0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MMRF2010NR1

MMRF2010NR1

  • 厂商:

    NXP(恩智浦)

  • 封装:

    TO270-17

  • 描述:

    RFMOSFETLDMOS50VTO270WB-14

  • 数据手册
  • 价格&库存
MMRF2010NR1 数据手册
NXP Semiconductors Technical Data Document Number: MMRF2010N Rev. 1, 04/2017 RF LDMOS Wideband Integrated Power Amplifiers T he MMR F 2010N is a 2 -- s t age R F IC des igned for I F F trans ponder applications operating from 1030 to 1090 MHz. These devices are suitable for use in pulse applications such as IFF and secondary radar transponders. Typical Wideband Performance: (52 Vdc, TA = 25°C) Frequency (MHz)(1) 1030 1090 1030 1090 Pout (W) Gps (dB) 2nd Stage Eff. (%) Pulse (128 μsec, 10% Duty Cycle) 250 Peak 34.1 61.0 33.4 61.9 Pulse (2 msec, 20% Duty Cycle) 250 Peak 33.6 61.5 32.6 62.9 Pout (W) Gps (dB) 2nd Stage Eff. (%) 250 Peak 32.1 61.4 Signal Type Narrowband Performance: (50 Vdc, TA = 25°C) Frequency (MHz) 1090 (2) Signal Type Pulse (128 μsec, 10% Duty Cycle) 1090 (1) Signal Type VSWR Pulse (2 msec, 20% Duty Cycle) > 20:1 at all Phase Angles Pin (W) Test Voltage 0.316 W Peak (3 dB Overdrive) 52 1030–1090 MHz, 250 W PEAK, 50 V RF LDMOS INTEGRATED POWER AMPLIFIERS TO--270WB--14 PLASTIC MMRF2010N TO--270WBG--14 PLASTIC MMRF2010GN Load Mismatch/Ruggedness Frequency (MHz) MMRF2010N MMRF2010GN Result No Device Degradation 1. Measured in 1030–1090 MHz reference circuit. 2. Measured in 1090 MHz narrowband test circuit. Features • • • • • • Characterized over 1030–1090 MHz On--chip input (50 ohm) and interstage matching Single ended Integrated ESD protection Low thermal resistance Integrated quiescent current temperature compensation with enable/disable function (3) Typical Applications • Driver PA for high power pulse applications • IFF and secondary radar 3. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987. © 2015, 2017 NXP B.V. RF Device Data NXP Semiconductors MMRF2010N MMRF2010GN 1 VDS1 RFin Stage 1 VGS1 VGS2 Thermal Sense RFout Sense Stage 2 RFout/VDS2 Quiescent Current Temperature Compensation (1) and Thermal Sense VDS1 VGS2 VGS1 N.C. RFin RFin RFin RFin N.C. N.C. Thermal Sense RFout Sense 1 2 3 4 5 6 7 8 9 10 11 12 14 RFout /VDS2 13 RFout /VDS2 (Top View) Note: Exposed backside of the package is the source terminal for the transistor. Figure 1. Functional Block Diagram Figure 2. Pin Connections Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, +100 Vdc Gate--Source Voltage VGS –6, +10 Vdc Operating Voltage VDD 50, +0 Vdc Storage Temperature Range Tstg –65 to +150 °C TC –55 to 150 °C TJ –55 to 225 °C Pin 25 dBm Symbol Value (3,4) Unit Case Operating Temperature Range Operating Junction Temperature Range (2,3) Input Power Table 2. Thermal Characteristics Characteristic Thermal Impedance, Junction to Case Pulse: Case Temperature 81°C, 250 W Peak, 128 μsec Pulse Width, 10% Duty Cycle, 1090 MHz Stage 1, 50 Vdc, IDQ1 = 80 mA Stage 2, 50 Vdc, IDQ2 = 150 mA ZθJC °C/W 1.1 0.15 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) Class 2, passes 2500 V Machine Model (per EIA/JESD22--A115) Class A, passes 150 V Charge Device Model (per JESD22--C101) Class II, passes 200 V Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 °C 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987. 