NXP Semiconductors
Technical Data
Document Number: MPC8572EEC
Rev. 7, 03/2016
MPC8572E PowerQUICC III
Integrated Processor
Hardware Specifications
1
Overview
This section provides a high-level overview of the features
of the MPC8572E processor. Figure 1 shows the major
functional units within the MPC8572E.
1.1
Key Features
The following list provides an overview of the MPC8572E
feature set:
• Two high-performance, 32-bit, Book E-enhanced
cores that implement the Power Architecture®
technology:
— Each core is identical to the core within the
MPC8572E processor.
— 32-Kbyte L1 instruction cache and 32-Kbyte L1
data cache with parity protection. Caches can be
locked entirely or on a per-line basis, with
separate locking for instructions and data.
— Signal-processing engine (SPE) APU (auxiliary
processing unit). Provides an extensive
instruction set for vector (64-bit) integer and
fractional operations. These instructions use both
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
NXP reserves the right to change the detail specifications as may be required to permit improvements in
the design of its products.
© 2008-2011, 2014, 2016 NXP B.V.
Contents
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 10
Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 15
Input Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 18
DDR2 and DDR3 SDRAM Controller . . . . . . . . . . . 19
DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Ethernet: Enhanced Three-Speed Ethernet (eTSEC) 28
Ethernet Management Interface
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 50
Local Bus Controller (eLBC) . . . . . . . . . . . . . . . . . . 53
Programmable Interrupt Controller . . . . . . . . . . . . . 65
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
High-Speed Serial Interfaces (HSSI) . . . . . . . . . . . . 72
PCI Express . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Serial RapidIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Package Description . . . . . . . . . . . . . . . . . . . . . . . . 101
Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
System Design Information . . . . . . . . . . . . . . . . . . 127
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 137
Document Revision History . . . . . . . . . . . . . . . . . . 139
Overview
•
•
•
the upper and lower words of the 64-bit GPRs as they are defined by the SPE APU.
— Embedded vector and scalar single-precision floating-point APUs. Provide an instruction set
for single-precision (32-bit) floating-point instructions.
— Double-precision floating-point APU. Provides an instruction set for double-precision (64-bit)
floating-point instructions that use the 64-bit GPRs.
— 36-bit real addressing
— Memory management unit (MMU). Especially designed for embedded applications. Supports
4-Kbyte to 4-Gbyte page sizes.
— Enhanced hardware and software debug support
— Performance monitor facility that is similar to, but separate from, the MPC8572E performance
monitor
The e500 defines features that are not implemented on this device. It also generally defines some
features that this device implements more specifically. An understanding of these differences can
be critical to ensure proper operation.
1 Mbyte L2 cache/SRAM
— Shared by both cores.
— Flexible configuration and individually configurable per core.
— Full ECC support on 64-bit boundary in both cache and SRAM modes
— Cache mode supports instruction caching, data caching, or both.
— External masters can force data to be allocated into the cache through programmed memory
ranges or special transaction types (stashing).
– 1, 2, or 4 ways can be configured for stashing only.
— Eight-way set-associative cache organization (32-byte cache lines)
— Supports locking entire cache or selected lines. Individual line locks are set and cleared through
Book E instructions or by externally mastered transactions.
— Global locking and Flash clearing done through writes to L2 configuration registers
— Instruction and data locks can be Flash cleared separately.
— Per-way allocation of cache region to a given processor.
— SRAM features include the following:
– 1, 2, 4, or 8 ways can be configured as SRAM.
– I/O devices access SRAM regions by marking transactions as snoopable (global).
– Regions can reside at any aligned location in the memory map.
– Byte-accessible ECC is protected using read-modify-write transaction accesses for
smaller-than-cache-line accesses.
e500 coherency module (ECM) manages core and intrasystem transactions
Address translation and mapping unit (ATMU)
— Twelve local access windows define mapping within local 36-bit address space.
— Inbound and outbound ATMUs map to larger external address spaces.
