NXP Semiconductors
Data sheet: Advance Information
Document Number: MMPF0100Z
Rev. 12.0, 8/2016
14 channel configurable power
management integrated circuit
PF0100Z
Automotive
The SMARTMOS PF0100Z AEC Q100 grade 2 automotive power management
integrated circuit (PMIC) provides a highly programmable/ configurable
architecture, with fully integrated power devices and minimal external
components. With up to six buck converters, six linear regulators, RTC supply,
and coin-cell charger, the PF0100Z can provide power for a complete system,
including applications processors, memory, and system peripherals, in a wide
range of applications. With on-chip one time programmable (OTP) memory, the
PF0100Z is available in pre-programmed standard versions, or nonprogrammed to support custom programming. The PF0100Z is especially suited
to the i.MX 6 family of devices and is supported by full system level reference
designs, and pre-programmed versions of the device.
Features:
• Four to six buck converters, depending on configuration
• Single/dual phase/ parallel options
• DDR termination tracking mode option
• Boost regulator to 5.0 V output
• Six general purpose linear regulators
• Programmable output voltage, sequence, and timing
• OTP (one time programmable) memory for device configuration
• Coin cell charger and RTC supply
• DDR termination reference voltage
• Power control logic with processor interface and event detection
• I2C control
• Individually programmable on, off, and standby modes
POWER MANAGEMENT
ES SUFFIX (WF-TYPE)
98ASA00589D
56 QFN 8X8
Applications:
•
•
•
•
•
PF0100Z
GPS
Auto infotainment
Heads up display (HUD)
Rear displays
Digital instrumentation cluster (DIC)
i.MX 6X
VREFDDR
SW4
1000 mA
DDR MEMORY
INTERFACE
DDR Memory
SW3A/B
2500 mA
SW1A/B
2500 mA
Processor Core
Voltages
SW1C
2000 mA
SW2
2000 mA
SWBST
600 mA
SD-MMC/
NAND Mem.
SATA
HDD
Control Signals
Parallel control/GPIOS
I2C Communication
I2C Communication
VGEN1
100 mA
VGEN2
250 mA
VGEN3
100 mA
VGEN4
350 mA
Camera
COINCELL
Sensors
Camera
USB
Ethernet
CAN
Cluster/HUD
Front USB
POD
Rear Seat
Infotaiment
Figure 1. Simplified application diagram
* This document contains certain information on a new product.
Specifications and information herein are subject to change without notice.
© 2016 NXP B.V.
Audio
Codec
HDMI
LDVS Display
VGEN6
200 mA
Main Supply
2.8 – 4.5 V
External AMP
Microphones
Speakers
GPS
MIPI
uPCIe
WAM
GPS
MIPI
VGEN5
100 mA
LICELL
Charger
SATA - FLASH
NAND - NOR
Interfaces
Rear USB
POD
Table of Contents
1
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2.1 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3.1 General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3.2 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.1 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.2 Control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6
Functional block requirements and behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1.1 Device start-up configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1.2 One time programmability (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.3 OTP prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.4 Reading OTP fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.5 Programming OTP fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 16 MHz and 32 kHz clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.1 Clock adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Bias and references block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3.1 Internal core voltage references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3.2 VREFDDR voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4.1 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4.2 State machine flow summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.3 Power tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4.4 Buck regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4.5 Boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.6 LDO regulators description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.7 VSNVS LDO/switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5 Control interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5.1 I2C device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5.2 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5.3 Interrupt handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.4 Interrupt bit summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.5 Specific registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.6 Register Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
PF0100Z
2
NXP Semiconductors
7
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1.1 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1.2 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2 PF0100Z layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.1 General board recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.2 Component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.3 General routing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.4 Parallel routing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.5 Switching regulator layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3.1 Rating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3.2 Estimation of junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9
Reference section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.1 Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.1 Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.1 Document changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
PF0100Z
NXP Semiconductors
3
ORDERABLE PARTS
1
Orderable parts
The PF0100Z is available with both pre-programmed and non-programmed OTP memory configurations. The non-programmed device
uses “NP” as the programming code. The pre-programmed devices are identified using the program codes from Table 1, which also list
the associated NXP reference designs where applicable. Details of the OTP programming for each device can be found in Table 9.
Table 1. Orderable part variations
Part Number
Temperature (TA)
Package
Programming
Reference designs
NP
MCIMX6QAICPU1
MCIMX6SAICPU1
MCIMX6DLAICPU1
F0
MCIMX6Q-SDP
MCIMX6Q-SDB
MCIMX6DL-SDP
F6
-
MMPF0100F8AZES
F8
-
MMPF0100F9AZES
F9
MCIMX6QPlusAICPU3
MMPF0100FAAZES
FA
-
MMPF0100NPAZES
MMPF0100F0AZES
-40 °C to 105 °C
MMPF0100F6AZES
56 QFN ES, 8x8 mm
0.5 mm pitch WF-Type
(wettable flank)
Notes
(1), (2), (3)
(1), (2)
(1), (2), (3)
Notes
1. For tape and reel add an R2 suffix to the part number.
2. These reference designs use the default startup configuration (VDDOTP = VCOREDIG), which is available on any OTP programmed part.
3. SW2 can support an output current rating of 2.5 A in NP, F9 and FA versions when SW2ILIM=0
1.1
PF0100Z version differences
PF0100AZ is an improved version of the PF0100Z power management IC. Table 2 summarizes the difference between the two versions
and should be referred to when migrating from the PF0100Z to the PF0100AZ.
Table 2. Differences between PF0100Z and PF0100AZ
Description
PF0100Z
PF0100AZ
Version identification
Reading SILICON REV register at address 0x03 will Reading SILICON REV register at address 0x03 will
return 0x11. DEVICEID register at address 0x00 will return 0x21. DEVICEID register at address 0x00 will
read 0x10 in PF0100Z and PF0100AZ
read 0x10 in PF0100Z and PF0100AZ
VSNVS current limit
VSNVS current limit increased in the PF0100AZ. see VSNVS LDO/switch
In the PF0100Z, FUSE_POR1, FUSE_POR2, and
FUSE_POR3 bits are XOR’ed into the
In the PF0100AZ, the XOR function is removed. It is
OTP_FUSE_PORx register setting during OTP FUSE_POR_XOR bit. The FUSE_POR_XOR bit
required to set FUSE_POR1, FUSE_POR2, and
has to be 1 for fuses to be loaded during startup.
programming
FUSE_POR3 bits during OTP programming.
This can be achieved by setting any one or all of the
FUSE_PORx bits during OTP programming.
Erratum ER19
Erratum ER19 applicable to PF0100Z. Applications
expecting to operate in the conditions mentioned in
Errata ER19 fixed in PF0100AZ. External
ER19 need to implement an external workaround to
workaround not required
overcome the problem. Refer to the product errata
for details
Erratum ER20
Erratum ER20 applicable to PF0100Z
Errata ER20 fixed in PF0100AZ
Erratum ER22
Erratum ER22 applicable to PF0100Z
Errata ER22 fixed in PF0100AZ. Workaround not
required
Ambient operating temperature
-40 °C to 85 °C
-40 °C to 105 °C
PF0100Z
4
NXP Semiconductors
INTERNAL BLOCK DIAGRAM
2
Internal block diagram
PF0100Z
VGEN1
100 mA
VIN1
VGEN1
SW1FB
SW1A/B
Single/Dual
2500 mA
Buck
VGEN2
250 mA
VGEN2
VIN2
VGEN3
VGEN3
100 mA
VGEN4
VGEN4
350 mA
SW1C
2000 mA
Buck
O/P
Drive
O/P
Drive
SW1BLX
O/P
Drive
SW1CLX
Initialization State Machine
SW2
2000 mA
Buck
VGEN6
200 mA
VGEN6
SW1CIN
SW1VSSSNS
VGEN5
100 mA
VGEN5
SW1BIN
SW1CFB
Core Control logic
VIN3
SW1AIN
SW1ALX
O/P
Drive
SW2LX
SW2IN
SW2IN
SW2FB
Supplies
Control
OTP
SW3AFB
VDDOTP
CONTROL
I2C
Interface
VDDIO
SCL
SDA
SW3A/B
Single/Dual
DDR
2500 mA
Buck
O/P
Drive
O/P
Drive
DVS CONTROL
SW3AIN
SW3ALX
SW3BLX
SW3BIN
SW3BFB
DVS Control
SW3VSSSNS
SW4FB
I2C Register
map
VCOREDIG
VCOREREF
Trim-In-Package
O/P
Drive
SW4IN
SW4LX
GNDREF1
Reference
Generation
VCORE
SW4
1000 mA
Buck
Clocks and
resets
SWBST
600 mA
Boost
O/P
Drive
SWBSTLX
SWBSTIN
GNDREF
SWBSTFB
VREFDDR
VINREFDDR
Clocks
32 kHz and 16 MHz
VHALF
VIN
Li Cell
Charger
LICELL
Best
of
Supply
INTB
SDWNB
STANDBY
RESETBMCU
ICTEST
PWRON
VSNVS
VSNVS
Figure 2. Simplified internal block diagram
PF0100Z
NXP Semiconductors
5
PIN CONNECTIONS
SDA
VCOREREF
VCOREDIG
VIN
VCORE
GNDREF
VDDOTP
SWBSTLX
SWBSTIN
SWBSTFB
VSNVS
Pinout diagram
SCL
3.1
VDDIO
Pin connections
PWRON
3
56
55
54
53
52
51
50
49
48
47
46
45
44
43
INTB
1
42
LICELL
SDWNB
2
41
VGEN6
RESETBMCU
3
40
VIN3
STANDBY
4
39
VGEN5
ICTEST
5
38
SW3AFB
SW1FB
6
37
SW3AIN
SW1AIN
7
36
SW3ALX
SW1ALX
8
35
SW3BLX
SW1BLX
9
34
SW3BIN
SW1BIN
10
33
SW3BFB
SW1CLX
11
32
SW3VSSSNS
SW1CIN
12
31
VREFDDR
SW1CFB
13
30
VINREFDDR
SW1VSSSNS
14
29
VHALF
15
16
17
18
19
20
21
22
23
24
25
26
27
28
GNDREF1
VGEN1
VIN1
VGEN2
SW4FB
SW4IN
SW4LX
SW2LX
SW2IN
SW2IN
SW2FB
VGEN3
VIN2
VGEN4
EP
Figure 3. Pinout diagram
PF0100Z
6
NXP Semiconductors
PIN CONNECTIONS
3.2
Pin definitions
Table 3. PF0100Z pin definitions
Pin number
Pin name
Pin
function
Max rating
Type
Definition
1
INTB
O
3.6 V
Digital
Open drain interrupt signal to processor
2
SDWNB
O
3.6 V
Digital
Open drain signal to indicate an imminent system shutdown
3
RESETBMCU
O
3.6 V
Digital
Open drain reset output to processor. Alternatively can be used as a power
good output.
4
STANDBY
I
3.6 V
Digital
Standby input signal from processor
5
ICTEST
I
7.5 V
Digital/
Analog
Reserved pin. Connect to GND in application.
6
SW1FB (5)
I
3.6 V
Analog
Output voltage feedback for SW1A/B. Route this trace separately from the
high current path and terminate at the output capacitance.
7
SW1AIN (5)
I
4.8 V
Analog
Input to SW1A regulator. Bypass with at least a 4.7 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
8
SW1ALX (5)
O
4.8 V
Analog
Regulator 1A switch node connection
9
SW1BLX
(5)
O
4.8 V
Analog
Regulator 1B switch node connection
10
SW1BIN (5)
I
4.8 V
Analog
Input to SW1B regulator. Bypass with at least a 4.7 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
11
SW1CLX (5)
O
4.8 V
Analog
Regulator 1C switch node connection
12
SW1CIN (5)
I
4.8 V
Analog
Input to SW1C regulator. Bypass with at least a 4.7 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
13
SW1CFB (5)
I
3.6V
Analog
Output voltage feedback for SW1C. Route this trace separately from the
high current path and terminate at the output capacitance.
14
SW1VSSSNS
GND
-
GND
Ground reference for regulators SW1ABC. It is connected externally to
GNDREF through a board ground plane.
15
GNDREF1
GND
-
GND
Ground reference for regulators SW2 and SW4. It is connected externally to
GNDREF, via board ground plane.
16
VGEN1
O
2.5 V
Analog
VGEN1 regulator output, Bypass with a 2.2 μF ceramic output capacitor.
17
VIN1
I
3.6 V
Analog
VGEN1, 2 input supply. Bypass with a 1.0 μF decoupling capacitor as close
to the pin as possible.
18
VGEN2
O
2.5 V
Analog
VGEN2 regulator output, Bypass with a 4.7 μF ceramic output capacitor.
19
SW4FB (5)
I
3.6 V
Analog
Output voltage feedback for SW4. Route this trace separately from the high
current path and terminate at the output capacitance.
20
SW4IN (5)
I
4.8 V
Analog
Input to SW4 regulator. Bypass with at least a 4.7 μF ceramic capacitor and
a 0.1 μF decoupling capacitor as close to the pin as possible.
21
SW4LX (5)
O
4.8 V
Analog
Regulator 4 switch node connection
22
SW2LX (5)
O
4.8 V
Analog
Regulator 2 switch node connection
23
SW2IN
(5)
I
4.8 V
Analog
24
SW2IN
(5)
I
4.8 V
Analog
Input to SW2 regulator. Connect pin 23 together with pin 24 and bypass with
at least a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as
close to these pins as possible.
25
SW2FB (5)
I
3.6 V
Analog
Output voltage feedback for SW2. Route this trace separately from the high
current path and terminate at the output capacitance.
26
VGEN3
O
3.6 V
Analog
VGEN3 regulator output. Bypass with a 2.2 μF ceramic output capacitor.
27
VIN2
I
3.6 V
Analog
VGEN3,4 input. Bypass with a 1.0 μF decoupling capacitor as close to the
pin as possible.
28
VGEN4
O
3.6 V
Analog
VGEN4 regulator output, Bypass with a 4.7 μF ceramic output capacitor.
29
VHALF
I
3.6 V
Analog
Half supply reference for VREFDDR
PF0100Z
NXP Semiconductors
7
PIN CONNECTIONS
Table 3. PF0100Z pin definitions (continued)
Pin number
Pin name
Pin
function
Max rating
Type
Definition
30
VINREFDDR
I
3.6 V
Analog
VREFDDR regulator input. Bypass with at least 1.0 μF decoupling capacitor
as close to the pin as possible.
31
VREFDDR
O
3.6 V
Analog
VREFDDR regulator output
32
SW3VSSSNS
GND
-
GND
33
SW3BFB (5)
I
3.6 V
Analog
Output voltage feedback for SW3B. Route this trace separately from the
high current path and terminate at the output capacitance.
34
SW3BIN (5)
I
4.8 V
Analog
Input to SW3B regulator. Bypass with at least a 4.7 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
35
SW3BLX (5)
O
4.8 V
Analog
Regulator 3B switch node connection
36
SW3ALX (5)
O
4.8 V
Analog
Regulator 3A switch node connection
37
SW3AIN (5)
I
4.8 V
Analog
Input to SW3A regulator. Bypass with at least a 4.7 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
38
SW3AFB (5)
I
3.6 V
Analog
Output voltage feedback for SW3A. Route this trace separately from the
high current path and terminate at the output capacitance.
39
VGEN5
O
3.6 V
Analog
VGEN5 regulator output. Bypass with a 2.2 μF ceramic output capacitor.
40
VIN3
I
4.8 V
Analog
VGEN5, six input. Bypass with a 1.0 μF decoupling capacitor as close to the
pin as possible.
41
VGEN6
O
3.6 V
Analog
VGEN6 regulator output. By pass with a 2.2 μF ceramic output capacitor.
42
LICELL
I/O
3.6 V
Analog
Coin cell supply input/output
43
VSNVS
O
3.6 V
Analog
LDO or coin cell output to processor
44
SWBSTFB (5)
I
5.5 V
Analog
Boost regulator feedback. Connect this pin to the output rail close to the
load. Keep this trace away from other noisy traces and planes.
45
SWBSTIN (5)
I
4.8 V
Analog
Input to SWBST regulator. Bypass with at least a 2.2 μF ceramic capacitor
and a 0.1 μF decoupling capacitor as close to the pin as possible.
46
SWBSTLX (5)
O
7.5 V
Analog
SWBST switch node connection
47
VDDOTP
I
10 V(4)
Digital &
Analog
48
GNDREF
GND
-
GND
49
VCORE
O
3.6 V
Analog
Analog core supply
50
VIN
I
4.8 V
Analog
Main chip supply
Ground reference for the SW3 regulator. Connect to GNDREF externally via
the board ground plane.
Supply to program OTP fuses
Ground reference for the main band gap regulator.
51
VCOREDIG
O
1.5 V
Analog
Digital core supply
52
VCOREREF
O
1.5 V
Analog
Main band gap reference
53
SDA
I/O
3.6 V
Digital
I2C data line (open drain)
54
SCL
I
3.6 V
Digital
I2C clock
55
VDDIO
I
3.6 V
Analog
Supply for I2C bus
56
PWRON
I
3.6 V
Digital
Power on/off from processor
-
EP
GND
-
GND
Expose pad. Functions as ground return for buck regulators. Tie this pad to
the inner and external ground planes through vias to allow effective thermal
dissipation.
Notes
4. 10 V Maximum voltage rating during OTP fuse programming. 7.5 V Maximum DC voltage rated otherwise.
5. Unused switching regulators should be connected as follows: Pins SWxLX and SWxFB should be unconnected and pin SWxIN should be
connected to VIN with a 0.1 μF bypass capacitor.
PF0100Z
8
NXP Semiconductors
GENERAL PRODUCT CHARACTERISTICS
4
General product characteristics
4.1
Absolute maximum ratings
Table 4. Absolute maximum ratings
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage
to the device. The detailed maximum voltage rating per pin can be found in the pin list section.
Symbol
Description
Value
Unit
-0.3 to 4.8
V
Notes
Electrical ratings
VIN
Main input supply voltage
VDDOTP
OTP programming input supply voltage
-0.3 to 10
V
VLICELL
Coin cell voltage
-0.3 to 3.6
V
±1800
±2000
±500
V
VESD
ESD ratings
Human body model
VSNVS pin
All other pins
Charge device model
(6)
Notes
6. ESD testing is performed in accordance with the human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the charge device model (CDM),
robotic (CZAP = 4.0 pF).
PF0100Z
NXP Semiconductors
9
GENERAL PRODUCT CHARACTERISTICS
4.2
Thermal characteristics
Table 5. Thermal ratings
Symbol
Description (rating)
Min.