2. Continuous use at maximum temperature will affect MTTF. 3. MTTF calculator available at http://www.nxp.com/RF/calculators. 4. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955. MMRF2010N MMRF2010GN 2 RF Device Data NXP Semiconductors Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 55 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 52 μAdc) VGS(th) 1.3 1.8 2.3 Vdc Fixture Gate Quiescent Voltage (VDD = 50 Vdc, IDQ1 = 80 mAdc, Measured in Functional Test) VGG(Q) 6.0 7.0 8.0 Vdc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 55 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 528 μAdc) VGS(th) 1.3 1.8 2.3 Vdc Fixture Gate Quiescent Voltage (VDD = 50 Vdc, IDQ2 = 150 mAdc, Measured in Functional Test) VGG(Q) 2.2 2.7 3.2 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.6 Adc) VDS(on) — 0.25 — Vdc Characteristic Stage 1 -- Off Characteristics Stage 1 -- On Characteristics Stage 2 -- Off Characteristics Stage 2 -- On Characteristics Functional Tests (1,2) (In NXP Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ1 = 80 mA, IDQ2 = 150 mA, Pout = 250 W Peak (25 W Avg.), f = 1090 MHz, 128 μsec Pulse Width, 10% Duty Cycle Power Gain Gps 30.5 32.1 34.0 dB 2nd Stage Drain Efficiency ηD 57.0 61.4 — % Load Mismatch/Ruggedness (In NXP Test Fixture, 50 ohm system) IDQ1 = 80 mA, IDQ2 = 150 mA Frequency (MHz) Signal Type 1090 Pulse (128 μsec, 10% Duty Cycle) Pin (W) VSWR > 10:1 at all Phase Angles Test Voltage, VDD Result 50 No Device Degradation 0.345 W Peak (3 dB Overdrive) Table 6. Ordering Information Device MMRF2010NR1 MMRF2010GNR1 Tape and Reel Information R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel Package TO--270WB--14 TO--270WBG--14 1. Part internally input matched. 2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. MMRF2010N MMRF2010GN RF Device Data NXP Semiconductors 3 TYPICAL CHARACTERISTICS 1.20 VDD = 50 Vdc IDQ1 = 80 mA IDQ2 = 150 mA 1.15 NORMALIZED IDQ 1.10 IDQ2 1.05 IDQ1 1.00 0.95 0.90 0.85 0.80 –75 –50 0 –25 50 25 75 100 TC, CASE TEMPERATURE (°C) Slope (mA/°C) IDQ1 –0.000 IDQ2 +0.143 Note: Performance measured in reference circuit. Figure 3. Normalized IDQ versus Case Temperature 109 VDD = 50 Vdc Pulse Width = 128 μsec 10% Duty Cycle MTTF (HOURS) 108 ID = 6.52 Amps 8.30 Amps 107 9.36 Amps 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http://www.nxp.com/RF/calculators. Figure 4. MTTF versus Junction Temperature -- Pulse MMRF2010N MMRF2010GN 4 RF Device Data NXP Semiconductors 1030–1090 MHz REFERENCE CIRCUIT — 1.97″ x 2.76″ (5.0 cm x 7.0 cm) Table 7. 1030–1090 MHz Performance (In NXP Reference Circuit, 50 ohm system) VDD = 52 Vdc, IDQ1 = 80 mA, IDQ2 = 150 mA Frequency (MHz) 1030 1090 1030 1090 Gps (dB) 2nd Stage Eff. (%) Pout (W) Pulse (128 μsec, 10% Duty Cycle) 34.1 61.0 250 Peak 33.4 61.9 Pulse (2 msec, 20% Duty Cycle) 33.6 61.5 32.6 62.9 Signal Type 250 Peak MMRF2010N MMRF2010GN RF Device Data NXP Semiconductors 5 1030–1090 MHz REFERENCE CIRCUIT — 1.97″ x 2.76″ (5.0 cm x 7.0 cm) R1 C25 VDD1 C17 R2 C19 C20 C18 C26 C26 C11 C13* C14* C1 