0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF6VP2600HR6

MRF6VP2600HR6

  • 厂商:

    NXP(恩智浦)

  • 封装:

    NI-1230

  • 描述:

    RF Mosfet LDMOS (Dual) 50V 2.6A 225MHz 25dB 125W NI-1230

  • 数据手册
  • 价格&库存
MRF6VP2600HR6 数据手册
Freescale Semiconductor Technical Data Document Number: MRF6VP2600H Rev. 5.1, 7/2010 RF Power Field Effect Transistor N--Channel Enhancement--Mode Lateral MOSFET Designed primarily for wideband applications with frequencies up to 500 MHz. Device is unmatched and is suitable for use in broadcast applications. • Typical DVB--T OFDM Performance: VDD = 50 Volts, IDQ = 2600 mA, Pout = 125 Watts Avg., f = 225 MHz, Channel Bandwidth = 7.61 MHz, Input Signal PAR = 9.3 dB @ 0.01% Probability on CCDF. Power Gain — 25 dB Drain Efficiency — 28.5% ACPR @ 4 MHz Offset — --61 dBc @ 4 kHz Bandwidth • Typical Pulsed Performance: VDD = 50 Volts, IDQ = 2600 mA, Pout = 600 Watts Peak, f = 225 MHz, Pulse Width = 100 μsec, Duty Cycle = 20% Power Gain — 25.3 dB Drain Efficiency — 59% • Capable of Handling 10:1 VSWR, @ 50 Vdc, 225 MHz, 600 Watts Peak Power, Pulse Width = 100 μsec, Duty Cycle = 20% Features • Characterized with Series Equivalent Large--Signal Impedance Parameters • CW Operation Capability with Adequate Cooling • Qualified Up to a Maximum of 50 VDD Operation • Integrated ESD Protection • Designed for Push--Pull Operation • Greater Negative Gate--Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel. MRF6VP2600HR6 2--500 MHz, 600 W, 50 V LATERAL N--CHANNEL BROADBAND RF POWER MOSFET CASE 375D--05, STYLE 1 NI--1230 PART IS PUSH--PULL RFinA/VGSA 3 1 RFoutA/VDSA RFinB/VGSB 4 2 RFoutB/VDSB (Top View) Figure 1. Pin Connections Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS --0.5, +110 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Storage Temperature Range Tstg -- 65 to +150 °C TC 150 °C TJ 225 °C Symbol Value (2,3) Case Operating Temperature Operating Junction Temperature (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 99°C, 125 W CW, 225 MHz, 50 Vdc, IDQ = 2600 mA Case Temperature 64°C, 610 W CW, 352.2 MHz, 50 Vdc, IDQ = 150 mA Case Temperature 81°C, 610 W CW, 88--108 MHz, 50 Vdc, IDQ = 150 mA RθJC 0.20 0.14 0.16 Unit °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. © Freescale Semiconductor, Inc., 2008--2010. All rights reserved. RF Device Data Freescale Semiconductor MRF6VP2600HR6 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 (Minimum) Machine Model (per EIA/JESD22--A115) A (Minimum) Charge Device Model (per JESD22--C101) IV (Minimum) Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit IGSS — — 10 μAdc V(BR)DSS 110 — — Vdc Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 50 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 2.5 mA Gate Threshold Voltage (1) (VDS = 10 Vdc, ID = 800 μAdc) VGS(th) 1 1.65 3 Vdc Gate Quiescent Voltage (2) (VDD = 50 Vdc, ID = 2600 mAdc, Measured in Functional Test) VGS(Q) 1.5 2.7 3.5 Vdc Drain--Source On--Voltage (1) (VGS = 10 Vdc, ID = 2 Adc) VDS(on) — 0.25 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 1.7 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 101 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 287 — pF Characteristic Off Characteristics (1) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (ID = 150 mA, VGS = 0 Vdc) On Characteristics