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
2
NXP Semiconductors
Overview
–
–
–
–
•
•
Three inbound windows plus a configuration window on PCI Express
Four inbound windows plus a default window on Serial RapidIO®
Four outbound windows plus default translation for PCI Express
Eight outbound windows plus default translation for Serial RapidIO with segmentation and
sub-segmentation support
Two 64-bit DDR2/DDR3 memory controllers
— Programmable timing supporting DDR2 and DDR3 SDRAM
— 64-bit data interface per controller
— Four banks of memory supported, each up to 4 Gbytes, for a maximum of 16 Gbytes per
controller
— DRAM chip configurations from 64 Mbits to 4 Gbits with x8/x16 data ports
— Full ECC support
— Page mode support
– Up to 32 simultaneous open pages for DDR2 or DDR3
— Contiguous or discontiguous memory mapping
— Cache line, page, bank, and super-bank interleaving between memory controllers
— Read-modify-write support for RapidIO atomic increment, decrement, set, and clear
transactions
— Sleep mode support for self-refresh SDRAM
— On-die termination support when using DDR2 or DDR3
— Supports auto refreshing
— On-the-fly power management using CKE signal
— Registered DIMM support
— Fast memory access through JTAG port
— 1.8-V SSTL_1.8 compatible I/O
— Support 1.5-V operation for DDR3. The detail is TBD pending on official release of
appropriate industry specifications.
— Support for battery-backed main memory
Programmable interrupt controller (PIC)
— Programming model is compliant with the OpenPIC architecture.
— Supports 16 programmable interrupt and processor task priority levels
— Supports 12 discrete external interrupts
— Supports 4 message interrupts per processor with 32-bit messages
— Supports connection of an external interrupt controller such as the 8259 programmable
interrupt controller
— Four global high resolution timers/counters per processor that can generate interrupts
— Supports a variety of other internal interrupt sources
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
NXP Semiconductors
3
Overview
•
•
— Supports fully nested interrupt delivery
— Interrupts can be routed to external pin for external processing.
— Interrupts can be routed to the e500 core’s standard or critical interrupt inputs.
— Interrupt summary registers allow fast identification of interrupt source.
Integrated security engine (SEC) optimized to process all the algorithms associated with IPSec,
IKE, SSL/TLS, SRTP, 802.16e, and 3GPP
— Four crypto-channels, each supporting multi-command descriptor chains
– Dynamic assignment of crypto-execution units through an integrated controller
– Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
— PKEU—public key execution unit
– RSA and Diffie-Hellman; programmable field size up to 4096 bits
– Elliptic curve cryptography with F2m and F(p) modes and programmable field size up to
1023 bits
— DEU—Data Encryption Standard execution unit
– DES, 3DES
– Two key (K1, K2, K1) or three key (K1, K2, K3)
– ECB, CBC and OFB-64 modes for both DES and 3DES
— AESU—Advanced Encryption Standard unit
– Implements the Rijndael symmetric key cipher
– ECB, CBC, CTR, CCM, GCM, CMAC, OFB-128, CFB-128, and LRW modes
– 128-, 192-, and 256-bit key lengths
— AFEU—ARC four execution unit
– Implements a stream cipher compatible with the RC4 algorithm
– 40- to 128-bit programmable key
— MDEU—message digest execution unit
– SHA-1 with 160-bit message digest
– SHA-2 (SHA-256, SHA-384, SHA-512)
– MD5 with 128-bit message digest
– HMAC with all algorithms
— KEU—Kasumi execution unit
– Implements F8 algorithm for encryption and F9 algorithm for integrity checking
– Also supports A5/3 and GEA-3 algorithms
— RNG—random number generator
— XOR engine for parity checking in RAID storage applications
— CRC execution unit
– CRC-32 and CRC-32C
Pattern Matching Engine with DEFLATE decompression
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
4
NXP Semiconductors
Overview
•
•
•
•
•
— Regular expression (regex) pattern matching
– Built-in case insensitivity, wildcard support, no pattern explosion
– Cross-packet pattern detection
– Fast pattern database compilation and fast incremental updates
– 16000 patterns, each up to 128 bytes in length
– Patterns can be split into 256 sets, each of which can contain 16 subsets
— Stateful rule engine enables hardware execution of state-aware logic when a pattern is found
– Useful for contextual searches, multi-pattern signatures, or for performing additional checks
after a pattern is found
– Capable of capturing and utilizing data from the data stream (such as LENGTH field) and
