0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MPC8260ACVVMHBB

MPC8260ACVVMHBB

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LBGA480

  • 描述:

    IC MPU MPC82XX 266MHZ 480TBGA

  • 数据手册
  • 价格&库存
MPC8260ACVVMHBB 数据手册
Freescale Semiconductor Document Number: MPC8260EC Rev. 2, 05/2010 Technical Data MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the .29 μm (HiP3) devices of the PowerQUICC II family of communications processors: the MPC8260 and the MPC8255. Throughout this document, the MPC8260 and the MPC8255 are collectively referred to as the MPC8260. © 2010 Freescale Semiconductor, Inc. All rights reserved. 1. 2. 3. 4. 5. 6. 7. Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Electrical and Thermal Characteristics . . . . . . . . . . . . 5 Clock Configuration Modes . . . . . . . . . . . . . . . . . . . 20 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . 37 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 39 Document Revision History . . . . . . . . . . . . . . . . . . . 39 Features Figure 1 shows the block diagram for the MPC8260. 16 Kbytes I-Cache I-MMU System Interface Unit (SIU) G2 Core 16 Kbytes D-Cache Bus Interface Unit D-MMU 60x-to-Local Bridge 60x Bus Local Bus 32 bits, up to 66 MHz Memory Controller Communication Processor Module (CPM) Clock Counter Timers Serial DMAs 24 Kbytes Dual-Port RAM Interrupt Controller System Functions Parallel I/O 32-bit RISC Microcontroller and Program ROM Baud Rate Generators MCC11 MCC2 FCC1 FCC2 FCC31 SCC1 SCC2 2 Virtual IDMAs SCC3 SCC4 SMC1 SMC2 SPI I2C Time Slot Assigner Serial Interface 8 TDM Ports2 3 MII Ports3 2 UTOPIA Ports Non-Multiplexed I/O Notes: 1 Not on MPC8255 2 4 on the MPC8255 3 2 on the MPC8255 Figure 1. MPC8260 Block Diagram 1 Features The major features of the MPC8260 are as follows: • Dual-issue integer core — A core version of the EC603e microprocessor — System core microprocessor supporting frequencies of 133–200 MHz (150–200 MHz for the MPC8255) — Separate 16-Kbyte data and instruction caches: – Four-way set associative – Physically addressed – LRU replacement algorithm — PowerPC architecture-compliant memory management unit (MMU) MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 2 Freescale Semiconductor Features • • • • • • • • — Common on-chip processor (COP) test interface — High-performance (4.4–5.1 SPEC95 benchmark at 200 MHz; 280 Dhrystones MIPS at 200 MHz) — Supports bus snooping for data cache coherency — Floating-point unit (FPU) Separate power supply for internal logic and for I/O Separate PLLs for G2 core and for the CPM — G2 core and CPM can run at different frequencies for power/performance optimization — Internal core/bus clock multiplier that provides 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1 ratios — Internal CPM/bus clock multiplier that provides 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1 ratios 64-bit data and 32-bit address 60x bus — Bus supports multiple master designs — Supports single- and four-beat burst transfers — 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller — Supports data parity or ECC and address parity 32-bit data and 18-bit address local bus — Single-master bus, supports external slaves — Eight-beat burst transfers — 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller System interface unit (SIU) — Clock synthesizer — Reset controller — Real-time clock (RTC) register — Periodic interrupt timer — Hardware bus monitor and software watchdog timer — IEEE Std 1149.1™ JTAG test access port Twelve-bank memory controller — Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash and other userdefinable peripherals — Byte write enables and selectable parity generation — 32-bit address decodes with programmable bank size — Three user programmable machines, general-purpose chip-select machine, and page-mode pipeline SDRAM machine — Byte selects for 64 bus width (60x) and byte selects for 32 bus width (local) — Dedicated interface logic for SDRAM CPU core can be disabled and the device can be used in slave mode to an external core Communications processor module (CPM) MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 3 Features — Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications protocols — Interfaces to G2 core through on-chip 24-Kbyte dual-port RAM and DMA controller — Serial DMA channels for receive and transmit on all serial channels — Parallel I/O registers with open-drain and interrupt capability — Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers — Three fast communications controllers (two on the MPC8255) supporting the following protocols: – 10/100-Mbit Ethernet/IEEE Std 802.3™ CDMA/CS interface through media independent interface (MII) – ATM—Full-duplex SAR protocols at 155 Mbps, through UTOPIA interface, AAL5, AAL1, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 16 K external connections – Transparent – HDLC—Up to T3 rates (clear channel) — Two multichannel controllers (MCCs) (only MCC2 on the MPC8255) – Each MCC handles 128 serial, full-duplex, 64-Kbps data channels. Each MCC can be split into four subgroups of 32 channels each. – Almost any combination of subgroups can be multiplexed to single or multiple TDM interfaces up to four TDM interfaces per MCC — Four serial communications controllers (SCCs) identical to those on the MPC860, supporting the digital portions of the following protocols: – Ethernet/IEEE 802.3 CDMA/CS – HDLC/SDLC and HDLC bus – Universal asynchronous receiver transmitter (UART) – Synchronous UART – Binary synchronous (BISYNC) communications – Transparent — Two serial management controllers (SMCs), identical to those of the MPC860 – Provide management for BRI devices as general circuit interface (GCI) controllers in timedivision-multiplexed (TDM) channels – Transparent – UART (low-speed operation) — One serial peripheral interface identical to the MPC860 SPI — One inter-integrated circuit (I2C) controller (identical to the MPC860 I2C controller) – Microwire compatible – Multiple-master, single-master, and slave modes MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 4 Freescale Semiconductor Electrical and Thermal Characteristics — Up to eight TDM interfaces (4 on the MPC8255) – Supports two groups of four TDM channels for a total of eight TDMs – 2,048 bytes of SI RAM – Bit or byte resolution – Independent transmit and receive routing, frame synchronization – Supports T1, CEPT, T1/E1, T3/E3, pulse code modulation highway, ISDN basic rate, ISDN primary rate, Freescale interchip digital link (IDL), general circuit interface (GCI), and user-defined TDM serial interfaces — Eight independent baud rate generators and 20 input clock pins for supplying clocks to FCCs, SCCs, SMCs, and serial channels — Four independent 16-bit timers that can be interconnected as two 32-bit timers 2 Electrical and Thermal Characteristics This section provides AC and DC electrical specifications and thermal characteristics for the MPC8260. 2.1 DC Electrical Characteristics This section describes the DC electrical characteristics for the MPC8260. Table 1 shows the maximum electrical ratings. Table 1. Absolute Maximum Ratings1 Rating Symbol Value Unit Core supply voltage2 VDD -0.3 – 2.75 V PLL supply voltage2 VCCSYN -0.3 – 2.75 V I/O supply voltage3 VDDH -0.3 – 4.0 V voltage4 VIN GND(-0.3) – 3.6 V Tj 120 °C TSTG (-55) – (+150) °C Input Junction temperature Storage temperature range Note: 1 Absolute maximum ratings are stress ratings only; functional operation (see Table 2) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage. 2 Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V at any time, including during power-on reset. 3 Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.0 V during normal operation. 4 Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset. MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 5 Electrical and Thermal Characteristics Table 2 lists recommended operational voltage conditions. Table 2. Recommended Operating Conditions1 Symbol 2.5-V Device2 Unit Core supply voltage VDD 2.4–2.7 V PLL supply voltage VCCSYN 2.4–2.7 V I/O supply voltage VDDH 3.135 – 3.465 V VIN GND (-0.3) – 3.465 V Tj 105 °C Rating Input voltage Junction temperature (maximum) 1 Caution: These are the recommended and tested operating conditions. Proper device operating outside of these conditions is not guaranteed. 2 Parts labeled with an “-HVA” suffix are 2.6-V devices. NOTE: Core, PLL, and I/O Supply Voltages VDDH, VCCSYN, and VDD must track each other and both must vary in the same direction—in the positive direction (+5% and +0.1 Vdc) or in the negative direction (–5% and –0.1 Vdc). This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or VCC). Figure 2 shows the undershoot and overshoot voltage of the 60x and local bus memory interface of the MPC8280. Note that in PCI mode the I/O interface is different. VIH VIL 4V GVDD + 5% GVDD GND GND – 0.3 V GND – 1.0 V Not to exceed 10% of tSDRAM_CLK Figure 2. Overshoot/Undershoot Voltage MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 6 Freescale Semiconductor Electrical and Thermal Characteristics Table 3 shows DC electrical characteristics. Table 3. DC Electrical Characteristics1 Characteristic Symbol Min Max Unit Input high voltage, all inputs except CLKIN VIH 2.0 3.465 V Input low voltage VIL GND 0.8 V VIHC 2.4 3.465 V VILC GND 0.4 V IIN — 10 µA IOZ — 10 µA Signal low input current, VIL = 0.8 V IL — 1 µA Signal high input current, VIH = 2.0 V IH — 1 µA VOH 2.4 — V VOL — 0.5 V CLKIN input high voltage CLKIN input low voltage Input leakage current, VIN = VDDH 2 Hi-Z (off state) leakage current, VIN = VDDH2 Output high voltage, IOH = –2 mA except XFC, UTOPIA mode, and open drain pins In UTOPIA mode: IOH = -8.0mA PA[0-31] PB[4-31] PC[0-31] PD[4-31] In UTOPIA mode: IOL = 8.0mA PA[0-31] PB[4-31] PC[0-31] PD[4-31] MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 7 Electrical and Thermal Characteristics Table 3. DC Electrical Characteristics1 (continued) Characteristic IOL = 7.0mA BR BG ABB/IRQ2 TS A[0-31] TT[0-4] TBST TSIZE[0–3] AACK ARTRY DBG DBB/IRQ3 D[0-63] DP(0)/RSRV/EXT_BR2 DP(1)/IRQ1/EXT_BG2 DP(2)/TLBISYNC/IRQ2/EXT_DBG2 DP(3)/IRQ3/EXT_BR3/CKSTP_OUT DP(4)/IRQ4/EXT_BG3/CORE_SREST DP(5)/TBEN/IRQ5/EXT_DBG3 DP(6)/CSE(0)/IRQ6 DP(7)/CSE(1)/IRQ7 PSDVAL TA TEA GBL/IRQ1 CI/BADDR29/IRQ2 WT/BADDR30/IRQ3 L2_HIT/IRQ4 CPU_BG/BADDR31/IRQ5 CPU_DBG CPU_BR IRQ0/NMI_OUT IRQ7/INT_OUT/APE PORESET HRESET SRESET RSTCONF QREQ Symbol Min Max Unit VOL — 0.4 V MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 8 Freescale Semiconductor Electrical and Thermal Characteristics Table 3. DC Electrical Characteristics1 (continued) Characteristic IOL = 5.3mA CS[0-9] CS(10)/BCTL1 CS(11)/AP(0) BADDR[27–28] ALE BCTL0 PWE(0:7)/PSDDQM(0:7)/PBS(0:7) PSDA10/PGPL0 PSDWE/PGPL1 POE/PSDRAS/PGPL2 PSDCAS/PGPL3 PGTA/PUPMWAIT/PGPL4/PPBS PSDAMUX/PGPL5 LWE[0–3]LSDDQM[0:3]/LBS[0–3] LSDA10/LGPL0 LSDWE/LGPL1 LOE/LSDRAS/LGPL2 LSDCAS/LGPL3 LGTA/LUPMWAIT/LGPL4/LPBS LSDAMUX3/LGPL5 LWR MODCK1/AP(1)/TC(0)/BNKSEL(0) MODCK2/AP(2)/TC(1)/BNKSEL(1) MODCK3/AP(3)/TC(2)/BNKSEL(2) IOL = 3.2mA L_A14 L_A15/SMI L_A16 L_A17/CKSTP_OUT L_A18 L_A19 L_A20 L_A21 L_A22 L_A23 L_A24 L_A25 L_A26 L_A27 L_A28/CORE_SRESET L_A29 L_A30 L_A31 LCL_D(0-31) LCL_DP(0-3) PA[0–31] PB[4–31] PC[0–31] PD[4–31] TDO Symbol Min Max Unit VOL — 0.4 V 1 The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current, it is recommended to either pull unused pins to GND or VDDH, or to configure them as outputs. 