0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MKL43Z128VLH4

MKL43Z128VLH4

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LQFP64_10X10MM

  • 描述:

    IC MCU 32BIT 128KB FLASH 64LQFP

  • 数据手册
  • 价格&库存
MKL43Z128VLH4 数据手册
Freescale Semiconductor, Inc. Data Sheet: Technical Data KL43P64M48SF6 Rev. 5, 08/2015 Kinetis KL43 Microcontroller MKL43Z256Vxx4(R) MKL43Z128Vxx4(R) 48 MHz ARM® Cortex®-M0+ and 128/256 KB Flash The KL43 series is optimized for cost-sensitive and batterypowered applications requiring low-power USB connectivity and segment LCD. The product offers: • Low power segment LCD up to 24x8 or 28x4 • USB FS 2.0 device without requiring an external crystal • Embedded ROM with boot loader for flexible program upgrade • High accuracy internal voltage and clock reference • FlexIO to support any standard and customized serial peripheral emulation • Down to 54uA/MHz in very low power run mode and 1.96uA in deep sleep mode (RAM + RTC retained) Core Processor • ARM® Cortex®-M0+ core up to 48 MHz Memories • 128/256 KB program flash memory • 16/32 KB SRAM • 16 KB ROM with build-in bootloader • 32-byte backup register System • 4-channel asynchronous DMA controller • Watchdog • Low-leakage wakeup unit • Two-pin Serial Wire Debug (SWD) programming and debug interface • Micro Trace Buffer • Bit manipulation engine • Interrupt controller Clocks • 48MHz high accuracy (up to 0.5%) internal reference clock • 8MHz/2MHz high accuracy (up to 3%) internal reference clock • 1KHz reference clock active under all low-power modes (except VLLS0) • 32–40KHz and 3–32MHz crystal oscillator 64 LQFP 10x10 mm P 0.5 mm 64 BGA 5x5 mm P 0.5 mm Peripherals • Segment LCD supporting up to 24x8 or 28x4 segments • USB full-speed 2.0 device controller supporting crystal-less operation • One UART module supporting ISO7816, operating up to 1.5 Mbit/s • Two low-power UART modules supporting asynchronous operation in low-power modes • Two I2C modules and I2C0 supporting up to 1 Mbit/s • Two 16-bit SPI modules supporting up to 24 Mbit/s • One FlexIO module supporting emulation of additional UART, SPI, I2C, I2S, PWM and other serial modules, etc. • One serial audio interface I2S • One 16-bit 818 ksps ADC module with high accuracy internal voltage reference (Vref) and up to 16 channels • High-speed analog comparator containing a 6-bit DAC for programmable reference input • One 12-bit DAC • 1.2 V internal voltage reference Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2012–2015 Freescale Semiconductor, Inc. All rights reserved. Operating Characteristics • Voltage range: 1.71 to 3.6 V • Flash write voltage range: 1.71 to 3.6 V • Temperature range: –40 to 105 °C Timers • One 6-channel Timer/PWM module • Two 2-channel Timer/PWM modules • One low-power timer • Periodic interrupt timer • Real time clock Packages • 64 LQFP 10mm x 10mm, 0.5mm pitch, 1.6mm thickness • 64 MAPBGA 5mm x 5mm, 0.5mm pitch, 1.23mm thickness Security and Integrity • 80-bit unique identification number per chip • Advanced flash security Low Power I/O • Down to 54uA/MHz in very low power run mode • Up to 50 general-purpose input/output pins (GPIO) • Down to 1.96uA in VLLS3 mode (RAM + RTC retained) and 6 high-drive pad • Six flexible static modes Ordering Information Product Memory Package IO and ADC channel Part number Marking (Line1/ Line2) Flash (KB) SRAM (KB) Pin count Package GPIOs GPIOs (INT/HD)1 ADC channels (SE/DP) MKL43Z128VLH4 MKL43Z128V//LH4 128 16 64 LQFP 50 31/6 16/2 MKL43Z256VLH4 MKL43Z256V//LH4 256 32 64 LQFP 50 31/6 16/2 MKL43Z128VMP4 M43P7V 128 16 64 MAPBGA 50 31/6 16/2 MKL43Z256VMP4 M43P8V 256 32 64 MAPBGA 50 31/6 16/2 1. INT: interrupt pin numbers; HD: high drive pin numbers Related Resources Type Description Resource Selector Guide The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector. Solution Advisor Product Brief The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability. KLX3PB1 Reference Manual The Reference Manual contains a comprehensive description of the structure and function (operation) of a device. KL43P64M48SF6RM1 Data Sheet The Data Sheet includes electrical characteristics and signal connections. This document. Chip Errata The chip mask set Errata provides additional or corrective information for KINETIS_L_1N71K1 a particular device mask set. Package drawing Package dimensions are provided in package drawings. 64-LQFP: 98ASS23234W1 64 MAPBGA: 98ASA00420D1 1. To find the associated resource, go to http://www.freescale.com and perform a search using this term. 2 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Table of Contents 1 Ratings.................................................................................. 4 1.1 Thermal handling ratings............................................... 4 1.2 Moisture handling ratings...............................................4 1.3 ESD handling ratings..................................................... 4 1.4 Voltage and current operating ratings............................4 2 General................................................................................. 5 2.1 AC electrical characteristics...........................................5 2.2 Nonswitching electrical specifications............................6 2.2.1 Voltage and current operating requirements......6 2.2.2 LVD and POR operating requirements.............. 6 2.2.3 Voltage and current operating behaviors........... 7 2.2.4 Power mode transition operating behaviors.......8 2.2.5 Power consumption operating behaviors...........9 2.2.6 EMC radiated emissions operating behaviors... 19 2.2.7 Designing with radiated emissions in mind........ 20 2.2.8 Capacitance attributes....................................... 20 2.3 Switching specifications................................................. 20 2.3.1 Device clock specifications................................ 20 2.3.2 General switching specifications........................21 2.4 Thermal specifications................................................... 21 2.4.1 Thermal operating requirements........................21 2.4.2 Thermal attributes.............................................. 22 3 Peripheral operating requirements and behaviors................ 22 3.1 Core modules................................................................ 22 3.1.1 SWD electricals .................................................23 3.2 System modules............................................................ 24 3.3 Clock modules............................................................... 24 3.3.1 MCG-Lite specifications..................................... 24 3.3.2 Oscillator electrical specifications...................... 26 3.4 Memories and memory interfaces................................. 28 3.4.1 Flash electrical specifications............................ 28 3.5 Security and integrity modules.......................................30 3.6 Analog............................................................................30 3.6.1 ADC electrical specifications..............................30 Kinetis KL43 Microcontroller, Rev.5, 08/2015. 4 5 6 7 8 9 3.6.2 Voltage reference electrical specifications.........35 3.6.3 CMP and 6-bit DAC electrical specifications......36 3.6.4 12-bit DAC electrical characteristics.................. 38 3.7 Timers............................................................................ 41 3.8 Communication interfaces............................................. 41 3.8.1 USB electrical specifications..............................41 3.8.2 USB VREG electrical specifications...................42 3.8.3 SPI switching specifications...............................42 3.8.4 I2C..................................................................... 47 3.8.5 UART................................................................. 49 3.8.6 I2S/SAI switching specifications........................ 