using that information in subsequent pattern searches (for example, positive match only if
pattern is detected within the number of bytes specified in the LENGTH field)
– 8192 stateful rules
— Deflate engine
– Supports decompression of DEFLATE compression format including zlib and gzip
– Can work independently or in conjunction with the Pattern Matching Engine (that is
decompressed data can be passed directly to the Pattern Matching Engine without further
software involvement or memory copying)
Two Table Lookup Units (TLU)
— Hardware-based lookup engine offloads table searches from e500 cores
— Longest prefix match, exact match, chained hash, and flat data table formats
— Up to 32 tables, with each table up to 16M entries
— 32-, 64-, 96-, or 128-bit keys
Two I2C controllers
— Two-wire interface
— Multiple master support
— Master or slave I2C mode support
— On-chip digital filtering rejects spikes on the bus
Boot sequencer
— Optionally loads configuration data from serial ROM at reset the I2C interface
— Can be used to initialize configuration registers and/or memory
— Supports extended I2C addressing mode
— Data integrity checked with preamble signature and CRC
DUART
— Two 4-wire interfaces (SIN, SOUT, RTS, CTS)
— Programming model compatible with the original 16450 UART and the PC16550D
Enhanced local bus controller (eLBC)
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
NXP Semiconductors
5
Overview
—
—
—
—
—
•
Multiplexed 32-bit address and data bus operating at up to 150 MHz
Eight chip selects support eight external slaves
Up to 8-beat burst transfers
The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller.
Three protocol engines available on a per-chip select basis:
– General-purpose chip select machine (GPCM)
– Three user programmable machines (UPMs)
– NAND Flash control machine (FCM)
— Parity support
— Default boot ROM chip select with configurable bus width (8, 16, or 32 bits)
Four enhanced three-speed Ethernet controllers (eTSECs)
— Three-speed support (10/100/1000 Mbps)
— Four IEEE Std 802.3®, 802.3u, 802.3x, 802.3z, 802.3ac, 802.3ab-compatible controllers
— Support for various Ethernet physical interfaces:
– 1000 Mbps full-duplex IEEE 802.3 GMII, IEEE 802.3z TBI, RTBI, RGMII, and SGMII
– 10/100 Mbps full and half-duplex IEEE 802.3 MII, IEEE 802.3 RGMII, and RMII
— Flexible configuration for multiple PHY interface configurations
— TCP/IP acceleration and QoS features available
– IP v4 and IP v6 header recognition on receive
– IP v4 header checksum verification and generation
– TCP and UDP checksum verification and generation
– Per-packet configurable acceleration
– Recognition of VLAN, stacked (Q-in-Q) VLAN, 802.2, PPPoE session, MPLS stacks, and
ESP/AH IP-security headers
– Supported in all FIFO modes
— Quality of service support:
– Transmission from up to eight physical queues
– Reception to up to eight physical queues
— Full- and half-duplex Ethernet support (1000 Mbps supports only full duplex):
– IEEE 802.3 full-duplex flow control (automatic PAUSE frame generation or
software-programmed PAUSE frame generation and recognition)
— Programmable maximum frame length supports jumbo frames (up to 9.6 Kbytes) and
IEEE Std 802.1™ virtual local area network (VLAN) tags and priority
— VLAN insertion and deletion
– Per-frame VLAN control word or default VLAN for each eTSEC
– Extracted VLAN control word passed to software separately
— Retransmission following a collision
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
6
NXP Semiconductors
Overview
•
•
•
— CRC generation and verification of inbound/outbound frames
— Programmable Ethernet preamble insertion and extraction of up to 7 bytes
— MAC address recognition:
– Exact match on primary and virtual 48-bit unicast addresses
– VRRP and HSRP support for seamless router fail-over
– Up to 16 exact-match MAC addresses supported
– Broadcast address (accept/reject)
– Hash table match on up to 512 multicast addresses
– Promiscuous mode
— Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet
programming models
— RMON statistics support
— 10-Kbyte internal transmit and 2-Kbyte receive FIFOs
— Two MII management interfaces for control and status
— Ability to force allocation of header information and buffer descriptors into L2 cache
10/100 Fast Ethernet controller (FEC) management interface
— 10/100 Mbps full and half-duplex IEEE 802.3 MII for system management
— Note: When enabled, the FEC occupies eTSEC3 and eTSEC4 parallel interface signals. In such
a mode, eTSEC3 and eTSEC4 are only available through SGMII interfaces.
