Freescale Semiconductor
Document Number: MM912F634
Rev. 9.0, 6/2015
Technical Data
Integrated S12 Based Relay
Driver with LIN
MM912F634
The MM912F634 is an integrated single package solution integrating an
HCS12 microcontroller with a SMARTMOS analog control IC. The Die to
Die Interface (D2D) controlled analog die combines system base chip
and application specific functions, including a LIN transceiver.
48-PIN LQFP
98ASH00962A
7.0 mm x 7.0 mm
AP SUFFIX: Non-exposed Pad
Features
•
•
•
•
•
•
•
•
•
•
•
16-Bit S12 CPU, 32 kByte FLASH, 2.0 kByte RAM
Background debug (BDM) & debug module (DBG)
Die to die bus interface for transparent memory mapping
On-chip oscillator & two independent watchdogs
LIN 2.1 physical layer interface with integrated SCI
Six digital MCU GPIOs shared with SPI (PA5…0)
10-Bit, 15 channel - analog to digital converter (ADC)
16-Bit, four channel - timer module (TIM16B4C)
8-Bit, two channel - pulse width modulation module (PWM)
Six high-voltage / wake-up inputs (L5.0)
Three low-voltage GPIOs (PB2.0)
•
•
•
•
•
•
•
•
48-PIN LQFP-EP
98ASA00173D
7.0 mm x 7.0 mm
AE SUFFIX: Exposed Pad
Low-power modes with cyclic sense & forced wake-up
Current sense module with selectable gain
Reverse battery protected voltage sense module
Two protected low-side outputs to drive inductive loads
Two protected high-side outputs
Chip temperature sensor
Hall sensor supply
Integrated voltage regulator(s)
MM912F634
Battery Sense
Power Supply
VSENSE1
LS1
VS1
PGND
M
Low-Side Drivers
VS2
LIN interface
LS2
LIN
ISENSEH1
LGND
Current Sense Module
ISENSEL1
ADC2p5
ADC Supply
HSUP
AGND
2.5V Supply
Hall Sensor supply
VDD
EVDD
5V Supply
VDDX
EVDDX
Digital Ground
DGND
EVSS
EVSSX
Hall Sensor
PTB0/AD0/RX/TIM0CH0
PTB1/AD1/TX/TIM0CH1
PTB2/AD2/PWM/TIM0CH2
HS1
Reset
5V digital I/O
Debug and
external
Oscillator
MCU Test
RESET
RESET_A
PA0/MISO
PA1/MOSI
PA2/SCK
PA3/SS
PA4
PA5
BKGD/MODC
EXTAL
XTAL
TEST
1)
HS21
L0
L1
L21
L31
L41
L51
TCLK
TEST_A
Feature not available in all Analog Options
Figure 1. Simplified Application Diagram
© Freescale Semiconductor, Inc., 2010-2015. All rights reserved.
Hall Sensor
5V GPI/O with optional
pull-up (shared with
ADC, PWM, Timer, SCI)
12V Light/LED
and switch supply
Analog/Digital Inputs
(High Voltage- and Wake
Up capable)
Analog Test
ORDERING INFORMATION
1
Ordering Information
‘
Table 1. Ordering Information
Temperature
Range (TA)
Device (2)
MM912F634DV1AE
MM912F634DV2AE
-40 to 105 °C
MM912F634DV2AP
Package
Max. Bus Frequency
(MHz) (fBUSMAX)
Flash (kB)
98ASA00173D, 48-PIN LQFP-EP
20
32
98ASH00962A, 48-PIN LQFP
16
32
Analog
Option (1)
RAM (kB)
1
2
2
Note:
1. See Table 2.
2. For Tape and Reel orders add R2 to the part suffix
Table 2. Analog Options(3)
Feature
Option 1
Option 2
Current Sense Module
YES
NO
Wake-up Inputs (Lx)
L0…L5
L0…L3
Note:
3. This table only highlights the analog die differences between the derivatives. See Section 4.2.3, “Analog Die Options" for detailed information.
The device part number follows the standard scheme below:
MM
9
Product Category
Memory Type
MM – Qualified Standard 9 – FLASH, OTP
SM – Custom Device
Blank - ROM
PM – Prototype Device
12
f
xxx
r
MCU Core
08 – HC08
12 – HC12
Memory Size
A – 1k
B – 2k
C – 4k
D – 8k
E – 16k
F – 32k
G – 48k
H – 64k
I – 96k
J – 128k
Analog Core/
Target
Revision
(default A)
t
TA Temperature
Range
I = 0°C to 85°C
C = -40°C to 85°C
V = -40°C to 105°C
M = -40°C to 125°C
a
PP
RR
Analog Die
Option
(default 1)
Package Designator
AE – LQFP48-EP
AP – LQFP48
Tape & Reel
Indicator
Figure 2. Part Number Scheme
MM912F634
2
Analog Integrated Circuit Device Data
Freescale Semiconductor
ORDERING INFORMATION
Table of Contents
1
2
3
4
5
6
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1
MM912F634 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2
MCU Die Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4
Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5
Static Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6
Dynamic Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7
Thermal Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8
ESD Protection and Latch-up Immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9
Additional Test Information ISO7637-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Functional Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2
MM912F634 - Analog Die Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4
Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5
Die to Die Interface - Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7
Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.8
Wake-up / Cyclic Sense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.9
Window Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.10 Hall Sensor Supply Output - HSUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.11 High-side Drivers - HS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.12 Low-side Drivers - LSx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.13 PWM Control Module (PWM8B2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.14 LIN Physical Layer Interface - LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.15 Serial Communication Interface (S08SCIV4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.16 High Voltage Inputs - Lx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.17 General Purpose I/O - PTB[0…2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.18 Basic Timer Module - TIM (TIM16B4C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.19 Analog Digital Converter - ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.20 Current Sense Module - ISENSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.21 Temperature Sensor - TSENSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.22 Supply Voltage Sense - VSENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.23 Internal Supply Voltage Sense - VS1SENSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.24 Internal Bandgap Reference Voltage Sense - BANDGAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.25 MM912F634 - Analog Die Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.26 MM912F634 - MCU Die Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.27 Port Integration Module (9S12I32PIMV1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.28 Memory Mapping Control (S12SMMCV1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.29 Interrupt Module (S12SINTV1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.30 Background Debug Module (S12SBDMV1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.31 S12S Debug (S12SDBGV1) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.32 S12S Clocks and Reset Generator (S12SCRGV1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.33 External Oscillator (S12SOSCFPV1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
4.34 Real Time Interrupt (S12SRTIV1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.35 Computer Operating Properly (S12SCOPV1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.36 32 kbyte Flash Module (S12SFTSR32KV1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
4.37 Die-to-Die Initiator (D2DIV1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
4.38 Serial Peripheral Interface (S12SPIV4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
5.1
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
3
ORDERING INFORMATION
L
L
T
5
4
3
2
1
RAM 2k Byte
ALU
SPI
Control and Status Register
CPU
Register
M68HCS12 CPU
Internal Reference Clock
OSC Clock Monitor
Full Swing Pierce
Oscillator
Reset Generation and
Test Entry
RESET
Flash 32k Bytes
SS
SCK
MOSI
Single-Wire Background Debug
Module
COP Watchdog
Interrupt Module
Real Time Interrupt
Debug Module
include 64 byte Trace Buffer RAM
D2DI
MCU Die
D2DCLK
D2DDAT0
D2DDAT1
D2DDAT2
D2DDAT3
D2DINT
Test
Interface
Reset
Control Module
Window
Watchdog Module
OSC (trimmable)
Interrupt
Control Module
Die To Die
Interface
Analog Multiplexer
Chip Temp
Sense Module
Wake Up
Module
2 Channel
PWM
Module
Current Sense
Module
ISENSEL
4 Channel Timer
Module
LS1
Low Side Control Module
PGND
GPIO
ADC
10bit
Lx Input Module
SCI
L5
L4
L3
L2
L1
L0
AGND
ADC2p5
PTB2/AD2/PWM/TIMC
PTB1/AD1/TX/TIMCH1
PTB0/AD0/RX/TIMCH0
LGND
Analog Integrated Circuit Device Data
Freescale Semiconductor
4
LIN
Physical
Layer
LIN
Internal Bus
VS2
LS2
18V
clamped
Output
Module
HSUP
MISO
EVDD
ISENSEH
High Side Control
Module
HS2
Cascaded
Voltage Regulators
VDD = 2.5V
VDDX = 5V
VS1
0
EVSS
TCLK
VBAT Sense
Module
HS1
RESET_A
Analog Die
VSENSE
X
X
VDDX
BKGD/MODC
PTA
DDRA
Internal Bus
VDD
DGND
TEST_A
Figure 3. Device Block Diagram
MM912F634
PIN ASSIGNMENT
2
Pin Assignment
NC
BKGD
RESET
RESET_A
TCLK
TEST_A
NC
ISENSEH
ISENSEL
LS2
PGND
LS1
48
47
46
45
44
43
42
41
40
39
38
37
NC
1
36
L5
EXTAL
2
35
L4
XTAL
3
34
L3
TEST
4
33
L2
PA5
5
32
L1
PA4
6
31
L0
PA3
7
30
AGND
PA2
8
29
ADC2p5
PA1
9
28
PTB2
PA0
10
27
PTB1
EVSSX
11
26
PTB0
EVDDX
12
25
LGND
22
HS1
HS2
LIN
21
VS2
24
20
VS1
HSUP
19
VSENSE
23
18
DGND
VDD
17
15
EVDD
VDDX
14
EVSS
16
13
Figure 4. MM912F634 Pin Out
NOTE
The device exposed pad (package option AE only) is recommended to be connected to GND.
Not all pins are available for analog die option 2. See Section 4.2.3, “Analog Die Options" for details.
2.1
MM912F634 Pin Description
The following table gives a brief description of all available pins on the MM912F634 package. Refer to the highlighted chapter for detailed
information.
Table 3. MM912F634 Pin Description
Pin #
Pin Name
Formal Name
Description
1
NC
Not connected Pin
This pin is reserved for alternative function and should be left floating or connected to GND.
2
EXTAL
MCU Oscillator Pin
EXTAL is one of the optional crystal/resonator driver and external clock pins. On reset, all the
device clocks are derived from the Internal Reference Clock. See Section 4.33, “External
Oscillator (S12SOSCFPV1)".
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
5
PIN ASSIGNMENT
Table 3. MM912F634 Pin Description (continued)
Pin #
Pin Name
Formal Name
Description
3
XTAL
MCU Oscillator Pin
XTAL is one of the optional crystal/resonator driver and external clock pins. On reset, all the
device clocks are derived from the Internal Reference Clock. See Section 4.33, “External
Oscillator (S12SOSCFPV1)".
4
TEST
MCU Test Pin
This input only pin is reserved for test. This pin has a pull-down device. The TEST pin must
be tied to EVSS in user mode.
5
PA5
MCU PA5 Pin
General purpose port A input or output pin 5. See Section 4.27, “Port Integration Module
(9S12I32PIMV1)".
6
PA4
MCU PA4 Pin
General purpose port A input or output pin 4. See Section 4.27, “Port Integration Module
(9S12I32PIMV1)".
7
PA3
MCU PA3 / SS Pin
General purpose port A input or output pin 3, shared with the SS signal of the integrated SPI
Interface. See Section 4.27, “Port Integration Module (9S12I32PIMV1)".
8
PA2
MCU PA2 / SCK Pin
General purpose port A input or output pin 2, shared with the SCLK signal of the integrated
SPI Interface. See Section 4.27, “Port Integration Module (9S12I32PIMV1)".
9
PA1
MCU PA1 / MOSI Pin
General purpose port A input or output pin 1, shared with the MOSI signal of the integrated
SPI Interface. See Section 4.27, “Port Integration Module (9S12I32PIMV1)".
10
PA0
MCU PA0 / MISO Pin
General-purpose port A input or output pin 0, shared with the MISO signal of the integrated
SPI Interface. See Section 4.27, “Port Integration Module (9S12I32PIMV1)".
11
EVSSX
MCU 5.0 V Ground Pin
Ground for the MCU 5.0 V power supply.
12
EVDDX
MCU 5.0 V Supply Pin
MCU 5.0 V - I/O buffer supply. See Section 4.26, “MM912F634 - MCU Die Overview".
13
EVSS
MCU 2.5 V Ground Pin
Ground for the MCU 2.5 V power supply.
14
EVDD
MCU 2.5 V Supply Pin
MCU 2.5 V - MCU Core- and Flash power supply. See Section 4.26, “MM912F634 - MCU Die
Overview".
15
VDD
Voltage Regulator
Output 2.5 V
+2.5 V main voltage regulator output pin. External capacitor (CVDD) needed. See Section 4.4,
“Power Supply".