49 3.9 Human-machine interfaces (HMI).................................. 53 3.9.1 LCD electrical characteristics.............................53 Dimensions........................................................................... 55 4.1 Obtaining package dimensions......................................55 Pinouts and Packaging......................................................... 55 5.1 KL43 Signal Multiplexing and Pin Assignments.............55 5.2 KL43 Family Pinouts...................................................... 58 Ordering parts....................................................................... 60 6.1 Determining valid orderable parts.................................. 60 Part identification...................................................................60 7.1 Description..................................................................... 60 7.2 Format........................................................................... 61 7.3 Fields............................................................................. 61 7.4 Example......................................................................... 61 Terminology and guidelines.................................................. 62 8.1 Definitions...................................................................... 62 8.2 Examples....................................................................... 62 8.3 Typical-value conditions................................................ 63 8.4 Relationship between ratings and operating requirements.................................................................. 63 8.5 Guidelines for ratings and operating requirements........ 64 Revision History.................................................................... 64 3 Freescale Semiconductor, Inc. Ratings 1 Ratings 1.1 Thermal handling ratings Table 1. Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.2 Moisture handling ratings Table 2. Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 1.3 ESD handling ratings Table 3. ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model –2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model –500 +500 V 2 Latch-up current at ambient temperature of 105 °C –100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 4 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. General 1.4 Voltage and current operating ratings Table 4. Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 120 mA VIO IO pin input voltage –0.3 VDD + 0.3 V Instantaneous maximum current single pin limit (applies to all port pins) –25 25 mA ID VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V VUSB_DP USB_DP input voltage –0.3 3.63 V VUSB_DM USB_DM input voltage –0.3 3.63 V USB regulator input –0.3 6.0 V VREGIN 2 General 2.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. Low VIH Input Signal High 80% 50% 20% Midpoint1 VIL Fall Time Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 1. Input signal measurement reference All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics. • CL=30 pF loads • Slew rate disabled • Normal drive strength Kinetis KL43 Microcontroller, Rev.5, 08/2015. 5 Freescale Semiconductor, Inc. General 2.2 Nonswitching electrical specifications 2.2.1 Voltage and current operating requirements Table 5. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V -3 — mA -25 — mA VIH VIL Input high voltage Input low voltage VHYS Input hysteresis IICIO IO pin negative DC injection current — single pin 1 • VIN < VSS-0.3V IICcont Notes Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins • Negative current injection VODPU Open drain pullup voltage level VDD VDD V VRAM VDD voltage required to retain RAM 1.2 — V 2 1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|. 2. Open drain outputs must be pulled to VDD. 2.2.2 LVD and POR operating requirements Table 6. VDD supply LVD and POR operating requirements Symbol VPOR Description Min. Typ. Max. Unit Notes Falling VDD POR detect voltage 0.8 1.1 1.5 V — Table continues on the next page... 6 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. General Table 6. VDD supply LVD and POR operating requirements (continued) Symbol VLVDH Description Min. Typ. Max. Unit Notes Falling low-voltage detect threshold — high range (LVDV = 01) 2.48 2.56 2.64 V — Low-voltage warning thresholds — high range VLVW1H • Level 1 falling (LVWV = 00) VLVW2H • Level 2 falling (LVWV = 01) VLVW3H • Level 3 falling (LVWV = 10) VLVW4H • Level 4 falling (LVWV = 11) VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) 1 2.62 2.70 2.78 V 2.72 2.80 2.88 V 2.82 2.90 2.98 V 2.92 3.00 3.08 V — ±60 — mV — 1.54 1.60 1.66 V — Low-voltage warning thresholds — low range VLVW1L • Level 1 falling (LVWV = 00) VLVW2L • Level 2 falling (LVWV = 01) VLVW3L • Level 3 falling (LVWV = 10) VLVW4L • Level 4 falling (LVWV = 11) VHYSL Low-voltage inhibit reset/recover hysteresis — low range 1 1.74 1.80 1.86 V 1.84 1.90 1.96 V 1.94 2.00 2.06 V 2.04 2.10 2.16 V — ±40 — mV — VBG Bandgap voltage reference 0.97 1.00 1.03 V — tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs — 1. Rising thresholds are falling threshold + hysteresis voltage 2.2.3 Voltage and current operating behaviors Table 7. Voltage and current operating behaviors Symbol VOH VOH Description Min. Max. Unit Output high voltage — normal drive pad 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = –1.5 mA VDD – 0.5 — V Output high voltage — high drive pad 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOH = –18 mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = –6 mA VDD – 0.5 — V — 100 mA — 0.5 V IOHT Output high current total for all ports VOL Output low voltage — normal drive pad Notes 1 Table continues on the next page... Kinetis KL43 Microcontroller, Rev.5, 08/2015. 7 Freescale Semiconductor, Inc. General Table 7. Voltage and current operating behaviors (continued) Symbol Description • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA VOL IOLT Min. Max. Unit — 0.5 V Notes Output low voltage — high drive pad 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 18 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 6 mA — 0.5 V Output low current total for all ports — 100 mA IIN Input leakage current (per pin) for full temperature range — 1 μA 2 IIN Input leakage current (per pin) at 25 °C — 0.025 μA 2 IIN Input leakage current (total all pins) for full temperature range — 64 μA 2 IOZ Hi-Z (off-state) leakage current (per pin) — 1 μA RPU Internal pullup resistors 20 50 kΩ 3 1. PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. 2. Measured at VDD = 3.6 V 3. Measured at VDD supply voltage = VDD min and Vinput = VSS 2.2.4 Power mode transition operating behaviors All specifications except tPOR and VLLSx→RUN recovery times in the following table assume this clock configuration: • CPU and system clocks = 48 MHz • Bus and flash clock = 24 MHz • HIRC clock mode Table 8. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip. Min. Typ. Max. Unit Notes — — 300 μs 1 — 152 166 μs — 152 166 μs — 93 104 μs • VLLS0 → RUN • VLLS1 → RUN • VLLS3 → RUN Table continues on the next page... 8 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. General Table 8. Power mode transition operating behaviors (continued) Symbol Description Min. Typ. Max. Unit — 7.5 8 μs — 7.5 8 μs — 7.5 8 μs Notes • LLS → RUN • VLPS → RUN • STOP → RUN 1. Normal boot (FTFA_FOPT[LPBOOT]=11) 2.2.5 Power consumption operating behaviors The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma). NOTE The while (1) test is executed with flash cache enabled. Table 9. Power consumption operating behaviors Symbol IDDA Description Analog supply current IDD_RUNCO Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUNCO Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, VDD = 3.0 V Min. Typ. Max. Unit Notes — — See note mA 1 2 — 5.76 6.40 — 6.04 6.68 — 3.21 3.85 — 3.49 4.13 mA mA 2 — 6.45 7.09 — 6.75 7.39 mA 2 — 3.95 4.59 — 4.23 4.87 mA Table continues on the next page... Kinetis KL43 Microcontroller, Rev.5, 08/2015. 