OCeaN switch fabric
— Full crossbar packet switch
— Reorders packets from a source based on priorities
— Reorders packets to bypass blocked packets
— Implements starvation avoidance algorithms
— Supports packets with payloads of up to 256 bytes
Two integrated DMA controllers
— Four DMA channels per controller
— All channels accessible by the local masters
— Extended DMA functions (advanced chaining and striding capability)
— Misaligned transfer capability
— Interrupt on completed segment, link, list, and error
— Supports transfers to or from any local memory or I/O port
— Selectable hardware-enforced coherency (snoop/no snoop)
— Ability to start and flow control up to 4 (both Channel 0 and 1 for each DMA Controller) of the
8 total DMA channels from external 3-pin interface by the remote masters
— The Channel 2 of DMA Controller 2 is only allowed to initiate and start a DMA transfer by the
remote master, because only one of the 3-external pins (DMA2_DREQ[2]) is made available
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
NXP Semiconductors
7
Overview
•
•
— Ability to launch DMA from single write transaction
Serial RapidIO interface unit
— Supports RapidIO Interconnect Specification, Revision 1.2
— Both 1x and 4x LP-serial link interfaces
— Long- and short-haul electricals with selectable pre-compensation
— Transmission rates of 1.25, 2.5, and 3.125 Gbaud (data rates of 1.0, 2.0, and 2.5 Gbps) per lane
— Auto-detection of 1x- and 4x-mode operation during port initialization
— Link initialization and synchronization
— Large and small size transport information field support selectable at initialization time
— 34-bit addressing
— Up to 256 bytes data payload
— All transaction flows and priorities
— Atomic set/clr/inc/dec for read-modify-write operations
— Generation of IO_READ_HOME and FLUSH with data for accessing cache-coherent data at
a remote memory system
— Receiver-controlled flow control
— Error detection, recovery, and time-out for packets and control symbols as required by the
RapidIO specification
— Register and register bit extensions as described in part VIII (Error Management) of the
RapidIO specification
— Hardware recovery only
— Register support is not required for software-mediated error recovery.