16
VDDX
Voltage Regulator Output
5.0 V
+5.0 V main voltage regulator output pin. External capacitor (CVDDX) needed. See
Section 4.4, “Power Supply".
17
DGND
Digital Ground Pin
This pin is the device digital ground connection for the 5.0 V and 2.5 V logic. DGND, LGND,
and AGND are internally connected to PGND via a back to back diode.
18
VSENSE
Voltage Sense Pin
Battery voltage sense input. This pin can be connected directly to the battery line for voltage
measurements. The voltage present at this input is scaled down by an internal voltage divider,
and can be routed to the internal ADC via the analog multiplexer.The pin is self-protected
against reverse battery connections. An external resistor (RVSENSE) is needed for
protection(4). See Section 4.22, “Supply Voltage Sense - VSENSE".
19
VS1
Power Supply Pin 1
This pin is the device power supply pin 1. VS1 is primarily supplying the VDDX Voltage
regulator and the Hall Sensor Supply Regulator (HSUP). VS1 can be sensed via a voltage
divider through the AD converter. Reverse battery protection diode is required. See
Section 4.4, “Power Supply"
20
VS2
Power Supply Pin 2
This pin is the device power supply pin 2. VS2 supplies the High-side Drivers (HSx). Reverse
battery protection diode required. See Section 4.4, “Power Supply"
21
HS1
High-side Output 1
This pin is the first High-side output. It is supplied through the VS2 pin. It is designed to drive
small resistive loads with optional PWM. In cyclic sense mode, this output activates
periodically during low power mode. See Section 4.11, “High-side Drivers - HS".
22
HS2
High-side Output 2
This pin is the second High-side output. It is supplied through the VS2 pin. It is designed to
drive small resistive loads with optional PWM. In cyclic sense mode, this output activates
periodically during low power mode. See Section 4.11, “High-side Drivers - HS".
23
HSUP
24
LIN
25
LGND
This pin is designed as an 18 V Regulator to drive Hall Sensor Elements. It is supplied through
Hall Sensor Supply Output the VS1 pin. An external capacitor (CHSUP) is needed. See Section 4.10, “Hall Sensor Supply
Output - HSUP".
LIN Bus I/O
This pin represents the single-wire bus transmitter and receiver. See Section 4.14, “LIN
Physical Layer Interface - LIN".
LIN Ground Pin
This pin is the device LIN Ground connection. DGND, LGND, and AGND are internally
connected to PGND via a back to back diode.
MM912F634
6
Analog Integrated Circuit Device Data
Freescale Semiconductor
PIN ASSIGNMENT
Table 3. MM912F634 Pin Description (continued)
Pin #
26
27
Pin Name
PTB0
PTB1
Formal Name
Description
General Purpose I/O 0
This is the General Purpose I/O pin 0 based on VDDX with the following shared functions:
• PTB0 - Bidirectional 5.0 V (VDDX) digital port I/O with selectable internal pull-up resistor.
• AD0 - Analog Input Channel 0, 0…2.5 V (ADC2p5) analog input
• TIM0CH0 - Timer Channel 0 Input/Output
• Rx - Selectable connection to LIN / SCI
See Section 4.17, “General Purpose I/O - PTB[0…2]".
General Purpose I/O 1
This is the General Purpose I/O pin 1 based on VDDX with the following shared functions:
• PTB1 - Bidirectional 5.0 V (VDDX) digital port I/O with selectable internal pull-up resistor.
• AD1 - Analog Input Channel 1, 0…2.5 V (ADC2p5) analog input
• TIM0CH1 - Timer Channel 1 Input/Output
• Tx - Selectable connection to LIN / SCI
See Section 4.17, “General Purpose I/O - PTB[0…2]".
28
PTB2
General Purpose I/O 2
This is the General Purpose I/O pin 2 based on VDDX with the following shared functions:
• PTB2 - Bidirectional 5.0 V (VDDX) digital port I/O with selectable internal pull-up resistor.
• AD2 - Analog Input Channel 2, 0…2.5 V (ADC2p5) analog input
• TIM0CH2 - Timer Channel 2 Input/Output
• PWM - Selectable connection to PWM Channel 0 or 1
See Section 4.17, “General Purpose I/O - PTB[0…2]".
29
ADC2p5
ADC Reference Voltage
This pin represents the ADC reference voltage and has to be connected to a filter capacitor.
See Section 4.19, “Analog Digital Converter - ADC"
30
AGND
Analog Ground Pin
This pin is the device Analog to Digital Converter ground connection. DGND, LGND and
AGND are internally connected to PGND via a back to back diode.
High Voltage Input 0
This pins is the High Voltage Input 0 with the following shared functions:
• L0 - Digital High Voltage Input 0. When used as digital input, a series resistor (RLx) must
be used to protect against automotive transients.(5)
• AD3 - Analog Input 3 with selectable divider for 0…5.0 V and 0…18 V measurement range.
• WU0 - Selectable Wake-up input 0 for wake up and cyclic sense during low power mode.
See Section 4.16, “High Voltage Inputs - Lx"
High Voltage Input 1
This pins is the High Voltage Input 1 with the following shared functions:
• L1 - Digital High Voltage Input 1. When used as digital input, a series resistor (RLx) must
be used to protect against automotive transients.(5)
• AD4 - Analog Input 4 with selectable divider for 0…5.0 V and 0…18 V measurement range.
• WU1 - Selectable Wake-up input 1 for wake-up and cyclic sense during low power mode.
See Section 4.16, “High Voltage Inputs - Lx".
High Voltage Input 2
This pins is the High Voltage Input 2 with the following shared functions:
• L2 - Digital High Voltage Input 2. When used as digital input, a series resistor (RLx) must
be used to protect against automotive transients.(5)
• AD5 - Analog Input 5 with selectable divider for 0…5.0 V and 0…18 V measurement range.
• WU2 - Selectable Wake-up input 2 for wake-up and cyclic sense during low power mode.
See Section 4.16, “High Voltage Inputs - Lx".
High Voltage Input 3
This pins is the High Voltage Input 3 with the following shared functions:
• L3 - Digital High Voltage Input 3. When used as digital input, a series resistor (RLx) must
be used to protect against automotive transients.(5)
• AD6 - Analog Input 6 with selectable divider for 0…5.0 V and 0…18 V measurement range.
• WU3 - Selectable Wake-up input 3 for wake-up and cyclic sense during low power mode.
See Section 4.16, “High Voltage Inputs - Lx".
High Voltage Input 4
This pins is the High Voltage Input 4 with the following shared functions:
• L4 - Digital High Voltage Input 4. When used as digital input, a series resistor (RLx) must
be used to protect against automotive transients.(5)
• AD7 - Analog Input 7 with selectable divider for 0…5.0 V and 0…18 V measurement range.
• WU4 - Selectable Wake-up input 4 for wake-up and cyclic sense during low power mode.
See Section 4.16, “High Voltage Inputs - Lx". Note: This pin function is not available on all
device configurations.
31
32
33
34
35
L0
L1
L2
L3
L4
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
7
PIN ASSIGNMENT
Table 3. MM912F634 Pin Description (continued)
Pin #
Pin Name
Formal Name
Description
High Voltage Input 5
This pins is the High Voltage Input 5 with the following shared functions:
• L5 - Digital High Voltage Input 5. When used as digital input, a series resistor (RLx) must
be used to protect against automotive transients.(5)
• AD8 - Analog Input 8 with selectable divider for 0…5.0 V and 0…18 V measurement range.
• WU5 - Selectable Wake-up input 5 for wake-up and cyclic sense during low power mode.
See Section 4.16, “High Voltage Inputs - Lx". Note: This pin function is not available on all
device configurations.
LS1
Low-side Output 1
Low-side output 1 used to drive small inductive loads like relays. The output is short-circuit
protected, includes active clamp circuitry and can be also controlled by the PWM module.
See Section 4.12, “Low-side Drivers - LSx".
38
PGND
Power Ground Pin
This pin is the device Low-side Ground connection. DGND, LGND and AGND are internally
connected to PGND via a back to back diode.
39
LS2
Low-side Output 2
Low-side output 2 used to drive small inductive loads like relays. The output is short-circuit
protected, includes active clamp circuitry and can be also controlled by the PWM module.
See Section 4.12, “Low-side Drivers - LSx".
40
ISENSEL
Current Sense Pins L
Current Sense differential input “Low”. This pin is used in combination with ISENSEH to
measure the voltage drop across a shunt resistor. See Section 4.20, “Current Sense Module
- ISENSE". Note: This pin function is not available on all device configurations.
41
ISENSEH
Current Sense Pins H
Current Sense differential input “High”. This pin is used in combination with ISENSEL to
measure the voltage drop across a shunt resistor. Section 4.20, “Current Sense Module ISENSE". Note: This pin function is not available on all device configurations.
42
NC
Not connected Pin
This pin is reserved for alternative function and should be left floating.
43
TEST_A
Test Mode Pin
Analog die Test Mode pin for Test Mode only. This pin must be grounded in user mode.
44
TCLK
Test Clock Input
Test Mode Clock Input pin for Test Mode only. The pin can be used to disable the internal
watchdog for development purpose in user mode. See Section 4.9, “Window Watchdog". The
pin is recommended to be grounded in user mode.
45
RESET_A
Reset I/O
Bidirectional Reset I/O pin of the analog die. Active low signal. Internal pull-up. VDDX based.
See Section 4.7, “Resets". To be externally connected to the RESET pin.
46
RESET
MCU Reset Pin
The RESET pin is an active low bidirectional control signal. It acts as an input to initialize the
MCU to a known start-up state, and an output when an internal MCU function causes a reset.
The RESET pin has an internal pull-up device to EVDDX.
47
BKGD
MCU Background Debug
and Mode Pin
The BKGD/MODC pin is used as a pseudo-open-drain pin for the background debug
communication. It is used as MCU operating mode select pin during reset. The state of this
pin is latched to the MODC bit at the rising edge of RESET. The BKGD pin has a pull-up
device.
48
NC
Not connected Pin
This pin is reserved for alternative function and should be left floating or connected to GND.
36
L5
37
Note:
4. An optional filter capacitor CVSENSE is recommended to be placed between the board connector and RVSENSE to GND for increased ESD
performance.
5. An optional filter capacitor CLx is recommended to be placed between the board connector and RLx to GND for increased ESD performance.
2.2
MCU Die Signal Properties
This section describes the external MCU signals. It includes a table of signal properties.
Table 4. Signal Properties Summary
Pin Name
Function 1
Pin Name
Function 2
Power
Supply
EXTAL
—
XTAL
RESET
Internal Pull Resistor
CTRL
Reset
State
VDD
NA
NA
—
VDD
NA
NA
—
VDDX
Pull-up
Description
Oscillator pins
External reset
MM912F634
8
Analog Integrated Circuit Device Data
Freescale Semiconductor
PIN ASSIGNMENT
Table 4. Signal Properties Summary (continued)
Pin Name
Function 1
Pin Name
Function 2
Power
Supply
TEST
—
BKGD
Internal Pull Resistor
Description
CTRL
Reset
State
N.A.
RESET pin
Down
MODC
VDDX
Always on
UP
Background debug
PA5
—
VDDX
NA
NA
Port A I/O
PA4
—
VDDX
NA
NA
Port A I/O
PA3
SS
VDDX
NA
NA
Port A I/O, SPI
PA2
SCK
VDDX
NA
NA
Port A I/O, SPI
PA1
MOSI
VDDX
NA
NA
Port A I/O, SPI
PA0
MISO
VDDX
NA
NA
Port A I/O, SPI
Test input
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
9
ELECTRICAL CHARACTERISTICS
3
Electrical Characteristics
3.1
General
This supplement contains electrical information for the embedded MC9S12I32 microcontroller die, as well as the MM912F634 analog die.
3.2
Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond
those limits may affect the reliability or cause permanent damage of the device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it is advised that normal
precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability
of operation is enhanced if unused inputs are tied to an appropriate voltage level. All voltages are with respect to ground unless otherwise
noted.
