0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MPC5748G-LCEVB

MPC5748G-LCEVB

  • 厂商:

    NXP(恩智浦)

  • 封装:

    -

  • 描述:

    MPC5748G-LCEVB

  • 数据手册
  • 价格&库存
MPC5748G-LCEVB 数据手册
NXP Semiconductors User Guide Document Number: MPC5748GLCEVBUG Rev. 0, 05/2016 MPC5748G Low Cost EVB User Guide © 2016 NXP B.V. Contents 1. INTRODUCTION.............................................................................................................................................................. 3 2. LCEVB FEATURES.......................................................................................................................................................... 3 2.1. Differences to the Customer EVB ..................................................................................................................................... 4 3. CONFIGURATION OVERVIEW ..................................................................................................................................... 6 4. INITIAL SETUP ................................................................................................................................................................ 7 4.1. Power Supply Configuration.............................................................................................................................................. 7 4.1.1. Power Input Connector ................................................................................................................................................. 7 4.1.2. Power Switch ................................................................................................................................................................ 7 4.1.3. Power Status LED ......................................................................................................................................................... 8 4.1.4. MCU and Peripheral Voltage Configuration ................................................................................................................ 8 4.2. Reset Control (SW3) .......................................................................................................................................................... 8 4.2.1. Reset LEDs ................................................................................................................................................................... 9 4.3. MCU Clock Configuration .............................................................................................................................................. 10 4.4. Debug Connector (P1) ..................................................................................................................................................... 10 4.4.1. Debug Connector Pinout ............................................................................................................................................. 10 5. COMMUNICATIONS & MEMORY INTERFACES: .................................................................................................... 11 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 6. CAN Interfaces (P2, P3) .................................................................................................................................................. 11 LIN Interfaces (P6, P7) .................................................................................................................................................... 12 USB RS232 Serial Interface (P11) .................................................................................................................................. 12 USB HOST Interface (P4) ............................................................................................................................................... 12 Ethernet Interface (P5) ..................................................................................................................................................... 13 FlexRay (P8, P9, P10)...................................................................................................................................................... 13 USER INTERFACE (I/O) ................................................................................................................................................ 14 6.1. 6.2. 6.3. 6.4. 6.5. GPIO Matrix .................................................................................................................................................................... 14 User Switches (SW4, SW5) ............................................................................................................................................. 15 Hex Encoded Switch (SW1) ............................................................................................................................................ 15 User LED’s (DS1, DS2, DS3, DS4) ................................................................................................................................ 16 ADC Input Potentiometer (RVAR, RV1) ........................................................................................................................ 16 7. MCU PORT PIN LCEVB FUNCTIONS ......................................................................................................................... 17 8. APPENDIX ...................................................................................................................................................................... 18 MPC5748G Low Cost EVB User Guide, Rev. 0, 05/2016 2 NXP Semiconductors 1. Introduction This user guide details the setup and configuration of the NXP MPC5748G Low Cost Evaluation Board (hereafter referred to as the LCEVB). The LCEVB is intended to provide a mechanism for easy evaluation of the MPC5748G family of microcontrollers, and to facilitate basic hardware and software development. Note that the LCEVB has a limited feature set compared to the main MPC574xG customer EVB and is intended for evaluation purposes. Customers moving to serious development activities are recommended to purchase the fully functional customer EVB which also has device specific daughter cards. The LCEVB is intended for bench / laboratory use and has been designed using normal temperature specified components (+70° C). This product contains components that may be damaged by electrostatic discharge. Observe precautions for handling electrostatic sensitive devices when using the LCEVB. The user guide is intended to be read alongside the respective MCU documentation available at www.nxp.com and includes:  Reference Manuals  Product Data Sheets  Application notes  Device Errata 2. LCEVB Features The LCEVB provides the following key features:             Single 5 V DC external power supply input with on-board 3.3 V regulator. Power is supplied via a 2.1 mm barrel style power jack. Simple jumperless configuration (enhanced configuration is possible via 0 Ohm Resistors and optional jumpers if required). Master power switch and regulator status LED. USB Serial interface. 2 x High Speed CAN transceiver routed to 3-way headers. 2 x LIN interfaces routed to 3-way headers. Main clock supplied from on board crystal. User reset switch with reset status LED’s. Ethernet PHY and RJ45 socket (configured for MII mode). USB Type A Host interface. 2 x FlexRay interfaces with standard 2-pin connectors. 14-pin JTAG connector. MPC5748G Low Cost EVB User Guide, Rev. 0, 05/2016 3 NXP Semiconductors     4 user LED’s wired to MCU ports. 2 user pushbutton switches wired to MCU ports. Hexadecimal encoded switch wired to 4 MCU ports. Simple potentiometer connected to analogue input channel. 