C23 C8 C6 C24 C21 Q1 C7 C10 C9 C12 C15* C16* C22 Rev. B VDD2 * Stacked components Note: Component numbers C2, C3, C4, and C5 are not used. Figure 5. MMRF2010N Reference Circuit Component Layout — 1030–1090 MHz Table 8. MMRF2010N Reference Circuit Component Designations and Values — 1030–1090 MHz Part Description Part Number Manufacturer C1, C10 56 pF Chip Capacitors ATC600F560JT250XT ATC C11, C12, C17, C18, C19 51 pF Chip Capacitors ATC600F510JT250XT ATC C6, C7 10 pF Chip Capacitors ATC600F100JT250XT ATC C8 6.8 pF Chip Capacitor ATC600F6R8BT250XT ATC C9 2.4 pF Chip Capacitor ATC600F2R4BT250XT ATC C13, C14, C15, C16, C25, C26 10 μF Chip Capacitors C5750X7S2A106M TDK C20 1 μF Chip Capacitor GRM21BR71H105KA12L Murata C21, C22 8.2 pF Chip Capacitors ATC600F8R2BT250XT ATC C23 2.7 pF Chip Capacitor ATC600F2R7BT250XT ATC C24 1.5 pF Chip Capacitor ATC600F1R5BT250XT ATC Q1 RF Power LDMOS Transistor MMRF2010N NXP R1 3.9 kΩ, 1/16 W Chip Resistor RR0816P-392-B-T5 Susumu R2 1 kΩ, 1/16 W Chip Resistor RR0816P-102-B-T5 Susumu PCB Taconic RF60A 0.025″, εr = 6.15 — MTL MMRF2010N MMRF2010GN 6 RF Device Data NXP Semiconductors TYPICAL CHARACTERISTICS — 1030–1090 MHz 35 1030 MHz 33 ηD 32 50 Gps 31 1090 MHz 40 30 1030 MHz 30 20 VDD = 52 V, IDQ1 = 80 mA, IDQ2 = 150 mA Pulse Width = 128 μsec, Duty Cycle = 10% 29 0 50 100 150 200 250 300 350 400 80 1090 MHz 60 34 1030 MHz 33 32 31 1090 MHz 29 0 28 0 50 100 150 200 10 250 300 350 400 0 Figure 7. Power Gain and Drain Efficiency versus Output Power and Frequency — Long Pulse Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK 20 VDD = 52 V, IDQ1 = 80 mA, IDQ2 = 150 mA Pulse Width = 2 msec, Duty Cycle = 20% 350 1030 MHz 300 1090 MHz 200 150 100 VDD = 52 V, IDQ1 = 80 mA, IDQ2 = 150 mA Pulse Width = 128 μsec, Duty Cycle = 10% 50 30 Pout, OUTPUT POWER (WATTS) PEAK Figure 6. Power Gain and Drain Efficiency versus Output Power and Frequency 250 40 1030 MHz 30 10 50 Gps ηD Pout, OUTPUT POWER (WATTS) PEAK 350 70 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 70 60 34 28 36 Gps, POWER GAIN (dB) 1090 MHz 35 80 ηD, DRAIN EFFICIENCY (%) 36 0 1030 MHz 300 250 1090 MHz 200 150 100 VDD = 52 V, IDQ1 = 80 mA, IDQ2 = 150 mA Pulse Width = 2 msec, Duty Cycle = 20% 50 0 0 0.05 0.1 0.15 0.2 0.25 0.3 Pin, INPUT POWER (WATTS) PEAK Figure 8. Output Power versus Input Power and Frequency 0 0.05 0.1 0.15 0.2 0.25 0.3 Pin, INPUT POWER (WATTS) PEAK Figure 9. Output Power versus Input Power and Frequency — Long Pulse MMRF2010N MMRF2010GN RF Device Data NXP Semiconductors 7 1030–1090 MHz REFERENCE CIRCUIT Zsource f = 1090 MHz f = 1030 MHz Zo = 50 Ω f = 1090 MHz Zload f = 1030 MHz f MHz Zsource Ω Zload Ω 1030 27.4 + j23.65 1.57 + j1.07 1090 32.5 + j29 1.35 + j1.5 Zsource = Test circuit input impedance as measured from gate to ground. Zload 50 Ω = Test circuit impedance as measured from drain to ground. Device Under Test Input Matching Network Zsource Output Matching Network Zload 50 Ω Figure 10. Series Equivalent Source and Load Impedance — 1030–1090 MHz MMRF2010N MMRF2010GN 8 RF Device Data NXP Semiconductors 1090 MHz REFERENCE CIRCUIT — 1.97″ x 2.76″ (5.0 cm x 7.0 cm) R1 C25 C17 R2 