Table 5. Absolute Maximum Electrical Ratings - Analog Die
Ratings
Symbol
Value
Supply Voltage at VS1 and VS2
Normal Operation (DC)
Transient Conditions (load dump)
Transient input voltage with external component (according to LIN Conformance
Test Specification / ISO7637-2)
VSUP(SS)
VSUP(PK)
VSUP(TR)
-0.3 to 27
-0.3 to 40
see Section 3.9,
“Additional Test
Information
ISO7637-2"
L0…L5 - Pin Voltage
Normal Operation with a series RLX resistor (DC)
Transient input voltage with external component (according to LIN Conformance
Test Specification / ISO7637-2)
VLxDC
VLxTR
-27 to 40
see Section 3.9,
“Additional Test
Information
ISO7637-2"
LIN Pin Voltage
Normal Operation (DC)
Transient input voltage with external component (according to LIN Conformance
Test Specification / ISO7637-2)
VBUSDC
VBUSTR
-33 to 40
see Section 3.9,
“Additional Test
Information
ISO7637-2"
Supply Voltage at VDDX
VDDX
-0.3 to 5.5
V
Supply Voltage at VDD (6)
VDD
-0.3 to 2.75
V
VDD output current
IVDD
Internally Limited
A
VDDX output current
IVDDX
Internally Limited
A
TCLK Pin Voltage
VTCLK
-0.3 to 10
V
RESET_A Pin Voltage
VIN
-0.3 to VDDx+0.3
V
Input / Output Pins PTB[0:2] Voltage
VIN
-0.3 to VDDx+0.3
V
HS1 and HS2 Pin Voltage (DC)
VHS
-0.3 to VS2+0.3
V
LS1 and LS2 Pin Voltage (DC)
VLS
-0.3 to 45
V
VISENSE
-0.3 to 40
V
VHSUP
-0.3 to VS1+0.3
V
VVSENSE
-27 to 40
V
ISENSEH and ISENSEL Pin Voltage (DC)
HSUP Pin Voltage (DC)
VSENSE Pin Voltage (DC)
Unit
V
V
V
Note:
6. Caution: As this pin is adjacent to the VDDX pin, care should be taken to avoid a short between VDD and VDDX, for example, during the soldering
process. A short-circuit between these pins might lead to permanent damage.
MM912F634
10
Analog Integrated Circuit Device Data
Freescale Semiconductor
ELECTRICAL CHARACTERISTICS
Table 6. Maximum Electrical Ratings - MCU Die
Ratings
Symbol
Value
Unit
5.0 V Supply Voltage
VEDDX
-0.3 to 6.0
V
2.5 V Supply Voltage
VEDD
-0.3 to 2.75
V
Digital I/O input voltage (PA0...PA7, PE0, PE1)
VIN
-0.3 to 6.0
V
EXTAL, XTAL
VILV
-0.3 to 2.16
V
VTEST
-0.3 to 10.0
V
Instantaneous maximum current
Single pin limit for all digital I/O pins
ID
-25 to 25
mA
Instantaneous maximum current
Single pin limit for EXTAL, XTAL
I
-25 to 25
mA
Symbol
Value
Unit
Storage Temperature
TSTG
-55 to 150
C
Package Thermal Resistance - LQFP48-EP
Four layer board (JEDEC 2s2p)
Junction to Ambient Natural Convection (7)
Junction to Board (9)
Two layer board (JEDEC 1s)
Junction to Ambient Natural Convection (7), (8)
RJA
RJB
39
16
C/W
RJA
91
Package Thermal Resistance - LQFP48
Four layer board (JEDEC 2s2p)
Junction to Ambient Natural Convection (7)
Junction to Board (9)
Two layer board (JEDEC 1s)
Junction to Ambient Natural Convection (7), (8)
RJA
RJB
59
31
RJA
96
TPPRT
300
TEST input
DL
Table 7. Maximum Thermal Ratings
Ratings
Peak Package Reflow Temperature During Reflow
(10),(11)
C/W
°C
Notes
7. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
8. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
9. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the
board near the package.
10. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause
malfunction or permanent damage to the device.
11. Freescale’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and
Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view
all orderable parts. (i.e. MC34xxxD enter 34xxx), and review parametrics.
3.3
Operating Conditions
This section describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data.
Table 8. Operating Conditions
Ratings
Analog Die Nominal Operating Voltage
Symbol
Value
Unit
VSUP
5.5 to 18
V
5.5 to 27
V
4.5 to 5.5
V
Analog Die Functional Operating Voltage - Device is fully functional. All features are
operating.
VSUPOP
MCU I/O and supply voltage(12)
VEDDX
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
11
ELECTRICAL CHARACTERISTICS
Table 8. Operating Conditions (continued)
Ratings
Symbol
Value
Unit
VEDD
2.25 to 2.75
V
MCU External Oscillator
fOSC
4.0 to 16
MHz
MCU Bus frequency
fBUS
MCU Digital logic supply
voltage(12)
fBUSMAX
(13)
MHz
TA
-40 to 105
C
Operating Junction Temperature - Analog Die
TJ_A
-40 to 150
C
Operating Junction Temperature - MCU Die
TJ_M
-40 to 140
C
Operating Ambient Temperature, MM912x634xVxxx
Note:
12. During power up and power down sequence always VDD < VDDX
13. fBUSMAX frequency ratings differ by device and is specified in Table 1
3.4
Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for the measurements.
3.4.1
Measurement Conditions
All measurements are without output loads. Unless otherwise noted, the currents are measured in MCU special single chip mode and the
CPU code is executed from RAM.
Table 9. Supply Currents
Ratings
Symbol
Normal Mode analog die only, excluding external loads, LIN Recessive State (5.5 V
VSUP 18 V, 2.25 V EVDD 2.75 V, 4.5 V EVDDX 5.5 V, -40 °C TJ_A 150 °C).
IRUN_A
Normal Mode MCU die only (TJ_M = 140 °C; VDD = 2.75 V, VDDX = 5.5 V,
fOSC = 4.0 MHz, fBUS = fBUSMAX(18))(15)
IRUN_M
Stop Mode internal analog die only, excluding external loads, LIN Recessive State, Lx
enabled, measured at VS1+VS2 (5.5 V VSUP 18 V, 2.25 V EVDD 2.75 V, 4.5 V
EVDDX 5.5 V)
-40 °C TJ_A 125 °C
125 °C TJ_A 140 °C
ISTOP_A
Stop Mode MCU die only (VDD = 2.75 V, VDDX = 5.5 V, fOSC = 4.0 MHz,
fBUS = fBUSMAX(18); MCU in STOP; RTI and COP off)(16)
TJ_M = 140 °C
TJ_M = 105 °C
TJ_M = 25 °C
ISTOP_M
Stop Mode MCU die only (VDD = 2.75 V, VDDX = 5.5 V, fOSC = 4.0 MHz,
fBUS = fBUSMAX(18); MCU in STOP; RTI and COP on)(16)
TJ_M = 140 °C
TJ_M = 105 °C
TJ_M = 25 °C
ISTOP_M
Wait Mode MCU die only (TJ_M = 140 °C; VDD = 2.75 V, VDDX = 5.5 V,
fOSC = 4.0 MHz, fBUS = fBUSMAX(18); All modules except RTI disabled)(17)
IWAIT_M
Sleep Mode (VDD = VDDX = OFF; 5.5 V VSUP 18 V; -40 °C TJ_A 150 °C;
3.0 V LX 1.0 V).
ISLEEP
Cyclic Sense Supply Current Adder (5.0 ms Cycle)
Note:
14.
15.
16.
17.
18.
Min
Typ(14)
Max
Unit
-
5.0
8.0
mA
-
12.5
15
mA
-
20
-
40
50
-
0.135
0.035
0.010
0.400
0.200
0.030
mA
-
0.205
0.104
0.079
0.500
0.300
0.110
mA
-
7.0
12
mA
-
15
28
µA
-
15
20
µA
µA
ICS
Typical values noted reflect the approximate parameter mean at TA = 25 °C
IRUN_M denotes the sum of the currents flowing into VDD and VDDX.
ISTOP_M denotes the sum of the currents flowing into VDD and VDDX.
IWAIT_M denotes the sum of the currents flowing into VDD and VDDX.
fBUSMAX frequency ratings differ by device and is specified in Table 1.
MM912F634
12
Analog Integrated Circuit Device Data
Freescale Semiconductor
ELECTRICAL CHARACTERISTICS
3.5
Static Electrical Characteristics
Static electrical characteristics noted under conditions 5.5V VSUP 18 V, -40 °C TA 105 °C, unless otherwise noted. Typical values
noted reflect the approximate parameter mean at TA = 25 °C under nominal conditions unless otherwise noted.
3.5.1
Static Electrical Characteristics Analog Die
Table 10. Static Electrical Characteristics - Power Supply
Ratings
Symbol
Min
Typ
Max
Unit
Power-On Reset (POR) Threshold (measured on VS1)
VPOR
1.5
-
3.5
V
Low Voltage Warning (LVI)
Threshold (measured on VS1, falling edge)
Hysteresis (measured on VS1)
VLVI
VLVI_H
5.55
-
6.0
1.0
6.6
-
V
High Voltage Warning (HVI)
Threshold (measured on VS2, rising edge)
Hysteresis (measured on VS2)
VHVI
VHVI_H
18
-
19.25
1.0
20.5
-
V
Low Battery Warning (LBI)
Threshold (measured on VSENSE, falling edge)
Hysteresis (measured on VSENSE)
VLBI
VLBI_H
5.55
-
6.0
1.0
6.6
-
V
VJ2602UV
5.5
5.7
6.2
V
Low VDDX Voltage (LVRX) Threshold
VLVRX
2.7
3.0
3.3
V
Low VDD Voltage Reset (LVR) Threshold Normal Mode
VLVR
2.30
2.35
2.4
V
VLVRS
1.6
1.85
2.1
V
VDD Overvoltage Threshold (VROV)
VVDDOV
2.575
2.7875
3.0
V
VDDX Overvoltage Threshold (VROVX)
VVDDXOV
5.25
5.675
6.1
V
J2602 Undervoltage threshold
Low VDD Voltage Reset (LVR) Threshold Stop Mode
(19)
Note:
19. See MM912F634ER, MM912F634, Silicon Analog Mask (M91W) / Digital Mask (M33G) Errata
Table 11. Static Electrical Characteristics - Resets
Ratings
Symbol
Min
Typ
Max
Unit
VOL
-
-
0.8
V
RRPU
25
-
50
k
Low-state Input Voltage
VIL
-
-
0.3VDDX
V
High-state Input Voltage
VIH
0.7VDDX
-
-
V
VRSTRV
-
1.5
-
V
5.0
7.5
10
mA
Symbol
Min
Typ
Max
Unit
Watchdog Disable Voltage (fixed voltage)
VTST
7.0
-
10
V
Watchdog Enable Voltage (fixed voltage)
VTSTEN
-
-
5.5
V
Low-state Output Voltage IOUT = 2.0 mA
Pull-up Resistor
Reset Release Voltage (VDDX)
RESET_A pin Current Limitation
Table 12. Static Electrical Characteristics - Window Watchdog
Ratings
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
13
ELECTRICAL CHARACTERISTICS
Table 13. Static Electrical Characteristics - Voltage Regulator 5V (VDDX)
Ratings
Min
Typ
Max
4.75
5.00
5.25
80
130
200
mA
-
5.0
5.5
V
IVDDXLIMSTOP
-
-
20
mA
Line Regulation
Normal Mode, IVDDX = 80 mA
Stop Mode, IVDDX = 500 µA
LRXRUN
LRXSTOP
-
20
-
25
200
mV
Load Regulation
Normal Mode, 1.0 mA < IVDDX < 80 mA
Normal Mode, VSUP = 3.6 V, 1.0 mA < IVDDX < 40 mA
Stop Mode, 100 µA < IVDDX < 500 µA
LDXRUN
LDXCRK
LDXSTOP
-
15
-
80
200
250
CVDDX
1.0
-
10
µF
CVDDX_R
-
-
10
Min
Typ
Max
Unit
2,425
2.5
2,575
-
80
80
120
143
mA
2.25
2.5
2.75
V
IVDDLIMSTOP
-
-
10
mA
Line Regulation
Normal Mode, IVDD = 45 mA
Stop Mode, IVDD = 1.0 mA
LRRUN
LRSTOP
-
10
-
12.5
200
mV
Load Regulation
Normal Mode, 1.0 mA < IVDD < 45 mA
Normal Mode, VSUP = 3.6 V, 1.0 mA < IVDD < 30 mA
Stop Mode, 100 µA < IVDD < 500 µA
LDRUN
LDCRK
LDSTOP
-
7.5
-
40
40
200
CVDD
1.0
-
10
µF
CVDD_R
-
-
10
Normal Mode Output Voltage
1.0 mA < IVDDX + IVDDXINTERNAL < 80 mA; 5.5 V < VSUP < 27 V (20)
Normal Mode Output Current Limitation (IVDDX)
Stop Mode Output Voltage
(IVDDX + IVDDXINTERNAL < 500 µA for TJ 25 °C; IVDDX + IVDDXINTERNAL <
400 µA for TJ < 25 °C) (20)
Stop Mode Output Current Limitation (IVDDX)
Symbol
VDDXRUN
IVDDXLIMRUN
Unit
V
VDDXSTOP
External Capacitor
External Capacitor ESR
mV
Note:
20. IVDDXINTERNAL includes internal consumption from both analog and MCU die.
Table 14. Static Electrical Characteristics - Voltage Regulator 2.5 V (VDD)
Ratings
Symbol
VDDRUN
Normal Mode Output Voltage
1.0 mA < IVDD + IVDDINTERNAL 45 mA; 5.5 V < VSUP < 27 V (21)
Normal Mode Output Current Limitation (IVDD)
TJ < 25 °C
TJ 25 °C
Stop Mode Output Voltage´
(IVDD + IVDDINTERNAL < 500 µA for TJ 25 °C; IVDD + IVDDINTERNAL < 400 µA
for TJ < 25 °C) (21)
Stop Mode Output Current Limitation (IVDD)
V
IVDDLIMRUN
VDDSTOP
External Capacitor
External Capacitor ESR
mV
Note:
21. IVDDINTERNAL includes internal consumption from both analog and MCU die.
MM912F634
14
Analog Integrated Circuit Device Data
Freescale Semiconductor
ELECTRICAL CHARACTERISTICS
Table 15. Static Electrical Characteristics - Hall Sensor Supply Output - HSUP
Ratings
Symbol
Min
Typ
Max
Unit
IHSUP
40
70
90
mA
-
-
10
13
VHSUPMAX
16
17.5
18
V
Load Regulation (1.0 mA < IHSUP < 30 mA; VSUP > 18 V)
LDHSUP
-
-
500
mV
Hall Supply Capacitor Range
CHSUP
0.22
-
10
µF
CHSUP_R
-
-
10
Current Limitation (3.7 V VSUP 18 V)
Output Drain-to-Source On resistance
TJ = 150 °C, ILOAD = 30 mA; 5.5 V VSUP 16 V
TJ = 150 °C, ILOAD = 30 mA; 3.7 V VSUP < 5.5 V
Output Voltage: (18 V VSUP 27 V)
External Capacitor ESR
RDS(on)
Table 16. Static Electrical Characteristics - High-side Drivers - HS
Ratings
Symbol
Min
Typ
Max
-
-
7.0
10
14
Unit
Output Drain-to-Source On resistance
TJ = 25 °C, ILOAD = 50 mA; VSUP > 9.0 V
TJ = 150 °C, ILOAD = 50 mA; VSUP > 9.0 V
TJ = 150 °C, ILOAD = 30 mA; 5.5V < VSUP < 9.0 V
RDS(ON)
Output Current Limitation (0 V < VOUT < VSUP - 2.0 V)
ILIMHSX
60
110
250
mA
Open Load Current Detection
IOLHSX
-
5.0
7.5
mA
Leakage Current (-0.2 V < VHSx < VS2 + 0.2 V)
ILEAK
-
-
10
µA
Current Limitation Flag Threshold (5.5 V < VSUP < 27 V)
VTHSC
VSUP -2
-
-
V
Min
Typ
Max
Unit
–
–
–
–
–
–
2.5
4.5
10
Table 17. Static Electrical Characteristics - Low-side Drivers - LS
Ratings
Symbol
Output Drain-to-Source On resistance
TJ = 25 °C, ILOAD = 150 mA, VSUP > 9.0 V
TJ = 150 °C, ILOAD = 150 mA, VSUP > 9.0 V
TJ = 150 °C, ILOAD = 120 mA, 5.5 V < VSUP < 9.0 V
RDS(ON)
Output Current Limitation (2.0 V < VOUT < VSUP)
ILIMLSX
180
275
380
mA
Open Load Current Detection
IOLLSX
-
8.0
12
mA
Leakage Current (-0.2 V < VOUT < VS1)
ILEAK
-
-
10
µA
VCLAMP
40
-
45
V
Coil Series Resistance (IOUT = 150 mA)
RCOIL
120
-
Coil Inductance (IOUT = 150 mA)
RCOIL
-
-
400
mH
Current Limitation Flag Threshold (5.5 V < VSUP < 27 V)
VTHSC
2.0
-
-
V
Symbol
Min
Typ
Max
Unit
IBUSLIM
40
120
200
mA
Input Leakage Current at the Receiver incl. Pull-up Resistor RSLAVE;
Driver OFF; VBUS = 0 V; VBAT = 12 V
IBUS_PAS_DOM
-1.0
-
-
mA
Input Leakage Current at the Receiver incl. Pull-up Resistor RSLAVE;
Driver OFF;
8.0 V < VBAT < 18 V; 8.0 V < VBUS < 18 V; VBUS VBAT
IBUS_PAS_REC
-
-
20
µA
Active Output Energy Clamp (IOUT = 150 mA)
Table 18. Static Electrical Characteristics - LIN Physical Layer Interface - LIN
Ratings
Current Limitation for Driver dominant state. VBUS = 18 V
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
15
ELECTRICAL CHARACTERISTICS
Table 18. Static Electrical Characteristics - LIN Physical Layer Interface - LIN (continued)
Ratings
Symbol
Min
Typ
Max
Unit
Input Leakage Current; GND Disconnected; GNDDEVICE = VSUP; 0 <
VBUS < 18 V; VBAT = 12 V
IBUS_NO_GND
-1.0
-
1.0
mA
Input Leakage Current; VBAT disconnected; VSUP_DEVICE = GND; 0 <
VBUS < 18 V
IBUS_NO_BAT
-
-
100
µA
Receiver Input Voltage; Receiver Dominant State
VBUSDOM
-
-
0.4
VSUP
Receiver Input Voltage; Receiver Recessive State
VBUSREC
0.6
-
-
VSUP
Receiver Threshold Center (VTH_DOM + VTH_REC)/2
VBUS_CNT
0.475
0.5
0.525
VSUP
Receiver Threshold Hysteresis (VTH_REC - VTH_DOM)
VBUS_HYS
-
-
0.175
VSUP
Voltage Drop at the serial Diode
DSER_INT
0.4
0.7
1.0
V
RSLAVE
20
30
60
k
VWUP
4.5
5.0
6.0
V
VDOM
-
-
2.5
V
LIN Pull-up Resistor
Bus Wake-up Threshold from Stop or
Sleep(22)
Bus Dominant Voltage
Note:
22. Considering drop from VBAT to LIN, at very low VBAT level, the internal logic detects a dominant as the threshold does not decrease with VSUP.
Table 19. Static Electrical Characteristics - High Voltage Inputs - Lx
Ratings
Symbol
Min
Typ
Max
Unit
Low Detection Threshold
7.0 V VSUP 27 V
5.5 V VSUP 7 V
VTHL
2.2
1.5
2.5
2.5
3.4
4.0
V
High Detection Threshold
7.0 V VSUP 27 V
5.5 V VSUP 7 V
VTHH
2.6
2.0
3.0
3.0
3.7
4.5
V
Hysteresis
5.5 V VSUP 27 V
VHYS
0.25
0.45
1.0
V
IIN
-10
-
10
µA
RLxIN
-
-
1.2
M
RLx
9.5
10
10.5
k
CLx
-
100
-
nF
Analog Input Divider Ratio (RATIOLx = VLx / VADOUT0)
LXDS (Lx Divider Select) = 0
LXDS (Lx Divider Select) = 1
RATIOLx
-
2.0
7.2
-
Analog Input Divider Ratio Accuracy
RATIOLX
-5.5
-
5.5
%
Analog Inputs Channel Ratio - Mismatch
LXDS (Lx Divider Select) = 0
LXDS (Lx Divider Select) = 1
LxMATCH
-
-
5.0
5.0
%
Input Current Lx (-0.2 V < VIN < VS1)
Analog Input Impedance Lx
Lx Series Resistor
Lx Capacitor
(optional)(23)
Note:
23. The ESD behavior specified in Section 3.8, “ESD Protection and Latch-up Immunity" are guaranteed without the optional capacitor.
Table 20. Static Electrical Characteristics - General Purpose I/O - PTB[0…2]
Ratings
Symbol
Min
Typ
Max
Unit
Input high voltage
VIH
0.7VDDX
-
VDDX+0.3
V
Input low voltage
VIL
VSS-0.3
-
0.35VDDX
V
Input hysteresis
VHYS
-
140
-
mV
Input high voltage (VS1 = 3.7 V)
VIH3.7
2.1
-
VDDX+0.3
V
MM912F634
16
Analog Integrated Circuit Device Data
Freescale Semiconductor
ELECTRICAL CHARACTERISTICS
Table 20. Static Electrical Characteristics - General Purpose I/O - PTB[0…2] (continued)
Ratings
Symbol
Min
Typ
Max
Unit
Input low voltage (VS1 = 3.7 V)
VIL3.7
VSS-0.3
-
1.4
V
Input hysteresis (VS1 = 3.7 V)
VHYS3.7
100
200
300
mV
-1.0
-
1.0
µA
Input leakage current (pins in high-impedance input mode)
(VIN = VDDX or VSSX)
IIN
Output high voltage (pins in output mode) Full drive IOH = –10 mA
VOH
VDDX-0.8
-
-
V
Output low voltage (pins in output mode) Full drive IOL = +10 mA
VOL
-
-
0.8
V
Internal pull-up resistance (VIH min > Input voltage > VIL max)
RPUL
26.25
37.5
48.75
k
CIN
-
6.0
-
pF
VCL_AIN
VDD
-
-
V
Analog Input impedance = 10 k max, Capacitance = 12 pF
RAIN
-
-
10
k
Analog Input Capacitance = 12 pF
CAIN
-
12
-
pF
Maximum current all PTB combined (VDDX capability)
IBMAX
-15
-
15
mA
Output Drive strength at 10 MHz
COUT
-
-
100
pF
Input capacitance
Clamp Voltage when selected as analog input
Table 21. Static Electrical Characteristics - Analog Digital Converter - ADC(24)
Ratings
Symbol
Min
Typ
Max
ADC2p5 Reference Voltage
5.5 V < VSUP < 27 V
VADC2p5RUN
2,45
2.5
2,55
ADC2p5 Reference Stop Mode Output Voltage
VADC2p5STOP
-
-
100
mV
Line Regulation, Normal Mode
LRRUNA
-
10
12.5
mV
External Capacitor
CADC2p5
0.1
-
1.0
µF
External Capacitor ESR
CVDD_R
-
-
10
W
Scale Factor Error
ESCALE
-1
-
1
LSB
Differential Linearity Error
EDNL
-1.5
-
1.5
LSB
Integral Linearity Error
EINL
-1.5
-
1.5
LSB
Zero Offset Error
EOFF
-2.0
-
2.0
LSB
Quantization Error
EQ
-0.5
-
0.5
LSB
Total Error with offset compensation
TE
-5.0
-
5.0
LSB
ADCH14
1.1
1.25
1.4
V
Bandgap measurement Channel (CH14) Valid Result Range (including 7.0%
bg1p25 sleep accuracy + high-impedance measurement error of 5.0% at fADC)(25)
Unit
V
Note:
24. No external load allowed on the ADC2p5 pin.
25. Reduced ADC frequency lowers measurement error.
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
17
ELECTRICAL CHARACTERISTICS
Table 22. Static Electrical Characteristics - Current Sense Module - ISENSE
Ratings
Symbol
Gain
CSGS (Current Sense Gain Select) = 000
CSGS (Current Sense Gain Select) = 001
CSGS (Current Sense Gain Select) = 010
CSGS (Current Sense Gain Select) = 011
CSGS (Current Sense Gain Select) = 100
CSGS (Current Sense Gain Select) = 101
CSGS (Current Sense Gain Select) = 110
CSGS (Current Sense Gain Select) = 111
Gain Accuracy
Offset
Resolution
Min
Typ
Max
Unit
-
7.0
9.0
10
12
14
18
24
36
-
-3.0
-
3.0
%
G
(26)
ISENSEH, ISENSEL Input Common Mode Voltage Range
Current Sense Module - Normal Mode Current Consumption Adder (CSE = 1)
-1.5
-
1.5
%
RES
-
51
-
mA/LSB
VIN
-0.2
-
3.0
V
IISENSE
-
600
-
µA
Symbol
Min
Typ
Max
Unit
TSG
-
9.17
-
mV/k
Note:
26. RES = 2.44 mV/(GAIN*RSHUNT)
Table 23. Static Electrical Characteristics - Temperature Sensor - TSENSE
Ratings
Internal Chip Temperature Sense Gain
(27)
Internal Chip Temperature Sense Error at the end of
conversion(27)
Temperature represented by a ADCIN Voltage of 0.150
TSERR
–5.0
-
5.0
°C
V(27)
T0.15V
-55
-50
-45
°C
(27)
T1.984V
145
150
155
°C
Temperature represented by a ADCIN Voltage of 1.984 V
Note:
27. Guaranteed by design and characterization.
Table 24. Static Electrical Characteristics - Supply Voltage Sense - VSENSE and VS1SENSE
Ratings
VSENSE Input Divider Ratio (RATIOVSENSE = VVSENSE / ADCIN)
5.5 V < VSUP < 27 V
VSENSE error - whole path (VSENSE pin to Digital value)
VS1SENSE Input Divider Ratio (RATIOVS1SENSE = VVS1SENSE / ADCIN)
5.5 V < VSUP < 27 V
VS1SENSE error - whole path (VS1 pin to Digital value)
VSENSE Series Resistor
(28)
VSENSE Capacitor (optional)
Symbol
Min
RATIOVSENSE
ERVSENSE
Typ
Max
Unit
5.0
%
10.8
-
RATIOVS1SENSE
10.8
ERVS1SENSE
-
-
5.0
%
RVSENSE
9.5
10
10.5
k
CVSENSE
-
100
-
nF
Note:
28. The ESD behavior specified in Section 3.8, “ESD Protection and Latch-up Immunity" is guaranteed without the optional capacitor.