2.1. Differences to the Customer EVB Note that the GPIO pins used for peripherals on the LCEVB are the same as those used on the customer EVB. This ensures maximum code compatibility between the 2 boards, making it easy to migrate from one board to the other Table 1. Customer EVB vs LCEVB features Customer EVB LCEVB Custom MCU Daughtercards for Soldered 176QFP MPC5748G multiple devices (socketed) Power Supply External 12 V External 5 V (Caution) On Board Regulators (and LED’s) 5 V, 3.3 V, 1.25 V (combination of 3.3 V Switching Regulator Linear and /or Switching regulators) Master Power Switch Yes Yes Reset Control Reset button with MCU and External Reset button with MCU and External Reset LED’s Reset LED’s USB FTDI Serial Interface Yes Yes CAN Physical Interfaces 2 (routed to 0.1” headers) 2 (routed to 0.1” headers) LIN Physical Interfaces 2 (routed to Molex headers) 2 (routed to 0.1” headers) FlexRay Physical Interfaces 2 (routed to 0.1” headers) 2 (routed to 0.1” headers) Ethernet Physical Interface 1 (MII and RMII Support) 1 (MII only mode) USB Physical Interface 2 (USB Host and OTG) 1 (USB Host) MLB Daughtercard Connector Yes No SAI Audio / TWRPI Connectors Yes No SDHC Connector Full Size SDHC Socket No Fast External Osc (FXOSC) Daughtercard Crystal * and 40 MHz Crystal SMA input connector Slow External Osc (SXOSC) Daughtercard Crystal * 32.768 KHz Crystal CLKOUT signals available Yes (GPIO Matrix) Yes (Standalone pads) User LEDS 4 4 User Pushbutton Switches 4 2 Hex Encoded Switch Yes Yes Test Potentiometer for ADC Yes Yes GPIO Matrix All Available Pins not otherwise used Selection of Pins available from 5 for peripherals GPIO Ports Debug 14 Pin JTAG and 50 pin Nexus 14 Pin JTAG Configuration Highly configurable via jumper shunts Fixed (limited configuration via 0 ohm resistors) Feature MCU Support * Daughtercard crystals are typically 40 MHz for FXOSC and 32.768 KHz for SXOSC but may vary between daughtercards. MPC5748G Low Cost EVB User Guide, Rev. 0, 05/2016 4 NXP Semiconductors LCEVB Features The figure below shows the customer EVB (left) next to the LCEVB(right). Figure 1. Customer and LCEVB side by side MPC5748G Low Cost EVB User Guide, User Guide, Rev. 0, 05/2016 NXP Semiconductors 5 3. Configuration Overview Out of the box, there is no configuration required for the LCEVB to function. Unlike the customer EVB, the LCEVB is primarily designed for a single mode of operation with no requirement for user configuration. If you wish to have a more flexible configuration the recommendation is that the fully configurable customer EVB is purchased. There are however some jumper footprints and zero ohm resistors populated in positions that would normally have jumper headers fitted (for example on the MCU power supply lines and tracking to the peripheral interfaces). If required these can be de-soldered to modify functionality. Any such modification is done at the full risk of the user and no support or warranty repairs will be provided for a board that has been modified. Modifications should only be attempted by appropriately trained personnel using the correct equipment and Personal Protective Apparel The diagram below gives an overview of the functional blocks of the LCEVB Figure 2. EVB Functional Blocks MPC5748G Low Cost EVB User Guide, Rev. 0, 05/2016 6 NXP Semiconductors Initial Setup 4. Initial Setup This section details the power, reset, clocks, and debug configuration which is the minimum configuration needed in order to power ON the LCEVB. 4.1. Power Supply Configuration The Power supply section is located in the bottom left corner of the LCEVB The LCEVB requires an external power supply voltage of 5 V DC, minimum 1 A. There is a single 3.3 V switching regulator on the LCEVB providing MCU and peripheral power. CAUTION Connecting a power supply with a voltage greater than 5 V will result in irrecoverable board damage. Check the power supply voltage before connecting the plug to the LCEVB. 4.1.1. Power Input Connector Power is supplied to the LCEVB via a 2.1 mm connector from the wall-plug mains adapter as shown below. Note – if a replacement or alternative adapter is used, care must be taken to ensure the 2.1 mm plug uses the correct polarisation as shown below: Figure 3. 2.1 mm Power Connector 4.1.2. Power Switch Slide switch SW2 can be used to isolate the power supply input from the EVB voltage regulators if required.  Moving the slide switch to the right (away from the power connector) will turn the EVB ON.  Moving the slide switch to the left (towards the power connector) will turn the EVB OFF. MPC5748G Low Cost EVB User Guide, User Guide, Rev. 0, 05/2016 NXP Semiconductors 7 4.1.3. Power Status LED When power is applied to the LCEVB, two green LED’s adjacent to the regulator and power connector show the presence of the supply voltages as follows:   LED DS5 – Indicates that the 5.0 V supply voltage is present LED DS6 – Indicates that the 3.3 V switching regulator is functioning If no LED’s are illuminated when power is supplied to the LCEVB and the power switch is in the “ON” position, the power adapter may be faulty or there may be a fault with the LCEVB. If only one LED is illuminated there may be a short in that power supply rail – check there is nothing shorting on the EVB. If you continue to have problems, contact NXP for support. CAUTION In the event of a short on the regulator output (in which case one of the LED’s would be off or dimly illuminated), the regulator and/or the shorted component will likely be hot. 4.1.4. MCU and Peripheral Voltage Configuration The following MCU supply rails are connected to the 3.3 V switching regulator:  VDD_HV_ADC0  VDD_HV_ADC1  VDD_HV_ADC1_REF  VDD_HV_A  VDD_HV_B  VDD_HV_FLA  External Ballast Transistor Supply Similarly all of the peripheral interfaces (or the I/O power in the peripheral interface) are supplied from 3.3 V as is the reset circuitry and the voltage sense wire on the JTAG connector. 4.2. Reset Control (SW3) The reset circuitry is located in the bottom left quarter of the LCEVB next to the power switch connector The MCU has a single bi-directional open drain Reset pin. Rather than connect multiple devices to the reset pin directly, a reset-in and reset-out buffering scheme has been implemented on the LCEVB as shown in Figure 4. The reset “in” from the reset switch (SW3) and the debug connectors are logically OR’d together using an AND gate and then connected to the buffer to provide an open-drain output. The “reset-out” circuitry provides a buffered reset signal that can be used to drive any circuitry requiring a reset control from the MCU. MPC5748G Low Cost EVB User Guide, Rev. 0, 05/2016 8 NXP Semiconductors Initial Setup This scheme is not required if it is guaranteed that anything driving the reset pin has an open drain drive and that there is no significant output load on the MCU reset pin. Figure 4. EVB Reset Control 4.2.1. Reset LEDs As can be seen above, there are two reset LED’s that can be used to identify the source / cause of a reset: RED LED DS8 (titled “MCU”) will illuminate if:  The MCU issues a reset (in this condition ONLY this LED will be illuminated and LED DS1 will be off)  There is a target reset (ie from the reset switch or from the debugger in which case LED DS1 will be ON) YELLOW LED DS7 (titled “EXT”) will illuminate when an external hardware device issues a reset to the MCU:  The reset switch is pressed  There is a reset being driven from one of the debug connectors LED DS7 (Yellow) OFF OFF LED DS8 (Red) OFF ON ON OFF ON ON Table 2. Reset LED Decoding Description No Reset being issued from MCU or external logic MCU has issued a reset External reset issued from switch or debug BUT not being issued to MCU (check R137 has not been removed) External reset issued from reset switch or debug and has been issued to MCU. MPC5748G Low Cost EVB User Guide, User Guide, Rev. 0, 05/2016 NXP Semiconductors 9 4.3. MCU Clock Configuration There is an external 40MHz crystal connected to the MCU Fast External Oscillator (FXOSC) pins EXTAL and XTAL. There is also a 32.768 crystal connected to the MCU Slow External Oscillator (SXOSC) pins OSC32K_EXTAL and OSC32K_XTAL. This can be used for accurate time keeping. There are 2 pads PG6 and PG7 (located just below the MCU) on the LCEVB to facilitate measurement of the CLKOUT1 and CLKOUT0 signals. Note – there is no external clock input on the LCEVB 4.4. Debug Connector (P1) The JTAG debug connectors is located in the top left corner of the LCEVB The LCEVB has a single 14-pin keyed JTAG connector for connection to an external debugger. Before attaching or removing the debug cable from the LCEVB remove power from the EVB to prevent damage to the LCEVB or debug hardware. 