Max.
Unit
Notes
Thermal ratings
TA
Ambient operating temperature range
PF0100Z
PF0100AZ
-40
-40
85
105
°C
TJ
Operating junction temperature range
-40
125
°C
Storage temperature range
-65
150
°C
–
Note 9
°C
(8)(9)
Junction to ambient
Natural convection
Four layer board (2s2p)
Eight layer board (2s6p)
–
–
28
15
°C/W
(10)(11)(12)
Junction to ambient (at 200 ft/min)
Four layer board (2s2p)
–
22
°C/W
(10)(12)
Junction to board
–
10
°C/W
(13)
RΘJCBOTTOM
Junction to case bottom
–
1.2
°C/W
(14)
ΨJT
Junction to package top
Natural convection
–
2.0
°C/W
(15)
TST
Peak package reflow temperature
TPPRT
(7)
QFN56 thermal resistance and package dissipation ratings
RθJA
RθJMA
RθJB
Notes
7.
8.
9.
10.
11.
12.
13.
14.
15.
Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Table 6 for
thermal protection features.
Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a
malfunction or permanent damage to the device.
NXP’s package reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For peak package reflow temperature and
moisture sensitivity levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable
parts, and review parametrics.
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.
Per JEDEC JESD51-6 with the board horizontal.
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the
board near the package.
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD512. When the Greek letter (Ψ) is not available, the thermal characterization parameter is written as Psi-JT.
4.2.1
Power dissipation
During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 5. To optimize the
thermal management and to avoid overheating, the PF0100Z provides thermal protection. An internal comparator monitors the die
temperature. Interrupts THERM110I, THERM120I, THERM125I, and THERM130I are generated when the respective thresholds specified
in Table 6 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register
INTSENSE0.
In the event of excessive power dissipation, thermal protection circuitry shuts down the PF0100Z. This thermal protection acts above the
thermal protection threshold listed in Table 6. To avoid any unwanted power downs resulting from internal noise, the protection is
debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured so
this protection is not tripped under normal conditions.
PF0100Z
10
NXP Semiconductors
GENERAL PRODUCT CHARACTERISTICS
Table 6. Thermal protection thresholds
Parameter
Min.
Typ.
Max.
Units
Thermal 110 °C threshold (THERM110)
100
110
120
°C
Thermal 120 °C threshold (THERM120)
110
120
130
°C
Thermal 125 °C threshold (THERM125)
115
125
135
°C
Thermal 130 °C threshold (THERM130)
120
130
140
°C
Thermal warning hysteresis
2.0
–
4.0
°C
Thermal protection threshold
130
140
150
°C
4.3
Electrical characteristics
4.3.1
General Specifications
Notes
Table 7. General PMIC Static Characteristics
PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = 2.8 V to 4.5 V, VDDIO = 1.7 V to 3.6 V, typical external component
values and full load current range, unless otherwise noted.
Pin name
PWRON
RESETBMCU
SCL
SDA
INTB
SDWNB
STANDBY
VDDOTP
Parameter
Load condition
Min.
Max.
Unit
VIL
–
0.0
0.2 * VSNVS
V
VIH
–
0.8 * VSNVS
3.6
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open drain
0.7* VIN
VIN
V
VIL
–
0.0
0.2 * VDDIO
V
VIH
–
0.8 * VDDIO
3.6
V
VIL
–
0.0
0.2 * VDDIO
V
VIH
–
0.8 * VDDIO
3.6
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open drain
0.7*VDDIO
VDDIO
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open drain
0.7* VIN
VIN
V
VOL
-2.0 mA
0.0
0.4
V
VOH
Open drain
0.7* VIN
VIN
V
VIL
–
0.0
0.2 * VSNVS
V
VIH
–
0.8 * VSNVS
3.6
V
VIL
–
0.0
0.3
V
VIH
–
1.1
1.7
V
PF0100Z
NXP Semiconductors
11
GENERAL PRODUCT CHARACTERISTICS
4.3.2
Current consumption
The current consumption of the individual blocks is described in detail throughout this specification. For convenience, a summary table
follows for standard use cases.
Table 8. Current consumption summary
PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = 3.6 V, VDDIO = 1.7 V to 3.6 V, LICELL = 1.8 V to 3.3 V,
VSNVS = 3.0 V, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VDDIO = 3.3 V, LICELL = 3.0 V, VSNVS = 3.0 V and 25 °C, unless otherwise noted.
Mode
PF0100Z conditions
System conditions
Typ.
Max.
Unit
Notes
Coin Cell
VSNVS from LICELL
All other blocks off
VIN = 0.0 V
VSNVSVOLT[2:0] = 110
No load on VSNVS
4.0
7.0
μA
(16),(18),
(21)
Off
MMPF0100Z
VSNVS from VIN or LICELL
Wake-up from PWRON active
32 k RC on
All other blocks off
VIN ≥ UVDET
No load on VSNVS, PMIC able to wake-up
16
21
μA
(17),(18)
VSNVS from VIN or LICELL
Wake-up from PWRON active
Off
32 k RC on
MMPF0100AZ All other blocks off
VIN ≥ UVDET
No load on VSNVS, PMIC able to wake-up
17
25
μA
(17),(18)
μA
(18)
μA
(18)
Sleep
Standby
MMPF0100Z
VSNVS from VIN
Wake-up from PWRON active
Trimmed reference active
SW3A/B PFM
No load on VSNVS. DDR memories in self
Trimmed 16 MHz RC off
refresh
32 k RC on
VREFDDR disabled
TA = -40 °C to 85 °C
TA = -40 °C to 105 °C (PF0100AZ Only)
VSNVS from either VIN or LICELL
SW1A/B combined in PFM
SW1C in PFM
SW2 in PFM
SW3A/B combined in PFM
SW4 in PFM
SWBST off
Trimmed 16 MHz RC enabled
Trimmed reference active
VGEN1-6 enabled
VREFDDR enabled
No load on VSNVS. Processor enabled in
low power mode. All rails powered on
except boost (load = 0 mA)
122
122
220
250
297
450 (19)
297
1000
(20)
PF0100Z
12
NXP Semiconductors
GENERAL PRODUCT CHARACTERISTICS
Table 8. Current consumption summary (continued)
PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = 3.6 V, VDDIO = 1.7 V to 3.6 V, LICELL = 1.8 V to 3.3 V,
VSNVS = 3.0 V, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VDDIO = 3.3 V, LICELL = 3.0 V, VSNVS = 3.0 V and 25 °C, unless otherwise noted.
VSNVS from either VIN or LICELL
SW1A/B combined in PFM
SW1C in PFM
SW2 in PFM
SW3A/B combined in PFM
SW4 in PFM
Standby
SWBST off
MMPF0100AZ Trimmed 16 MHz RC enabled
Trimmed reference active
VGEN1-6 enabled
VREFDDR enabled
TA = -40 °C to 85 °C
TA = -40 °C to 105 °C
No load on VSNVS. Processor enabled in
low power mode. All rails powered on
except boost (load = 0 mA)
μA
297
297
(18)
450
550
Notes
16. Refer to Figure 4 for coin cell mode characteristics over temperature.
17. When VIN is below the UVDET threshold, in the range of 1.8 V ≤ VIN < 2.65 V, the quiescent current increases by 50 μA, typically.
18.
19.
20.
21.
For PFM operation, headroom should be 300 mV or greater.
From 0 °C to 85 °C
From -40 °C to 85 °C
Additional current may be drawn in the coin cell mode when RESETBMCU is pulled up to VSNVS due an internal path from RESETBMCU to VIN.
The additional current is UVDET
• PWRON_CFG = 1, for power button debounce timing
In addition, when the 16 MHz is active in the on mode, the debounce times in Table 26 are referenced to the 32 kHz derived from the
16 MHz clock. The exceptions are the LOWVINI and PWRONI interrupts, which are referenced to the 32 kHz untrimmed clock.
Table 16. 16 MHz clock specifications
PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V and typical external
component values. Typical values are characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.
Symbol
Parameters
Min.
Typ.
Max.
Units
Operating voltage From VIN
2.8
–
4.5
V
f16MHZ
16 MHz clock frequency
14.7
16
17.2
MHz
f2MHZ
2.0 MHz clock frequency
1.84
–
2.15
MHz
VIN16MHz
Notes
(27)
Notes
27. The 2.0 MHz clock is derived from the 16 MHz clock.
6.2.1
Clock adjustment
The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By
changing the factory trim values of the 16 MHz clock, the user may add an offset as small as ±3% of the nominal frequency. Contact your
NXP representative for detailed information on this feature.
6.3
Bias and references block description
6.3.1
Internal core voltage references
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VCOREREF. The bandgap and
the rest of the core circuitry are supplied from VCORE. The performance of the regulators is directly dependent on the performance of the
bandgap. No external DC loading is allowed on VCORE, VCOREDIG, or VCOREREF. VCOREDIG is kept powered as long as there is a
valid supply and/or valid coin cell. Table 17 shows the main characteristics of the core circuitry.
Table 17. Core voltages electrical specifications(29)
PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external
component values. Typical values are characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.
Symbol
Parameters
Min.
Typ.
Max.
Units
–
–
1.5
1.3
–
–
V
–
–
2.775
0.0
–
–
V
Notes
VCOREDIG (digital core supply)
VCOREDIG
Output voltage
On mode (28)
Coin cell mode and off
VCORE (analog core supply)
VCORE
Output voltage
On mode and charging (28)
Off and Coin cell mode
PF0100Z
NXP Semiconductors
23
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 17. Core voltages electrical specifications(29) (continued)
PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external
component values. Typical values are characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.
Symbol
Parameters
Min.
Typ.
Max.
Units
Notes
VCOREREF (bandgap / regulator reference)
VCOREREF
Output voltage (28)
–
1.2
–
V
VCOREREFACC
Absolute accuracy
–
0.5
–
%
VCOREREFTACC
Temperature drift
–
0.25
–
%
Notes
28. 3.0 V < VIN < 4.5 V, no external loading on VCOREDIG, VCORE, or VCOREREF. Extended operation down to UVDET, but no system malfunction.
29.
For information only
6.3.1.1
External components
Table 18. External components for core voltages
6.3.2
Regulator
Capacitor value (μF)
VCOREDIG
1.0
VCORE
1.0
VCOREREF
0.22
VREFDDR voltage reference
VREFDDR is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half the input
voltage. Its typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a low frequency pole.
This divider uses a voltage follower to drive the load.
VINREFDDR
CHALF1
100 nf
VINREFDDR
VHALF
CHALF2
100 nf
_
+
Discharge
VREFDDR
VREFDDR
CREFDDR
1.0 uf
Figure 7. VREFDDR block diagram
6.3.2.1
VREFDDR control register
The VREFDDR voltage reference is controlled by a single bit in VREFDDCRTL register in Table 19.
PF0100Z
24
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 19. Register VREFDDCRTL - ADDR 0x6A
Name
UNUSED
Bit #
R/W
Default
3:0
–
0x00
unused
4
R/W
0x00
Enable or disables VREFDDR output voltage
0 = VREFDDR disabled
1 = VREFDDR enabled
7:5
–
0x00
unused
VREFDDREN
UNUSED
6.3.2.1.1
Description
External components
Table 20. VREFDDR external components (30)
Capacitor
VINREFDDR
(31)
Capacitance (μF)
to VHALF
0.1
VHALF to GND
0.1
VREFDDR
1.0
Notes
30. Use X5R or X7R capacitors.
31. VINREFDDR to GND, 1.0 μF minimum capacitance is provided by buck regulator output.
6.3.2.1.2
VREFDDR specifications
Table 21. VREFDDR electrical characteristics
PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V and typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and
25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
VREFDDR
VINREFDDR
Operating input voltage range
1.2
–
1.8
V
IREFDDR
Operating load current range
0.0
–
10
mA
Current limit
IREFDDR when VREFDDR is forced to VINREFDDR/4
10.5
15
25
mA
Quiescent current
–
8.0
–
μA
Output voltage
1.2 V < VINREFDDR < 1.8 V
0.0 mA < IREFDDR < 10 mA
–
VINREFDDR/
2
–
V
–1.0
-1.2
–
–
1.0
1.2
–
0.40
–
IREFDDRLIM
IREFDDRQ
(32)
Active Mode – DC
VREFDDR
VREFDDRTOL
Output voltage tolerance
1.2 V < VINREFDDR < 1.8 V
0.6 mA ≤ IREFDDR ≤ 10 mA
TA = -40 °C to 85 °C
TA = -40 °C to 105 °C (PF0100AZ only)
VREFDDRLOR
Load regulation
1.0 mA < IREFDDR < 10 mA
1.2 V < VINREFDDR < 1.8 V
%
mV/mA
PF0100Z
NXP Semiconductors
25
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 21. VREFDDR electrical characteristics (continued)
PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V and typical external
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and
25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
tONREFDDR
Turn-on Time
Enable to 90% of end value
VINREFDDR = 1.2 V, 1.8 V
IREFDDR = 0.0 mA
–
–
100
μs
tOFFREFDDR
Turn-off time
Disable to 10% of initial value
VINREFDDR = 1.2 V, 1.8 V
IREFDDR = 0.0 mA
–
–
10
ms
VREFDDROSH
Start-up overshoot
VINREFDDR = 1.2 V, 1.8 V
IREFDDR = 0.0 mA
–
1.0
6.0
%
VREFDDRTLR
Transient load response
VINREFDDR = 1.2 V, 1.8 V
–
5.0
–
mV
Notes
Active mode – AC
Notes
32. When VREFDDR is off there is a quiescent current of 1.5 μA typical.
PF0100Z
26
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4
Power generation
6.4.1
Modes of operation
The operation of the PF0100Z can be reduced to five states, or modes: on, off, sleep, standby, and coin cell. Figure 8 shows the state
diagram of the PF0100Z, along with the conditions to enter and exit from each state.
Coin Cell
VIN < UVDET
VIN < UVDET
VIN > UVDET
PWRON = 0 held >= 4.0 sec
Any SWxOMODE bits=1
& PWRONRSTEN = 1
(PWRON_CFG=1)
VIN < UVDET
Sleep
VIN < UVDET
PWRON = 0
Any SWxOMODE bits=1
(PWRON_CFG=0)
Or
PWRON=0 held >= 4.0 sec
Any SWxOMODE bits=1
& PWRONRSTEN = 1
(PWRON_CFG=1)
Thermal shutdown
PWRON = 0
Any SWxOMODE bits=1
(PWRON_CFG=0)
Or
PWRON=0 held >= 4.0 sec
Any SWxOMODE bits=1
& PWRONRSTEN = 1
(PWRON_CFG=1)
PWRON=1
& VIN > UVDET
(PWRON_CFG =0)
Or
PWRON= 0 < 4.0 sec
& VIN > UVDET
(PWRON_CFG=1)
PWRON=1
& VIN > UVDET
(PWRON_CFG = 0)
Or
PWRON= 0 < 4.0 sec
& VIN > UVDET
(PWRON_CFG=1)
OFF
PWRON = 0
All SWxOMODE bits= 0
(PWRON_CFG = 0)
Or
PWRON = 0 held >= 4.0 sec
All SWxOMODE bits= 0
& PWRONRSTEN = 1
(PWRON_CFG = 1)
ON
Thermal shudown
STANDBY asserted
STANDBY de-asserted
Standby
PWRON = 0
All SWxOMODE bits= 0
(PWRON_CFG = 0)
Or
PWRON = 0 held >= 4.0 sec
All SWxOMODE bits= 0
& PWRONRSTEN = 1
(PWRON_CFG = 1)
Thermal shutdown
Figure 8. State diagram
To complement the state diagram in Figure 8, a description of the states is provided in following sections. Note that VIN must exceed the
rising UVDET threshold to allow a power up. Refer to Table 28 for the UVDET thresholds. Additionally, I2C control is not possible in the
coin cell mode and the interrupt signal, INTB, is only active in sleep, standby, and on states.
6.4.1.1
On mode
The PF0100Z enters the on mode after a turn-on event. RESETBMCU is de-asserted, high, in this mode of operation.
6.4.1.2
Off mode
The PF0100Z enters the off mode after a turn-off event. A thermal shutdown event also forces the PF0100Z into the off mode. Only
VCOREDIG and VSNVS are powered in the mode of operation. To exit the off mode, a valid turn-on event is required. RESETBMCU is
asserted, low, in this mode.
PF0100Z
NXP Semiconductors
27
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.1.3
Standby mode
• Depending on STANDBY pin configuration, standby is entered when the STANDBY pin is asserted. This is typically used for lowpower mode of operation.
• When STANDBY is de-asserted, standby mode is exited.
A product may be designed to go into a low-power mode after periods of inactivity. The STANDBY pin is provided for board level control
of going in and out of such deep sleep modes (DSM).
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing the
operating mode of the regulators, or disabling some regulators. The configuration of the regulators in standby is pre-programmed through
the I2C interface.
Note that the STANDBY pin is programmable for active high or active low polarity, and decoding of a Standby event takes into account
the programmed input polarity, as shown in Table 22. When the PF0100Z is powered up first, regulator settings for the standby mode are
mirrored from the regulator settings for the on mode. To change the STANDBY pin polarity to active low, set the STANDBYINV bit via
software first, and then change the regulator settings for standby mode as required. For simplicity, STANDBY is generally referred to as
active high throughout this document.
Table 22. Standby pin and polarity control
STANDBY (pin)(34)
STANDBYINV (I2C bit)(35)
STANDBY control (33)
0
0
0
0
1
1
1
0
1
1
1
0
Notes
33. STANDBY = 0: System is not in standby, STANDBY = 1: System is in standby
34. The state of the STANDBY pin only has influence in on mode.
35. Bit 6 in power control register (ADDR - 0x1B)
Since STANDBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond
to the pin level changes. A programmable delay is provided to hold off the system response to a Standby event. This allows the processor
and peripherals some time after a standby instruction was received to terminate processes to facilitate seamless entering into standby
mode.
When enabled (STBYDLY = 01, 10, or 11) per Table 23, STBYDLY delays the standby initiated response for the entire IC, until the
STBYDLY counter expires. An allowance should be made for three additional 32 k cycles required to synchronize the standby event.
Table 23. STANDBY delay - initiated response
STBYDLY[1:0](36)
Function
00
No delay
01
One 32 k period (default)
10
Two 32 k periods
11
Three 32 k periods
Notes
36. Bits [5:4] in Power Control Register (ADDR - 0x1B)
6.4.1.4
Sleep mode
• Depending on the PWRON pin configuration, sleep mode is entered when PWRON is de-asserted and SWxOMODE bit is set.