C18 C26 VDD1 C19 C20 C11 C1 C23 C9 C8 C21 C6 C13* C14* Q1 C24 C7 C10 C12 C15* C16* C22 Rev. B VDD2 * Stacked components Note: Component numbers C2, C3, C4, and C5 are not used. Figure 11. MMRF2010N Reference Circuit Component Layout — 1090 MHz Table 9. MMRF2010N Reference Circuit Component Designations and Values — 1090 MHz Part Description Part Number Manufacturer C1, C10 56 pF Chip Capacitors ATC600F560JT250XT ATC C11, C12, C17, C18, C19 51 pF Chip Capacitors ATC600F510JT250XT ATC C6, C7 10 pF Chip Capacitors ATC600F100JT250XT ATC C8 6.8 pF Chip Capacitor ATC600F6R8BT250XT ATC C9 2.4 pF Chip Capacitor ATC600F2R4BT250XT ATC C13, C14, C15, C16, C25, C26 10 μF Chip Capacitors C5750X7S2A106M TDK C20 1 μF Chip Capacitor GRM21BR71H105KA12L Murata C21, C22 8.2 pF Chip Capacitors ATC600F8R2BT250XT ATC C23 2.7 pF Chip Capacitor ATC600F2R7BT250XT ATC C24 1.5 pF Chip Capacitor ATC600F1R5BT250XT ATC Q1 RF Power LDMOS Transistor MMRF2010N NXP R1 3.9 kΩ, 1/16 W Chip Resistor RR0816P-392-B-T5 Susumu R2 1 kΩ, 1/16 W Chip Resistor RR0816P-102-B-T5 Susumu PCB Taconic RF60A 0.025″, εr = 6.15 — MTL MMRF2010N MMRF2010GN RF Device Data NXP Semiconductors 9 TYPICAL CHARACTERISTICS — 1090 MHz REFERENCE CIRCUIT 35 Gps, POWER GAIN (dB) 32 50 30 Gps 31 10 30 300 29 250 28 200 VDD = 50 Vdc, f = 1090 MHz IDQ1 = 80 mA, IDQ2 = 150 mA Pulse Width =128 μsec Duty Cycle = 10% Pout 27 26 25 24 0.0 0.05 0.1 0.2 0.15 0.25 0.3 150 100 50 0 0.35 Pout, OUTPUT POWER (WATTS) PEAK 70 ηD 33 ηD, DRAIN EFFICIENCY (%) 90 34 Pin, INPUT POWER (WATTS) PEAK Figure 12. Power Gain, Drain Efficiency and Output Power versus Input Power Pout, OUTPUT POWER (WATTS) PEAK 300 250 200 150 100 VDD = 50 Vdc, f = 1090 MHz IDQ1 = 80 mA, IDQ2 = 150 mA Pulse Width = 128 μsec Duty Cycle = 10% 50 0 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Pin, INPUT POWER (WATTS) PEAK Figure 13. Output Power versus Input Power f MHz Zsource Ω Zload Ω 1090 36.7 – j29 1.3 + j0.60 Zsource = Test circuit input impedance as measured from gate to ground. Zload 50 Ω = Test circuit impedance as measured from drain to ground. Device Under Test Input Matching Network Zsource Output Matching Network Zload 50 Ω Figure 14. Series Equivalent Source and Load Impedance — 1090 MHz MMRF2010N MMRF2010GN 10 RF Device Data NXP Semiconductors 1090 MHz NARROWBAND PRODUCTION TEST FIXTURE Table 10. 1090 MHz Narrowband Performance (1,2) (In NXP Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ1 = 80 mA, IDQ2 = 150 mA, Pout = 250 W Peak (25 W Avg.), f = 1090 MHz, 128 μsec Pulse Width, 10% Duty Cycle Symbol Min Typ Max Unit Power Gain Characteristic Gps 30.5 32.1 34.0 dB 2nd Stage Drain Efficiency ηD 57.0 61.4 — % 1. Part internally input matched. 