI0_CH2 PTA1 LPUART0_RX TPM2_CH0 J7 36 PTA2 DISABLED TSI0_CH3 PTA2 LPUART0_TX TPM2_CH1 H9 37 PTA3 SWD_DIO TSI0_CH4 PTA3 LPI2C1_SCL TPM0_CH0 J8 38 PTA4/ LLWU_P3 DISABLED TSI0_CH5 PTA4/ LLWU_P3 LPI2C1_SDA TPM0_CH1 K7 39 PTA5 DISABLED PTA5 USB_CLKIN TPM0_CH2 E5 — VDD VDD VDD G3 — VSS VSS VSS K3 40 PTA6 DISABLED PTA6 TPM0_CH3 H4 41 PTA7 DISABLED PTA7 LPSPI0_PCS3 TPM0_CH4 LPI2C2_SDAS J9 — PTA10/ LLWU_P22 DISABLED PTA10/ LLWU_P22 LPSPI0_PCS2 TPM2_CH0 LPI2C2_SCLS J4 — PTA11/ LLWU_P23 DISABLED PTA11/ LLWU_P23 LPSPI0_PCS1 TPM2_CH1 LPI2C2_SDA K8 42 PTA12 DISABLED PTA12 TPM1_CH0 LPI2C2_SCL I2S0_TXD0 L8 43 PTA13/ LLWU_P4 DISABLED PTA13/ LLWU_P4 TPM1_CH1 LPI2C2_SDA I2S0_TX_FS K9 44 PTA14 DISABLED PTA14 LPSPI0_PCS0 LPUART0_TX LPI2C2_SCL I2S0_RX_ BCLK L9 45 PTA15 DISABLED PTA15 LPSPI0_SCK 62 NXP Semiconductors PTE26/ RTC_CLKOUT ALT7 LPI2C0_ HREQ TPM0_CH5 LPI2C0_SCLS USB_CLKIN TPM0_CH5 LPI2C0_SDAS SWD_CLK LPUART0_RX LPUART0_ RTS_b SWD_DIO NMI0_b LPI2C2_ HREQ I2S0_TX_ BCLK I2S0_TXD0 I2S0_RXD0 Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 Pinouts and Packaging 121 100 XFB LQFP GA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 J10 46 PTA16 DISABLED PTA16 LPSPI0_ SOUT LPUART0_ CTS_b I2S0_RX_FS H10 47 PTA17 ADC0_SE22 ADC0_SE22 PTA17 LPSPI0_SIN LPUART0_ RTS_b I2S0_MCLK L10 48 VDD VDD VDD K10 49 VSS VSS VSS L11 50 PTA18 EXTAL0 EXTAL0 PTA18 LPUART1_RX TPM0_CLKIN K11 51 PTA19 XTAL0 XTAL0 PTA19 LPUART1_TX TPM1_CLKIN J11 52 PTA20 RESET_b PTA20 LPI2C0_SCLS H11 — PTA29 DISABLED PTA29 LPI2C0_SDAS G11 53 PTB0/ LLWU_P5 ADC0_SE8/ TSI0_CH0 ADC0_SE8/ TSI0_CH0 PTB0/ LLWU_P5 LPI2C0_SCL TPM1_CH0 FXIO0_D8 G10 54 PTB1 ADC0_SE9/ TSI0_CH6 ADC0_SE9/ TSI0_CH6 PTB1 LPI2C0_SDA TPM1_CH1 FXIO0_D9 G9 55 PTB2 ADC0_SE12/ TSI0_CH7 ADC0_SE12/ TSI0_CH7 PTB2 LPI2C0_SCL TPM2_CH0 LPUART0_ RTS_b FXIO0_D10 G8 56 PTB3 ADC0_SE13/ TSI0_CH8 ADC0_SE13/ TSI0_CH8 PTB3 LPI2C0_SDA TPM2_CH1 LPSPI1_PCS3 LPUART0_ CTS_b FXIO0_D11 F11 — PTB6 DISABLED PTB6 LPSPI1_PCS2 RESET_b E11 57 PTB7 DISABLED PTB7 LPSPI1_PCS1 D11 58 PTB8 DISABLED PTB8 LPSPI1_PCS0 FXIO0_D12 E10 59 PTB9 DISABLED PTB9 LPSPI1_SCK FXIO0_D13 D10 60 PTB10 DISABLED PTB10 LPSPI1_PCS0 FXIO0_D14 C10 61 PTB11 DISABLED PTB11 LPSPI1_SCK B10 62 PTB16 TSI0_CH9 TSI0_CH9 PTB16 TPM2_CLKIN FXIO0_D15 LPSPI1_ SOUT LPUART0_RX TPM0_CLKIN LPSPI2_PCS3 FXIO0_D16 LPSPI1_SIN E9 63 PTB17 TSI0_CH10 TSI0_CH10 PTB17 LPUART0_TX TPM1_CLKIN LPSPI2_PCS2 FXIO0_D17 D9 64 PTB18 TSI0_CH11 TSI0_CH11 PTB18 TPM2_CH0 I2S0_TX_ BCLK LPI2C1_ HREQ C9 65 PTB19 TSI0_CH12 TSI0_CH12 PTB19 TPM2_CH1 I2S0_TX_FS LPSPI2_PCS1 FXIO0_D19 F10 66 PTB20 DISABLED PTB20 LPSPI2_PCS0 CMP0_OUT F9 67 PTB21 DISABLED PTB21 LPSPI2_SCK CMP1_OUT F8 68 PTB22 DISABLED PTB22 LPSPI2_ SOUT E8 69 PTB23 DISABLED PTB23 LPSPI2_SIN B9 70 PTC0 ADC0_SE14/ TSI0_CH13 ADC0_SE14/ TSI0_CH13 PTC0 LPSPI2_PCS1 D8 71 PTC1/ LLWU_P6 ADC0_SE15/ TSI0_CH14 ADC0_SE15/ TSI0_CH14 PTC1/ LLWU_P6 LPI2C1_SCL LPUART1_ RTS_b Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 TPM0_CH0 I2S0_RXD0 LPTMR0_ ALT1/ LPTMR1_ ALT1 TPM2_CLKIN USB_SOF_ OUT ALT7 CMP0_OUT FXIO0_D18 I2S0_TXD0 I2S0_TXD0 63 NXP Semiconductors Pinouts and Packaging 121 100 XFB LQFP GA Pin Name Default ALT0 ALT1 ALT2 ALT3 LPUART1_ CTS_b ALT4 C8 72 PTC2 ADC0_SE11/ CMP1_IN0/ TSI0_CH15 ADC0_SE11/ CMP1_IN0/ TSI0_CH15 PTC2 