MM912F634
18
Analog Integrated Circuit Device Data
Freescale Semiconductor
ELECTRICAL CHARACTERISTICS
3.5.2
Static Electrical Characteristics MCU Die
3.5.2.1
I/O Characteristics
This section describes the characteristics of all I/O pins except EXTAL, XTAL, TEST and supply pins.
Table 25. 5.0 V I/O Characteristics for PTA, RESET and BKGD Pins
Ratings
Symbol
Min
Typ
Max
Unit
0.65*VDD
-
-
V
Input high voltage
V
Input high voltage
VIH
-
-
VDD + 0.3
V
Input low voltage
VIL
-
-
0.35*VDD
V
Input low voltage
VIL
VSS - 0.3
-
-
V
Input hysteresis
VHYS
-
250
-
mV
IIN
-1.0
-
1.0
A
OH
VDD – 0.8
-
-
V
OH
VDD – 0.8
-
-
V
Input leakage current (pins in high-impedance input mode)
Vin = VDDX or VSSX
IH
Output high voltage (pins in output mode) Partial Drive IOH = -2.0 mA
V
Output high voltage (pins in output mode) Full Drive IOH = -10 mA
V
Output low voltage (pins in output mode) Partial drive IOL = +2.0 mA
VOL
-
-
0.8
V
Output low voltage (pins in output mode) Full Drive IOL = +10 mA
VOL
-
-
0.8
V
Internal pull-up resistance (VIHmin > input voltage > VILmax)
RPUL
25
-
50
k
Internal pull-down resistance (VIHmin > input voltage > VILmax)
RPDH
25
-
50
k
Cin
-
6.0
-
pF
IICS
IICP
-2.5
-25
-
2.5
25
mA
Input capacitance
current(29)
Injection
Single pin limit
Total device Limit, sum of all injected currents
Note:
29. Refer to Section 3.8, “ESD Protection and Latch-up Immunity" for more details.
3.6
Dynamic Electrical Characteristics
Dynamic electrical characteristics noted under conditions 5.5V VSUP 18 V, -40 °C TA 105 °C, unless otherwise noted. Typical
values noted reflect the approximate parameter mean at TA = 25 °C under nominal conditions unless otherwise noted.
3.6.1
Dynamic Electrical Characteristics Analog Die
Table 26. Dynamic Electrical Characteristics - Modes of Operation
Ratings
Symbol
Min
Typ
Max
Unit
VDD Short Timeout
tVTO
110
150
205
ms
Analog Base Clock
fBASE
-
100
-
kHz
Reset Delay
tRST
140
200
280
µs
Table 27. Dynamic Electrical Characteristics - Power Supply
Ratings
Glitch Filter Low Battery Warning
Symbol
Min
Typ
Max
Unit
(LBI)(30)
tLB
-
2.0
-
µs
(30)
tLV
-
2.0
-
µs
Glitch Filter Low Voltage Warning (LVI)
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
19
ELECTRICAL CHARACTERISTICS
Table 27. Dynamic Electrical Characteristics - Power Supply (continued)
Ratings
Symbol
Min
Typ
Max
Unit
(30)
tHV
-
2.0
-
µs
Symbol
Min
Typ
Max
Glitch Filter High Voltage Warning (HVI)
Note:
30. Guaranteed by design.
Table 28. Dynamic Electrical Characteristics - Die to Die Interface - D2D
Ratings
Unit
fD2D
fADC(MIN)
-
Symbol
Min
Typ
Max
Unit
Reset Deglitch Filter Time
tRSTDF
1.2
2.0
3.0
µs
Reset Low Level Duration
tRSTLOW
140
200
280
µs
Symbol
Min
Typ
Max
Unit
Lx Wake-up Filter Time
tWUF
-
20
Cyclic Sense / Forced Wake-up Timing Accuracy - not trimmed
CSAC
-35
-
35
%
trimmed(32)
CSACT
-5.0
-
5.0
%
Operating Frequency (D2DCLK, D2D[0:3])
fBUSMAX
(31)
MHz
Note:
31. fBUSMAX frequency ratings differ by device and is specified in Table 1
Table 29. Dynamic Electrical Characteristics - Resets
Ratings
Table 30. Dynamic Electrical Characteristics - Wake-up / Cyclic Sense
Ratings
Cyclic Sense / Forced Wake-up Timing Accuracy -
Time between HSx on and Lx sense during cyclic sense
tS
s
same as tHSON / tHSONT
-
tHSON
140
200
280
s
tHSONT
180
200
220
s
Symbol
Min
Typ
Max
Unit
Initial Non-window Watchdog Timeout
tIWDTO
110
150
190
ms
Watchdog Timeout Accuracy - not trimmed
WDAC
-35
-
35
%
Watchdog Timeout Accuracy - trimmed
WDACT
-5.0
-
5.0
%
Symbol
Min
Typ
Max
Unit
-
-
50
kHz
HSx ON duration during Cyclic Sense
HSx ON duration during Cyclic Sense -
trimmed(32)
Note:
32. Trimming parameters are not available in Sleep mode.
Table 31. Dynamic Electrical Characteristics - Window Watchdog
Ratings
Table 32. Dynamic Electrical Characteristics - High-side Drivers - HS
Ratings
High-side Operating Frequency(33), Load Condition: CLOAD2.2 nF;
RLOAD500
fHS
Note:
33. Guaranteed by design.
MM912F634
20
Analog Integrated Circuit Device Data
Freescale Semiconductor
ELECTRICAL CHARACTERISTICS
Table 33. Dynamic Electrical Characteristics - Low-side Drivers - LS
Ratings
(34),
Low-side Operating Frequency
RLOAD500
Symbol
Min
Typ
Max
Unit
-
-
50
kHz
Symbol
Min
Typ
Max
Unit
tPROPWL
60
80
100
µs
BRFAST
-
-
100
kBit/s
tREC_PD
-
-
6.0
µs
tREC_SYM
-2.0
-
2.0
µs
fHS
Load Condition: CLOAD2.2 nF;
Note:
34. Guaranteed by design.
Table 34. Dynamic Electrical Characteristics - LIN Physical Layer Interface - LIN
Ratings
Bus Wake-up Deglitcher (Sleep and Stop Mode)
Fast Bit Rate (Programming Mode)
Propagation Delay of Receiver, tREC_PD = MAX (tREC_PDR, tREC_PDF
)(35)
Symmetry of Receiver Propagation Delay, tREC_PDF - tREC_PDR
LIN Driver - 20.0 kBit/s; Bus load conditions (CBUS; RBUS): 1.0 nF; 1.0 k / 6,8 nF;660 / 10 nF;500 . Measurement thresholds: 50% of TXD signal to
LIN signal threshold defined at each parameter. See Figure 5 and Figure 6.
Duty Cycle 1:
THREC(MAX) = 0.744 x VSUP, THDOM(MAX) = 0.581 x VSUP, 7.0 V VSUP18 V;
tBit = 50 µs;, D1 = tBUS_REC(MIN)/(2 x tBit)
D1
0.396
-
-
Duty Cycle 2:
THREC(MIN) = 0.422 x VSUP, THDOM(MIN) = 0.284 x VSUP, 7.6 V VSUP18 V;
tBIT = 50 µs, D2 = tBUS_REC(MAX)/(2 x tBIT)
D2
-
-
0.581
LIN Driver - 10.0 kBit/s; Bus load conditions (CBUS; RBUS): 1.0 nF; 1.0 k / 6,8 nF;660 / 10 nF;500 Measurement thresholds: 50% of TXD signal to
LIN signal threshold defined at each parameter. See Figure 5 and Figure 7.
Duty Cycle 3:
THREC(MAX) = 0.778 x VSUP, THDOM(MAX) = 0.616 x VSUP, 7.0 V VSUP18 V;
tBIT = 96 µs, D3 = TBUS_REC(MIN)/(2 x tBIT)
D3
0.417
-
-
Duty Cycle 4:
THREC(MIN) = 0.389 x VSUP, THDOM(MIN) = 0.251 x VSUP, 7.6 V VSUP18 V;
tBIT = 96 µs, D4 = tBUS_REC(MAX)/(2 x tBIT)
D4
-
-
0.590
tTRAN_SYM
-7.25
0
7.25
Transmitter Symmetry
tTRAN_SYM < MAX(tTRAN_SYM60%, tTRAN_SYM40%)
tran_sym60% = ttran_pdf60% - ttran_pdr60%
tran_sym40% = ttran_pdf40% - ttran_pdr40%
µs
Note:
35. VSUP from 7.0 to 18 V, bus load RBUS and CBUS 1.0 nF / 1.0 k, 6.8 nF / 660 , 10 nF / 500 . Measurement thresholds: 50% of TXD signal to LIN
signal threshold defined at each parameter. See Figure 5 and Figure 8.
36. LIN Transmitter Timing, (VSUP from 7.0 to 18 V) - See Figure 9
VSU
VSU
RO
TXD
LIN
RXD
CO
GND
Note: Rn and Cn: 1.0k/1.0nF, 660/6.8
Figure 5. Test Circuit for Timing Measurements
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
21
ELECTRICAL CHARACTERISTICS
Figure 6. LIN Timing Measurements for Normal Baud Rate
Figure 7. LIN Timing Measurements for Slow Baud Rate
MM912F634
22
Analog Integrated Circuit Device Data
Freescale Semiconductor
ELECTRICAL CHARACTERISTICS
Figure 8. LIN Receiver Timing
TX
BUS
60%
40%
ttran_pdf60%
ttran_pdr40%
ttran_pdf40%
ttran_pdr60%
Figure 9. LIN Transmitter Timing
Table 35. Dynamic Electrical Characteristics - General Purpose I/O - PTB[0…2]
Ratings
GPIO Digital
Frequency(37)
Propagation Delay - Rising
Rise Time - Rising Edge
(37)
Propagation Delay - Falling
Rise Time - Falling
Edge(37), (38)
Edge(37)
Edge(37)
Symbol
Min
Typ
Max
Unit
fPTB
-
-
10
MHz
tPDR
-
-
20
ns
tRISE
-
-
17.5
ns
tPDF
-
-
20
ns
tFALL
-
-
17.5
ns
Note:
37. Guaranteed by design.
38. Load PTBx = 100 pF.
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
23
ELECTRICAL CHARACTERISTICS
Table 36. Dynamic Electrical Characteristics - Analog Digital Converter - ADC
Ratings
ADC Operating
Symbol
Min
Typ
Max
Unit
fADC
1.6
2.0
2.4
MHz
Frequency(39)
Conversion Time (from ACCR write to CC
Flag)(39)
tCONV
Sample Frequency Channel 14 (Bandgap)
(39)
fCH14
26
-
-
clk
2.5
kHz
Note:
39. Guaranteed by design.
3.6.2
3.6.2.1
Dynamic Electrical Characteristics MCU Die
NVM Timing
The time base for all NVM program or erase operations is derived from the bus block. A minimum bus frequency fNVMBUS is required for
performing program or erase operations. The NVM module do not has any means to monitor the frequency and does not prevent a
program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency, a full program, or erase transition is not assured.
The Flash program and erase operations are timed using a clock derived from the bus clock using the FCLKDIV and register. The
frequency of this clock must be set within the limits specified as fNVMOP.
The minimum program and erase times shown in Table 37 are calculated for maximum fNVMOP and maximum fBUS. The maximum times
are calculated for minimum fNVMOP and a fBUS of 2.0 MHz.