• To exit sleep mode, assert the PWRON pin.
In the sleep mode, the regulator uses the set point as programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for SW2, SW3A/
B, and SW4. The activated regulators maintain settings for this mode and voltage until the next turn-on event. Table 24 shows the control
bits in sleep mode. During sleep mode, interrupts are active and the INTB pin reports any unmasked fault event.
PF0100Z
28
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 24. Regulator mode control
SWxOMODE
Off operational mode (sleep) (37)
0
Off
1
PFM
Notes
37. For sleep mode, an activated switching regulator, should use the off mode
set point as programmed by SW1xOFF[5:0] for SW1A/B/C and
SWxOFF[6:0] for SW2, SW3A/B, and SW4.
6.4.1.5
Coin cell mode
In the coin cell state, the coin cell is the only valid power source (VIN = 0.0 V) to the PMIC. No turn-on event is accepted in the coin cell
state. Transition to the OFF state requires that VIN surpasses UVDET threshold. RESETBMCU is held low in this mode.
If the coin cell is depleted, a complete system reset occurs. At the next application of power and the detection of a turn-on event, the
system is re-initialized with all I2C bits including those reset on COINPORB, which are restored to their default states.
6.4.2
State machine flow summary
Table 25 provides a summary matrix of the PF0100Z flow diagram to show the conditions needed to transition from one state to another.
Table 25. State machine flow summary
STATE
Next state
OFF
Coin cell
Sleep
Standby
ON
OFF
X
VIN < UVDET
X
X
PWRON_CFG = 0
PWRON = 1 & VIN > UVDET
or
PWRON_CFG = 1
PWRON = 0 < 4.0 s
& VIN > UNDET
Coin cell
VIN > UVDET
X
X
X
X
Thermal Shutdown
Initial state
Sleep
PWRON_CFG = 1
PWRON = 0 ≥ 4.0 s
Any SWxOMODE = 1 &
PWRONRSTEN = 1
VIN < UVDET
X
X
PWRON_CFG = 0
PWRON = 1 & VIN > UVDET
or
PWRON_CFG = 1
PWRON = 0 < 4.0 s &
VIN > UNDET
VIN < UVDET
PWRON_CFG = 0
PWRON = 0
Any SWxOMODE = 1
or
PWRON_CFG = 1
PWRON = 0 ≥ 4.0 s
Any SWxOMODE = 1 &
PWRONRSTEN = 1
X
Standby de-asserted
VIN < UVDET
PWRON_CFG = 0
PWRON = 0
Any SWxOMODE = 1
or
PWRON_CFG = 1
PWRON = 0 ≥ 4.0 s
Any SWxOMODE = 1 &
PWRONRSTEN = 1
Standby
asserted
X
Thermal Shutdown
Standby
PWRON_CFG = 0
PWRON = 0
All SWxOMODE = 0
or
PWRON_CFG = 1
PWRON = 0 ≥ 4.0 s
All SWxOMODE = 0 &
PWRONRSTEN = 1
Thermal Shutdown
ON
PWRON_CFG = 0
PWRON = 0
All SWxOMODE = 0
or
PWRON_CFG = 1
PWRON = 0 ≥ 4.0 s
All SWxOMODE = 0 &
PWRONRSTEN = 1
PF0100Z
NXP Semiconductors
29
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.2.1
Turn on events
From off and sleep modes, the PMIC is powered on by a turn-on event. The type of turn-on event depends on the configuration of PWRON.
PWRON may be configured as an active high when PWRON_CFG = 0, or as the input of a mechanical switch when PWRON_CFG = 1.
VIN must be greater than UVDET for the PMIC to turn-on. When PWRON is configured as an active high and PWRON is high (pulled up
to VSNVS) before VIN is valid, a VIN transition from 0.0 V to a voltage greater than UVDET is also a turn-on event. See the state diagram,
Figure 8, and the Table 25 for more details. Any regulator enabled in the sleep mode remains enabled when transitioning from sleep to
on, the regulator does not turn off and then on again to match the start-up sequence. The following is a more detailed description of the
PWRON configurations:
• If PWRON_CFG = 0, the PWRON signal is high and VIN > UVDET, the PMIC turns on; the interrupt and sense bits, PWRONI and
PWRONS respectively, are set.
• If PWRON_CFG = 1, VIN > UVDET and PWRON transitions from high to low, the PMIC turns on; the interrupt and sense bits,
PWRONI and PWRONS respectively, are set.
The sense bit shows the real time status of the PWRON pin. In this configuration, the PWRON input can be a mechanical switch
debounced through a programmable debouncer, PWRONDBNC[1:0], to avoid a response to a very short (unintentional) key press. The
interrupt is generated for both the falling and the rising edge of the PWRON pin. By default, a 30 ms interrupt debounce is applied to both
falling and rising edges. The falling edge debounce timing can be extended with PWRONDBNC[1:0] as defined in Table 26. The interrupt
is cleared by software, or when cycling through the off mode.
Table 26. PWRON hardware debounce bit settings
Bits
PWRONDBNC[1:0]
State
Turn on
debounce (ms)
Falling edge INT
debounce (ms)
Rising edge INT
debounce (ms)
00
0.0
31.25
31.25
01
31.25
31.25
31.25
10
125
125
31.25
11
750
750
31.25
Notes
38. The sense bit, PWRONS, is not debounced and follows the state of the PWRON pin.
6.4.2.2
6.4.2.2.1
Turn off events
PWRON pin
The PWRON pin is used to power off the PF0100Z. The PWRON pin can be configured with OTP to power off the PMIC under the following
two conditions:
1. PWRON_CFG bit = 0, SWxOMODE bit = 0 and PWRON pin is low.
2. PWRON_CFG bit = 1, SWxOMODE bit = 0, PWRONRSTEN = 1 and PWRON is held low for longer than 4.0 seconds.
Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit.
6.4.2.2.2
Thermal protection
If the die temperature surpasses a given threshold, the thermal protection circuit powers off the PMIC to avoid damage. A turn-on event
does not power on the PMIC while it is in thermal protection. The part remains in off mode until the die temperature decreases below a
given threshold. There are no specific interrupts related to this other than the warning interrupt. See 4.2.1 Power dissipation, page 10 for
more detailed information.
6.4.2.2.3
Undervoltage detection
When the voltage at VIN drops below the undervoltage falling threshold, UVDET, the state machine transitions to the coin cell mode.
PF0100Z
30
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.3
Power tree
The PF0100Z PMIC features six buck regulators, one boost regulator, six general purpose LDOs, one switch/LDO combination, and a
DDR voltage reference to supply voltages for the application processor and peripheral devices. The buck regulators as well as the boost
regulator are supplied directly from the main input supply (VIN). The inputs to all of the buck regulators must be tied to VIN, whether they
are powered on or off. The six general use LDO regulators are directly supplied from the main input supply or from the switching regulators
depending on the application requirements. Since VREFDDR is intended to provide DDR memory reference voltage, it should be supplied
by any rail supplying voltage to DDR memories; the typical application recommends the use of SW3 as the input supply for VREFDDR.
VSNVS is supplied by either the main input supply or the coin cell. Refer to Table 27 for a summary of all power supplies provided by the
PF0100Z.
Table 27. Power tree summary
Supply
Output voltage (V)
Step size (mV)
Maximum load current (mA)
SW1A/B
0.3 - 1.875
25
2500
SW1C
0.3 - 1.875
25
2000
SW2
0.4 - 3.3
25/50
2000 (40)
SW3A/B
0.4 - 3.3
25/50
1250 (39)
SW4
0.5*SW3A_OUT, 0.4 - 3.3
25/50
1000
SWBST
5.00/5.05/5.10/5.15
50
600
VGEN1
0.80 – 1.55
50
100
VGEN2
0.80 – 1.55
50
250
VGEN3
1.8 – 3.3
100
100
VGEN4
1.8 – 3.3
100
350
VGEN5
1.8 – 3.3
100
100
VGEN6
1.8 – 3.3
100
200
VSNVS
1.0 - 3.0
NA
0.4
VREFDDR
0.5*SW3A_OUT
NA
10
Notes
39. Current rating per independent phase, when SW3A/B is set in single or dual phase, current capability is up to 2500 mA.
40. SW2 capable of 2500 mA in NP/F9/FA versions
Figure 9 shows a simplified power map with various recommended options to supply the different block within the PF0100Z, as well as
the typical application voltage domain on the i.MX 6X processor. Note that each application power tree is dependent upon the system’s
voltage and current requirements, therefore a proper input voltage should be selected for the regulators.
The minimum operating voltage for the main VIN supply is 2.8 V, for lower voltages proper operation is not guaranteed. However at initial
power up, the input voltage must surpass the rising UVDET threshold before proper operation is guaranteed. Refer to the representative
tables and text specifying each supply for information on performance metrics and operating ranges. Table 28 summarizes the UVDET
thresholds.
Table 28. UVDET threshold
UVDET threshold
VIN
Rising
3.1 V
Falling
2.65 V
PF0100Z
NXP Semiconductors
31
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
SW1A
CORE
(0.3 to 1.875 V), 1.25 A
i.MX6X
MCU
VDDARM_IN
SW1B
CORE
(0.3 to 1.875 V), 1.25 A
VIN
2.8 - 4.5 V
SW1C
SOC
(0.3 to 1.875 V), 2.0 A
VDDSOC_IN
SW2
VDDHIGH
(0.4 to 3.3 V), 2.0 A
VDDHIGH_IN
SW3A
DDR CORE
(0.4 to 3.3 V), 1.25 A
SW3B
DDR IO
(0.4 to 3.3 V), 1.25 A
VDD_DDR_IO
SW4
System/VTT
(0.4 to 3.3 V)
(0.5*VDDR)
1.0 A
SWBST
5.0 V, 0.6 A
VREFDDR
0.5*VDDR, 10 mA
SW3A/B
VIN
MUX /
COIN
CHRG
Coincell
VINMAX = 3.4 V
SW4
VINMAX = 3.6 V
SW4
SW4
VSNVS_IN
USB_OTG
DDR3
Peripherals
VGEN4
(1.8 to 3.3 V),
350 mA
VGEN5
(1.8 to 3.3 V),
100 mA
VIN
SW2
VGEN2
(0.80 to 1.55 V),
250 mA
VGEN3
(1.8 to 3.3 V),
100 mA
VIN
SW2
VSNVS
1.0 to 3.0 V,
400 uA
VGEN1
(0.80 to 1.55 V),
100 mA
VIN
SW2
LDO_3p0
VINMAX = 4.5 V
VGEN6
(1.8 to 3.3 V),
200 mA
Figure 9. PF0100Z typical power map
PF0100Z
32
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4
Buck regulators
Each buck regulator is capable of operating in PFM, APS, and PWM switching modes.
6.4.4.1
Current limit
Each buck regulator has a programmable current limit. In an overcurrent condition, the current is limited cycle-by-cycle. If the current limit
condition persists for more than 8.0 ms, a fault interrupt is generated.
6.4.4.2
General control
To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes can occur
by any of the following means: I2C programming, exiting/entering the standby mode, exiting/entering sleep mode, and load current
variation. Available switching modes for buck regulators are presented in Table 29.
Table 29. Switching mode description
Mode
Description
OFF
The regulator is switched off and the output voltage is discharged.
PFM
In this mode, the regulator is always in PFM mode, which is useful at light loads for optimized efficiency.
PWM
In this mode, the regulator is always in PWM mode operation regardless of load conditions.
APS
In this mode, the regulator moves automatically between pulse skipping mode and PWM mode depending on load conditions.
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms (typical) after
the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching
mode selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes. Contact
your NXP representative for application considerations if you are using load switches in series with the buck regulator outputs. Table 30
summarizes the buck regulator programmability for normal and standby modes.
Table 30. Regulator mode control
SWxMODE[3:0]
Normal mode
Standby mode
0000
Off
Off
0001
PWM
Off
0010
Reserved
Reserved
0011
PFM
Off
0100
APS
Off
0101
PWM
PWM
0110
PWM
APS
0111
Reserved
Reserved
1000
APS
APS
1001
Reserved
Reserved
1010
Reserved
Reserved
1011
Reserved
Reserved
1100
APS
PFM
1101
PWM
PFM
1110
Reserved
Reserved
1111
Reserved
Reserved
Transitioning between normal and standby modes can affect a change in switching modes as well as output voltage. The rate of the output
voltage change is controlled by the dynamic voltage scaling (DVS), explained in 6.4.4.2.1 Dynamic voltage scaling, page 34. For each
regulator, the output voltage options are the same for normal and standby modes.
PF0100Z
NXP Semiconductors
33
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
When in standby mode, the regulator outputs the voltage programmed in its standby voltage register and operates in the mode selected
by the SWxMODE[3:0] bits. Upon exiting standby mode, the regulator returns to its normal switching mode and its output voltage
programmed in its voltage register.
Any regulators whose SWxOMODE bit is set to “1” enters sleep mode if a PWRON turn-off event occurs, and any regulator whose
SWxOMODE bit is set to “0” is turned off. In sleep mode, the regulator outputs the voltage programmed in its off (sleep) voltage register
and operates in the PFM mode. The regulator exits the sleep mode when a turn-on event occurs. Any regulator whose SWxOMODE bit
is set to “1” remains on and changes to its normal configuration settings when exiting the sleep state to the on state. Any regulator whose
SWxOMODE bit is set to “0” powers up with the same delay in the start-up sequence as when powering on from off. At this point, the
regulator returns to its default ON state output voltage and switch mode settings.
Table 24 shows the control bits in sleep mode. When sleep mode is activated by the SWxOMODE bit, the regulator uses the set point as
programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for SW2, SW3A/B, and SW4.
6.4.4.2.1
Dynamic voltage scaling
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor.
1. Normal operation: The output voltage is selected by I2C bits SW1x[5:0] for SW1A/B/C and SWx[6:0] for SW2, SW3A/B, and SW4.
A voltage transition initiated by I2C is governed by the DVS stepping rates shown in Table 33 and Table 34.
2. Standby mode: The output voltage can be higher, or lower than in normal operation, but is typically selected to be the lowest state
retention voltage of a given processor; it is selected by I2C bits SW1xSTBY[5:0] for SW1A/B/C and by bits SWxSTBY[6:0] for SW2,
SW3A/B, and SW4. Voltage transitions initiated by a standby event are governed by the SW1xDVSSPEED[1:0] and
SWxDVSSPEED[1:0] I2C bits shown in Table 33 and Table 34, respectively.
3. Sleep mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state
retention voltage of a given processor; it is selected by I2C bits SW1xOFF[5:0] for SW1A/B/C and by bits SWxOFF[6:0] for SW2,
SW3A/B, and SW4. Voltage transitions initiated by a turn-off event are governed by the SW1xDVSSPEED[1:0] and
SWxDVSSPEED[1:0] I2C bits shown in Table 33 and Table 34, respectively.
Table 31, Table 32, Table 33, and Table 34 summarize the set point control and DVS time stepping applied to all regulators.
Table 31. DVS control logic for SW1A/B/C
STANDBY
Set point selected by
0
SW1x[5:0]
1
SW1xSTBY[5:0]
Table 32. DVS control logic for SW2, SW3A/B, and SW4
STANDBY
Set point selected by
0
SWx[6:0]
1
SWxSTBY[6:0]
Table 33. DVS speed selection for SW1A/B/C
SW1xDVSSPEED[1:0]
Function
00
25 mV step each 2.0 μs
01 (default)
25 mV step each 4.0 μs
10
25 mV step each 8.0 μs
11
25 mV step each 16 μs
PF0100Z
34
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 34. DVS Speed Selection for SW2, SW3A/B, and SW4
SWxDVSSPEED[1:0]
Function
SWx[6] = 0 or SWxSTBY[6] = 0
Function
SWx[6] = 1 or SWxSTBY[6] = 1
00
25 mV step each 2.0 μs
50 mV step each 4.0 μs
01 (default)
25 mV step each 4.0 μs
50 mV step each 8.0 μs
10
25 mV step each 8.0 μs
50 mV step each 16 μs
11
25 mV step each 16 μs
50 mV step each 32 μs
The regulators have a strong sourcing capability and sinking capability in PWM mode, therefore the fastest rising and falling slopes are
determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the
falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in
PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.
The following diagram shows the general behavior for the regulators when initiated with I2C programming, or standby control. During the
DVS period the overcurrent condition on the regulator should be masked.
Requested
Set Point
Output Voltage
with light Load
Internally
Controlled Steps
Example
Actual Output
Voltage
Output
Voltage
Initial
Set Point
Actual
Output Voltage
Internally
Controlled Steps
Voltage
Change
Request
Request for
Higher Voltage
Possible
Output Voltage
Window
Request for
Lower Voltage
Initiated by I2C Programming, Standby Control
Figure 10. Voltage stepping with DVS
6.4.4.2.2
Regulator phase clock
The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 35. By default, each regulator is initialized at 90 ° out
of phase with respect to each other. For example, SW1x is set to 0 °, SW2 is set to 90 °, SW3A/B is set to 180 °, and SW4 is set to 270 °
by default at power up.
Table 35. Regulator phase clock selection
SWxPHASE[1:0]
Phase of clock sent to regulator
(degrees)
00
0
01
90
10
180
11
270
The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 37 shows the
selectable options for SWxFREQ[1:0]. For each frequency, all phases will be available, this allows regulators operating at different
frequencies to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and
4.0 MHz, 180 ° are the same in terms of phasing. Table 36 shows the optimum phasing when using more than one switching frequency.
PF0100Z
NXP Semiconductors
35
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 36. Optimum phasing
Frequencies
Optimum phasing
1.0 MHz
2.0 MHz
0°
180 °
1.0 MHz
4.0 MHz
0°
180 °
2.0 MHz
4.0 MHz
0°
180 °
1.0 MHz
2.0 MHz
4.0 MHz
0°
90 °
90 °
Table 37. Regulator frequency configuration
6.4.4.2.3
SWxFREQ[1:0]
Frequency
00
1.0 MHz
01
2.0 MHz
10
4.0 MHz
11
Reserved
Programmable maximum current
The maximum current, ISWxMAX, of each buck regulator is programmable. This allows the use of smaller inductors where lower currents
are required. Programmability is accomplished by choosing the number of paralleled power stages in each regulator. The
SWx_PWRSTG[2:0] bits in Table 137. Extended page 2, page 110 of the register map control the number of power stages. See Table 38
for the programmable options. Bit[0] must always be enabled to ensure the stage with the current sensor is chosen. The default setting,
SWx_PWRSTG[2:0] = 111, represents the highest maximum current. The current limit for each option is also scaled by the percentage of
power stages that are enabled.