9 Freescale Semiconductor, Inc. General Table 9. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit Notes • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, VDD = 3.0 V • at 25 °C • at 105 °C IDD_RUN Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, VDD = 3.0 V 2 — 2.68 3.32 — 2.96 3.60 mA 2 — 8.08 8.72 — 8.39 9.03 — 3.90 4.54 — 4.21 4.85 — 2.66 3.30 — 2.94 3.58 — 2.03 2.67 — 2.31 2.95 — 5.52 6.16 — 5.83 6.47 — 5.29 5.93 — 5.56 6.20 — 6.91 7.55 — 7.19 7.91 mA mA mA mA mA mA mA Table continues on the next page... 10 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. General Table 9. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit IDD_VLPRC Very Low Power Run Core Mark in Flash in Compute Operation mode: Core@4MHz, Flash O @1MHz, VDD = 3.0 V • at 25 °C — 826 907 μA IDD_VLPRC Very-low-power-run While(1) loop in SRAM in compute operation mode— 8 MHz LIRC mode, 4 O MHz core / 1 MHz flash, VDD = 3.0 V • at 25 °C — 405 486 μA IDD_VLPRC Very-low-power run While(1) loop in SRAM in compute operation mode:—2 MHz LIRC mode, 2 O MHz core / 0.5 MHz flash, VDD = 3.0 V • at 25 °C — 154 235 μA — 108 189 μA — 39 120 μA Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 4 MHz core / 1 MHz flash, VDD = 3.0 V • at 25 °C — 249 330 μA Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock enable, 4 MHz core / 1 MHz flash, VDD = 3.0 V • at 25 °C — 337 418 μA — 416 497 μA — 494 575 μA — 166 247 μA Notes • at 25 °C • at 105 °C IDD_VLPR IDD_VLPR IDD_VLPR IDD_VLPR IDD_VLPR IDD_VLPR IDD_VLPR IDD_VLPR Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 2 MHz core / 0.5 MHz flash, VDD = 3.0 V • at 25 °C Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 125 kHz core / 31.25 kHz flash, VDD = 3.0 V • at 25 °C Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 4 MHz core / 1 MHz flash, VDD = 3.0 V • at 25 °C Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 4 MHz core / 1 MHz flash, VDD = 3.0 V • at 25 °C Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 2 MHz core / 0.5 MHz flash, VDD = 3.0 V • at 25 °C Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock Table continues on the next page... Kinetis KL43 Microcontroller, Rev.5, 08/2015. 11 Freescale Semiconductor, Inc. General Table 9. Power consumption operating behaviors (continued) Symbol Description Min. Typ. Max. Unit — 50 131 μA Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 2 MHz core / 0.5 MHz flash, VDD = 3.0 V • at 25 °C — 208 289 μA Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, VDD = 3.0 V — 1.81 1.89 mA Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, VDD = 3.0 V — 1.22 1.39 mA IDD_VLPW Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, VDD = 3.0 V — 172 182 μA IDD_VLPW Very-low-power wait mode current, core disabled, 2 MHz system/ 0.5 MHz bus and flash, all peripheral clocks disabled, VDD = 3.0 V — 69 76 μA IDD_VLPW Very-low-power wait mode current, core disabled, 125 kHz system/ 31.25 kHz bus and flash, all peripheral clocks disabled, VDD = 3.0 V — 36 40 μA — 1.81 2.06 mA — 1.00 1.25 mA — 161.93 171.82 — 181.45 191.96 — 236.29 271.17 — 390.33 465.58 — 3.31 5.14 — 10.43 17.68 — 34.14 61.06 — 104.38 164.44 — 3.21 5.22 disable, 125 kHz core / 31.25 kHz flash, VDD = 3.0 V • at 25 °C IDD_VLPR IDD_WAIT IDD_WAIT Notes IDD_PSTOP2 Partial Stop 2, core and system clock disabled, 12 MHz bus and flash, VDD = 3.0 V IDD_PSTOP2 Partial Stop 2, core and system clock disabled, flash doze enabled, 12 MHz bus, VDD = 3.0 V IDD_STOP Stop mode current at 3.0 V • at 25 °C and below • at 50 °C • at 85 °C • at 105 °C IDD_VLPS Very-low-power stop mode current at 3.0 V • at 25 °C and below • at 50 °C • at 85 °C • at 105 °C IDD_VLPS Very-low-power stop mode current at 1.8 V • at 25 °C and below μA μA Table continues on the next page... 12 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. General Table 9. Power consumption operating behaviors (continued) Symbol IDD_LLS Description Min. Typ. Max. • at 50 °C — 10.26 17.62 • at 85 °C — 33.49 60.19 • at 105 °C — 102.92 162.20 — 2.06 3.33 — 4.72 6.85 — 8.13 13.30 — 13.34 24.70 — 41.08 52.43 — 2.46 3.73 — 5.12 7.25 — 8.53 11.78 — 13.74 18.91 — 41.48 52.83 Low-leakage stop mode current, all peripheral disable, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_LLS Low-leakage stop mode current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_LLS Low-leakage stop mode current with RTC current, at 1.8 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS3 Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC current, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C Unit Notes μA μA μA 3 — 2.35 2.70 — 4.91 6.75 — 8.32 11.78 — 13.44 18.21 — 40.47 51.85 — 1.45 1.85 — 3.37 4.39 — 5.76 8.48 — 9.72 14.30 — 30.41 37.50 μA μA 3 — 2.05 2.45 — 3.97 4.99 — 6.36 9.08 — 10.32 14.73 — 31.01 38.10 μA Table continues on the next page... Kinetis KL43 Microcontroller, Rev.5, 08/2015. 13 Freescale Semiconductor, Inc. General Table 9. Power consumption operating behaviors (continued) Symbol Description IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC current, at 1.8 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C IDD_VLLS1 Very-low-leakage stop mode 1 current all peripheral disabled at 3.0 V • at 25 °C and below • at 50°C • at 70°C • at 85°C • at 105 °C IDD_VLLS1 Very-low-leakage stop mode 1 current RTC enabled at 3.0 V • at 25 °C and below • at 50°C • at 70°C • at 85°C • at 105 °C IDD_VLLS1 Very-low-leakage stop mode 1 current RTC enabled at 1.8 V • at 25 °C and below Min. Typ. Max. — 1.96 2.36 — 3.86 5.67 — 6.23 8.53 — 10.21 13.37 — 30.25 37.02 — 0.66 0.80 — 1.78 3.87 — 2.55 4.26 — 4.83 6.64 — 16.42 20.49 — 1.26 1.40 — 2.38 4.47 — 3.15 4.86 — 5.43 7.24 — 17.02 21.09 — 1.96 2.28 — 2.78 3.37 — 4.85 6.88 — 15.78 18.81 — 0.35 0.47 • at 50 °C — 1.25 1.44 • at 70 °C — 2.53 3.24 • at 85 °C — 4.40 5.24 • at 105 °C — 16.09 19.29 • at 105 °C IDD_VLLS0 Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO] = 0) at 3.0 V • at 25 °C and below μA μA 3 1.30 • at 85°C μA 3 1.16 • at 70°C Notes 3 — • at 50°C Unit μA μA IDD_VLLS0 Very-low-leakage stop mode 0 current all peripheral disabled (SMC_STOPCTRL[PORPO] = 1) at 3 V 14 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. General Table 9. Power consumption operating behaviors Symbol Description Min. Typ. Max. • at 25 °C and below — 0.18 0.28 • at 50 °C — 1.09 1.31 • at 70 °C — 2.25 2.94 • at 85 °C — 4.25 5.10 • at 105 °C — 15.95 19.10 Unit Notes μA 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high, optimized for balanced. 3. RTC uses external 32 kHz crystal as clock source, and the current includes ERCLK32K power consumption. Table 10. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 IIRC8MHz 8 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 8 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b. 93 93 93 93 93 93 µA IIRC2MHz 2 MHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 2 MHz IRC enabled, MCG_SC[FCRDIV]=000b, MCG_MC[LIRC_DIV2]=000b. 29 29 29 29 29 29 µA IEREFSTEN4MHz External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled. 206 224 230 238 245 253 µA IEREFSTEN32KHz External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled. • VLLS1 440 490 540 560 570 580 440 490 540 560 570 580 490 490 540 560 570 680 510 560 560 560 610 680 510 560 560 560 610 680 30 30 30 85 100 200 • VLLS3 • LLS • VLPS • STOP ILPTMR nA LPTMR peripheral adder measured by placing the device in VLLS1 mode with LPTMR enabled using LPO. Table continues on the next page... Kinetis KL43 Microcontroller, Rev.5, 08/2015. 