3.6.2.1.1
Single Word Programming
The programming time for single word programming is dependant on the bus frequency as a well as on the frequency fNVMOP, and can be
calculated according to the following formula.
t
3.6.2.1.2
swpgm
1
1
= 9 ------------------------- + 25 ----------f
f
NVMOP
bus
Burst Programming
This applies only to the Flash, where up to 64 words in a row can be programmed consecutively, using burst programming by keeping the
command pipeline filled. The time to program a consecutive word can be calculated as:
bwpgm
1
1
= 4 ------------------------- + 9 ----------f
f
NVMOP
bus
t
= t
t
The time to program a whole row is:
brpgm
swpgm
+ 63 t
bwpgm
Burst programming is more than 2 times faster than single word programming.
3.6.2.1.3
Sector Erase
NOTE
The sector erase cycle is divided into 16 individual erase pulses to achieve faster system response
during the erase flow. The given erase time (tERA) specifies the time considering consecutive pulses.
MM912F634
24
Analog Integrated Circuit Device Data
Freescale Semiconductor
ELECTRICAL CHARACTERISTICS
Erasing a 512-byte Flash sector takes:
t
era
1
4000 ------------------------f
NVMOP
The setup time can be ignored for this operation.
3.6.2.1.4
Mass Erase
Erasing a NVM block takes:
t
mass
1
20000 Þ ------------------------f
NVMOP
The setup time can be ignored for this operation.
3.6.2.1.5
Blank Check
The time it takes to perform a blank check on the Flash is dependant on the location of the first non-blank word, starting at relative address
zero. It takes one bus cycle per word to verify plus a setup of the command.
t
check
ª location Þ t
cyc
+ 10 Þ t
cyc
Table 37. NVM Timing Characteristics
Rating
Symbol
Min
Typ
Max
Unit
Bus frequency for programming or erase operations
fNVMBUS
1.0
-
-
MHz
Operating frequency
fNVMOP
150
-
200
kHz
tSWPGM
46(40)
-
74.5(40)
s
Single word programming time
Flash burst programming consecutive word
Flash burst programming time for 64
Sector erase
words(43)
time(41)
Mass erase time
Blank check time Flash per block
tBWPGM
20.4
(40)
tBRPGM
1331.2(40)
tERA
20(42)
tMASS
tCHECK
100
(44)
11(43)
-
31
(41)
s
-
2027.5(41)
s
-
26.7(41)
ms
-
(41)
ms
-
133
65546(44)
tCYC
Note:
40. Minimum programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency fBUS.
41. The sector erase cycle is divided into 16 individual erase pulses to achieve faster system response during the erase flow. The given erase time
(tERA) specifies the time considering consecutive pulses.
42. Minimum erase times are achieved under maximum NVM operating frequency, fNVMOP.
43. Minimum time, if first word in the array is not blank.
44. Maximum time to complete check on an erased block.
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
25
ELECTRICAL CHARACTERISTICS
3.6.2.2
NVM Reliability
The reliability of the NVM blocks is guaranteed by stress tests during qualification, constant process monitors, and burn-in to screen early
life failures. The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed.
Table 38. NVM Reliability Characteristics
Rating
Symbol
Data retention after 10,000 program/erase cycles for TJAVG 85 C
Data retention with VLVRX the MM912F634 analog die enters in Normal mode.
To avoid short-circuit conditions being present for a long time, a tVTO timeout is implemented. Once VDD < VLVR or VDDX < VLVRX with
VS1 > (VLVRI+ VLVR _H) for more than tVTO, the MM912F634 analog die transitions directly to Sleep mode.
The Reset Status Register (RSR) indicates the source of the reset by individual flags.
•
•
•
•
•
•
POR - Power On Reset
LVR - Low Voltage Reset VDD
LVRX - Low Voltage Reset VDDX
WDR - Watchdog Reset
EXR - External Reset
WUR - Wake-up Sleep Reset
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
51
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
See also Section 4.7, “Resets".
4.3.3
Normal Mode
In Normal mode, all MM912F634 analog die user functions are active and can be controlled by the D2D Interface. Both regulators (VDD
and VDDX) are active and operate with full current capability.
Once entered in Normal mode, the Watchdog operates as a simple non-window watchdog with an initial timeout (tIWDTO) to be reset via
the D2D Interface. After the initial reset, the watchdog operates in standard window mode. See Section 4.9, “Window Watchdog" for
details.
4.3.4
Stop Mode
NOTE
To avoid any pending analog die interrupts prevent the MCU from entering MCU stop resulting in
unexpected system behavior, the analog die IRQ sources should be disabled and the corresponding
flags be cleared before entering stop.
The Stop mode allows reduced current consumption with fast startup time. In this mode, both voltage regulators (VDD and VDDX) are
active, with limited current drive capability. In this condition, the MCU is supposed to operate in Low Power mode (STOP or WAIT).
The device can enter in Stop mode by configuring the Mode Control Register (MCR) via the D2D Interface. The MCU has to enter a Low
Power mode immediately afterwards executing the STOP or WAIT instruction. The Wake-up Source Register (WSR) has to be read after
a wake-up condition in order to execute a new STOP mode command. Two base clock cycles (fBASE) delay are required between WSR
read and MCR write.
While in Stop mode, the MM912F634 analog die wakes up on the following sources:
•
•
•
•
Lx - Wake-up (maskable with selectable cyclic sense)
Forced Wake-up (configurable timeout)
LIN Wake-up
D2D Wake-up (special command)
After Wake-up from the sources listed above, the device transitions to Normal mode.
Reset wakes up the device directly to Reset mode.
See Section 4.8, “Wake-up / Cyclic Sense" for details.
4.3.5
Sleep Mode
The Sleep mode allows very low current consumption. In this mode, both voltage regulators (VDD and VDDX) are inactive.
The device can enter into Sleep mode by configuring the Mode Control Register (MCR) via the D2D- Interface. During Sleep mode, all
unused internal blocks are deactivated to allow the lowest possible consumption. Power consumption decreases further if the Cyclic
Sense or Forced Wake-up feature are disabled. While in Sleep mode, the MM912F634 analog die wakes up on the following sources:
• Lx - Wake-up (maskable with selectable cyclic sense)
• Forced Wake-up (configurable timeout)
• LIN Wake-up
After Wake-up from the sources listed above or a reset condition, the device transitions to Reset mode.
See Section 4.8, “Wake-up / Cyclic Sense" for details.
MM912F634
52
Analog Integrated Circuit Device Data
Freescale Semiconductor
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
4.3.6
Analog Die Functionality by Operation Mode
Table 71. Operation Mode Overview
Function
Reset
Normal
Stop
Sleep
VDD/VDDX
full
full
stop
OFF
HSUP
full
OFF
OFF
LSx
full
OFF
OFF
Cyclic Sense(66)
HSx
full
ADC
full
OFF
OFF
D2D
full
functional
OFF
full
Wake-up(66)
Wake-up(66)
full
OFF
OFF
Lx
OFF
PTBx
Cyclic
Sense(66)
(66)
Wake-up(66)
LIN
full
Watchdog
full(67)
OFF
OFF
VSENSE
full
OFF
OFF
CSENSE
full
OFF
OFF
Cyclic Sense
Wake-up
not active
Cyclic
Sense(66)
Cyclic Sense(66)
Note:
66. If configured.
67. Special init through non window watchdog.
4.3.7
Register Definition
4.3.7.1
Mode Control Register (MCR)
Table 72. Mode Control Register (MCR)
Offset() 0x16
R
Access: User read/write
7
6
5
4
3
2
0
0
0
0
0
0
0
0
0
0
0
0
1
MODE
W
Reset
0
0
0
Offset related to 0x0200 for blocking access and 0x300 for non blocking access within the global address space.
Table 73. MCR - Register Field Descriptions
Field
1-0
MODE
Description
Mode Select - These bits issue a transition from to the selected Operating mode.
00 - Normal mode. Only with effect in Stop Mode. Issues a wake-up and transition to Normal mode.
01 - Stop mode. Initiates a transition to Stop mode.(68)
10 - Sleep mode. Initiates transition to Sleep mode.
11 - Normal mode.
Note:
68. The Wake-up Source Register (WSR) has to be read after a wake-up condition in order to execute a new STOP mode command. Two base clock
cycles (fBASE) delay are required between WSR read and MCR write.
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
53
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
4.4
Power Supply
The MM912F634 analog die supplies VDD (2.5 V), VDDX (5.0 V), and HSUP, based on the supply voltage applied to the VS1 pin. VDD
is cascaded of the VDDX regulator. To separate the High-side outputs from the main power supply, the VS2 pin does only power the
High-side drivers. Both supply pins have to be externally protected against reverse battery conditions. To supply external Hall Effect
Sensors, the HSUP pin supplies a switchable regulated supply. See Section 4.10, “Hall Sensor Supply Output - HSUP".
A reverse battery protected input (VSENSE) is implemented to measure the Battery Voltage directly. A serial resistor (RVSENSE) is
required on this pin. See Section 4.22, “Supply Voltage Sense - VSENSE". In addition, the VS1 supply can be routed to the ADC
(VS1SENSE) to measure the VS1 pin voltage directly. See Section 4.23, “Internal Supply Voltage Sense - VS1SENSE".
To have an independent ADC verification, the internal sleep mode bandgap voltage can be routed to the ADC (BANDGAP). As this node
is independent from the ADC reference, any out of range result would indicate malfunctioning ADC or Bandgap reference. See
Section 4.24, “Internal Bandgap Reference Voltage Sense - BANDGAP".
To stabilize the internal ADC reference voltage for higher precision measurements, the current limited ADC2p5 pin needs to be connected
to an external filter capacitor (CADC2p5). It is not recommended to connect additional loads to this pin. See Section 4.19, “Analog Digital
Converter - ADC".
The following safety features are implemented:
VSENSE
VS1
LBI - Low Battery Interrupt, internally measured at VSENSE
LVI - Low Voltage Interrupt, internally measured at VS1
HVI - High Voltage Interrupt, internally measured at VS2
VROVI - Voltage Regulator Overvoltage Interrupt internally measured at VDD and VDDX
LVR - Low Voltage Reset, internally measured at VDD
LVRX - Low Voltage Reset, internally measured at VDDX
HTI - High Temperature Interrupt measured between the VDD and VDDX regulators
Overtemperature Shutdown measured between the VDD and VDDX regulators
VS2
•
•
•
•
•
•
•
•
LBI
HVI
HS1
HS2
÷
HS1 & HS2
LVI
ADC
bg1p25sleep
HSUP
HSUP (18V)
Regulator
VDDX (5V)
Regulator
CHSUP
VDDXINTERNAL
VDDX
LVRX
VROV
CVDDX
ADC2p5
ADC 2.5V
Reference
VDD (2.5V)
Regulator
CADC
VDD
VDDINTERNAL
LVR
CVDD
Figure 17. MM912F634 Power Supply
MM912F634
54
Analog Integrated Circuit Device Data
Freescale Semiconductor
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
4.4.1
Voltage Regulators VDD (2.5 V) & VDDX (5.0 V)
To supply the MCU die and minor additional loads two cascaded voltage regulators have been implemented, VDDX (5.0 V) and VDD
(2.5 V). External capacitors (CVDD) and (CVDDX) are required for proper regulation.
4.4.2
Power Up Behavior / Power Down Behavior
To guarantee safe power up and down behavior, special dependencies are implemented to prevent unwanted MCU execution.
Figure 18 shows a standard power up and power down sequence.
MCU_POR
MCU_POR
RESET_A
Normal Operating
Range (not to scale)
VLBI / VLVI
VROVX
5V
VLVRX
VROX
VLVR
4
1
5
2
VPOR_A
VPOR_MCU
3
VSUP
6
VDDX
VDD
Figure 18. Power-up / Down Sequence
To avoid any abnormal device behavior, it is essential to have the MCU Power on Reset (POR) block complete its start-up sequence before
the analog die reset signal (RESET A) is asserted. Since the RESET A circuitry is supplied by VDDX, the voltage on the 2.5 V supply (VDD)
needs to remain below the POR threshold whenever VDDX is too low to guarantee RESET A can be properly asserted (3;6). This is
achieved with the following implementation.
Power-up:
• The VDD regulator is enabled after VDDX has reached the VLVRX threshold (1).
• Once VDD reaches VLVR, the RESET_A is released (2).
Power-down:
• Once VDDX has reached the VLVRX threshold (4), the VDD regulator is disabled and the regulator output is actively pulled down to
discharge any VDD capacitance (5). RESET_A is activated as well.
• The active discharge guarantees VDD to be below POR level before VDDX discharges below critical level for the reset circuity.
