0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF1K50H-TF2

MRF1K50H-TF2

  • 厂商:

    NXP(恩智浦)

  • 封装:

    -

  • 描述:

    MRF1K50H27MHZEVALBOARD

  • 数据手册
  • 价格&库存
MRF1K50H-TF2 数据手册
Document Number: MRF1K50H Rev. 1.1, 03/2017 NXP Semiconductors Technical Data RF Power LDMOS Transistor MRF1K50H High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET This high ruggedness device is designed for use in high VSWR industrial, scientific and medical applications, as well as radio and VHF TV broadcast, sub--GHz aerospace and mobile radio applications. Its unmatched input and output design allows for wide frequency range use from 1.8 to 500 MHz. Typical Performance: VDD = 50 Vdc Frequency (MHz) Signal Type Pout (W) Gps (dB) ηD (%) 27 CW 1550 CW 25.9 78.3 81.36 (1) CW 1400 CW 23.0 75.0 87.5–108 (2,3) CW 1475 CW 23.3 83.4 230 (4) Pulse (100 µsec, 20% Duty Cycle) 1500 Peak 23.7 74.0 1.8–500 MHz, 1500 W CW, 50 V WIDEBAND RF POWER LDMOS TRANSISTOR NI--1230H--4S Load Mismatch/Ruggedness Frequency (MHz) 230 1. 2. 3. 4. Signal Type VSWR Pin (W) Test Voltage Result (4) Pulse > 65:1 at all 13 Peak 50 No Device (100 µsec, 20% Phase Angles (3 dB Degradation Duty Cycle) Overdrive) Data from 81.36 MHz narrowband reference circuit (page 11). Data from 87.5–108 MHz broadband reference circuit (page 5). The values shown are the center band performance numbers across the indicated frequency range. Data from 230 MHz narrowband production test fixture (page 16). Features • High drain--source avalanche energy absorption capability • Unmatched input and output allowing wide frequency range utilization • Device can be used single--ended or in a push--pull configuration • Characterized from 30 to 50 V for ease of use • Suitable for linear application • Integrated ESD protection with greater negative gate--source voltage range for improved Class C operation • Recommended driver: MRFE6VS25N (25 W) • Lower thermal resistance part available: MRF1K50N • Included in NXP product longevity program with assured supply for a minimum of 15 years after launch Gate A 3 1 Drain A Gate B 4 2 Drain B (Top View) Note: The backside of the package is the source terminal for the transistor. Figure 1. Pin Connections Typical Applications • Industrial, scientific, medical (ISM) – Laser generation – Plasma etching – Particle accelerators – MRI and other medical applications – Industrial heating, welding and drying systems • Broadcast – Radio broadcast – VHF TV broadcast • Aerospace – VHF omnidirectional range (VOR) – HF and VHF communications – Weather radar • Mobile radio – VHF and UHF base stations  2016–2017 NXP B.V. RF Device Data NXP Semiconductors MRF1K50H 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, +135 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Operating Voltage VDD 50 Vdc Storage Temperature Range Tstg – 65 to +150 °C Case Operating Temperature Range TC –40 to +150 °C Operating Junction Temperature Range (1,2) TJ –40 to +225 °C Total Device Dissipation @ TC = 25°C Derate above 25°C PD 1667 8.33 W W/°C Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 78°C, 1500 W CW, 50 Vdc, IDQ(A+B) = 