Table 38. Programmable current configuration
Regulators
% of power stages
enabled
Control bits
SW1AB_PWRSTG[2:0]
SW1AB
ISW1ABMAX
0
0
1
40%
1.0
0
1
1
80%
2.0
1
0
1
60%
1.5
1
1
1
100%
2.5
SW1C_PWRSTG[2:0]
SW1C
ISW1CMAX
0
0
1
43%
0.9
0
1
1
58%
1.2
1
0
1
86%
1.7
1
1
100%
1
SW2_PWRSTG[2:0]
SW2
Rated current (A)
2.0
ISW2MAX
0
0
1
38%
0.75
0
1
1
75%
1.5
1
0
1
63%
1.25
1
1
1
100%
2.0
PF0100Z
36
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 38. Programmable current configuration (continued)
Regulators
% of power stages
enabled
Control bits
Rated current (A)
SW3A_PWRSTG[2:0]
SW3A
ISW3AMAX
0
0
1
40%
0.5
0
1
1
80%
1.0
1
0
1
60%
0.75
1
1
1
100%
1.25
SW3B_PWRSTG[2:0]
SW3B
ISW3BMAX
0
0
1
40%
0.5
0
1
1
80%
1.0
1
0
1
60%
0.75
1
1
100%
1
SW4_PWRSTG[2:0]
SW4
6.4.4.3
1.25
ISW4MAX
0
0
1
50%
0.5
0
1
1
75%
0.75
1
0
1
75%
0.75
1
1
1
100%
1.0
SW1A/B/C
SW1/A/B/C are 2.5 A to 4.5 A buck regulators which can be configured in various phasing schemes, depending on the desired cost/
performance trade-offs. The following configurations are available:
• SW1A/B/C single phase with one inductor
• SW1A/B as a single phase with one inductor and SW1C in independent mode with one inductor
• SW1A/B as a dual phase with two inductors and SW1C in independent mode with one inductor
The desired configuration is programmed by OTP by using SW1_CONFIG[1:0] bits in the register map Table 136. Extended page 1, page
106, as shown in Table 39.
.
Table 39. SW1 configuration
SW1_CONFIG[1:0]
Description
00
A/B/C single phase
01
A/B single phase
C independent mode
10
A/B dual phase
C independent mode
11
Reserved
6.4.4.3.1
SW1A/B/C single phase
In this configuration, all phases A, B, and C, are connected together to a single inductor, thus, providing up to 4.50 A current capability for
high current applications. The feedback and all other controls are accomplished by use of pin SW1CFB and SW1C control registers,
respectively. Figure 11 shows the connection for SW1A/B/C in single phase mode.
During single phase mode operation, all three phases use the same configuration for frequency, phase, and DVS speed set in the
SW1CCONF register. However, the same configuration settings for frequency, phase, and DVS speed setting on SW1AB registers should
be used. The SW1FB pin should be left floating in this configuration.
PF0100Z
NXP Semiconductors
37
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
VIN
SW1AIN
SW1AMODE
ISENSE
CINSW1A
SW1A/B/C
SW1ALX
LSW1
Controller
Driver
COSW1A
SW1AFAULT
Internal
Compensation
SW1FB
I2C
Z2
Z1
EA
VREF
DAC
VIN
SW1BIN
SW1BMODE
ISENSE
CINSW1B
SW1BLX
Controller
I2C
Interface
Driver
SW1BFAULT
VIN
SW1CIN
SW1CMODE
ISENSE
CINSW1C
SW1CLX
Controller
Driver
SW1CFAULT
EP
Internal
Compensation
SW1CFB
I2C
Z2
Z1
EA
VREF
DAC
Figure 11. SW1A/B/C single phase block diagram
6.4.4.3.2
SW1A/B single phase - SW1C independent mode
In this configuration, SW1A/B is connected as a single phase with a single inductor, while SW1C is used as an independent output, using
its own inductor and configurations parameters. This configuration allows reduced component count by using only one inductor for
SW1A/B. As mentioned before, SW1A/B and SW1C operate independently from one another, thus, they can be operated with a different
voltage set point for normal, standby, and sleep modes, as well as switching mode selection and on/off control. Figure 12 shows the
physical connection for SW1A/B in single phase and SW1C as an independent output.
PF0100Z
38
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
VIN
SW1AIN
SW1AMODE
ISENSE
CINSW1A
SW1A/B
SW1ALX
LSW1A
Controller
Driver
COSW1A
SW1AFAULT
Internal
Compensation
SW1FB
I2C
Z2
Z1
EA
DAC
VREF
VIN
SW1BIN
SW1BMODE
ISENSE
CINSW1B
SW1BLX
Controller
I2C
Interface
Driver
SW1BFAULT
VIN
SW1CIN
SW1C
SW1CLX
LSW1C
COSW1C
SW1CMODE
ISENSE
CINSW1C
Controller
Driver
SW1CFAULT
EP
Internal
Compensation
SW1CFB
I2C
Z2
Z1
EA
VREF
DAC
Figure 12. SW1A/B single phase, SW1C independent mode block diagram
Both SW1ALX and SW1BLX nodes operate at the same DVS, frequency, and phase configured by the SW1ABCONF register, while
SW1CLX node operates independently, using the configuration in the SW1CCONF register.
6.4.4.3.3
SW1A/B dual phase - SW1C independent mode
In this mode, SW1A/B is connected in dual phase mode using one inductor per switching node, while SW1C is used as an independent
output using its own inductor and configuration parameters. This mode provides a smaller output voltage ripple on the SW1A/B output.
As mentioned before, SW1A/B and SW1C operate independently from one another, thus, they can be operated with a different voltage
set point for normal, standby, and sleep modes, as well as switching mode selection and on/off control. Figure 13 shows the physical
connection for SW1A/B in dual phase and SW1C as an independent output.
PF0100Z
NXP Semiconductors
39
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
VIN
SW1AIN
SW1AMODE
ISENSE
CINSW1A
SW1AB
SW1ALX
LSW1A
Controller
Driver
COSW1A
SW1AFAULT
Internal
Compensation
SW1FB
I2C
Z2
Z1
EA
DAC
VREF
VIN
SW1BIN
SW1BMODE
ISENSE
CINSW1B
SW1BLX
LSW1B
I2C
Interface
Controller
Driver
COSW1B
SW1BFAULT
VIN
SW1CIN
SW1C
SW1CLX
LSW1C
COSW1C
SW1CMODE
ISENSE
CINSW1C
Controller
Driver
SW1CFAULT
EP
Internal
Compensation
SW1CFB
I2C
Z2
Z1
EA
VREF
DAC
Figure 13. SW1A/B dual phase, SW1C independent mode block diagram
In this mode of operation, SW1ALX and SW1BLX nodes operate automatically at 180 ° phase shift from each other and use the same
frequency and DVS configured by SW1ABCONF register, while SW1CLX node operate independently using the configuration in the
SW1CCONF register.
PF0100Z
40
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.3.4
SW1A/B/C setup and control registers
SW1A/B and SW1C output voltages are programmable from 0.300 V to 1.875 V in steps of 25 mV. The output voltage set point is
independently programmed for normal, standby, and sleep mode by setting the SW1x[5:0], SW1xSTBY[5:0], and SW1xOFF[5:0] bits
respectively. Table 40 shows the output voltage coding for SW1A/B or SW1C.
Note: Voltage set points of 0.6 V and below are not supported.
Table 40. SW1A/B/C output voltage configuration
Set point
SW1x[5:0]
SW1xSTBY[5:0]
SW1xOFF[5:0]
SW1x output (V)
Set point
SW1x[5:0]
SW1xSTBY[5:0]
SW1xOFF[5:0]
SW1x output (V)
0
000000
0.3000
32
100000
1.1000
1
000001
0.3250
33
100001
1.1250
2
000010
0.3500
34
100010
1.1500
3
000011
0.3750
35
100011
1.1750
4
000100
0.4000
36
100100
1.2000
5
000101
0.4250
37
100101
1.2250
6
000110
0.4500
38
100110
1.2500
7
000111
0.4750
39
100111
1.2750
8
001000
0.5000
40
101000
1.3000
9
001001
0.5250
41
101001
1.3250
10
001010
0.5500
42
101010
1.3500
11
001011
0.5750
43
101011
1.3750
12
001100
0.6000
44
101100
1.4000
13
001101
0.6250
45
101101
1.4250
14
001110
0.6500
46
101110
1.4500
15
001111
0.6750
47
101111
1.4750
16
010000
0.7000
48
110000
1.5000
17
010001
0.7250
49
110001
1.5250
18
010010
0.7500
50
110010
1.5500
19
010011
0.7750
51
110011
1.5750
20
010100
0.8000
52
110100
1.6000
21
010101
0.8250
53
110101
1.6250
22
010110
0.8500
54
110110
1.6500
23
010111
0.8750
55
110111
1.6750
24
011000
0.9000
56
111000
1.7000
25
011001
0.9250
57
111001
1.7250
26
011010
0.9500
58
111010
1.7500
27
011011
0.9750
59
111011
1.7750
28
011100
1.0000
60
111100
1.8000
29
011101
1.0250
61
111101
1.8250
30
011110
1.0500
62
111110
1.8500
31
011111
1.0750
63
111111
1.8750
Table 41 provides a list of registers used to configure and operate SW1A/B/C and a detailed description on each one of these register is
provided in Table 42 through Table 51.
PF0100Z
NXP Semiconductors
41
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 41. SW1A/B/C register summary
Register
Address
Output
SW1ABVOLT
0x20
SW1AB output voltage set point in normal operation
SW1ABSTBY
0x21
SW1AB output voltage set point on standby
SW1ABOFF
0x22
SW1AB output voltage set point on sleep
SW1ABMODE
0x23
SW1AB switching mode selector register
SW1ABCONF
0x24
SW1AB DVS, phase, frequency and ILIM configuration
SW1CVOLT
0x2E
SW1C output voltage set point in normal operation
SW1CSTBY
0x2F
SW1C output voltage set point in standby
SW1COFF
0x30
SW1C output voltage set point in sleep
SW1CMODE
0x31
SW1C switching mode selector register
SW1CCONF
0x32
SW1C DVS, phase, frequency and ILIM configuration
Table 42. Register SW1ABVOLT - ADDR 0x20
Name
Bit #
R/W
Default
Description
SW1AB
5:0
R/W
0x00
Sets the SW1AB output voltage during normal
operation mode. See Table 40 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
Table 43. Register SW1ABSTBY - ADDR 0x21
Name
Bit #
R/W
Default
Description
SW1ABSTBY
5:0
R/W
0x00
Sets the SW1AB output voltage during standby
mode. See Table 40 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
Table 44. Register SW1ABOFF - ADDR 0x22
Name
Bit #
R/W
Default
Description
SW1ABOFF
5:0
R/W
0x00
Sets the SW1AB output voltage during sleep
mode. See Table 40 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
Table 45. Register SW1ABMODE - ADDR 0x23
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets the SW1AB switching operation mode.
See Table 30 for all possible configurations.
UNUSED
4
–
0x00
UNUSED
SW1ABOMODE
5
R/W
0x00
Set status of SW1AB when in sleep mode
0 = OFF
1 = PFM
7:6
–
0x00
unused
SW1ABMODE
UNUSED
Description
PF0100Z
42
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 46. Register SW1ABCONF - ADDR 0x24
Name
Bit #
R/W
Default
Description
SW1ABILIM
0
R/W
0x00
SW1AB current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED
1
R/W
0x00
Unused
SW1ABFREQ
3:2
R/W
0x00
SW1A/B switching frequency selector.
See Table 37.
SW1ABPHASE
5:4
R/W
0x00
SW1A/B phase clock selection.
See Table 35.
SW1ABDVSSPEED
7:6
R/W
0x00
SW1A/B DVS speed selection.
See Table 33.
Table 47. Register SW1CVOLT - ADDR 0x2E
Name
Bit #
R/W
Default
Description
SW1C
5:0
R/W
0x00
Sets the SW1C output voltage during normal
operation mode. See Table 40 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
Table 48. Register SW1CSTBY - ADDR 0x2F
Name
Bit #
R/W
Default
Description
SW1CSTBY
5:0
R/W
0x00
Sets the SW1C output voltage during standby
mode. See Table 40 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
Table 49. Register SW1COFF - ADDR 0x30
Name
Bit #
R/W
Default
Description
SW1COFF
5:0
R/W
0x00
Sets the SW1C output voltage during sleep
mode. See Table 40 for all possible
configurations.
UNUSED
7:6
–
0x00
unused
Table 50. Register SW1CMODE - ADDR 0x31
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets the SW1C switching operation mode.
See Table 29 for all possible configurations.
UNUSED
4
–
0x00
unused
SW1COMODE
5
R/W
0x00
Set status of SW1C when in sleep mode
0 = OFF
1 = PFM
7:6
–
0x00
unused
SW1CMODE
UNUSED
Description
PF0100Z
NXP Semiconductors
43
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 51. Register SW1CCONF - ADDR 0x32
Name
Bit #
R/W
Default
SW1CILIM
0
R/W
0x00
SW1C current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED
1
R/W
0x00
Unused
SW1CFREQ
3:2
R/W
0x00
SW1C switching frequency selector.
See Table 37.
SW1CPHASE
5:4
R/W
0x00
SW1C phase clock selection.
See Table 35.
SW1CDVSSPEED
7:6
R/W
0x00
SW1C DVS speed selection.
See Table 33.
6.4.4.3.5
Description
SW1A/B/C external components
Table 52. SW1A/B/C external component recommendations
Mode
Components
CINSW1A(41)
CIN1AHF
A/B/C single
phase
A/B single - C
independent mode
A/B dual - C
independent mode
SW1A input capacitor
4.7 μF
4.7 μF
4.7 μF
(41)
SW1A decoupling input capacitor
0.1 μF
0.1 μF
0.1 μF
(41)
SW1B input capacitor
4.7 μF
4.7 μF
4.7 μF
(41)
SW1B decoupling input capacitor
0.1 μF
0.1 μF
0.1 μF
SW1C input capacitor
4.7 μF
4.7 μF
4.7 μF
SW1C decoupling input capacitor
0.1 μF
0.1 μF
0.1 μF
6 x 22 μF
4 x 22 μF
4 x 22 μF
CINSW1B
CIN1BHF
Description
CINSW1C(41)
CIN1CHF
(41)
COSW1AB
COSW1C
(41)
(41)