2 The leakage current is measured for nominal VDD, VCCSYN, and VDD. MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 9 Electrical and Thermal Characteristics 3 Rev C.2 silicon only. 2.2 Thermal Characteristics Table 4 describes thermal characteristics. Table 4. Thermal Characteristics Characteristics Thermal resistance for TBGA Symbol Value Unit Air Flow θJA 13.071 °C/W NC2 θJA 9.551 °C/W 1 m/s θJA 10.483 °C/W NC θJA 7.783 °C/W 1 m/s Note: 1 Assumes a single layer board with no thermal vias Natural convection 3 Assumes a four layer board 2 2.3 Power Considerations The average chip-junction temperature, TJ, in °C can be obtained from the following: TJ = TA + (PD x θJA) (1) where TA = ambient temperature °C θJA = package thermal resistance, junction to ambient, °C/W PD = PINT + PI/O PINT = IDD x VDD Watts (chip internal power) PI/O = power dissipation on input and output pins (determined by user) For most applications PI/O < 0.3 x PINT. If PI/O is neglected, an approximate relationship between PD and TJ is the following: PD = K/(T J + 273° C) (2) Solving equations (1) and (2) for K gives: K = PD x (TA + 273° C) + θJA x PD2 (3) where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA. MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 10 Freescale Semiconductor Electrical and Thermal Characteristics 2.3.1 Layout Practices Each VCC pin should be provided with a low-impedance path to the board’s power supply. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VCC power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip VCC and ground should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as VCC and GND planes. All output pins on the MPC8260 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VCC and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. Table 5 provides preliminary, estimated power dissipation for various configurations. Note that suitable thermal management is required for conditions above PD = 3W (when the ambient temperature is 70° C or greater) to ensure the junction temperature does not exceed the maximum specified value. Also note that the I/O power should be included when determining whether to use a heat sink. Table 5. Estimated Power Dissipation for Various Configurations1 PINT (W)2 Bus (MHz) CPM Multiplier CPU Multiplier CPM (MHz) CPU (MHz) Vddl 2.4 2.5 2.6 2.7 2.83 33.3 4 4 133.3 133.3 2.04 2.14 2.26 2.38 2.50 50.0 2 3 100 150.0 2.21 2.30 2.45 2.59 2.69 66.7 2 2.5 133.3 166.7 2.47 2.62 2.74 2.88 3.02 66.7 2.5 2.5 166.7 166.7 2.57 2.69 2.83 2.98 3.12 66.7 2 3 133.3 200.0 2.81 2.95 3.12 3.29 3.43 66.7 2.5 3 166.7 200.0 2.88 3.05 3.22 3.38 3.55 50.0 3 4 150 200.0 2.83 3.00 3.14 3.31 3.48 Note: 1 Test temperature = room temperature (25° C) PINT = IDD x VDD Watts 3 2.8 Vddl does not apply to HiP3 Rev C silicon. 2 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 11 Electrical and Thermal Characteristics 2.4 AC Electrical Characteristics The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for the 66 MHz MPC8260 device. Note that AC timings are based on a 50-pf load. Typical output buffer impedances are shown in Table 6. Table 6. Output Buffer Impedances1 Output Buffers Typical Impedance (Ω) 60x bus 40 Local bus 40 Memory controller 40 Parallel I/O 46 Note: 1 These are typical values at 65° C. The impedance may vary by ±25% with process and temperature. Table 7 lists CPM output characteristics. Table 7. AC Characteristics for CPM Outputs1 Spec Number Max Delay (ns) Min Delay (ns) 66 MHz 66 MHz Characteristic Max Min sp36a sp37a FCC outputs—internal clock (NMSI) 6 1 sp36b sp37b FCC outputs—external clock (NMSI) 14 2 sp40 sp41 TDM outputs/SI 25 5 sp38a sp39a SCC/SMC/SPI/I2C outputs—internal clock (NMSI) 19 1 sp38b sp39b Ex_SCC/SMC/SPI/I2C outputs—external clock (NMSI) 19 2 sp42 sp43 PIO/TIMER/IDMA outputs 14 1 Note: 1 Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin. Table 8 lists CPM input characteristics. NOTE: Rise/Fall Time on CPM Input Pins It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC. MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 12 Freescale Semiconductor Electrical and Thermal Characteristics Table 8. AC Characteristics for CPM Inputs1 Spec Number Setup (ns) Hold (ns) 66 MHz 66 MHz Characteristic Setup Hold sp16a sp17a FCC inputs—internal clock (NMSI) 10 0 sp16b sp17b FCC inputs—external clock (NMSI) 3 3 sp20 sp21 TDM inputs/SI 15 12 sp18a sp19a SCC/SMC/SPI/I2C inputs—internal clock (NMSI) 20 0 sp18b sp19b SCC/SMC/SPI/I2C inputs—external clock (NMSI) 5 5 sp22 sp23 PIO/TIMER/IDMA inputs 10 3 Note: 1 Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin. Note that although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also apply when the falling edge is the active edge. MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 13 Electrical and Thermal Characteristics Figure 3 shows the FCC external clock. Serial ClKin sp17b sp16b FCC input signals sp36b/sp37b FCC output signals Note: When GFMR[TCI] = 0 sp36b/sp37b FCC output signals Note: When GFMR[TCI] = 1 Figure 3. FCC External Clock Diagram Figure 4 shows the FCC internal clock. BRG_OUT sp17a sp16a FCC input signals sp36a/sp37a FCC output signals Note: When GFMR[TCI] = 0 sp36a/sp37a FCC output signals Note: When GFMR.