4.4.1. Debug Connector Pinout The following tables list the pinout for the JTAG connector used on the LCEVB Pin No 1 3 5 7 9 11 13 Function TDI TDO TCLK EVTI RESET VREF RDY Table 3. 14-Pin JTAG Debug Connector Pinout Connection Pin No Function PC0 2 GND PC1 4 GND PH9 6 GND PL8 8 N/C JTAG-RSTx 10 TMS PER_HVA 12 GND --14 JCOMP Connection GND GND GND --PH10 GND 10K Pulldown TDI, TDO and TMS have 10K pullup resistors on the LCEVB. TCLK has a 10K pulldown (R147) to facilitate STANDBY exit without any additional code (at the sacrifice of slightly higher STANDBY current), however this can be changed to a pullup if required by removing R147 and fitting the resistor on R56. MPC5748G Low Cost EVB User Guide, Rev. 0, 05/2016 10 NXP Semiconductors Communications & Memory Interfaces: Table 4. JTAG Pins Pull State (from MPC5748G Reference Manual) 5. Communications & Memory Interfaces: This section details the communication interface and storage peripherals that are implemented on the LCEVB. 5.1. CAN Interfaces (P2, P3) The CAN circuitry is located on the top right edge of the LCEVB The LCEVB incorporates two identical CAN interface circuits connected to MCU CAN0 and CAN1 using MC33901 transceivers. Both transceivers are configured for high speed operation by pulling pin 8 to GND via a 4.7 KOhm resistor. There are test points to allow the Select pin to be driven high if desired. The MC33901 is pin compatible with other CAN transceivers supporting full CAN FD data rates. For flexibility, the CAN transceiver I/O is connected to a 0.1” header (P2 for CAN0 / P3 for CAN1) rather than using non-standard DB9 connectors. The pinout of these headers is shown below. 1 H L GND Figure 5. CAN Physical Interface Connectors MPC5748G Low Cost EVB User Guide, User Guide, Rev. 0, 05/2016 NXP Semiconductors 11 The LIN Physical interface circuits are located on the right edge of the LCEVB 5.2. LIN Interfaces (P6, P7) The LCEVB incorporates two LIN transceiver circuits connected to MCU LIN0 and LIN1, using an NXP MC33662 transceiver. The MPC5748G LIN0 supports both master and slave modes whereas LIN1 only supports master mode. On the LCEVB, the LIN0 transceiver is configured as slave mode by default. Master mode operation is possible by either populating a zero ohm resistor (R143) or buy fitting a jumper header (J2) – see the schematics for details. The LIN0 transceiver is hard wired for master mode. To save on board space and cost, both LIN transceivers are connected to 0.1” pitch 3x1 headers as shown below rather than the usual LIN Molex header. 1 GND Vsup Lin Figure 6. LIN Physical Interface Connector Note that in order for the LIN transceiver to function, external 12v must be supplied via pin 2 of the connector 5.3. USB RS232 Serial Interface (P11) The USB RS232 interface is on the left hand edge of the board (USB Type B socket) The LCEVB incorporates a USB RS232 serial interface providing RS232 connectivity via a direct USB connection between the PC and the EVB. The circuit contains an FTDI FT2232D USB to Serial interface which should automatically install the drivers for two additional COM ports on your PC. Note that only one of these ports is used so you will need to try both (usually the higher numbered COM port is the active one). For more information on the USB drivers and general fault finding, consult the FTDI website at http://www.ftdichip.com/ The MCU LIN2 signals are routed to the FTDI transceiver (UART TX and RX). No handshaking signals are implemented and no board configuration is required. 5.4. USB HOST Interface (P4) The USB Host interface is on the top left corner of the LCEVB on the left side The LCEVB includes a Type A (Host) USB interface, routed to a USB type A female connector. The USB circuit contains a USB83340 transceiver with a MIC2026-1YM USB power switch. There is no hardware user configuration required to use the USB circuit. MPC5748G Low Cost EVB User Guide, Rev. 0, 05/2016 12 NXP Semiconductors Communications & Memory Interfaces: 5.5. Ethernet Interface (P5) The Ethernet interface is mid-way along the top edge of the LCEVB The EVB incorporates a single DP83848c Ethernet transceiver with the circuitry configured for MII mode. The transceiver is connected to a pulse J1011F21PNL RJ45 connector which includes a built-in isolation transformer. There is no hardware configuration needed. If you require RMII mode or access to both Ethernet ports on the MPC5748G, please purchase the MPC5748G customer EVB and appropriate daughter cards. Note that the MCU Ethernet signals are all in the VDD_HV_B domain. The Ethernet PHY will only function with 3.3 V I/O so if you have made any modifications to the EVB power domain configuration (via the zero ohm resistors), you need to ensure the VDD_HV_B domain is at 3.3 V before attempting to use the Ethernet module. If VDD_HV_B is set to 5 V, the signals routed to the Ethernet PHY (see the EVB schematics) must be left as tristate to prevent damage to the transceiver. 5.6. FlexRay (P8, P9, P10) The FlexRay interfaces are midway down the left hand edge of the LCEVB The LCEVB incorporates two FlexRay TJA1080TS/N interfaces connected to MCU FlexRay channels A and B and routed to two Molex 1.25 mm pitch PicoBlade shrouded headers (standard on many NXP EVB’s). There is no hardware configuration required to use FlexRay. Note that the LCEVB is supplied with a 40 MHz crystal by default. If FlexRay is configured to use the external clock source, then the crystal should be left at 40 MHz. MPC5748G Low Cost EVB User Guide, User Guide, Rev. 0, 05/2016 NXP Semiconductors 13 6. User Interface (I/O) This section details the user I/O available on the LCEVB and includes the GPIO matrix, switches, LED’s and the ADC variable resistor. The GPIO matrix is on the right hand edge of the LCEVB 6.1. GPIO Matrix A sub-set of available GPIO pins (available pins being those not already routed to LCEVB peripherals) are available at the GPIO matrix as detailed below. The matrix provides an easy to follow, intuitive, space saving grid of 0.1” header through-hole pads. Users can solder wires, fit headers or simply insert a scope probe into the respective pad. To use the matrix, simply read the port letter from the top or bottom row of text then the pad number from the columns on the left or right of the matrix. For example, the 1st pad available on Port B is PB5 as outlined below. Figure 7. GPIO Matrix If a pad is populated in the matrix, it means this is available for exclusive use as GPIO. The exception to this are the port pins detailed below which are also shared with switches or user LED’s (shaded red in the matrix diagram above). PD0, PD1, PD2, PD3 – HEX Encoder Switch PA1, PA2 – User pushbutton Switches If you require access to all of the available GPIO pads, the customer EVB and daughtercard provides this additional functionality. MPC5748G Low Cost EVB User Guide, Rev. 0, 05/2016 14 NXP Semiconductors User Interface (I/O) 6.2. User Switches (SW4, SW5) The user pushbutton switches are in the bottom right corner of the LCEVB There are two active high (pulled low, driven to 3.3 V) pushbutton switches on the LCEVB connected directly to MCU GPIO ports. No configuration is required to use the switches. SW4 is connected to port PA1 (which is also the NMI pin) and SW5 is connected to port PA2 NOTE The MCU ports used on the user pushbutton switches are also routed to the GPIO matrix. 