SW1A/B output capacitor
SW1C output capacitor
–
2 x 22 μF
2 x 22 μF
1.0 μH
DCR = 12 mΩ
ISAT = 4.5 A
1.0 μH
DCR = 60 mΩ
ISAT = 2.4 A
LSW1A
SW1A inductor
1.0 μH
DCR = 12 mΩ
ISAT = 6.0 A
LSW1B
SW1B inductor
–
–
1.0 μH
DCR = 60 mΩ
ISAT = 2.4 A
LSW1C
SW1C inductor
–
1.0 μH
DCR = 60 mΩ
ISAT = 2.4 A
1.0 μH
DCR = 60 mΩ
ISAT = 2.4 A
Notes
41. Use X5R or X7R capacitors.
PF0100Z
44
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.3.6
SW1A/B/C specifications
Table 53. SW1A/B/C electrical characteristics
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V,
ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical
values are characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless
otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
SW1A/B/C (single phase)
VINSW1A
VINSW1B
VINSW1C
Operating input voltage
2.8
–
4.5
V
VSW1ABC
Nominal output voltage
–
Table 40
–
V
-25
-3.0%
–
–
25
3.0%
-65
-45
-3.0%
–
–
–
65
45
3.0%
–
–
4500
7.1
5.3
10.5
7.9
13.7
10.3
Start-up overshoot
ISW1ABC = 0 mA
DVS clk = 25 mV/4 μs, VIN = VINSW1x = 4.5 V, VSW1ABC = 1.875 V
–
–
66
mV
Turn-on time
Enable to 90% of end value
ISW1x = 0 mA
DVS clk = 25 mV/4.0 μs, VIN = VINSW1x = 4.5 V,
VSW1ABC = 1.875 V
–
–
500
µs
fSW1ABC
Switching frequency
SW1xFREQ[1:0] = 00
SW1xFREQ[1:0] = 01
SW1xFREQ[1:0] = 10
–
–
–
1.0
2.0
4.0
–
–
–
ηSW1ABC
Efficiency
• VIN = 3.6 V, fSW1ABC = 2.0 MHz, LSW1ABC = 1.0 μH
PFM, 0.9 V, 1.0 mA
PFM, 1.2 V, 50 mA
APS, PWM, 1.2 V, 850 mA
APS, PWM, 1.2 V, 1275 mA
APS, PWM, 1.2 V, 2125 mA
APS, PWM, 1.2 V, 4500 mA
–
–
–
–
–
–
77
82
86
84
80
70
–
–
–
–
–
–
Output ripple
–
10
–
mV
VSW1ABCLIR
Line regulation (APS, PWM)
–
–
20
mV
VSW1ABCLOR
DC load regulation (APS, PWM)
–
–
20
mV
VSW1ABCLOTR
Transient load regulation
• Transient load = 0 A to 2.25 A, di/dt = 100 mA/μs
Overshoot
Undershoot
–
–
–
–
50
50
VSW1ABCACC
ISW1ABC
ISW1ABCLIM
VSW1ABCOSH
tONSW1ABC
ΔVSW1ABC
Output voltage accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1ABC < 4.5 A
0.625 V ≤ VSW1ABC ≤ 1.450 V
1.475 V ≤ VSW1ABC ≤ 1.875 V
•
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1ABC < 150 mA
0.625 V < VSW1ABC < 0.675 V
0.7 V < VSW1ABC < 0.85 V
0.875 V < VSW1ABC < 1.875 V
Rated output load current,
2.8 V < VIN < 4.5 V, 0.625 V < VSW1ABC < 1.875 V
Current limiter peak current detection
• Current through inductor
SW1ABILIM = 0
SW1ABILIM = 1
mV
%
mA
A
MHz
%
mV
PF0100Z
NXP Semiconductors
45
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 53. SW1A/B/C electrical characteristics (continued)
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V,
ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical
values are characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless
otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Quiescent current
PFM mode
APS mode
–
–
18
145
–
–
µA
Discharge resistance
–
600
–
W
Notes
SW1A/B/C (single phase) (continued)
ISW1ABCQ
RSW1ABCDIS
SW1A/B (single/dual phasE)
VINSW1A
VINSW1B
Operating input voltage
2.8
–
4.5
V
VSW1AB
Nominal output voltage
–
Table 40
–
V
-25
-3.0%
-
25
3.0%
-65
-45
-3.0%
–
–
–
-65
-45
3.0%
–
–
2500
4.5
3.3
6.5
4.9
8.5
6.4
2.2
1.6
3.2
2.4
4.3
3.2
VSW1ABACC
ISW1AB
ISW1ABLIM
Output voltage accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 2.5 A
0.625 V ≤ VSW1AB ≤ 1.450 V
1.475 V ≤ VSW1AB ≤ 1.875 V
•
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 150 mA
0.625 V < VSW1AB < 0.675 V
0.7 V < VSW1AB < 0.85 V
0.875 V < VSW1AB < 1.875 V
Rated output load current,
2.8 V < VIN < 4.5 V, 0.625 V < VSW1AB < 1.875 V
Current limiter peak current detection
• SW1A/B single phase (current through inductor)
SW1ABILIM = 0
SW1ABILIM = 1
•
SW1A/B dual phase (current through inductor per phase)
SW1ABILIM = 0
SW1ABILIM = 1
mV
%
mA
(43)
A
(43)
VSW1ABOSH
Start-up overshoot
ISW1AB = 0.0 mA
DVS clk = 25 mV/4 μs, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V
–
–
66
mV
tONSW1AB
Turn-on time
Enable to 90% of end value
ISW1AB = 0.0 mA
DVS clk = 25 mV/4 μs, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V
–
–
500
µs
fSW1AB
Switching frequency
SW1ABFREQ[1:0] = 00
SW1ABFREQ[1:0] = 01
SW1ABFREQ[1:0] = 10
–
–
–
1.0
2.0
4.0
–
–
–
ηSW1AB
Efficiency (single phase)
• VIN = 3.6 V, fSW1AB = 2.0 MHz, LSW1AB = 1.0 μH
PFM, 0.9 V, 1.0 mA
PFM, 1.2 V, 50 mA
APS, PWM, 1.2 V, 500 mA
APS, PWM, 1.2 V, 750 mA
APS, PWM, 1.2 V, 1250 mA
APS, PWM, 1.2 V, 2500 mA
–
–
–
–
–
–
82
84
86
87
83
75
–
–
–
–
–
–
Output ripple
–
10
–
mV
Line regulation (APS, PWM)
–
–
20
mV
ΔVSW1AB
VSW1ABLIR
MHz
%
PF0100Z
46
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 53. SW1A/B/C electrical characteristics (continued)
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V,
ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical
values are characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless
otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
mV
Notes
SW1A/B (single/dual phase) (continued)
VSW1ABLOR
DC load regulation (APS, PWM)
–
–
20
VSW1ABLOTR
Transient load regulation
• Transient load = 0 A to 1.25 A, di/dt = 100 mA/μs
Overshoot
Undershoot
–
–
–
–
50
50
Quiescent current
PFM mode
APS mode
–
–
18
235
–
–
µA
ISW1ABQ
mV
RONSW1AP
SW1A P-MOSFET RDS(on)
VINSW1A = 3.3 V
–
215
245
mΩ
RONSW1AN
SW1A N-MOSFET RDS(on)
VINSW1A = 3.3 V
–
258
326
mΩ
ISW1APQ
SW1A P-MOSFET leakage current
VINSW1A = 4.5 V
–
–
7.5
µA
ISW1ANQ
SW1A N-MOSFET leakage current
VINSW1A = 4.5 V
–
–
2.5
µA
RONSW1BP
SW1B P-MOSFET RDS(on)
VINSW1B = 3.3 V
–
215
245
mΩ
RONSW1BN
SW1B N-MOSFET RDS(on)
VINSW1B = 3.3 V
–
258
326
mΩ
ISW1BPQ
SW1B P-MOSFET leakage current
VINSW1B = 4.5 V
–
–
7.5
µA
ISW1BNQ
SW1B N-MOSFET leakage current
VINSW1B = 4.5 V
–
–
2.5
µA
Discharge Resistance
–
600
–
W
RSW1ABDIS
SW1C (independent)
VINSW1C
Operating input voltage
2.8
–
4.5
V
VSW1C
Nominal output voltage
–
Table 40
–
V
-25
-3.0%
–
–
25
3.0%
VSW1CACC
ISW1C
ISW1CLIM
Output voltage accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1C < 2.0 A
0.625 V ≤ VSW1C ≤ 1.450 V
1.475 V ≤ VSW1C ≤ 1.875 V
•
PFM, steady state 2.8 V < VIN < 4.5 V, 0 < ISW1C < 50 mA
0.625 V < VSW1C < 0.675 V
0.7 V < VSW1C < 0.85 V
0.875 V < VSW1C < 1.875 V
Rated output load current
2.8 V < VIN < 4.5 V, 0.625 V < VSW1C < 1.875 V
Current limiter peak current detection
• Current through inductor
SW1CILIM = 0
SW1CILIM = 1
mV
-65
-45
-3.0%
–
–
–
65
45
3.0%
–
–
2000
2.6(42)
1.95
4.0
3.0
5.2
3.9
mA
A
PF0100Z
NXP Semiconductors
47
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 53. SW1A/B/C electrical characteristics (continued)
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V,
ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical
values are characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless
otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
SW1C (independent) (continued)
VSW1COSH
Start-up overshoot
ISW1C = 0 mA
DVS clk = 25 mV/4 μs, VIN = VINSW1C = 4.5 V, VSW1C = 1.875 V
–
–
66
mV
tONSW1C
Turn-on time
Enable to 90% of end value
ISW1C = 0 mA
DVS clk = 25 mV/4 μs, VIN = VINSW1C = 4.5 V, VSW1C = 1.875 V
–
–
500
µs
fSW1C
Switching frequency
SW1CFREQ[1:0] = 00
SW1CFREQ[1:0] = 01
SW1CFREQ[1:0] = 10
–
–
–
1.0
2.0
4.0
–
–
–
ηSW1C
Efficiency
• VIN = 3.6 V, fSW1C = 2.0 MHz, LSW1C = 1.0 μH
PFM, 0.9 V, 1.0 mA
PFM, 1.2 V, 50 mA
APS, PWM, 1.2 V, 400 mA
APS, PWM, 1.2 V, 600 mA
APS, PWM, 1.2 V, 1000 mA
APS, PWM, 1.2 V, 2000 mA
–
–
–
–
–
–
77
78
86
84
78
68
–
–
–
–
–
–
Output ripple
–
10
–
mV
ΔVSW1C
MHz
%
VSW1CLIR
Line regulation (APS, PWM)
–
–
20
mV
VSW1CLOR
DC load regulation (APS, PWM)
–
–
20
mV
VSW1CLOTR
Transient load regulation
• Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/μs
Overshoot
Undershoot
–
–
–
–
50
50
Quiescent current
PFM mode
APS mode
–
–
22
145
–
–
µA
ISW1CQ
mV
RONSW1CP
SW1C P-MOSFET RDS(on)
at VINSW1C = 3.3 V
–
184
206
mΩ
RONSW1CN
SW1C N-MOSFET RDS(on)
at VINSW1C = 3.3 V
–
211
260
mΩ
ISW1CPQ
SW1C P-MOSFET leakage current
VINSW1C = 4.5 V
–
–
10.5
µA
ISW1CNQ
SW1C N-MOSFET leakage current
VINSW1C = 4.5 V
–
–
3.5
µA
RSW1CDIS
Discharge resistance
–
600
–
W
Notes
42. Supports the Coremark and 3D MM benchmark maximum current value of 2500 mA of the VDD_SOC_IN domain in the i.MX 6Dual/Quad
processors.
43. Current rating of SW1AB supports the power virus mode of operation of the i.MX 6X processor.
PF0100Z
48
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
SW1ABC single phase
100
90
80
Efficiency (%)
70
50
40
30
Efficiency (%)
60
20
PFM - Vout = 1.2V
APS - Vout = 1.2V
PWM - Vout = 1.2V
10
0
0.1
1
10
100
1000
10000
Load current (mA)
SW1AB single phase
100
90
80
Efficiency (%)
70
60
50
40
30
20
PFM - Vout = 1.2V
APS - Vout = 1.2V
10
PWM - Vout = 1.2v
0
0.1
1
10
100
1000
Load current (mA)
SW1C independent mode
100
90
80
Efficiency (%)
70
60
50
40
30
20
PFM - Vout = 1.2V
10
APS - Vout = 1.2V
PWM - Vout = 1.2v
0
1
10
100
1000
Load current (mA)
Figure 14. SW1AB and SW1C efficiency waveforms
PF0100Z
NXP Semiconductors
49
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.4
SW2
SW2 is a single phase, 2.0 A rated buck regulator (2.5 A in NP/F9/FA versions). Table 29 describes the modes, and Table 30 show the
options for the SWxMODE[3:0] bits. Figure 15 shows the block diagram and the external component connections for SW2 regulator.
VIN
SW2IN
SW2MODE
ISENSE
CINSW2
SW2
Controller
SW2LX
Driver
LSW2
COSW2
SW2FAULT
EP
Internal
Compensation
SW2FB
I2C
Interface
I2C
Z2
Z1
VREF
EA
DAC
Figure 15. SW2 block diagram
6.4.4.4.1
SW2 setup and control registers
SW2 output voltage is programmable from 0.400 V to 3.300 V; however, bit SW2[6] in register SW2VOLT is read-only during normal
operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW2[6] is
set to “0”, the output is limited to the lower output voltages from 0.400 V to 1.975 V with 25 mV increments, as determined by bits SW2[5:0].
Likewise, once bit SW2[6] is set to “1”, the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV
increments, as determined by bits SW2[5:0].
To optimize the performance of the regulator, it is recommended that only voltages from 2.000 V to 3.300 V be used in the high range,
and the lower range be used for voltages from 0.400 V to 1.975 V.
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW2[5:0], SW2STBY[5:0]
and SW2OFF[5:0] bits, respectively. However, the initial state of bit SW2[6] is copied into bits SW2STBY[6], and SW2OFF[6] bits.
Therefore, the output voltage range remains the same in all three operating modes. Table 54 shows the output voltage coding valid for
SW2.
Note: Voltage set points of 0.6 V and below are not supported.
Table 54. SW2 output voltage configuration
Low output voltage range(44)
High output voltage range
Set Point
SW2[6:0]
SW2 Output
Set Point
SW2[6:0]
SW2 Output
0
0000000
0.4000
64
1000000
0.8000
1
0000001
0.4250
65
1000001
0.8500
2
0000010
0.4500
66
1000010
0.9000
3
0000011
0.4750
67
1000011
0.9500
4
0000100
0.5000
68
1000100
1.0000
5
0000101
0.5250
69
1000101
1.0500
6
0000110
0.5500
70
1000110
1.1000
7
0000111
0.5750
71
1000111
1.1500
8
0001000
0.6000
72
1001000
1.2000
9
0001001
0.6250
73
1001001
1.2500
10
0001010
0.6500
74
1001010
1.3000
11
0001011
0.6750
75
1001011
1.3500
12
0001100
0.7000
76
1001100
1.4000
PF0100Z
50
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 54. SW2 output voltage configuration (continued)
Low output voltage range(44)
High output voltage range
Set Point
SW2[6:0]
SW2 Output
Set Point
SW2[6:0]
SW2 Output
13
0001101
0.7250
77
1001101
1.4500
14
0001110
0.7500
78
1001110
1.5000
15
0001111
0.7750
79
1001111
1.5500
16
0010000
0.8000
80
1010000
1.6000
17
0010001
0.8250
81
1010001
1.6500
18
0010010
0.8500
82
1010010
1.7000
19
0010011
0.8750
83
1010011
1.7500
20
0010100
0.9000
84
1010100
1.8000
21
0010101
0.9250
85
1010101
1.8500
22
0010110
0.9500
86
1010110
1.9000
23
0010111
0.9750
87
1010111
1.9500
24
0011000
1.0000
88
1011000
2.0000
25
0011001
1.0250
89
1011001
2.0500
26
0011010
1.0500
90
1011010
2.1000
27
0011011
1.0750
91
1011011
2.1500
28
0011100
1.1000
92
1011100
2.2000
29
0011101
1.1250
93
1011101
2.2500
30
0011110
1.1500
94
1011110
2.3000
31
0011111
1.1750
95
1011111
2.3500
32
0100000
1.2000
96
1100000
2.4000
33
0100001
1.2250
97
1100001
2.4500
34
0100010
1.2500
98
1100010
2.5000
35
0100011
1.2750
99
1100011
2.5500
36
0100100
1.3000
100
1100100
2.6000
37
0100101
1.3250
101
1100101
2.6500
38
0100110
1.3500
102
1100110
2.7000
39
0100111
1.3750
103
1100111
2.7500
40
0101000
1.4000
104
1101000
2.8000
41
0101001
1.4250
105
1101001
2.8500
42
0101010
1.4500
106
1101010
2.9000
43
0101011
1.4750
107
1101011
2.9500
44
0101100
1.5000
108
1101100
3.0000
45
0101101
1.5250
109
1101101
3.0500
46
0101110
1.5500
110
1101110
3.1000
47
0101111
1.5750
111
1101111
3.1500
48
0110000
1.6000
112
1110000
3.2000
49
0110001
1.6250
113
1110001
3.2500
50
0110010
1.6500
114
1110010
3.3000
51
0110011
1.6750
115
1110011
Reserved
52
0110100
1.7000
116
1110100
Reserved
53
0110101
1.7250
117
1110101
Reserved
PF0100Z
NXP Semiconductors
51
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 54. SW2 output voltage configuration (continued)
Low output voltage range(44)
High output voltage range
Set Point
SW2[6:0]
SW2 Output
Set Point
SW2[6:0]
SW2 Output
54
0110110
1.7500
118
1110110
Reserved
55
0110111
1.7750
119
1110111
Reserved
56
0111000
1.8000
120
1111000
Reserved
57
0111001
1.8250
121
1111001
Reserved
58
0111010
1.8500
122
1111010
Reserved
59
0111011
1.8750
123
1111011
Reserved
60
0111100
1.9000
124
1111100
Reserved
61
0111101
1.9250
125
1111101
Reserved
62
0111110
1.9500
126
1111110
Reserved
63
0111111
1.9750
127
1111111
Reserved
Notes
44. For voltages less than 2.0 V, only use set points 0 to 63.
Setup and control of SW2 is done through I2C registers listed in Table 55, and a detailed description of each one of the registers is provided
in Tables 56 to Table 60.
Table 55. SW2 register summary
Register
Address
Description
SW2VOLT
0x35
Output voltage set point on normal operation
SW2STBY
0x36
Output voltage set point on standby
SW2OFF
0x37
Output voltage set point on sleep
SW2MODE
0x38
Switching mode selector register
SW2CONF
0x39
DVS, phase, frequency, and ILIM configuration
Table 56. Register SW2VOLT - ADDR 0x35
Name
Bit #
R/W
Default
Description
SW2
5:0
R/W
0x00
Sets the SW2 output voltage during normal operation
mode. See Table 54 for all possible configurations.
SW2
6
R
0x00
Sets the operating output voltage range for SW2. Set
during OTP or TBB configuration only. See Table 54
for all possible configurations.
UNUSED
7
–
0x00
unused
Table 57. Register SW2STBY - ADDR 0x36
Name
Bit #
R/W
Default
Description
SW2STBY
5:0
R/W
0x00
Sets the SW2 output voltage during standby mode.
See Table 54 for all possible configurations.
SW2STBY
6
R
0x00
Sets the operating output voltage range for SW2 on
standby mode. This bit inherits the value configured
on bit SW2[6] during OTP or TBB configuration. See
Table 54 for all possible configurations.
UNUSED
7
–
0x00
unused
PF0100Z
52
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 58. Register SW2OFF - ADDR 0x37
Name
Bit #
R/W
Default
Description
SW2OFF
5:0
R/W
0x00
Sets the SW2 output voltage during sleep mode. See
Table 54 for all possible configurations.
SW2OFF
6
R
0x00
Sets the operating output voltage range for SW2 on
sleep mode. This bit inherits the value configured on
bit SW2[6] during OTP or TBB configuration. See
Table 54 for all possible configurations.
UNUSED
7
–
0x00
unused
Table 59. Register SW2MODE - ADDR 0x38
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets the SW2 switching operation mode.
See Table 29 for all possible configurations.
UNUSED
4
–
0x00
unused
SW2OMODE
5
R/W
0x00
Set status of SW2 when in sleep mode
0 = OFF
1 = PFM
7:6
–
0x00
unused
SW2MODE
UNUSED
Description
Table 60. Register SW2CONF - ADDR 0x39
Name
Bit #
R/W
Default
Description
SW2ILIM
0
R/W
0x00
SW2 current limit level selection (45)
0 = High level current limit
1 = Low level current limit
UNUSED
1
R/W
0x00
unused
SW2FREQ
3:2
R/W
0x00
SW2 switching frequency selector.
See Table 37.
SW2PHASE
5:4
R/W
0x00
SW2 phase clock selection.
See Table 35.
SW2DVSSPEED
7:6
R/W
0x00
SW2 DVS speed selection.
See Table 34.