[TCI] = 1 Figure 4. FCC Internal Clock Diagram MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 14 Freescale Semiconductor Electrical and Thermal Characteristics Figure 5 shows the SCC/SMC/SPI/I2C external clock. Serial CLKin sp18b sp19b SCC/SMC/SPI/I2C input signals (See note) sp38b/sp39b SCC/SMC/SPI/I2C output signals (See note) Note: There are four possible timing conditions for SCC and SPI: 1. Input sampled on the rising edge and output driven on the rising edge (shown). 2. Input sampled on the rising edge and output driven on the falling edge. 3. Input sampled on the falling edge and output driven on the falling edge. 4. Input sampled on the falling edge and output driven on the rising edge. Figure 5. SCC/SMC/SPI/I2C External Clock Diagram Figure 6 shows the SCC/SMC/SPI/I2C internal clock. BRG_OUT sp18a sp19a SCC/SMC/SPI/I2C input signals (See note) sp38a/sp39a SCC/SMC/SPI/I2C output signals (See note) Note: There are four possible timing conditions for SCC and SPI: 1. Input sampled on the rising edge and output driven on the rising edge (shown). 2. Input sampled on the rising edge and output driven on the falling edge. 3. Input sampled on the falling edge and output driven on the falling edge. 4. Input sampled on the falling edge and output driven on the rising edge. Figure 6. SCC/SMC/SPI/I2C Internal Clock Diagram MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 15 Electrical and Thermal Characteristics Figure 7 shows PIO, timer, and DMA signals. Sys clk sp23 sp22 PIO/IDMA/TIMER[TGATE assertion] input signals (See note) sp23 sp22 TIMER input signal [TGATE deassertion] (See note) sp42/sp43 IDMA output signals sp42/sp43 TIMER/PIO output signals Note: TGATE is asserted on the rising edge of the clock; it is deasserted on the falling edge. Figure 7. PIO, Timer, and DMA Signal Diagram Table 9 lists SIU input characteristics. Table 9. AC Characteristics for SIU Inputs1 Spec Number Setup (ns) Hold (ns) 66 MHz 66 MHz Characteristic Setup Hold sp11 sp10 AACK/ARTRY/TA/TS/TEA/DBG/BG/BR 6 1 sp12 sp10 Data bus in normal mode 5 1 sp13 sp10 Data bus in ECC and PARITY modes 8 1 sp14 sp10 DP pins 8 1 sp14 sp10 All other pins 5 1 Note: 1 Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin. MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 16 Freescale Semiconductor Electrical and Thermal Characteristics Table 10 lists SIU output characteristics. Table 10. AC Characteristics for SIU Outputs1 Spec Number Max Delay (ns) Min Delay (ns) 66 MHz 66 MHz Characteristic Max Min sp31 sp30 PSDVAL/TEA/TA 10 0.5 sp32 sp30 ADD/ADD_atr./BADDR/CI/GBL/WT 8 0.5 sp33a sp30 Data bus 8 0.5 sp33b sp30 DP 12 0.5 sp34 sp30 memc signals/ALE 6 0.5 sp35 sp30 all other signals 7.5 0.5 Note: 1 Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin. NOTE Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing. When data pipelining is activated, sp12 can be used for data bus setup even when ECC or PARITY are used. Also, sp33a can be used as the AC specification for DP signals. Figure 8 shows TDM input and output signals. Serial CLKin sp20 sp21 TDM input signals sp40/sp41 TDM output signals Note: There are four possible TDM timing conditions: 1. Input sampled on the rising edge and output driven on the rising edge (shown). 2. Input sampled on the rising edge and output driven on the falling edge. 3. Input sampled on the falling edge and output driven on the falling edge. 4. Input sampled on the falling edge and output driven on the rising edge. Figure 8. TDM Signal Diagram MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 17 Electrical and Thermal Characteristics Figure 9 shows the interaction of several bus signals. CLKin sp11 sp10 AACK/ARTRY/TA/TS/TEA/ DBG/BG/BR input signals sp12 sp10 sp15 sp10 DATA bus normal mode input signal All other input signals sp30 sp31 PSDVAL/TEA/TA output signals sp32 sp30 sp33a sp30 sp35 sp30 ADD/ADD_atr/BADDR/CI/ GBL/WT output signals DATA bus output signals All other output signals Figure 9. Bus Signals Figure 10 shows signal behavior for all parity modes (including ECC, RMW parity, and standard parity). CLKin sp10 sp13 DATA bus, ECC, and PARITY mode input signals sp10 sp14 DP mode input signal sp33b/sp30 DP mode output signal Figure 10. Parity Mode Diagram MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 18 Freescale Semiconductor Electrical and Thermal Characteristics Figure 11 shows signal behavior in MEMC mode. CLKin V_CLK sp34/sp30 Memory controller signals Figure 11. MEMC Mode Diagram NOTE Generally, all MPC8260 bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 11. Table 11. Tick Spacing for Memory Controller Signals Tick Spacing (T1 Occurs at the Rising Edge of CLKin) PLL Clock Ratio T2 T3 T4 1:2, 1:3, 1:4, 1:5, 1:6 1/4 CLKin 1/2 CLKin 3/4 CLKin 1:2.5 3/10 CLKin 1/2 CLKin 8/10 CLKin 1:3.5 4/14 CLKin 1/2 CLKin 11/14 CLKin Figure 12 is a graphical representation of Table 11. CLKin for 1:2, 1:3, 1:4, 1:5, 1:6 T1 T2 T3 T4 CLKin for 1:2.5 T1 T2 T3 T4 for 1:3.5 CLKin T1 T2 T3 T4 Figure 12. Internal Tick Spacing for Memory Controller Signals MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 19 Clock Configuration Modes NOTE The UPM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications are relative to the internal tick. Note that SDRAM and GPCM machine outputs change on CLKin’s rising edge. 3 Clock Configuration Modes To configure the main PLL multiplication factor and the core, CPM, and 60x bus frequencies, the MODCK[1–3] pins are sampled while HRESET is asserted. Table 12 shows the eight basic configuration modes. Another 49 modes are available by using the configuration pin (RSTCONF) and driving four pins on the data bus. NOTE Clock configurations change only after POR is asserted. 