15 Freescale Semiconductor, Inc. General Table 10. Low power mode peripheral adders — typical value (continued) Symbol Description Temperature (°C) -40 25 50 70 Unit 85 105 nA ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. IUART UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. • IRC8M (8 MHz internal reference clock) • IRC2M (2 MHz internal reference clock) ITPM TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. • IRC8M (8 MHz internal reference clock) • IRC2M (2 MHz internal reference clock) 22 22 22 22 22 22 µA 114 114 114 114 114 114 µA 34 34 34 34 34 34 147 147 147 147 147 147 42 42 42 42 42 42 µA IBG Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode. 45 45 45 45 45 45 µA IADC ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions. 330 330 330 330 330 330 µA ILCD LCD peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the OSC0_CR[EREFSTEN, EREFSTEN] bits. VIREG disabled, resistor bias network enabled, 1/8 duty cycle, 8 x 36 configuration for driving 288 Segments, 32 Hz frame rate, no LCD glass connected. Includes ERCLK32K (32 kHz external crystal) power consumption. 4.5 4.5 4.5 4.5 4.5 4.5 µA 16 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. General 2.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • • • • • MCG-Lite in HIRC for run mode, and LIRC for VLPR mode USB regulator disabled No GPIOs toggled Code execution from flash For the ALLOFF curve, all peripheral clocks are disabled except FTFA Figure 2. Run mode supply current vs. core frequency Kinetis KL43 Microcontroller, Rev.5, 08/2015. 17 Freescale Semiconductor, Inc. General 18 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Current ionon onVDD VDD (A) CurrentC Consumpt onsumption (A) General Figure 3. VLPR mode current vs. core frequency 2.2.6 EMC radiated emissions operating behaviors Table 11. EMC radiated emissions operating behaviors for 64-pin LQFP package Symbol Description Frequency band (MHz) Typ. Unit Notes 1, 2 VRE1 Radiated emissions voltage, band 1 0.15–50 11 dBμV VRE2 Radiated emissions voltage, band 2 50–150 12 dBμV VRE3 Radiated emissions voltage, band 3 150–500 10 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 6 dBμV IEC level 0.15–1000 N — VRE_IEC 2, 3 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Kinetis KL43 Microcontroller, Rev.5, 08/2015. 19 Freescale Semiconductor, Inc. General Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. VDD = 3.3 V, TA = 25 °C, fOSC = IRC48M, fSYS = 48 MHz, fBUS = 24 MHz 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method 2.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 2.2.8 Capacitance attributes Table 12. Capacitance attributes Symbol CIN Description Input capacitance Min. Max. Unit — 7 pF Min. Max. Unit — 48 MHz 2.3 Switching specifications 2.3.1 Device clock specifications Table 13. Device clock specifications Symbol Description Normal run mode fSYS fBUS fFLASH fSYS_USB fLPTMR System and core Bus clock1 clock1 — 24 MHz Flash clock1 — 24 MHz System and core clock when Full Speed USB in operation 20 — MHz LPTMR clock — 24 MHz VLPR and VLPS modes2 fSYS System and core clock — 4 MHz fBUS Bus clock — 1 MHz Flash clock — 1 MHz — 24 MHz fFLASH fLPTMR LPTMR clock3 Table continues on the next page... 20 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. General Table 13. Device clock specifications (continued) Symbol Description Min. Max. Unit — 16 MHz Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) — 16 MHz TPM asynchronous clock — 8 MHz LPUART0/1 asynchronous clock — 8 MHz fLPTMR_ERCLK LPTMR external reference clock fosc_hi_2 fTPM fLPUART0/1 1. The maximum value of system clock, core clock, bus clock, and flash clock under normal run mode can be 3% higher than the specified maximum frequency when IRC 48MHz is used as the clock source. 2. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR. 3. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin. 2.3.2 General switching specifications These general-purpose specifications apply to all signals configured for GPIO and UART signals. Table 14. General switching specifications Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1 External RESET and NMI pin interrupt pulse width — Asynchronous path 100 — ns 2 GPIO pin interrupt pulse width — Asynchronous path 16 — ns 2 Port rise and fall time — 36 ns 3 1. The synchronous and asynchronous timing must be met. 2. This is the shortest pulse that is guaranteed to be recognized. 3. 75 pF load 2.4 Thermal specifications 2.4.1 Thermal operating requirements Table 15. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C Kinetis KL43 Microcontroller, Rev.5, 08/2015. Notes 1 21 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to determine TJ is: TJ = TA + RθJA × chip power dissipation. 2.4.2 Thermal attributes Table 16. Thermal attributes Board type Symbol Single-layer (1S) RθJA Four-layer (2s2p) Description 64 LQFP 64 MAPBGA Unit Notes Thermal resistance, junction to ambient (natural convection) 70 50.3 °C/W 1 RθJA Thermal resistance, junction to ambient (natural convection) 51 42.9 °C/W Single-layer (1S) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 58 41.4 °C/W Four-layer (2s2p) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 45 38.0 °C/W — RθJB Thermal resistance, junction to board 33 39.6 °C/W 2 — RθJC Thermal resistance, junction to case 20 27.3 °C/W 3 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) 4 0.4 °C/W 4 — ΨJB Thermal characterization parameter, junction to package bottom (natural convection) - 12.6 °C/W 5 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air). 5. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB. 3 Peripheral operating requirements and behaviors 3.1 Core modules 22 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Peripheral operating requirements and behaviors 3.1.1 SWD electricals Table 17. SWD full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V 0 25 MHz 1/J1 — ns 20 — ns SWD_CLK frequency of operation • Serial wire debug J2 SWD_CLK cycle period J3 SWD_CLK clock pulse width • Serial wire debug J4 SWD_CLK rise and fall times — 3 ns J9 SWD_DIO input data setup time to SWD_CLK rise 10 — ns J10 SWD_DIO input data hold time after SWD_CLK rise 0 — ns J11 SWD_CLK high to SWD_DIO data valid — 32 ns J12 SWD_CLK high to SWD_DIO high-Z 5 — ns J2 J3 J3 SWD_CLK (input) J4 J4 Figure 4. Serial wire clock input timing Kinetis KL43 Microcontroller, Rev.5, 08/2015. 23 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors SWD_CLK J9 SWD_DIO J10 Input data valid J11 SWD_DIO Output data valid J12 SWD_DIO J11 SWD_DIO Output data valid Figure 5. Serial wire data timing 3.2 System modules There are no specifications necessary for the device's system modules. 3.3 Clock modules 3.3.1 MCG-Lite specifications Table 18. IRC48M specification Symbol Description Min. Typ. Max. Unit Notes IDD Supply current — 400 500 µA — fIRC Output frequency — 48 — MHz — Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature — ± 0.5 ± 1.5 %firc48m Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature — ± 0.5 ± 1.0 %firc48m 1 1 Table continues on the next page... 24 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Peripheral operating requirements and behaviors Table 18. IRC48M specification (continued) Symbol Description Min. Typ. Max. Unit Notes Tj Period jitter (RMS) — 35 150 ps — Tsu Startup time — 2 3 µs — 1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard deviation (mean +/-3sigma). Table 19. IRC8M/2M specification Symbol Description Min. Typ. Max. Unit Notes IDD_2M Supply current in 2 MHz mode — 14 17 µA — IDD_8M Supply current in 8 MHz mode — 30 35 µA — fIRC_2M Output frequency — 2 — MHz — fIRC_8M Output frequency — 8 — MHz — fIRC_T_2M Output frequency range (trimmed) — — ±3 %fIRC — fIRC_T_8M Output frequency range (trimmed) — — ±3 %fIRC — Tsu_2M Startup time — — 12.5 µs — Tsu_8M Startup time — — 12.5 µs — Kinetis KL43 Microcontroller, Rev.5, 08/2015. 