Dynamic Characteristics (1) Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 2600 mA, Pout = 125 W Avg., f = 225 MHz, DVB--T OFDM Single Channel. ACPR measured in 7.61 MHz Channel Bandwidth @ ±4 MHz Offset. Power Gain Gps 24 25 27 dB Drain Efficiency ηD 27 28.5 — % ACPR — --61 --59 dBc IRL — --18 --9 dB Adjacent Channel Power Ratio Input Return Loss Typical Performance — 352.2 MHz (In Freescale 352.2 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW Power Gain Gps — 22 — dB Drain Efficiency ηD — 68 — % Input Return Loss IRL — --15 — dB Typical Performance — 88--108 MHz (In Freescale 88--108 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW Power Gain Gps — 24.5 — dB Drain Efficiency ηD — 74 — % Input Return Loss IRL — --5 — dB 1. Each side of device measured separately. 2. Measurement made with device in push--pull configuration. MRF6VP2600HR6 2 RF Device Data Freescale Semiconductor VBIAS B1 + + + C16 C15 C14 L3 R1 L2 L4 C13 C12 C11 C9 C8 C7 C10 C6 C19 Z9 Z5 RF INPUT Z1 VSUPPLY Z2 L1 Z3 Z11 Z13 C2 Z15 C20 C3 C4 C23 C24 C25 Z16 Z20 RF OUTPUT J2 Z8 Z10 Z12 Z14 1.049″ x 0.080″ Microstrip 0.143″ x 0.080″ Microstrip 0.188″ x 0.080″ Microstrip 0.192″ x 0.133″ Microstrip 0.418″ x 0.193″ Microstrip 0.217″ x 0.518″ Microstrip 0.200″ x 0.518″ Microstrip 0.375″ x 0.214″ Microstrip C22 + Z17 C5 Z18 T1 Z1 Z2* Z3* Z4 Z5, Z6 Z7, Z8 Z9, Z10 Z11, Z12 C21 Z19 DUT Z6 C18 + Z7 Z4 J1 C1 C17 + T2 Z13, Z14 Z15*, Z16* Z17, Z18 Z19 Z20 PCB 0.224″ x 0.253″ Microstrip 0.095″ x 0.253″ Microstrip 0.052″ x 0.253″ Microstrip 0.053″ x 0.080″ Microstrip 1.062″ x 0.080″ Microstrip Arlon CuClad 250GX--0300--55--22, 0.030″, εr = 2.55 * Line length includes microstrip bends Figure 2. MRF6VP2600HR6 Test Circuit Schematic Table 5. MRF6VP2600HR6 Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1 95 Ω, 100 MHz Long Ferrite Bead 2743021447 Fair--Rite C1 47 pF Chip Capacitor ATC100B470JT500XT ATC C2, C4 43 pF Chip Capacitors ATC100B430JT500XT ATC C3 100 pF Chip Capacitor ATC100B101JT500XT ATC C5 10 pF Chip Capacitor ATC100B7R5CT500XT ATC C6, C9 2.2 μF, 50 V Chip Capacitors C1825C225J5RAC Kemet C7, C13, C20 10K pF Chip Capacitors ATC200B103KT50XT ATC C8 220 nF, 50 V Chip Capacitor C1812C224J5RAC Kemet C10, C17, C18 1000 pF Chip Capacitors ATC100B102JT50XT ATC C11, C22 0.1 μF, 50 V Chip Capacitors CDR33BX104AKYS Kemet C12, C21 20K pF Chip Capacitors ATC200B203KT50XT ATC C14 10 μF, 35 V Tantalum Capacitor T491D106K035AT Kemet C15 22 μF, 35 V Tantalum Capacitor T491X226K035AT Kemet C16 47 μF, 50 V Electrolytic Capacitor 476KXM050M Illinois Cap C19 2.2 μF, Chip Capacitor 2225X7R225KT3AB ATC C23, C24, C25 470 μF 63V Electrolytic Capacitors MCGPR63V477M13X26--RH Multicomp J1, J2 Jumpers from PCB to T1 & T2 Copper Foil L1 17.5 nH, 6 Turn Inductor B06T L2 8 Turn, #20 AWG ID = 0.125″ Inductor, Hand Wound Copper Wire L3 82 nH, Inductor 1812SMS--82NJ L4* 9 Turn, #18 AWG Inductor, Hand Wound Copper Wire R1 20 Ω, 3 W Axial Leaded Resistor 5093NW20R00J Vishay T1 Balun TUI--9 Comm Concepts T2 Balun TUO--4 Comm Concepts CoilCraft CoilCraft *L4 is wrapped around R1. MRF6VP2600HR6 RF Device Data Freescale Semiconductor 3 -- B1 C23 C13 C12 C11 C16 + C15 C14 C22 C21 C20 L3 -- C25 -- C18 C9 C8 C7 L2 C10 T2 T1 J1 C2 C4 CUT OUT AREA L1 C19 C17 C6 C1 C24 L4, R1* J2 C5 C3 (on side) MRF6VP2600H 225 MHz