3.1 Local Bus Mode Table 12 describes default clock modes for the MPC8260. Table 12. Clock Default Modes MODCK[1–3] Input Clock Frequency CPM Multiplication Factor CPM Frequency 000 33 MHz 3 100 MHz 4 133 MHz 001 33 MHz 3 100 MHz 5 166 MHz 010 33 MHz 4 133 MHz 4 133 MHz 011 33 MHz 4 133 MHz 5 166 MHz 100 66 MHz 2 133 MHz 2.5 166 MHz 101 66 MHz 2 133 MHz 3 200 MHz 110 66 MHz 2.5 166 MHz 2.5 166 MHz 111 66 MHz 2.5 166 MHz 3 200 MHz Core Multiplication Factor Core Frequency Table 13 describes all possible clock configurations when using the hard reset configuration sequence. Note also that basic modes are shown in boldface type. Table 13. Clock Configuration Modes1 MODCK_H–MODCK[1–3] Input Clock Frequency2,3,4 CPM Multiplication Factor2, 5 CPM Frequency2 Core Multiplication Factor2, 6 Core Frequency2 0001_000 33 MHz 2 66 MHz 4 133 MHz 0001_001 33 MHz 2 66 MHz 5 166 MHz 0001_010 33 MHz 2 66 MHz 6 200 MHz 0001_011 33 MHz 2 66 MHz 7 233 MHz 0001_100 33 MHz 2 66 MHz 8 266 MHz MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 20 Freescale Semiconductor Clock Configuration Modes Table 13. Clock Configuration Modes1 (continued) MODCK_H–MODCK[1–3] Input Clock Frequency2,3,4 CPM Multiplication Factor2, 5 CPM Frequency2 Core Multiplication Factor2, 6 Core Frequency2 0001_101 33 MHz 3 100 MHz 4 133 MHz 0001_110 33 MHz 3 100 MHz 5 166 MHz 0001_111 33 MHz 3 100 MHz 6 200 MHz 0010_000 33 MHz 3 100 MHz 7 233 MHz 0010_001 33 MHz 3 100 MHz 8 266 MHz 0010_010 33 MHz 4 133 MHz 4 133 MHz 0010_011 33 MHz 4 133 MHz 5 166 MHz 0010_100 33 MHz 4 133 MHz 6 200 MHz 0010_101 33 MHz 4 133 MHz 7 233 MHz 0010_110 33 MHz 4 133 MHz 8 266 MHz 0010_111 33 MHz 5 166 MHz 4 133 MHz 0011_000 33 MHz 5 166 MHz 5 166 MHz 0011_001 33 MHz 5 166 MHz 6 200 MHz 0011_010 33 MHz 5 166 MHz 7 233 MHz 0011_011 33 MHz 5 166 MHz 8 266 MHz 0011_100 33 MHz 6 200 MHz 4 133 MHz 0011_101 33 MHz 6 200 MHz 5 166 MHz 0011_110 33 MHz 6 200 MHz 6 200 MHz 0011_111 33 MHz 6 200 MHz 7 233 MHz 0100_000 33 MHz 6 200 MHz 8 266 MHz 0100_001 Reserved 0100_010 0100_011 0100_100 0100_101 0100_110 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 21 Clock Configuration Modes Table 13. Clock Configuration Modes1 (continued) MODCK_H–MODCK[1–3] Input Clock Frequency2,3,4 CPM Multiplication Factor2, 5 0100_111 CPM Frequency2 Core Multiplication Factor2, 6 Core Frequency2 Reserved 0101_000 0101_001 0101_010 0101_011 0101_100 0101_101 66 MHz 2 133 MHz 2 133 MHz 0101_110 66 MHz 2 133 MHz 2.5 166 MHz 0101_111 66 MHz 2 133 MHz 3 200 MHz 0110_000 66 MHz 2 133 MHz 3.5 233 MHz 0110_001 66 MHz 2 133 MHz 4 266 MHz 0110_010 66 MHz 2 133 MHz 4.5 300 MHz 0110_011 66 MHz 2.5 166 MHz 2 133 MHz 0110_100 66 MHz 2.5 166 MHz 2.5 166 MHz 0110_101 66 MHz 2.5 166 MHz 3 200 MHz 0110_110 66 MHz 2.5 166 MHz 3.5 233 MHz 0110_111 66 MHz 2.5 166 MHz 4 266 MHz 0111_000 66 MHz 2.5 166 MHz 4.5 300 MHz 0111_001 66 MHz 3 200 MHz 2 133 MHz 0111_010 66 MHz 3 200 MHz 2.5 166 MHz 0111_011 66 MHz 3 200 MHz 3 200 MHz 0111_100 66 MHz 3 200 MHz 3.5 233 MHz 0111_101 66 MHz 3 200 MHz 4 266 MHz 0111_110 66 MHz 3 200 MHz 4.5 300 MHz 0111_111 66 MHz 3.5 233 MHz 2 133 MHz 1000_000 66 MHz 3.5 233 MHz 2.5 166 MHz 1000_001 66 MHz 3.5 233 MHz 3 200 MHz 1000_010 66 MHz 3.5 233 MHz 3.5 233 MHz 1000_011 66 MHz 3.5 233 MHz 4 266 MHz 1000_100 66 MHz 3.5 233 MHz 4.5 300 MHz Note: MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 22 Freescale Semiconductor Pinout 1 2 3 4 5 6 Because of speed dependencies, not all of the possible configurations in Table 13 are applicable. The user should choose the input clock frequency and the multiplication factors such that the frequency of the CPU ranges between 133–200 and the CPM ranges between 50–166 MHz. Input clock frequency is given only for the purpose of reference. User should set MODCK_H–MODCK_L so that the resulting configuration does not exceed the frequency rating of the user’s part. 60x and local bus frequency. Identical to CLKIN. CPM multiplication factor = CPM clock/bus clock CPU multiplication factor = Core PLL multiplication factor 4 Pinout This section provides the pin assignments and pinout list for the MPC8260. MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 23 Pinout 4.1 Pin Assignments Figure 13 shows the pinout of the MPC8260 480 TBGA package as viewed from the top surface. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 A B A B C C D E D E F F G G H J H J K K L M L M N N P P R T U V R T U V W W Y Y AA AB AA AB AC AC AD AE AD AE AF AF AG AG AH AJ AH AJ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Not to Scale Figure 13. Pinout of the 480 TBGA Package as Viewed from the Top Surface MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 24 Freescale Semiconductor Pinout Figure 14 shows the side profile of the TBGA package to indicate the direction of the top surface view. View Copper Heat Spreader (Oxidized for Insulation) Die Attach Polymide Tape Etched Cavity Pressure Sensitive Adhesive Die Soldermask Glob-Top Filled Area Glob-Top Dam Copper Traces 1.27 mm Pitch Wire Bonds Figure 14. Side View of the TBGA Package Table 14 shows the pinout list of the MPC8260. Table 15 defines conventions and acronyms used in Table 14. Table 14. Pinout List Pin Name Ball BR W5 BG F4 ABB/IRQ2 E2 TS E3 A0 G1 A1 H5 A2 H2 A3 H1 A4 J5 A5 J4 A6 J3 A7 J2 A8 J1 A9 K4 A10 K3 A11 K2 A12 K1 A13 L5 A14 L4 A15 L3 A16 L2 A17 L1 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 25 Pinout Table 14. Pinout List (continued) Pin Name Ball A18 M5 A19 N5 A20 N4 A21 N3 A22 N2 A23 N1 A24 P4 A25 P3 A26 P2 A27 P1 A28 R1 A29 R3 A30 R5 A31 R4 TT0 F1 TT1 G4 TT2 G3 TT3 G2 TT4 F2 TBST D3 TSIZ0 C1 TSIZ1 E4 TSIZ2 D2 TSIZ3 F5 AACK F3 ARTRY E1 DBG V1 DBB/IRQ3 V2 D0 B20 D1 A18 D2 A16 D3 A13 D4 E12 D5 D9 D6 A6 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 26 Freescale Semiconductor Pinout Table 14. Pinout List (continued) Pin Name Ball D7 B5 D8 A20 D9 E17 D10 B15 D11 B13 D12 A11 D13 E9 D14 B7 D15 B4 D16 D19 D17 D17 D18 D15 D19 C13 D20 B11 D21 A8 D22 A5 D23 C5 D24 C19 D25 C17 D26 C15 D27 D13 D28 C11 D29 B8 D30 A4 D31 E6 D32 E18 D33 B17 D34 A15 D35 A12 D36 D11 D37 C8 D38 E7 D39 A3 D40 D18 D41 A17 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 27 Pinout Table 14. Pinout List (continued) Pin Name Ball D42 A14 D43 B12 D44 A10 D45 D8 D46 B6 D47 C4 D48 C18 D49 E16 D50 B14 D51 C12 D52 B10 D53 A7 D54 C6 D55 D5 D56 B18 D57 B16 D58 E14 D59 D12 D60 C10 D61 E8 D62 D6 D63 C2 DP0/RSRV/EXT_BR2 B22 IRQ1/DP1/EXT_BG2 A22 IRQ2/DP2/TLBISYNC/EXT_DBG2 E21 IRQ3/DP3/CKSTP_OUT/EXT_BR3 D21 IRQ4/DP4/CORE_SRESET/EXT_BG3 C21 IRQ5/DP5/TBEN/EXT_DBG3 B21 IRQ6/DP6/CSE0 A21 IRQ7/DP7/CSE1 E20 PSDVAL V3 TA C22 TEA V5 GBL/IRQ1 W1 CI/BADDR29/IRQ2 U2 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 28 Freescale Semiconductor Pinout Table 14. Pinout List (continued) Pin Name Ball WT/BADDR30/IRQ3 U3 L2_HIT/IRQ4 Y4 CPU_BG/BADDR31/IRQ5 U4 CPU_DBG R2 CPU_BR Y3 CS0 F25 CS1 C29 CS2 E27 CS3 E28 CS4 F26 CS5 F27 CS6 F28 CS7 G25 CS8 D29 CS9 E29 CS10/BCTL1 F29 CS11/AP0 G28 BADDR27 T5 BADDR28 U1 ALE T2 BCTL0 A27 PWE0/PSDDQM0/PBS0 C25 PWE1/PSDDQM1/PBS1 E24 PWE2/PSDDQM2/PBS2 D24 PWE3/PSDDQM3/PBS3 C24 PWE4/PSDDQM4/PBS4 B26 PWE5/PSDDQM5/PBS5 A26 PWE6/PSDDQM6/PBS6 B25 PWE7/PSDDQM7/PBS7 A25 PSDA10/PGPL0 E23 PSDWE/PGPL1 B24 POE/PSDRAS/PGPL2 A24 PSDCAS/PGPL3 B23 PGTA/PUPMWAIT/PGPL4/PPBS A23 PSDAMUX/PGPL5 D22 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 29 Pinout Table 14. Pinout List (continued) Pin Name Ball LWE0/LSDDQM0/LBS0 H28 LWE1/LSDDQM1/LBS1 H27 LWE2/LSDDQM2/LBS2 H26 LWE3/LSDDQM3/LBS3 G29 LSDA10/LGPL0 D27 LSDWE/LGPL1 C28 LOE/LSDRAS/LGPL2 E26 LSDCAS/LGPL3 D25 LGTA/LUPMWAIT/LGPL4/LPBS C26 LGPL5/LSDAMUX1 B27 LWR D28 L_A14 N27 L_A15/SMI T29 L_A16 R27 L_A17/CKSTP_OUT R26 L_A18 R29 L_A19 R28 L_A20 W29 L_A21 P28 L_A22 N26 L_A23 AA27 L_A24 P29 L_A25 AA26 L_A26 N25 L_A27 AA25 L_A28/CORE_SRESET AB29 L_A29 AB28 L_A30 P25 L_A31 AB27 LCL_D0 H29 LCL_D1 J29 LCL_D2 J28 LCL_D3 J27 LCL_D4 J26 LCL_D5 J25 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 30 Freescale Semiconductor Pinout Table 14. Pinout List (continued) Pin Name Ball LCL_D6 K25 LCL_D7 L29 LCL_D8 L27 LCL_D9 L26 LCL_D10 L25 LCL_D11 M29 LCL_D12 M28 LCL_D13 M27 LCL_D14 M26 LCL_D15 N29 LCL_D16 T25 LCL_D17 U27 LCL_D18 U26 LCL_D19 U25 LCL_D20 V29 LCL_D21 V28 LCL_D22 V27 LCL_D23 V26 LCL_D24 W27 LCL_D25 W26 LCL_D26 W25 LCL_D27 Y29 LCL_D28 Y28 LCL_D29 Y25 LCL_D30 AA29 LCL_D31 AA28 LCL_DP0 L28 LCL_DP1 N28 LCL_DP2 T28 LCL_DP3 W28 IRQ0/NMI_OUT T1 IRQ7/INT_OUT/APE D1 TRST AH3 TCK AG5 TMS AJ3 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 31 Pinout Table 14. Pinout List (continued) Pin Name Ball TDI AE6 TDO AF5 TRIS AB4 PORESET AG6 HRESET AH5 SRESET AF6 QREQ AA3 RSTCONF AJ4 MODCK1/AP1/TC0/BNKSEL0 W2 MODCK2/AP2/TC1/BNKSEL1 W3 MODCK3/AP3/TC2/BNKSEL2 W4 XFC AB2 CLKIN1 AH4 PA0/RESTART1/DREQ3/FCC2_UTM_TXADDR2 AC292 PA1/REJECT1/FCC2_UTM_TXADDR1/DONE3 AC252 PA2/CLK20/FCC2_UTM_TXADDR0/DACK3 AE282 PA3/CLK19/FCC2_UTM_RXADDR0/DACK4/L1RXD1A2 AG292 PA4/REJECT2/FCC2_UTM_RXADDR1/DONE4 AG282 PA5/RESTART2/DREQ4/FCC2_UTM_RXADDR2 AG262 PA6/L1RSYNCA1 AE242 PA7/SMSYN2/L1TSYNCA1/L1GNTA1 AH252 PA8/SMRXD2/L1RXD0A1/L1RXDA1 AF232 PA9/SMTXD2/L1TXD0A1 AH232 PA10/FCC1_UT8_RXD0/FCC1_UT16_RXD8/MSNUM5 AE222 PA11/FCC1_UT8_RXD1/FCC1_UT16_RXD9/MSNUM4 AH222 PA12/FCC1_UT8_RXD2/FCC1_UT16_RXD10/MSNUM3 AJ212 PA13/FCC1_UT8_RXD3/FCC1_UT16_RXD11/MSNUM2 AH202 PA14/FCC1_UT8_RXD4/FCC1_UT16_RXD12/FCC1_RXD3 AG192 PA15/FCC1_UT8_RXD5/FCC1_UT16_RXD13/FCC1_RXD2 AF182 PA16/FCC1_UT8_RXD6/FCC1_UT16_RXD14/FCC1_RXD1 AF172 PA17/FCC1_UT8_RXD7/FCC1_UT16_RXD15/FCC1_RXD0/FCC1_RXD AE162 PA18/FCC1_UT8_TXD7/FCC1_UT16_TXD15/FCC1_TXD0/FCC1_TXD AJ162 PA19/FCC1_UT8_TXD6/FCC1_UT16_TXD14/FCC1_TXD1 AG152 PA20/FCC1_UT8_TXD5/FCC1_UT16_TXD13/FCC1_TXD2 AJ132 PA21/FCC1_UT8_TXD4/FCC1_UT16_TXD12/FCC1_TXD3 AE132 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 32 Freescale Semiconductor Pinout Table 14. Pinout List (continued) Pin Name Ball PA22/FCC1_UT8_TXD3/FCC1_UT16_TXD11 AF122 PA23/FCC1_UT8_TXD2/FCC1_UT16_TXD10 AG112 PA24/FCC1_UT8_TXD1/FCC1_UT16_TXD9/MSNUM1 AH92 PA25/FCC1_UT8_TXD0/FCC1_UT16_TXD8/MSNUM0 AJ82 PA26/FCC1_UTM_RXCLAV/FCC1_UTS_RXCLAV/FCC1_MII_RX_ER AH72 PA27/FCC1_UT_RXSOC/FCC1_MII_RX_DV AF72 PA28/FCC1_UTM_RXENB/FCC1_UTS_RXENB/FCC1_MII_TX_EN AD52 PA29/FCC1_UT_TXSOC/FCC1_MII_TX_ER AF12 PA30/FCC1_UTM_TXCLAV/FCC1_UTS_TXCLAV/FCC1_MII_CRS/FCC1_RTS AD32 PA31/FCC1_UTM_TXENB/FCC1_UTS_TXENB/FCC1_MII_COL AB52 PB4/FCC3_TXD3/FCC2_UT8_RXD0/L1RSYNCA2/FCC3_RTS AD282 PB5/FCC3_TXD2/FCC2_UT8_RXD1/L1TSYNCA2/L1GNTA2 AD262 PB6/FCC3_TXD1/FCC2_UT8_RXD2/L1RXDA2/L1RXD0A2 AD252 