200 mA, 88 MHz RθJC 0.10 °C/W Thermal Impedance, Junction to Case Pulse: Case Temperature 73°C, 1500 W Peak, 100 µsec Pulse Width, 20% Duty Cycle, IDQ(A+B) = 100 mA, 230 MHz ZθJC 0.028 °C/W Table 2. Thermal Characteristics Characteristic Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Machine Model (per EIA/JESD22--A115) B, passes 250 V Charge Device Model (per JESD22--C101) IV, passes 2000 V Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Off Characteristics Symbol Min Typ Max Unit IGSS — — 1 µAdc 135 — — Vdc (4) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 30 µAdc) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 10 µAdc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 20 µAdc Gate Threshold Voltage (4) (VDS = 10 Vdc, ID = 2130 µAdc) VGS(th) 1.7 2.2 2.7 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID(A+B) = 100 mAdc, Measured in Functional Test) VGS(Q) 1.9 2.4 2.9 Vdc Drain--Source On--Voltage (4) (VGS = 10 Vdc, ID = 2.4 Adc) VDS(on) — 0.15 — Vdc Forward Transconductance (4) (VDS = 10 Vdc, ID = 36 Adc) gfs — 33.5 — S On Characteristics 1. 2. 3. 4. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.nxp.com/RF/calculators. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955. Each side of device measured separately. (continued) MRF1K50H 2 RF Device Data NXP Semiconductors Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 3.48 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 205 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 664 — pF Dynamic Characteristics (1) Functional Tests (In NXP Production Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 1500 W Peak (300 W Avg.), f = 230 MHz, 100 µsec Pulse Width, 20% Duty Cycle Power Gain Gps 22.5 23.7 25.5 dB Drain Efficiency ηD 70.0 74.0 — % Input Return Loss IRL — –18.3 –9 dB Table 5. Load Mismatch/Ruggedness (In NXP Production Test Fixture, 50 ohm system) IDQ(A+B) = 100 mA Frequency (MHz) 230 Signal Type VSWR Pin (W) Pulse (100 µsec, 20% Duty Cycle) > 65:1 at all Phase Angles 13 Peak (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation Table 6. Ordering Information Device MRF1K50HR5 Tape and Reel Information R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel Package NI--1230H--4S 1. Each side of device measured separately. MRF1K50H RF Device Data NXP Semiconductors 3 TYPICAL CHARACTERISTICS 1.08 10000 Ciss 1000 500 mA IDQ(A+B) = 100 mA 1.06 NORMALIZED VGS(Q) C, CAPACITANCE (pF) Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc Coss 100 Crss 10 VDD = 50 Vdc 1.04 1.02 1500 mA 2000 mA 1 0.98 0.96 0.94 1 0 10 20 30 40 0.92 –50 50 –25 0 25 50 75 100 TC, CASE TEMPERATURE (°C) VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Note: Each side of device measured separately. IDQ (mA) Slope (mV/°°C) Figure 2. Capacitance versus Drain--Source Voltage 100 –2.87 500 –2.56 1500 –2.29 2000 –2.11 Figure 3. Normalized VGS versus Quiescent Current and Case Temperature 0.11 108 0.09 107 D = 0.7 0.07 MTTF (HOURS) ZJC, THERMAL IMPEDANCE (°C/W) VDD = 50 Vdc ID = 36.0 Amps D = 0.5 0.05 PD D = 0.3 t2 0.03 D = Duty Factor = t1/t2 t1 = Pulse Width t2 = Pulse Period TJ = PD * ZJC + TC D = 0.1 0.01 0 0.00001 0.0001 t1 0.001 0.01 0.1 1 106 105 104 103 10 RECTANGULAR PULSE WIDTH (S) Figure 4. Maximum Transient Thermal Impedance 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http:/www.nxp.com/RF/calculators. Figure 5. MTTF versus Junction Temperature — CW MRF1K50H 4 RF Device Data NXP Semiconductors 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Table 7. 