Notes
45. SW2ILIM = 0 must be used in NP/F9/FA versions if 2.5 A output load current is desired
6.4.4.4.2
SW2 external components
Table 61. SW2 external component recommendations
Components
Description
Values
CINSW2(46)
SW2 input capacitor
4.7 μF
CIN2HF(46)
SW2 decoupling input capacitor
0.1 μF
COSW2(46)
SW2 output capacitor
LSW2
SW2 inductor
2 x 22 μF
1.0 μH
DCR = 50 mΩ
ISAT = 2.65 A
Notes
46. Use X5R or X7R capacitors.
PF0100Z
NXP Semiconductors
53
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.4.3
SW2 specifications
Table 62. SW2 electrical characteristics
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V,
ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values
are characterized at VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless otherwise
noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
(47)
Switch mode supply SW2
VINSW2
Operating input voltage
2.8
–
4.5
V
VSW2
Nominal output voltage
–
Table 54
–
V
-25
-3.0%
-6.0%
–
–
–
25
3.0%
6.0%
-65
-45
-3.0%
-3.0%
–
–
–
–
65
45
3.0%
3.0%
–
–
–
–
2000
2500
2.8
2.1
4.0
3.0
5.2
3.9
VSW2ACC
ISW2
ISW2LIM
Output voltage accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW2 < 2.0 A
0.625 V < VSW2 < 0.85 V
0.875 V < VSW2 < 1.975 V
2.0 V < VSW2 < 3.3 V
•
PFM, 2.8 V < VIN < 4.5 V, 0 < ISW2 ≤ 50 mA
0.625 V < VSW2 < 0.675 V
0.7 V < VSW2 < 0.85 V
0.875 V < VSW2 < 1.975 V
2.0 V < VSW2 < 3.3 V
Rated output load current
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 3.3 V
• 2.8 V < VIN < 4.5 V, 1.2 V < VSW2 < 3.3 V, SW2LIM = 0
Current limiter peak current detection
• Current through inductor
SW2ILIM = 0
SW2ILIM = 1
mV
%
mA
(49)
A
VSW2OSH
Start-up overshoot
ISW2 = 0.0 mA
DVS clk = 25 mV/4 μs, VIN = VINSW2 = 4.5 V
–
–
66
mV
tONSW2
Turn-on time
Enable to 90% of end value
ISW2 = 0.0 mA
DVS clk = 50 mV/8 μs, VIN = VINSW2 = 4.5 V
–
–
550
µs
fSW2
Switching frequency
SW2FREQ[1:0] = 00
SW2FREQ[1:0] = 01
SW2FREQ[1:0] = 10
–
–
–
1.0
2.0
4.0
–
–
–
ηSW2
Efficiency
• VIN = 3.6 V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH
PFM, 3.15 V, 1.0 mA
PFM, 3.15 V, 50 mA
APS, PWM, 3.15 V, 400 mA
APS, PWM, 3.15 V, 600 mA
APS, PWM, 3.15 V, 1000 mA
APS, PWM, 3.15 V, 2000 mA
–
–
–
–
–
–
94
95
96
94
92
88
–
–
–
–
–
–
Output ripple
–
10
–
ΔVSW2
(48)
MHz
%
mV
VSW2LIR
Line regulation (APS, PWM)
–
–
20
mV
VSW2LOR
DC load regulation (APS, PWM)
–
–
20
mV
VSW2LOTR
Transient load regulation
• Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/μs
Overshoot
Undershoot
–
–
–
–
50
50
mV
PF0100Z
54
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 62. SW2 electrical characteristics (continued)
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V,
ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values
are characterized at VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless otherwise
noted.
Symbol
Parameter
Min.
Typ.
Max.
–
–
–
23
145
305
–
–
–
Unit
Notes
Switch mode supply SW2 (continued)
ISW2Q
Quiescent current
PFM mode
APS mode (low output voltage settings)
APS mode (high output voltage settings)
µA
RONSW2P
SW2 P-MOSFET RDS(on)
at VIN = VINSW2 = 3.3 V
–
190
209
mΩ
RONSW2N
SW2 N-MOSFET RDS(on)
at VIN = VINSW2 = 3.3 V
–
212
255
mΩ
ISW2PQ
SW2 P-MOSFET leakage current
VIN = VINSW2 = 4.5 V
–
–
12
µA
ISW2NQ
SW2 N-MOSFET leakage current
VIN = VINSW2 = 4.5 V
–
–
4.0
µA
RSW2DIS
Discharge resistance
–
600
–
W
Notes
47. When output is set to > 2.6 V the output will follow the input down when VIN gets near 2.8 V.
48.
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:
(VINSW2 - VSW2) = ISW2* (DCR of Inductor +RONSW2P + PCB trace resistance).
49.
Applies to NP/F9/FA versions
100
90
Efficiency (%)
80
70
60
50
40
30
20
PFM - Vout = 3.15V
10
APS - Vout = 3.15V
PWM - Vout = 3.15V
0
0.1
1
10
100
1000
Load current (mA)
Figure 16. SW2 efficiency waveforms
PF0100Z
NXP Semiconductors
55
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.5
SW3A/B
SW3A/B are 1.25 A to 2.5 A rated buck regulators, depending on the configuration. Table 29 describes the available switching modes and
Table 30 show the actual configuration options for the SW3xMODE[3:0] bits.
SW3A/B can be configured in various phasing schemes, depending on the desired cost/performance trade-offs. The following
configurations are available:
• A single phase
• A dual phase
• Independent regulators
The desired configuration is programmed in OTP by using the SW3_CONFIG[1:0] bits.Table 63 shows the options for the SW3CFG[1:0]
bits.
Table 63. SW3 configuration
6.4.4.5.1
SW3_CONFIG[1:0]
Description
00
A/B single phase
01
A/B single phase
10
A/B dual phase
11
A/B independent
SW3A/B single phase
In this configuration, SW3ALX and SW3BLX are connected in single phase with a single inductor a shown in Figure 17. This configuration
reduces cost and component count. Feedback is taken from the SW3AFB pin and the SW3BFB pin must be left open. Although control is
from SW3A, registers of both regulators, SW3A and SW3B, must be identically set.
VIN
SW3AIN
SW3AMODE
ISENSE
CINSW3A
SW3
SW3ALX
LSW3A
Controller
Driver
COSW3A
SW3AFAULT
Internal
Compensation
SW3AFB
I2C
Z2
Z1
VREF
EA
DAC
I2C
Interface
VIN
SW3BIN
SW3BMODE
ISENSE
CINSW3B
SW3BLX
Controller
Driver
SW3BFAULT
EP
I2C
Internal
Compensation
SW3BFB
Z2
VREF
Z1
EA
DAC
Figure 17. SW3A/B single phase block diagram
PF0100Z
56
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.5.2
SW3A/B dual phase
SW3A/B can be connected in dual phase configuration using one inductor per switching node, as shown in Figure 18. This mode allows
a smaller output voltage ripple. Feedback is taken from pin SW3AFB and pin SW3BFB must be left open. Although control is from SW3A,
registers of both regulators, SW3A and SW3B, must be identically set. In this configuration, the regulators switch 180 degrees apart.
VIN
SW3AIN
SW3AMODE
ISENSE
CINSW3A
SW3
SW3ALX
LSW3A
Controller
Driver
COSW3A
SW3AFAULT
Internal
Compensation
SW3AFB
I2C
Z2
Z1
VREF
EA
I2C
Interface
DAC
VIN
SW3BIN
SW3BLX
LSW3B
COSW3B
SW3BMODE
ISENSE
CINSW3B
Controller
Driver
SW3BFAULT
EP
I2C
Internal
Compensation
SW3BFB
Z2
VREF
Z1
EA
DAC
Figure 18. SW3A/B dual phase block diagram
6.4.4.5.3
SW3A - SW3B independent outputs
SW3A and SW3B can be configured as independent outputs as shown in Figure 19, providing flexibility for applications requiring more
voltage rails with less current capability. Each output is configured and controlled independently by its respective I2C registers as shown
in Table 65.
PF0100Z
NXP Semiconductors
57
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
VIN
SW3AIN
SW3AMODE
ISENSE
CINSW3A
SW3A
Controller
SW3ALX
Driver
LSW3A
COSW3A
SW3AFAULT
Internal
Compensation
SW3AFB
I2C
Z2
Z1
VREF
EA
DAC
VIN
SW3BIN
Controller
SW3BLX
Driver
LSW3B
COSW3B
I2C
Interface
ISENSE
CINSW3B
SW3B
SW3BMODE
SW3BFAULT
EP
Internal
Compensation
SW3BFB
I2C
Z2
Z1
VREF
EA
DAC
Figure 19. SW3A/B independent output block diagram
6.4.4.5.4
SW3A/B setup and control registers
SW3A/B output voltage is programmable from 0.400 V to 3.300 V; however, bit SW3x[6] in register SW3xVOLT is read-only during normal
operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW3x[6]
is set to “0”, the output is limited to the lower output voltages from 0.40 V to 1.975 V with 25 mV increments, as determined by bits
SW3x[5:0]. Likewise, once bit SW3x[6] is set to "1", the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V
with 50 mV increments, as determined by bits SW3x[5:0].
In order to optimize the performance of the regulator, it is recommended that only voltages from 2.00 to 3.300 V be used in the high range
and the lower range be used for voltages from 0.400 V to 1.975 V.
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW3x[5:0],
SW3xSTBY[5:0], and SW3xOFF[5:0] bits respectively; however, the initial state of the SW3x[6] bit is copied into the SW3xSTBY[6] and
SW3xOFF[6] bits. Therefore, the output voltage range remains the same on all three operating modes. Table 64 shows the output voltage
coding valid for SW3x.
Note: Voltage set points of 0.6 V and below are not supported.
Table 64. SW3A/B output voltage configuration
Low output voltage range(50)
High output voltage range
Set point
SW3x[6:0]
SW3x output
Set point
SW3x[6:0]
sw3x output
0
0000000
0.4000
64
1000000
0.8000
1
0000001
0.4250
65
1000001
0.8500
2
0000010
0.4500
66
1000010
0.9000
3
0000011
0.4750
67
1000011
0.9500
4
0000100
0.5000
68
1000100
1.0000
PF0100Z
58
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 64. SW3A/B output voltage configuration (continued)
Low output voltage range(50)
High output voltage range
Set point
SW3x[6:0]
SW3x output
Set point
SW3x[6:0]
sw3x output
5
0000101
0.5250
69
1000101
1.0500
6
0000110
0.5500
70
1000110
1.1000
7
0000111
0.5750
71
1000111
1.1500
8
0001000
0.6000
72
1001000
1.2000
9
0001001
0.6250
73
1001001
1.2500
10
0001010
0.6500
74
1001010
1.3000
11
0001011
0.6750
75
1001011
1.3500
12
0001100
0.7000
76
1001100
1.4000
13
0001101
0.7250
77
1001101
1.4500
14
0001110
0.7500
78
1001110
1.5000
15
0001111
0.7750
79
1001111
1.5500
16
0010000
0.8000
80
1010000
1.6000
17
0010001
0.8250
81
1010001
1.6500
18
0010010
0.8500
82
1010010
1.7000
19
0010011
0.8750
83
1010011
1.7500
20
0010100
0.9000
84
1010100
1.8000
21
0010101
0.9250
85
1010101
1.8500
22
0010110
0.9500
86
1010110
1.9000
23
0010111
0.9750
87
1010111
1.9500
24
0011000
1.0000
88
1011000
2.0000
25
0011001
1.0250
89
1011001
2.0500
26
0011010
1.0500
90
1011010
2.1000
27
0011011
1.0750
91
1011011
2.1500
28
0011100
1.1000
92
1011100
2.2000
29
0011101
1.1250
93
1011101
2.2500
30
0011110
1.1500
94
1011110
2.3000
31
0011111
1.1750
95
1011111
2.3500
32
0100000
1.2000
96
1100000
2.4000
33
0100001
1.2250
97
1100001
2.4500
34
0100010
1.2500
98
1100010
2.5000
35
0100011
1.2750
99
1100011
2.5500
36
0100100
1.3000
100
1100100
2.6000
37
0100101
1.3250
101
1100101
2.6500
38
0100110
1.3500
102
1100110
2.7000
39
0100111
1.3750
103
1100111
2.7500
40
0101000
1.4000
104
1101000
2.8000
41
0101001
1.4250
105
1101001
2.8500
42
0101010
1.4500
106
1101010
2.9000
43
0101011
1.4750
107
1101011
2.9500
44
0101100
1.5000
108
1101100
3.0000
45
0101101
1.5250
109
1101101
3.0500
PF0100Z
NXP Semiconductors
59
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 64. SW3A/B output voltage configuration (continued)
Low output voltage range(50)
High output voltage range
Set point
SW3x[6:0]
SW3x output
Set point
SW3x[6:0]
sw3x output
46
0101110
1.5500
110
1101110
3.1000
47
0101111
1.5750
111
1101111
3.1500
48
0110000
1.6000
112
1110000
3.2000
49
0110001
1.6250
113
1110001
3.2500
50
0110010
1.6500
114
1110010
3.3000
51
0110011
1.6750
115
1110011
Reserved
52
0110100
1.7000
116
1110100
Reserved
53
0110101
1.7250
117
1110101
Reserved
54
0110110
1.7500
118
1110110
Reserved
55
0110111
1.7750
119
1110111
Reserved
56
0111000
1.8000
120
1111000
Reserved
57
0111001
1.8250
121
1111001
Reserved
58
0111010
1.8500
122
1111010
Reserved
59
0111011
1.8750
123
1111011
Reserved
60
0111100
1.9000
124
1111100
Reserved
61
0111101
1.9250
125
1111101
Reserved
62
0111110
1.9500
126
1111110
Reserved
63
0111111
1.9750
127
1111111
Reserved
Notes
50. For voltages less than 2.0 V, only use set points 0 to 63.
Table 65 provides a list of registers used to configure and operate SW3A/B. A detailed description on each of these register is provided
on Tables 66 through Table 75.
Table 65. SW3AB register summary
Register
Address
Output
SW3AVOLT
0x3C
SW3A output voltage set point on normal operation
SW3ASTBY
0x3D
SW3A output voltage set point on standby
SW3AOFF
0x3E
SW3A output voltage set point on sleep
SW3AMODE
0x3F
SW3A switching mode selector register
SW3ACONF
0x40
SW3A DVS, phase, frequency and ILIM configuration
SW3BVOLT
0x43
SW3B output voltage set point on normal operation
SW3BSTBY
0x44
SW3B output voltage set point on standby
SW3BOFF
0x45
SW3B output voltage set point on sleep
SW3BMODE
0x46
SW3B switching mode selector register
SW3BCONF
0x47
SW3B DVS, phase, frequency and ILIM configuration
PF0100Z
60
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 66. Register SW3AVOLT - ADDR 0x3C
Name
Bit #
R/W
Default
Description
SW3A
5:0
R/W
0x00
Sets the SW3A output voltage (Independent) or
SW3A/B output voltage (single/dual phase),
during normal operation mode. See Table 64 for
all possible configurations.
SW3A
6
R
0x00
Sets the operating output voltage range for SW3A
(independent) or SW3A/B (single/dual phase).
Set during OTP or TBB configuration only. See
Table 64 for all possible configurations.
UNUSED
7
–
0x00
unused
Table 67. Register SW3ASTBY - ADDR 0x3D
Name
SW3ASTBY
Bit #
5:0
R/W
R/W
Default
Description
0x00
Sets the SW3A output voltage (independent) or
SW3A/B output voltage (single/dual phase),
during standby mode. See Table 64 for all
possible configurations.
SW3ASTBY
6
R
0x00
Sets the operating output voltage range for SW3A
(independent) or SW3A/B (single/dual phase) on
standby mode. This bit inherits the value
configured on bit SW3A[6] during OTP or TBB
configuration. See Table 64 for all possible
configurations.
UNUSED
7
–
0x00
unused
Table 68. Register SW3AOFF - ADDR 0x3E
Name
SW3AOFF
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW3A output voltage (independent) or
SW3A/B output voltage (single/dual phase),
during sleep mode. See Table 64 for all possible
configurations.
SW3AOFF
6
R
0x00
Sets the operating output voltage range for SW3A
(independent) or SW3A/B (single/dual phase) on
sleep mode. This bit inherits the value configured
on bit SW3A[6] during OTP or TBB configuration.
See Table 64 for all possible configurations.
UNUSED
7
–
0x00
unused
Table 69. Register SW3AMODE - ADDR 0x3F
Name
Bit #
R/W
Default
Description
3:0
R/W
0x80
Sets the SW3A (Independent) or SW3A/B (single/
dual phase) switching operation mode.
See Table 29 for all possible configurations.
UNUSED
4
–
0x00
unused
SW3AOMODE
5
R/W
0x00
Set status of SW3A (independent) or SW3A/B
(single/dual phase) when in sleep mode.
0 = OFF
1 = PFM
7:6
–
0x00
unused
SW3AMODE
UNUSED
PF0100Z
NXP Semiconductors
61
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 70. Register SW3ACONF - ADDR 0x40
Name
Bit #
R/W
Default
Description
SW3AILIM
0
R/W
0x00
SW3A current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED
1
R/W
0x00
unused
SW3AFREQ
3:2
R/W
0x00
SW3A switching frequency selector. See
Table 37.
SW3APHASE
5:4
R/W
0x00
SW3A phase clock selection. See Table 35.
SW3ADVSSPEED
7:6
R/W
0x00
SW3A DVS speed selection. See Table 34.
Table 71. Register SW3BVOLT - ADDR 0x43
Name
Bit #
R/W
Default
Description
SW3B
5:0
R/W
0x00
Sets the SW3B output voltage (independent)
during normal operation mode. See Table 64 for
all possible configurations.
SW3B
6
R
0x00
Sets the operating output voltage range for SW3B
(independent). Set during OTP or TBB
configuration only. See Table 64 for all possible
configurations.
UNUSED
7
–
0x00
unused
Table 72. Register SW3BSTBY - ADDR 0x44
Name
SW3BSTBY
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW3B output voltage (Independent)
during standby mode. See Table 64 for all
possible configurations.
SW3BSTBY
6
R
0x00
Sets the operating output voltage range for SW3B
(independent) on standby mode. This bit inherits
the value configured on bit SW3B[6] during OTP
or TBB configuration. See Table 64 for all
possible configurations.
UNUSED
7
–
0x00
unused
Table 73. Register SW3BOFF - ADDR 0x45
Name
SW3BOFF
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW3B output voltage (independent)
during sleep mode. See Table 64 for all possible
configurations.
SW3BOFF
6
R
0x00
Sets the operating output voltage range for SW3B
(independent) on sleep mode. This bit inherits the
value configured on bit SW3B[6] during OTP or
TBB configuration. See Table 64 for all possible
configurations.
UNUSED
7
–
0x00
unused
PF0100Z
62
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 74. Register SW3BMODE - ADDR 0x46
Name
SW3BMODE
UNUSED
SW3BOMODE
UNUSED
Bit #
R/W
Default
Description
3:0
R/W
0x80
Sets the SW3B (Independent) switching
operation mode. See Table 29 for all possible
configurations.
4
–
0x00
unused
5
R/W
0x00
Set status of SW3B (Independent) when in sleep
mode.
0 = OFF
1 = PFM
7:6
–
0x00
unused
Table 75. Register SW3BCONF - ADDR 0x47
Name
Bit #
R/W
Default
SW3BILIM
0
R/W
0x00
SW3B current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED
1
R/W
0x00
unused
3:2
R/W
0x00
SW3B switching frequency selector. See Table 37.
SW3BPHASE
5:4
R/W
0x00
SW3B phase clock selection. See Table 35.
SW3BDVSSPEED
7:6
R/W
0x00
SW3B DVS speed selection. See Table 34.