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
55
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
4.4.3
Register Definition
4.4.3.1
Voltage Control Register (VCR)
Table 74. Voltage Control Register (VCR)
Offset(69)
Access: User read/write
0x04
R
7
6
5
0
0
0
0
0
0
W
Reset
4
3
2
1
0
VROVIE
HTIE
HVIE
LVIE
LBIE
0
0
0
0
0
Note:
69. Offset related to 0x0200 for blocking access and 0x300 for non blocking access within the global address space.
Table 75. VCR - Register Field Descriptions
Field
4
VROVIE
Description
Voltage Regulator Overvoltage Interrupt Enable — Enables the interrupt for the Regulator Overvoltage Condition.
0 - Voltage Regulator Overvoltage Interrupt is disabled
1 - Voltage Regulator Overvoltage Interrupt is enabled
3
HTIE
High Temperature Interrupt Enable — Enables the interrupt for the Voltage Regulator (VDD/VDDX) Temperature Warning.
0 - High Temperature Interrupt is disabled
1 - High Temperature Interrupt is enabled
2
HVIE
High Voltage Interrupt Enable — Enables the interrupt for the VS2 - High Voltage Warning.
0 - High Voltage Interrupt is disabled
1 - High Voltage Interrupt is enabled
1
LVIE
Low Voltage Interrupt Enable — Enables the interrupt for the VS1 - Low Voltage Warning.
0 - Low Voltage Interrupt is disabled
1 - Low Voltage Interrupt is enabled
0
LBIE
Low Battery Interrupt Enable — Enables the interrupt for the VSENSE - Low Battery Voltage Warning.
0 - Low Battery Interrupt is disabled
1 - Low Battery Interrupt is enabled
4.4.3.2
Voltage Status Register (VSR)
Table 76. Voltage Status Register (VSR)
Offset(70) 0x05
R
Access: User read
7
6
5
4
3
2
1
0
0
0
0
VROVC
HTC
HVC
LVC
LBC
0
0
0
0
0
0
0
0
W
Reset
Note:
70. Offset related to 0x0200 for blocking access and 0x300 for non blocking access within the global address space.
MM912F634
56
Analog Integrated Circuit Device Data
Freescale Semiconductor
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
Table 77. VSR - Register Field Descriptions
Field
Description
4
VROVC
Voltage Regulator Overvoltage Condition - This status bit indicates an overvoltage warning is present for at least one of the main voltage
regulators (VDD or VDDX). Reading the register clears the VROVI flag if present. See Section 4.6, “Interrupts" for details. Note: This
feature requires the trimming of Section 4.25.2.3, “Trimming Register 2 (CTR2)" to be done to be effective. Untrimmed devices may
issue the VROVC condition including the LS turn off at normal operation.
0 - No Voltage Regulator Overvoltage Condition present.
1 - Voltage Regulator Overvoltage Condition present.
3
HTC
High Temperature Condition - This status bit indicates a high temperature warning is present for the Voltage regulators (VDD/VDDX).
Reading the register clears the HTI flag if present. See Section 4.6, “Interrupts" for details.
0 - No High Temperature Condition present.
1 - High Temperature Condition present.
2
HVC
High Voltage Condition - This status bit indicates a high voltage warning for VS2 is present. Reading the register clears the HVI flag if
present. See Section 4.6, “Interrupts" for details.
0 - No High Voltage Condition present.
1 - High Voltage Condition present.
1
LVC
Low Voltage Condition - This status bit indicates a low voltage warning for VS1 is present. Reading the register clears the LVI flag if
present. See Section 4.6, “Interrupts" for details.
0 - No Low Voltage Condition present.
1 - Low Voltage Condition present.
0
LBC
Low Battery Condition - This status bit indicates a low voltage warning for VSENSE is present. Reading the register clears the LBI flag
if present. See Section 4.6, “Interrupts" for details.
0 - No Low Battery Condition present.
1 - Low Battery Condition present.
4.5
Die to Die Interface - Target
The D2D Interface is the bus interface to the Microcontroller. Access to the MM912F634 analog die is controlled by the D2D Interface
module. This section describes the functionality of the die-to-die target block (D2D).
4.5.1
Overview
The D2D is the target for a data transfer from the target to the initiator (MCU). The initiator provides a set of configuration registers and
two memory mapped 256 Byte address windows. When writing to a window, a transaction is initiated sending a write command, followed
by an 8-bit address, and the data byte or word is received from the initiator. When reading from a window, a transaction is received with
the read command, followed by an 8-bit address. The target then responds with the data. The basic idea is that a peripheral located on
the MM912F634 analog die, can be addressed like an on-chip peripheral.
Features:
•
•
•
•
•
•
•
software transparent register access to peripherals on the MM912F634 analog die
256 Byte address window
supports blocking read or write, as well as non-blocking write transactions
4 bit physical bus width
automatic synchronization of the target when initiator starts driving the interface clock
generates transaction and error status as well as EOT acknowledge
providing single interrupt interface to D2D Initiator
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
57
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
4.5.2
Low Power Mode Operation
The D2D module is disabled in SLEEP mode. In Stop mode, the D2DINT signal is used to wake-up a powered down MCU. As the MCU
could wake up without the MM912F634 analog die, a special command is recognized as a wake-up event during Stop mode. See
Section 4.3, “Modes of Operation".
4.5.2.1
Normal Mode / Stop Mode
NOTE
The maximum allowed clock speed of the interface is limited to fD2D.
While in Normal or Stop mode, D2DCLK acts as input only with pull present. D2D[3:0] operates as an input/output with pull-down always
present. D2DINT acts as output only.
4.5.2.2
Sleep Mode
While in Sleep mode, all Interface data pins are pulled down to DGND to reduce power consumption.
4.6
Interrupts
Interrupts are used to signal a microcontroller that a peripheral needs to be serviced. While in Stop mode, the interrupt signal is used to
signal Wake-up events. The interrupts are signaled by an active high level of the D2DINT pin, which remains high until the interrupt is
acknowledged via the D2D-Interface. Interrupts are only asserted while in Normal mode.
4.6.1
Interrupt Source Identification
Once an Interrupt is signalized, there are two options to identify the corresponding source(s).
4.6.1.1
Interrupt Source Mirror
NOTE
The VSI - Voltage Status Interrupt combines the five status flags for the Low Battery Interrupt, Low
Voltage Interrupt, High Voltage Interrupt, Voltage Regulator Overvoltage Interrupt, and the Voltage
Regulator High Temperature Interrupt. The specific source can be identified by reading the Voltage
Status Register - VSR.
All Interrupt sources in MM912F634 analog die are mirrored to a special Interrupt Source Register (ISR). This register is read only and
indicates all currently pending Interrupts. Reading this register does not acknowledge any interrupt. An additional D2D access is necessary
to serve the specific module.
4.6.1.1.1
Interrupt Source Register (ISR)
Table 78. Interrupt Source Register (ISR)
Offset(71) 0x00 (0x00 and 0x01 for 8Bit access)
R
Access: User read
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
HOT
LSOT
HSOT
LINOT
SCI
RX
TX
ERR
TOV
CH3
CH2
CH1
CH0
VSI
W
Note:
71. Offset related to 0x0200 for blocking access and 0x300 for non blocking access within the global address space.
MM912F634
58
Analog Integrated Circuit Device Data
Freescale Semiconductor
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
Table 79. ISR - Register Field Descriptions
Field
Description
0 - VSI
VSI - Voltage Status Interrupt combining the following sources:
• Low Battery Interrupt
• Low Voltage Interrupt
• High Voltage Interrupt
• Voltage Regulator Overvoltage Interrupt
• Voltage Regulator High Temperature Interrupt
1 - CH0
CH0 - TIM Channel 0 Interrupt
2 - CH1
CH1 - TIM Channel 1 Interrupt
3 - CH2
CH2 - TIM Channel 2 Interrupt
4 - CH3
CH3 - TIM Channel 3 Interrupt
5 - TOV
TOV - Timer Overflow Interrupt
6 - ERR
ERR - SCI Error Interrupt
7 - TX
TX - SCI Transmit Interrupt
8 - RX
RX - SCI Receive Interrupt
9 - SCI
SCI - ADC Sequence Complete Interrupt
10 - LINOT
LINOT - LIN Driver Overtemperature Interrupt
11 - HSOT
HSOT - High-side Overtemperature Interrupt
12 - LSOT
LSOT - Low-side Overtemperature Interrupt
13 - HOT
HOT - HSUP Overtemperature Interrupt
4.6.1.2
Interrupt Vector Emulation by Priority
To allow a vector based interrupt handling by the MCU, the number of the highest prioritized interrupt pending is returned in the Interrupt
Vector Register. To allow an offset based vector table, the result is pre-shifted (multiple of 2). Reading this register does not acknowledge
an interrupt. An additional D2D access is necessary to serve the specific module.
4.6.1.2.1
Interrupt Vector Register (IVR)
Table 80. Interrupt Vector Register (IVR)
Offset(72) 0x02
R
Access: User read
7
6
0
0
5
4
3
2
1
0
IRQ
W
Note:
72. Offset related to 0x0200 for blocking access and 0x300 for non blocking access within the global address space.
Table 81. IVR - Register Field Descriptions
Field
5:0
IRQ
Description
Represents the highest prioritized interrupt pending. See Table 82 In case no interrupt is pending, the result is 0.
The following table is listing all MM912F634 analog die interrupt sources with the corresponding priority.
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
59
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
Table 82. Interrupt Source Priority
Interrupt Source
IRQ
Priority
no interrupt pending or wake-up from Stop mode
0x00
1 (highest)
LVI - Low Voltage Interrupt
0x02
2
HTI - Voltage Regulator High Temperature Interrupt
0x04
3
LBI - Low Battery Interrupt
0x06
4
CH0 - TIM Channel 0 Interrupt
0x08
5
CH1 - TIM Channel 1 Interrupt
0x0A
6
CH2 - TIM Channel 2 Interrupt
0x0C
7
CH3 - TIM Channel 3 Interrupt
0x0E
8
TOV - Timer Overflow Interrupt
0x10
9
ERR - SCI Error Interrupt
0x12
10
TX - SCI Transmit Interrupt
0x14
11
RX - SCI Receive Interrupt
0x16
12
SCI - ADC Sequence Complete Interrupt
0x18
13
LINOT - LIN Driver Overtemperature Interrupt
0x1A
14
HSOT - High-side Overtemperature Interrupt
0x1C
15
LSOT - Low-side Overtemperature Interrupt
0x1E
16
HOT - HSUP Overtemperature Interrupt
0x20
17
HVI - High Voltage Interrupt
0x22
18
VROVI - Voltage Regulator Overvoltage Interrupt
0x24
19 (lowest)
4.6.2
4.6.2.1
Interrupt Sources
Voltage Status Interrupt (VSI)
The Voltage Status Interrupt - VSI combines the five interrupt sources of the Voltage Status Register. It is only available in the Interrupt
Source Register (ISR). Acknowledge the interrupt by reading the Voltage Status Register - VSR. To issue a new interrupt, the condition
has to vanish and occur again. See Section 4.4, “Power Supply" for details on the Voltage Status Register including masking information.
4.6.2.2
Low Voltage Interrupt (LVI)
Acknowledge the interrupt by reading the Voltage Status Register - VSR. To issue a new interrupt, the condition has to vanish and occur
again. See Section 4.4, “Power Supply" for details on the Voltage Status Register including masking information.
4.6.2.3
Voltage Regulator High Temperature Interrupt (HTI)
Acknowledge the interrupt by reading the Voltage Status Register - VSR. To issue a new interrupt, the condition has to vanish and occur
again. See Section 4.4, “Power Supply" for details on the Voltage Status Register including masking information.
4.6.2.4
Low Battery Interrupt (LBI)
Acknowledge the interrupt by reading the Voltage Status Register - VSR. To issue a new interrupt, the condition has to vanish and occur
again. See Section 4.4, “Power Supply" for details on the Voltage Status Register including masking information.
4.6.2.5
TIM Channel 0 Interrupt (CH0)
See Section 4.18, “Basic Timer Module - TIM (TIM16B4C)".
MM912F634
60
Analog Integrated Circuit Device Data
Freescale Semiconductor
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
4.6.2.6
TIM Channel 1 Interrupt (CH1)
See Section 4.18, “Basic Timer Module - TIM (TIM16B4C)".
4.6.2.7
TIM Channel 2 Interrupt (CH2)
See Section 4.18, “Basic Timer Module - TIM (TIM16B4C)".
4.6.2.8
TIM Channel 3 Interrupt (CH3)
See Section 4.18, “Basic Timer Module - TIM (TIM16B4C)".
4.6.2.9
TIM Timer Overflow Interrupt (TOV)
See Section 4.18, “Basic Timer Module - TIM (TIM16B4C)".
4.6.2.10
SCI Error Interrupt (ERR)
See Section 4.15, “Serial Communication Interface (S08SCIV4)".