25 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Figure 6. IRC8M Frequency Drift vs Temperature curve 3.3.2 Oscillator electrical specifications 3.3.2.1 Oscillator DC electrical specifications Table 20. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA — 1.2 — mA Table continues on the next page... 26 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Peripheral operating requirements and behaviors Table 20. Oscillator DC electrical specifications (continued) Symbol Description • 24 MHz Min. Typ. Max. Unit — 1.5 — mA Notes • 32 MHz IDDOSC Supply current — high gain mode (HGO=1) 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — Cy XTAL load capacitance — — — RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V RS 2, 3 2, 3 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) 5 Vpp 1. VDD=3.3 V, Temperature =25 °C 2. See crystal or resonator manufacturer's recommendation Kinetis KL43 Microcontroller, Rev.5, 08/2015. 27 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used. 4. When low power mode is selected, RF is integrated and must not be attached externally. 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 3.3.2.2 Symbol Oscillator frequency specifications Table 21. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — highfrequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 48 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1, 2 3, 4 1. Other frequency limits may apply when external clock is being used as a reference for the FLL 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. 3. Proper PC board layout procedures must be followed to achieve specifications. 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. 3.4 Memories and memory interfaces 3.4.1 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 28 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Peripheral operating requirements and behaviors 3.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 22. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit Notes thvpgm4 Longword Program high-voltage time — 7.5 18 μs — thversscr Sector Erase high-voltage time — 13 113 ms 1 — 52 452 ms 1 Unit Notes thversblk128k Erase Block high-voltage time for 128 KB 1. Maximum time based on expectations at cycling end-of-life. 3.4.1.2 Symbol Flash timing specifications — commands Table 23. Flash command timing specifications Description Min. Typ. Max. Read 1s Block execution time trd1blk128k • 128 KB program flash 1 — — 1.7 ms trd1sec1k Read 1s Section execution time (flash sector) — — 60 μs 1 tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs — Erase Flash Block execution time tersblk128k • 128 KB program flash 2 — 88 600 ms tersscr Erase Flash Sector execution time — 14 114 ms 2 trd1all Read 1s All Blocks execution time — — 1.8 ms 1 trdonce Read Once execution time — — 25 μs 1 Program Once execution time — 65 — μs — tersall Erase All Blocks execution time — 175 1300 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 tersallu Erase All Blocks Unsecure execution time — 175 1300 ms 2 tpgmonce 1. Assumes 25 MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. Kinetis KL43 Microcontroller, Rev.5, 08/2015. 29 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 3.4.1.3 Flash high voltage current behaviors Table 24. Flash high voltage current behaviors Symbol Description IDD_PGM IDD_ERS 3.4.1.4 Symbol Min. Typ. Max. Unit Average current adder during high voltage flash programming operation — 2.5 6.0 mA Average current adder during high voltage flash erase operation — 1.5 4.0 mA Reliability specifications Table 25. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years — tnvmretp1k Data retention after up to 1 K cycles 20 100 — years — nnvmcycp Cycling endurance 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C. 3.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 3.6 Analog 3.6.1 ADC electrical specifications Using differential inputs can achieve better system accuracy than using single-end inputs. 30 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Peripheral operating requirements and behaviors 3.6.1.1 16-bit ADC operating conditions Table 26. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit Notes VDDA Supply voltage Absolute 1.71 — 3.6 V — ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V 3 VREFL ADC reference voltage low VSSA VSSA VSSA V 3 VADIN Input voltage • 16-bit differential mode VREFL — 31/32 × VREFH V — • All other modes VREFL — • 16-bit mode — 8 10 pF — • 8-bit / 10-bit / 12-bit modes — 4 5 — 2 5 kΩ — CADIN RADIN RAS Input capacitance Input series resistance Analog source resistance (external) VREFH 13-bit / 12-bit modes 4 fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion ≤ 13-bit mode clock frequency 1.0 — 24 MHz 5 fADCK ADC conversion 16-bit mode clock frequency 2.0 — 12.0 MHz 5 Crate ADC conversion ≤ 13-bit modes rate No ADC hardware averaging 6 20.000 — 1200 ksps Continuous conversions enabled, subsequent conversion time Crate ADC conversion 16-bit mode rate No ADC hardware averaging 6 37.037 — 461.467 ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. VREFH can act as VREF_OUT when VREFV1 module is enabled. 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns. 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. Kinetis KL43 Microcontroller, Rev.5, 08/2015. 31 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT ZADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection ZAS RAS ADC SAR ENGINE RADIN VADIN CAS VAS RADIN INPUT PIN RADIN INPUT PIN RADIN INPUT PIN CADIN Figure 7. ADC input impedance equivalency diagram 3.6.1.2 16-bit ADC electrical characteristics Table 27. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Conditions1 Description Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 IDDA_ADC Supply current fADACK ADC asynchronous clock source Sample Time TUE DNL INL See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 • 3.6 V 3 3.3 3.6 V 2.1 2.8 3.6 V Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode 2.1 — 3.6 V COUT External output capacitor 1.76 2.2 8.16 μF ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Short circuit current — 290 — mA • Run mode • Standby mode VReg33out Notes 2 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated. 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. 42 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Peripheral operating requirements and behaviors 3.8.3 SPI switching specifications The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins. Table 36. SPI master mode timing on slew rate disabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 Description Min. Max. Unit Note fperiph/2048 fperiph/2 Hz 1 2 x tperiph 2048 x tperiph ns 2 Enable lead time 1/2 — tSPSCK — Enable lag time 1/2 — tSPSCK — tperiph - 30 1024 x tperiph ns — Data setup time (inputs) 18 — ns — tHI Data hold time (inputs) 0 — ns — 8 tv Data valid (after SPSCK edge) — 15 ns — 9 tHO Data hold time (outputs) 0 — ns — 10 tRI Rise time input — tperiph - 25 ns — tFI Fall time input 11 tRO Rise time output — 25 ns — tFO Fall time output Frequency of operation SPSCK period Clock (SPSCK) high or low time 1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). 