LPI2C1_SDA B8 73 PTC3/ LLWU_P7 CMP1_IN1 CMP1_IN1 PTC3/ LLWU_P7 LPSPI0_PCS1 LPUART1_RX TPM0_CH2 F7 74 VSS VSS VSS E7 75 VDD VDD VDD B11 — PTC22 DISABLED PTC22 LPSPI0_PCS3 C11 — PTC23 DISABLED PTC23 LPSPI0_PCS2 A8 76 PTC4/ LLWU_P8 DISABLED PTC4/ LLWU_P8 LPSPI0_PCS0 LPUART1_TX TPM0_CH3 D7 77 PTC5/ LLWU_P9 DISABLED PTC5/ LLWU_P9 LPSPI0_SCK C7 78 PTC6/ LLWU_P10 CMP0_IN0 CMP0_IN0 PTC6/ LLWU_P10 LPSPI0_ SOUT B7 79 PTC7 CMP0_IN1 CMP0_IN1 PTC7 LPSPI0_SIN A7 80 PTC8 CMP0_IN2 CMP0_IN2 PTC8 D6 81 PTC9 CMP0_IN3 CMP0_IN3 C6 82 PTC10 C5 83 B6 TPM0_CH1 ALT6 CLKOUT I2S0_TX_ BCLK I2S0_MCLK CMP1_OUT CMP0_OUT I2S0_RX_ BCLK I2S0_MCLK USB_SOF_ OUT I2S0_RX_FS FXIO0_D20 LPI2C0_SCL TPM0_CH4 I2S0_MCLK FXIO0_D21 PTC9 LPI2C0_SDA TPM0_CH5 I2S0_RX_ BCLK FXIO0_D22 DISABLED PTC10 LPI2C1_SCL I2S0_RX_FS FXIO0_D23 PTC11/ LLWU_P11 DISABLED PTC11/ LLWU_P11 LPI2C1_SDA I2S0_RXD0 84 PTC12 DISABLED PTC12 LPI2C1_SCLS TPM0_CLKIN A6 85 PTC13 DISABLED PTC13 LPI2C1_SDAS TPM1_CLKIN A5 86 PTC14 DISABLED PTC14 EMVSIM0_ CLK B5 87 PTC15 DISABLED PTC15 EMVSIM0_ RST A11 88 VSS VSS VSS — 89 VDD VDD VDD D5 90 PTC16 DISABLED PTC16 EMVSIM0_ VCCEN C4 91 PTC17 DISABLED PTC17 EMVSIM0_IO B4 92 PTC18 DISABLED PTC18 EMVSIM0_PD LPSPI0_PCS2 A4 — PTC19 DISABLED PTC19 LPSPI0_PCS1 D4 93 PTD0/ LLWU_P12 DISABLED PTD0/ LLWU_P12 LPSPI0_PCS0 LPUART2_ RTS_b TPM0_CH0 FXIO0_D0 D3 94 PTD1 ADC0_SE5b PTD1 LPSPI0_SCK LPUART2_ CTS_b TPM0_CH1 FXIO0_D1 C3 95 PTD2/ LLWU_P13 DISABLED PTD2/ LLWU_P13 LPSPI0_ SOUT LPUART2_RX TPM0_CH2 FXIO0_D2 64 NXP Semiconductors ALT7 I2S0_TX_FS I2S0_RXD0 ADC0_SE5b LPTMR0_ ALT2/ LPTMR1_ ALT2 ALT5 LPSPI0_PCS3 Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 Pinouts and Packaging 121 100 XFB LQFP GA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 LPUART2_TX TPM0_CH3 ALT6 B3 96 PTD3 DISABLED PTD3 LPSPI0_SIN A3 97 PTD4/ LLWU_P14 DISABLED PTD4/ LLWU_P14 LPSPI1_PCS0 LPUART2_RX TPM0_CH4 LPUART0_ RTS_b FXIO0_D4 A2 98 PTD5 ADC0_SE6b ADC0_SE6b PTD5 LPSPI1_SCK LPUART2_TX TPM0_CH5 LPUART0_ CTS_b FXIO0_D5 B2 99 PTD6/ LLWU_P15 ADC0_SE7b ADC0_SE7b PTD6/ LLWU_P15 LPSPI1_ SOUT LPUART0_RX FXIO0_D6 A1 100 PTD7 DISABLED PTD7 LPSPI1_SIN LPUART0_TX FXIO0_D7 A10 — PTD8/ LLWU_P24 DISABLED PTD8/ LLWU_P24 LPI2C0_SCL LPSPI1_PCS1 FXIO0_D24 A9 — PTD9 DISABLED PTD9 LPI2C0_SDA LPSPI2_PCS3 FXIO0_D25 ALT7 FXIO0_D3 B1 — PTD10 DISABLED PTD10 LPSPI2_PCS2 LPI2C0_SCLS FXIO0_D26 C2 — PTD11/ LLWU_P25 DISABLED PTD11/ LLWU_P25 LPSPI2_PCS0 LPI2C0_SDAS FXIO0_D27 C1 — PTD12 DISABLED PTD12 LPSPI2_SCK FXIO0_D28 D2 — PTD13 DISABLED PTD13 LPSPI2_ SOUT FXIO0_D29 D1 — PTD14 DISABLED PTD14 LPSPI2_SIN FXIO0_D30 E1 — PTD15 DISABLED PTD15 LPSPI2_PCS1 FXIO0_D31 J3 — NC NC NC H3 — NC NC NC K4 — NC NC NC L7 — NC NC NC 5.2 KL28Z Pinouts The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 65 NXP Semiconductors Pinouts and Packaging 1 2 3 4 5 6 7 8 9 10 11 A PTD7 PTD5 PTD4/ LLWU_P14 PTC19 PTC14 PTC13 PTC8 PTC4/ LLWU_P8 PTD9 PTD8/ LLWU_P24 VSS A B PTD10 PTD6/ LLWU_P15 PTD3 PTC18 PTC15 PTC12 PTC7 PTC3/ LLWU_P7 PTC0 PTB16 PTC22 B C PTD12 PTD11/ PTD2/ LLWU_P25 LLWU_P13 PTC17 PTC11/ LLWU_P11 PTC10 PTC6/ LLWU_P10 PTC2 PTB19 PTB11 PTC23 C D PTD14 PTD13 PTD1 PTD0/ LLWU_P12 PTC16 PTC9 PTC5/ LLWU_P9 PTC1/ LLWU_P6 PTB18 PTB10 PTB8 D E PTD15 PTE2/ LLWU_P1 PTE1/ LLWU_P0 PTE0 VDD VDD VDD PTB23 PTB17 PTB9 