87.5–108 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 200 mA, Pin = 7 W, CW Frequency (MHz) Gps (dB) ηD (%) Pout (W) 87.5 22.8 81.8 1325 98 23.3 83.4 1475 108 23.0 81.2 1410 MRF1K50H RF Device Data NXP Semiconductors 5 87.5–108 MHz BROADBAND REFERENCE CIRCUIT — 2.88″″ × 5.12″″ (73 mm × 130 mm) C6 C25 C7 C28 C22 C26 C21 L4 C27 C5 L1 R2 C20 C19 C18 C17 C4 C11 R1 C3 C1 C16 Q1 C24 C12 C2* C23* C15* L3 L2 R3 C13 C14* C8 MRF1K50H Rev. 0 C9 C10 D62499 *C2, C14, C15 and C23 are mounted vertically. Note: Q1 leads are soldered to the PCB with L3 soldered directly on top of the drain leads. 0.26 (6.5) 0.63 (16.0) 0.26 (6.6) L3 total wire length = 2.04″ (52 mm) Inches (mm) Figure 6. MRF1K50H 87.5–108 MHz Broadband Reference Circuit Component Layout Figure 7. MRF1K50H 87.5–108 MHz Broadband Reference Circuit Component Layout — Bottom MRF1K50H 6 RF Device Data NXP Semiconductors 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Table 8. MRF1K50H Broadband Reference Circuit Component Designations and Values — 87.5–108 MHz Part Description Part Number Manufacturer C1, C3, C6, C9, C18, C19, C20, C21, C22 1000 pF Chip Capacitors ATC100B102JT50XT ATC C2 33 pF Chip Capacitor ATC100B330JT500XT ATC C4, C5, C8 10,000 pF Chip Capacitors ATC200B103KT50XT ATC C7, C10, C15, C16, C17, C23 470 pF Chip Capacitors ATC100B471JT200XT ATC C11 91 pF 300 V Mica Capacitor MIN02-002EC910J-F CDE C12 56 pF 300 V Mica Capacitor MIN02-002DC560J-F CDE C13 2.2 pF Chip Capacitor ATC100B2R2JT500XT ATC C14, C24 12 pF Chip Capacitors ATC100B120GT500XT ATC C25, C26, C27 220 µF, 63 V Electrolytic Capacitors EEV-FK2A221M Panasonic C28 22 µF, 35 V Electrolytic Capacitor UUD1V220MCL1GS Nichicon L1, L2 17.5 nH Inductors, 6 Turns B06TJLC Coilcraft L3 1.5 mm Non--Tarnish Silver Plated Copper Wire SP1500NT-001 Scientific Wire Company L4 22 nH Inductor 1212VS-22NMEB Coilcraft Q1 RF Power LDMOS Transistor MRF1K50H NXP R1 10 Ω, 1/4 W Chip Resistor CRCW120610R0JNEA Vishay R2, R3 33 Ω, 2 W Chip Resistors 1-2176070-3 TE Connectivity PCB Arlon TC350 0.030″, εr = 3.5 D62499 MTL Note: Refer to MRF1K50H’s printed circuit boards and schematics to download the 87.5–108 MHz heatsink drawing. MRF1K50H RF Device Data NXP Semiconductors 7 TYPICAL CHARACTERISTICS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT 27 83 25 81 79 24 23 77 Gps 1600 22 1500 21 Pout 20 1400 1300 19 18 87 VDD = 50 Vdc, Pin = 7 W, lDQ(A+B) = 200 mA 89 91 93 95 97 99 1200 105 107 109 101 103 Pout, OUTPUT POWER (WATTS) Gps, POWER GAIN (dB) ηD ηD, DRAIN EFFICIENCY (%) 85 26 f, FREQUENCY (MHz) Figure 8. Power Gain, Drain Efficiency and CW Output Power versus Frequency at a Constant Input Power Pout, OUTPUT POWER (WATTS) PEAK 1600 1400 87.5 MHz 1200 1000 98 MHz 800 108 MHz 