6.3. Hex Encoded Switch (SW1) The hex encoder switch is located to the left of the GPIO Matrix There is a single hex encoded 16 position rotary switch on the LCEVB. This outputs a binary encoded hex value (active high) on four MCU ports (Port D[0..3]). Position 0 1 2 3 4 5 6 7 8 9 A B C D E F HEX_SW4 (PD3) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Table 5. Hex Encoder Switch (SW2) HEX_SW3 HEX_SW2 (PD2) (PD1) 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 HEX_SW1 (PD0) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Note that POSN 0 will ensure that no voltage is applied to the pads. This allows the pads to be used as normal GPIO (with 10K pulldown) and accessed at the respective pads on the GPIO matrix area. MPC5748G Low Cost EVB User Guide, User Guide, Rev. 0, 05/2016 NXP Semiconductors 15 6.4. User LED’s (DS1, DS2, DS3, DS4) The user LED’s are above the user switches in the lower right corner There are four active low user LED’s, DS1 to DS4, connected directly to 4 MCU ports (PG[2..5]) as shown below. No configuration is required to use the LED’s. Table 6. Use LED’s (DS1, DS2, DS3 and DS4) User LED MCU Pin DS1 PG2 DS2 PG3 DS3 PG4 DS4 PG5 6.5. ADC Input Potentiometer (RVAR, RV1) The ADC Pot is above the hex switch to the left of the GPIO matrix There is a small variable resistor RV1 on the LCEVB which routes a voltage between 0v and 3.3 V to MCU pin PB4. This is useful for quick ADC testing. Test point RVAR can be used to probe the voltage with a voltmeter. Note that this circuit provides a very rough way to evaluate the ADC. There is a small current limiting series resistor network to limit the injection current to around 4.4 mA. MPC5748G Low Cost EVB User Guide, Rev. 0, 05/2016 16 NXP Semiconductors MCU Port Pin LCEVB Functions 7. MCU Port Pin LCEVB Functions The table below shows what each MCU pin is used for on the LCEVB. No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Port A GPIO GPIO 2 GPIO 2 Ethernet GPIO GPIO GPIO Ethernet Ethernet Ethernet Ethernet Ethernet GPIO GPIO GPIO GPIO Port B CAN0 CAN0 LIN0 LIN0 ADC Pot GPIO GPIO GPIO EXTAL32 XTAL32 SAI Audio GPIO GPIO GPIO GPIO GPIO No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Port I GPIO GPIO GPIO GPIO USB1 USB1 GPIO USB1 GPIO Port J ----------- Table 7. LCEVB 176QFP Port Pin Functions Port C Port D Port E Port F JTAG GPIO 3 --GPIO JTAG GPIO 3 --GPIO USB1 GPIO 3 FlexRay A GPIO USB1 GPIO 3 FlexRay A GPIO FlexRay B GPIO FlexRay B GPIO FlexRay A GPIO FlexRay B GPIO LIN1 GPIO --GPIO LIN1 GPIO --GPIO RS232 GPIO --GPIO RS232 GPIO --GPIO CAN1 GPIO --GPIO CAN1 --GPIO FlexRay GPIO Ethernet GPIO FlexRay GPIO Ethernet GPIO FlexRay GPIO USB1 Ethernet FlexRay GPIO USB1 Ethernet Port G Ethernet Ethernet GPIO 4, GPIO 4 GPIO 4 GPIO 4 GPIO GPIO ----USB1 USB1 Ethernet Ethernet USB1 USB1 Port H Ethernet Ethernet Ethernet ------------JTAG JTAG USB1 USB1 ------- Key: --- Pin not bonded out on 176QFP package Pin not accessible on LCEVB Ethernet GPIO GPIO GPIO GPIO 2 Shared with user switches 3 Shared with Hex Encoder Switch 4 Shared with user LED’s MPC5748G Low Cost EVB User Guide, User Guide, Rev. 0, 05/2016 NXP Semiconductors 17 8. Appendix The MPC5748G LCEVB schematics, Rev B are shown below. MPC5748G Low Cost EVB User Guide, Rev. 0, 05/2016 18 NXP Semiconductors 5 4 3 2 1 MPC5748G Low Cost Evaluation Board (MPC5748G-LCEVB) Table Of Contents: D Power - Main input and 3.3V regulator Power - MCU Power Power - MCU Decoupling Reset and JTAG Clocks MCU GPIO 1 MCU GPIO 2 Comms1 - CAN and LIN Comms 2 - FTDI RS232 Interface Comms 3 - USB Host Interface (device footprints only) Comms 4 - Ethernet (MII Mode) Comms 5 - FlexRay User - Switches, LED's and Potentiometer User - GPIO Pin Matrix C Sheet 2 Sheet 3 Sheet 4 Sheet 5 Sheet 6 Sheet 7 Sheet 8 Sheet 9 Sheet 10 Sheet 11 Sheet 12 Sheet 13 Sheet 14 Sheet 15 Revision Information Rev Date x1 14 Apr 2015 x2 08 May 2015 x3 18 May 2015 x4 19 May 2015 x5 26 May 2015 x6 27 May 2015 x7 29 May 2015 x8 31 May 2015 x9 01 Jun 2015 x10 01 Jun 2015 A 11 Jun 2015 AX1 29 Sep 2015 AX2 AX3 AX4 AX5 B 26 Oct 2015 29 Oct 2015 09 Dec 2015 20 Jan 2016 12 Feb 2016 Designer Alasdair Robertson Alasdair Robertson Alasdair Robertson Alasdair Robertson Alasdair Robertson Alasdair Robertson Alasdair Robertson Alasdair Robertson Alasdair Robertson Alasdair Robertson Andrew MacDonald Alasdair Robertson Alasdair Robertson Alasdair Robertson Alasdair Robertson Alasdair Robertson Alasdair Robertson Comments Start of capture, Working version (256BGA) Changed to 176 QFP Package and changed periperhal Matrix Changes required for initial placement Tidy Up, Replaced some "hard to source" components Renumber and Back Annoted from Layout Correction to GND on 3v3 Regulator circuit Correction to CAN Test points Few refdes changes after layout tweaks Correction to user LED Refdes after re-number DNP Jumpers. 0 Ohm resistors added accross LIN jumpers Prototype Manufacture Release Prodn Build changes (LIN0 default to Slave, LIN1 Master only) PN Changed to MPC5748G-LCEVB Change to JTAG Pulls to meet latest RM Spec Changed RV1 current limit resistor. SW4 / SW5 refdes swap Pull DOWN on TCLK to mitigate against STANDBY exit issue. Updated NXP Logos Updated NXP Logos D C Caution: These schematics are provided for reference purposes only. As such,NXP does not make any warranty, implied or otherwise, as to the suitability of circuit design or component selection (type or value) used in these schematics for hardware design using the NXP Calypso family of Microprocessors. Customers using any part of these schematics as a basis for hardware design, do so at their own risk and NXP does not assume any liability for such a hardware design. B B 3 Different test points used in design: TPVx - Through Hole Pad small TPHx - Through Hile Pad Large (for standard 0.1" header). Also used on IO Matrix (IOMx) TPX - Surface Mount Wire Loop Notes: - A All components and board processes are to be ROHS compliant All small capacitors are 0402 unless otherwise stated All resistors are 0603 5% 0.1w unless otherwise stated. All zero ohm links are 0603 All connectors and headers are denoted Px and are 2.54mm pitch unless otherwise stated All jumpers are denoted Jx. Jumpers are 2mm pitch Jumper default positions are shown in the schematics. For 3 way jumpers, default is always posn 1-2. 