PTB7 E F USB0_DP USB0_DM PTE6/ LLWU_P16 PTE3 VDDA VSSA VSS PTB22 PTB21 PTB20 PTB6 F G VOUT33 VREGIN VSS PTE5 VREFH/ VREF_OUT VREFL VSS PTB3 PTB2 PTB1 PTB0/ LLWU_P5 G H PTE16 PTE17/ LLWU_P19 NC PTA7 PTE24 PTE26 PTE4/ LLWU_P2 PTA1 PTA3 PTA17 PTA29 H J PTE18/ LLWU_P20 PTE19 NC PTA0 PTA2 PTA16 PTA20 J K PTE20 PTE21 PTA6 NC PTE30 VDD PTA5 PTA12 PTA14 VSS PTA19 K L PTE22 PTE23 PTE29 PTE31 VSS VSS NC PTA13/ LLWU_P4 PTA15 VDD PTA18 L 1 2 3 4 5 6 7 8 9 10 11 PTA11/ PTE25/ LLWU_P23 LLWU_P21 PTA4/ PTA10/ LLWU_P3 LLWU_P22 Figure 26. 121 XFBGA Pinout Diagram 66 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 PTC16 VDD VSS PTC15 PTC14 PTC13 PTC12 PTC11/LLWU_P11 PTC10 PTC9 PTC8 89 88 87 86 85 84 83 82 81 80 PTC4/LLWU_P8 PTC17 90 PTC5/LLWU_P9 PTC18 91 76 PTD0/LLWU_P12 92 77 PTD1 93 PTC7 PTD2/LLWU_P13 94 PTC6/LLWU_P10 PTD3 96 95 78 PTD4/LLWU_P14 97 79 PTD5 98 PTD7 PTD6/LLWU_P15 100 99 Ordering parts PTE0 1 75 VDD PTE1/LLWU_P0 2 74 VSS PTE2/LLWU_P1 3 73 PTC3/LLWU_P7 PTE3 4 72 PTC2 PTE4/LLWU_P2 5 71 PTC1/LLWU_P6 PTE5 6 70 PTC0 PTE6/LLWU_P16 7 69 PTB23 VDD 8 68 PTB22 VSS 9 67 PTB21 PTB20 USB0_DP 10 66 USB0_DM 11 65 PTB19 VOUT33 12 64 PTB18 VREGIN 13 63 PTB17 PTE16 14 62 PTB16 PTE17/LLWU_P19 15 61 PTB11 PTE18/LLWU_P20 16 60 PTB10 PTE19 17 59 PTB9 PTE20 18 58 PTB8 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PTA2 PTA3 PTA4/LLWU_P3 PTA5 PTA6 PTA7 PTA12 PTA13/LLWU_P4 PTA14 PTA15 PTA16 PTA17 VDD VSS PTA18 PTA19 PTA1 PTA20 51 34 52 25 PTA0 24 VSSA 33 VREFL PTE26 PTB0/LLWU_P5 32 53 PTE25/LLWU_P21 23 31 VREFH/VREF_OUT 30 PTB1 VDD 54 PTE24 22 VSS PTB2 VDDA 29 55 28 21 PTE31 PTB3 PTE23 27 PTB7 56 26 57 PTE30 19 20 PTE29 PTE21 PTE22 Figure 27. 100 LQFP Pinout Diagram 6 Ordering parts Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 67 NXP Semiconductors Design considerations 6.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to nxp.com and perform a part number search for the following device numbers: PKL28Z and MKL28Z 7 Design considerations 7.1 Hardware design considerations This device contains protective circuitry to guard against damage due to high static voltage or electric fields. However, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. 7.1.1 Printed circuit board recommendations • Place connectors or cables on one edge of the board and do not place digital circuits between connectors. • Drivers and filters for I/O functions must be placed as close to the connectors as possible. Connect TVS devices at the connector to a good ground. Connect filter capacitors at the connector to a good ground. • Physically isolate analog circuits from digital circuits if possible. • Place input filter capacitors as close to the MCU as possible. • For best EMC performance, route signals as transmission lines; use a ground plane directly under LQFP/MAPBGA packages. 