2. tperiph = 1/fperiph Table 37. SPI master mode timing on slew rate enabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 tHI Description Min. Max. Unit Note fperiph/2048 fperiph/2 Hz 1 2 x tperiph 2048 x tperiph ns 2 Enable lead time 1/2 — tSPSCK — Enable lag time 1/2 — tSPSCK — tperiph - 30 1024 x tperiph ns — Data setup time (inputs) 96 — ns — Data hold time (inputs) 0 — ns — Frequency of operation SPSCK period Clock (SPSCK) high or low time Table continues on the next page... Kinetis KL43 Microcontroller, Rev.5, 08/2015. 43 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 37. SPI master mode timing on slew rate enabled pads (continued) Num. Symbol 8 tv 9 Description Min. Max. Unit Note Data valid (after SPSCK edge) — 52 ns — tHO Data hold time (outputs) 0 — ns — 10 tRI Rise time input — tperiph - 25 ns — tFI Fall time input 11 tRO Rise time output — 36 ns — tFO Fall time output 1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). 2. tperiph = 1/fperiph SS1 (OUTPUT) 3 2 SPSCK (CPOL=0) (OUTPUT) 11 10 11 6 7 MSB IN2 BIT 6 . . . 1 LSB IN 8 MOSI (OUTPUT) 4 5 SPSCK (CPOL=1) (OUTPUT) MISO (INPUT) 10 5 MSB OUT2 BIT 6 . . . 1 9 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 14. SPI master mode timing (CPHA = 0) 44 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Peripheral operating requirements and behaviors SS1 (OUTPUT) 2 3 SPSCK (CPOL=0) (OUTPUT) 5 SPSCK (CPOL=1) (OUTPUT) 5 6 MISO (INPUT) 11 10 11 4 7 MSB IN2 BIT 6 . . . 1 LSB IN 9 8 MOSI (OUTPUT) 10 PORT DATA MASTER MSB OUT2 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 15. SPI master mode timing (CPHA = 1) Table 38. SPI slave mode timing on slew rate disabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 Enable lead time 1 — tperiph — Enable lag time 1 — tperiph — tperiph - 30 — ns — Data setup time (inputs) 2.5 — ns — tHI Data hold time (inputs) 3.5 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 31 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 25 ns — tFO Fall time output 13 1. 2. 3. 4. 38 Description Frequency of operation SPSCK period Clock (SPSCK) high or low time For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state Kinetis KL43 Microcontroller, Rev.5, 08/2015. 45 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 39. SPI slave mode timing on slew rate enabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead Enable lead time 4 tLag Enable lag time 5 tWSPSCK 6 tSU 7 Frequency of operation SPSCK period Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 1 — tperiph — 1 — tperiph — tperiph - 30 — ns — Data setup time (inputs) 2 — ns — tHI Data hold time (inputs) 7 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 122 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 36 ns — tFO Fall time output 13 1. 2. 3. 4. Description Clock (SPSCK) high or low time For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state SS (INPUT) 2 12 13 12 13 4 SPSCK (CPOL=0) (INPUT) 5 3 SPSCK (CPOL=1) (INPUT) 5 9 8 MISO (OUTPUT) see note SLAVE MSB 6 MOSI (INPUT) 10 11 11 BIT 6 . . . 1 SLAVE LSB OUT SEE NOTE 7 MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined Figure 16. SPI slave mode timing (CPHA = 0) 46 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Peripheral operating requirements and behaviors SS (INPUT) 4 2 3 SPSCK (CPOL=0) (INPUT) 5 SPSCK (CPOL=1) (INPUT) 5 see note SLAVE 8 MSB OUT 6 MOSI (INPUT) 13 12 13 11 10 MISO (OUTPUT) 12 9 BIT 6 . . . 1 SLAVE LSB OUT BIT 6 . . . 1 LSB IN 7 MSB IN NOTE: Not defined Figure 17. SPI slave mode timing (CPHA = 1) 3.8.4 I2C 3.8.4.1 Inter-Integrated Circuit Interface (I2C) timing Table 40. I2C timing Characteristic Symbol Standard Mode Fast Mode Minimum Maximum Minimum Maximum Unit SCL Clock Frequency fSCL 0 100 0 4001 kHz Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 4 — 0.6 — µs LOW period of the SCL clock tLOW 4.7 — 1.25 — µs HIGH period of the SCL clock tHIGH 4 — 0.6 — µs Set-up time for a repeated START condition tSU; STA 4.7 — 0.6 — µs Data hold time for I2C bus devices tHD; DAT 02 3.453 04 0.92 µs tSU; DAT 2505 — 1003, 6 Data set-up time Rise time of SDA and SCL signals tr — 1000 — ns 7 300 ns 6 20 +0.1Cb Fall time of SDA and SCL signals tf — 300 20 +0.1Cb 300 ns Set-up time for STOP condition tSU; STO 4 — 0.6 — µs Bus free time between STOP and START condition tBUF 4.7 — 1.3 — µs Pulse width of spikes that must be suppressed by the input filter tSP N/A N/A 0 50 ns Kinetis KL43 Microcontroller, Rev.5, 08/2015. 47 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the high drive pins across the full voltage range and when using the normal drive pins and VDD ≥ 2.7 V. 2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines. 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal. 4. Input signal Slew = 10 ns and Output Load = 50 pF 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty. 6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; 2 DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification) before the SCL line is released. 7. Cb = total capacitance of the one bus line in pF. To achieve 1MHz I2C clock rates, consider the following recommendations: • To counter the effects of clock stretching, the I2C baud Rate select bits can be configured for faster than desired baud rate. • Use high drive pad and DSE bit should be set in PORTx_PCRn register. • Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for the SCL line to avoid clock stretching. • Use smaller pull up resistors on SDA and SCL to reduce the RC time constant. Table 41. I 2C 1Mbit/s timing Characteristic Symbol Minimum Maximum Unit MHz SCL Clock Frequency fSCL 0 11 Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 0.26 — µs LOW period of the SCL clock tLOW 0.5 — µs HIGH period of the SCL clock tHIGH 0.26 — µs Set-up time for a repeated START condition tSU; STA 0.26 — µs Data hold time for I2C bus devices tHD; DAT 0 — µs Data set-up time tSU; DAT 50 — ns Rise time of SDA and SCL signals tr 20 +0.1Cb 120 ns Fall time of SDA and SCL signals tf 20 +0.1Cb 2 120 ns Set-up time for STOP condition tSU; STO 0.26 — µs Bus free time between STOP and START condition tBUF 0.5 — µs Pulse width of spikes that must be suppressed by the input filter tSP 0 50 ns 1. The maximum SCL clock frequency of 1 Mbit/s can support maximum bus loading when using the high drive pins across the full voltage range. 2. Cb = total capacitance of the one bus line in pF. 48 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Peripheral operating requirements and behaviors SDA tf tSU; DAT tr tLOW tf tHD; STA tr tSP tBUF SCL S HD; STA tHD; DAT tHIGH tSU; STA tSU; STO SR P S Figure 18. Timing definition for devices on the I2C bus 3.8.5 UART See General switching specifications. 3.8.6 I2S/SAI switching specifications This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures. 3.8.6.1 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. Table 42. I2S/SAI master mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK (as an input) pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15.5 ns Table continues on the next page... Kinetis KL43 Microcontroller, Rev.5, 08/2015. 49 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 42. I2S/SAI master mode timing (continued) Num. Characteristic Min. Max. Unit S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 19 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 26 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S5 S6 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 19. I2S/SAI timing — master modes Table 43. I2S/SAI slave mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 10 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 33 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK — ns 10 Table continues on the next page... 50 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Peripheral operating requirements and behaviors Table 43. I2S/SAI slave mode timing (continued) Num. S18 Characteristic Min. I2S_RXD hold after I2S_RX_BCLK S19 I2S_TX_FS input assertion to I2S_TXD output valid1 Max. Unit 2 — ns — 28 ns 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 20. I2S/SAI timing — slave modes 3.8.6.