600 400 200 VDD = 50 Vdc, IDQ(A+B) = 200 mA 0 0 1 2 3 4 5 6 7 8 9 Pin, INPUT POWER (WATTS) Figure 9. CW Output Power versus Input Power and Frequency 30 Gps, POWER GAIN (dB) 28 80 98 MHz 60 108 MHz 27 40 87.5 MHz 26 20 98 MHz 108 MHz 1600 25 87.5 MHz 24 23 1200 800 Pout Gps 98 MHz 22 21 0 1 2 400 VDD = 50 Vdc, lDQ(A+B) = 200 mA 108 MHz 3 4 5 6 7 8 Pout, OUTPUT POWER (WATTS) 29 ηD, DRAIN EFFICIENCY (%) 100 f = 87.5 MHz ηD 0 9 Pin, INPUT POWER (WATTS) Figure 10. Power Gain, Drain Efficiency and CW Output Power versus Input Power and Frequency MRF1K50H 8 RF Device Data NXP Semiconductors 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Zo = 10 Ω Zsource f = 108 MHz f = 108 MHz f = 87.5 MHz f = 87.5 MHz Zload f MHz Zsource Ω Zload Ω 87.5 4.07 + j5.13 3.92 + j2.89 98 3.93 + j4.84 3.39 + j2.35 108 3.50 + j4.72 2.83 + j2.56 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 Ω = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network 50 Ω + Z load Figure 11. Broadband Series Equivalent Source and Load Impedance — 87.5–108 MHz MRF1K50H RF Device Data NXP Semiconductors 9 HARMONIC MEASUREMENTS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT F1 H2 H3 H4 Fundamental (F1) 87.5 MHz 175 MHz –30 dB 262.5 MHz –28 dB 350 MHz –46 dB H3 H4 H2 (175 MHz) (262.5 MHz) (350 MHz) –30 dB –28 dB –46 dB H3 H2 H4 Center: 228.5 MHz 35 MHz Span: 350 MHz Figure 12. 87.5 MHz Harmonics @ 1200 W CW MRF1K50H 10 RF Device Data NXP Semiconductors 81.36 MHz NARROWBAND REFERENCE CIRCUIT Table 9. 81.36 MHz Narrowband Performance (In NXP Reference Circuit, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 150 mA, Pin = 3 W, CW Frequency (MHz) Gps (dB) ηD (%) Pout (W) 81.36 23.0 75.0 1400 MRF1K50H RF Device Data NXP Semiconductors 11 81.36 MHz NARROWBAND REFERENCE CIRCUIT — 2.88″″ × 6.38″″ (73.2 mm × 162 mm) C24 L4 C25 C8 C9 C23 C22 C10 R2 C21* C20* C19* C18* C17* L3 C12 C4 L1 R1 C3 C1 Q1 L2 C11 C2 C16* C15* R3 C13* C14* C6 C7 C5 Rev. 0 D81078 *C13, C14, C15, C16, C17, C18, C19, C20, and C21 are mounted vertically. L3 total wire length = 1.50″ (38 mm) 0.394 (10) C24 0.394 (10) Inches (mm) C23 C22 C22, C23 top view (located beneath C24) 0.158 (4) 0.158 (4) Figure 13. MRF1K50H 81.36 MHz Narrowband Reference Circuit Component Layout Figure 14. MRF1K50H 81.36 MHz Narrowband Reference Circuit Component Layout — Bottom MRF1K50H 12 RF Device Data NXP Semiconductors 81.36 MHz NARROWBAND REFERENCE CIRCUIT Table 10. MRF1K50H Narrowband Reference Circuit Component Designations and Values — 81.36 MHz Part Description Part Number Manufacturer C1, C3, C6, C9, C19, C20, 1000 pF Chip Capacitors C21, C22 ATC100B102JT50XT ATC C2 22 pF Chip Capacitor ATC100B220JT500XT ATC C4, C5, C8, C23 10,000 pF Chip Capacitors ATC200B103KT50XT ATC C7, C10, C15, C16, C17, C18 470 pF Chip Capacitors ATC100B471JT200XT ATC C11 62 pF 300 V Mica Capacitor MIN02-002EC620J-F CDE C12 91 pF 300 V Mica Capacitor MIN02-002EC910J-F CDE C13 6.8 pF Chip Capacitor ATC100B6R8CT500XT ATC C14 1.5 pF Chip Capacitor ATC100B1R5BT500XT ATC C24 220 µF, 63 V Electrolytic Capacitor EEU-FC1J221S Panasonic C25 22 µF, 35 V Electrolytic Capacitor UUD1V220MCL1GS