7.1.2 Power delivery system Consider the following items in the power delivery system: • Use a plane for ground. • Use a plane for MCU VDD supply if possible. • Always route ground first, as a plane or continuous surface, and never as sequential segments. • Route power next, as a plane or traces that are parallel to ground traces. • Place bulk capacitance, 10 μF or more, at the entrance of the power plane. • Place bypass capacitors for MCU power domain as close as possible to each VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL. 68 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 Design considerations • The minimum bypass requirement is to place 0.1 μF capacitors positioned as near as possible to the package supply pins. • The VREG_IN voltage range is 2.7 V to 5.5 V. Typically, 5.0V is applied here. If USB module is used, this pin must be powered to make the USB transceiver also powered. It is recommended to include a filter circuit with one bulk capacitor (no less than 2.2 μF) and one 0.1 μF capacitor to VREG_IN at this pin to improve USB performance. Total capacitors on VBUS should be less than 10 μF. • Take special care to minimize noise levels on the VREFH/VREFL inputs. An option is to use the internal reference voltage (output 1.2 V or 2.1 V typically) as the ADC reference. NOTE The internal reference voltage output (VREF_OUT) is bonded to the VREFH pin. When the VREF_OUT output is used, a 0.1 μF capacitor is required as a filter. Do not  connect any other supply voltage to the pin that has VREF_OUT activated.    7.1.3 Analog design Each ADC input must have an RC filter as shown in the following figure. The maximum value of R must be smaller than RAS max if high resolution is required. The value ofC must be chosen to ensure that the RC time constant is very small compared to the sample period. See AN4373: Cookbook for SAR ADC Measurements for how to select proper RC values. MCU 1 2 ADCx C 2 R 1 Input signal  Figure 28. RC circuit for ADC input  High voltage measurement circuits require voltage division, current limiting, and overvoltage protection as shown the following figure. The voltage divider formed by R1 – R4 must yield a voltage less than or equal to VREFH. Typically, VREFH is  connected to VDDA. The current must be limited to less than the negative injection current limit. Since the ADC pins do not have diodes to VDD, external clamp diodes must be included to protect against transient over-voltages. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 69 NXP Semiconductors 2 R C 2 Design considerations D ADCx 1 1 Analog input OSCILL EXTAL R2 1 2 R4 1 2 2 1 ADCx CRY 2 C 2 R3 R5 2 1 RF 1 1 1 High voltage input 2 1 MCU VDD 3 1 R1 BAT54SW Figure 29. High voltage measurement with an ADC input VDD 1 1 7.1.4 Digital design 10k VDD MCU VDD 10k Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V). SWD_DIO 1 2 C 3 5 7 9 2 J1 SWD_CLK 4 2 1 RESET_b 2 1 2 1 6 RESET_b CAUTION 8 RESET_b 10 0.1uF Do not provide power to I/O pins prior to VDD, especially the 0.1uF HDR_5X2 RESET_b pin. • High drive pins 2 10k 1 PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. When in high drive VDD mode, the Supervisor Chip MCU sink/source current for a high drive pin can reach 20 mA. However, the total current flowing into the MCU VDD must not exceed maximum limit of IDD. • Fast pins OUT 1 2 2 10k RESET_b 2 RS 1 PTE20, PTE21, PTE22, PTE23, PTD4, PTD5, PTD6, PTD7 can support fast slew 0.1uF rate of 0.5 ns and are used for high speed communications. It is set/cleared by PTx_PCRn[SRE]. Active high, open drain • Default I/O state B Most of digital pins are disabled (in high impedance state) after power up, so a pullup/down is needed to