— Accept-all mode of operation for fail-over support
— Support for RapidIO error injection
— Internal LP-serial and application interface-level loopback modes
— Memory and PHY BIST for at-speed production test
RapidIO–compliant message unit
— 4 Kbytes of payload per message
— Up to sixteen 256-byte segments per message
— Two inbound data message structures within the inbox
— Capable of receiving three letters at any mailbox
— Two outbound data message structures within the outbox
— Capable of sending three letters simultaneously
— Single segment multicast to up to 32 devIDs
— Chaining and direct modes in the outbox
— Single inbound doorbell message structure
— Facility to accept port-write messages
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
8
NXP Semiconductors
Overview
•
•
•
•
•
•
•
Three PCI Express controllers
— PCI Express 1.0a compatible
— Supports x8, x4, x2, and x1 link widths (see following bullet for specific width configuration
options)
— Auto-detection of number of connected lanes
— Selectable operation as root complex or endpoint
— Both 32- and 64-bit addressing
— 256-byte maximum payload size
— Virtual channel 0 only
— Full 64-bit decode with 36-bit wide windows
Pin multiplexing for the high-speed I/O interfaces supports one of the following configurations:
— Single x8/x4/x2/x1 PCI Express
— Dual x4/x2/x1 PCI Express
— Single x4/x2/x1 PCI Express and dual x2/x1 PCI Express
— Single 1x/4x Serial RapidIO and single x4/x2/x1 PCI Express
Power management
— Supports power saving modes: doze, nap, and sleep
— Employs dynamic power management, that automatically minimizes power consumption of
blocks when they are idle
System performance monitor
— Supports eight 32-bit counters that count the occurrence of selected events
— Ability to count up to 512 counter-specific events
— Supports 64 reference events that can be counted on any of the eight counters
— Supports duration and quantity threshold counting
— Permits counting of burst events with a programmable time between bursts
— Triggering and chaining capability
— Ability to generate an interrupt on overflow
System access port
— Uses JTAG interface and a TAP controller to access entire system memory map
— Supports 32-bit accesses to configuration registers
— Supports cache-line burst accesses to main memory
— Supports large block (4-Kbyte) uploads and downloads
— Supports continuous bit streaming of entire block for fast upload and download
IEEE Std 1149.1™ compatible, JTAG boundary scan
1023 FC-PBGA package
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
NXP Semiconductors
9
Electrical Characteristics
Figure 1 shows the MPC8572E block diagram.
DDR2/3
SDRAM
64b DDR2/DDR3
Memory Controller
DDR2/3
SDRAM
64b DDR2/DDR3
Memory Controller
(NOR/NAND)
Flash
GPIO
Enhanced Local Bus
Controller
e500 Core
32-Kbyte L1
Instruction
Cache
Security
Engine
XOR
Engine
Table Lookup
Unit
Table Lookup
Unit
IRQs
MPC8572E
Pattern Matching Deflate
Engine
Engine
e500
Coherency
Module
1-Mbyte L2
Cache/
SRAM
Core
Complex
Bus
e500 Core
32-Kbyte L1
Instruction
Cache
Programmable Interrupt
Controller (PIC)
Serial
32-Kbyte
L1 Data
Cache
32-Kbyte
L1 Data
Cache
DUART
I2C
I2C
Controller
I2C
I2C
Controller
MII, GMII, TBI,
RTBI, RGMII,
RMII, SGMII, FIFO
MII, GMII, TBI,
RTBI, RGMII,
RMII, SGMII, FIFO
MII, GMII, TBI,
RTBI, RGMII,
RMII, SGMII, FIFO
RTBI, RGMII,
RMII, SGMII
MII
eTSEC
Serial RapidIO
PCI Express
OceaN
Switch
Fabric
10/100/1Gb
4x Serial RapidIO
x8/x4/x2/x1 PCI Express
Serial RapidIO
Messaging Unit
eTSEC
10/100/1Gb
eTSEC
4-Channel DMA
Controller
External control
4-Channel DMA
Controller
External control
10/100/1Gb
eTSEC
10/100/1Gb
FEC
Figure 1. MPC8572E Block Diagram
2
Electrical Characteristics
This section provides the AC and DC electrical specifications for the MPC8572E. The MPC8572E is
currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but
are included for a more complete reference. These are not purely I/O buffer design specifications.
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
10
NXP Semiconductors
Electrical Characteristics
2.1
Overall DC Electrical Characteristics
This section covers the ratings, conditions, and other characteristics.
2.1.1
Absolute Maximum Ratings
Table 1 provides the absolute maximum ratings.