Nichicon L1, L2 12.5 nH Inductors, 4 Turns A04TJLC Coilcraft L3 1.5 mm Non--Tarnish Silver Plated Copper Wire SP1500NT-001 Scientific Wire Company L4 22 nH Inductor 1212VS-22NMEB Coilcraft Q1 RF Power LDMOS Transistor MRF1K50H NXP R1 10 Ω, 1/4 W Chip Resistor CRCW120610R0JNEA Vishay R2, R3 33 Ω, 2 W Chip Resistors 1-2176070-3 TE Connectivity PCB Arlon TC350 0.030″, εr = 3.5 D81078 MTL Note: Refer to MRF1K50H’s printed circuit boards and schematics to download the 81.36 MHz heatsink drawing. MRF1K50H RF Device Data NXP Semiconductors 13 TYPICAL CHARACTERISTICS — 81.36 MHz NARROWBAND REFERENCE CIRCUIT 100 VDD = 50 Vdc, IDQ(A+B) = 150 mA, f = 81.36 MHz 90 28 1400 Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) 29 VDD = 50 Vdc, IDQ(A+B) = 150 mA, f = 81.36 MHz 1600 1200 1000 800 600 400 200 0 0 1 2 3 4 5 6 7 8 9 Pin, INPUT POWER (WATTS) 27 80 Gps 70 26 25 60 ηD 24 50 23 40 22 30 21 100 500 900 1300 ηD, DRAIN EFFICIENCY (%) 1800 20 1700 Pout, OUTPUT POWER (WATTS) f (MHz) P1dB (W) P3dB (W) 81.36 890 1414 Figure 16. Power Gain and Drain Efficiency versus CW Output Power Figure 15. CW Output Power versus Input Power MRF1K50H 14 RF Device Data NXP Semiconductors 81.36 MHz NARROWBAND REFERENCE CIRCUIT f MHz Zsource Ω Zload Ω 81.36 3.12 + j6.2 3.5 + j2.5 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 Ω Input Matching Network = Test circuit impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50 Ω + Zload Figure 17. Narrowband Series Equivalent Source and Load Impedance — 81.36 MHz MRF1K50H RF Device Data NXP Semiconductors 15 230 MHz NARROWBAND PRODUCTION TEST FIXTURE — 6″″ × 4″″ (152 mm × 102 mm) C10 C27 C6 C28 D80474 C25 Coax1 Coax3 R1 L3 C4* R2 Coax2 C18* C19* C20* C14 C15 C13 L2 C3 C1 L1 C24 L4 Coax4 C26 MRF1K50H Rev. 1 C11 C21* C22* C23* C16 C17 CUT OUT AREA C2 C5 C29 C12 C9 C7 C30 C31 C32 C8 *C4, C18, C19, C20, C21, C22, and C23 are mounted vertically. Figure 18. MRF1K50H Narrowband Test Circuit Component Layout — 230 MHz Table 11. MRF1K50H Narrowband Test Circuit Component Designations and Values — 230 MHz Part Description Part Number Manufacturer C1, C2, C3 22 pF Chip Capacitors ATC100B220JT500XT ATC C4 27 pF Chip Capacitor ATC100B270JT500XT ATC C5, C6 22 µF, 35 V Tantalum Capacitors T491X226K035AT Kemet C7, C9 0.1 µF Chip Capacitors C1210C104K5RACTU Kemet C8, C10 220 nF Chip Capacitors C1812C224K5RACTU Kemet C11, C12, C25, C26 1000 pF Chip Capacitors ATC100B102JT50XT ATC C13 51 pF Chip Capacitor ATC800R510JT500XT ATC C14 24 pF Chip Capacitor ATC800R240JT500XT ATC C15, C16, C17 20 pF Chip Capacitors ATC800R200JT500XT ATC C18, C19, C20, C21, C22, C23 240 pF Chip Capacitors ATC100B241JT200XT ATC C24 8.2 pF Chip Capacitor ATC100B8R2CT500XT ATC C27, C28, C29, C30, C31, C32 470 µF, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp Coax1, 2, 3, 4 25 Ω Semi Rigid Coax, 2.2″ Shield Length UT-141C-25 Micro--Coax L1, L2 5 nH Inductors A02TKLC Coilcraft L3, L4 6.6 nH Inductors GA3093-ALC Coilcraft R1, R2 10 Ω, 1/4 W Chip Resistors CRCW120610R0JNEA Vishay PCB Arlon AD255A 0.030″, εr = 2.55 D80474 MTL MRF1K50H 16 RF Device Data NXP Semiconductors TYPICAL CHARACTERISTICS — 230 MHz PRODUCTION TEST FIXTURE Pout, OUTPUT POWER (WATTS) PEAK 1800 VDD = 50 Vdc, f = 230 MHz Pulse Width = 100 µsec, 20% Duty Cycle 1600 1400 1200 Pin = 6.5 W 1000 Pin = 3.2 W 800 600 400 200 0 0.5 0 1 1.5 2 2.5 3 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 19. Output Power versus Gate--Source Voltage at a Constant Input Power 27 100 64 25 60 56 52 48 80 Gps IDQ(A+B) = 900 mA 23 60 600 mA 21 40 900 mA 600 mA 300 mA ηD 19 100 mA 300 mA 20 44 100 mA 40 20 24 28 32 36 40 17 10 44 100 Pin, INPUT POWER (dBm) PEAK 1000 0 2000 Pout, OUTPUT POWER (WATTS) PEAK f (MHz) P1dB (W) P3dB (W) 230 1460 1740 Figure 21. Power Gain and Drain Efficiency versus Output Power and Quiescent Current Figure 20. Output Power versus Input Power 29 27 28 90 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 µsec, 20% Duty Cycle IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 µsec, 20% Duty Cycle 80 60 23 TC = –40_C 21 19 17 50 40 25_C ηD 30 85_C 20 15 11 30 25_C 22 50 V 45 V 20 40 V VDD = 30 V 10 –40_C 100 24 18 85_C 13 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 70 Gps ηD, DRAIN EFFICIENCY (%) 26 25 1000 0 2000 35 V 16 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 22. Power Gain and Drain Efficiency versus Output Power Figure 23. Power Gain versus Output Power and Drain--Source Voltage MRF1K50H RF Device Data NXP Semiconductors 17 ηD, DRAIN EFFICIENCY (%) VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 µsec, 20% Duty Cycle VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 µsec, 20% Duty Cycle Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) PEAK 68 230 MHz NARROWBAND PRODUCTION TEST FIXTURE f MHz Zsource Ω Zload Ω 230 1.4 + j2.8 2.2 + j1.7 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 Ω Input Matching Network = Test circuit impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50 Ω + Zload Figure 24. Narrowband Series Equivalent Source and Load Impedance — 230 MHz MRF1K50H 18 RF Device Data NXP Semiconductors PACKAGE DIMENSIONS MRF1K50H RF Device Data NXP Semiconductors 19 MRF1K50H 20 RF Device Data NXP Semiconductors PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes • AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File Development Tools • Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/RF 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 June 2016 1 Jan. 2017 Description • Initial Release of Data Sheet • Table 2, Thermal Characteristics: updated thermal resistance to show data at 88 MHz, p. 2 • Table 6, Ordering Information: corrected number of units in reel to 50, p. 3 • Figure 4, Maximum Transient Thermal Impedance: added performance graph to data sheet, p. 4 1.1 Mar. 2017 • Feature bullets: added product longevity program bullet, p. 1 • Figure 12, 87.5 MHz Harmonics @ 1200 W CW: corrected H2, H3 and H4 frequency values, p. 10 MRF1K50H RF Device Data NXP Semiconductors 21 How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 2016–2017 NXP B.V. MRF1K50H Document Number: MRF1K50H Rev. 1.1, 03/2017 22 RF Device Data NXP Semiconductors
MRF1K50H-TF2 价格&库存

很抱歉,暂时无法提供与“MRF1K50H-TF2”相匹配的价格&库存,您可以联系我们找货

免费人工找货