Rev. 3 * L4 is wrapped around R1. Figure 3. MRF6VP2600HR6 Test Circuit Component Layout MRF6VP2600HR6 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 100 1000 ID, DRAIN CURRENT (AMPS) Coss 100 Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc Crss 10 0 10 20 40 30 10 TC = 25_C 1 50 10 100 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Note: Each side of device measured separately. Note: Each side of device measured separately. Figure 4. Capacitance versus Drain--Source Voltage Figure 5. DC Safe Operating Area 26.5 64 80 Gps VDD = 50 Vdc, IDQ = 2600 mA f = 225 MHz Pulse Width = 100 μsec Duty Cycle = 20% 25 24.5 50 40 ηD 24 30 23.5 20 23 10 22.5 10 62 Pout, OUTPUT POWER (dBm) 60 25.5 P2dB = 59.1 dBm (827 W) 60 P1dB = 53.3 dBm (670 W) Actual 58 56 54 VDD = 50 Vdc, IDQ = 2600 mA, f = 225 MHz Pulse Width = 12 μsec, Duty Cycle = 1% 52 27 0 1000 100 Ideal P3dB = 59.7 dBm (938 W) 70 ηD, DRAIN EFFICIENCY (%) 26 Gps, POWER GAIN (dB) TJ = 175_C TJ = 150_C 1 1 28 29 30 31 32 33 34 35 36 Pin, INPUT POWER (dBm) Figure 6. Pulsed Power Gain and Drain Efficiency versus Output Power Figure 7. Pulsed CW Output Power versus Input Power 28 80 27 Gps, POWER GAIN (dB) 25 50 V 24 45 V 40 V 23 VDD = 50 Vdc IDQ = 2600 mA f = 225 MHz Pulse Width = 100 μsec Duty Cycle = 20% 22 21 0 100 200 35 V 300 400 500 600 700 Gps TC = --30_C 26 70 60 25_C 25 50 85_C 24 40 VDD = 50 Vdc, IDQ = 2600 mA f = 225 MHz Pulse Width = 100 μsec Duty Cycle = 20% 23 22 VDD = 30 V 38 37 Pout, OUTPUT POWER (WATTS) PULSED 26 Gps, POWER GAIN (dB) TJ = 200_C 21 10 ηD 30 20 ηD, DRAIN EFFICIENCY (%) C, CAPACITANCE (pF) Ciss 10 1000 100 Pout, OUTPUT POWER (WATTS) PULSED Pout, OUTPUT POWER (WATTS) PULSED Figure 8. Pulsed Power Gain versus Output Power Figure 9. Pulsed Power Gain and Drain Efficiency versus Output Power MRF6VP2600HR6 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS — TWO--TONE --10 VDD = 50 Vdc, IDQ = 2600 mA, f1 = 222 MHz f2 = 228 MHz, Two--Tone Measurements --30 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) --20 --40 3rd Order --50 5th Order --60 7th Order --70 10 5 100 700 --30 3rd Order --40 5th Order --50 7th Order --60 Figure 10. Intermodulation Distortion Products versus Output Power Figure 11. Intermodulation Distortion Products versus Tone Spacing IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) 2300 mA 2000 mA 1800 mA 24 10 TWO--TONE SPACING (MHz) IDQ = 2600 mA 25 1 0.1 --20 25.5 Gps, POWER GAIN (dB) --20 Pout, OUTPUT POWER (WATTS) PEP 26 24.5 VDD = 50 Vdc, Pout = 500 W (PEP), IDQ = 2600 mA Two--Tone Measurements VDD = 50 Vdc, f1 = 222 MHz, f2 = 228 MHz Two--Tone Measurements, 6 MHz Tone Spacing 1300 mA 23.5 100 20 Pout, OUTPUT POWER (WATTS) PEP Figure 12. Two--Tone Power Gain versus Output Power VDD = 50 Vdc, f1 = 222 MHz, f2 = 228 MHz Two--Tone Measurements, 6 MHz Tone Spacing --25 --30 IDQ = 1300 mA --35 --40 2600 mA 1800 mA --45 2000 mA --50 700 40 20 2300 mA 700 100 Pout, OUTPUT POWER (WATTS) PEP Figure 13. Third Order Intermodulation Distortion versus Output Power MRF6VP2600HR6 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — OFDM 100 --20 7.61 MHz --30 10 --50 8K Mode DVB--T OFDM 64 QAM Data Carrier Modulation 5 Symbols 0.01 --90 --110 2 0 4 6 8 10 12 --3 --2 --1 0 1 2 3 4 Figure 14. Single--Carrier DVB--T OFDM Figure 15. 