2 Pin jumpers generally have the "source" on pin 1. - All switches are denoted SWx - All test points (SMT wire loop style) are denoted TPx - Test point Vias (just through hole pads) are denoted TPVx Automotive Microcontroller Applications East Kilbride, Scotland NXP General Business Use This document contains information proprietary to NXP and shall not be used for engineering design, procurement or manufacture in whole or in part without the express written permission of NXP Semiconductors. A Freescale AISG Applications, East Kilbride Designer: Signals (ports) have not been routed via busses as this makes it harder to determine where each signal goes. A. Robertson Drawn by: User notes are given throughtout the schematics. A. Robertson Specific PCB LAYOUT notes are detailed in ITALICS Approved: 5 A. Robertson 4 3 Drawing Title: 2 MPC5748G-LCEVB Page Title: Index and Title Page Size B Document Number Date: Friday, February 12, 2016 SCH-27897 Rev B PDF: SPF-27897 Sheet 1 1 of 15 5 4 3 2 1 Power Input and Linear Voltage Regulators Power Supply Input SW2 1 4 Jumpers can be fitted to facilitate power measurements 5V0_SR 2.1mm Barrel P12 Connector 1 2 3 3V3_SR 5 5V-IN C26 0.1UF D4 B340A DNP 1 2 MCU_3V3 2 MCU_5V0 MCU_3V3 3 MCU_5V0 3 HDR 1X2 R48 0 5v0 R142 560 A GND C21 10UF 10V D J3 Main Power In (SR = Swithing Reg) 1 C D Power Control (Power Switch) 3 2 5V0_SR J4 DNP 1 DS5 C A HDR 1X2 R49 0 LED GREEN GND 5V0_SR 3V3_SR 3.3v Switching Regulator PER_HVA R47 0 R45 0 DNP 5V0_SR PER_HVB U10 8 1 3 C22 10UF 10V 2 9 VIN PG EN SW MODE VOS GND FB 6 7 R138 1 L3 3V3_SR 178K 2 1.0uH R46 0 R44 0 1 C 5 C DNP C23 22UF 10V 4 EP R43 270 3v3 TPS62082 DS6 C A LED GREEN GND Inoput Voltage 5V, Output 3.3V at 700mA. Ripple 1.4mV, Approx 90% efficient B B GND Test Points, Top Side GND15 GND16 1 1 1 1 1 GND1 GND2 GND3 GND4 1 Test and reference points GND Test Points, underside of board GND Automotive Microcontroller Applications East Kilbride, Scotland A A NXP General Business Use Drawing Title: MPC5748G-LCEVB Page Title: Power Input and Linear Voltage Regulators 5 4 3 2 Size B Document Number Date: Friday, February 12, 2016 SCH-27897 Rev B PDF: SPF-27897 Sheet 1 2 of 15 5 4 3 Calypso MCU Power Connections 2 Power Supply Contraints: Default Configuration: - If also - If must - ALL MCU supply voltages are set to 3.3V (ADC0, ADC1, VDD_HV_A, VDD_HV_B, VDD_HV_C, VBallast) - VDD_HV_FLA = External 3.3V supplied (jumper fitted) VDD_HV_A is driven from 3.3V, VDD_HV_FLA must be supplied from 3.3V VDD_HV_A is driven from 5V, the VDD_HV_FLA pin be disconnected from 3.3V - Don't attempt to over drive an analogue pad to 5V when the digital VDD_HV_x supply is set to 3.3V. This will trigger the ESD protectrion on that pad. For example if VDD_HV_A is set to 3.3V and the analogue supplies are set to 5V, you cannot drive 5V into a pad in the VDD_HV_A domain D 1 The analogue pins can only be driven to the same voltage as the VDD_HV_x domain they are situated in (ie max 3.3V) so makes sense for the analogue supply and reference to be 3.3V D MCU_3V3 2 MCU_3V3 MCU_5V0 R98 0 R112 0 R103 0 DNP R99 0 R111 0 DNP 0 DNP DNP R122 0 R124 0 Q50 MJD31CT4 B_CAP 1 HVFLA_CAP HVB_CAP HVA_CAP R139 0 1 ADC1_CAP ADC1REF_CAP R102 0 ADC0_CAP Individual MCU supply control R114 0 DNP C C_CAP E_CAP LVDEC_CAP R101 0 R97 4 5v0 C R100 0 3 3v3 LV_CAP 2 MCU_5V0 30 31 54 110 152 VDD_LP_DEC VDD_LV_31 VDD_LV_54 VDD_LV_110 VDD_LV_152 32 VRC_CTRL Flash B 1.25v Core & External Ballast 109 EP Central Pad for heat dissipation & GND 177 VSS_LV_109 VSS_HV_VPP Power Pins 26 97 7 28 55 57 86 123 150 VSS_HV_7 VSS_HV_28 VSS_HV_55 VSS_HV_57 VSS_HV_86 VSS_HV_123 VSS_HV_150 VSS_HV_ADC1 Package 2of3 VSS_HV_ADC0 VDD_HV_FLA Calypso 6M 176QFP Analogue 89 27 124 VDD_HV_B_124 6 59 85 151 VDD_HV_A_6 VDD_HV_A_59 VDD_HV_A_85 VDD_HV_A_151 98 99 VDD_HV_ADC1_REF B VDD_HV_ADC1 U20B VDD_HV_ADC0 90 TPH2 PPC5748GSK0MKU6 1 R123 0 GND GND GND TPH3 GND Automotive Microcontroller Applications East Kilbride, Scotland GND A Drawing Title: MPC5748G-LCEVB - The scheme shown has the analogue and digital grounds connected to the same plane - This results in better ADC performance than using an analogue grond plane with single entry point (or ferrite) to digital ground plane. 5 4 A NXP General Business Use Notes on signal Grounds: 3 Page Title: Calypso MCU Power 2 Size B Document Number Date: Friday, February 12, 2016 SCH-27899 Rev B PDF: SPF-27899 Sheet 1 3 of 15 5 4 3 2 1 Calypso MCU Decoupling and bulk storage Flash ADC ADC0_CAP ADC1_CAP ADC1REF_CAP Capacitor Types: HVFLA_CAP 4700pF 0.1uF 0.68uF 1uF 2.2uF D C94 1uF C93 0.1UF GND C97 1uF C96 0.1UF C95 1uF GND C118 2.2UF GND - Ceramic Ceramic Ceramic Ceramic Ceramic X7R, X7R, X7R, X7R, X7R, 50V 16V 16V 10V 10V 10% 10% 10% 10% 10% 0402 0402 (Kemet 0805 (Murata 0603 Low ESR 0603 Low ESR C0402C104K4RAC) GCM219R71C684KA37) (Taiyo Yuden LMK107B7105KA-T) (Taiyo Yuden LMK107B7225KA-TR) D GND Place small Caps as close as possible to MCU pins VDD_HVA VDD_HVB HVA_CAP HVB_CAP C112 2.2UF C C109 0.1UF C120 0.1UF C92 0.1UF C100 0.1UF C99 C 0.1UF GND GND One 0.1uF cap per VDD_HV_x pin. Place as close as possible to pin Ballast Transistor VDD_LV LP Internal Reg Cap LV_CAP B_CAP C110 0.68uF (low ESR) B C111 0.68uF (low ESR) C27 0.68uF (low ESR) C108 0.1UF C116 0.1UF C98 0.1UF C113 0.1UF C_CAP C119 4700pF VDD_LV (1.25V) Decoupling. Place one of the 0.1uF caps close to each VDD_LV pin. Place the 0.68uF caps on each side of the package such that there is no cap on the side with the ballast transistor (For regulator stability the total capacitance should be around 2.2uF). GND E_CAP LVDEC_CAP C122 2.2UF C117 1uF B GND GND Place close to transistor Automotive Microcontroller Applications East Kilbride, Scotland A A NXP General Business Use Drawing Title: MPC5748G-LCEVB Page Title: Calypso MCU Decoupling 5 4 3 2 Size B Document Number Date: Friday, February 12, 2016 SCH-27899 Rev B PDF: SPF-27899 Sheet 1 4 of 15 5 4 3 2 1 Reset and External Clock In Reset is in the VDD_HVA domain. Reset Input / Output PER_HVA PORST PER_HVA D Connect an external LVI to pad when supplying external 1.25V so that PORST is asserted until exterbal 1.25V supply is at threshold and stable 3V3_SR R37 10.0K D TPH1 R140 270 R135 10.0K R134 10.0K GND JTAG-RSTx JTAG-RSTx 1 RST-SWITCHx 2 7 SYSTEM-RSTx 3 MR RESET GND 4 Reset Switch 1 1 C 2 C121 0.1UF GND B3WN-6002 GND PORSTx 7 R137 0 RST-INx MCU-RSTx 5,7 Bi Directional reset line to/from MCU MCU-RSTx Tri-State Buffered RESET signal to reset the MCU Buffered RESET-out 2 SW3 R136 10.0K RST 4 VCC GND SN74LVC2G08DCT (1.65 to 5.5v operation) PORSTx GND U11 U12A VCC C 5 TARGET RESET LED 8 Reset from Debugger DS7 YELLOW LED 1 (0603 C24 0.1UF 50V) 1 A (0603 C25 0.1UF 50V) ADM6315-26D2ARTZR7 (2.5 to 5v operation) Active reset drive (high / low) for any periperhals that need to be reset when MCU is in reset TPV5 C 3V3_SR (0603 50V) DS8 R141 270 Note: A C GND The Reset pad on Calypso is in the VDD_HV_A domain which can be run from either 3.3V or 5V (selected by the VDD_HV_A and PER_HVA jumpers) LED RED (MCU RESET) U12B To maintian brightness on the LED's irrespective of the voltage setting, the LED's are powered from constant 3.3V, grounded via the reset line. 5 3 RST-OUTx 12 RST-OUTx 6 SN74LVC2G08DCT JTAG Standard 14-pin Connector PER_HVA B B R58 10.0K 7 7 7 PC0 PC1 PH9 PC0 PC1 PH9 R57 10.0K R56 10.0K DNP R52 10.0K (TDI) (TDO) (TCLK) (EVTI) (RESET) (VREF) (RDY) DBUG-RSTx 5 5,7 JTAG-RSTx JTAG-RSTx (buffered reset TO MCU) MCU-RSTx MCU-RSTx (bidirectional MCU reset) R55 0 R54 0 ONCE Connector P1 TDI TDO TCLK EVTI R147 10.0K 1 3 5 7 9 11 13 2 4 6 8 10 12 14 CON_2X7 (GND) (GND) (GND) (N/C) (TMS) PH10 (GND) JCOMP R53 10.0K Note TCLK needs to be pulled down to allow exit from STANDBY in some corner cases DNP Optional Config Automotive Microcontroller Applications East Kilbride, Scotland GND GND A 7 PH10 PH10 A NXP General Business Use TMS Drawing Title: MPC5748G-LCEVB Page Title: 5 4 3 2 Reset Circuitry & External Clock In Size B Document Number Date: Friday, February 12, 2016 SCH-27897 Rev B PDF: SPF-27897 Sheet 1 5 of 15 5 4 3 2 1 Clocks D D Oscillators PB9 C18 PB9 (EXTAL32) PB8 Y3 32.768KHZ 1 R42 1.0M DNP 7 12PF 2 7 PB8 (XTAL32) C20 FC-255 32.7680K-A3 (Load Capacitance 7pF) 12PF GND C MCU-EXTAL C19 MCU-EXTAL C 12PF 1 7 7 MCU-XTAL MCU-XTAL Y2 40.0MHZ 2 R41 1.0M DNP C17 NX8045GB-40.000M-STD-CSJ-1 