4.6.2.11
SCI Transmit Interrupt (TX)
See Section 4.15, “Serial Communication Interface (S08SCIV4)".
4.6.2.12
SCI Receive Interrupt (RX)
See Section 4.15, “Serial Communication Interface (S08SCIV4)".
4.6.2.13
LIN Driver Overtemperature Interrupt (LINOT)
Acknowledge the interrupt by reading the LIN Register - LINR. To issue a new interrupt, the condition has to vanish and occur again. See
Section 4.14, “LIN Physical Layer Interface - LIN" for details on the LIN Register including masking information.
4.6.2.14
High-side Overtemperature Interrupt (HSOT)
Acknowledge the interrupt by reading the High-side Status Register - HSSR. To issue a new interrupt, the condition has to vanish and
occur again. See Section 4.11, “High-side Drivers - HS" for details on the High-side Status Register including masking information.
4.6.2.15
Low-side Overtemperature Interrupt (LSOT)
Acknowledge the interrupt by reading the Low-side Status Register - LSSR. To issue a new interrupt, the condition has to vanish and occur
again. See Section 4.12, “Low-side Drivers - LSx" for details on the Low-side Status Register including masking information.
4.6.2.16
HSUP Overtemperature Interrupt (HOT)
Acknowledge the interrupt by reading the Hall Supply Register - HSR. To issue a new interrupt, the condition has to vanish and occur
again. See Section 4.10, “Hall Sensor Supply Output - HSUP" for details on the Hall Supply Register including masking information.
4.6.2.17
High Voltage Interrupt (HVI)
Acknowledge the interrupt by reading the Voltage Status Register - VSR. To issue a new interrupt, the condition has to vanish and occur
again. See Section 4.4, “Power Supply" for details on the Voltage Status Register including masking information.
4.6.2.18
Voltage Regulator Overvoltage Interrupt (VROVI)
Acknowledge the interrupt by reading the Voltage Status Register - VSR. To issue a new interrupt, the condition has to vanish and occur
again. See Section 4.4, “Power Supply" for details on the Voltage Status Register including masking information.
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
61
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
4.7
Resets
To protect the system during critical events, the MM912F634 analog die drives the RESET_A pin low during the presence of the reset
condition. In addition, the RESET_A pin is monitored for external reset events. To match the MCU, the RESET_A pin is based on the
VDDX voltage level.
After an internal reset condition has gone, the RESET_A stays low for an additional time tRST before being released. Entering reset mode
causes all MM912F634 analog die registers to be initialized to their RESET default. The only registers with valid information are the Reset
Status Register (RSR) and the Wake-up Source Register (WUS).
4.7.1
Reset Sources
In the MM912F634 six reset sources exist.
4.7.1.1
POR - Analog Die Power On Reset
To indicate the device power supply (VS1) was below VPOR or the MM912F634 analog die was powered up, the POR condition is set. See
Section 4.3, “Modes of Operation".
4.7.1.2
LVR - Low Voltage Reset - VDD
With the VDD voltage regulator output voltage falling below VLVR, the Low Voltage Reset condition becomes present. As the VDD
Regulator is shutdown once a LVRX condition is detected, The actual cause could be also a low voltage condition at the VDDX regulator.
See Section 4.4, “Power Supply".
4.7.1.3
LVRX - Low Voltage Reset - VDDX
With the VDDX voltage regulator output voltage falling below VLVRX, the Low Voltage Reset condition becomes present. See Section 4.4,
“Power Supply".
4.7.1.4
WUR - Wake-up Reset
While in Sleep mode, any active wake-up event causes a MM912F634 analog die transition from Sleep to Reset Mode. To determine the
wake-up source, refer to Section 4.8, “Wake-up / Cyclic Sense".
4.7.1.5
EXR - External Reset
Any low level voltage at the RESET_A pin with a duration > tRSTDF issues an External Reset event. This reset source is also active in Stop
mode.
4.7.1.6
WDR - Watchdog Reset
Any incorrect serving if the MM912F634 analog die Watchdog results in a Watchdog Reset. Refer to the Section 4.9, “Window Watchdog"
for details.
4.7.2
Register Definition
4.7.2.1
Reset Status Register (RSR)
Table 83. Reset Status Register (RSR)
Offset(73) 0x15
R
Access: User read
7
6
5
4
3
2
1
0
0
0
WDR
EXR
WUR
LVRX
LVR
POR
W
Note:
73. Offset related to 0x0200 for blocking access and 0x300 for non blocking access within the global address space.
MM912F634
62
Analog Integrated Circuit Device Data
Freescale Semiconductor
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
Table 84. RSR - Register Field Descriptions
Field
Description
5 - WDR
Watchdog Reset - Reset caused by an incorrect serving of the watchdog.
4 - EXR
External Reset - Reset caused by the RESET_A pin driven low externally for > tRSTDF
3 - WUR
Wake-up Reset - Reset caused by a wake-up from Sleep mode. To determine the wake-up source, refer to Section 4.8, “Wake-up /
Cyclic Sense".
2 - LVRX
Low Voltage Reset VDDX - Reset caused by a low voltage condition monitored at the VDDX output.
1 - LVR
Low Voltage Reset VDD - Reset caused by a low voltage condition monitored at the VDD output.(74)
0 - POR
Power On Reset - Supply Voltage was below VPOR.
Note:
74. As the VDD Regulator is shutdown once a LVRX condition is detected, The actual cause could be also a low voltage condition at the VDDX
regulator.
Reading the Reset Status register clears the information inside. Writing has no effect. LVR and LVRX are masked when POR or WUR are
set.
4.8
Wake-up / Cyclic Sense
To wake-up the MM912F634 analog die from Stop or Sleep mode, several wake-up sources are implemented. As described in Section 4.3,
“Modes of Operation", a wake-up from Stop mode results in an interrupt (D2DINT) to the MCU combined with a transition to Normal mode.
A wake-up from Sleep mode results in a transition to Reset mode. In any case, the source of the wake-up can be identified by reading the
Wake-up Source Register (WSR). The Wake-up Source Register (WSR) has to be read after a wake-up condition in order to execute a
new STOP mode command. Two base clock cycles (fBASE) delay are required between the WSR read and MCR write.
In general, there are the following seven main wake-up sources:
•
•
•
•
•
•
•
Wake-up by a state change of one of the Lx inputs
Wake-up by a state change of one of the Lx inputs during a cyclic sense
Wake-up due to a forced wake-up
Wake-up by the LIN module
Wake-up by D2D interface (Stop mode only)
Wake-up due to internal / external Reset (Stop mode only)
Wake-up due to loss of supply voltage (Sleep mode only)
VSUP
HS1
HS2
D2DINT
Wake Up
Module
D2DCLK
D2D3
D2D2
Forced
Wake Up
Cyclic Sense / Forced
Wake Up Timer
D2D
Wake Up
L0
L1
L2
D2D1
L3
D2D0
Cyclic Wake Up
Lx – Wake Up
LIN Wake Up
L4
L5
LIN
LIN Bus
Figure 19. Wake-up Sources
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
63
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
4.8.1
4.8.1.1
Wake-up Sources
Lx - Wake-up (Cyclic Sense Disabled)
Any state digital change on a Wake-up Enabled Lx input issues a wake-up. In order to select and activate a Wake-up Input (Lx), the
Wake-up Control Register (WCR) must be configured with appropriate LxWE inputs enabled or disabled before entering low power mode.
The Lx - Wake-up may be combined with the Forced Wake-up.
Note: Selecting a Lx Input for wake-up disables a selected analog input once entering low power mode.
4.8.1.2
Lx - Cyclic Sense Wake-up
NOTE
Once Cyclic Sense is configured (CSSEL!=0), the state change is only recognized from one cyclic
sense event to the next.
The additional accuracy of the cyclic sense cycle by the WD clock trimming is only active during
STOP mode. There is no trimmed clock available during SLEEP mode.
To reduce external power consumption during low power mode a cyclic wake-up has been implemented. Configuring the Timing Control
Register (TCR) a specific cycle time can be selected to implement a periodic switching of the HS1 or HS2 output with the corresponding
detection of an Lx state change. Any configuration of the HSx in the High-side Control Register (HSCR) is ignored when entering low power
mode. The Lx - Cyclic Sense Wake-up may be combined with the Forced Wake-up. In case both (forced and Lx change) events are
present at the same time, the Forced Wake-up is indicated as Wake-up source.
4.8.1.3
Forced Wake-up
Configuring the Forced Wake-up Multiplier (FWM) in the Timing Control Register (TCR) enables the forced wake-up based on the selected
Cyclic Sense Timing (CST). Forced Wake-up can be combined with all other wake-up sources considering the timing dependencies.
4.8.1.4
LIN - Wake-up
While in Low-Power mode the MM912F634 analog die monitors the activity on the LIN bus. A dominant pulse longer than tPROPWL followed
by a dominant to recessive transition causes a LIN Wake-up. This behavior protects the system from a short-to-ground bus condition.
4.8.1.5
D2D - Wake-up (Stop Mode Only)
Receiving a Normal mode request via the D2D interface (MODE=0, Mode Control Register (MCR)) results in a wake-up from stop mode.
As this condition is controlled by the MCU, no wake-up status bit does indicate this wake-up source.
4.8.1.6
Wake-up Due to Internal / External Reset (STOP Mode Only)
While in Stop mode, a Reset due to a VDD low voltage condition or an external Reset applied on the RESET_A pin results in a Wake-up
with immediate transition to Reset mode. In this case, the LVR or EXR bits in the Reset Status Register indicates the source of the event.
4.8.1.7
Wake-up Due to Loss of Supply Voltage (SLEEP Mode Only)
While in Sleep mode, a supply voltage VS1 < VPOR results in a transition to Power On mode.
MM912F634
64
Analog Integrated Circuit Device Data
Freescale Semiconductor
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
4.8.2
Register Definition
4.8.2.1
Wake-up Control Register (WCR)
Table 85. Wake-up Control Register (WCR)
Offset(75) 0x12
Access: User read/write
7
R
CSSEL
W
Reset
6
0
0
5
4
3
2
1
0
L5WE
L4WE
L3WE
L2WE
L1WE
L0WE
1
1
1
1
1
1
Note:
75. Offset related to 0x0200 for blocking access and 0x300 for non blocking access within the global address space.
Table 86. WCR - Register Field Descriptions
Field
Description
7-6
CSSEL
Cyclic Sense Select - Configures the HSx output for the cyclic sense event. Note, with no LxWE selected - only the selected HSx output
is switched periodically, no Lx state change would be detected. For all configurations, the Forced Wake-up can be activated in parallel
in Section 4.8.2.2, “Timing Control Register (TCR)"
00 - Cyclic Sense Off
01 - Cyclic Sense with periodic HS1on
10 - Cyclic Sense with periodic HS2 on
11 - Cyclic Sense with periodic HS1 and HS2 on.
5 - L5WE
Wake-up Input 5 Enabled - L5 Wake-up Select Bit.
0 - L5 Wake-up Disabled
1 - L5 Wake-up Enabled
4 - L4WE
Wake-up Input 4 Enabled - L4 Wake-up Select Bit.
0 - L4 Wake-up Disabled
1 - L4 Wake-up Enabled
3 - L3WE
Wake-up Input 3 Enabled - L3 Wake-up Select Bit.
0 - L3Wake-up Disabled
1 - L3 Wake-up Enabled
2- L2WE
Wake-up Input 2 Enabled - L2 Wake-up Select Bit.
0 - L2 Wake-up Disabled
1 - L2 Wake-up Enabled
1 - L1WE
Wake-up Input 1 Enabled - L1 Wake-up Select Bit.
0 - L1 Wake-up Disabled
1 - L1 Wake-up Enabled
0 - L0WE
Wake-up Input 0 Enabled - L0 Wake-up Select Bit.
0 - L0 Wake-up Disabled
1 - L0 Wake-up Enabled
4.8.2.2
Timing Control Register (TCR)
Table 87. Timing Control Register (TCR)
Offset(76) 0x13
Access: User read/write
7
6
R
4
3
2
FWM
W
Reset
5
0
0
1
0
0
0
CST
0
0
0
0
Note:
76. Offset related to 0x0200 for blocking access and 0x300 for non blocking access within the global address space.
MM912F634
Analog Integrated Circuit Device Data
Freescale Semiconductor
65
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION
Table 88. TCR - Register Field Descriptions
Field
Description
7-4
FWM
Forced Wake-up Multiplicator - Configures the multiplicator for the forced wake-up. The selected multiplicator (FWM!=0) forces a
wake-up every FWM x CST ms. With this implementation, Forced and Cyclic wake-up can be performed in parallel with the cyclic
sense period