8K Mode DVB--T OFDM Spectrum 2300 mA 25.2 2000 mA 1800 mA 24.8 1300 mA VDD = 50 Vdc, f = 225 MHz 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols 24.4 24.2 100 30 200 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) --56 VDD = 50 Vdc, f = 225 MHz 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols --58 --60 --62 IDQ = 1300 mA --64 1800 mA --66 2000 mA 2300 mA --68 2600 mA 100 20 Pout, OUTPUT POWER (WATTS) AVG. Figure 16. Single--Carrier DVB--T OFDM Power Gain versus Output Power Figure 17. Single--Carrier DVB--T OFDM ACPR versus Output Power ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) AVG. 45 25_C 40 --30_C ACPR --60 ηD 30 25_C 25 85_C 20 15 30 --56 --58 85_C 35 5 --62 TC = --30_C Gps --64 VDD = 50 Vdc, IDQ = 2600 MHz f = 225 MHz, 8K Mode OFDM --66 64 QAM Data Carrier Modulation 5 Symbols --68 100 400 200 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) Gps, POWER GAIN (dB) --4 f, FREQUENCY (MHz) 25.4 24.6 --5 PEAK--TO--AVERAGE (dB) IDQ = 2600 mA 25 8K Mode DVB--T OFDM 64 QAM Data Carrier Modulation, 5 Symbols --100 25.8 25.6 4 kHz BW ACPR Measured at 4 MHz Offset from Center Frequency --70 --80 0.001 0.0001 4 kHz BW --60 0.1 (dB) PROBABILITY (%) --40 1 Pout, OUTPUT POWER (WATTS) AVG. Figure 18. Single--Carrier DVB--T OFDM ACPR Power Gain and Drain Efficiency versus Output Power MRF6VP2600HR6 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS 109 MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 125 W Avg., and ηD = 28.5%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 19. MTTF versus Junction Temperature -- CW MRF6VP2600HR6 8 RF Device Data Freescale Semiconductor Zsource f = 225 MHz Zo = 10 Ω Zload f = 225 MHz VDD = 50 Vdc, IDQ = 2600 mA, Pout = 125 W Avg. f MHz Zsource Ω Zload Ω 225 1.42 + j8.09 4.45 + j1.16 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network + Z load Figure 20. Series Equivalent Source and Load Impedance MRF6VP2600HR6 RF Device Data Freescale Semiconductor 9 COAX1 C18 + C14 C16 C17 + + C15 C1 J1 C3 B1 C5 L1 L3 T1 L4 C2 CUT OUT AREA C4 R1 C9 C7 C8 C10 L2 C6 C11 C12 COAX3 C13 MRF6VP2600KH Rev. 2 88--108 MHz COAX2 Figure 21. MRF6VP2600HR6 Test Circuit Component Layout — 88--108 MHz Table 6. MRF6VP2600HR6 Test Circuit Component Designations and Values — 88--108 MHz Part Description Part Number Manufacturer B1 95 Ω, 100 MHz Long Ferrite Bead 2743021447 Fair--Rite C1 6.8 μF, 50 V Chip Capacitor C4532X7R1H685K TDK C2 30 pF Chip Capacitor ATC100B300JT500XT ATC C3, C13, C14 1000 pF Chip Capacitors ATC100B102JT50XT ATC C4, C5, C6 1 μF, 100 V Chip Capacitors GRM31CR72A105KA01L Murata C7, C8, C9, C10, C11, C12 3900 pF Chip Capacitors ATC700B392JT50X ATC C15 4.7 μF, 100 V Chip Capacitor GRM55ER72A475KA01B Murata C16, C17 470 μF, 63 V Electrolytic Capacitors MCGPR63V477M13X26--RH Multicomp C18 220 μF, 100 V Electrolytic Capacitor MCGPR100V227M16X26--RH Multicomp J1 Jumper with Copper Tape L1 82 nH Inductor 1812SMS--82NJ CoilCraft L2 8 Turn, #14 AWG ID=0.250″ Inductor, Hand Wound Copper Wire Freescale L3, L4 8 nH Inductors A03TKLC CoilCraft R1 15 Ω, 1/4 W Chip Resistor CRCW120615R0FKEA Vishay T1 Balun Transformer TUI--LF--9 Comm Concepts Coax1, Coax2 25 Ω, Semi Rigid RF Cable, 3 mm Line, 16 cm Length UT--141C--25 Micro--Coax Coax3 25 Ω, Semi Rigid RF Cable, 3 mm Line, 15 cm Length UT--141C--25 Micro--Coax PCB 