a determined level for some applications. Please refer to the Signal Multiplexing and Pin Assignments chapter to know the default IO state for a dedicate pin. • RESET_b pin 70 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 EXTAL 1 R4 2 1 1 CRYSTAL 2 1 1 2 2  1 ADCx RF The RESET_b1 pinR5is an open-drain I/O pin that has an internal pullup resistor. An1 Cx 2 ADCx 2 C2 external RC circuit is recommended to filter noise as shown in the following CRYSTAL figure. The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the BAT54SW 2 recommended capacitance Cvalue is 0.1 μF. The RESET_b pin also has a selectable digital filter to reject spurious noise. 3 1 2 R4 2 2 2 2 1 2 Design considerations 1  2 R5 3 1 2 1 RS 1 2 RF 2 MCU VDD 1 1 2 R2 BAT54SW  VDD 1 2 2 NMI_b 1 2 10k 2 10k SWD_DIO SWD_CLK 2 10k RESET_b RESET_b Figure 30. Reset circuit RESET_b 0.1uF When an external supervisor chipVDDis connected MCU to the RESET_b pin, a series Supervisor Chip 10k resistor must be used to avoid damaging the supervisor chip or the RESET_b pin, as shown in the following figure. The series resistor value (RS below) must be in 10k the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength. 1 The supervisor OUT chip must have2 an active high, open-drain output. RESET_b 1 2 HDR_5X2 2 Active high, open drain RS 0.1uF Supervisor Chip  MCU VDD 1  1  2  10k     • NMI pin  2 RS RESET_b 0.1uF 2 Active high, open drain 1 1 OUT 2  Figure 31. Reset signal connection to external reset chip  Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 71 NXP Semiconductors   VDD 1 0.1uF 10k 1 MCU 1 2 1 2 4 6 8 10 RESET_b 1 J1 VDD 1 1 3 5 7 9 10k RESET_b RESET_b  HDR_5X2 10k SWD_DIO SWD_CLK 2  VDD 2 4 6 8 10 2 J1 MCU VDD 1 10k 1 3 5 7 9 MCU VDD 1  2 R3 VDD XT 2 2 R1 1 MCU 2 RESONATOR 2 Design considerations OSCILLATOR 1 1 XTAL 1 OSCILLATOR OSCILLATOR EXTAL resistor XTAL Do not add a pull-down or capacitor onEXTAL the NMI_b XTAL pin, because aEXTAL low level on this pin will trigger non-maskable interrupt. When this2 pin is enabled as the NMI2 1 2 1 1 function, an external pull-up resistor (10 kΩ) as shownRFin the following figure isRF RF recommended for robustness. RS RS U RS 1 2 2 2 1 2 2 2 If the NMI_b pin is used1as an 2 I/O pin, use the following 1 2 two ways to disable1 NMI 3 function: CRYSTAL CRYSTAL Cx a. Define NMI interrupt handler in which NMI pin function isCyremapped to otherRESONATOR pin mux function b. Disable NMI function by programming flash configuration byte at 0x40d for FOPT, change FOPT[NMI_DIS] bit to zero. It will not take effect until next reset. MCU MCU VDD 1 1 VDD NMI_b 1 RESET_b 2 10k 2 10k 2 0.1uF • Debug interface Figure 32. NMI pin biasing MCU This MCU uses the standard ARM SWD interface protocol as shown in the following figure. While pull-up or pull-down resistors are not required (SWD_DIO has an internal pull-up and SWD_CLK has an internal pull-down), external 10 kΩ pull resistors are recommended for system robustness. The RESET_b pin RESET_b recommendations mentioned above must also be considered. 