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 44. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 45 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns Table continues on the next page... Kinetis KL43 Microcontroller, Rev.5, 08/2015. 51 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 44. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued) Num. Characteristic Min. S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK S1 0 S2 Max. Unit — ns — ns S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S5 S6 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 21. I2S/SAI timing — master modes Table 45. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 30 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 87 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 30 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 72 ns S19 I2S_TX_FS input assertion to I2S_TXD output 52 Freescale Semiconductor, Inc. valid1 Kinetis KL43 Microcontroller, Rev.5, 08/2015. Peripheral operating requirements and behaviors 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S14 S15 S19 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 22. I2S/SAI timing — slave modes 3.9 Human-machine interfaces (HMI) 3.9.1 LCD electrical characteristics Table 46. LCD electricals Symbol fFrame Description Min. Typ. Max. Unit • GCR[FFR]=0 23.3 — 73.1 Hz • GCR[FFR]=1 46.6 — 146.2 Hz Notes LCD frame frequency CLCD LCD charge pump capacitance — nominal value — 100 — nF CBYLCD LCD bypass capacitance — nominal value — 100 — nF 1 CGlass LCD glass capacitance — 2000 8000 pF 2 VIREG VIREG V 3 • RVTRIM=0000 — 0.91 — • RVTRIM=1000 — 0.92 — • RVTRIM=0100 — 0.93 — • RVTRIM=1100 — 0.94 — • RVTRIM=0010 — 0.96 — • RVTRIM=1010 — 0.97 — • RVTRIM=0110 — 0.98 — Table continues on the next page... Kinetis KL43 Microcontroller, Rev.5, 08/2015. 53 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 46. LCD electricals (continued) Symbol Description Min. Typ. Max. • RVTRIM=1110 — 0.99 — • RVTRIM=0001 — 1.01 — • RVTRIM=1001 — 1.02 — • RVTRIM=0101 — 1.03 — • RVTRIM=1101 — 1.05 — • RVTRIM=0011 — 1.06 — • RVTRIM=1011 — 1.07 — • RVTRIM=0111 — 1.08 — • RVTRIM=1111 — 1.09 — Unit ΔRTRIM VIREG TRIM resolution — — 3.0 % VIREG IVIREG VIREG current adder — RVEN = 1 — 1 — µA IRBIAS RBIAS current adder — 10 — µA — 1 — µA — 0.28 — MΩ — 2.98 — MΩ • LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) • LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) RRBIAS Notes RBIAS resistor values • LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) • LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) VLL1 VLL1 voltage — — VIREG V 4 VLL2 VLL2 voltage — — 2 x VIREG V 4 VLL3 VLL3 voltage — — 3 x VIREG V 4 VLL1 VLL1 voltage — — VDDA / 3 V 5 VLL2 VLL2 voltage — — VDDA / 1.5 V 5 VLL3 VLL3 voltage — — VDDA V 5 1. The actual value used could vary with tolerance. 2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual. 3. VIREG maximum should never be externally driven to any level other than VDD - 0.15 V 4. VLL1, VLL2 and VLL3 are a function of VIREG only when the regulator is enabled (GCR[RVEN]=1) and the charge pump is enabled (GCR[CPSEL]=1). 5. VLL1, VLL2 and VLL3 are a function of VDDA only under either of the following conditions: • The charge pump is enabled (GCR[CPSEL]=1), the regulator is disabled (GCR[RVEN]=0), and VLL3 = VDDA through the internal power switch (GCR[VSUPPLY]=0). • The resistor bias string is enabled (GCR[CPSEL]=0), the regulator is disabled (GCR[RVEN]=0), and VLL3 is connected to VDDA externally (GCR[VSUPPLY]=1). 54 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Dimensions 4 Dimensions 4.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 64-pin LQFP 98ASS23234W 64-pin MAPBGA 98ASA00420D 5 Pinouts and Packaging 5.1 KL43 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. NOTE VREFH can act as VREF_OUT when VREFV1 module is enabled. 64 64 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 A1 1 PTE0 DISABLED LCD_P48 PTE0/ CLKOUT32K SPI1_MISO LPUART1_TX RTC_CLKOUT CMP0_OUT I2C1_SDA LCD_P48 B1 2 PTE1 DISABLED LCD_P49 PTE1 SPI1_MOSI LPUART1_RX I2C1_SCL LCD_P49 — 3 VDD VDD VDD C4 4 VSS VSS VSS E1 5 USB0_DP USB0_DP USB0_DP D1 6 USB0_DM USB0_DM USB0_DM E2 7 VOUT33 VOUT33 VOUT33 D2 8 VREGIN VREGIN VREGIN Kinetis KL43 Microcontroller, Rev.5, 08/2015. SPI1_MISO 55 Freescale Semiconductor, Inc. Pinouts and Packaging 64 64 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 G1 9 PTE20 ADC0_DP0/ ADC0_SE0 LCD_P59/ ADC0_DP0/ ADC0_SE0 PTE20 TPM1_CH0 LPUART0_TX FXI00_D4 LCD_P59 F1 10 PTE21 ADC0_DM0/ ADC0_SE4a LCD_P60/ ADC0_DM0/ ADC0_SE4a PTE21 TPM1_CH1 LPUART0_RX FXIO0_D5 LCD_P60 G2 11 PTE22 ADC0_DP3/ ADC0_SE3 ADC0_DP3/ ADC0_SE3 PTE22 TPM2_CH0 UART2_TX FXIO0_D6 F2 12 PTE23 ADC0_DM3/ ADC0_SE7a ADC0_DM3/ ADC0_SE7a PTE23 TPM2_CH1 UART2_RX FXIO0_D7 F4 13 VDDA VDDA VDDA G4 14 VREFH VREFH VREFH G3 15 VREFL VREFL VREFL F3 16 VSSA VSSA VSSA H1 17 PTE29 CMP0_IN5/ ADC0_SE4b CMP0_IN5/ ADC0_SE4b PTE29 TPM0_CH2 TPM_CLKIN0 H2 18 PTE30 DAC0_OUT/ ADC0_SE23/ CMP0_IN4 DAC0_OUT/ ADC0_SE23/ CMP0_IN4 PTE30 TPM0_CH3 TPM_CLKIN1 H3 19 PTE31 DISABLED PTE31 TPM0_CH4 H4 20 PTE24 DISABLED PTE24 TPM0_CH0 I2C0_SCL H5 21 PTE25 DISABLED PTE25 TPM0_CH1 I2C0_SDA D3 22 PTA0 SWD_CLK PTA0 TPM0_CH5 D4 23 PTA1 DISABLED PTA1 LPUART0_RX TPM2_CH0 E5 24 PTA2 DISABLED PTA2 LPUART0_TX TPM2_CH1 D5 25 PTA3 SWD_DIO PTA3 I2C1_SCL TPM0_CH0 SWD_DIO G5 26 PTA4 NMI_b PTA4 I2C1_SDA TPM0_CH1 NMI_b F5 27 PTA5 DISABLED PTA5 USB_CLKIN TPM0_CH2 I2S0_TX_ BCLK LPUART1_TX LPTMR0_ ALT1 SWD_CLK H6 28 PTA12 DISABLED PTA12 TPM1_CH0 I2S0_TXD0 G6 29 PTA13 DISABLED PTA13 TPM1_CH1 I2S0_TX_FS G7 30 VDD VDD VDD H7 31 VSS VSS VSS H8 32 PTA18 EXTAL0 EXTAL0 PTA18 LPUART1_RX TPM_CLKIN0 G8 33 PTA19 XTAL0 XTAL0 PTA19 LPUART1_TX TPM_CLKIN1 F8 34 PTA20 RESET_b F7 35 PTB0/ LLWU_P5 LCD_P0/ ADC0_SE8 LCD_P0/ ADC0_SE8 PTB0/ LLWU_P5 I2C0_SCL TPM1_CH0 LCD_P0 F6 36 PTB1 LCD_P1/ ADC0_SE9 LCD_P1/ ADC0_SE9 PTB1 I2C0_SDA TPM1_CH1 LCD_P1 E7 37 PTB2 LCD_P2/ ADC0_SE12 LCD_P2/ ADC0_SE12 PTB2 I2C0_SCL TPM2_CH0 LCD_P2 56 Freescale Semiconductor, Inc. PTA20 LPTMR0_ ALT1 RESET_b Kinetis KL43 Microcontroller, Rev.5, 08/2015. Pinouts and Packaging 64 64 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 E8 38 PTB3 LCD_P3/ ADC0_SE13 LCD_P3/ ADC0_SE13 PTB3 I2C0_SDA TPM2_CH1 E6 39 PTB16 LCD_P12 LCD_P12 PTB16 SPI1_MOSI LPUART0_RX TPM_CLKIN0 SPI1_MISO LCD_P12 D7 40 PTB17 LCD_P13 LCD_P13 PTB17 SPI1_MISO LPUART0_TX TPM_CLKIN1 SPI1_MOSI LCD_P13 D6 41 PTB18 LCD_P14 LCD_P14 PTB18 TPM2_CH0 I2S0_TX_ BCLK LCD_P14 C7 42 PTB19 LCD_P15 LCD_P15 PTB19 TPM2_CH1 I2S0_TX_FS LCD_P15 D8 43 PTC0 LCD_P20/ ADC0_SE14 LCD_P20/ ADC0_SE14 PTC0 EXTRG_IN audioUSB_ SOF_OUT C6 44 PTC1/ LLWU_P6/ RTC_CLKIN LCD_P21/ ADC0_SE15 LCD_P21/ ADC0_SE15 PTC1/ LLWU_P6/ RTC_CLKIN I2C1_SCL B7 45 PTC2 LCD_P22/ ADC0_SE11 LCD_P22/ ADC0_SE11 PTC2 C8 46 PTC3/ LLWU_P7 LCD_P23 LCD_P23 PTC3/ LLWU_P7 E3 47 VSS VSS VSS E4 — VDD VDD VDD C5 48 VLL3 VLL3 VLL3 A6 49 VLL2 VLL2 VLL2/ LCD_P4 PTC20 LCD_P4 B5 50 VLL1 VLL1 VLL1/ LCD_P5 PTC21 LCD_P5 B4 51 VCAP2 VCAP2 VCAP2/ LCD_P6 PTC22 LCD_P6 A5 52 VCAP1 VCAP1 VCAP1/ LCD_P39 PTC23 LCD_P39 B8 53 PTC4/ LLWU_P8 LCD_P24 LCD_P24 PTC4/ LLWU_P8 SPI0_SS LPUART1_TX TPM0_CH3 A8 54 PTC5/ LLWU_P9 LCD_P25 LCD_P25 PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ ALT2 I2S0_RXD0 A7 55 PTC6/ LLWU_P10 LCD_P26/ CMP0_IN0 LCD_P26/ CMP0_IN0 PTC6/ LLWU_P10 SPI0_MOSI EXTRG_IN I2S0_RX_ BCLK SPI0_MISO B6 56 PTC7 LCD_P27/ CMP0_IN1 LCD_P27/ CMP0_IN1 PTC7 SPI0_MISO audioUSB_ SOF_OUT I2S0_RX_FS SPI0_MOSI C3 57 PTD0 LCD_P40 LCD_P40 PTD0 SPI0_SS TPM0_CH0 FXI00_D0 LCD_P40 