XTAL (Optimised for Automotive, 8pF Load capacitance) 12PF GND B B Automotive Microcontroller Applications East Kilbride, Scotland A A NXP General Business Use Drawing Title: MPC5748G-LCEVB Page Title: 5 4 3 2 Clocks Size B Document Number Date: Friday, February 12, 2016 SCH-27899 Rev B PDF: SPF-27899 Sheet 1 6 of 15 5 4 3 2 1 Calypso GPIO 1 of 2 U20A D 15 (WKPU2 / NMI0) 14,15 (WKPU3) 14,15 12 15 Key to text colours: 15 Purple - Comms Physical Interfaces 15 Orange - Other Peripherals and I/O 12 Blue - Debug (JTAG & Nexus) 12 Black - Clock, Reset and Control 12 RED - I/O Matrix and other functions (eg LED) 12 Green - I/O Matrix (dedicated) 12 15 15 15 PA 12..15 has SPI 15 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 (GPIO) (SW1 & GPIO**) (SW2 & GPIO) (MII_RXCLK) (GPIO) (GPIO) (GPIO) (MII_RXD2) (RMII_RXD1) (RMII_RXD0) (MII_COL) (RMII_RXER) (GPIO) (GPIO) (GPIO) (GPIO) 9 9 9 9 14 15 15 15 6 6 15 15 15 15 15 15 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 (CAN0_TX) (CAN0_RX) (LIN0_TX) (LIN0_RX) (ADC_POT) (GPIO) (GPIO) (GPIO) (XTAL32) (EXTAL32) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 39 40 176 1 88 91 92 93 61 60 62 96 101 103 105 107 5 5 11 11 13 13 9 9 10 10 9 9 13 13 13 13 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 (TDI) (TDO) (USB1_CLK) (USB1_DIR) (FR_B_TX_EN) (FR_A_TX) (LIN1_TX) (LIN1_RX) (RS232_TX) (RS232_RX) (CAN1_TX) (CAN1_RX) (FR_DBG0) (FR_DBG1) (FR_DBG2) (FR_DBG3) PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 154 149 145 144 159 158 44 45 175 2 36 35 173 174 3 4 14,15 14,15 14,15 14,15 15 15 15 15 15 15 15 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 (HEX1 & (HEX2 & (HEX3 & (HEX4 & (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 77 78 79 80 81 82 83 84 87 94 95 15 15 15 15 PD12 PD13 PD14 PD15 (GPIO) (GPIO) (GPIO) (GPIO) PD12 PD13 PD14 PD15 100 102 104 106 C PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 24 19 17 114 51 146 147 128 129 130 131 132 53 52 50 48 B PD has ADC0 and ADC1 A GPIO) GPIO) GPIO) GPIO) 5 5 MCU-RSTx PORSTx MCU-RSTx PORSTx 6 6 MCU-XTAL MCU-EXTAL MCU-XTAL MCU-EXTAL 29 153 56 58 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 Calypso 176QFP Package 1of3 GPIO Pins1 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PG0 PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 PG11 PG12 PG13 PG14 PG15 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PH0 PH1 PH2 PH3 PH4 PH5 PH6 PH7 PH8 PH9 PH10 PH11 PH12 PH13 PH14 PH15 PD12 PD13 PD14 PD15 18 20 156 157 160 161 167 168 21 22 23 25 133 127 136 137 PE2 PE3 PE4 PE5 (FR_A_TX_EN) (FR_A_RX) (FR_B_TX) (FR_B_RX) PE12 PE13 PE14 PE15 (MII_CRS) (MII_RXD3) (USB1_D2) (USB1_D3) 63 64 65 66 67 68 69 70 42 41 46 47 43 49 126 125 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (GPIO) (RMII_MDIO) (RMII_RXDV) 122 121 16 15 14 13 38 37 34 33 138 139 116 115 134 135 PG0 PG1 PG2 PG3 PG4 PG5 PG6 PG7 (RMII_MDC) (RMII_TXCLK) (LED1 & GPIO) (LED2 & GPIO) (LED3 & GPIO) (LED4 & GPIO) (CLKOUT1 GPIO) (CLKOUT0 GPIO) PG10 PG11 PG12 PG13 PG14 PG15 (USB1_D4) (USB1_D5) (MII_TXD2) (MII_TXD3) (USB1_D0) (USB1_D1) 117 118 119 120 162 163 164 165 166 155 148 140 141 9 10 8 PH0 PH1 PH2 (RMII_TXD1) (RMII_TXD0) (RMII_TXEN) PH9 PH10 PH11 PH12 (TCK) (TMS) (USB1_D6) (USB1_D7) PE2 PE3 PE4 PE5 13 13 13 13 PE12 PE13 PE14 PE15 12 12 11 11 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 12 12 PG0 PG1 PG2 PG3 PG4 PG5 12 12 14 14 14 14 PG10 PG11 PG12 PG13 PG14 PG15 11 11 12 12 11 11 PH0 PH1 PH2 12 12 12 PH9 PH10 PH11 PH12 5 5 11 11 D C (eMIOS (eMIOS (eMIOS (eMIOS E1UC_11_H) E1UC_12_H) E1UC_13_H) E1UC_14_H) 1 PG6 1 PG7 B RESET PORST Automotive Microcontroller Applications East Kilbride, Scotland XTAL EXTAL A NXP General Business Use Drawing Title: PPC5748GSK0MKU6 Page Title: 5 4 3 2 MPC5748G-LCEVB Calypso GPIO 1of2 Size B Document Number Date: Friday, February 12, 2016 SCH-27899 Rev B PDF: SPF-27899 Sheet 1 7 of 15 5 4 3 2 1 Calypso GPIO 2 of 2 U20C Key to text colours: D Purple Orange Blue Black RED Green - Comms Physical Interfaces Other Peripherals and I/O Debug (JTAG & Nexus) Clock, Reset and Control I/O Matrix and other functions (eg LED) I/O Matrix (dedicated) 15 15 15 15 11 11 15 11 15 PI0 PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 (GPIO) (GPIO) (GPIO) (GPIO) (USB1_STP) (USB1_NXT) (GPIO) (USB1_RST) 12 15 15 15 15 PI11 PI12 PI13 PI14 PI15 (ENET_RST) (GPIO) (GPIO) (GPIO) (GPIO) PI0 PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 172 171 170 169 143 142 11 12 108 PI11 PI12 PI13 PI14 PI15 111 112 113 76 75 74 73 72 71 5 PI0 PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 Calypso 176QFP Package 3of3 GPIO Pins2 D PI11 PI12 PI13 PI14 PI15 PJ0 PJ1 PJ2 PJ3 PJ4 C C B B Automotive Microcontroller Applications East Kilbride, Scotland A A NXP General Business Use Drawing Title: Page Title: PPC5748GSK0MKU6 5 4 3 2 MPC5748G-LCEVB Calypso GPIO 2of2 Size B Document Number Date: Friday, February 12, 2016 SCH-27899 Rev B PDF: SPF-27899 Sheet 1 8 of 15 5 4 CAN & LIN Physical 3 CAN0 Physical Interface VDD 2 PER_HVA 5V0_SR - 5.0V input supply for CAN transceiver (4.5 to 5.5V) VI/O - determines the signal level on MCU TX and RX pins and can range from 2.8 to 5.5V C60 0.1UF C59 2.2UF 10V STB - High for Standby mode, pulled low for normal mode. C53 0.1UF C52 2.2UF 10V (0603 50V) (0603 50V) CAN termination resistor footprint. Place on underside of PCB (CAN0_TX) (CAN0_RX) R64 R63 0 0 R51 CAN0_TX 1 CAN0_RX 4 TXD R1 CANH STB TPV16 CANL 7 CAN0-CANH 6 CAN0-CANL D 120 DNP P2 1 2 3 HDR_1X3 GND MC33901WEF 2 GND All CAN and LIN signals are in power domain VDD_HV_A. 5 RXD 8 4.70K CAN0-S GND VIO PB0 PB1 VDD PB0 PB1 U1 GND GND 3 D 7 7 1 GND - 5.0V input supply for CAN transceiver (4.5 to 5.5V) C58 0.1UF C57 2.2UF 10V (0603 50V) STB - High for Standby mode, pulled low for normal mode. GND 7 7 PC10 PC11 PC10 PC11 (CAN1_TX) (CAN1_RX) R62 R59 0 0 R50 U2 CAN1_TX 1 CAN1_RX 4 4.70K CAN1-S 8 TXD R2 CANH STB CANL TPV15 C GND RXD 7 6 120 DNP CAN1-CANH P3 1 2 3 CAN1-CANL HDR_1X3 GND MC33901WEF 2 GND (0603 50V) VIO C CAN termination resistor footprint. Place on underside of PCB C51 0.1UF C50 2.2UF 10V 3 VI/O - determines the signal level on MCU TX and RX pins and can range from 2.8 to 5.5V 5 VDD PER_HVA 5V0_SR VDD CAN1 Physical Interface GND All interfaces will work at 3.3V or 5.0V (PER_HVA) GND Master Mode Pullup Enable R143 DNP J2 1 Configired as SLAVE by default (Lin0 Supports Master and Slave) PER_HVA B 7 7 PB3 PB2 PB3 PB2 (LIN0_RX) (LIN0_TX) R74 R75 0 0 LIN0-RX (Enable) (Wake) LIN0-TX U6 1 2 3 4 RXD EN WAKE TXD INH VSUP LIN GND 8 7 6 5 MC33662BLEF GND 0 DNP 2 C D51 HDR 1X2 GND C70 0.1UF C69 2.2UF 10V (0603 50V) (LEF = 20K Baud) EN = PER_HVA enables Transceiver and sets I/O for VDD_HV_A WAKE = GND ensures no spurious wakeups D50 A GF1A C A GF1A R18 2.0K R17 2.0K LIN0-VSUP LIN0-LIN Battery Reverse polarity & Pulse Protection VSUP2 HDR_1X3 B P7 1 2 3 1 LIN0 Physical Interface Total current through resistors (LIN Bus at GND) = 12mA (0.144W) GND 3 pin header (NOT Molex) Each resistor spec = 0.1W (0.2W total) GND MC33662LEF LIN transceiver is newer version of 33661 offering: - Full LIN compliance (33661 no longer compliant) Improved ESD protection on LIN pin up to 15KV Improved ESD on Wake and VSUP Pins Other EMC and performance improvements See freescale.com for more details LIN1 Physical Interface Master Mode Pullup Enable PER_HVA 7 7 A PC7 PC6 PC7 PC6 (LIN1_RX) (LIN1_TX) R60 R61 0 0 LIN1-RX (Enable) (Wake) LIN1-TX (TXD_0) GND R144 U3 1 2 3 4 RXD EN WAKE TXD INH VSUP LIN GND MC33662BLEF (LEF = 20K Baud) D52 A 0 C D53 8 7 6 5 GND C56 0.1UF C55 2.2UF 10V (0603 50V) EN = PER_HVA enables Transceiver and sets I/O for VDD_HV_A WAKE = GND ensures no spurious wakeups GF1A C A GF1A Battery Reverse