Table 1. Absolute Maximum Ratings1
Characteristic
Symbol
Range
Core supply voltage
VDD
–0.3 to 1.21
V
—
PLL supply voltage
AVDD
–0.3 to 1.21
V
—
Core power supply for SerDes transceivers
SVDD
–0.3 to 1.21
V
—
Pad power supply for SerDes transceivers
XVDD
–0.3 to 1.21
V
—
DDR SDRAM
Controller I/O
supply voltage
DDR2 SDRAM Interface
GVDD
–0.3 to 1.98
V
—
DDR3 SDRAM Interface
—
–0.3 to 1.65
LVDD (for eTSEC1
and eTSEC2)
–0.3 to 3.63
–0.3 to 2.75
V
2
TVDD (for eTSEC3
and eTSEC4, FEC)
–0.3 to 3.63
–0.3 to 2.75
—
2
DUART, system control and power management, I2C, and JTAG
I/O voltage
OVDD
–0.3 to 3.63
V
—
Local bus and GPIO I/O voltage
BVDD
–0.3 to 3.63
–0.3 to 2.75
–0.3 to 1.98
V
—
Input voltage
MVIN
–0.3 to (GVDD + 0.3)
V
3
MVREFn
–0.3 to (GVDD/2 + 0.3)
V
—
Three-speed Ethernet signals
LVIN
TVIN
–0.3 to (LVDD + 0.3)
–0.3 to (TVDD + 0.3)
V
3
Local bus and GPIO signals
BVIN
–0.3 to (BVDD + 0.3)
—
—
DUART, SYSCLK, system control and power
management, I2C, and JTAG signals
OVIN
–0.3 to (OVDD + 0.3)
V
3
TSTG
–55 to 150
°C
—
Three-speed Ethernet I/O, FEC management interface, MII
management voltage
DDR2 and DDR3 SDRAM interface signals
DDR2 and DDR3 SDRAM interface reference
Storage temperature range
Unit Notes
—
Notes:
1. Functional operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional
operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent
damage to the device.
2. The 3.63V maximum is only supported when the port is configured in GMII, MII, RMII or TBI modes; otherwise the 2.75V
maximum applies. See Section 8.2, “FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications,” for details on
the recommended operating conditions per protocol.
3. (M,L,O)VIN may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
NXP Semiconductors
11
Electrical Characteristics
2.1.2
Recommended Operating Conditions
Table 2 provides the recommended operating conditions for this device. Note that the values shown are the
recommended and tested operating conditions. Proper device operation outside these conditions is not
guaranteed.
Table 2. Recommended Operating Conditions
Characteristic
Symbol Recommended Value Unit Notes
Core supply voltage
VDD
1.1 V ± 55 mV
V
—
PLL supply voltage
AVDD
1.1 V ± 55 mV
V
1
Core power supply for SerDes transceivers
SVDD
1.1 V ± 55 mV
V
—
Pad power supply for SerDes transceivers
XVDD
1.1 V ± 55 mV
V
—
DDR SDRAM
Controller I/O
supply voltage
GVDD
1.8 V ± 90 mV
V
—
DDR2 SDRAM Interface
DDR3 SDRAM Interface
1.5 V ± 75 mV
—
LVDD
3.3 V ± 165 mV
2.5 V ± 125 mV
TVDD
3.3 V ± 165 mV
2.5 V ± 125 mV
DUART, system control and power management, I2C, and JTAG I/O voltage
OVDD
3.3 V ± 165 mV
V
3
Local bus and GPIO I/O voltage
BVDD
3.3 V ± 165 mV
2.5 V ± 125 mV
1.8 V ± 90 mV
V
—
Input voltage
MVIN
GND to GVDD
V
2
MVREFn
GVDD/2 ± 1%
V
—
Three-speed Ethernet signals
LVIN
TVIN
GND to LVDD
GND to TVDD
V
4
Local bus and GPIO signals
BVIN
GND to BVDD
V
—
Local bus, DUART, SYSCLK, Serial RapidIO, system
control and power management, I2C, and JTAG
signals
OVIN
GND to OVDD
V
3
TJ
0 to 105
°C
—
Three-speed Ethernet I/O voltage
DDR2 and DDR3 SDRAM Interface signals
DDR2 and DDR3 SDRAM Interface reference
Junction temperature range
V
4
4
Notes:
1. This voltage is the input to the filter discussed in Section 21.2.1, “PLL Power Supply Filtering,” and not necessarily the
voltage at the AVDD pin, that may be reduced from VDD by the filter.