PB7/FCC3_TXD0/FCC3_TXD/FCC2_UT8_RXD3/L1TXDA2/L1TXD0A2 AE262 PB8/FCC2_UT8_TXD3/FCC3_RXD0/FCC3_RXD/TXD3/L1RSYNCD1 AH272 PB9/FCC2_UT8_TXD2/FCC3_RXD1/L1TXD2A2/L1TSYNCD1/L1GNTD1 AG242 PB10/FCC2_UT8_TXD1/FCC3_RXD2/L1RXDD1 AH242 PB11/FCC3_RXD3/FCC2_UT8_TXD0/L1TXDD1 AJ242 PB12/FCC3_MII_CRS/L1CLKOB1/L1RSYNCC1/TXD2 AG222 PB13/FCC3_MII_COL/L1RQB1/L1TSYNCC1/L1GNTC1/L1TXD1A2 AH212 PB14/FCC3_MII_TX_EN/RXD3/L1RXDC1 AG202 PB15/FCC3_MII_TX_ER/RXD2/L1TXDC1 AF192 PB16/FCC3_MII_RX_ER/L1CLKOA1/CLK18 AJ182 PB17/FCC3_MII_RX_DV/L1RQA1/CLK17 AJ172 PB18/FCC2_UT8_RXD4/FCC2_RXD3/L1CLKOD2/L1RXD2A2 AE142 PB19/FCC2_UT8_RXD5/FCC2_RXD2/L1RQD2/L1RXD3A2 AF132 PB20/FCC2_UT8_RXD6/FCC2_RXD1/L1RSYNCD2/L1TXD1A1 AG122 PB21/FCC2_UT8_RXD7/FCC2_RXD0/FCC2_RXD/L1TSYNCD2/L1GNTD2/ L1TXD2A1 AH112 PB22/FCC2_UT8_TXD7/FCC2_TXD0/FCC2_TXD/L1RXD1A1/L1RXDD2 AH162 PB23/FCC2_UT8_TXD6/FCC2_TXD1/L1RXD2A1/L1TXDD2 AE152 PB24/FCC2_UT8_TXD5/FCC2_TXD2/L1RXD3A1/L1RSYNCC2 AJ92 PB25/FCC2_UT8_TXD4/FCC2_TXD3/L1TSYNCC2/L1GNTC2/L1TXD3A1 AE92 PB26/FCC2_MII_CRS/FCC2_UT8_TXD1/L1RXDC2 AJ72 PB27/FCC2_MII_COL/FCC2_UT8_TXD0/L1TXDC2 AH62 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 33 Pinout Table 14. Pinout List (continued) Pin Name Ball PB28/FCC2_MII_RX_ER/FCC2_RTS/L1TSYNCB2/L1GNTB2/TXD1 AE32 PB29/FCC2_UTM_RXCLAV/FCC2_UTS_RXCLAV/L1RSYNCB2/ FCC2_MII_TX_EN AE22 PB30/FCC2_MII_RX_DV/FCC2_UT_TXSOC/L1RXDB2 AC52 PB31/FCC2_MII_TX_ER/FCC2_UT_RXSOC/L1TXDB2 AC42 PC0/DREQ1/BRGO7/SMSYN2/L1CLKOA2 AB262 PC1/DREQ2/BRGO6/L1RQA2 AD292 PC2/FCC3_CD/FCC2_UT8_TXD3/DONE2 AE292 PC3/FCC3_CTS/FCC2_UT8_TXD2/DACK2/CTS4 AE272 PC4/FCC2_UTM_RXENB/FCC2_UTS_RXENB/SI2_L1ST4/FCC2_CD AF272 PC5/FCC2_UTM_TXCLAV/FCC2_UTS_TXCLAV/SI2_L1ST3/FCC2_CTS AF242 PC6/FCC1_CD/L1CLKOC1/FCC1_UTM_RXADDR2/FCC1_UTS_RXADDR2/ FCC1_UTM_RXCLAV1 AJ262 PC7/FCC1_CTS/L1RQC1/FCC1_UTM_TXADDR2/FCC1_UTS_TXADDR2/ FCC1_UTM_TXCLAV1 AJ252 PC8/CD4/RENA4/FCC1_UT16_TXD0/SI2_L1ST2/CTS3 AF222 PC9/CTS4/CLSN4/FCC1_UT16_TXD1/SI2_L1ST1/L1TSYNCA2/L1GNTA2 AE212 PC10/CD3/RENA3/FCC1_UT16_TXD2/SI1_L1ST4/FCC2_UT8_RXD3 AF202 PC11/CTS3/CLSN3/L1CLKOD1/L1TXD3A2/FCC2_UT8_RXD2 AE192 PC12/CD2/RENA2/SI1_L1ST3/FCC1_UTM_RXADDR1/FCC1_UTS_RXADDR1 AE182 PC13/CTS2/CLSN2/L1RQD1/FCC1_UTM_TXADDR1/FCC1_UTS_TXADDR1 AH182 PC14/CD1/RENA1/FCC1_UTM_RXADDR0/FCC1_UTS_RXADDR0 AH172 PC15/CTS1/CLSN1/SMTXD2/FCC1_UTM_TXADDR0/FCC1_UTS_TXADDR0 AG162 PC16/CLK16/TIN4 AF152 PC17/CLK15/TIN3/BRGO8 AJ152 PC18/CLK14/TGATE2 AH142 PC19/CLK13/BRGO7/SPICLK AG132 PC20/CLK12/TGATE1 AH122 PC21/CLK11/BRGO6 AJ112 PC22/CLK10/DONE1 AG102 PC23/CLK9/BRGO5/DACK1 AE102 PC24/FCC2_UT8_TXD3/CLK8/TOUT4 AF92 PC25/FCC2_UT8_TXD2/CLK7/BRGO4 AE82 PC26/CLK6/TOUT3/TMCLK AJ62 PC27/FCC3_TXD/FCC3_TXD0/CLK5/BRGO3 AG22 PC28/CLK4/TIN1/TOUT2/CTS2/CLSN2 AF32 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 34 Freescale Semiconductor Pinout Table 14. Pinout List (continued) Pin Name Ball PC29/CLK3/TIN2/BRGO2/CTS1/CLSN1 AF22 PC30/FCC2_UT8_TXD3/CLK2/TOUT1 AE12 PC31/CLK1/BRGO1 AD12 PD4/BRGO8/L1TSYNCD1/L1GNTD1/FCC3_RTS/SMRXD2 AC282 PD5/FCC1_UT16_TXD3/DONE1 AD272 PD6/FCC1_UT16_TXD4/DACK1 AF292 PD7/SMSYN1/FCC1_UTM_TXADDR3/FCC1_UTS_TXADDR3/ FCC1_UTM_TXADDR4/FCC1_TXCLAV2 AF282 PD8/SMRXD1/FCC2_UT_TXPRTY/BRGO5 AG252 PD9/SMTXD1/FCC2_UT_RXPRTY/BRGO3 AH262 PD10/L1CLKOB2/FCC2_UT8_RXD1/L1RSYNCB1/BRGO4 AJ272 PD11/L1RQB2/FCC2_UT8_RXD0/L1TSYNCB1/L1GNTB1 AJ232 PD12/SI1_L1ST2/L1RXDB1 AG232 PD13/SI1_L1ST1/L1TXDB1 AJ222 PD14/FCC1_UT16_RXD0/L1CLKOC2/I2CSCL AE202 PD15/FCC1_UT16_RXD1/L1RQC2/I2CSDA AJ202 PD16/FCC1_UT_TXPRTY/L1TSYNCC1/L1GNTC1/SPIMISO AG182 PD17/FCC1_UT_RXPRTY/BRGO2/SPIMOSI AG172 PD18/FCC1_UTM_RXADDR4/FCC1_UTS_RXADDR4/FCC1_UTM_RXCLAV3/ SPICLK/FCC2_UTM_RXADDR3/FCC2_UTS_RXADDR0 AF162 PD19/FCC1_UTM_TXADDR4/FCC1_UTS_TXADDR4/FCC1_UTM_TXCLAV3/ SPISEL/BRGO1/FCC2_UTM_TXADDR3/FCC2_UTS_TXADDR0 AH152 PD20/RTS4/TENA4/FCC1_UT16_RXD2/L1RSYNCA2 AJ142 PD21/TXD4/FCC1_UT16_RXD3/L1RXD0A2/L1RXDA2 AH132 PD22/RXD4/FCC1_UT16_TXD5/L1TXD0A2/L1TXDA2 AJ122 PD23/RTS3/TENA3/FCC1_UT16_RXD4/L1RSYNCD1 AE122 PD24/TXD3/FCC1_UT16_RXD5/L1RXDD1 AF102 PD25/RXD3/FCC1_UT16_TXD6/L1TXDD1 AG92 PD26/RTS2/TENA2/FCC1_UT16_RXD6/L1RSYNCC1 AH82 PD27/TXD2/FCC1_UT16_RXD7/L1RXDC1 AG72 PD28/RXD2/FCC1_UT16_TXD7/L1TXDC1 AE42 PD29/RTS1/TENA1/FCC1_UTM_RXADDR3/FCC1_UTS_RXADDR3/ FCC1_UTM_RXCLAV2/FCC2_UTM_RXADDR4/FCC2_UTS_RXADDR1 AG12 PD30/FCC2_UTM_TXENB/FCC2_UTS_TXENB/TXD1 AD42 PD31/RXD1 AD22 VCCSYN AB3 MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 35 Pinout Table 14. Pinout List (continued) Pin Name Ball VCCSYN1 B9 GNDSYN AB1 SPARE13 AE11 SPARE43 U5 SPARE54 AF25 3 SPARE6 V4 THERMAL05 AA1 THERMAL15 AG4 I/O power AG21, AG14, AG8, AJ1, AJ2, AH1, AH2, AG3, AF4, AE5, AC27, Y27, T27, P27, K26, G27, AE25, AF26, AG27, AH28, AH29, AJ28, AJ29, C7, C14, C16, C20, C23, E10, A28, A29, B28, B29, C27, D26, E25, H3, M4, T3, AA4, A1, A2, B1, B2, C3, D4, E5 Core Power U28, U29, K28, K29, A9, A19, B19, M1, M2, Y1, Y2, AC1, AC2, AH19, AJ19, AH10, AJ10, AJ5 Ground AA5, AF21, AF14, AF8, AE7, AF11, AE17, AE23, AC26, AB25, Y26, V25, T26, R25, P26, M25, K27, H25, G26, D7, D10, D14, D16, D20, D23, C9, E11, E13, E15, E19, E22, B3, G5, H4, K5, M3, P5, T4, Y5, AA2, AC3 Note: 1 Only on Rev C.2 silicon. The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current, it is recommended to either pull unused pins to GND or VDDH, or to configure them as outputs. 3 Must be pulled down or left floating. 4 Must be pulled down or left floating. However, if compatibility with HiP4 silicon is required, this pin must be pulled up or left floating. 