0.030″, εr = 2.55 GX0300--55--22 Arlon MRF6VP2600HR6 10 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 88--108 MHz 29 Gps, POWER GAIN (dB) 28 26 88 MHz Gps 98 MHz 25 80 98 MHz 108 MHz 27 85 108 MHz VDD = 50 Vdc, IDQ = 150 mA 70 65 60 88 MHz 24 75 55 23 50 ηD 22 45 ηD, DRAIN EFFICIENCY (%) 30 40 21 20 100 200 300 400 35 500 600 700 800 Pout, OUTPUT POWER (WATTS) Figure 22. Broadband CW Power Gain and Drain Efficiency versus Output Power — 88--108 MHz 26 Gps, POWER GAIN (dB) 82 VDD = 50 Vdc, IDQ = 150 mA Pout = 600 W, CW 25.5 81 80 79 Gps 25 78 24.5 77 24 76 23.5 75 ηD 23 74 73 22.5 22 ηD, DRAIN EFFICIENCY (%) 27 26.5 86 90 94 98 102 106 72 110 f, FREQUENCY (MHz) Figure 23. CW Power Gain and Drain Efficiency versus Frequency — 88--108 MHz MRF6VP2600HR6 RF Device Data Freescale Semiconductor 11 f = 88 MHz f = 108 MHz Zsource Zo = 25 Ω Zload f = 108 MHz f = 88 MHz VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W Avg. f MHz Zsource Ω Zload Ω 88 3.20 + j14.50 10.35 + j2.80 98 4.20 + j15.00 9.50 + j3.00 108 4.00 + j15.00 8.90 + j3.50 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network + Z load Figure 24. Series Equivalent Source and Load Impedance — 88--108 MHz MRF6VP2600HR6 12 RF Device Data Freescale Semiconductor -- B1 C7 MRF6VP2600H 352.2 MHz Rev. 1 C5 -- C9 C11 C20 L3 C18 L1 COAX1 COAX3 C1 C3* COAX2 C4* L2 C16 COAX4 C19 C6 -- C8 C12 C15 C17 L4 B2 C10 C14 C13 CUT OUT AREA C2 C24* C22 -- C21 C23 *Mounted on side Figure 25. MRF6VP2600HR6 Test Circuit Component Layout — 352.2 MHz Table 7. MRF6VP2600HR6 Test Circuit Component Designations and Values — 352.2 MHz Part Description Part Number Manufacturer B1, B2 47 Ω, 100 MHz Short Ferrite Beads 2743019447 Fair--Rite C1, C2 100 pF Chip Capacitors ATC100B101JT500XT ATC C3*, C24* 22 pF Chip Capacitors ATC100B221JT300XT ATC C4* 20 pF Chip Capacitor ATC100B200JT500XT ATC C5, C6 2.2 μF Chip Capacitors C1825C225J5RAC--TU Kemet C7, C8 220 nF Chip Capacitors C1812C224K5RAC--TU Kemet C9, C10 0.1 μF Chip Capacitors CDR33BX104AKWS AVX C11, C12 47 μF, 50 V Electrolytic Capacitors 476KXM050M Illinois Cap C13 39 pF, 500 V Chip Capacitor MCM01--009DD390J--F CDE C14, C15, C16, C17 240 pF Chip Capacitors ATC100B241JT200XT ATC C18, C19 2.2 μF Chip Capacitors G2225X7R225KT3AB ATC C20, C21, C22, C23 470 μF, 63 V Electrolytic Capacitors MCGPR63V477M13X26--RH Multicomp Coax1, 2, 3, 4 25 Ω, Semi Rigid Coax, 2.2″ UT141--25 Precision Tube Company L1, L2 2.5 nH, 1 Turn Inductors A01TKLC Coilcraft L3, L4 10 Turn, #16 AWG ID=0.160″ Inductors, Hand Wound Copper Wire Freescale *Mounted on side MRF6VP2600HR6 RF Device Data Freescale Semiconductor 13 TYPICAL CHARACTERISTICS — 352.2 MHz VDD = 50 Vdc IDQ = 150 mA f = 352.2 MHz Gps, POWER GAIN (dB) 22 21 80 Gps 70 60 20 50 ηD 19 40 18 30 17 20 16 10 15 10 100 ηD, DRAIN EFFICIENCY (%) 23 0 1000 Pout, OUTPUT POWER (WATTS) CW Figure 26. CW Power Gain and Drain Efficiency versus Output Power MRF6VP2600HR6 14 RF Device Data Freescale Semiconductor Zo = 10 Ω f = 352.2 MHz Zsource f = 352.2 MHz Zload VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW f MHz Zsource Ω Zload Ω 352.2 1.10 + j3.80 2.26 + j3.57 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network + Z load Figure 27. Series Equivalent Source and Load Impedance — 352.2 MHz MRF6VP2600HR6 RF Device Data Freescale