2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during
power-on reset and power-down sequences.
3. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during
power-on reset and power-down sequences.
4. Caution: L/TVIN must not exceed L/TVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during
power-on reset and power-down sequences.
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
12
NXP Semiconductors
Electrical Characteristics
Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8572E.
T/B/G/L/OVDD + 20%
T/B/G/L/OVDD + 5%
T/B/G/L/OVDD
VIH
GND
GND – 0.3 V
VIL
GND – 0.7 V
Not to Exceed 10%
of tCLOCK1
Note:
tCLOCK refers to the clock period associated with the respective interface:
For I2C and JTAG, tCLOCK references SYSCLK.
For DDR, tCLOCK references MCLK.
For eTSEC, tCLOCK references EC_GTX_CLK125.
For eLBC, tCLOCK references LCLK.
Figure 2. Overshoot/Undershoot Voltage for TVDD/BVDD/GVDD/LVDD/OVDD
The core voltage must always be provided at nominal 1.1 V. (See Table 2 for actual recommended core
voltage.) Voltage to the processor interface I/Os are provided through separate sets of supply pins and must
be provided at the voltages shown in Table 2. The input voltage threshold scales with respect to the
associated I/O supply voltage. TVDD, BVDD, OVDD, and LVDD based receivers are simple CMOS I/O
circuits and satisfy appropriate LVCMOS type specifications. The DDR2 and DDR3 SDRAM interface
uses differential receivers referenced by the externally supplied MVREFn signal (nominally set to GVDD/2)
as is appropriate for the SSTL_1.8 electrical signaling standard for DDR2 or 1.5-V electrical signaling for
DDR3. The DDR DQS receivers cannot be operated in single-ended fashion. The complement signal must
be properly driven and cannot be grounded.
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
NXP Semiconductors
13
Electrical Characteristics
2.1.3
Output Driver Characteristics
Table 3 provides information on the characteristics of the output driver strengths.
Table 3. Output Drive Capability
Programmable
Output Impedance
(Ω)
Supply
Voltage
25
35
BVDD = 3.3 V
BVDD = 2.5 V
45(default)
45(default)
125
BVDD = 3.3 V
BVDD = 2.5 V
BVDD = 1.8 V
DDR2 signal
18
36 (half strength mode)
GVDD = 1.8 V
2
DDR3 signal
20
40 (half strength mode)
GVDD = 1.5 V
2
eTSEC/10/100 signals
45
L/TVDD = 2.5/3.3 V
—
DUART, system control, JTAG
45
OVDD = 3.3 V
—
I2C
150
OVDD = 3.3 V
—
Driver Type
Local bus interface utilities signals
Notes
1
Notes:
1. The drive strength of the local bus interface is determined by the configuration of the appropriate bits in PORIMPSCR.
2. The drive strength of the DDR2 or DDR3 interface in half-strength mode is at Tj = 105°C and at GVDD (min).
2.2
Power Sequencing
The MPC8572E requires its power rails to be applied in a specific sequence to ensure proper device
operation. These requirements are as follows for power up:
1. VDD, AVDD_n, BVDD, LVDD, OVDD, SVDD_SRDS1 and SVDD_SRDS2, TVDD, XVDD_SRDS1 and
XVDD_SRDS2
2. GVDD
All supplies must be at their stable values within 50 ms.