5 For information on how to use this pin, refer to MPC8260 PowerQUICC II Thermal Resistor Guide available at www.freescale.com. 2 Symbols used in Table 14 are described in Table 15. Table 15. Symbol Legend Symbol Meaning OVERBAR Signals with overbars, such as TA, are active low UTM Indicates that a signal is part of the UTOPIA master interface MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 36 Freescale Semiconductor Package Description Table 15. Symbol Legend (continued) Symbol 5 Meaning UTS Indicates that a signal is part of the UTOPIA slave interface UT8 Indicates that a signal is part of the 8-bit UTOPIA interface UT16 Indicates that a signal is part of the 16-bit UTOPIA interface MII Indicates that a signal is part of the media independent interface Package Description The following sections provide the package parameters and mechanical dimensions for the MPC8260. 5.1 Package Parameters Package parameters are provided in Table 16. The package type is a 37.5 × 37.5 mm, 480-lead TBGA. Table 16. Package Parameters Parameter Value Package Outline 37.5 x 37.5 mm Interconnects 480 (29 x 29 ball array) Pitch 1.27 mm Nominal unmounted package height 1.55 mm MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 37 Package Description 5.2 Mechanical Dimensions Figure 15 provides the mechanical dimensions and bottom surface nomenclature of the 480 TBGA package. Notes: 1. Dimensions and Tolerancing per ASME Y14.5M-1994. 2. Dimensions in millimeters. 3. Dimension b is measured at the maximum solder ball diameter, parallel to primary data A. Millimeters Dim Min Max A 1.45 1.65 A1 0.60 0.70 A2 0.85 0.95 A3 0.25 — b 0.65 0.85 D 37.50 BSC D1 35.56 REF e 1.27 BSC E 37.50 BSC E1 35.56 REF Figure 15. Mechanical Dimensions and Bottom Surface Nomenclature MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 38 Freescale Semiconductor Ordering Information 6 Ordering Information Figure 16 provides an example of the Freescale part numbering nomenclature for the MPC8260. In addition to the processor frequency, the part numbering scheme also consists of a part modifier that indicates any enhancement(s) in the part from the original production design. Each part number also contains a revision code that refers to the die mask revision number and is specified in the part numbering scheme for identification purposes only. For more information, contact your local Freescale sales office. MPC 82XX C ZU XXX X XX Die Revision Level (Nn = Major.minor) Product Code Core Voltage Device Number Processor Frequency (CPU/CPM/Bus) Package (ZU = 480 TBGA) Temperature Range Blank = 0 to 105 °C C = -40 to 105 °C Figure 16. Freescale Part Number Key 7 Document Revision History Table 17 lists significant changes in each revision of this document. Table 17. Document Revision History Rev. Number 2 Date Substantive Change(s) 05/2010 Added a note about rise/fall time on CPM input pins above Table 8, “AC Characteristics for CPM Inputs.” 1.3 9/2005 • Document template update. 1.2 8/2003 • Note: In revision 0.7, sp30 (Table 10) was changed. This change was not previously recorded in this “Document Revision History” Table. • Addition of MPC8255 description to Section 1, “Features” • Addition of Figure 2 • Addition of VCCSYN to “Note: Core, PLL, and I/O Supply Voltages” following Table 2 • Addition of note 1 to Table 3 • Addition of notes or modifications to Figure 3 through Figure 8 • Addition of reference notes 4, 5, and 6 to Table 13 • Addition of note 2 to Table 14 • Addition of SPICLK to PC19 in Table 14. It is documented correctly in the MPC8260 PowerQUICC II™ Family Reference Manual but had previously been omitted from Table 14. 1.1 5/2002 • Section 1, “Features”: updated minimum supported core frequency to 133 MHz • Addition of “Note” at bottom of page 5. • Table 13: Note 3. MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 Freescale Semiconductor 39 Document Revision History Table 17. Document Revision History (continued) Rev. Number Date 1.0 3/2002 • Table 14: modified notes to pins AE11 and AF25. • Table 14: added note to pins AA1 and AG4 (Therm0 and Therm1). 0.9 2/2002 • Table 14: additional note added to AE11 0.8 2/2002 • Table 7, Table 8, Table 9, and Table 10: revision 0.7 of this document incorrectly included values for 83 MHz. 83 MHz is not supported on the MPC8260. • Table 14: notes added to pins at AE11, AF25, U5, and V4. 0.7 11/2001 • Revision of Table 5, “Power Dissipation” • Modifications to Figure 9, Table 2,Table 10, Table 11 • Additional revisions to text and figures throughout 0.6 5/2001 Corrected the thermal values in Table 3, “Thermal Characteristics.” 0.2–0.5 — 0.1 1/2000 0 — Substantive Change(s) Temporary revisions — Initial version MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2 40 Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com under its patent rights nor the rights of others. Freescale Semiconductor products are Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com claims, costs, damages, and expenses, and reasonable attorney fees arising out of, For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Document Number: MPC8260EC Rev. 2 05/2010 not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale, the Freescale logo, and PowerQUICCare trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QUICC Engine, is a trademarksof Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. IEEE 1149.1 and 802.3 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. © 2010 Freescale Semiconductor, Inc.
MPC8260ACVVMHBB 价格&库存

很抱歉,暂时无法提供与“MPC8260ACVVMHBB”相匹配的价格&库存,您可以联系我们找货

免费人工找货