Semiconductor 15 PACKAGE DIMENSIONS MRF6VP2600HR6 16 RF Device Data Freescale Semiconductor MRF6VP2600HR6 RF Device Data Freescale Semiconductor 17 PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Mar. 2008 • Initial Release of Data Sheet 1 July 2008 • Removed Capable of Handling 5:1 VSWR bullet, p. 1 • Corrected Zsource and Zload values from 1.58 + j6.47 to 1.42 + j8.09 and 4.60 + j1.85 to 4.45 + j1.16 and replotted data in Fig. 21, Series Equivalent Source and Load Impedance, p. 9 2 Sept. 2008 • Added Note to Fig. 4, Capacitance versus Drain--Source Voltage and Fig. 5, DC Safe Operating Area to denote that each side of device is measured separately, p. 5 • Updated Fig. 5, DC Safe Operating Area, to show one side of the device, p. 5 • Figs. 21 and 27, Series Equivalent Source and Load Impedance, corrected Zsource copy to read “Test circuit impedance as measured from gate to gate, balanced configuration” and Zload copy to read “Test circuit impedance as measured from gate to gate, balanced configuration”, p. 9, 14 2.1 Nov. 2008 • Corrected Figs. 21 and 27 Revision History Zload copy to read ”Test circuit impedance as measured from drain to drain, balanced configuration”, p. 9, 14 4 May 2009 • Updated bullets in Features section to reflect consistent listing across products, p. 1 • Added thermal data for 352.2 MHz application to Table 2, Thermal Characteristics, p. 1 • Added Typical Performances table for 352.2 MHz application, p. 2 • Added Fig. 28, Test Circuit Component Layout -- 352.2 MHz and Table 7, Test Circuit Component Designations and Values -- 352.2 MHz, p. 15 • Added Fig. 29, CW Power Gain and Drain Efficiency versus Output Power -- 352.2 MHz p. 16 • Added Fig. 30, Series Equivalent Source and Load Impedance -- 352.2 MHz, p. 17 4.1 June 2009 • Changed “EKME630ELL471MK25S” part number to “MCGPR63V477M13X26--RH”, Table 5, Test Circuit Component Designations and Values and Table 6, Test Circuit Component Designations and Values — 88--108 MHz, p. 3, 11 • Added Electromigration MTTF Calculator and RF High Power Model availability to Product Documentation, Tools and Software, p. 20 5 May 2010 • Changed 10--500 MHz to 2--500 MHz in Device Description box, p. 1 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related “Continuous use at maximum temperature will affect MTTF” footnote added, p. 1 • Added thermal data for 88--108 MHz application to Thermal Characteristics table, p. 1 • Added Typical Performance table for 88--108 MHz application, p. 2 • Removed Fig. 20, MTTF versus Junction Temperature -- Pulsed and renumbered accordingly, p. 8 • Replaced Fig. 22 Test Circuit Component Layout, Table 6. Test Circuit Component Designations and Values, the Typical Characteristic curves and Fig. 27 Series Impedance for 88--108 MHz with improved circuit performance figures. The 88--108 MHz application circuit is also now a more compact size., p. 10--12 5.1 July 2010 • Fig. 24, Series Impedance for 88--108 MHz, table and plot updated to reflect correct location of Zsource and Zload, p. 12 MRF6VP2600HR6 18 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008--2010. All rights reserved. MRF6VP2600HR6 Document Number: RF Device Data MRF6VP2600H Rev. 5.1, 7/2010 Freescale Semiconductor 19
MRF6VP2600HR6 价格&库存

很抱歉,暂时无法提供与“MRF6VP2600HR6”相匹配的价格&库存,您可以联系我们找货

免费人工找货