2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. MMRF2010N MMRF2010GN RF Device Data NXP Semiconductors 11 1090 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4″ x 5″ (10.2 cm x 12.7 cm) C7 VDD1 C20 C17 C13 C12 R1 VGG2 C4 C1 C11 C9 C2 C3 C5 Thermal Sense R3 D1 R4 U1 R5 PDET C21 R7 V3 R6 C24 C23 C22 CUT OUT AREA VGG1 C6 R2 VDD2 C19 C10 C8 VDD2 C14 C15 C16 C18 Rev. 0 Figure 15. MMRF2010N Narrowband Test Circuit Component Layout — 1090 MHz Table 11. MMRF2010N Narrowband Test Circuit Component Designations and Values — 1090 MHz Part Description Part Number Manufacturer C1 47 pF Chip Capacitor ATC600F470JT250XT ATC C2 2.7 pF Chip Capacitor ATC100B2R7CT500XT ATC C3 2.0 pF Chip Capacitor ATC100B2R0BW500XT ATC C4 1 μF Chip Capacitor GRM31MR71H105KA88L Murata C5, C6, C7, C11, C14 43 pF Chip Capacitors ATC100B430JT500XT ATC C8, C9 10 pF Chip Capacitors ATC100B100JT500XT ATC C10 4.7 pF Chip Capacitor ATC100B4R7CT500XT ATC C12, C13, C15, C16, C20 10 μF Chip Capacitors C5750X752A106M230KB TDK C17, C18 220 μF, 100 V Electrolytic Capacitors MCGPR100V227M16X26-RH Multicomp C19 30 pF Chip Capacitor ATC600F300JT250XT ATC C21 10 nF Chip Capacitor C0805C103J5RAC-TU Kemet C22 0.1 μF Chip Capacitor C1206C104K1RAC-TU Kemet C23 47 pF Chip Capacitor ATC800B470JT500XT ATC C24 1000 pF Chip Capacitor C2012X7R2E102K085AA TDK D1 Diode Schottky RF SGL 70 V SOT-23 HSMS--2800--TR1G Avago Technologies R1 2.2 kΩ, 1/8 W Chip Resistor CRCW08052K20JNEA Vishay R2 0 Ω, 1 A Chip Resistor CWCR08050000Z0EA Vishay R3 1 kΩ, 1/10 W Chip Resistor RR1220P-102-D Susumu R4 50 Ω, 10 W Chip Resistor 060120A25X50--2 Anaren R5 15 kΩ, 1/10 W Chip Resistor RR1220P-153-D Susumu R6 51 Ω, 1/8 W Chip Resistor RK73B2ATTD510J KOA Speer R7 470 kΩ, 1/4 W Chip Resistor CRCW1206470KFKEA Vishay U1 IC Detector RF PWR 3GHZ SC70--6 LT5534ESC6#TRMPBF Linear Technology PCB Rogers, RO4350B, 0.020″, εr = 3.66 — MTL MMRF2010N MMRF2010GN 12 RF Device Data NXP Semiconductors TYPICAL CHARACTERISTICS — 1090 MHz NARROWBAND PRODUCTION TEST FIXTURE 34 53 Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) PEAK 33 54 52 51 50 49 48 47 VDD = 50 Vdc, IDQ1 = 80 mA, IDQ2 = 150 mA f = 1090 MHz, Pulse Width = 128 μsec, 10% Duty Cycle 46 45 14 16 18 20 22 24 26 28 60 50 32 Gps 31 40 30 30 ηD 29 20 28 10 30 70 VDD = 50 Vdc, IDQ1 = 80 mA, IDQ2 = 150 mA f = 1090 MHz, Pulse Width = 128 μsec, 10% Duty Cycle 55 10 500 100 Pin, INPUT POWER (dBm) PEAK ηD DRAIN EFFICIENCY (%) 56 Pout, OUTPUT POWER (WATTS) PEAK f (MHz) P1dB (W) P3dB (W) 1090 265 284 Figure 17. Power Gain and Drain Efficiency versus Output Power and Quiescent Current Figure 16. Output Power versus Input Power 32 29 25_C 85_C 25_C ηD 85_C 28 27 10 90 33 80 32 70 –55_C TC = –55_C 31 30 Gps 100 60 50 40 30 Gps, POWER GAIN (dB) VDD = 50 Vdc, IDQ1 = 80 mA, IDQ2 = 150 mA 34 f = 1090 MHz, Pulse Width = 128 μsec 10% Duty Cycle 33 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 35 31 30 29 50 V 28 40 V 27 20 26 10 500 25 35 V VDD = 30 V 0 50 100 45 V IDQ1 = 80 mA, IDQ2 = 150 mA f = 1090 MHz, Pulse Width = 128 μsec 10% Duty Cycle 150 200 250 300 350 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 18. Power Gain and Drain Efficiency versus Output Power Figure 19. Power Gain versus Output Power and Drain--Source Voltage MMRF2010N MMRF2010GN RF Device Data NXP Semiconductors 13 1090 MHz NARROWBAND PRODUCTION TEST FIXTURE f MHz Zsource Ω Zload Ω 1090 13.6 – j24.4 1.3 + j0.4 Zsource = Test circuit impedance as measured from gate to ground. Zload 50 Ω = Test circuit impedance as measured from drain to ground. Device Under Test Input Matching Network