SW3BFREQ
6.4.4.5.5
Description
SW3A/B external components
Table 76. SW3A/B external component requirements
Mode
Components
Description
SW3A/B single
phase
SW3A/B dual
phase
SW3A independent
SW3B independent
CINSW3A(51)
SW3A input capacitor
4.7 μF
4.7 μF
4.7 μF
CIN3AHF(51)
SW3A decoupling input capacitor
0.1 μF
0.1 μF
0.1 μF
(51)
SW3B input capacitor
4.7 μF
4.7 μF
4.7 μF
(51)
SW3B decoupling input capacitor
0.1 μF
0.1 μF
0.1 μF
(51)
SW3A output capacitor
4 x 22 μF
2 x 22 μF
2 x 22 μF
COSW3B(51)
SW3B output capacitor
–
2 x 22 μF
2 x 22 μF
LSW3A
SW3A inductor
1.0 μH
DCR = 50 mΩ
ISAT = 3.9 A
1.0 μH
DCR = 60 mΩ
ISAT = 3.0 A
1.0 μH
DCR = 60 mΩ
ISAT = 3.0 A
LSW3B
SW3B inductor
–
1.0 μH
DCR = 60 mΩ
ISAT = 3.0 A
1.0 μH
DCR = 60 mΩ
ISAT = 3.0 A
CINSW3B
CIN3BHF
COSW3A
Notes
51. Use X5R or X7R capacitors.
PF0100Z
NXP Semiconductors
63
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.5.6
SW3A/B specifications
Table 77. SW3A/B electrical characteristics
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V,
ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent
mode, unless otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,
SW3x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
(52)
Switch mode supply SW3a/B
VINSW3x
Operating input voltage
2.8
–
4.5
V
VSW3x
Nominal output voltage
-
Table 64
-
V
-25
-3.0%
-6.0%
–
–
–
25
3.0%
6.0%
-65
-45
-3.0%
-3.0%
–
–
–
–
65
45
3.0%
3.0%
–
–
–
–
2500
1250
3.5
2.7
5.0
3.8
6.5
4.9
VSW3xACC
ISW3x
Output voltage accuracy
• PWM, APS 2.8 V < VIN < 4.5 V, 0 < ISW3x < ISW3xMAX
0.625 V < VSW3x < 0.85 V
0.875 V < VSW3x < 1.975 V
2.0 V < VSW3x < 3.3 V
•
PFM , steady state (2.8 V < VIN < 4.5 V, 0 < ISW3x < 50 mA)
0.625 V < VSW3x < 0.675 V
0.7 V < VSW3x < 0.85 V
0.875 V < VSW3x < 1.975 V
2.0 V < VSW3x < 3.3 V
Rated output load current
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW3x < 3.3 V
PWM, APS mode single/dual phase
PWM, APS mode independent (per phase)
Current limiter peak current detection
• Single phase (current through inductor)
SW3xILIM = 0
SW3xILIM = 1
ISW3xLIM
mV
%
mA
A
•
Independent mode or dual phase (current through inductor per
phase)
SW3xILIM = 0
SW3xILIM = 1
1.8
1.3
2.5
1.9
3.3
2.5
VSW3xOSH
Start-up overshoot
ISW3x = 0.0 mA
DVS clk = 25 mV/4 μs, VIN = VINSW3x = 4.5 V
–
–
66
mV
tONSW3x
Turn-on time
Enable to 90% of end value
ISW3x = 0 mA
DVS clk = 25 mV/4 μs, VIN = VINSW3x = 4.5 V
–
–
500
µs
Switching frequency
SW3xFREQ[1:0] = 00
SW3xFREQ[1:0] = 01
SW3xFREQ[1:0] = 10
–
–
–
1.0
2.0
4.0
–
–
–
ηSW3AB
Efficiency (single phase)
• fSW3 = 2.0 MHz, LSW3x 1.0 μH
PFM, 1.5 V, 1.0 mA
PFM, 1.5 V, 50 mA
APS, PWM 1.5 V, 500 mA
APS, PWM 1.5 V, 750 mA
APS, PWM 1.5 V, 1250 mA
APS, PWM 1.5 V, 2500 mA
–
–
–
–
–
–
84
85
89
89
85
80
–
–
–
–
–
–
ΔVSW3x
Output ripple
–
10
–
fSW3x
(53)
MHz
%
mV
PF0100Z
64
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 77. SW3A/B electrical characteristics (continued)
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V,
ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent
mode, unless otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,
SW3x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
Switch mode supply SW3a/B (continued)
VSW3xLIR
Line regulation (APS, PWM)
–
–
20
mV
VSW3xLOR
DC load regulation (APS, PWM)
–
–
20
mV
VSW3xLOTR
Transient load regulation
• Transient load = 0.0 mA to ISW3x/2, di/dt = 100 mA/μs
Overshoot
Undershoot
–
–
–
–
50
50
Quiescent current
PFM mode (single/dual phase)
APS mode (single/dual phase)
PFM mode (independent mode)
APS mode (SW3A independent mode)
APS mode (SW3B independent mode)
–
–
–
–
–
22
300
50
250
150
–
–
–
–
–
ISW3xQ
mV
µA
RONSW3AP
SW3A P-MOSFET RDS(on)
at VIN = VINSW3A = 3.3 V
–
215
245
mΩ
RONSW3AN
SW3A N-MOSFET RDS(on)
at VIN = VINSW3A = 3.3 V
–
258
326
mΩ
ISW3APQ
SW3A P-MOSFET leakage current
VIN = VINSW3A = 4.5 V
–
–
7.5
µA
ISW3ANQ
SW3A N-MOSFET leakage current
VIN = VINSW3A = 4.5 V
–
–
2.5
µA
RONSW3BP
SW3B P-MOSFET RDS(on)
at VIN = VINSW3B = 3.3 V
–
215
245
mΩ
RONSW3BN
SW3B N-MOSFET RDS(on)
at VIN = VINSW3B = 3.3 V
–
258
326
mΩ
ISW3BPQ
SW3B P-MOSFET leakage current
VIN = VINSW3B = 4.5 V
–
–
7.5
µA
ISW3BPQ
SW3B N-MOSFET leakage current
VIN = VINSW3B = 4.5 V
–
–
2.5
µA
RSW3xDIS
Discharge resistance
–
600
–
W
Notes
52. When output is set to > 2.6 V the output will follow the input down when VIN gets near 2.8 V.
53.
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:
(VINSW3x - VSW3x) = ISW3x* (DCR of Inductor +RONSW3xP + PCB trace resistance).
PF0100Z
NXP Semiconductors
65
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
100
90
80
Efficiency (%)
70
60
50
40
30
20
PFM - Vout = 1.5V
APS - Vout = 1.5V
10
PWM - Vout = 1.5V
0
0.1
1
10
100
1000
Load current (mA)
Figure 20. SW3AB single phase efficiency waveforms
6.4.4.6
SW4
SW4 is a 1.0 A rated single phase buck regulator capable of operating in two modes. In its default mode, it operates as a normal buck
regulator with a programmable output between 0.400 V and 3.300 V. It is capable of operating in the three available switching modes:
PFM, APS, and PWM, described on Table 29 and configured by the SW4MODE[3:0] bits, as shown in Table 30.
If the system requires DDR memory termination, SW4 can be used in its VTT mode. In the VTT mode, its reference voltage tracks the
output voltage of SW3A, scaled by 0.5. Furthermore, when in VTT mode, only the PWM switching mode is allowed. The VTT mode can
be configured by use of VTT bit in the OTP_SW4_CONFIG register.
Figure 21 shows the block diagram and the external component connections for the SW4 regulator.
VIN
SW4IN
SW4
SW4LX
LSW4
COSW4
SW4MODE
ISENSE
CINSW4
Controller
Driver
SW4FAULT
EP
Internal
Compensation
SW4FB
I2C
Interface
I2C
Z2
Z1
EA
VREF
DAC
Figure 21. SW4 block diagram
6.4.4.6.1
SW4 setup and control registers
To set the SW4 in regulator or VTT mode, bit VTT of the register OTP_SW4_CONF register on Table 136. Extended page 1, page 106,
is programmed during OTP or TBB configuration; setting bit VTT to “1” enables SW4 to operate in VTT mode and “0” in Regulator mode.
See 6.1.2 One time programmability (OTP), page 20 for detailed information on OTP configuration.
In regulator mode, the SW4 output voltage is programmable from 0.400 V to 3.300 V; however, bit SW4[6] in the SW4VOLT register is
read-only during normal operation. Its value is determined by the default configuration, or may be changed by using the OTP registers.
Once SW4[6] is set to “0”, the output is limited to the lower output voltages, from 0.400 V to 1.975 V with 25 mV increments, as determined
by the SW4[5:0] bits. Likewise, once the SW4[6] bit is set to "1", the output voltage is limited to the higher output voltage range from 0.800 V
to 3.300 V with 50 mV increments, as determined by the SW4[5:0] bits.
PF0100Z
66
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
To optimize the performance of the regulator, it is recommended that only voltages from 2.000 V to 3.300 V be used in the high range and
that that the lower range be used for voltages from 0.400 V to 1.975 V.
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW4[5:0], SW4STBY[5:0],
and SW4OFF[5:0] bits, respectively. However, the initial state of the SW4[6] bit is copied into bits SW4STBY[6], and SW4OFF[6] bits, so
the output voltage range remains the same on all three operating modes. Table 78 shows the output voltage coding valid for SW4.
Note: Voltage set points of 0.6 V and below are not supported, except in VTT mode.
Table 78. SW4 output voltage configuration
Low output voltage range(54)
High output voltage range
Set Point
SW4[6:0]
SW4 output
Set Point
SW4[6:0]
SW4 output
0
0000000
0.4000
64
1000000
0.8000
1
0000001
0.4250
65
1000001
0.8500
2
0000010
0.4500
66
1000010
0.9000
3
0000011
0.4750
67
1000011
0.9500
4
0000100
0.5000
68
1000100
1.0000
5
0000101
0.5250
69
1000101
1.0500
6
0000110
0.5500
70
1000110
1.1000
7
0000111
0.5750
71
1000111
1.1500
8
0001000
0.6000
72
1001000
1.2000
9
0001001
0.6250
73
1001001
1.2500
10
0001010
0.6500
74
1001010
1.3000
11
0001011
0.6750
75
1001011
1.3500
12
0001100
0.7000
76
1001100
1.4000
13
0001101
0.7250
77
1001101
1.4500
14
0001110
0.7500
78
1001110
1.5000
15
0001111
0.7750
79
1001111
1.5500
16
0010000
0.8000
80
1010000
1.6000
17
0010001
0.8250
81
1010001
1.6500
18
0010010
0.8500
82
1010010
1.7000
19
0010011
0.8750
83
1010011
1.7500
20
0010100
0.9000
84
1010100
1.8000
21
0010101
0.9250
85
1010101
1.8500
22
0010110
0.9500
86
1010110
1.9000
23
0010111
0.9750
87
1010111
1.9500
24
0011000
1.0000
88
1011000
2.0000
25
0011001
1.0250
89
1011001
2.0500
26
0011010
1.0500
90
1011010
2.1000
27
0011011
1.0750
91
1011011
2.1500
28
0011100
1.1000
92
1011100
2.2000
29
0011101
1.1250
93
1011101
2.2500
30
0011110
1.1500
94
1011110
2.3000
31
0011111
1.1750
95
1011111
2.3500
32
0100000
1.2000
96
1100000
2.4000
33
0100001
1.2250
97
1100001
2.4500
34
0100010
1.2500
98
1100010
2.5000
PF0100Z
NXP Semiconductors
67
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 78. SW4 output voltage configuration (continued)
Low output voltage range(54)
High output voltage range
Set Point
SW4[6:0]
SW4 output
Set Point
SW4[6:0]
SW4 output
35
0100011
1.2750
99
1100011
2.5500
36
0100100
1.3000
100
1100100
2.6000
37
0100101
1.3250
101
1100101
2.6500
38
0100110
1.3500
102
1100110
2.7000
39
0100111
1.3750
103
1100111
2.7500
40
0101000
1.4000
104
1101000
2.8000
41
0101001
1.4250
105
1101001
2.8500
42
0101010
1.4500
106
1101010
2.9000
43
0101011
1.4750
107
1101011
2.9500
44
0101100
1.5000
108
1101100
3.0000
45
0101101
1.5250
109
1101101
3.0500
46
0101110
1.5500
110
1101110
3.1000
47
0101111
1.5750
111
1101111
3.1500
48
0110000
1.6000
112
1110000
3.2000
49
0110001
1.6250
113
1110001
3.2500
50
0110010
1.6500
114
1110010
3.3000
51
0110011
1.6750
115
1110011
Reserved
52
0110100
1.7000
116
1110100
Reserved
53
0110101
1.7250
117
1110101
Reserved
54
0110110
1.7500
118
1110110
Reserved
55
0110111
1.7750
119
1110111
Reserved
56
0111000
1.8000
120
1111000
Reserved
57
0111001
1.8250
121
1111001
Reserved
58
0111010
1.8500
122
1111010
Reserved
59
0111011
1.8750
123
1111011
Reserved
60
0111100
1.9000
124
1111100
Reserved
61
0111101
1.9250
125
1111101
Reserved
62
0111110
1.9500
126
1111110
Reserved
63
0111111
1.9750
127
1111111
Reserved
Notes
54. For voltages less than 2.0 V, only use set points 0 to 63.
Full setup and control of SW4 is done through the I2C registers listed on Table 79, and a detailed description of each one of the registers
is provided in Tables 80 to Table 84.
Table 79. SW4 register summary
Register
Address
Description
SW4VOLT
0x4A
Output voltage set point on normal operation
SW4STBY
0x4B
Output voltage set point on standby
SW4OFF
0x4C
Output voltage set point on sleep
SW4MODE
0x4D
Switching mode selector register
SW4CONF
0x4E
DVS, phase, frequency and ILIM configuration
PF0100Z
68
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 80. Register SW4VOLT - ADDR 0x4A
Name
Bit #
R/W
Default
Description
SW4
5:0
R/W
0x00
Sets the SW4 output voltage during normal
operation mode. See Table 78 for all possible
configurations.
SW4
6
R
0x00
Sets the operating output voltage range for SW4.
Set during OTP or TBB configuration only. See
Table 78 for all possible configurations.
UNUSED
7
–
0x00
unused
Table 81. Register SW4STBY - ADDR 0x4B
Name
SW4STBY
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW4 output voltage during standby
mode. See Table 78 for all possible
configurations.
SW4STBY
6
R
0x00
Sets the operating output voltage range for SW4
on standby mode. This bit inherits the value
configured on bit SW4[6] during OTP or TBB
configuration. See Table 78 for all possible
configurations.
UNUSED
7
–
0x00
unused
Table 82. Register SW4OFF - ADDR 0x4C
Name
SW4OFF
Bit #
R/W
Default
Description
5:0
R/W
0x00
Sets the SW4 output voltage during sleep mode.
See Table 78 for all possible configurations.
SW4OFF
6
R
0x00
Sets the operating output voltage range for SW4
on sleep mode. This bit inherits the value
configured on bit SW4[6] during OTP or TBB
configuration. See Table 78 for all possible
configurations.
UNUSED
7
–
0x00
unused
Table 83. Register SW4MODE - ADDR 0x4D
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets the SW4 switching operation mode.
See Table 29 for all possible configurations.
UNUSED
4
–
0x00
unused
SW4OMODE
5
R/W
0x00
Set status of SW4 when in sleep mode
0 = OFF
1 = PFM
7:6
–
0x00
unused
SW4MODE
UNUSED
Description
PF0100Z
NXP Semiconductors
69
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 84. Register SW4CONF - ADDR 0x4E
Name
Bit #
R/W
Default
SW4ILIM
0
R/W
0x00
SW4 current limit level selection
0 = High level Current limit
1 = Low level Current limit
UNUSED
1
R/W
0x00
unused
SW4FREQ
3:2
R/W
0x00
SW4 switching frequency selector. See Table 37.
SW4PHASE
5:4
R/W
0x00
SW4 phase clock selection. See Table 35.
SW4DVSSPEED
7:6
R/W
0x00
SW4 DVS speed selection. See Table 34.
6.4.4.6.2
Description
SW4 external components
Table 85. SW4 external component requirements
Components
Description
Values
CINSW4(55)
SW4 input capacitor
4.7 μF
CIN4HF(55)
SW4 decoupling input capacitor
0.1 μF
COSW4(55)
SW4 output capacitor
LSW4
SW4 inductor
2 x 22 μF
1.0 μH
DCR = 60 mΩ
ISAT = 3.0 A
Notes
55. Use X5R or X7R capacitors.
6.4.4.6.3
SW4 specifications
Table 86. SW4 electrical characteristics
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V,
ISW4 = 100 mA, SW4_PWRSTG[2:0] = [101], typical external component values, fSW4 = 2.0 MHz, single/dual phase and independent
mode, unless otherwise noted. Typical values are characterized at VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,
SW4_PWRSTG[2:0] = [101], and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
(56)
Switch Mode Supply SW4
VINSW4
Operating input voltage
2.8
–
4.5
V
VSW4
Nominal output voltage
Normal operation
VTT mode
–
–
Table 78
VSW3AFB/2
–
–
V
-25
-3.0%
-6.0%
–
–
–
25
3.0%
6.0%
Output voltage accuracy
• PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A
0.625 V < VSW4 < 0.85 V
0.875 V < VSW4 < 1.975 V
2.0 V < VSW4 < 3.3 V
VSW4ACC
•
•
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 50 mA
0.625 V < VSW4 < 0.675 V
0.7 V < VSW4 < 0.85 V
0.875 V < VSW4 < 1.975 V
2.0 V < VSW4 < 3.3 V
VTT mode , 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A
-65
-45
-3.0%
-3.0%
–
–
–
–
65
45
3.0%
3.0%
-40
–
40
mV
%
PF0100Z
70
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 86. SW4 electrical characteristics (continued)
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V,
ISW4 = 100 mA, SW4_PWRSTG[2:0] = [101], typical external component values, fSW4 = 2.0 MHz, single/dual phase and independent
mode, unless otherwise noted. Typical values are characterized at VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,
SW4_PWRSTG[2:0] = [101], and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
Notes
–
–
1000
mA
(57)
1.4
1.0
2.0
1.5
3.0
2.4
Switch mode supply SW4 (continued)
ISW4
ISW4LIM
Rated output load current
2.8 V < VIN < 4.5 V, 0.625 V < VSW4 < 3.3 V
Current limiter peak current detection
Current through inductor
SW4ILIM = 0
SW4ILIM = 1
A
VSW4OSH
Start-up overshoot
ISW4 = 0.0 mA
DVS clk = 25 mV/4 μs, VIN = VINSW4 = 4.5 V
–
–
66
mV
tONSW4
Turn-on time
Enable to 90% of end value
ISW4 = 0.0 mA
DVS clk = 25 mV/4 μs, VIN = VINSW4 = 4.5 V
–
–
500
µs
Switching frequency
SW4FREQ[1:0] = 00
SW4FREQ[1:0] = 01
SW4FREQ[1:0] = 10
–
–
–
1.0
2.0
4.0
–
–
–
Efficiency
• fSW4 = 2.0 MHz, LSW4 = 1.0 μH
PFM, 1.8 V, 1.0 mA
PFM, 1.8 V, 50 mA
APS, PWM 1.8 V, 200 mA
APS, PWM 1.8 V, 500 mA
APS, PWM 1.8 V, 1000 mA
–
–
–
–
–
81
78
87
88
84
–
–
–
–
–
–
–
–
78
76
66
–
–
–
fSW4
ηSW4
PWM 0.75 V, 200 mA
PWM 0.75 V, 500 mA
PWM 0.75 V, 1000 mA
ΔVSW4
MHz
%
Output ripple
–
10
–
mV
VSW4LIR
Line regulation (APS, PWM)
–
–
20
mV
VSW4LOR
DC load regulation (APS, PWM)
–
–
20
mV
VSW4LOTR
Transient load regulation
• Transient load = 0.0 mA to 500 mA, di/dt = 100 mA/μs
Overshoot
Undershoot
–
–
–
–
–
–
22
145
–
–
µA
ISW4Q
Quiescent current
PFM mode
APS mode
50
50
mV
RONSW4P
SW4 P-MOSFET RDS(on)
at VIN = VINSW4 = 3.3 V
–
236
274
mΩ
RONSW4N
SW4 N-MOSFET RDS(on)
at VIN = VINSW4 = 3.3 V
–
293
378
mΩ
ISW4PQ
SW4 P-MOSFET leakage current
VIN = VINSW4 = 4.5 V
–
–
6.0
µA
ISW4NQ
SW4 N-MOSFET leakage current
VIN = VINSW4 = 4.5 V
–
–
2.0
µA
PF0100Z
NXP Semiconductors
71
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 86. SW4 electrical characteristics (continued)
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V,
ISW4 = 100 mA, SW4_PWRSTG[2:0] = [101], typical external component values, fSW4 = 2.0 MHz, single/dual phase and independent
mode, unless otherwise noted. Typical values are characterized at VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,
SW4_PWRSTG[2:0] = [101], and 25 °C, unless otherwise noted.