polarity & Pulse Protection R6 2.0K R7 2.0K LIN1-VSUP LIN1-LIN Total current through resistors (LIN Bus at GND) = 12mA (0.144W) VSUP1 HDR_1X3 P6 4 3 A NXP General Business Use Drawing Title: MPC5748G-LCEVB GND 3 pin header (NOT Molex) Each resistor spec = 0.1W (0.2W total) GND 5 Automotive Microcontroller Applications East Kilbride, Scotland 1 2 3 1 Configired as MASTER by default (Lin1 only supports Master mode) 2 Page Title: CAN and LIN Size B Document Number Date: Friday, February 12, 2016 SCH-27897 Rev B PDF: SPF-27897 Sheet 1 9 of 15 5 4 3 2 1 USB RS232 (serial) Interface - Self Powered mode. No power is taken from USB - Device efaults to Dual serial (RS232) mode ie RS232 on both A and B - Configurable I/O voltage on CHA / CHB via VDDIOA/B 5V0_SR PER_HVA D3 BGX50A D1 D2 D4 D3 C105 (0603 0.1UF 50V) R119 470 4 R38 27 USB_RN USB_RP C115 0.1UF (0603 50V) (0603 50V) 5V0_SR GND 1.0M X1 6 MHZ 2 R127 10.0K CLK_XTIN_6M 43 CLK_XTOUT_6M 44 C103 0.1UF C104 0.1UF (0603 50V) (0603 50V) GND 48 1 2 GND R118 10.0K 47 31 USBDP ADBUS0 ADBUS1 ADBUS2 ADBUS3 ADBUS4 ADBUS5 ADBUS6 ADBUS7 ACBUS0 ACBUS1 ACBUS2 ACBUS3 SI/WUA RSTOUT# RESET# BDBUS0 BDBUS1 BDBUS2 BDBUS3 BDBUS4 BDBUS5 BDBUS6 BDBUS7 XTIN XTOUT EECS EESK EEDATA TEST GND VCCIOB 14 3 42 VCC2 USBDM R36 GND 5 4 1 4 1 R39 4.70K 47PF 47PF DNP DNP GND R34 1.5K C106 USB_TYPE_B 8 7 R35 27 C107 C101 0.1UF BCBUS0 BCBUS1 BCBUS2 BCBUS3 SI/WUB GND1 GND2 GND3 GND4 USB_N USB_P 3 3 2 S2 2 3 4 1 S1 VCCIOA P11 3V3OUT VCC1 6 GND 46 U9 GND -D +D G V C102 2.2UF 10V C114 0.033UF 3 2 C D 5V0_SR AVCC FTDI interface will work at 3.3V or 5.0V (PER_HVA) 1 D FTDI USB Serial Interface AGND All Signals are in power domain VDD_HV_A. PWREN# FT2232D 9 18 25 34 45 B 24 23 22 21 20 19 17 16 FTDI Pin 40 (TXD) is Output from FTDI Device, connect to MCU RXD 15 13 12 11 10 Send Immediate / Wakeup Disabled for CHA PER_HVA 40 39 38 37 36 35 33 32 FTDI_TXD FTDI_RXD 30 29 28 27 26 Send Immediate / Wakeup Disabled for CHB PER_HVA C FTDI Pin 39 (RXD) is Input to FTDI device, connect to MCU TXD R126 10.0K R116 R115 0 0 (MCU_LIN2RX) (MCU_LIN2TX) PC9 PC8 PC9 PC8 7 7 5V0_SR R125 10.0K 41 R117 10.0K DNP Disable Receiver when in USB suspend mode B GND Automotive Microcontroller Applications East Kilbride, Scotland A A NXP General Business Use Drawing Title: MPC5748G-LCEVB Page Title: USB RS232 Interface 5 4 3 2 Size B Document Number Date: Friday, February 12, 2016 SCH-27897 Rev B PDF: SPF-27897 Sheet 1 10 of 15 5 4 3 2 1 USB (Type A Host and Type AB OTG) 3V3_SR C3 0.1UF C5 0.1UF GND 7 7 7 7 7 7 7 7 PG14 PG15 PE14 PE15 PG10 PG11 PH11 PH12 7 8 8 7 PC3 PI4 PI5 PC2 8 PI7 (USB1_DO) (USB1_D1) (USB1_D2) (USB1_D3) (USB1_D4) (USB1_D5) (USB1_D6) (USB1_D7) PC3 PI4 PI5 PC2 R65 (USB1_DIR) 31 (USB1_STP) 29 (USB1_NXT) 2 USB1_CLK 1 30 PI7 (USB1_RST Active Low) R3 10.0K C64 2 33PF Y50 24MHZ C 3 4 5 6 7 9 10 13 PG14 PG15 PE14 PE15 PG10 PG11 PH11 PH12 R71 10 27 A_XO 25 A_XI 26 16 15 33PF C63 1 3V3_SR R70 1.0M DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 DATA6 DATA7 VBUS DM DP ID VDD3V3_20 VDD1V8_28 VDD1V8_30 SPK_R SPK_L Crystals are FOXSDLF/240F-20 (20pF Load Capacitance) GND Adobe Acrobat Document USB Host, Type A (Available on all packages) D GND REFSEL0 REFSEL1 REFSEL2 RESET XO REFCLK/XI C2 10UF 3V3_SR CPEN DIR STP NXT CLKOUT General Layout Note. Recommendation is to keep all tracks between MCU and USB PHI less than 3" See additional SMSC Layout guidelines PDF to the right (0603 50V) VBAT_5V U50 21 32 (0603 50V) (Layout Note: Place Series Termination resistor close to USB IC) VDDIO The USB interface only supports 3.3V operation. All I/O signals must be 3.3V. If VDD_HVA is set to 5V, USB MCU pads must be left as tri-state with no pullups. C6 10UF 33 D 5V0_SR PAD_GND USB Signals are in power domain VDD_HV_A RBIAS 8 11 14 17 USB_A_EN 22 USB_A_VBUS 19 18 23 (1/10W 0603) USB_A_DM USB_A_DP (ID=GND for HOST mode) 20 USB_A_VDD3.3 28 30 USB_TYPE_A_FEMALE (Layout Note: Route DP and DM with 90 Ohm Differential Pair. Keep tracks as short as possible) (Select 60MHz CLKOUT with 24MHz XTAL) P4 S1 R73 20K L50 26OHM C54 C67 100UF 1.0UF 1 2 (16V (16V (0402 TANT) TANT) 50v) C66 + + C68 10UF 1000pF (35V TANT) (20K for HOST) C1 1000pF USB_A_5V USB_A_DM USB_A_DP D- D+ G A1 A2 A3 A4 + GND V S2 C78 1000pf (1210 2KV) R81 100 GND (50V 0402) USB_A_VDD1.8 GND GND GND 24 C NC R72 8.06K 1% 12 C4 1uF (10V 0603 low ESR) USB83340 GND GND C65 1uF (10V 0603 low ESR) GND Layout Note: Place caps & resistor as close to device as possible GND 5V0_SR U5 C76 0.1UF C77 10UF USB_A_EN 1 4 (0603 50V) 7 6 B GND USB Power Switch ENA ENB FLGA FLGB IN OUTA GND OUTB 2 FLG_A TPV12 3 FLG_B TPV13 8 USB_A_PWR 5 B MIC2026-1YM GND Automotive Microcontroller Applications East Kilbride, Scotland A A NXP General Business Use Drawing Title: MPC5748G-LCEVB Page Title: 5 4 3 2 USB Type A / Type AB Size B Document Number Date: Friday, February 12, 2016 SCH-27897 Rev B PDF: SPF-27897 Sheet 1 11 of 15 5 4 3 2 1 Ethernet (Configured for MII Mode) All Ethernet Signals are in power domain VDD_HV_B 1 Layout Note - Place Caps and Resistors close to PHI 7 7 PG0 PF14 PG0 PF14 R109 R32 50 R31 R30 R29 R28 R24 R26 R27 R25 R22 50 50 50 50 50 50 50 50 50 (+MII) (+MII) (RMII) (RMII) (RMII) (RMII) (+MII) (RMII) (+MII) RXD3 RXD2 RXD1 RXD0 RXDV RXER COL CRS RXCLK 46 45 44 43 39 41 42 40 38 (RMII) (RMII) MDC (MDIO) 31 30 50 MCU Output Resistors Next to MCU on daughtercard PHI Output Place Next to PHI Series Termination Resistors: 50 Ohms as per TI spec. Place resistors as close to driving source as possible. Termination recommended for ALL MII signals 29 7 20 21 10/100 single phy GND RSVDPU1 RSVDPU2 6 5 4 3 2 1 25MHZ_OUT TXD3_SNIMODE TXD2 TXD1 TXD0 TXEN TXCLK dp83848c TDP TDN RDP RDN RXD3_PHYAD3 RXD2_PHYAD2 RXD1_PHYAD1 LEDACTCOL_ANEN RXD0_PHYAD1 LEDLINK_AN0 RXDV_MIIMODE LEDSPEED_AN1 RXER_MDIXEN COL_PHYAD0 PFBOUT CRS/CRS_DV/LED_CFG RXCLK PFBIN1 PFBIN2 MDC MDIO RESET PWRDN_INT RBIAS 25 TDP TDN 14 13 RDP RDN 28 26 27 LED_Y LED_G 23 PFBOUT B 8 RST-OUTx PI11 R82 RST-OUTx 50 R83 PI11 C10 0.1UF R14 49.9 1% TPV17 17 16 GND 0 3V3_SR Pulse J1011F21PNL (Includes built in transformer) P5 RJ45-8 (0603 50V) 1 2 3 4 5 6 7 8 GND 3V3_SR R15 49.9 1% GND R16 49.9 1% 18 37 C11 0.1UF C8 0.1UF C7 0.1UF (0603 50V) (0603 50V) (0603 50V) TD+ TDGND1 CT_3 GND_4 GND_5 CT_6 RD+ GND2 RD- CG1 CG2 C GND R5 270 R4 270 3V3_SR GND 3V3_SR GND 24 Place Caps close to connector RBIAS R10 4.87K GND 5 3V3_SR R13 49.9 1% GC GA C TXD3 TXD2 TXD1 TXD0 TXEN TXCLK (+MII) (+MII) (RMII) (RMII) (RMII) (RMII) X1 X2 (0603 50V) 11 12 PE13 PA7 PA8 PA9 PF15 PA11 PA10 PE12 PA3 50 50 50 50 50 CLKIN_X1 34 33 X2 (0603 50V) D YA YC 7 7 7 7 7 7 7 7 7 PE13 PA7 PA8 PA9 PF15 PA11 PA10 PE12 PA3 R104 R105 R106 R107 R108 (RMII) (+MII) C79 0.1UF 9 10 PG13 PG12 PH0 PH1 PH2 PG1 U8 22 GND 0 RSVD1 RSVD2 RSVD3 RSVD4 RSVD5 R23 32 48 Y1 25MHZ C14 PG13 PG12 PH0 PH1 PH2 PG1 (0603 50V) R11 2.2K 5% C81 0.1UF 8 9 10 11 12 GND R12 2.2K 5% AVDD33 2 33PF C71 10UF (Bulk Storage) IOVDD33_1 IOVDD33_2 33PF 1 (MII Clock) C73 0.1UF AGND_1 AGND_2 DGND IOGND_1 IOGND_2 C15 7 7 7 7 7 7 3V3_SR L51 120OHM 2 19 15 36 35 47 D 3V3_SR The Ethernet interface only supports 3.3V operation. All I/O signals must be 3.3V. If VDD_HVA is set to 5V, Ethernet MCU pads must be left as tri-state with no pullups. C72 0.1UF C74 0.1UF C75 + C80 0.1UF (0603 50V) (0603 50V) 10UF (TANT) (0603 50V) Layout Note: Place 0.1uF cap close to each pin. 10uF TANT as close to pin 23 as possible as shown in diagram below taken from TI device specificaiton B DNP 3V3_SR R84 10.0K PFBIN1 Reset Control: - Reset from MCU Reset Out (will reset with MCU) - Reset from GPIO. Allows MCU to reset PHY as well as hold PHY in reset while reset config data can be driven onto pins to change mode etc. PFBIN2 PFBOUT GND