Zsource Output Matching Network 50 Ω Zload Figure 20. Narrowband Series Equivalent Source and Load Impedance — 1090 MHz MMRF2010N MMRF2010GN 14 RF Device Data NXP Semiconductors 0.221 (5.61) 0.180 (4.57) 0.590 (14.99) 2X SOLDER PADS 0.352(1) (8.94) 0.372(1) (9.45) 12X SOLDER PADS 0.040 (1.02) 0.020 (0.51) Inches (mm) 0.723(1) (18.36) 1. Slot dimensions are minimum dimensions and exclude milling tolerances. Figure 21. PCB Pad Layout for TO--270WB--14 0.221 (5.61) 0.180 (4.57) 0.351 (8.92) 0.310 (7.87) Solder pad with thermal via structure. 0.020 (0.51) 0.463 (11.76) 0.040 (1.02) 0.720 (18.29) Figure 22. PCB Pad Layout for TO--270WBG--14 MMRF2010N MMRF2010GN RF Device Data NXP Semiconductors 15 PACKAGE DIMENSIONS MMRF2010N MMRF2010GN 16 RF Device Data NXP Semiconductors MMRF2010N MMRF2010GN RF Device Data NXP Semiconductors 17 MMRF2010N MMRF2010GN 18 RF Device Data NXP Semiconductors MMRF2010N MMRF2010GN RF Device Data NXP Semiconductors 19 MMRF2010N MMRF2010GN 20 RF Device Data NXP Semiconductors MMRF2010N MMRF2010GN RF Device Data NXP Semiconductors 21 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/RF 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Oct. 2015 • Initial Release of Data Sheet 1 Apr. 2017 • Typical Wideband Performance table: added 2 msec, 20% duty cycle operating conditions and data, p. 1 • Table 1, Maximum Ratings: over--temperature range extended to cover case operation from –55°C to +150°C and operating junction range from –55°C to +225°C from the previous lower limit of –40°C to allow for a cold start after temperature soak at the minimum case operating temperature, p. 2 • Figure 3, Normalized IDQ versus Case Temperature: updated to reflect performance measured in reference circuit, p. 4 • Table 7, 1030–1090 MHz Performance table: added 2 msec, 20% duty cycle operating conditions and data, p. 5 • 1030–1090 MHz reference circuit: added performance data and graphs, reference circuit component layout and component designations, pp. 5–8 • Figure 5, 1030–1090 MHz Series Equivalent Source and Load Impedances: impedance data updated to reflect 1030–1090 MHz reference circuit addition to data sheet, p . 8 (renumbered as Figure 10 after new Figures 5--9 added) • Figure 6, 1090 MHz MMRF2010N Reference Circuit Component Layout: layout updated to reflect actual circuit, p. 9 (renumbered as Figure 11 after new Figures 5--9 added) • Table 8, 1090 MHz reference circuit component designations and values: R1 and R2 chip resistors replaced to support changes made to the IDQ compensation circuit to extend the over--temperature range to cover –55°C to +85°C from the previous lower limit of –40°C, p. 9 (renumbered as Table 9 after new Table 8 added) • Figure 18, Power Gain and Drain Efficiency versus Output Power: TC = –40°C changed –55°C to show current TC operation of fixture, p. 13 MMRF2010N MMRF2010GN 22 RF Device Data NXP Semiconductors How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 2015, 2017 NXP B.V. MMRF2010N MMRF2010GN Document Number: RF Device Data MMRF2010N Rev. 1,Semiconductors 04/2017 NXP 23
MMRF2010NR1 价格&库存

很抱歉,暂时无法提供与“MMRF2010NR1”相匹配的价格&库存,您可以联系我们找货

免费人工找货