Items on the same line have no ordering requirement with respect to one another. Items on separate lines
must be ordered sequentially such that voltage rails on a previous step must reach 90% of their value before
the voltage rails on the current step reach 10% of theirs.
To guarantee MCKE low during power-on reset, the above sequencing for GVDD is required. If there is no
concern about any of the DDR signals being in an indeterminate state during power-on reset, then the
sequencing for GVDD is not required.
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
14
NXP Semiconductors
Power Characteristics
NOTE
From a system standpoint, if any of the I/O power supplies ramp prior to the
VDD core supply, the I/Os associated with that I/O supply may drive a logic
one or zero during power-on reset, and extra current may be drawn by the
device.
3
Power Characteristics
The estimated typical power dissipation for the core complex bus (CCB) versus the core frequency for this
family of PowerQUICC III devices with out the L in its part ordering is shown in Table 4.
Table 4. MPC8572E Power Dissipation 1
CCB Frequency
Core Frequency
Typical-652
Typical-1053
Maximum4
Unit
533
1067
12.3
17.8
18.5
W
533
1200
12.3
17.8
18.5
W
533
1333
16.3
22.8
24.5
W
600
1500
17.3
23.9
25.9
W
Notes:
1
This reflects the MPC8572E power dissipation excluding the power dissipation from B/G/L/O/T/XVDD rails.
Typical-65 is based on VDD = 1.1 V, Tj = 65 °C, running Dhrystone.
3 Typical-105 is based on V
DD = 1.1 V, Tj = 105 °C, running Dhrystone.
4
Maximum is based on VDD = 1.1 V, Tj = 105 °C, running a smoke test.
2
The estimated typical power dissipation for the core complex bus (CCB) versus the core frequency for this
family of PowerQUICC III devices with the L in its port ordering is shown in Table 5.
Table 5. MPC8572EL Power Dissipation 1
CCB Frequency
Core Frequency
Typical-652
Typical-1053
Maximum4
Unit
533
1067
12
15
15.8
W
533
1200
12
15.5
16.3
W
533
1333
12
15.9
16.9
W
600
1500
13
18.7
20.0
W
Notes:
1
This reflects the MPC8572E power dissipation excluding the power dissipation from B/G/L/O/T/XVDD rails.
Typical-65 is based on VDD = 1.1 V, Tj = 65 °C, running Dhrystone.
3 Typical-105 is based on V
DD = 1.1 V, Tj = 105 °C, running Dhrystone.
4
Maximum is based on VDD = 1.1 V, Tj = 105 °C, running a smoke test.
2
MPC8572E PowerQUICC III Integrated Processor Hardware Specifications, Rev. 7
NXP Semiconductors
15
Input Clocks
4
4.1
Input Clocks
System Clock Timing
Table 6 provides the system clock (SYSCLK) AC timing specifications for the MPC8572E.
Table 6. SYSCLK AC Timing Specifications
At recommended operating conditions with OVDD of 3.3V ± 5%.
Parameter/Condition
Symbol
Min
Typical
Max
Unit
Notes
SYSCLK frequency
fSYSCLK
33
—
133
MHz
1
SYSCLK cycle time
tSYSCLK
7.5
—
30.3
ns
—
SYSCLK rise and fall time
tKH, tKL
0.6
1.0
1.2
ns
2
tKHK/tSYSCLK
40
—
60
%
3
—
—
—
+/– 150
ps
4, 5, 6
SYSCLK duty cycle
SYSCLK jitter
Notes:
1. Caution: The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting
SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum
operating frequencies.Refer to Section 19.2, “CCB/SYSCLK PLL Ratio,” and Section 19.3, “e500 Core PLL Ratio,” for ratio
settings.
2. Rise and fall times for SYSCLK are measured at 0.6 V and 2.7 V.
3. Timing is guaranteed by design and characterization.
4. This represents the total input jitter—short term and long term—and is guaranteed by design.
5. The SYSCLK driver’s closed loop jitter bandwidth should be