1 VDD 1 2 10k 0.1uF 2 2 Cy 2 Cx 72 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 1 2 C 2 2 2 1 1 R4 R3 BAT54SW Design considerations VDD 1 1 1 10k SWD_DIO SWD_CLK RESET_b RESET_b RESET_b 0.1uF 1 2 0.1uF 2 4 6 8 10 2 1 3 5 7 9 C 1 J1 2 10k VDD MCU VDD 2 HDR_5X2 10k 4 2 5 Figure 33. SWD debug interface • Low leakage stop mode wakeup MCU Supervisor Chip MCU 1 VDD 2 1 Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the10k 2 ADCx Analog input low leakage stop modes (LLS/VLLSx). See KL28 Signal1 Multiplexing and Pin R OUT 1 2 C Assignments chapter for pin selection. RS Active high, 2 1 RESET_b 0.1uF open drain D 2 • Unused pin Unused GPIO pins must be left floating (no electrical connections) withMCU the MUX R1 VDD field of the pin’s PORTx_PCRn register equal to 000. This disables the digital 1 2 input path to the MCU. B R2 R5 1 1 3 1 2 ADCx High voltage input If the USB module is not used,1 leave2 the USB data pins (USB0_DP, USB0_DM) R4 floating. 1 2 R3 C 2 2 1 2 • EMVSIM BAT54SW When using EMVSIM, a typical 4.7 KΩ pull up resistor should be added on the EMVSIM_IO pin. P3V3 1 EMVSIM HEADER JP1 EMVSIM_VCCEN EMVSIM_IO RESET_b RESET_b 0.1uF 2 EMVSIM_PD 2 EMVSIM_CLK EMVSIM_RST 10k 1 2 3 4 5 6 7 1 C PTC14 PTC15 PTC16 PTC17 PTC18 MCU VDD R103 4.7K A GND HDR TH 1X7 Figure 34. EMVSIM interface • Pull up resistor for getting correct power consumption result Supervisor Chip MCU 1 VDD Active high, open drain 1 2 73 4 NXP Semiconductors RS 1 OUT 0.1uF 2 5 2 10k Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 RESET_b Design considerations Connect the pull up resistor to VDD_MCU for the pins like RESET and NMI. For other pull up resistor, do not use VDD_MCU. 7.1.5 Crystal oscillator When using an external crystal or ceramic resonator as the frequency reference for the MCU clock system, refer to the following table and diagrams. The feedback resistor, RF, is incorporated internally with the low power oscillators. An external feedback is required when using high gain (HGO=1) mode. In harsh EMC environment, it is recommended to use high gain mode. For low frequency (32 to 40 kHz), switching between high gain and low power is not supported. The series resistor, RS, is used to limit current to external crystal or resonator to avoid overdrive, and is required in high gain (HGO=1) mode when the crystal or resonator frequency is below 2 MHz. The low power oscillator (HGO=0) must not have any series resistor RS. Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786kHz) mode. Use the SCxP bits in the SCG_SOSCCFG register to adjust the load capacitance for the crystal. Typically, values of 10 pf to 16 pF are sufficient for 32.768 kHz crystals that have a 12.5 pF CL specification. The internal load capacitor selection must not be used for high frequency crystals and resonators. See crystal or resonator manufacturer's recommendation for parameters about load capacitance and RF. Table 51. External crystal/resonator connections Oscillator mode Diagram Low frequency (32 kHz-40 kHz), low power Diagram 1 Low frequency (32 kHz-40 kHz), high gain Diagram 2, Diagram 4 High/Medium frequency (1-32 MHz), low power Diagram 3 High/Medium frequency (1-32MHz), high gain Diagram 4 4 OSCILLATOR EXTAL 2 CRYSTAL NXP Semiconductors 1 2 Cy Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 OSCILLATOR OSCILLATOR EXTAL MCU EXTAL 2 CRYSTAL Cx Figure 35. Crystal connection – Diagram 1 74 XTAL 1 1 1 ADCx EXTAL XTAL OSC 1 