Symbol
RSW4DIS
Parameter
Discharge Resistance
Min.
Typ.
Max.
Unit
–
600
–
W
Notes
Notes
56. When the output is set to > 2.6 V, the output follows the input down when VIN gets near 2.8 V.
57.
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:
(VINSW4 - VSW4) = ISW4* (DCR of Inductor +RONSW4P + PCB trace resistance).
100
90
Efficiency (%)
80
70
60
50
40
30
PFM - Vout = 1.8V
20
APS - Vout = 1.8V
PWM - Vout = 1.8V
10
PWM - Vout = 0.75V
0
0.1
1
10
100
1000
Load current (mA)
Figure 22. SW4 efficiency waveforms
6.4.5
Boost regulator
SWBST is a boost regulator with a programmable output from 5.0 V to 5.15 V. SWBST can supply the VUSB regulator for the USB PHY
in OTG mode, as well as the VBUS voltage. Note that the parasitic leakage path for a boost regulator causes the SWBSTOUT and
SWBSTFB voltage to be a Schottky drop below the input voltage whenever SWBST is disabled. The switching NMOS transistor is
integrated on-chip. Figure 23 shows the block diagram and component connection for the boost regulator.
PF0100Z
72
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
VIN
CINBST
VOBST
LBST
SWBSTIN
DBST
SWBSTMODE
SWBSTLX
Driver
OC
RSENSE
EP
VREFSC
Controller
SWBSTFAULT
I2C
Interface
SC
VREFUV
UV
SWBSTFB
Internal
Compensation Z2
COSWBST
Z1
EA
VREF
Figure 23. Boost Regulator Architecture
6.4.5.1
SWBST setup and control
Boost regulator control is done through a single register SWBSTCTL described in Table 87. SWBST is included in the power-up sequence
if its OTP power-up timing bits, SWBST_SEQ[4:0], are not all zeros.
Table 87. Register SWBSTCTL - ADDR 0x66
Name
SWBST1VOLT
SWBST1MODE
UNUSED
SWBST1STBYMODE
UNUSED
Bit #
1:0
R/W
R/W
Default
Description
0x00
Set the output voltage for SWBST
00 = 5.000 V
01 = 5.050 V
10 = 5.100 V
11 = 5.150 V
3:2
R
0x02
Set the switching mode on normal operation
00 = OFF
01 = PFM
10 = Auto (Default)(58)
11 = APS
4
–
0x00
unused
6:5
R/W
0x02
Set the switching mode on standby
00 = OFF
01 = PFM
10 = Auto (Default)(58)
11 = APS
7
–
0x00
unused
Notes
58. In auto mode, the controller automatically switches between PFM and APS modes depending on the load current.
The SWBST regulator starts up by default in the auto mode, if SWBST is part of the startup sequence.
PF0100Z
NXP Semiconductors
73
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.5.2
SWBST external components
Table 88. SWBST external component requirements
Components
CINBST(59)
CINBSTHF
COBST
(59)
(59)
Description
Values
SWBST input capacitor
10 μF
SWBST decoupling input capacitor
0.1 μF
2 x 22 μF
SWBST output capacitor
LSBST
SWBST inductor
DBST
SWBST boost diode
2.2 μH
1.0 A, 20 V Schottky
Notes
59. Use X5R or X7R capacitors.
6.4.5.3
SWBST specifications
Table 89. SWBST electrical specifications
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V,
ISWBST = 100 mA, typical external component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at
VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameters
Min.
Typ.
Max.
Units
2.8
–
4.5
V
–
Table 87
–
V
-4.0
–
3.0
%
Output ripple
2.8 V ≤ VIN ≤ 4.5 V
0 < ISWBST < ISWBSTMAX, excluding reverse recovery of Schottky
diode
–
–
120
mV Vp-p
VSWBSTLOR
DC load regulation
0 < ISWBST < ISWBSTMAX
–
0.5
–
mV/mA
VSWBSTLIR
DC line regulation
2.8 V ≤ VIN ≤ 4.5 V, ISWBST = ISWBSTMAX
–
50
–
mV
–
–
–
–
500
600
mA
Quiescent current
auto
–
222
289
μA
RDSONBST
MOSFET on resistance
–
206
306
mΩ
ISWBSTLIM
Peak current limit
1400
2200
3200
mA
Start-up overshoot
ISWBST = 0.0 mA
–
–
500
mV
VSWBSTTR
Transient load response
ISWBST from 1.0 mA to 100 mA in 1.0 µs
Maximum transient amplitude
–
–
300
mV
VSWBSTTR
Transient load response
ISWBST from 100 mA to 1.0 mA in 1.0 µs
Maximum transient amplitude
–
–
300
mV
Notes
Switch mode supply SWBST
VINSWBST
VSWBST
VSWBSTACC
ΔVSWBST
ISWBST
ISWBSTQ
VSWBSTOSH
Input voltage range
Nominal output voltage
Output voltage accuracy
2.8 V ≤ VIN ≤ 4.5 V
0 < ISWBST < ISWBSTMAX
Continuous load current
2.8 V ≤ VIN ≤ 3.0 V
3.0 V ≤ VIN ≤ 4.5 V
(60)
PF0100Z
74
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 89. SWBST electrical specifications (continued)
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V,
ISWBST = 100 mA, typical external component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at
VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, and 25 °C, unless otherwise noted.
Symbol
Parameters
Min.
Typ.
Max.
Units
Notes
Switch mode supply SWBST (continued)
tSWBSTTR
Transient load response
ISWBST from 1.0 mA to 100 mA in 1.0 µs
Time to settle 80% of transient
–
–
500
µs
tSWBSTTR
Transient load response
ISWBST from 100 mA to 1.0 mA in 1.0 µs
Time to settle 80% of transient
–
–
20
ms
ISWBSTHSQ
NMOS Off leakage
SWBSTIN = 4.5 V, SWBSTMODE [1:0] = 00
–
1.0
5.0
µA
tONSWBST
Turn-on time
Enable to 90% of VSWBST, ISWBST = 0.0 mA
–
–
2.0
ms
fSWBST
Switching frequency
–
2.0
–
MHz
ηSWBST
Efficiency
ISWBST = ISWBSTMAX
–
86
–
%
Notes
60. Only in auto mode.
6.4.6
LDO regulators description
This section describes the LDO regulators provided by the PF0100Z. All regulators use the main bandgap as reference. Refer to 6.3 Bias
and references block description, page 23 for further information on the internal reference voltages.
A low-power mode is automatically activated by reducing bias currents when the load current is less than I_Lmax/5. However, the lowest
bias currents may be attained by forcing the part into its low-power mode by setting the VGENxLPWR bit. The use of this bit is only
recommended when the load is expected to be less than I_Lmax/50, otherwise performance may be degraded. When a regulator is
disabled, the output is discharged by an internal pull-down. The pull-down is also activated when RESETBMCU is low.
VINx
VINx
VREF
_
VGENxEN
+
VGENxLPWR
VGENx
VGENx
I2C
Interface
CGENx
VGENx
Discharge
Figure 24. General LDO block diagram
PF0100Z
NXP Semiconductors
75
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.6.1
Transient response waveforms
Idealized stimulus and response waveforms for transient line and transient load tests are depicted in Figure 25. Note that the transient line
and load response refers to the overshoot, or undershoot only, excluding the DC shift.
IL = IMAX/10
IL = IMAX
IMAX
ILOAD
Overshoot
VOUT
IMAX/10
1.0 us
Undershoot
1.0 us
Transient Load Stimulus
VOUT Transient Load Response
VINx_FINAL
VINx_INITIAL
Overshoot
VINx_INITIAL
VOUT
VINx
VINx_FINAL
Undershoot
10 us
10 us
Transient Line Stimulus
VOUT Transient Line Response
Figure 25. Transient waveforms
6.4.6.2
Short-circuit protection
All general purpose LDOs have short-circuit protection capability. The short-circuit protection (SCP) system includes debounced fault
condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product
damage. If a short-circuit condition is detected, the LDO is disabled by resetting its VGENxEN bit, while at the same time, an interrupt
VGENxFAULTI is generated to flag the fault to the system processor. The VGENxFAULTI interrupt is maskable through the
VGENxFAULTM mask bit.
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the regulators do not automatically disable upon a shortcircuit detection. However, the current limiter continues to limit the output current of the regulator. By default, the REGSCPEN is not set;
therefore, at start-up none of the regulators are disabled if an overloaded condition occurs. A fault interrupt, VGENxFAULTI, is generated
in an overload condition regardless of the state of the REGSCPEN bit. See Table 90 for SCP behavior configuration.
Table 90. Short-circuit behavior
REGSCPEN[0]
Short-circuit behavior
0
Current limit
1
Shutdown
PF0100Z
76
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.6.3
LDO regulator control
Each LDO is fully controlled through its respective VGENxCTL register. This register enables the user to set the LDO output voltage
according to Table 91 for VGEN1 and VGEN2; and uses the voltage set point on Table 92 for VGEN3 through VGEN6.
Table 91. VGEN1, VGEN2 output voltage configuration
Set point
VGENx[3:0]
VGENx output (V)
0
0000
0.800
1
0001
0.850
2
0010
0.900
3
0011
0.950
4
0100
1.000
5
0101
1.050
6
0110
1.100
7
0111
1.150
8
1000
1.200
9
1001
1.250
10
1010
1.300
11
1011
1.350
12
1100
1.400
13
1101
1.450
14
1110
1.500
15
1111
1.550
Table 92. VGEN3/ 4/ 5/ 6 output voltage configuration
Set point
VGENx[3:0]
VGENx output (V)
0
0000
1.80
1
0001
1.90
2
0010
2.00
3
0011
2.10
4
0100
2.20
5
0101
2.30
6
0110
2.40
7
0111
2.50
8
1000
2.60
9
1001
2.70
10
1010
2.80
11
1011
2.90
12
1100
3.00
13
1101
3.10
14
1110
3.20
15
1111
3.30
Besides the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well as be
programmed to stay “ON” or be disabled when the PMIC enters standby mode. Each regulator has associated I2C bits for this. Table 93
presents a summary of all valid combinations of the control bits on VGENxCTL register and the expected behavior of the LDO output.
PF0100Z
NXP Semiconductors
77
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 93. LDO control
VGENxEN
VGENxLPWR
VGENxSTBY
STANDBY(61)
VGENxOUT
0
X
X
X
Off
1
0
0
X
On
1
1
0
X
Low Power
1
X
1
0
On
1
0
1
1
Off
1
1
1
1
Low Power
Notes
61. STANDBY refers to a standby event as described earlier.
For more detail information, Table 94 through Table 99 provide a description of all registers necessary to operate all six general purpose
LDO regulators.
Table 94. Register VGEN1CTL - ADDR 0x6C
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN1 output voltage.
See Table 91 for all possible configurations.
VGEN1EN
4
–
0x00
Enables or disables VGEN1 output
0 = OFF
1 = ON
VGEN1STBY
5
R/W
0x00
Set VGEN1 output state when in standby. Refer
to Table 93.
VGEN1LPWR
6
R/W
0x00
Enable low-power mode for VGEN1. Refer to
Table 93.
UNUSED
7
–
0x00
unused
VGEN1
Description
Table 95. Register VGEN2CTL - ADDR 0x6D
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN2 output voltage.
See Table 91 for all possible configurations.
VGEN2EN
4
–
0x00
Enables or disables VGEN2 output
0 = OFF
1 = ON
VGEN2STBY
5
R/W
0x00
Set VGEN2 output state when in standby. Refer
to Table 93.
VGEN2LPWR
6
R/W
0x00
Enable low-power mode for VGEN2. Refer to
Table 93.
UNUSED
7
–
0x00
unused
VGEN2
Description
PF0100Z
78
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 96. Register VGEN3CTL - ADDR 0x6E
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN3 output voltage.
See Table 92 for all possible configurations.
VGEN3EN
4
–
0x00
Enables or disables VGEN3 output
0 = OFF
1 = ON
VGEN3STBY
5
R/W
0x00
Set VGEN3 output state when in standby. Refer
to Table 93.
VGEN3LPWR
6
R/W
0x00
Enable low-power mode for VGEN3. Refer to
Table 93.
UNUSED
7
–
0x00
unused
VGEN3
Description
Table 97. Register VGEN4CTL - ADDR 0x6F
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN4 output voltage.
See Table 92 for all possible configurations.
VGEN4EN
4
–
0x00
Enables or disables VGEN4 output
0 = OFF
1 = ON
VGEN4STBY
5
R/W
0x00
Set VGEN4 output state when in standby. Refer
to Table 93.
VGEN4LPWR
6
R/W
0x00
Enable low-power mode for VGEN4. Refer to
Table 93.
UNUSED
7
–
0x00
unused
VGEN4
Description
Table 98. Register VGEN5CTL - ADDR 0x70
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN5 output voltage.
See Table 92 for all possible configurations.
VGEN5EN
4
–
0x00
Enables or disables VGEN5 output
0 = OFF
1 = ON
VGEN5STBY
5
R/W
0x00
Set VGEN5 output state when in standby. Refer
to Table 93.
VGEN5LPWR
6
R/W
0x00
Enable low-power mode for VGEN5. Refer to
Table 93.
UNUSED
7
–
0x00
unused
VGEN5
Description
PF0100Z
NXP Semiconductors
79
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 99. Register VGEN6CTL - ADDR 0x71
Name
Bit #
R/W
Default
3:0
R/W
0x80
Sets VGEN6 output voltage.
See Table 92 for all possible configurations.
VGEN6EN
4
–
0x00
Enables or disables VGEN6 output
0 = OFF
1 = ON
VGEN6STBY
5
R/W
0x00
Set VGEN6 output state when in standby. Refer
to Table 93.
VGEN6LPWR
6
R/W
0x00
Enable low-power mode for VGEN6. Refer to
Table 93.
UNUSED
7
–
0x00
unused
VGEN6
6.4.6.4
Description
External components
Table 100 lists the typical component values for the general purpose LDO regulators.
Table 100. LDO external components
Regulator
Output capacitor (μF)(62)
VGEN1
2.2
VGEN2
4.7
VGEN3
2.2
VGEN4
4.7
VGEN5
2.2
VGEN6
2.2
Notes
62.
Use X5R/X7R ceramic capacitors.
6.4.6.5
6.4.6.5.1
LDO specifications
VGEN1
Table 101. VGEN1 electrical characteristics
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = 3.6 V, VIN1 = 3.0 V,
VGEN1[3:0] = 1111, IGEN1 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at
VIN = 3.6 V, IN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
1.75
–
3.40
V
Notes
VGEN1
VIN1
Operating input voltage
VGEN1NOM
Nominal output voltage
–
Table 91
–
V
IGEN1
Operating load current
0.0
–
100
mA
Output voltage tolerance
1.75 V < VIN1 < 3.4 V
0.0 mA < IGEN1 < 100 mA
VGEN1[3:0] = 0000 to 1111
-3.0
–
3.0
%
VGEN1 DC
VGEN1TOL
PF0100Z
80
NXP Semiconductors
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 101. VGEN1 electrical characteristics (continued)
All parameters are specified at PF0100Z TA = -40 °C to 85 °C, PF0100AZ TA = -40 °C to 105 °C, VIN = 3.6 V, VIN1 = 3.0 V,
VGEN1[3:0] = 1111, IGEN1 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at
VIN = 3.6 V, IN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, and 25 °C, unless otherwise noted.
Symbol
Parameter
Min.
Typ.
Max.
Unit
VGEN1LOR
Load regulation
(VGEN1 at IGEN1 = 100 mA) - (VGEN1 at IGEN1 = 0.0 mA)
For any 1.75 V < VIN1 < 3.4 V
–
0.15
–
mV/mA
VGEN1LIR
Line regulation
(VGEN1 at VIN1 = 3.4 V) - (VGEN1 at VIN1 = 1.75 V)
For any 0.0 mA < IGEN1 < 100 mA
–
0.30
–
mV/mA
IGEN1LIM
Current limit
IGEN1 when VGEN1 is forced to VGEN1NOM/2
122
167
200
mA
IGEN1OCP
Overcurrent protection threshold
IGEN1 required to cause the SCP function to disable LDO when
REGSCPEN = 1
115
–
200
mA
–
14
–
μA
PSRRVGEN1
PSRR
• IGEN1 = 75 mA, 20 Hz to 20 kHz
VGEN1[3:0] = 0000 - 1101
VGEN1[3:0] = 1110, 1111
50
37
60
45
–
–
NOISEVGEN1
Output noise density
VIN1 = 1.75 V, IGEN1 = 75 mA
100 Hz –