A4 58 PTD1 LCD_P41/ ADC0_SE5b LCD_P41/ ADC0_SE5b PTD1 SPI0_SCK TPM0_CH1 FXIO0_D1 LCD_P41 C2 59 PTD2 LCD_P42 LCD_P42 PTD2 SPI0_MOSI UART2_RX TPM0_CH2 SPI0_MISO FXIO0_D2 LCD_P42 B3 60 PTD3 LCD_P43 LCD_P43 PTD3 SPI0_MISO UART2_TX TPM0_CH3 SPI0_MOSI FXIO0_D3 LCD_P43 A3 61 PTD4/ LLWU_P14 LCD_P44 LCD_P44 PTD4/ LLWU_P14 SPI1_SS UART2_RX TPM0_CH4 FXI00_D4 LCD_P44 C1 62 PTD5 LCD_P45/ ADC0_SE6b LCD_P45/ ADC0_SE6b PTD5 SPI1_SCK UART2_TX TPM0_CH5 FXIO0_D5 LCD_P45 Kinetis KL43 Microcontroller, Rev.5, 08/2015. LCD_P3 CMP0_OUT I2S0_TXD0 LCD_P20 TPM0_CH0 I2S0_TXD0 LCD_P21 I2C1_SDA TPM0_CH1 I2S0_TX_FS LCD_P22 SPI1_SCK LPUART1_RX TPM0_CH2 I2S0_TX_ BCLK LCD_P23 CLKOUT I2S0_MCLK LCD_P24 CMP0_OUT LCD_P25 I2S0_MCLK LCD_P26 LCD_P27 57 Freescale Semiconductor, Inc. Pinouts and Packaging 64 64 MAP LQFP BGA Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 B2 63 PTD6/ LLWU_P15 LCD_P46/ ADC0_SE7b LCD_P46/ ADC0_SE7b PTD6/ LLWU_P15 SPI1_MOSI LPUART0_RX SPI1_MISO FXIO0_D6 LCD_P46 A2 64 PTD7 LCD_P47 LCD_P47 PTD7 SPI1_MISO LPUART0_TX SPI1_MOSI FXIO0_D7 LCD_P47 5.2 KL43 Family Pinouts Figure below shows the 64 LQFP pinouts 58 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTD3 PTD2 PTD1 PTD0 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 VCAP1 VCAP2 VLL1 VLL2 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Pinouts and Packaging PTB18 PTE20 9 40 PTB17 PTE21 10 39 PTB16 PTE22 11 38 PTB3 PTE23 12 37 PTB2 VDDA 13 36 PTB1 VREFH 14 35 PTB0/LLWU_P5 VREFL 15 34 PTA20 VSSA 16 33 PTA19 PTA18 32 41 31 8 VSS VREGIN 30 PTB19 VDD 42 29 7 PTA13 VOUT33 28 PTC0 PTA12 43 27 6 PTA5 USB0_DM 26 PTC1/LLWU_P6/RTC_CLKIN PTA4 44 25 5 PTA3 USB0_DP 24 PTC2 PTA2 45 23 4 PTA1 VSS 22 PTC3/LLWU_P7 PTA0 46 21 3 PTE25 VDD 20 VSS PTE24 47 19 2 PTE31 PTE1 18 VLL3 PTE30 48 17 1 PTE29 PTE0 Figure 23. 64 LQFP Pinout diagram Figure below shows the 64 MAPBGA pinouts Kinetis KL43 Microcontroller, Rev.5, 08/2015. 59 Freescale Semiconductor, Inc. Ordering parts 1 2 3 4 5 6 A PTE0 PTD7 PTD4/ LLWU_P14 PTD1 VCAP1 VLL2 B PTE1 PTD6/ LLWU_P15 PTD3 VCAP2 VLL1 PTC7 C PTD5 PTD2 PTD0 VSS VLL3 D USB0_DM VREGIN PTA0 PTA1 E USB0_DP VOUT33 VSS F PTE21 PTE23 G PTE20 H 7 8 PTC6/ PTC5/ LLWU_P10 LLWU_P9 A PTC2 PTC4/ LLWU_P8 B PTC1/ LLWU_P6/ RTC_CLKIN PTB19 PTC3/ LLWU_P7 C PTA3 PTB18 PTB17 PTC0 D VDD PTA2 PTB16 PTB2 PTB3 E VSSA VDDA PTA5 PTB1 PTB0/ LLWU_P5 PTA20 F PTE22 VREFL VREFH PTA4 PTA13 VDD PTA19 G PTE29 PTE30 PTE31 PTE24 PTE25 PTA12 VSS PTA18 H 1 2 3 4 5 6 7 8 Figure 24. 64 MAPBGA Pinout diagram 6 Ordering parts 6.1 Determining valid orderable parts Valid orderable part numbers are provided on the Web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: 7 Part identification 60 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Part identification 7.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 7.2 Format Part numbers for this device have the following format: Q KL## A FFF R T PP CC N 7.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Table 47. Part number fields descriptions Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification KL## Kinetis family • KL43 A Key attribute • Z = Cortex-M0+ FFF Program flash memory size • 128 = 128 KB • 256 = 256 KB R Silicon revision • (Blank) = Main • A = Revision after main T Temperature range (°C) • V = –40 to 105 PP Package identifier • LH = 64 LQFP (10 mm x 10 mm) • MP = 64 MAPBGA (5 mm x 5 mm) CC Maximum CPU frequency (MHz) • 4 = 48 MHz N Packaging type • R = Tape and reel 7.4 Example This is an example part number: MKL43Z256VLH4 Kinetis KL43 Microcontroller, Rev.5, 08/2015. 61 Freescale Semiconductor, Inc. Terminology and guidelines 8 Terminology and guidelines 8.1 Definitions Key terms are defined in the following table: Term Rating Definition A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip Operating behavior A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions Typical value A specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed. 62 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Terminology and guidelines 8.2 Examples EX AM PL E Operating rating: EX AM PL E Operating requirement: EX A M PL E Operating behavior that includes a typical value: 8.3 Typical-value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V Kinetis KL43 Microcontroller, Rev.5, 08/2015. 63 Freescale Semiconductor, Inc. Revision History 8.4 Relationship between ratings and operating requirements nt me n.) mi g( n ati gr tin era ng i rat e Op Op ) in. (m e uir req (m nt me t era Op ing .) ax e uir req ing rat ing t a er .) ax (m Op Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) ) in. (m ng ati gr n i l d lin nd Ha ng ati gr .) ax (m n Ha Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) 8.5 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 9 Revision History The following table provides a revision history for this document. Table 48. Revision History Rev. No. Date 3 09 August 2014 4 03 March 2015 Substantial Changes Initial Public release • Updated Table 9 - Power consumption operating behaviors. • Updated the features and completed the ordering information. • Removed thickness dimension from package diagrams. Table continues on the next page... 64 Freescale Semiconductor, Inc. Kinetis KL43 Microcontroller, Rev.5, 08/2015. Revision History Table 48. Revision History (continued) Rev. No. Date Substantial Changes • Updated Related Resources table to include Chip Errata resource name and Package Drawing part numbers in the respective rows. • Updated Table 7. Voltage and current operating behaviors. • Specified correct max. value for IIN. • Updated Table - 9 Power consumption operating behaviors. • Rows added for IDD for reset pin hold low (IDD_RESET_LOW) at 1.7V and 3V. • Measurement unit updated for IDD_VLLS1 from nA to μA. • Footnote 1 was moved in the beginning of the table as text. • Added Table - 11 EMC radiated emissions operating behaviors for 64-pin LQFP package under section 2.2.6. • Updated Table - 18 (IRC48M specification) and Table - 19 (IRC8M/2M specification) under section 3.3.1 - 'MCG-Lite specifications'. • Removed supply voltage (VDD), temperature range (T), untrimmed (fIRC_UT), trim function (ΔfIRC_C, ΔfIRC_F) data from Table - 18 (IRC48M specification). • Removed supply voltage (VDD), temperature range (T) data from Table - 19 (IRC8M/2M specification). • Added Figure 6. IRC8M Frequency Drift vs Temperature curve after Table - 19 (IRC8M/2M specification). • Updated Table 29. VREF full-range operating behaviors. • Removed Ac(Aging coefficient) row. • Added Tchop_osc_stup parameter. • Updated typical value of the Vout parameter. • Added tables: "I2C timing" and "I2C 1Mbit/s timing" under section - I2C. • Added VREF specifications (VREFH and VREFL) to Table 26. 16-bit ADC operating conditions. • Removed note: “This device does not have the USB_CLKIN signal available.” 5 12 August 2015 • In Table 9. Power consumption operating behaviors: • Updated Max. values of IDD_WAIT, IDD_VLPW, IDD_STOP, IDD_VLPS, IDD_LLS, IDD_VLLS3, IDD_VLLS1, IDD_VLLS0. • Modified unit of IDD_VLLS0 from nA to μA. • Removed IDD_RESET_LOW information. • In Table 13. Device clock specifications, added a footnote for normal run mode. • In Table 15. Thermal operating requirements, modified the footnote for Ambient temperature. • In Table 18. IRC48M specification, removed fIRC_T data and added Δfirc48m_of_lv and Δfirc48m_of_hv specifications. • In Table 26. 16-bit ADC operating conditions, updated Max. value of fADCK and Crate. Kinetis KL43 Microcontroller, Rev.5, 08/2015. 65 Freescale Semiconductor, Inc. How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. ©2014-2015 Freescale Semiconductor, Inc. Document Number KL43P64M48SF6 Revision 5, 08/2015
MKL43Z128VLH4 价格&库存

很抱歉,暂时无法提供与“MKL43Z128VLH4”相匹配的价格&库存,您可以联系我们找货

免费人工找货