Boot Configuration (using PHY internal Pulls) R110 - Auto Negotiation Enable (All speeds / duplex supported) (AN_EN, AN0 and AN1 all Internal PullUP) - Operating Mode (MII) (SNI_Mode Internal PullDown, MII_Mode control via PF15) - LED Configuraiton (Mode1) (LED_CFG Internal PullUp) - MDIX Enable (Auto MDIX Enabled) (MDIX_EN Internal PullUP) PF15 (MII_MODE) 2.2K 5% GND Configured for MII Mode 3V3_SR MDIO Pullup R113 1.5K PF14 Automotive Microcontroller Applications East Kilbride, Scotland - Physical Address (set to 0b00001) (PHYAD[0] Internal PullUp, PHYAD[1..4] Internal PullDown) A A NXP General Business Use Layout Note: Drawing Title: MII Mode resistor and the MDIP ullup resistor should be placed as close as possible to the PF15 / PF14 tracks to reduce the effect of a stub on the transmission line. Page Title: MPC5748G-LCEVB Ethernet 5 4 3 2 Size B Document Number Date: Friday, February 12, 2016 SCH-27897 Rev B PDF: SPF-27897 Sheet 1 12 of 15 5 4 3 2 1 FlexRAY Physical Interface All Signals are in power domain VDD_HV_A. D Decoupling Caps for BOTH IC's. Place next to power pins. Note on VBAT: - Operational range is 6.5v to 60V - Undervoltage detection is max 4.5v FlexRAY interface will work at 3.3V or 5.0V (PER_HVA) 7 7 PC12 PC14 PC12 PC14 (FR_DBG0) (FR_DBG2) FlexRAY debug connector P9 1 2 (FR_DBG1) 3 4 (FR_DBG3) PC15 PC13 FRBATB PER_HVA 5V0_SR D C89 10UF PER_HVA DNP 7 7 FRBATA On EVB this is supplied from 5v, In theory this should be to battery with 60uS delay between applying Vbat and I/O voltages. If necessary, 12V can be externally supplied by removing the resistor and connecting pad to 12v 5V0_SR PC15 PC13 C88 10UF C87 10UF C86 10UF FRBATA R21 0 C85 0.1UF C84 0.1UF C83 0.1UF C82 0.1UF (0603 50V) (0603 50V) (0603 50V) (0603 50V) FRB2 VBAT VBUF VCC VIO PC5 PE2 PE3 (FR_A_TX) (FR_A_TX_EN) (FR_A_RX) R120 R90 R89 0 0 0 FRA-JTXD FRA-JTXEN FRA-JRXD U7 GND 11 10 PER_HVA BGE: Bus Guardian Enable. Pull high to enable transmitter R88 R87 R121 R91 STBN: Standby Input. Pull High for non standby mode C 10.0K 10.0K 10.0K 10.0K FRA-BGE FRA-STBN FRA-EN 5 6 8 9 3 FRA-WAKE 15 EN: Enable Input. PUll high to enable TRXD0 TRXD1 TXD TXEN BGE STBN EN WAKE RXD ERRN RXEN FlexRAY A 18 17 7 13 12 FRA-INH2 FRA-INH1 FRA-BP 1 FRA-BM 4 FRA-ERRN FRA-RXEN R33 47.0 1% TPV9 TPV7 L2 2 FRA-DATA-A 3 FRA-DATA-B DLW43SH TPV1 TPV4 C16 10PF C91 4700PF (50V 0805) R19 47.0 1% P10 1 2 (0603) C12 GND 10PF Crimped lead - 279-9522 Receptacle housing - 279-9156 C (0603) Bus voltage +/- 12V (VBAT = 12v) Components spec'd for 12V operation GND PER_HVA 5V0_SR FlexRAY B FRBATB FRB1 (FR_B_TX) (FR_B_TX_EN) (FR_B_RX) R85 R79 R78 0 0 0 FRB-JTXD FRB-JTXEN FRB-JRXD B U4 GND 11 10 PER_HVA R77 R76 R86 R80 10.0K 10.0K 10.0K 10.0K FRB-BGE FRB-STBN FRB-EN 5 6 8 9 3 FRB-WAKE 15 TRXD0 TRXD1 TXD TXEN BGE STBN EN WAKE 16 GND INH2 INH1 BP BM GND PE4 PC4 PE5 0 4 19 20 14 R9 VIO VCC VBUF VBAT PE4 PC4 PE5 1 2 TJA1080TS/N 16 GND 7 7 7 INH2 INH1 BP BM GND PC5 PE2 PE3 VIO VCC VBUF VBAT 7 7 7 4 19 20 14 GND RXD ERRN RXEN 1 2 18 17 7 13 12 FRB-INH2 FRB-INH1 FRB-BP 1 FRB-BM 4 FRB-ERRN FRB-RXEN R20 47.0 1% TPV8 TPV6 L1 2 FRB-DATA-A 3 FRB-DATA-B DLW43SH TPV2 TPV3 R8 47.0 1% C13 10PF C90 4700PF (50V 0805) B P8 (0603) 1 2 C9 GND 10PF Crimped lead - 279-9522 Receptacle housing - 279-9156 (0603) TJA1080TS/N Bus voltage +/- 12V (VBAT = 12v) Components spec'd for 12V operation GND MODE Normal Rec Only Go to Sleep Sleep EN 1 0 1 0 STBN 1 1 0 0 Automotive Microcontroller Applications East Kilbride, Scotland A A NXP General Business Use Drawing Title: MPC5748G-LCEVB Page Title: 5 4 3 2 FlexRAY Physical Interface Size B Document Number Date: Friday, February 12, 2016 SCH-27897 Rev B PDF: SPF-27897 Sheet 1 13 of 15 5 4 3 2 1 User Peripheralls (Led's, Switches and ADC Pot) Switches are hard wired to 3.3V rather than 5V so it's not possible to drive 5V into a 3.3V pad (which would cause damage) Similarly, the LED's are active low with 3.3v supply so can be safely coupled to pads on either 3.3V or 5V domains The ADC input is limited to 3.3V, again to prevent driving 5V into a 3.3V pad which would cause damage User LED's (Active Low) PG[2..5] share eMIOS1 UC[11..14] with PWM functionality ADC Input Pot and Test Point DS1 C A C (USR_LED1) (USR_LED2) (USR_LED3) (USR_LED4) 270 R133 270 3V3_SR A 3 1 2 PG2 PG3 PG4 PG5 PG2 PG3 PG4 PG5 R129 RV1 2K DS2 7 7 7 7 D 3V3_SR DS3 C A DS4 C A R131 270 R130 270 RVAR Current limit resistors to ensure injection spec of 5mA is not exceeded GND R40 1 D 1.5K PB4 PB4 (ADC1_P[0]) 7 R146 1.5K LED's are SMD (1206) Yellow Note that LED2 and LED4 (PG3 and PG5) can be controlled in LPU_RUN mode (and also have pad keepers in LPU_STANDBY) Hex Encoded Switch (Active High) C 3V3_SR C SW1 R92 C B C D E A F 9 8 1 7 6 5 3 2 4 0 100 1 (HEX_SW1) PD0 2 (HEX_SW2) PD1 4 (HEX_SW3) PD2 8 (HEX_SW4) PD3 PD0 7,15 PD1 7,15 PD2 7,15 PD3 7,15 DRS4016 R93 R94 R95 R96 10.0K 10.0K 10.0K 10.0K GND User Pushbutton Switches (Active High) B 3V3_SR Note - PA1 is also the NMI pin! SW4 1 2 1 2 SW5 (PB_SW1) (PB_SW2) (eMIOS H / X) (eMIOS G / X) R132 R128 10.0K 10.0K B PA1 PA2 PA1 PA2 7,15 7,15 OMRON B3WN-6002 Pushbutton Switch GND Automotive Microcontroller Applications East Kilbride, Scotland A A NXP General Business Use Drawing Title: Page Title: 5 4 3 2 MPC5748G-LCEVB User Peripherals Size B Document Number Date: Friday, February 12, 2016 SCH-27897 Rev B PDF: SPF-27897 Sheet 1 14 of 15 5 4 PD[0..3] shared with Hex Switch C B PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD12 PD13 PD14 PD15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 8 8 8 8 8 8 8 8 8 8 PI0 PI1 PI2 PI3 PI6 PI8 PI12 PI13 PI14 PI15 PB5 PB6 PB7 PB10 PB11 PB12 PB13 PB14 PB15 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD12 PD13 PD14 PD15 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PI0 PI1 PI2 PI3 PI6 PI8 PI12 PI13 PI14 PI15 PORTB 1 PA4 IOM4 1 PA5 IOM19 1 PA6 IOM20 1 PB5 IOM21 1 PB6 IOM22 1 PB7 IOM23 1 PB10 IOM39 1 PB11 IOM40 1 PB12 IOM41 1 PB13 IOM42 1 PB14 IOM43 1 PB15 IOM56 1 PA12 IOM36 1 PA13 IOM37 1 PA14 IOM38 1 PA15 IOM55 TPH4 GND PORTD PortF 1 PD0 IOM5 1 PD1 IOM6 1 PD2 IOM7 1 PD3 IOM8 1 PD4 IOM9 1 PD5 IOM24 1 PD6 IOM25 1 PD7 IOM26 1 PD8 IOM27 1 PD9 IOM28 1 PD10 IOM44 1 PF0 IOM10 1 PF1 IOM11 1 PF2 IOM12 1 PF3 IOM13 1 PF4 IOM14 1 PF5 IOM29 1 PF6 IOM30 1 PF7 IOM31 1 PF8 IOM32 1 PF9 IOM33 1 PF10 IOM48 1 PF11 IOM49 1 PF12 IOM50 1 PF13 IOM51 1 1 PD12 IOM45 1 PD13 IOM46 1 PD14 IOM47 1 PD15 IOM57 PortI D 1 PI0 IOM15 1 PI1 IOM16 1 PI2 IOM17 1 PI3 IOM18 1 PI6 IOM34 1 PI8 IOM35 C 1 PI12 IOM52 1 PI13 IOM53 1 PI14 IOM54 1 PI15 IOM58 TPH5 TPH6 TPH7 TPH8 1 7,14 7,14 7,14 7,14 7 7 7 7 7 7 7 7 7 7 7 PB5 PB6 PB7 PB10 PB11 PB12 PB13 PB14 PB15 PORTA 1 PA0 IOM1 1 PA1 IOM2 1 PA2 IOM3 1 7 7 7 7 7 7 7 7 7 PA0 PA1 PA2 PA4 PA5 PA6 PA12 PA13 PA14 PA15 1 D PA0 PA1 PA2 PA4 PA5 PA6 PA12 PA13 PA14 PA15 2 1 7 7,14 7,14 7 7 7 7 7 7 7 PA[1,2] shared with user switches 3 All pads are DNP (Do Not Populate) 0.1" pitch headers placed on a 0.1" grid 1 GPIO Pin Matrix 5 GND Pads (one at bottom of each colum) B Layout Notes: Pads must be placed in a 5 (W) x 16(H) matrix pattern, 2.54 mm pitch - one column for each port - 16 tall (1 row for each port number from 0 to 15). - GND pad at bottom of each colum - After production, pads should be through hole (not solder filled) Automotive Microcontroller Applications East Kilbride, Scotland A A NXP General Business Use Drawing Title: MPC5748G-LCEVB Page Title: GPIO Pin Matrix 5 4 3 2 Size B Document Number Date: Friday, February 12, 2016 SCH-27897 Rev B PDF: SPF-27897 Sheet 1 15 of 15 How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2016 NXP B.V. Document Number: MPC5748GLCEVBUG Rev. 0 05/2016
MPC5748G-LCEVB 价格&库存

很抱歉,暂时无法提供与“MPC5748G-LCEVB”相匹配的价格&库存,您可以联系我们找货

免费人工找货