OSCILLATOR 2 MCU 3 1 XTAL 2 EXTAL 1 XTAL 2 OSC EXTAL 1 CRYSTAL CRYSTAL 2 ADCx Cy 2 Cx Design considerations OSCILLATOR OSCILLATOR 2 XTAL 1 2 1 1 MCU EXTAL XTAL RF 1 EXTAL RF Figure 36. Crystal connection – Diagram 2 4 3 Cx 2 CRYSTAL 2 1 Cx RESET_b 2 2 RF 2 1 1 CRYSTAL CRYSTAL 10k Cy 1 1 3 RF 2 2 RESONATOR RS NMI_b RS CRYSTAL MCU CRYSTAL 2 3 Cy RESONATOR MCU 1 Figure 38. Crystal connection – Diagram 4 2 10k 2 10k 1 2 Cx VDD 1 DD 2 2 1 1 1 2 0.1uF 2 2 2 1 2 1 RS 1 1 1 XTAL RS 2 b 2 2 RF 2 1 RF EXTAL 1 XTAL MCU OSCILLATOR 2 RS 2 2 1 10k RESONATOR 1 RF EXTAL 2 RS 1 RESONATOR 2 RF XTAL 3 XTAL 2 EXTAL VDDEXTAL XTAL OSCILLATOR 1 2 1 1 1 EXTAL 2 OSCILLATOR Cy Cy 1 XTAL MCU EXTAL 3 Figure 37. Crystal connection – Diagram 3 OSCILLATOR OSCILLATOR OSCILLATOR VDD 1 2 2 Cx 1 CRYSTAL XTAL XTAL 2 1 CRYSTAL 21 1 EXTAL EXTAL 2 2 CRYSTAL OSCILLATOR XTAL XTAL EXTAL 2 1 2 EXTAL Cy 1 XTAL 1 XTAL EXTAL 2 OSCILLATOR OSCILLATOR 1 EXTAL 1 OSCILLATOR OSCILLATOR 1 OSCILLATOR CRYSTAL 2 Cx 2 CRYSTAL 3 2 1 1 1 2 2 1 ADCx RS 2 RS NMI_b 1 RESET_b 0.1uF 7.2 Software considerations MCU MCU 2 RS 2 1 10k 2 1 2 1 DD 2 0.1uF NMI_b Evaluation and Prototyping Hardware RESET_b 1 2 VDD All Kinetis MCUs are supported by comprehensive NXP and third-party hardware and software enablement solutions, which can reduce development costs and time to 10k 10k market. Featured software and tools are listed below. Visit http://www.nxp.com/ MCU kinetis/sw forRESET_b more information and supporting collateral. 1 2 VDD 0.1uF Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 75 NXP Semiconductors Part identification • NXP Freedom Development Platform: http://www.nxp.com/freedom • Tower System Development Platform: http://www.nxp.com/tower IDEs for Kinetis MCUs • Kinetis Design Studio IDE: http://www.nxp.com/kds • Partner IDEs: http://www.nxp.com/kide Development Tools • PEG Graphics Software: http://www.nxp.com/peg • Processor Expert Software and Embedded Components: http://www.nxp.com/ processorexpert ) Run-time Software • • • • Kinetis SDK: http://www.nxp.com/ksdk Kinetis Bootloader: http://www.nxp.com/kboot ARM mbed Development Platform: http://www.nxp.com/mbed MQX RTOS: http://www.nxp.com/mqx For all other partner-developed software and tools, visit http://www.nxp.com/partners. 8 Part identification 8.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 8.2 Format Part numbers for this device have the following format: Q KL## A FFF R T PP CC N 76 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 Terminology and guidelines 8.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Table 52. Part number fields descriptions Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification KL## Kinetis family • KL28 A Key attribute FFF Program flash memory size • 256 = 256 KB • 512 = 512 KB R Silicon revision • (Blank) = Main • A = Revision after main T Temperature range (°C) • V = –40 to 105 PP Package identifier • LL = 100 LQFP (14 mm x 14 mm) • DC = 121XFBGA (8mm x 8mm) CC Maximum CPU frequency (MHz) • 7 = 72 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 8.4 Example This is an example part number: MKL28Z512VDC7 MKL28Z512VLL7 9 Terminology and guidelines 9.1 Definitions Key terms are defined in the following table: Term Rating Definition A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: Table continues on the next page... Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 77 NXP Semiconductors Terminology and guidelines Term Definition • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip Operating behavior A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions Typical value A specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed. 9.2 Examples EX AM PL E Operating rating: EX AM PL E Operating requirement: EX AM PL E Operating behavior that includes a typical value: 78 NXP Semiconductors Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 Terminology and guidelines 9.3 Typical-value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD Supply voltage 3.3 V 9.4 Relationship between ratings and operating requirements .) ) era Op g tin ng ) in. (m i rat in. (m g tin era Op t en rem ax (m .) ui req g tin era Op ng i rat ax (m Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) g lin nd Ha in rat n.) mi g( –∞ g tin era Op m e uir req t en g( ng li nd Ha in rat .) x ma Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure ∞ Handling (power off) 9.5 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 79 NXP Semiconductors Revision History 10 Revision History The following table provides a revision history for this document. Table 53. Revision History Rev. No. Date 0 08/2015 1 10/2015 • Removed "Ready Play module (RPM)" from the features list • Added "96 MHz high speed mode" to the features list under "Core" • Updated the values in the following sections: • Voltage and current operating requirements • Power mode transition operating behaviors • EMC radiated emissions operating behaviors • General switching specifications • Oscillator frequency specifications • 16-bit ADC operating conditions • LPSPI switching specifications • LPI2C specifications • Created new table for topic "Power consumption operating behaviors" • Updated the pinouts • Updated the "Terminology and guidelines" section to a new format 2 04/2016 • Removed 64-pin package information and marked 121-pin package information as "Package Your Way" • Updated the values in Power mode transition operating behaviors • Updated values and resolved TBDs in Power consumption operating behaviors • In section Diagram: Typical IDD_RUN operating behavior : • Added "For the ALLON curve, all peripheral clocks are enabled as specified in notes of Table 9." • Updated figures • Updated table in Slow IRC (SIRC) specifications • Removed section "Specification Test Methods" • In table VREF full-range operating behaviors, removed the user trim values and updated the factory trim values 2.1 06/2016 • In table Table 10 Low power mode peripheral adders — typical value, removed IUSB_Alive 80 NXP Semiconductors Substantial Changes Initial release Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 2.1, 06/2016 How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customerʼs technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2015 - 2016 NXP B.V. Document Number MKL28Z512Vxx7 Revision 2.1, 06/2016
MKL28Z512VLL7 价格&库存

很抱歉,暂时无法提供与“MKL28Z512VLL7”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MKL28Z512VLL7
    •  国内价格
    • 1+66.10748
    • 10+60.56116

    库存:900